tcp_input.c revision 1.214 1 /* $NetBSD: tcp_input.c,v 1.214 2005/01/27 03:39:36 mycroft Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.214 2005/01/27 03:39:36 mycroft Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210
211 #include <machine/stdarg.h>
212
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif /* IPSEC */
223
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* FAST_IPSEC*/
232
233 int tcprexmtthresh = 3;
234 int tcp_log_refused;
235
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240
241 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
242
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
246
247 /*
248 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249 */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 tp->t_in6pcb->in6p_route.ro_rt) { \
255 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 } \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261
262 /*
263 * Macro to compute ACK transmission behavior. Delay the ACK unless
264 * we have already delayed an ACK (must send an ACK every two segments).
265 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266 * option is enabled.
267 */
268 #define TCP_SETUP_ACK(tp, th) \
269 do { \
270 if ((tp)->t_flags & TF_DELACK || \
271 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 tp->t_flags |= TF_ACKNOW; \
273 else \
274 TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276
277 /*
278 * Convert TCP protocol fields to host order for easier processing.
279 */
280 #define TCP_FIELDS_TO_HOST(th) \
281 do { \
282 NTOHL((th)->th_seq); \
283 NTOHL((th)->th_ack); \
284 NTOHS((th)->th_win); \
285 NTOHS((th)->th_urp); \
286 } while (/*CONSTCOND*/ 0)
287
288 /*
289 * ... and reverse the above.
290 */
291 #define TCP_FIELDS_TO_NET(th) \
292 do { \
293 HTONL((th)->th_seq); \
294 HTONL((th)->th_ack); \
295 HTONS((th)->th_win); \
296 HTONS((th)->th_urp); \
297 } while (/*CONSTCOND*/ 0)
298
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306
307 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
308
309 #else
310
311 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
312
313 #endif /* TCP_CSUM_COUNTERS */
314
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331
332 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
333
334 #else
335
336 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef INET
341 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused
345 __P((const struct ip6_hdr *, const struct tcphdr *));
346 #endif
347
348 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
349
350 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
351
352 int
353 tcp_reass(tp, th, m, tlen)
354 struct tcpcb *tp;
355 struct tcphdr *th;
356 struct mbuf *m;
357 int *tlen;
358 {
359 struct ipqent *p, *q, *nq, *tiqe = NULL;
360 struct socket *so = NULL;
361 int pkt_flags;
362 tcp_seq pkt_seq;
363 unsigned pkt_len;
364 u_long rcvpartdupbyte = 0;
365 u_long rcvoobyte;
366 #ifdef TCP_REASS_COUNTERS
367 u_int count = 0;
368 #endif
369
370 if (tp->t_inpcb)
371 so = tp->t_inpcb->inp_socket;
372 #ifdef INET6
373 else if (tp->t_in6pcb)
374 so = tp->t_in6pcb->in6p_socket;
375 #endif
376
377 TCP_REASS_LOCK_CHECK(tp);
378
379 /*
380 * Call with th==0 after become established to
381 * force pre-ESTABLISHED data up to user socket.
382 */
383 if (th == 0)
384 goto present;
385
386 rcvoobyte = *tlen;
387 /*
388 * Copy these to local variables because the tcpiphdr
389 * gets munged while we are collapsing mbufs.
390 */
391 pkt_seq = th->th_seq;
392 pkt_len = *tlen;
393 pkt_flags = th->th_flags;
394
395 TCP_REASS_COUNTER_INCR(&tcp_reass_);
396
397 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
398 /*
399 * When we miss a packet, the vast majority of time we get
400 * packets that follow it in order. So optimize for that.
401 */
402 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
403 p->ipqe_len += pkt_len;
404 p->ipqe_flags |= pkt_flags;
405 m_cat(p->ipre_mlast, m);
406 TRAVERSE(p->ipre_mlast);
407 m = NULL;
408 tiqe = p;
409 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
410 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
411 goto skip_replacement;
412 }
413 /*
414 * While we're here, if the pkt is completely beyond
415 * anything we have, just insert it at the tail.
416 */
417 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
418 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
419 goto insert_it;
420 }
421 }
422
423 q = TAILQ_FIRST(&tp->segq);
424
425 if (q != NULL) {
426 /*
427 * If this segment immediately precedes the first out-of-order
428 * block, simply slap the segment in front of it and (mostly)
429 * skip the complicated logic.
430 */
431 if (pkt_seq + pkt_len == q->ipqe_seq) {
432 q->ipqe_seq = pkt_seq;
433 q->ipqe_len += pkt_len;
434 q->ipqe_flags |= pkt_flags;
435 m_cat(m, q->ipqe_m);
436 q->ipqe_m = m;
437 q->ipre_mlast = m; /* last mbuf may have changed */
438 TRAVERSE(q->ipre_mlast);
439 tiqe = q;
440 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
441 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
442 goto skip_replacement;
443 }
444 } else {
445 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
446 }
447
448 /*
449 * Find a segment which begins after this one does.
450 */
451 for (p = NULL; q != NULL; q = nq) {
452 nq = TAILQ_NEXT(q, ipqe_q);
453 #ifdef TCP_REASS_COUNTERS
454 count++;
455 #endif
456 /*
457 * If the received segment is just right after this
458 * fragment, merge the two together and then check
459 * for further overlaps.
460 */
461 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
462 #ifdef TCPREASS_DEBUG
463 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
464 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
465 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
466 #endif
467 pkt_len += q->ipqe_len;
468 pkt_flags |= q->ipqe_flags;
469 pkt_seq = q->ipqe_seq;
470 m_cat(q->ipre_mlast, m);
471 TRAVERSE(q->ipre_mlast);
472 m = q->ipqe_m;
473 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
474 goto free_ipqe;
475 }
476 /*
477 * If the received segment is completely past this
478 * fragment, we need to go the next fragment.
479 */
480 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
481 p = q;
482 continue;
483 }
484 /*
485 * If the fragment is past the received segment,
486 * it (or any following) can't be concatenated.
487 */
488 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
489 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
490 break;
491 }
492
493 /*
494 * We've received all the data in this segment before.
495 * mark it as a duplicate and return.
496 */
497 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
498 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
499 tcpstat.tcps_rcvduppack++;
500 tcpstat.tcps_rcvdupbyte += pkt_len;
501 m_freem(m);
502 if (tiqe != NULL)
503 pool_put(&tcpipqent_pool, tiqe);
504 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
505 return (0);
506 }
507 /*
508 * Received segment completely overlaps this fragment
509 * so we drop the fragment (this keeps the temporal
510 * ordering of segments correct).
511 */
512 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
513 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
514 rcvpartdupbyte += q->ipqe_len;
515 m_freem(q->ipqe_m);
516 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
517 goto free_ipqe;
518 }
519 /*
520 * RX'ed segment extends past the end of the
521 * fragment. Drop the overlapping bytes. Then
522 * merge the fragment and segment then treat as
523 * a longer received packet.
524 */
525 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
526 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
527 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
528 #ifdef TCPREASS_DEBUG
529 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
530 tp, overlap,
531 pkt_seq, pkt_seq + pkt_len, pkt_len);
532 #endif
533 m_adj(m, overlap);
534 rcvpartdupbyte += overlap;
535 m_cat(q->ipre_mlast, m);
536 TRAVERSE(q->ipre_mlast);
537 m = q->ipqe_m;
538 pkt_seq = q->ipqe_seq;
539 pkt_len += q->ipqe_len - overlap;
540 rcvoobyte -= overlap;
541 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
542 goto free_ipqe;
543 }
544 /*
545 * RX'ed segment extends past the front of the
546 * fragment. Drop the overlapping bytes on the
547 * received packet. The packet will then be
548 * contatentated with this fragment a bit later.
549 */
550 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
551 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
552 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
553 #ifdef TCPREASS_DEBUG
554 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
555 tp, overlap,
556 pkt_seq, pkt_seq + pkt_len, pkt_len);
557 #endif
558 m_adj(m, -overlap);
559 pkt_len -= overlap;
560 rcvpartdupbyte += overlap;
561 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
562 rcvoobyte -= overlap;
563 }
564 /*
565 * If the received segment immediates precedes this
566 * fragment then tack the fragment onto this segment
567 * and reinsert the data.
