Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.21
      1 /*	$NetBSD: tcp_input.c,v 1.21 1996/01/31 03:49:33 mycroft Exp $	*/
      2 
      3 /*
      4  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
      5  *	The Regents of the University of California.  All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. All advertising materials mentioning features or use of this software
     16  *    must display the following acknowledgement:
     17  *	This product includes software developed by the University of
     18  *	California, Berkeley and its contributors.
     19  * 4. Neither the name of the University nor the names of its contributors
     20  *    may be used to endorse or promote products derived from this software
     21  *    without specific prior written permission.
     22  *
     23  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
     24  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     25  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     26  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
     27  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     28  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     29  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     30  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     32  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     33  * SUCH DAMAGE.
     34  *
     35  *	@(#)tcp_input.c	8.5 (Berkeley) 4/10/94
     36  */
     37 
     38 #ifndef TUBA_INCLUDE
     39 #include <sys/param.h>
     40 #include <sys/systm.h>
     41 #include <sys/malloc.h>
     42 #include <sys/mbuf.h>
     43 #include <sys/protosw.h>
     44 #include <sys/socket.h>
     45 #include <sys/socketvar.h>
     46 #include <sys/errno.h>
     47 
     48 #include <net/if.h>
     49 #include <net/route.h>
     50 
     51 #include <netinet/in.h>
     52 #include <netinet/in_systm.h>
     53 #include <netinet/ip.h>
     54 #include <netinet/in_pcb.h>
     55 #include <netinet/ip_var.h>
     56 #include <netinet/tcp.h>
     57 #include <netinet/tcp_fsm.h>
     58 #include <netinet/tcp_seq.h>
     59 #include <netinet/tcp_timer.h>
     60 #include <netinet/tcp_var.h>
     61 #include <netinet/tcpip.h>
     62 #include <netinet/tcp_debug.h>
     63 
     64 int	tcprexmtthresh = 3;
     65 struct	tcpiphdr tcp_saveti;
     66 
     67 extern u_long sb_max;
     68 
     69 #endif /* TUBA_INCLUDE */
     70 #define TCP_PAWS_IDLE	(24 * 24 * 60 * 60 * PR_SLOWHZ)
     71 
     72 /* for modulo comparisons of timestamps */
     73 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
     74 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
     75 
     76 
     77 /*
     78  * Insert segment ti into reassembly queue of tcp with
     79  * control block tp.  Return TH_FIN if reassembly now includes
     80  * a segment with FIN.  The macro form does the common case inline
     81  * (segment is the next to be received on an established connection,
     82  * and the queue is empty), avoiding linkage into and removal
     83  * from the queue and repetition of various conversions.
     84  * Set DELACK for segments received in order, but ack immediately
     85  * when segments are out of order (so fast retransmit can work).
     86  */
     87 #define	TCP_REASS(tp, ti, m, so, flags) { \
     88 	if ((ti)->ti_seq == (tp)->rcv_nxt && \
     89 	    (tp)->segq.lh_first == NULL && \
     90 	    (tp)->t_state == TCPS_ESTABLISHED) { \
     91 		if ((ti)->ti_flags & TH_PUSH) \
     92 			tp->t_flags |= TF_ACKNOW; \
     93 		else \
     94 			tp->t_flags |= TF_DELACK; \
     95 		(tp)->rcv_nxt += (ti)->ti_len; \
     96 		flags = (ti)->ti_flags & TH_FIN; \
     97 		tcpstat.tcps_rcvpack++;\
     98 		tcpstat.tcps_rcvbyte += (ti)->ti_len;\
     99 		sbappend(&(so)->so_rcv, (m)); \
    100 		sorwakeup(so); \
    101 	} else { \
    102 		(flags) = tcp_reass((tp), (ti), (m)); \
    103 		tp->t_flags |= TF_ACKNOW; \
    104 	} \
    105 }
    106 #ifndef TUBA_INCLUDE
    107 
    108 int
    109 tcp_reass(tp, ti, m)
    110 	register struct tcpcb *tp;
    111 	register struct tcpiphdr *ti;
    112 	struct mbuf *m;
    113 {
    114 	register struct ipqent *p, *q, *nq, *tiqe;
    115 	struct socket *so = tp->t_inpcb->inp_socket;
    116 	int flags;
    117 
    118 	/*
    119 	 * Call with ti==0 after become established to
    120 	 * force pre-ESTABLISHED data up to user socket.
    121 	 */
    122 	if (ti == 0)
    123 		goto present;
    124 
    125 	/*
    126 	 * Allocate a new queue entry, before we throw away any data.
    127 	 * If we can't, just drop the packet.  XXX
    128 	 */
    129 	MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
    130 	if (tiqe == NULL) {
    131 		tcpstat.tcps_rcvmemdrop++;
    132 		m_freem(m);
    133 		return (0);
    134 	}
    135 
    136 	/*
    137 	 * Find a segment which begins after this one does.
    138 	 */
    139 	for (p = NULL, q = tp->segq.lh_first; q != NULL;
    140 	    p = q, q = q->ipqe_q.le_next)
    141 		if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
    142 			break;
    143 
    144 	/*
    145 	 * If there is a preceding segment, it may provide some of
    146 	 * our data already.  If so, drop the data from the incoming
    147 	 * segment.  If it provides all of our data, drop us.
    148 	 */
    149 	if (p != NULL) {
    150 		register struct tcpiphdr *phdr = p->ipqe_tcp;
    151 		register int i;
    152 
    153 		/* conversion to int (in i) handles seq wraparound */
    154 		i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
    155 		if (i > 0) {
    156 			if (i >= ti->ti_len) {
    157 				tcpstat.tcps_rcvduppack++;
    158 				tcpstat.tcps_rcvdupbyte += ti->ti_len;
    159 				m_freem(m);
    160 				FREE(tiqe, M_IPQ);
    161 				return (0);
    162 			}
    163 			m_adj(m, i);
    164 			ti->ti_len -= i;
    165 			ti->ti_seq += i;
    166 		}
    167 	}
    168 	tcpstat.tcps_rcvoopack++;
    169 	tcpstat.tcps_rcvoobyte += ti->ti_len;
    170 
    171 	/*
    172 	 * While we overlap succeeding segments trim them or,
    173 	 * if they are completely covered, dequeue them.
    174 	 */
    175 	for (; q != NULL; q = nq) {
    176 		register struct tcpiphdr *qhdr = q->ipqe_tcp;
    177 		register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
    178 
    179 		if (i <= 0)
    180 			break;
    181 		if (i < qhdr->ti_len) {
    182 			qhdr->ti_seq += i;
    183 			qhdr->ti_len -= i;
    184 			m_adj(q->ipqe_m, i);
    185 			break;
    186 		}
    187 		nq = q->ipqe_q.le_next;
    188 		m_freem(q->ipqe_m);
    189 		LIST_REMOVE(q, ipqe_q);
    190 		FREE(q, M_IPQ);
    191 	}
    192 
    193 	/* Insert the new fragment queue entry into place. */
    194 	tiqe->ipqe_m = m;
    195 	tiqe->ipqe_tcp = ti;
    196 	if (p == NULL) {
    197 		LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    198 	} else {
    199 		LIST_INSERT_AFTER(p, tiqe, ipqe_q);
    200 	}
    201 
    202 present:
    203 	/*
    204 	 * Present data to user, advancing rcv_nxt through
    205 	 * completed sequence space.
    206 	 */
    207 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    208 		return (0);
    209 	q = tp->segq.lh_first;
    210 	if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
    211 		return (0);
    212 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
    213 		return (0);
    214 	do {
    215 		tp->rcv_nxt += q->ipqe_tcp->ti_len;
    216 		flags = q->ipqe_tcp->ti_flags & TH_FIN;
    217 
    218 		nq = q->ipqe_q.le_next;
    219 		LIST_REMOVE(q, ipqe_q);
    220 		if (so->so_state & SS_CANTRCVMORE)
    221 			m_freem(q->ipqe_m);
    222 		else
    223 			sbappend(&so->so_rcv, q->ipqe_m);
    224 		FREE(q, M_IPQ);
    225 		q = nq;
    226 	} while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
    227 	sorwakeup(so);
    228 	return (flags);
    229 }
    230 
    231 /*
    232  * TCP input routine, follows pages 65-76 of the
    233  * protocol specification dated September, 1981 very closely.