568 */
569 if (q->ipqe_seq == pkt_seq + pkt_len) {
570 #ifdef TCPREASS_DEBUG
571 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
572 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
573 pkt_seq, pkt_seq + pkt_len, pkt_len);
574 #endif
575 pkt_len += q->ipqe_len;
576 pkt_flags |= q->ipqe_flags;
577 m_cat(m, q->ipqe_m);
578 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
579 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
580 if (tiqe == NULL)
581 tiqe = q;
582 else
583 pool_put(&tcpipqent_pool, q);
584 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
585 break;
586 }
587 /*
588 * If the fragment is before the segment, remember it.
589 * When this loop is terminated, p will contain the
590 * pointer to fragment that is right before the received
591 * segment.
592 */
593 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
594 p = q;
595
596 continue;
597
598 /*
599 * This is a common operation. It also will allow
600 * to save doing a malloc/free in most instances.
601 */
602 free_ipqe:
603 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
604 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
605 if (tiqe == NULL)
606 tiqe = q;
607 else
608 pool_put(&tcpipqent_pool, q);
609 }
610
611 #ifdef TCP_REASS_COUNTERS
612 if (count > 7)
613 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
614 else if (count > 0)
615 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
616 #endif
617
618 insert_it:
619
620 /*
621 * Allocate a new queue entry since the received segment did not
622 * collapse onto any other out-of-order block; thus we are allocating
623 * a new block. If it had collapsed, tiqe would not be NULL and
624 * we would be reusing it.
625 * XXX If we can't, just drop the packet. XXX
626 */
627 if (tiqe == NULL) {
628 tiqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
629 if (tiqe == NULL) {
630 tcpstat.tcps_rcvmemdrop++;
631 m_freem(m);
632 return (0);
633 }
634 }
635
636 /*
637 * Update the counters.
638 */
639 tcpstat.tcps_rcvoopack++;
640 tcpstat.tcps_rcvoobyte += rcvoobyte;
641 if (rcvpartdupbyte) {
642 tcpstat.tcps_rcvpartduppack++;
643 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
644 }
645
646 /*
647 * Insert the new fragment queue entry into both queues.
648 */
649 tiqe->ipqe_m = m;
650 tiqe->ipre_mlast = m;
651 tiqe->ipqe_seq = pkt_seq;
652 tiqe->ipqe_len = pkt_len;
653 tiqe->ipqe_flags = pkt_flags;
654 if (p == NULL) {
655 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
656 #ifdef TCPREASS_DEBUG
657 if (tiqe->ipqe_seq != tp->rcv_nxt)
658 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
659 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
660 #endif
661 } else {
662 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
663 #ifdef TCPREASS_DEBUG
664 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
665 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
666 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
667 #endif
668 }
669
670 skip_replacement:
671
672 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
673
674 present:
675 /*
676 * Present data to user, advancing rcv_nxt through
677 * completed sequence space.
678 */
679 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
680 return (0);
681 q = TAILQ_FIRST(&tp->segq);
682 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
683 return (0);
684 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
685 return (0);
686
687 tp->rcv_nxt += q->ipqe_len;
688 pkt_flags = q->ipqe_flags & TH_FIN;
689 ND6_HINT(tp);
690
691 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
692 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
693 if (so->so_state & SS_CANTRCVMORE)
694 m_freem(q->ipqe_m);
695 else
696 sbappendstream(&so->so_rcv, q->ipqe_m);
697 pool_put(&tcpipqent_pool, q);
698 sorwakeup(so);
699 return (pkt_flags);
700 }
701
702 #ifdef INET6
703 int
704 tcp6_input(mp, offp, proto)
705 struct mbuf **mp;
706 int *offp, proto;
707 {
708 struct mbuf *m = *mp;
709
710 /*
711 * draft-itojun-ipv6-tcp-to-anycast
712 * better place to put this in?
713 */
714 if (m->m_flags & M_ANYCAST6) {
715 struct ip6_hdr *ip6;
716 if (m->m_len < sizeof(struct ip6_hdr)) {
717 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
718 tcpstat.tcps_rcvshort++;
719 return IPPROTO_DONE;
720 }
721 }
722 ip6 = mtod(m, struct ip6_hdr *);
723 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
724 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
725 return IPPROTO_DONE;
726 }
727
728 tcp_input(m, *offp, proto);
729 return IPPROTO_DONE;
730 }
731 #endif
732
733 #ifdef INET
734 static void
735 tcp4_log_refused(ip, th)
736 const struct ip *ip;
737 const struct tcphdr *th;
738 {
739 char src[4*sizeof "123"];
740 char dst[4*sizeof "123"];
741
742 if (ip) {
743 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
744 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
745 }
746 else {
747 strlcpy(src, "(unknown)", sizeof(src));
748 strlcpy(dst, "(unknown)", sizeof(dst));
749 }
750 log(LOG_INFO,
751 "Connection attempt to TCP %s:%d from %s:%d\n",
752 dst, ntohs(th->th_dport),
753 src, ntohs(th->th_sport));
754 }
755 #endif
756
757 #ifdef INET6
758 static void
759 tcp6_log_refused(ip6, th)
760 const struct ip6_hdr *ip6;
761 const struct tcphdr *th;
762 {
763 char src[INET6_ADDRSTRLEN];
764 char dst[INET6_ADDRSTRLEN];
765
766 if (ip6) {
767 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
768 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
769 }
770 else {
771 strlcpy(src, "(unknown v6)", sizeof(src));
772 strlcpy(dst, "(unknown v6)", sizeof(dst));
773 }
774 log(LOG_INFO,
775 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
776 dst, ntohs(th->th_dport),
777 src, ntohs(th->th_sport));
778 }
779 #endif
780
781 /*
782 * Checksum extended TCP header and data.
783 */
784 int
785 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
786 int off, int tlen)
787 {
788
789 /*
790 * XXX it's better to record and check if this mbuf is
791 * already checked.
792 */
793
794 switch (af) {
795 #ifdef INET
796 case AF_INET:
797 switch (m->m_pkthdr.csum_flags &
798 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
799 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
800 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
801 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
802 goto badcsum;
803
804 case M_CSUM_TCPv4|M_CSUM_DATA: {
805 u_int32_t hw_csum = m->m_pkthdr.csum_data;
806
807 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
808 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
809 const struct ip *ip =
810 mtod(m, const struct ip *);
811
812 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
813 ip->ip_dst.s_addr,
814 htons(hw_csum + tlen + off + IPPROTO_TCP));
815 }
816 if ((hw_csum ^ 0xffff) != 0)
817 goto badcsum;
818 break;
819 }
820
821 case M_CSUM_TCPv4:
822 /* Checksum was okay. */
823 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
824 break;
825
826 default:
827 /*
828 * Must compute it ourselves. Maybe skip checksum
829 * on loopback interfaces.
830 */
831 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
832 IFF_LOOPBACK) ||
833 tcp_do_loopback_cksum)) {
834 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
835 if (in4_cksum(m, IPPROTO_TCP, toff,
836 tlen + off) != 0)
837 goto badcsum;
838 }
839 break;
840 }
841 break;
842 #endif /* INET4 */
843
844 #ifdef INET6
845 case AF_INET6:
846 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
847 tcp_do_loopback_cksum)) {
848 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
849 goto badcsum;
850 }
851 break;
852 #endif /* INET6 */
853 }
854
855 return 0;
856
857 badcsum:
858 tcpstat.tcps_rcvbadsum++;
859 return -1;
860 }
861
862 /*
863 * TCP input routine, follows pages 65-76 of the
864 * protocol specification dated September, 1981 very closely.
865 */
866 void
867 tcp_input(struct mbuf *m, ...)
868 {
869 struct tcphdr *th;
870 struct ip *ip;
871 struct inpcb *inp;
872 #ifdef INET6
873 struct ip6_hdr *ip6;
874 struct in6pcb *in6p;
875 #endif
876 u_int8_t *optp = NULL;
877 int optlen = 0;
878 int len, tlen, toff, hdroptlen = 0;
879 struct tcpcb *tp = 0;
880 int tiflags;
881 struct socket *so = NULL;
882 int todrop, acked, ourfinisacked, needoutput = 0;
883 #ifdef TCP_DEBUG
884 short ostate = 0;
885 #endif
886 int iss = 0;
887 u_long tiwin;
888 struct tcp_opt_info opti;
889 int off, iphlen;
890 va_list ap;
891 int af; /* af on the wire */
892 struct mbuf *tcp_saveti = NULL;
893
894 MCLAIM(m, &tcp_rx_mowner);
895 va_start(ap, m);
896 toff = va_arg(ap, int);
897 (void)va_arg(ap, int); /* ignore value, advance ap */
898 va_end(ap);
899
900 tcpstat.tcps_rcvtotal++;
901
902 bzero(&opti, sizeof(opti));
903 opti.ts_present = 0;
904 opti.maxseg = 0;
905
906 /*
907 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
908 *
909 * TCP is, by definition, unicast, so we reject all
910 * multicast outright.
911 *
912 * Note, there are additional src/dst address checks in
913 * the AF-specific code below.
914 */
915 if (m->m_flags & (M_BCAST|M_MCAST)) {
916 /* XXX stat */
917 goto drop;
918 }
919 #ifdef INET6
920 if (m->m_flags & M_ANYCAST6) {
921 /* XXX stat */
922 goto drop;
923 }
924 #endif
925
926 /*
927 * Get IP and TCP header.
928 * Note: IP leaves IP header in first mbuf.
929 */
930 ip = mtod(m, struct ip *);
931 #ifdef INET6
932 ip6 = NULL;
933 #endif
934 switch (ip->ip_v) {
935 #ifdef INET
936 case 4:
937 af = AF_INET;
938 iphlen = sizeof(struct ip);
939 ip = mtod(m, struct ip *);
940 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
941 sizeof(struct tcphdr));
942 if (th == NULL) {
943 tcpstat.tcps_rcvshort++;
944 return;
945 }
946 /* We do the checksum after PCB lookup... */
947 len = ntohs(ip->ip_len);
948 tlen = len - toff;
949 break;
950 #endif
951 #ifdef INET6
952 case 6:
953 ip = NULL;
954 iphlen = sizeof(struct ip6_hdr);
955 af = AF_INET6;
956 ip6 = mtod(m, struct ip6_hdr *);
957 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
958 sizeof(struct tcphdr));
959 if (th == NULL) {
960 tcpstat.tcps_rcvshort++;
961 return;
962 }
963
964 /* Be proactive about malicious use of IPv4 mapped address */
965 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
966 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
967 /* XXX stat */
968 goto drop;
969 }
970
971 /*
972 * Be proactive about unspecified IPv6 address in source.
973 * As we use all-zero to indicate unbounded/unconnected pcb,
974 * unspecified IPv6 address can be used to confuse us.
975 *
976 * Note that packets with unspecified IPv6 destination is
977 * already dropped in ip6_input.
978 */
979 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
980 /* XXX stat */
981 goto drop;
982 }
983
984 /*
985 * Make sure destination address is not multicast.
986 * Source address checked in ip6_input().
987 */
988 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
989 /* XXX stat */
990 goto drop;
991 }
992
993 /* We do the checksum after PCB lookup... */
994 len = m->m_pkthdr.len;
995 tlen = len - toff;
996 break;
997 #endif
998 default:
999 m_freem(m);
1000 return;
1001 }
1002
1003 KASSERT(TCP_HDR_ALIGNED_P(th));
1004
1005 /*
1006 * Check that TCP offset makes sense,
1007 * pull out TCP options and adjust length. XXX
1008 */
1009 off = th->th_off << 2;
1010 if (off < sizeof (struct tcphdr) || off > tlen) {
1011 tcpstat.tcps_rcvbadoff++;
1012 goto drop;
1013 }
1014 tlen -= off;
1015
1016 /*
1017 * tcp_input() has been modified to use tlen to mean the TCP data
1018 * length throughout the function. Other functions can use
1019 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1020 * rja
1021 */
1022
1023 if (off > sizeof (struct tcphdr)) {
1024 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1025 if (th == NULL) {
1026 tcpstat.tcps_rcvshort++;
1027 return;
1028 }
1029 /*
1030 * NOTE: ip/ip6 will not be affected by m_pulldown()
1031 * (as they're before toff) and we don't need to update those.
1032 */
1033 KASSERT(TCP_HDR_ALIGNED_P(th));
1034 optlen = off - sizeof (struct tcphdr);
1035 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1036 /*
1037 * Do quick retrieval of timestamp options ("options
1038 * prediction?"). If timestamp is the only option and it's
1039 * formatted as recommended in RFC 1323 appendix A, we
1040 * quickly get the values now and not bother calling
1041 * tcp_dooptions(), etc.
1042 */
1043 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1044 (optlen > TCPOLEN_TSTAMP_APPA &&
1045 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1046 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1047 (th->th_flags & TH_SYN) == 0) {
1048 opti.ts_present = 1;
1049 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1050 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1051 optp = NULL; /* we've parsed the options */
1052 }
1053 }
1054 tiflags = th->th_flags;
1055
1056 /*
1057 * Locate pcb for segment.
1058 */
1059 findpcb:
1060 inp = NULL;
1061 #ifdef INET6
1062 in6p = NULL;
1063 #endif
1064 switch (af) {
1065 #ifdef INET
1066 case AF_INET:
1067 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1068 ip->ip_dst, th->th_dport);
1069 if (inp == 0) {
1070 ++tcpstat.tcps_pcbhashmiss;
1071 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1072 }
1073 #ifdef INET6
1074 if (inp == 0) {
1075 struct in6_addr s, d;
1076
1077 /* mapped addr case */
1078 bzero(&s, sizeof(s));
1079 s.s6_addr16[5] = htons(0xffff);
1080 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1081 bzero(&d, sizeof(d));
1082 d.s6_addr16[5] = htons(0xffff);
1083 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1084 in6p = in6_pcblookup_connect(&tcbtable, &s,
1085 th->th_sport, &d, th->th_dport, 0);
1086 if (in6p == 0) {
1087 ++tcpstat.tcps_pcbhashmiss;
1088 in6p = in6_pcblookup_bind(&tcbtable, &d,
1089 th->th_dport, 0);
1090 }
1091 }
1092 #endif
1093 #ifndef INET6
1094 if (inp == 0)
1095 #else
1096 if (inp == 0 && in6p == 0)
1097 #endif
1098 {
1099 ++tcpstat.tcps_noport;
1100 if (tcp_log_refused &&
1101 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1102 tcp4_log_refused(ip, th);
1103 }
1104 TCP_FIELDS_TO_HOST(th);
1105 goto dropwithreset_ratelim;
1106 }
1107 #if defined(IPSEC) || defined(FAST_IPSEC)
1108 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1109 ipsec4_in_reject(m, inp)) {
1110 ipsecstat.in_polvio++;
1111 goto drop;
1112 }
1113 #ifdef INET6
1114 else if (in6p &&
1115 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1116 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1117 ipsecstat.in_polvio++;
1118 goto drop;
1119 }
1120 #endif
1121 #endif /*IPSEC*/
1122 break;
1123 #endif /*INET*/
1124 #ifdef INET6
1125 case AF_INET6:
1126 {
1127 int faith;
1128
1129 #if defined(NFAITH) && NFAITH > 0
1130 faith = faithprefix(&ip6->ip6_dst);
1131 #else
1132 faith = 0;
1133 #endif
1134 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1135 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1136 if (in6p == NULL) {
1137 ++tcpstat.tcps_pcbhashmiss;
1138 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1139 th->th_dport, faith);
1140 }
1141 if (in6p == NULL) {
1142 ++tcpstat.tcps_noport;
1143 if (tcp_log_refused &&
1144 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1145 tcp6_log_refused(ip6, th);
1146 }
1147 TCP_FIELDS_TO_HOST(th);
1148 goto dropwithreset_ratelim;
1149 }
1150 #if defined(IPSEC) || defined(FAST_IPSEC)
1151 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1152 ipsec6_in_reject(m, in6p)) {
1153 ipsec6stat.in_polvio++;
1154 goto drop;
1155 }
1156 #endif /*IPSEC*/
1157 break;
1158 }
1159 #endif
1160 }
1161
1162 /*
1163 * If the state is CLOSED (i.e., TCB does not exist) then
1164 * all data in the incoming segment is discarded.
1165 * If the TCB exists but is in CLOSED state, it is embryonic,
1166 * but should either do a listen or a connect soon.