    234  */
    235 void
    236 tcp_input(m, iphlen)
    237 	register struct mbuf *m;
    238 	int iphlen;
    239 {
    240 	register struct tcpiphdr *ti;
    241 	register struct inpcb *inp;
    242 	caddr_t optp = NULL;
    243 	int optlen;
    244 	int len, tlen, off;
    245 	register struct tcpcb *tp = 0;
    246 	register int tiflags;
    247 	struct socket *so;
    248 	int todrop, acked, ourfinisacked, needoutput = 0;
    249 	short ostate;
    250 	struct in_addr laddr;
    251 	int dropsocket = 0;
    252 	int iss = 0;
    253 	u_long tiwin;
    254 	u_int32_t ts_val, ts_ecr;
    255 	int ts_present = 0;
    256 
    257 	tcpstat.tcps_rcvtotal++;
    258 	/*
    259 	 * Get IP and TCP header together in first mbuf.
    260 	 * Note: IP leaves IP header in first mbuf.
    261 	 */
    262 	ti = mtod(m, struct tcpiphdr *);
    263 	if (iphlen > sizeof (struct ip))
    264 		ip_stripoptions(m, (struct mbuf *)0);
    265 	if (m->m_len < sizeof (struct tcpiphdr)) {
    266 		if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
    267 			tcpstat.tcps_rcvshort++;
    268 			return;
    269 		}
    270 		ti = mtod(m, struct tcpiphdr *);
    271 	}
    272 
    273 	/*
    274 	 * Checksum extended TCP header and data.
    275 	 */
    276 	tlen = ((struct ip *)ti)->ip_len;
    277 	len = sizeof (struct ip) + tlen;
    278 	bzero(ti->ti_x1, sizeof ti->ti_x1);
    279 	ti->ti_len = (u_int16_t)tlen;
    280 	HTONS(ti->ti_len);
    281 	if (ti->ti_sum = in_cksum(m, len)) {
    282 		tcpstat.tcps_rcvbadsum++;
    283 		goto drop;
    284 	}
    285 #endif /* TUBA_INCLUDE */
    286 
    287 	/*
    288 	 * Check that TCP offset makes sense,
    289 	 * pull out TCP options and adjust length.		XXX
    290 	 */
    291 	off = ti->ti_off << 2;
    292 	if (off < sizeof (struct tcphdr) || off > tlen) {
    293 		tcpstat.tcps_rcvbadoff++;
    294 		goto drop;
    295 	}
    296 	tlen -= off;
    297 	ti->ti_len = tlen;
    298 	if (off > sizeof (struct tcphdr)) {
    299 		if (m->m_len < sizeof(struct ip) + off) {
    300 			if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
    301 				tcpstat.tcps_rcvshort++;
    302 				return;
    303 			}
    304 			ti = mtod(m, struct tcpiphdr *);
    305 		}
    306 		optlen = off - sizeof (struct tcphdr);
    307 		optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
    308 		/*
    309 		 * Do quick retrieval of timestamp options ("options
    310 		 * prediction?").  If timestamp is the only option and it's
    311 		 * formatted as recommended in RFC 1323 appendix A, we
    312 		 * quickly get the values now and not bother calling
    313 		 * tcp_dooptions(), etc.
    314 		 */
    315 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
    316 		     (optlen > TCPOLEN_TSTAMP_APPA &&
    317 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
    318 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
    319 		     (ti->ti_flags & TH_SYN) == 0) {
    320 			ts_present = 1;
    321 			ts_val = ntohl(*(u_int32_t *)(optp + 4));
    322 			ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
    323 			optp = NULL;	/* we've parsed the options */
    324 		}
    325 	}
    326 	tiflags = ti->ti_flags;
    327 
    328 	/*
    329 	 * Convert TCP protocol specific fields to host format.
    330 	 */
    331 	NTOHL(ti->ti_seq);
    332 	NTOHL(ti->ti_ack);
    333 	NTOHS(ti->ti_win);
    334 	NTOHS(ti->ti_urp);
    335 
    336 	/*
    337 	 * Locate pcb for segment.
    338 	 */
    339 findpcb:
    340 	inp = in_pcbhashlookup(&tcbtable, ti->ti_src, ti->ti_sport,
    341 	    ti->ti_dst, ti->ti_dport);
    342 	if (inp == 0) {
    343 		++tcpstat.tcps_pcbhashmiss;
    344 		inp = in_pcblookup(&tcbtable, ti->ti_src, ti->ti_sport,
    345 		    ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
    346 		/*
    347 		 * If the state is CLOSED (i.e., TCB does not exist) then
    348 		 * all data in the incoming segment is discarded.
    349 		 * If the TCB exists but is in CLOSED state, it is embryonic,
    350 		 * but should either do a listen or a connect soon.
    351 		 */
    352 		if (inp == 0) {
    353 			++tcpstat.tcps_noport;
    354 			goto dropwithreset;
    355 		}
    356 	}
    357 
    358 	tp = intotcpcb(inp);
    359 	if (tp == 0)
    360 		goto dropwithreset;
    361 	if (tp->t_state == TCPS_CLOSED)
    362 		goto drop;
    363 
    364 	/* Unscale the window into a 32-bit value. */
    365 	if ((tiflags & TH_SYN) == 0)
    366 		tiwin = ti->ti_win << tp->snd_scale;
    367 	else
    368 		tiwin = ti->ti_win;
    369 
    370 	so = inp->inp_socket;
    371 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
    372 		if (so->so_options & SO_DEBUG) {
    373 			ostate = tp->t_state;
    374 			tcp_saveti = *ti;
    375 		}
    376 		if (so->so_options & SO_ACCEPTCONN) {
    377 			so = sonewconn(so, 0);
    378 			if (so == 0)
    379 				goto drop;
    380 			/*
    381 			 * This is ugly, but ....
    382 			 *
    383 			 * Mark socket as temporary until we're
    384 			 * committed to keeping it.  The code at
    385 			 * ``drop'' and ``dropwithreset'' check the
    386 			 * flag dropsocket to see if the temporary
    387 			 * socket created here should be discarded.
    388 			 * We mark the socket as discardable until
    389 			 * we're committed to it below in TCPS_LISTEN.
    390 			 */
    391 			dropsocket++;
    392 			inp = (struct inpcb *)so->so_pcb;
    393 			inp->inp_laddr = ti->ti_dst;
    394 			inp->inp_lport = ti->ti_dport;
    395 			in_pcbrehash(inp);
    396 #if BSD>=43
    397 			inp->inp_options = ip_srcroute();
    398 #endif
    399 			tp = intotcpcb(inp);
    400 			tp->t_state = TCPS_LISTEN;
    401 
    402 			/* Compute proper scaling value from buffer space
    403 			 */
    404 			while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
    405 			   TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
    406 				tp->request_r_scale++;
    407 		}
    408 	}
    409 
    410 	/*
    411 	 * Segment received on connection.
    412 	 * Reset idle time and keep-alive timer.
    413 	 */
    414 	tp->t_idle = 0;
    415 	tp->t_timer[TCPT_KEEP] = tcp_keepidle;
    416 
    417 	/*
    418 	 * Process options if not in LISTEN state,
    419 	 * else do it below (after getting remote address).
    420 	 */
    421 	if (optp && tp->t_state != TCPS_LISTEN)
    422 		tcp_dooptions(tp, optp, optlen, ti,
    423 			&ts_present, &ts_val, &ts_ecr);
    424 
    425 	/*
    426 	 * Header prediction: check for the two common cases
    427 	 * of a uni-directional data xfer.  If the packet has
    428 	 * no control flags, is in-sequence, the window didn't
    429 	 * change and we're not retransmitting, it's a
    430 	 * candidate.  If the length is zero and the ack moved
    431 	 * forward, we're the sender side of the xfer.  Just
    432 	 * free the data acked & wake any higher level process
    433 	 * that was blocked waiting for space.  If the length
    434 	 * is non-zero and the ack didn't move, we're the
    435 	 * receiver side.  If we're getting packets in-order
    436 	 * (the reassembly queue is empty), add the data to
    437 	 * the socket buffer and note that we need a delayed ack.