1167 */
1168 tp = NULL;
1169 so = NULL;
1170 if (inp) {
1171 tp = intotcpcb(inp);
1172 so = inp->inp_socket;
1173 }
1174 #ifdef INET6
1175 else if (in6p) {
1176 tp = in6totcpcb(in6p);
1177 so = in6p->in6p_socket;
1178 }
1179 #endif
1180 if (tp == 0) {
1181 TCP_FIELDS_TO_HOST(th);
1182 goto dropwithreset_ratelim;
1183 }
1184 if (tp->t_state == TCPS_CLOSED)
1185 goto drop;
1186
1187 /*
1188 * Checksum extended TCP header and data.
1189 */
1190 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1191 goto badcsum;
1192
1193 TCP_FIELDS_TO_HOST(th);
1194
1195 /* Unscale the window into a 32-bit value. */
1196 if ((tiflags & TH_SYN) == 0)
1197 tiwin = th->th_win << tp->snd_scale;
1198 else
1199 tiwin = th->th_win;
1200
1201 #ifdef INET6
1202 /* save packet options if user wanted */
1203 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1204 if (in6p->in6p_options) {
1205 m_freem(in6p->in6p_options);
1206 in6p->in6p_options = 0;
1207 }
1208 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1209 }
1210 #endif
1211
1212 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1213 union syn_cache_sa src;
1214 union syn_cache_sa dst;
1215
1216 bzero(&src, sizeof(src));
1217 bzero(&dst, sizeof(dst));
1218 switch (af) {
1219 #ifdef INET
1220 case AF_INET:
1221 src.sin.sin_len = sizeof(struct sockaddr_in);
1222 src.sin.sin_family = AF_INET;
1223 src.sin.sin_addr = ip->ip_src;
1224 src.sin.sin_port = th->th_sport;
1225
1226 dst.sin.sin_len = sizeof(struct sockaddr_in);
1227 dst.sin.sin_family = AF_INET;
1228 dst.sin.sin_addr = ip->ip_dst;
1229 dst.sin.sin_port = th->th_dport;
1230 break;
1231 #endif
1232 #ifdef INET6
1233 case AF_INET6:
1234 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1235 src.sin6.sin6_family = AF_INET6;
1236 src.sin6.sin6_addr = ip6->ip6_src;
1237 src.sin6.sin6_port = th->th_sport;
1238
1239 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1240 dst.sin6.sin6_family = AF_INET6;
1241 dst.sin6.sin6_addr = ip6->ip6_dst;
1242 dst.sin6.sin6_port = th->th_dport;
1243 break;
1244 #endif /* INET6 */
1245 default:
1246 goto badsyn; /*sanity*/
1247 }
1248
1249 if (so->so_options & SO_DEBUG) {
1250 #ifdef TCP_DEBUG
1251 ostate = tp->t_state;
1252 #endif
1253
1254 tcp_saveti = NULL;
1255 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1256 goto nosave;
1257
1258 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1259 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1260 if (!tcp_saveti)
1261 goto nosave;
1262 } else {
1263 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1264 if (!tcp_saveti)
1265 goto nosave;
1266 MCLAIM(m, &tcp_mowner);
1267 tcp_saveti->m_len = iphlen;
1268 m_copydata(m, 0, iphlen,
1269 mtod(tcp_saveti, caddr_t));
1270 }
1271
1272 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1273 m_freem(tcp_saveti);
1274 tcp_saveti = NULL;
1275 } else {
1276 tcp_saveti->m_len += sizeof(struct tcphdr);
1277 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1278 sizeof(struct tcphdr));
1279 }
1280 nosave:;
1281 }
1282 if (so->so_options & SO_ACCEPTCONN) {
1283 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1284 if (tiflags & TH_RST) {
1285 syn_cache_reset(&src.sa, &dst.sa, th);
1286 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1287 (TH_ACK|TH_SYN)) {
1288 /*
1289 * Received a SYN,ACK. This should
1290 * never happen while we are in
1291 * LISTEN. Send an RST.
1292 */
1293 goto badsyn;
1294 } else if (tiflags & TH_ACK) {
1295 so = syn_cache_get(&src.sa, &dst.sa,
1296 th, toff, tlen, so, m);
1297 if (so == NULL) {
1298 /*
1299 * We don't have a SYN for
1300 * this ACK; send an RST.
1301 */
1302 goto badsyn;
1303 } else if (so ==
1304 (struct socket *)(-1)) {
1305 /*
1306 * We were unable to create
1307 * the connection. If the
1308 * 3-way handshake was
1309 * completed, and RST has
1310 * been sent to the peer.
1311 * Since the mbuf might be
1312 * in use for the reply,
1313 * do not free it.
1314 */
1315 m = NULL;
1316 } else {
1317 /*
1318 * We have created a
1319 * full-blown connection.
1320 */
1321 tp = NULL;
1322 inp = NULL;
1323 #ifdef INET6
1324 in6p = NULL;
1325 #endif
1326 switch (so->so_proto->pr_domain->dom_family) {
1327 #ifdef INET
1328 case AF_INET:
1329 inp = sotoinpcb(so);
1330 tp = intotcpcb(inp);
1331 break;
1332 #endif
1333 #ifdef INET6
1334 case AF_INET6:
1335 in6p = sotoin6pcb(so);
1336 tp = in6totcpcb(in6p);
1337 break;
1338 #endif
1339 }
1340 if (tp == NULL)
1341 goto badsyn; /*XXX*/
1342 tiwin <<= tp->snd_scale;
1343 goto after_listen;
1344 }
1345 } else {
1346 /*
1347 * None of RST, SYN or ACK was set.
1348 * This is an invalid packet for a
1349 * TCB in LISTEN state. Send a RST.
1350 */
1351 goto badsyn;
1352 }
1353 } else {
1354 /*
1355 * Received a SYN.
1356 */
1357
1358 #ifdef INET6
1359 /*
1360 * If deprecated address is forbidden, we do
1361 * not accept SYN to deprecated interface
1362 * address to prevent any new inbound
1363 * connection from getting established.
1364 * When we do not accept SYN, we send a TCP
1365 * RST, with deprecated source address (instead
1366 * of dropping it). We compromise it as it is
1367 * much better for peer to send a RST, and
1368 * RST will be the final packet for the
1369 * exchange.
1370 *
1371 * If we do not forbid deprecated addresses, we
1372 * accept the SYN packet. RFC2462 does not
1373 * suggest dropping SYN in this case.
1374 * If we decipher RFC2462 5.5.4, it says like
1375 * this:
1376 * 1. use of deprecated addr with existing
1377 * communication is okay - "SHOULD continue
1378 * to be used"
1379 * 2. use of it with new communication:
1380 * (2a) "SHOULD NOT be used if alternate
1381 * address with sufficient scope is
1382 * available"
1383 * (2b) nothing mentioned otherwise.
1384 * Here we fall into (2b) case as we have no
1385 * choice in our source address selection - we
1386 * must obey the peer.
1387 *
1388 * The wording in RFC2462 is confusing, and
1389 * there are multiple description text for
1390 * deprecated address handling - worse, they
1391 * are not exactly the same. I believe 5.5.4
1392 * is the best one, so we follow 5.5.4.
1393 */
1394 if (af == AF_INET6 && !ip6_use_deprecated) {
1395 struct in6_ifaddr *ia6;
1396 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1397 &ip6->ip6_dst)) &&
1398 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1399 tp = NULL;
1400 goto dropwithreset;
1401 }
1402 }
1403 #endif
1404
1405 #ifdef IPSEC
1406 switch (af) {
1407 #ifdef INET
1408 case AF_INET:
1409 if (ipsec4_in_reject_so(m, so)) {
1410 ipsecstat.in_polvio++;
1411 tp = NULL;
1412 goto dropwithreset;
1413 }
1414 break;
1415 #endif
1416 #ifdef INET6
1417 case AF_INET6:
1418 if (ipsec6_in_reject_so(m, so)) {
1419 ipsec6stat.in_polvio++;
1420 tp = NULL;
1421 goto dropwithreset;
1422 }
1423 break;
1424 #endif
1425 }
1426 #endif
1427
1428 /*
1429 * LISTEN socket received a SYN
1430 * from itself? This can't possibly
1431 * be valid; drop the packet.
1432 */
1433 if (th->th_sport == th->th_dport) {
1434 int i;
1435
1436 switch (af) {
1437 #ifdef INET
1438 case AF_INET:
1439 i = in_hosteq(ip->ip_src, ip->ip_dst);
1440 break;
1441 #endif
1442 #ifdef INET6
1443 case AF_INET6:
1444 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1445 break;
1446 #endif
1447 default:
1448 i = 1;
1449 }
1450 if (i) {
1451 tcpstat.tcps_badsyn++;
1452 goto drop;
1453 }
1454 }
1455
1456 /*
1457 * SYN looks ok; create compressed TCP
1458 * state for it.
1459 */
1460 if (so->so_qlen <= so->so_qlimit &&
1461 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1462 so, m, optp, optlen, &opti))
1463 m = NULL;
1464 }
1465 goto drop;
1466 }
1467 }
1468
1469 after_listen:
1470 #ifdef DIAGNOSTIC
1471 /*
1472 * Should not happen now that all embryonic connections
1473 * are handled with compressed state.
1474 */
1475 if (tp->t_state == TCPS_LISTEN)
1476 panic("tcp_input: TCPS_LISTEN");
1477 #endif
1478
1479 /*
1480 * Segment received on connection.
1481 * Reset idle time and keep-alive timer.
1482 */
1483 tp->t_rcvtime = tcp_now;
1484 if (TCPS_HAVEESTABLISHED(tp->t_state))
1485 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1486
1487 /*
1488 * Process options.
1489 */
1490 #ifdef TCP_SIGNATURE
1491 if (optp || (tp->t_flags & TF_SIGNATURE))
1492 #else
1493 if (optp)
1494 #endif
1495 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1496 goto drop;
1497
1498 if (opti.ts_present && opti.ts_ecr) {
1499 u_int32_t now;
1500
1501 /*
1502 * Calculate the RTT from the returned time stamp and the
1503 * connection's time base. If the time stamp is later than
1504 * the current time, fall back to non-1323 RTT calculation.
1505 */
1506 now = TCP_TIMESTAMP(tp);
1507 if (SEQ_GEQ(now, opti.ts_ecr))
1508 opti.ts_ecr = now - opti.ts_ecr + 1;
1509 else
1510 opti.ts_ecr = 0;
1511 }
1512
1513 /*
1514 * Header prediction: check for the two common cases
1515 * of a uni-directional data xfer. If the packet has
1516 * no control flags, is in-sequence, the window didn't
1517 * change and we're not retransmitting, it's a
1518 * candidate. If the length is zero and the ack moved
1519 * forward, we're the sender side of the xfer. Just
1520 * free the data acked & wake any higher level process
1521 * that was blocked waiting for space. If the length
1522 * is non-zero and the ack didn't move, we're the
1523 * receiver side. If we're getting packets in-order
1524 * (the reassembly queue is empty), add the data to
1525 * the socket buffer and note that we need a delayed ack.
1526 */
1527 if (tp->t_state == TCPS_ESTABLISHED &&
1528 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1529 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1530 th->th_seq == tp->rcv_nxt &&
1531 tiwin && tiwin == tp->snd_wnd &&
1532 tp->snd_nxt == tp->snd_max) {
1533
1534 /*
1535 * If last ACK falls within this segment's sequence numbers,
1536 * record the timestamp.
1537 */
1538 if (opti.ts_present &&
1539 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1540 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1541 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1542 tp->ts_recent = opti.ts_val;
1543 }
1544
1545 if (tlen == 0) {
1546 /* Ack prediction. */
1547 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1548 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1549 tp->snd_cwnd >= tp->snd_wnd &&
1550 tp->t_partialacks < 0) {
1551 /*
1552 * this is a pure ack for outstanding data.
1553 */
1554 ++tcpstat.tcps_predack;
1555 if (opti.ts_present && opti.ts_ecr)
1556 tcp_xmit_timer(tp, opti.ts_ecr);
1557 else if (tp->t_rtttime &&
1558 SEQ_GT(th->th_ack, tp->t_rtseq))
1559 tcp_xmit_timer(tp,
1560 tcp_now - tp->t_rtttime);
1561 acked = th->th_ack - tp->snd_una;
1562 tcpstat.tcps_rcvackpack++;
1563 tcpstat.tcps_rcvackbyte += acked;
1564 ND6_HINT(tp);
1565
1566 if (acked > (tp->t_lastoff - tp->t_inoff))
1567 tp->t_lastm = NULL;
1568 sbdrop(&so->so_snd, acked);
1569 tp->t_lastoff -= acked;
1570
1571 tp->snd_una = th->th_ack;
1572 if (SEQ_LT(tp->snd_high, tp->snd_una))
1573 tp->snd_high = tp->snd_una;
1574 m_freem(m);
1575
1576 /*
1577 * If all outstanding data are acked, stop
1578 * retransmit timer, otherwise restart timer
1579 * using current (possibly backed-off) value.
1580 * If process is waiting for space,
1581 * wakeup/selwakeup/signal. If data
1582 * are ready to send, let tcp_output
1583 * decide between more output or persist.
1584 */
1585 if (tp->snd_una == tp->snd_max)
1586 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1587 else if (TCP_TIMER_ISARMED(tp,
1588 TCPT_PERSIST) == 0)
1589 TCP_TIMER_ARM(tp, TCPT_REXMT,
1590 tp->t_rxtcur);
1591
1592 sowwakeup(so);
1593 if (so->so_snd.sb_cc)
1594 (void) tcp_output(tp);
1595 if (tcp_saveti)
1596 m_freem(tcp_saveti);
1597 return;
1598 }
1599 } else if (th->th_ack == tp->snd_una &&
1600 TAILQ_FIRST(&tp->segq) == NULL &&
1601 tlen <= sbspace(&so->so_rcv)) {
1602 /*
1603 * this is a pure, in-sequence data packet
1604 * with nothing on the reassembly queue and
1605 * we have enough buffer space to take it.
1606 */
1607 ++tcpstat.tcps_preddat;
1608 tp->rcv_nxt += tlen;
1609 tcpstat.tcps_rcvpack++;
1610 tcpstat.tcps_rcvbyte += tlen;
1611 ND6_HINT(tp);
1612 /*
1613 * Drop TCP, IP headers and TCP options then add data
1614 * to socket buffer.
1615 */
1616 if (so->so_state & SS_CANTRCVMORE)
1617 m_freem(m);
1618 else {
1619 m_adj(m, toff + off);
1620 sbappendstream(&so->so_rcv, m);
1621 }
1622 sorwakeup(so);
1623 TCP_SETUP_ACK(tp, th);
1624 if (tp->t_flags & TF_ACKNOW)
1625 (void) tcp_output(tp);
1626 if (tcp_saveti)
1627 m_freem(tcp_saveti);
1628 return;
1629 }
1630 }
1631
1632 /*
1633 * Compute mbuf offset to TCP data segment.
1634 */
1635 hdroptlen = toff + off;
1636
1637 /*
1638 * Calculate amount of space in receive window,
1639 * and then do TCP input processing.
1640 * Receive window is amount of space in rcv queue,
1641 * but not less than advertised window.
1642 */
1643 { int win;
1644
1645 win = sbspace(&so->so_rcv);
1646 if (win < 0)
1647 win = 0;
1648 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1649 }
1650
1651 switch (tp->t_state) {
1652 case TCPS_LISTEN:
1653 /*
1654 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1655 */
1656 if (m->m_flags & (M_BCAST|M_MCAST))
1657 goto drop;
1658 switch (af) {
1659 #ifdef INET6
1660 case AF_INET6:
1661 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1662 goto drop;
1663 break;
1664 #endif /* INET6 */
1665 case AF_INET:
1666 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1667 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1668 goto drop;
1669 break;
1670 }
1671 break;
1672
1673 /*
1674 * If the state is SYN_SENT:
1675 * if seg contains an ACK, but not for our SYN, drop the input.
1676 * if seg contains a RST, then drop the connection.
1677 * if seg does not contain SYN, then drop it.