    438 	 */
    439 	if (tp->t_state == TCPS_ESTABLISHED &&
    440 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
    441 	    (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
    442 	    ti->ti_seq == tp->rcv_nxt &&
    443 	    tiwin && tiwin == tp->snd_wnd &&
    444 	    tp->snd_nxt == tp->snd_max) {
    445 
    446 		/*
    447 		 * If last ACK falls within this segment's sequence numbers,
    448 		 *  record the timestamp.
    449 		 */
    450 		if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
    451 		   SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
    452 			tp->ts_recent_age = tcp_now;
    453 			tp->ts_recent = ts_val;
    454 		}
    455 
    456 		if (ti->ti_len == 0) {
    457 			if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
    458 			    SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
    459 			    tp->snd_cwnd >= tp->snd_wnd &&
    460 			    tp->t_dupacks < tcprexmtthresh) {
    461 				/*
    462 				 * this is a pure ack for outstanding data.
    463 				 */
    464 				++tcpstat.tcps_predack;
    465 				if (ts_present)
    466 					tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
    467 				else if (tp->t_rtt &&
    468 					    SEQ_GT(ti->ti_ack, tp->t_rtseq))
    469 					tcp_xmit_timer(tp, tp->t_rtt);
    470 				acked = ti->ti_ack - tp->snd_una;
    471 				tcpstat.tcps_rcvackpack++;
    472 				tcpstat.tcps_rcvackbyte += acked;
    473 				sbdrop(&so->so_snd, acked);
    474 				tp->snd_una = ti->ti_ack;
    475 				m_freem(m);
    476 
    477 				/*
    478 				 * If all outstanding data are acked, stop
    479 				 * retransmit timer, otherwise restart timer
    480 				 * using current (possibly backed-off) value.
    481 				 * If process is waiting for space,
    482 				 * wakeup/selwakeup/signal.  If data
    483 				 * are ready to send, let tcp_output
    484 				 * decide between more output or persist.
    485 				 */
    486 				if (tp->snd_una == tp->snd_max)
    487 					tp->t_timer[TCPT_REXMT] = 0;
    488 				else if (tp->t_timer[TCPT_PERSIST] == 0)
    489 					tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
    490 
    491 				if (sb_notify(&so->so_snd))
    492 					sowwakeup(so);
    493 				if (so->so_snd.sb_cc)
    494 					(void) tcp_output(tp);
    495 				return;
    496 			}
    497 		} else if (ti->ti_ack == tp->snd_una &&
    498 		    tp->segq.lh_first == NULL &&
    499 		    ti->ti_len <= sbspace(&so->so_rcv)) {
    500 			/*
    501 			 * this is a pure, in-sequence data packet
    502 			 * with nothing on the reassembly queue and
    503 			 * we have enough buffer space to take it.
    504 			 */
    505 			++tcpstat.tcps_preddat;
    506 			tp->rcv_nxt += ti->ti_len;
    507 			tcpstat.tcps_rcvpack++;
    508 			tcpstat.tcps_rcvbyte += ti->ti_len;
    509 			/*
    510 			 * Drop TCP, IP headers and TCP options then add data
    511 			 * to socket buffer.
    512 			 */
    513 			m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    514 			m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    515 			sbappend(&so->so_rcv, m);
    516 			sorwakeup(so);
    517 			if (ti->ti_flags & TH_PUSH)
    518 				tp->t_flags |= TF_ACKNOW;
    519 			else
    520 				tp->t_flags |= TF_DELACK;
    521 			return;
    522 		}
    523 	}
    524 
    525 	/*
    526 	 * Drop TCP, IP headers and TCP options.
    527 	 */
    528 	m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    529 	m->m_len  -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
    530 
    531 	/*
    532 	 * Calculate amount of space in receive window,
    533 	 * and then do TCP input processing.
    534 	 * Receive window is amount of space in rcv queue,
    535 	 * but not less than advertised window.
    536 	 */
    537 	{ int win;
    538 
    539 	win = sbspace(&so->so_rcv);
    540 	if (win < 0)
    541 		win = 0;
    542 	tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
    543 	}
    544 
    545 	switch (tp->t_state) {
    546 
    547 	/*
    548 	 * If the state is LISTEN then ignore segment if it contains an RST.
    549 	 * If the segment contains an ACK then it is bad and send a RST.
    550 	 * If it does not contain a SYN then it is not interesting; drop it.
    551 	 * Don't bother responding if the destination was a broadcast.
    552 	 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
    553 	 * tp->iss, and send a segment:
    554 	 *     <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
    555 	 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
    556 	 * Fill in remote peer address fields if not previously specified.
    557 	 * Enter SYN_RECEIVED state, and process any other fields of this
    558 	 * segment in this state.
    559 	 */
    560 	case TCPS_LISTEN: {
    561 		struct mbuf *am;
    562 		register struct sockaddr_in *sin;
    563 
    564 		if (tiflags & TH_RST)
    565 			goto drop;
    566 		if (tiflags & TH_ACK)
    567 			goto dropwithreset;
    568 		if ((tiflags & TH_SYN) == 0)
    569 			goto drop;
    570 		/*
    571 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
    572 		 * in_broadcast() should never return true on a received
    573 		 * packet with M_BCAST not set.
    574 		 */
    575 		if (m->m_flags & (M_BCAST|M_MCAST) ||
    576 		    IN_MULTICAST(ti->ti_dst.s_addr))
    577 			goto drop;
    578 		am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
    579 		if (am == NULL)
    580 			goto drop;
    581 		am->m_len = sizeof (struct sockaddr_in);
    582 		sin = mtod(am, struct sockaddr_in *);
    583 		sin->sin_family = AF_INET;
    584 		sin->sin_len = sizeof(*sin);
    585 		sin->sin_addr = ti->ti_src;
    586 		sin->sin_port = ti->ti_sport;
    587 		bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
    588 		laddr = inp->inp_laddr;
    589 		if (inp->inp_laddr.s_addr == INADDR_ANY)
    590 			inp->inp_laddr = ti->ti_dst;
    591 		if (in_pcbconnect(inp, am)) {
    592 			inp->inp_laddr = laddr;
    593 			(void) m_free(am);
    594 			goto drop;
    595 		}
    596 		(void) m_free(am);
    597 		tp->t_template = tcp_template(tp);
    598 		if (tp->t_template == 0) {
    599 			tp = tcp_drop(tp, ENOBUFS);
    600 			dropsocket = 0;		/* socket is already gone */
    601 			goto drop;
    602 		}
    603 		if (optp)
    604 			tcp_dooptions(tp, optp, optlen, ti,
    605 				&ts_present, &ts_val, &ts_ecr);
    606 		if (iss)
    607 			tp->iss = iss;
    608 		else
    609 			tp->iss = tcp_iss;
    610 		tcp_iss += TCP_ISSINCR/2;
    611 		tp->irs = ti->ti_seq;
    612 		tcp_sendseqinit(tp);
    613 		tcp_rcvseqinit(tp);
    614 		tp->t_flags |= TF_ACKNOW;
    615 		tp->t_state = TCPS_SYN_RECEIVED;
    616 		tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
    617 		dropsocket = 0;		/* committed to socket */
    618 		tcpstat.tcps_accepts++;
    619 		goto trimthenstep6;
    620 		}
    621 
    622 	/*
    623 	 * If the state is SYN_SENT:
    624 	 *	if seg contains an ACK, but not for our SYN, drop the input.
    625 	 *	if seg contains a RST, then drop the connection.
    626 	 *	if seg does not contain SYN, then drop it.
    627 	 * Otherwise this is an acceptable SYN segment
    628 	 *	initialize tp->rcv_nxt and tp->irs
    629 	 *	if seg contains ack then advance tp->snd_una
    630 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
    631 	 *	arrange for segment to be acked (eventually)
    632 	 *	continue processing rest of data/controls, beginning with URG
    633 	 */
    634 	case TCPS_SYN_SENT:
    635 		if ((tiflags & TH_ACK) &&
    636 		    (SEQ_LEQ(ti->ti_ack, tp->iss) ||
    637 		     SEQ_GT(ti->ti_ack, tp->snd_max)))
    638 			goto dropwithreset;
    639 		if (tiflags & TH_RST) {
    640 			if (tiflags & TH_ACK)
    641 				tp = tcp_drop(tp, ECONNREFUSED);
    642 			goto drop;
    643 		}
    644 		if ((tiflags & TH_SYN) == 0)
    645 			goto drop;
    646 		if (tiflags & TH_ACK) {
    647 			tp->snd_una = ti->ti_ack;
    648 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
    649 				tp->snd_nxt = tp->snd_una;
    650 		}
    651 		tp->t_timer[TCPT_REXMT] = 0;
    652 		tp->irs = ti->ti_seq;
    653 		tcp_rcvseqinit(tp);
    654 		tp->t_flags |= TF_ACKNOW;
    655 		if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
    656 			tcpstat.tcps_connects++;
    657 			soisconnected(so);
    658 			tp->t_state = TCPS_ESTABLISHED;
    659 			/* Do window scaling on this connection? */
    660 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
    661 				(TF_RCVD_SCALE|TF_REQ_SCALE)) {
    662 				tp->snd_scale = tp->requested_s_scale;
    663 				tp->rcv_scale = tp->request_r_scale;
    664 			}
    665 			(void) tcp_reass(tp, (struct tcpiphdr *)0,
    666 				(struct mbuf *)0);
    667 			/*
    668 			 * if we didn't have to retransmit the SYN,
    669 			 * use its rtt as our initial srtt & rtt var.
    670 			 */
    671 			if (tp->t_rtt)
    672 				tcp_xmit_timer(tp, tp->t_rtt);
    673 		} else
    674 			tp->t_state = TCPS_SYN_RECEIVED;
    675 
    676 trimthenstep6:
    677 		/*
    678 		 * Advance ti->ti_seq to correspond to first data byte.
    679 		 * If data, trim to stay within window,
    680 		 * dropping FIN if necessary.
    681 		 */
    682 		ti->ti_seq++;
    683 		if (ti->ti_len > tp->rcv_wnd) {
    684 			todrop = ti->ti_len - tp->rcv_wnd;
    685 			m_adj(m, -todrop);
    686 			ti->ti_len = tp->rcv_wnd;
    687 			tiflags &= ~TH_FIN;
    688 			tcpstat.tcps_rcvpackafterwin++;
    689 			tcpstat.tcps_rcvbyteafterwin += todrop;
    690 		}
    691 		tp->snd_wl1 = ti->ti_seq - 1;
    692 		tp->rcv_up = ti->ti_seq;
    693 		goto step6;
    694 	}
    695 
    696 	/*
    697 	 * States other than LISTEN or SYN_SENT.
    698 	 * First check timestamp, if present.
    699 	 * Then check that at least some bytes of segment are within
    700 	 * receive window.  If segment begins before rcv_nxt,
    701 	 * drop leading data (and SYN); if nothing left, just ack.
    702 	 *
    703 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
    704 	 * and it's less than ts_recent, drop it.
    705 	 */
    706 	if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
    707 	    TSTMP_LT(ts_val, tp->ts_recent)) {
    708 
    709 		/* Check to see if ts_recent is over 24 days old.  */
    710 		if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
    711 			/*
    712 			 * Invalidate ts_recent.  If this segment updates
    713 			 * ts_recent, the age will be reset later and ts_recent
    714 			 * will get a valid value.  If it does not, setting
    715 			 * ts_recent to zero will at least satisfy the
    716 			 * requirement that zero be placed in the timestamp
    717 			 * echo reply when ts_recent isn't valid.  The
    718 			 * age isn't reset until we get a valid ts_recent
    719 			 * because we don't want out-of-order segments to be
    720 			 * dropped when ts_recent is old.
    721 			 */
    722 			tp->ts_recent = 0;
    723 		} else {
    724 			tcpstat.tcps_rcvduppack++;
    725 			tcpstat.tcps_rcvdupbyte += ti->ti_len;
    726 			tcpstat.tcps_pawsdrop++;
    727 			goto dropafterack;
    728 		}
    729 	}
    730 
    731 	todrop = tp->rcv_nxt - ti->ti_seq;
    732 	if (todrop > 0) {
    733 		if (tiflags & TH_SYN) {
    734 			tiflags &= ~TH_SYN;
    735 			ti->ti_seq++;
    736 			if (ti->ti_urp > 1)
    737 				ti->ti_urp--;
    738 			else
    739 				tiflags &= ~TH_URG;
    740 			todrop--;
    741 		}
    742 		if (todrop >= ti->ti_len) {
    743 			/*
    744 			 * Any valid FIN must be to the left of the
    745 			 * window.  At this point, FIN must be a
    746 			 * duplicate or out-of-sequence, so drop it.
    747 			 */
    748 			tiflags &= ~TH_FIN;
    749 			/*
    750 			 * Send ACK to resynchronize, and drop any data,
    751 			 * but keep on processing for RST or ACK.
    752 			 */
    753 			tp->t_flags |= TF_ACKNOW;
    754 			tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
    755 			tcpstat.tcps_rcvduppack++;
    756 		} else {
    757 			tcpstat.tcps_rcvpartduppack++;
    758 			tcpstat.tcps_rcvpartdupbyte += todrop;
    759 		}
    760 		m_adj(m, todrop);
    761 		ti->ti_seq += todrop;
    762 		ti->ti_len -= todrop;
    763 		if (ti->ti_urp > todrop)
    764 			ti->ti_urp -= todrop;
    765 		else {
    766 			tiflags &= ~TH_URG;
    767 			ti->ti_urp = 0;
    768 		}
    769 	}
    770 
    771 	/*
    772 	 * If new data are received on a connection after the
    773 	 * user processes are gone, then RST the other end.
    774 	 */
    775 	if ((so->so_state & SS_NOFDREF) &&
    776 	    tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
    777 		tp = tcp_close(tp);
    778 		tcpstat.tcps_rcvafterclose++;
    779 		goto dropwithreset;
    780 	}
    781 
    782 	/*
    783 	 * If segment ends after window, drop trailing data
    784 	 * (and PUSH and FIN); if nothing left, just ACK.
    785 	 */
    786 	todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
    787 	if (todrop > 0) {
    788 		tcpstat.tcps_rcvpackafterwin++;
    789 		if (todrop >= ti->ti_len) {
    790 			tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
    791 			/*
    792 			 * If a new connection request is received
    793 			 * while in TIME_WAIT, drop the old connection
    794 			 * and start over if the sequence numbers
    795 			 * are above the previous ones.
    796 			 */
    797 			if (tiflags & TH_SYN &&
    798 			    tp->t_state == TCPS_TIME_WAIT &&
    799 			    SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
    800 				iss = tp->rcv_nxt + TCP_ISSINCR;
    801 				tp = tcp_close(tp);
    802 				goto findpcb;
    803 			}
    804 			/*
    805 			 * If window is closed can only take segments at
    806 			 * window edge, and have to drop data and PUSH from
    807 			 * incoming segments.  Continue processing, but
    808 			 * remember to ack.  Otherwise, drop segment
    809 			 * and ack.
    810 			 */
    811 			if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
    812 				tp->t_flags |= TF_ACKNOW;
    813 				tcpstat.tcps_rcvwinprobe++;
    814 			} else
    815 				goto dropafterack;
    816 		} else
    817 			tcpstat.tcps_rcvbyteafterwin += todrop;
    818 		m_adj(m, -todrop);
    819 		ti->ti_len -= todrop;
    820 		tiflags &= ~(TH_PUSH|TH_FIN);
    821 	}
    822 
    823 	/*
    824 	 * If last ACK falls within this segment's sequence numbers,
    825 	 * record its timestamp.
    826 	 */
    827 	if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
    828 	    SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
    829 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
    830 		tp->ts_recent_age = tcp_now;
    831 		tp->ts_recent = ts_val;
    832 	}
    833 
    834 	/*
    835 	 * If the RST bit is set examine the state:
    836 	 *    SYN_RECEIVED STATE:
    837 	 *	If passive open, return to LISTEN state.