1678 * Otherwise this is an acceptable SYN segment
1679 * initialize tp->rcv_nxt and tp->irs
1680 * if seg contains ack then advance tp->snd_una
1681 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1682 * arrange for segment to be acked (eventually)
1683 * continue processing rest of data/controls, beginning with URG
1684 */
1685 case TCPS_SYN_SENT:
1686 if ((tiflags & TH_ACK) &&
1687 (SEQ_LEQ(th->th_ack, tp->iss) ||
1688 SEQ_GT(th->th_ack, tp->snd_max)))
1689 goto dropwithreset;
1690 if (tiflags & TH_RST) {
1691 if (tiflags & TH_ACK)
1692 tp = tcp_drop(tp, ECONNREFUSED);
1693 goto drop;
1694 }
1695 if ((tiflags & TH_SYN) == 0)
1696 goto drop;
1697 if (tiflags & TH_ACK) {
1698 tp->snd_una = th->th_ack;
1699 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1700 tp->snd_nxt = tp->snd_una;
1701 if (SEQ_LT(tp->snd_high, tp->snd_una))
1702 tp->snd_high = tp->snd_una;
1703 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1704 }
1705 tp->irs = th->th_seq;
1706 tcp_rcvseqinit(tp);
1707 tp->t_flags |= TF_ACKNOW;
1708 tcp_mss_from_peer(tp, opti.maxseg);
1709
1710 /*
1711 * Initialize the initial congestion window. If we
1712 * had to retransmit the SYN, we must initialize cwnd
1713 * to 1 segment (i.e. the Loss Window).
1714 */
1715 if (tp->t_flags & TF_SYN_REXMT)
1716 tp->snd_cwnd = tp->t_peermss;
1717 else {
1718 int ss = tcp_init_win;
1719 #ifdef INET
1720 if (inp != NULL && in_localaddr(inp->inp_faddr))
1721 ss = tcp_init_win_local;
1722 #endif
1723 #ifdef INET6
1724 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1725 ss = tcp_init_win_local;
1726 #endif
1727 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1728 }
1729
1730 tcp_rmx_rtt(tp);
1731 if (tiflags & TH_ACK) {
1732 tcpstat.tcps_connects++;
1733 soisconnected(so);
1734 tcp_established(tp);
1735 /* Do window scaling on this connection? */
1736 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1737 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1738 tp->snd_scale = tp->requested_s_scale;
1739 tp->rcv_scale = tp->request_r_scale;
1740 }
1741 TCP_REASS_LOCK(tp);
1742 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1743 TCP_REASS_UNLOCK(tp);
1744 /*
1745 * if we didn't have to retransmit the SYN,
1746 * use its rtt as our initial srtt & rtt var.
1747 */
1748 if (tp->t_rtttime)
1749 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1750 } else
1751 tp->t_state = TCPS_SYN_RECEIVED;
1752
1753 /*
1754 * Advance th->th_seq to correspond to first data byte.
1755 * If data, trim to stay within window,
1756 * dropping FIN if necessary.
1757 */
1758 th->th_seq++;
1759 if (tlen > tp->rcv_wnd) {
1760 todrop = tlen - tp->rcv_wnd;
1761 m_adj(m, -todrop);
1762 tlen = tp->rcv_wnd;
1763 tiflags &= ~TH_FIN;
1764 tcpstat.tcps_rcvpackafterwin++;
1765 tcpstat.tcps_rcvbyteafterwin += todrop;
1766 }
1767 tp->snd_wl1 = th->th_seq - 1;
1768 tp->rcv_up = th->th_seq;
1769 goto step6;
1770
1771 /*
1772 * If the state is SYN_RECEIVED:
1773 * If seg contains an ACK, but not for our SYN, drop the input
1774 * and generate an RST. See page 36, rfc793
1775 */
1776 case TCPS_SYN_RECEIVED:
1777 if ((tiflags & TH_ACK) &&
1778 (SEQ_LEQ(th->th_ack, tp->iss) ||
1779 SEQ_GT(th->th_ack, tp->snd_max)))
1780 goto dropwithreset;
1781 break;
1782 }
1783
1784 /*
1785 * States other than LISTEN or SYN_SENT.
1786 * First check timestamp, if present.
1787 * Then check that at least some bytes of segment are within
1788 * receive window. If segment begins before rcv_nxt,
1789 * drop leading data (and SYN); if nothing left, just ack.
1790 *
1791 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1792 * and it's less than ts_recent, drop it.
1793 */
1794 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1795 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1796
1797 /* Check to see if ts_recent is over 24 days old. */
1798 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1799 TCP_PAWS_IDLE) {
1800 /*
1801 * Invalidate ts_recent. If this segment updates
1802 * ts_recent, the age will be reset later and ts_recent
1803 * will get a valid value. If it does not, setting
1804 * ts_recent to zero will at least satisfy the
1805 * requirement that zero be placed in the timestamp
1806 * echo reply when ts_recent isn't valid. The
1807 * age isn't reset until we get a valid ts_recent
1808 * because we don't want out-of-order segments to be
1809 * dropped when ts_recent is old.
1810 */
1811 tp->ts_recent = 0;
1812 } else {
1813 tcpstat.tcps_rcvduppack++;
1814 tcpstat.tcps_rcvdupbyte += tlen;
1815 tcpstat.tcps_pawsdrop++;
1816 goto dropafterack;
1817 }
1818 }
1819
1820 todrop = tp->rcv_nxt - th->th_seq;
1821 if (todrop > 0) {
1822 if (tiflags & TH_SYN) {
1823 tiflags &= ~TH_SYN;
1824 th->th_seq++;
1825 if (th->th_urp > 1)
1826 th->th_urp--;
1827 else {
1828 tiflags &= ~TH_URG;
1829 th->th_urp = 0;
1830 }
1831 todrop--;
1832 }
1833 if (todrop > tlen ||
1834 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1835 /*
1836 * Any valid FIN or RST must be to the left of the
1837 * window. At this point the FIN or RST must be a
1838 * duplicate or out of sequence; drop it.
1839 */
1840 if (tiflags & TH_RST)
1841 goto drop;
1842 tiflags &= ~(TH_FIN|TH_RST);
1843 /*
1844 * Send an ACK to resynchronize and drop any data.
1845 * But keep on processing for RST or ACK.
1846 */
1847 tp->t_flags |= TF_ACKNOW;
1848 todrop = tlen;
1849 tcpstat.tcps_rcvdupbyte += todrop;
1850 tcpstat.tcps_rcvduppack++;
1851 } else if ((tiflags & TH_RST) &&
1852 th->th_seq != tp->last_ack_sent) {
1853 /*
1854 * Test for reset before adjusting the sequence
1855 * number for overlapping data.
1856 */
1857 goto dropafterack_ratelim;
1858 } else {
1859 tcpstat.tcps_rcvpartduppack++;
1860 tcpstat.tcps_rcvpartdupbyte += todrop;
1861 }
1862 hdroptlen += todrop; /*drop from head afterwards*/
1863 th->th_seq += todrop;
1864 tlen -= todrop;
1865 if (th->th_urp > todrop)
1866 th->th_urp -= todrop;
1867 else {
1868 tiflags &= ~TH_URG;
1869 th->th_urp = 0;
1870 }
1871 }
1872
1873 /*
1874 * If new data are received on a connection after the
1875 * user processes are gone, then RST the other end.
1876 */
1877 if ((so->so_state & SS_NOFDREF) &&
1878 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1879 tp = tcp_close(tp);
1880 tcpstat.tcps_rcvafterclose++;
1881 goto dropwithreset;
1882 }
1883
1884 /*
1885 * If segment ends after window, drop trailing data
1886 * (and PUSH and FIN); if nothing left, just ACK.
1887 */
1888 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1889 if (todrop > 0) {
1890 tcpstat.tcps_rcvpackafterwin++;
1891 if (todrop >= tlen) {
1892 /*
1893 * The segment actually starts after the window.
1894 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1895 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1896 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1897 */
1898 tcpstat.tcps_rcvbyteafterwin += tlen;
1899 /*
1900 * If a new connection request is received
1901 * while in TIME_WAIT, drop the old connection
1902 * and start over if the sequence numbers
1903 * are above the previous ones.
1904 *
1905 * NOTE: We will checksum the packet again, and
1906 * so we need to put the header fields back into
1907 * network order!
1908 * XXX This kind of sucks, but we don't expect
1909 * XXX this to happen very often, so maybe it
1910 * XXX doesn't matter so much.