    838 	 *	If active open, inform user that connection was refused.
    839 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
    840 	 *	Inform user that connection was reset, and close tcb.
    841 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
    842 	 *	Close the tcb.
    843 	 */
    844 	if (tiflags&TH_RST) switch (tp->t_state) {
    845 
    846 	case TCPS_SYN_RECEIVED:
    847 		so->so_error = ECONNREFUSED;
    848 		goto close;
    849 
    850 	case TCPS_ESTABLISHED:
    851 	case TCPS_FIN_WAIT_1:
    852 	case TCPS_FIN_WAIT_2:
    853 	case TCPS_CLOSE_WAIT:
    854 		so->so_error = ECONNRESET;
    855 	close:
    856 		tp->t_state = TCPS_CLOSED;
    857 		tcpstat.tcps_drops++;
    858 		tp = tcp_close(tp);
    859 		goto drop;
    860 
    861 	case TCPS_CLOSING:
    862 	case TCPS_LAST_ACK:
    863 	case TCPS_TIME_WAIT:
    864 		tp = tcp_close(tp);
    865 		goto drop;
    866 	}
    867 
    868 	/*
    869 	 * If a SYN is in the window, then this is an
    870 	 * error and we send an RST and drop the connection.
    871 	 */
    872 	if (tiflags & TH_SYN) {
    873 		tp = tcp_drop(tp, ECONNRESET);
    874 		goto dropwithreset;
    875 	}
    876 
    877 	/*
    878 	 * If the ACK bit is off we drop the segment and return.
    879 	 */
    880 	if ((tiflags & TH_ACK) == 0)
    881 		goto drop;
    882 
    883 	/*
    884 	 * Ack processing.
    885 	 */
    886 	switch (tp->t_state) {
    887 
    888 	/*
    889 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
    890 	 * ESTABLISHED state and continue processing, otherwise
    891 	 * send an RST.
    892 	 */
    893 	case TCPS_SYN_RECEIVED:
    894 		if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
    895 		    SEQ_GT(ti->ti_ack, tp->snd_max))
    896 			goto dropwithreset;
    897 		tcpstat.tcps_connects++;
    898 		soisconnected(so);
    899 		tp->t_state = TCPS_ESTABLISHED;
    900 		/* Do window scaling? */
    901 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
    902 			(TF_RCVD_SCALE|TF_REQ_SCALE)) {
    903 			tp->snd_scale = tp->requested_s_scale;
    904 			tp->rcv_scale = tp->request_r_scale;
    905 		}
    906 		(void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
    907 		tp->snd_wl1 = ti->ti_seq - 1;
    908 		/* fall into ... */
    909 
    910 	/*
    911 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
    912 	 * ACKs.  If the ack is in the range
    913 	 *	tp->snd_una < ti->ti_ack <= tp->snd_max
    914 	 * then advance tp->snd_una to ti->ti_ack and drop
    915 	 * data from the retransmission queue.  If this ACK reflects
    916 	 * more up to date window information we update our window information.
    917 	 */
    918 	case TCPS_ESTABLISHED:
    919 	case TCPS_FIN_WAIT_1:
    920 	case TCPS_FIN_WAIT_2:
    921 	case TCPS_CLOSE_WAIT:
    922 	case TCPS_CLOSING:
    923 	case TCPS_LAST_ACK:
    924 	case TCPS_TIME_WAIT:
    925 
    926 		if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
    927 			if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
    928 				tcpstat.tcps_rcvdupack++;
    929 				/*
    930 				 * If we have outstanding data (other than
    931 				 * a window probe), this is a completely
    932 				 * duplicate ack (ie, window info didn't
    933 				 * change), the ack is the biggest we've
    934 				 * seen and we've seen exactly our rexmt
    935 				 * threshhold of them, assume a packet
    936 				 * has been dropped and retransmit it.
    937 				 * Kludge snd_nxt & the congestion
    938 				 * window so we send only this one
    939 				 * packet.
    940 				 *
    941 				 * We know we're losing at the current
    942 				 * window size so do congestion avoidance
    943 				 * (set ssthresh to half the current window
    944 				 * and pull our congestion window back to
    945 				 * the new ssthresh).
    946 				 *
    947 				 * Dup acks mean that packets have left the
    948 				 * network (they're now cached at the receiver)
    949 				 * so bump cwnd by the amount in the receiver
    950 				 * to keep a constant cwnd packets in the
    951 				 * network.
    952 				 */
    953 				if (tp->t_timer[TCPT_REXMT] == 0 ||
    954 				    ti->ti_ack != tp->snd_una)
    955 					tp->t_dupacks = 0;
    956 				else if (++tp->t_dupacks == tcprexmtthresh) {
    957 					tcp_seq onxt = tp->snd_nxt;
    958 					u_int win =
    959 					    min(tp->snd_wnd, tp->snd_cwnd) / 2 /
    960 						tp->t_maxseg;
    961 
    962 					if (win < 2)
    963 						win = 2;
    964 					tp->snd_ssthresh = win * tp->t_maxseg;
    965 					tp->t_timer[TCPT_REXMT] = 0;
    966 					tp->t_rtt = 0;
    967 					tp->snd_nxt = ti->ti_ack;
    968 					tp->snd_cwnd = tp->t_maxseg;
    969 					(void) tcp_output(tp);
    970 					tp->snd_cwnd = tp->snd_ssthresh +
    971 					       tp->t_maxseg * tp->t_dupacks;
    972 					if (SEQ_GT(onxt, tp->snd_nxt))
    973 						tp->snd_nxt = onxt;
    974 					goto drop;
    975 				} else if (tp->t_dupacks > tcprexmtthresh) {
    976 					tp->snd_cwnd += tp->t_maxseg;
    977 					(void) tcp_output(tp);
    978 					goto drop;
    979 				}
    980 			} else
    981 				tp->t_dupacks = 0;
    982 			break;
    983 		}
    984 		/*
    985 		 * If the congestion window was inflated to account
    986 		 * for the other side's cached packets, retract it.
    987 		 */
    988 		if (tp->t_dupacks >= tcprexmtthresh &&
    989 		    tp->snd_cwnd > tp->snd_ssthresh)
    990 			tp->snd_cwnd = tp->snd_ssthresh;
    991 		tp->t_dupacks = 0;
    992 		if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
    993 			tcpstat.tcps_rcvacktoomuch++;
    994 			goto dropafterack;
    995 		}
    996 		acked = ti->ti_ack - tp->snd_una;
    997 		tcpstat.tcps_rcvackpack++;
    998 		tcpstat.tcps_rcvackbyte += acked;
    999 
   1000 		/*
   1001 		 * If we have a timestamp reply, update smoothed
   1002 		 * round trip time.  If no timestamp is present but
   1003 		 * transmit timer is running and timed sequence
   1004 		 * number was acked, update smoothed round trip time.
   1005 		 * Since we now have an rtt measurement, cancel the
   1006 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   1007 		 * Recompute the initial retransmit timer.
   1008 		 */
   1009 		if (ts_present)
   1010 			tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
   1011 		else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
   1012 			tcp_xmit_timer(tp,tp->t_rtt);
   1013 
   1014 		/*
   1015 		 * If all outstanding data is acked, stop retransmit
   1016 		 * timer and remember to restart (more output or persist).
   1017 		 * If there is more data to be acked, restart retransmit
   1018 		 * timer, using current (possibly backed-off) value.
   1019 		 */
   1020 		if (ti->ti_ack == tp->snd_max) {
   1021 			tp->t_timer[TCPT_REXMT] = 0;
   1022 			needoutput = 1;
   1023 		} else if (tp->t_timer[TCPT_PERSIST] == 0)
   1024 			tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
   1025 		/*
   1026 		 * When new data is acked, open the congestion window.
   1027 		 * If the window gives us less than ssthresh packets
   1028 		 * in flight, open exponentially (maxseg per packet).
   1029 		 * Otherwise open linearly: maxseg per window
   1030 		 * (maxseg^2 / cwnd per packet), plus a constant
   1031 		 * fraction of a packet (maxseg/8) to help larger windows
   1032 		 * open quickly enough.
   1033 		 */
   1034 		{
   1035 		register u_int cw = tp->snd_cwnd;
   1036 		register u_int incr = tp->t_maxseg;
   1037 
   1038 		if (cw > tp->snd_ssthresh)
   1039 			incr = incr * incr / cw;
   1040 		tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
   1041 		}
   1042 		if (acked > so->so_snd.sb_cc) {
   1043 			tp->snd_wnd -= so->so_snd.sb_cc;
   1044 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   1045 			ourfinisacked = 1;
   1046 		} else {
   1047 			sbdrop(&so->so_snd, acked);
   1048 			tp->snd_wnd -= acked;
   1049 			ourfinisacked = 0;
   1050 		}
   1051 		if (sb_notify(&so->so_snd))
   1052 			sowwakeup(so);
   1053 		tp->snd_una = ti->ti_ack;
   1054 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1055 			tp->snd_nxt = tp->snd_una;
   1056 
   1057 		switch (tp->t_state) {
   1058 
   1059 		/*
   1060 		 * In FIN_WAIT_1 STATE in addition to the processing
   1061 		 * for the ESTABLISHED state if our FIN is now acknowledged
   1062 		 * then enter FIN_WAIT_2.
   1063 		 */
   1064 		case TCPS_FIN_WAIT_1:
   1065 			if (ourfinisacked) {
   1066 				/*
   1067 				 * If we can't receive any more
   1068 				 * data, then closing user can proceed.
   1069 				 * Starting the timer is contrary to the
   1070 				 * specification, but if we don't get a FIN
   1071 				 * we'll hang forever.
   1072 				 */
   1073 				if (so->so_state & SS_CANTRCVMORE) {
   1074 					soisdisconnected(so);
   1075 					tp->t_timer[TCPT_2MSL] = tcp_maxidle;
   1076 				}
   1077 				tp->t_state = TCPS_FIN_WAIT_2;
   1078 			}
   1079 			break;
   1080 
   1081 	 	/*
   1082 		 * In CLOSING STATE in addition to the processing for
   1083 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   1084 		 * then enter the TIME-WAIT state, otherwise ignore
   1085 		 * the segment.
   1086 		 */
   1087 		case TCPS_CLOSING:
   1088 			if (ourfinisacked) {
   1089 				tp->t_state = TCPS_TIME_WAIT;
   1090 				tcp_canceltimers(tp);
   1091 				tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1092 				soisdisconnected(so);
   1093 			}
   1094 			break;
   1095 
   1096 		/*
   1097 		 * In LAST_ACK, we may still be waiting for data to drain
   1098 		 * and/or to be acked, as well as for the ack of our FIN.
   1099 		 * If our FIN is now acknowledged, delete the TCB,
   1100 		 * enter the closed state and return.
   1101 		 */
   1102 		case TCPS_LAST_ACK:
   1103 			if (ourfinisacked) {
   1104 				tp = tcp_close(tp);
   1105 				goto drop;
   1106 			}
   1107 			break;
   1108 
   1109 		/*
   1110 		 * In TIME_WAIT state the only thing that should arrive
   1111 		 * is a retransmission of the remote FIN.  Acknowledge
   1112 		 * it and restart the finack timer.
   1113 		 */
   1114 		case TCPS_TIME_WAIT:
   1115 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1116 			goto dropafterack;
   1117 		}
   1118 	}
   1119 
   1120 step6:
   1121 	/*
   1122 	 * Update window information.
   1123 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   1124 	 */
   1125 	if ((tiflags & TH_ACK) &&
   1126 	    (SEQ_LT(tp->snd_wl1, ti->ti_seq) || tp->snd_wl1 == ti->ti_seq &&
   1127 	    (SEQ_LT(tp->snd_wl2, ti->ti_ack) ||
   1128 	     tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd))) {
   1129 		/* keep track of pure window updates */
   1130 		if (ti->ti_len == 0 &&
   1131 		    tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
   1132 			tcpstat.tcps_rcvwinupd++;
   1133 		tp->snd_wnd = tiwin;
   1134 		tp->snd_wl1 = ti->ti_seq;
   1135 		tp->snd_wl2 = ti->ti_ack;
   1136 		if (tp->snd_wnd > tp->max_sndwnd)
   1137 			tp->max_sndwnd = tp->snd_wnd;
   1138 		needoutput = 1;
   1139 	}
   1140 
   1141 	/*
   1142 	 * Process segments with URG.
   1143 	 */
   1144 	if ((tiflags & TH_URG) && ti->ti_urp &&
   1145 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1146 		/*
   1147 		 * This is a kludge, but if we receive and accept
   1148 		 * random urgent pointers, we'll crash in
   1149 		 * soreceive.  It's hard to imagine someone
   1150 		 * actually wanting to send this much urgent data.
   1151 		 */
   1152 		if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
   1153 			ti->ti_urp = 0;			/* XXX */
   1154 			tiflags &= ~TH_URG;		/* XXX */
   1155 			goto dodata;			/* XXX */
   1156 		}
   1157 		/*
   1158 		 * If this segment advances the known urgent pointer,
   1159 		 * then mark the data stream.  This should not happen
   1160 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   1161 		 * a FIN has been received from the remote side.
   1162 		 * In these states we ignore the URG.
   1163 		 *
   1164 		 * According to RFC961 (Assigned Protocols),
   1165 		 * the urgent pointer points to the last octet
   1166 		 * of urgent data.  We continue, however,
   1167 		 * to consider it to indicate the first octet
   1168 		 * of data past the urgent section as the original
   1169 		 * spec states (in one of two places).
   1170 		 */
   1171 		if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
   1172 			tp->rcv_up = ti->ti_seq + ti->ti_urp;
   1173 			so->so_oobmark = so->so_rcv.sb_cc +
   1174 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   1175 			if (so->so_oobmark == 0)
   1176 				so->so_state |= SS_RCVATMARK;
   1177 			sohasoutofband(so);
   1178 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   1179 		}
   1180 		/*
   1181 		 * Remove out of band data so doesn't get presented to user.
   1182 		 * This can happen independent of advancing the URG pointer,
   1183 		 * but if two URG's are pending at once, some out-of-band
   1184 		 * data may creep in... ick.
   1185 		 */
   1186 		if (ti->ti_urp <= ti->ti_len
   1187 #ifdef SO_OOBINLINE
   1188 		     && (so->so_options & SO_OOBINLINE) == 0
   1189 #endif
   1190 		     )
   1191 			tcp_pulloutofband(so, ti, m);
   1192 	} else
   1193 		/*
   1194 		 * If no out of band data is expected,
   1195 		 * pull receive urgent pointer along
   1196 		 * with the receive window.
   1197 		 */
   1198 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   1199 			tp->rcv_up = tp->rcv_nxt;
   1200 dodata:							/* XXX */
   1201 
   1202 	/*
   1203 	 * Process the segment text, merging it into the TCP sequencing queue,
   1204 	 * and arranging for acknowledgment of receipt if necessary.
   1205 	 * This process logically involves adjusting tp->rcv_wnd as data
   1206 	 * is presented to the user (this happens in tcp_usrreq.c,
   1207 	 * case PRU_RCVD).  If a FIN has already been received on this
   1208 	 * connection then we just ignore the text.
   1209 	 */
   1210 	if ((ti->ti_len || (tiflags&TH_FIN)) &&
   1211 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1212 		TCP_REASS(tp, ti, m, so, tiflags);
   1213 		/*
   1214 		 * Note the amount of data that peer has sent into
   1215 		 * our window, in order to estimate the sender's
   1216 		 * buffer size.
   1217 		 */
   1218 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   1219 	} else {
   1220 		m_freem(m);
   1221 		tiflags &= ~TH_FIN;
   1222 	}
   1223 
   1224 	/*
   1225 	 * If FIN is received ACK the FIN and let the user know
   1226 	 * that the connection is closing.
   1227 	 */
   1228 	if (tiflags & TH_FIN) {
   1229 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   1230 			socantrcvmore(so);
   1231 			tp->t_flags |= TF_ACKNOW;
   1232 			tp->rcv_nxt++;
   1233 		}
   1234 		switch (tp->t_state) {
   1235 
   1236 	 	/*
   1237 		 * In SYN_RECEIVED and ESTABLISHED STATES
   1238 		 * enter the CLOSE_WAIT state.