1911 */
1912 if (tiflags & TH_SYN &&
1913 tp->t_state == TCPS_TIME_WAIT &&
1914 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1915 iss = tcp_new_iss(tp, tp->snd_nxt);
1916 tp = tcp_close(tp);
1917 TCP_FIELDS_TO_NET(th);
1918 goto findpcb;
1919 }
1920 /*
1921 * If window is closed can only take segments at
1922 * window edge, and have to drop data and PUSH from
1923 * incoming segments. Continue processing, but
1924 * remember to ack. Otherwise, drop segment
1925 * and (if not RST) ack.
1926 */
1927 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1928 tp->t_flags |= TF_ACKNOW;
1929 tcpstat.tcps_rcvwinprobe++;
1930 } else
1931 goto dropafterack;
1932 } else
1933 tcpstat.tcps_rcvbyteafterwin += todrop;
1934 m_adj(m, -todrop);
1935 tlen -= todrop;
1936 tiflags &= ~(TH_PUSH|TH_FIN);
1937 }
1938
1939 /*
1940 * If last ACK falls within this segment's sequence numbers,
1941 * and the timestamp is newer, record it.
1942 */
1943 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1944 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1945 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1946 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1947 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1948 tp->ts_recent = opti.ts_val;
1949 }
1950
1951 /*
1952 * If the RST bit is set examine the state:
1953 * SYN_RECEIVED STATE:
1954 * If passive open, return to LISTEN state.
1955 * If active open, inform user that connection was refused.
1956 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1957 * Inform user that connection was reset, and close tcb.
1958 * CLOSING, LAST_ACK, TIME_WAIT STATES
1959 * Close the tcb.
1960 */
1961 if (tiflags & TH_RST) {
1962 if (th->th_seq != tp->last_ack_sent)
1963 goto dropafterack_ratelim;
1964
1965 switch (tp->t_state) {
1966 case TCPS_SYN_RECEIVED:
1967 so->so_error = ECONNREFUSED;
1968 goto close;
1969
1970 case TCPS_ESTABLISHED:
1971 case TCPS_FIN_WAIT_1:
1972 case TCPS_FIN_WAIT_2:
1973 case TCPS_CLOSE_WAIT:
1974 so->so_error = ECONNRESET;
1975 close:
1976 tp->t_state = TCPS_CLOSED;
1977 tcpstat.tcps_drops++;
1978 tp = tcp_close(tp);
1979 goto drop;
1980
1981 case TCPS_CLOSING:
1982 case TCPS_LAST_ACK:
1983 case TCPS_TIME_WAIT:
1984 tp = tcp_close(tp);
1985 goto drop;
1986 }
1987 }
1988
1989 /*
1990 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1991 * we must be in a synchronized state. RFC791 states (under RST
1992 * generation) that any unacceptable segment (an out-of-order SYN
1993 * qualifies) received in a synchronized state must elicit only an
1994 * empty acknowledgment segment ... and the connection remains in
1995 * the same state.
1996 */
1997 if (tiflags & TH_SYN) {
1998 if (tp->rcv_nxt == th->th_seq) {
1999 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2000 TH_ACK);
2001 if (tcp_saveti)
2002 m_freem(tcp_saveti);
2003 return;
2004 }
2005
2006 goto dropafterack_ratelim;
2007 }
2008
2009 /*
2010 * If the ACK bit is off we drop the segment and return.
2011 */
2012 if ((tiflags & TH_ACK) == 0) {
2013 if (tp->t_flags & TF_ACKNOW)
2014 goto dropafterack;
2015 else
2016 goto drop;
2017 }
2018
2019 /*
2020 * Ack processing.
2021 */
2022 switch (tp->t_state) {
2023
2024 /*
2025 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2026 * ESTABLISHED state and continue processing, otherwise
2027 * send an RST.
2028 */
2029 case TCPS_SYN_RECEIVED:
2030 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2031 SEQ_GT(th->th_ack, tp->snd_max))
2032 goto dropwithreset;
2033 tcpstat.tcps_connects++;
2034 soisconnected(so);
2035 tcp_established(tp);
2036 /* Do window scaling? */
2037 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2038 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2039 tp->snd_scale = tp->requested_s_scale;
2040 tp->rcv_scale = tp->request_r_scale;
2041 }
2042 TCP_REASS_LOCK(tp);
2043 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2044 TCP_REASS_UNLOCK(tp);
2045 tp->snd_wl1 = th->th_seq - 1;
2046 /* fall into ... */
2047
2048 /*
2049 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2050 * ACKs. If the ack is in the range
2051 * tp->snd_una < th->th_ack <= tp->snd_max
2052 * then advance tp->snd_una to th->th_ack and drop
2053 * data from the retransmission queue. If this ACK reflects
2054 * more up to date window information we update our window information.
2055 */
2056 case TCPS_ESTABLISHED:
2057 case TCPS_FIN_WAIT_1:
2058 case TCPS_FIN_WAIT_2:
2059 case TCPS_CLOSE_WAIT:
2060 case TCPS_CLOSING:
2061 case TCPS_LAST_ACK:
2062 case TCPS_TIME_WAIT:
2063
2064 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2065 if (tlen == 0 && tiwin == tp->snd_wnd) {
2066 tcpstat.tcps_rcvdupack++;
2067 /*
2068 * If we have outstanding data (other than
2069 * a window probe), this is a completely
2070 * duplicate ack (ie, window info didn't
2071 * change), the ack is the biggest we've
2072 * seen and we've seen exactly our rexmt
2073 * threshhold of them, assume a packet
2074 * has been dropped and retransmit it.
2075 * Kludge snd_nxt & the congestion
2076 * window so we send only this one
2077 * packet.
2078 *
2079 * We know we're losing at the current
2080 * window size so do congestion avoidance
2081 * (set ssthresh to half the current window
2082 * and pull our congestion window back to
2083 * the new ssthresh).
2084 *
2085 * Dup acks mean that packets have left the
2086 * network (they're now cached at the receiver)
2087 * so bump cwnd by the amount in the receiver
2088 * to keep a constant cwnd packets in the
2089 * network.
2090 */
2091 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2092 th->th_ack != tp->snd_una)
2093 tp->t_dupacks = 0;
2094 else if (++tp->t_dupacks == tcprexmtthresh &&
2095 tp->t_partialacks < 0) {
2096 tcp_seq onxt;
2097 u_int win;
2098
2099 if (tcp_do_newreno &&
2100 SEQ_LT(th->th_ack, tp->snd_high)) {
2101 /*
2102 * False fast retransmit after
2103 * timeout. Do not enter fast
2104 * recovery.
2105 */
2106 tp->t_dupacks = 0;
2107 break;
2108 }
2109
2110 onxt = tp->snd_nxt;
2111 win = min(tp->snd_wnd, tp->snd_cwnd) /
2112 2 / tp->t_segsz;
2113 if (win < 2)
2114 win = 2;
2115 tp->snd_ssthresh = win * tp->t_segsz;
2116 tp->snd_recover = tp->snd_max;
2117 tp->t_partialacks = 0;
2118 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2119 tp->t_rtttime = 0;
2120 tp->snd_nxt = th->th_ack;
2121 tp->snd_cwnd = tp->t_segsz;
2122 (void) tcp_output(tp);
2123 tp->snd_cwnd = tp->snd_ssthresh +
2124 tp->t_segsz * tp->t_dupacks;
2125 if (SEQ_GT(onxt, tp->snd_nxt))
2126 tp->snd_nxt = onxt;
2127 goto drop;
2128 } else if (tp->t_dupacks > tcprexmtthresh) {
2129 tp->snd_cwnd += tp->t_segsz;
2130 (void) tcp_output(tp);
2131 goto drop;
2132 }
2133 } else if (tlen) {
2134 tp->t_dupacks = 0; /*XXX*/
2135 /* drop very old ACKs unless th_seq matches */
2136 if (th->th_seq != tp->rcv_nxt &&
2137 SEQ_LT(th->th_ack,
2138 tp->snd_una - tp->max_sndwnd)) {
2139 goto drop;
2140 }
2141 break;
2142 } else
2143 tp->t_dupacks = 0;
2144 break;
2145 }
2146 /*
2147 * If the congestion window was inflated to account
2148 * for the other side's cached packets, retract it.