   1239 		 */
   1240 		case TCPS_SYN_RECEIVED:
   1241 		case TCPS_ESTABLISHED:
   1242 			tp->t_state = TCPS_CLOSE_WAIT;
   1243 			break;
   1244 
   1245 	 	/*
   1246 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   1247 		 * enter the CLOSING state.
   1248 		 */
   1249 		case TCPS_FIN_WAIT_1:
   1250 			tp->t_state = TCPS_CLOSING;
   1251 			break;
   1252 
   1253 	 	/*
   1254 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   1255 		 * starting the time-wait timer, turning off the other
   1256 		 * standard timers.
   1257 		 */
   1258 		case TCPS_FIN_WAIT_2:
   1259 			tp->t_state = TCPS_TIME_WAIT;
   1260 			tcp_canceltimers(tp);
   1261 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1262 			soisdisconnected(so);
   1263 			break;
   1264 
   1265 		/*
   1266 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   1267 		 */
   1268 		case TCPS_TIME_WAIT:
   1269 			tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
   1270 			break;
   1271 		}
   1272 	}
   1273 	if (so->so_options & SO_DEBUG)
   1274 		tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
   1275 
   1276 	/*
   1277 	 * Return any desired output.
   1278 	 */
   1279 	if (needoutput || (tp->t_flags & TF_ACKNOW))
   1280 		(void) tcp_output(tp);
   1281 	return;
   1282 
   1283 dropafterack:
   1284 	/*
   1285 	 * Generate an ACK dropping incoming segment if it occupies
   1286 	 * sequence space, where the ACK reflects our state.
   1287 	 */
   1288 	if (tiflags & TH_RST)
   1289 		goto drop;
   1290 	m_freem(m);
   1291 	tp->t_flags |= TF_ACKNOW;
   1292 	(void) tcp_output(tp);
   1293 	return;
   1294 
   1295 dropwithreset:
   1296 	/*
   1297 	 * Generate a RST, dropping incoming segment.
   1298 	 * Make ACK acceptable to originator of segment.
   1299 	 * Don't bother to respond if destination was broadcast/multicast.
   1300 	 */
   1301 	if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
   1302 	    IN_MULTICAST(ti->ti_dst.s_addr))
   1303 		goto drop;
   1304 	if (tiflags & TH_ACK)
   1305 		tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
   1306 	else {
   1307 		if (tiflags & TH_SYN)
   1308 			ti->ti_len++;
   1309 		tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
   1310 		    TH_RST|TH_ACK);
   1311 	}
   1312 	/* destroy temporarily created socket */
   1313 	if (dropsocket)
   1314 		(void) soabort(so);
   1315 	return;
   1316 
   1317 drop:
   1318 	/*
   1319 	 * Drop space held by incoming segment and return.
   1320 	 */
   1321 	if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
   1322 		tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
   1323 	m_freem(m);
   1324 	/* destroy temporarily created socket */
   1325 	if (dropsocket)
   1326 		(void) soabort(so);
   1327 	return;
   1328 #ifndef TUBA_INCLUDE
   1329 }
   1330 
   1331 void
   1332 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
   1333 	struct tcpcb *tp;
   1334 	u_char *cp;
   1335 	int cnt;
   1336 	struct tcpiphdr *ti;
   1337 	int *ts_present;
   1338 	u_int32_t *ts_val, *ts_ecr;
   1339 {
   1340 	u_int16_t mss;
   1341 	int opt, optlen;
   1342 
   1343 	for (; cnt > 0; cnt -= optlen, cp += optlen) {
   1344 		opt = cp[0];
   1345 		if (opt == TCPOPT_EOL)
   1346 			break;
   1347 		if (opt == TCPOPT_NOP)
   1348 			optlen = 1;
   1349 		else {
   1350 			optlen = cp[1];
   1351 			if (optlen <= 0)
   1352 				break;
   1353 		}
   1354 		switch (opt) {
   1355 
   1356 		default:
   1357 			continue;
   1358 
   1359 		case TCPOPT_MAXSEG:
   1360 			if (optlen != TCPOLEN_MAXSEG)
   1361 				continue;
   1362 			if (!(ti->ti_flags & TH_SYN))
   1363 				continue;
   1364 			bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
   1365 			NTOHS(mss);
   1366 			(void) tcp_mss(tp, mss);	/* sets t_maxseg */
   1367 			break;
   1368 
   1369 		case TCPOPT_WINDOW:
   1370 			if (optlen != TCPOLEN_WINDOW)
   1371 				continue;
   1372 			if (!(ti->ti_flags & TH_SYN))
   1373 				continue;
   1374 			tp->t_flags |= TF_RCVD_SCALE;
   1375 			tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
   1376 			break;
   1377 
   1378 		case TCPOPT_TIMESTAMP:
   1379 			if (optlen != TCPOLEN_TIMESTAMP)
   1380 				continue;
   1381 			*ts_present = 1;
   1382 			bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
   1383 			NTOHL(*ts_val);
   1384 			bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
   1385 			NTOHL(*ts_ecr);
   1386 
   1387 			/*
   1388 			 * A timestamp received in a SYN makes
   1389 			 * it ok to send timestamp requests and replies.
   1390 			 */
   1391 			if (ti->ti_flags & TH_SYN) {
   1392 				tp->t_flags |= TF_RCVD_TSTMP;
   1393 				tp->ts_recent = *ts_val;
   1394 				tp->ts_recent_age = tcp_now;
   1395 			}
   1396 			break;
   1397 		}
   1398 	}
   1399 }
   1400 
   1401 /*
   1402  * Pull out of band byte out of a segment so
   1403  * it doesn't appear in the user's data queue.
   1404  * It is still reflected in the segment length for
   1405  * sequencing purposes.
   1406  */
   1407 void
   1408 tcp_pulloutofband(so, ti, m)
   1409 	struct socket *so;
   1410 	struct tcpiphdr *ti;
   1411 	register struct mbuf *m;
   1412 {
   1413 	int cnt = ti->ti_urp - 1;
   1414 
   1415 	while (cnt >= 0) {
   1416 		if (m->m_len > cnt) {
   1417 			char *cp = mtod(m, caddr_t) + cnt;
   1418 			struct tcpcb *tp = sototcpcb(so);
   1419 
   1420 			tp->t_iobc = *cp;
   1421 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   1422 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   1423 			m->m_len--;
   1424 			return;
   1425 		}
   1426 		cnt -= m->m_len;
   1427 		m = m->m_next;
   1428 		if (m == 0)
   1429 			break;
   1430 	}
   1431 	panic("tcp_pulloutofband");
   1432 }
   1433 
   1434 /*
   1435  * Collect new round-trip time estimate
   1436  * and update averages and current timeout.
   1437  */
   1438 void
   1439 tcp_xmit_timer(tp, rtt)
   1440 	register struct tcpcb *tp;
   1441 	short rtt;
   1442 {
   1443 	register short delta;
   1444 
   1445 	tcpstat.tcps_rttupdated++;
   1446 	--rtt;
   1447 	if (tp->t_srtt != 0) {
   1448 		/*
   1449 		 * srtt is stored as fixed point with 3 bits after the
   1450 		 * binary point (i.e., scaled by 8).  The following magic
   1451 		 * is equivalent to the smoothing algorithm in rfc793 with
   1452 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   1453 		 * point).  Adjust rtt to origin 0.
   1454 		 */
   1455 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   1456 		if ((tp->t_srtt += delta) <= 0)
   1457 			tp->t_srtt = 1;
   1458 		/*
   1459 		 * We accumulate a smoothed rtt variance (actually, a
   1460 		 * smoothed mean difference), then set the retransmit
   1461 		 * timer to smoothed rtt + 4 times the smoothed variance.
   1462 		 * rttvar is stored as fixed point with 2 bits after the
   1463 		 * binary point (scaled by 4).  The following is
   1464 		 * equivalent to rfc793 smoothing with an alpha of .75
   1465 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   1466 		 * rfc793's wired-in beta.
   1467 		 */
   1468 		if (delta < 0)
   1469 			delta = -delta;
   1470 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   1471 		if ((tp->t_rttvar += delta) <= 0)
   1472 			tp->t_rttvar = 1;
   1473 	} else {
   1474 		/*
   1475 		 * No rtt measurement yet - use the unsmoothed rtt.
   1476 		 * Set the variance to half the rtt (so our first
   1477 		 * retransmit happens at 3*rtt).
   1478 		 */
   1479 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   1480 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   1481 	}
   1482 	tp->t_rtt = 0;
   1483 	tp->t_rxtshift = 0;
   1484 
   1485 	/*
   1486 	 * the retransmit should happen at rtt + 4 * rttvar.
   1487 	 * Because of the way we do the smoothing, srtt and rttvar
   1488 	 * will each average +1/2 tick of bias.  When we compute
   1489 	 * the retransmit timer, we want 1/2 tick of rounding and
   1490 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   1491 	 * firing of the timer.  The bias will give us exactly the
   1492 	 * 1.5 tick we need.  But, because the bias is
   1493 	 * statistical, we have to test that we don't drop below
   1494 	 * the minimum feasible timer (which is 2 ticks).
   1495 	 */
   1496 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   1497 	    rtt + 2, TCPTV_REXMTMAX);
   1498 
   1499 	/*
   1500 	 * We received an ack for a packet that wasn't retransmitted;
   1501 	 * it is probably safe to discard any error indications we've
   1502 	 * received recently.  This isn't quite right, but close enough
   1503 	 * for now (a route might have failed after we sent a segment,
   1504 	 * and the return path might not be symmetrical).
   1505 	 */
   1506 	tp->t_softerror = 0;
   1507 }
   1508 
   1509 /*
   1510  * Determine a reasonable value for maxseg size.
   1511  * If the route is known, check route for mtu.
   1512  * If none, use an mss that can be handled on the outgoing
   1513  * interface without forcing IP to fragment; if bigger than
   1514  * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
   1515  * to utilize large mbufs.  If no route is found, route has no mtu,
   1516  * or the destination isn't local, use a default, hopefully conservative
   1517  * size (usually 512 or the default IP max size, but no more than the mtu
   1518  * of the interface), as we can't discover anything about intervening
   1519  * gateways or networks.  We also initialize the congestion/slow start
   1520  * window to be a single segment if the destination isn't local.
   1521  * While looking at the routing entry, we also initialize other path-dependent
   1522  * parameters from pre-set or cached values in the routing entry.
   1523  */
   1524 int
   1525 tcp_mss(tp, offer)
   1526 	register struct tcpcb *tp;
   1527 	u_int offer;
   1528 {
   1529 	struct route *ro;
   1530 	register struct rtentry *rt;
   1531 	struct ifnet *ifp;
   1532 	register int rtt, mss;
   1533 	u_long bufsize;
   1534 	struct inpcb *inp;
   1535 	struct socket *so;
   1536 	extern int tcp_mssdflt;
   1537 
   1538 	inp = tp->t_inpcb;
   1539 	ro = &inp->inp_route;
   1540 
   1541 	if ((rt = ro->ro_rt) == (struct rtentry *)0) {
   1542 		/* No route yet, so try to acquire one */
   1543 		if (inp->inp_faddr.s_addr != INADDR_ANY) {
   1544 			ro->ro_dst.sa_family = AF_INET;
   1545 			ro->ro_dst.sa_len = sizeof(ro->ro_dst);
   1546 			satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
   1547 			rtalloc(ro);
   1548 		}
   1549 		if ((rt = ro->ro_rt) == (struct rtentry *)0)
   1550 			return (tcp_mssdflt);
   1551 	}
   1552 	ifp = rt->rt_ifp;
   1553 	so = inp->inp_socket;
   1554 
   1555 #ifdef RTV_MTU	/* if route characteristics exist ... */
   1556 	/*
   1557 	 * While we're here, check if there's an initial rtt
   1558 	 * or rttvar.  Convert from the route-table units
   1559 	 * to scaled multiples of the slow timeout timer.
   1560 	 */
   1561 	if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
   1562 		/*
   1563 		 * XXX the lock bit for MTU indicates that the value
   1564 		 * is also a minimum value; this is subject to time.
   1565 		 */
   1566 		if (rt->rt_rmx.rmx_locks & RTV_RTT)
   1567 			tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
   1568 		tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
   1569 		if (rt->rt_rmx.rmx_rttvar)
   1570 			tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
   1571 			    (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
   1572 		else
   1573 			/* default variation is +- 1 rtt */
   1574 			tp->t_rttvar =
   1575 			    tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
   1576 		TCPT_RANGESET(tp->t_rxtcur,
   1577 		    ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
   1578 		    tp->t_rttmin, TCPTV_REXMTMAX);
   1579 	}
   1580 	/*
   1581 	 * if there's an mtu associated with the route, use it
   1582 	 */
   1583 	if (rt->rt_rmx.rmx_mtu)
   1584 		mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
   1585 	else
   1586 #endif /* RTV_MTU */
   1587 	{
   1588 		mss = ifp->if_mtu - sizeof(struct tcpiphdr);
   1589 #if	(MCLBYTES & (MCLBYTES - 1)) == 0
   1590 		if (mss > MCLBYTES)
   1591 			mss &= ~(MCLBYTES-1);
   1592 #else
   1593 		if (mss > MCLBYTES)
   1594 			mss = mss / MCLBYTES * MCLBYTES;
   1595 #endif
   1596 		if (!in_localaddr(inp->inp_faddr))
   1597 			mss = min(mss, tcp_mssdflt);
   1598 	}
   1599 	/*
   1600 	 * The current mss, t_maxseg, is initialized to the default value.
   1601 	 * If we compute a smaller value, reduce the current mss.
   1602 	 * If we compute a larger value, return it for use in sending
   1603 	 * a max seg size option, but don't store it for use
   1604 	 * unless we received an offer at least that large from peer.
   1605 	 * However, do not accept offers under 32 bytes.
   1606 	 */
   1607 	if (offer)
   1608 		mss = min(mss, offer);
   1609 	mss = max(mss, 32);		/* sanity */
   1610 	if (mss < tp->t_maxseg || offer != 0) {
   1611 		/*
   1612 		 * If there's a pipesize, change the socket buffer
   1613 		 * to that size.  Make the socket buffers an integral
   1614 		 * number of mss units; if the mss is larger than
   1615 		 * the socket buffer, decrease the mss.
   1616 		 */
   1617 #ifdef RTV_SPIPE
   1618 		if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
   1619 #endif
   1620 			bufsize = so->so_snd.sb_hiwat;
   1621 		if (bufsize < mss)
   1622 			mss = bufsize;
   1623 		else {
   1624 			bufsize = roundup(bufsize, mss);
   1625 			if (bufsize > sb_max)
   1626 				bufsize = sb_max;
   1627 			(void)sbreserve(&so->so_snd, bufsize);
   1628 		}
   1629 		tp->t_maxseg = mss;
   1630 
   1631 #ifdef RTV_RPIPE
   1632 		if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
   1633 #endif
   1634 			bufsize = so->so_rcv.sb_hiwat;
   1635 		if (bufsize > mss) {
   1636 			bufsize = roundup(bufsize, mss);
   1637 			if (bufsize > sb_max)
   1638 				bufsize = sb_max;
   1639 			(void)sbreserve(&so->so_rcv, bufsize);
   1640 		}
   1641 	}
   1642 	tp->snd_cwnd = mss;
   1643 
   1644 #ifdef RTV_SSTHRESH
   1645 	if (rt->rt_rmx.rmx_ssthresh) {
   1646 		/*
   1647 		 * There's some sort of gateway or interface
   1648 		 * buffer limit on the path.  Use this to set
   1649 		 * the slow start threshhold, but set the
   1650 		 * threshold to no less than 2*mss.
   1651 		 */
   1652 		tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
   1653 	}
   1654 #endif /* RTV_MTU */
   1655 	return (mss);
   1656 }
   1657 #endif /* TUBA_INCLUDE */
   1658