2149 */
2150 if (!tcp_do_newreno)
2151 tcp_reno_newack(tp, th);
2152 else
2153 tcp_newreno_newack(tp, th);
2154 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2155 tcpstat.tcps_rcvacktoomuch++;
2156 goto dropafterack;
2157 }
2158 acked = th->th_ack - tp->snd_una;
2159 tcpstat.tcps_rcvackpack++;
2160 tcpstat.tcps_rcvackbyte += acked;
2161
2162 /*
2163 * If we have a timestamp reply, update smoothed
2164 * round trip time. If no timestamp is present but
2165 * transmit timer is running and timed sequence
2166 * number was acked, update smoothed round trip time.
2167 * Since we now have an rtt measurement, cancel the
2168 * timer backoff (cf., Phil Karn's retransmit alg.).
2169 * Recompute the initial retransmit timer.
2170 */
2171 if (opti.ts_present && opti.ts_ecr)
2172 tcp_xmit_timer(tp, opti.ts_ecr);
2173 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2174 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2175
2176 /*
2177 * If all outstanding data is acked, stop retransmit
2178 * timer and remember to restart (more output or persist).
2179 * If there is more data to be acked, restart retransmit
2180 * timer, using current (possibly backed-off) value.
2181 */
2182 if (th->th_ack == tp->snd_max) {
2183 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2184 needoutput = 1;
2185 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2186 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2187 /*
2188 * When new data is acked, open the congestion window.
2189 * If the window gives us less than ssthresh packets
2190 * in flight, open exponentially (segsz per packet).
2191 * Otherwise open linearly: segsz per window
2192 * (segsz^2 / cwnd per packet), plus a constant
2193 * fraction of a packet (segsz/8) to help larger windows
2194 * open quickly enough.
2195 *
2196 * If we are still in fast recovery (meaning we are using
2197 * NewReno and we have only received partial acks), do not
2198 * inflate the window yet.
2199 */
2200 if (tp->t_partialacks < 0) {
2201 u_int cw = tp->snd_cwnd;
2202 u_int incr = tp->t_segsz;
2203
2204 if (cw > tp->snd_ssthresh)
2205 incr = incr * incr / cw;
2206 tp->snd_cwnd = min(cw + incr,
2207 TCP_MAXWIN << tp->snd_scale);
2208 }
2209 ND6_HINT(tp);
2210 if (acked > so->so_snd.sb_cc) {
2211 tp->snd_wnd -= so->so_snd.sb_cc;
2212 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2213 ourfinisacked = 1;
2214 } else {
2215 if (acked > (tp->t_lastoff - tp->t_inoff))
2216 tp->t_lastm = NULL;
2217 sbdrop(&so->so_snd, acked);
2218 tp->t_lastoff -= acked;
2219 tp->snd_wnd -= acked;
2220 ourfinisacked = 0;
2221 }
2222 sowwakeup(so);
2223 tp->snd_una = th->th_ack;
2224 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2225 tp->snd_nxt = tp->snd_una;
2226 if (SEQ_LT(tp->snd_high, tp->snd_una))
2227 tp->snd_high = tp->snd_una;
2228
2229 switch (tp->t_state) {
2230
2231 /*
2232 * In FIN_WAIT_1 STATE in addition to the processing
2233 * for the ESTABLISHED state if our FIN is now acknowledged
2234 * then enter FIN_WAIT_2.
2235 */
2236 case TCPS_FIN_WAIT_1:
2237 if (ourfinisacked) {
2238 /*
2239 * If we can't receive any more
2240 * data, then closing user can proceed.
2241 * Starting the timer is contrary to the
2242 * specification, but if we don't get a FIN
2243 * we'll hang forever.
2244 */
2245 if (so->so_state & SS_CANTRCVMORE) {
2246 soisdisconnected(so);
2247 if (tcp_maxidle > 0)
2248 TCP_TIMER_ARM(tp, TCPT_2MSL,
2249 tcp_maxidle);
2250 }
2251 tp->t_state = TCPS_FIN_WAIT_2;
2252 }
2253 break;
2254
2255 /*
2256 * In CLOSING STATE in addition to the processing for
2257 * the ESTABLISHED state if the ACK acknowledges our FIN
2258 * then enter the TIME-WAIT state, otherwise ignore
2259 * the segment.
2260 */
2261 case TCPS_CLOSING:
2262 if (ourfinisacked) {
2263 tp->t_state = TCPS_TIME_WAIT;
2264 tcp_canceltimers(tp);
2265 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2266 soisdisconnected(so);
2267 }
2268 break;
2269
2270 /*
2271 * In LAST_ACK, we may still be waiting for data to drain
2272 * and/or to be acked, as well as for the ack of our FIN.
2273 * If our FIN is now acknowledged, delete the TCB,
2274 * enter the closed state and return.
2275 */
2276 case TCPS_LAST_ACK:
2277 if (ourfinisacked) {
2278 tp = tcp_close(tp);
2279 goto drop;
2280 }
2281 break;
2282
2283 /*
2284 * In TIME_WAIT state the only thing that should arrive
2285 * is a retransmission of the remote FIN. Acknowledge
2286 * it and restart the finack timer.
2287 */
2288 case TCPS_TIME_WAIT:
2289 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2290 goto dropafterack;
2291 }
2292 }
2293
2294 step6:
2295 /*
2296 * Update window information.
2297 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2298 */
2299 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2300 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2301 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2302 /* keep track of pure window updates */
2303 if (tlen == 0 &&
2304 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2305 tcpstat.tcps_rcvwinupd++;
2306 tp->snd_wnd = tiwin;
2307 tp->snd_wl1 = th->th_seq;
2308 tp->snd_wl2 = th->th_ack;
2309 if (tp->snd_wnd > tp->max_sndwnd)
2310 tp->max_sndwnd = tp->snd_wnd;
2311 needoutput = 1;
2312 }
2313
2314 /*
2315 * Process segments with URG.
2316 */
2317 if ((tiflags & TH_URG) && th->th_urp &&
2318 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2319 /*
2320 * This is a kludge, but if we receive and accept
2321 * random urgent pointers, we'll crash in
2322 * soreceive. It's hard to imagine someone
2323 * actually wanting to send this much urgent data.
2324 */
2325 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2326 th->th_urp = 0; /* XXX */
2327 tiflags &= ~TH_URG; /* XXX */
2328 goto dodata; /* XXX */
2329 }
2330 /*
2331 * If this segment advances the known urgent pointer,
2332 * then mark the data stream. This should not happen
2333 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2334 * a FIN has been received from the remote side.
2335 * In these states we ignore the URG.
2336 *
2337 * According to RFC961 (Assigned Protocols),
2338 * the urgent pointer points to the last octet
2339 * of urgent data. We continue, however,
2340 * to consider it to indicate the first octet
2341 * of data past the urgent section as the original
2342 * spec states (in one of two places).
2343 */
2344 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2345 tp->rcv_up = th->th_seq + th->th_urp;
2346 so->so_oobmark = so->so_rcv.sb_cc +
2347 (tp->rcv_up - tp->rcv_nxt) - 1;
2348 if (so->so_oobmark == 0)
2349 so->so_state |= SS_RCVATMARK;
2350 sohasoutofband(so);
2351 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2352 }
2353 /*
2354 * Remove out of band data so doesn't get presented to user.
2355 * This can happen independent of advancing the URG pointer,
2356 * but if two URG's are pending at once, some out-of-band
2357 * data may creep in... ick.
2358 */
2359 if (th->th_urp <= (u_int16_t) tlen
2360 #ifdef SO_OOBINLINE
2361 && (so->so_options & SO_OOBINLINE) == 0
2362 #endif
2363 )
2364 tcp_pulloutofband(so, th, m, hdroptlen);
2365 } else
2366 /*
2367 * If no out of band data is expected,
2368 * pull receive urgent pointer along
2369 * with the receive window.
2370 */
2371 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2372 tp->rcv_up = tp->rcv_nxt;
2373 dodata: /* XXX */
2374
2375 /*
2376 * Process the segment text, merging it into the TCP sequencing queue,
2377 * and arranging for acknowledgement of receipt if necessary.
2378 * This process logically involves adjusting tp->rcv_wnd as data
2379 * is presented to the user (this happens in tcp_usrreq.c,
2380 * case PRU_RCVD). If a FIN has already been received on this
2381 * connection then we just ignore the text.
2382 */
2383 if ((tlen || (tiflags & TH_FIN)) &&
2384 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2385 /*
2386 * Insert segment ti into reassembly queue of tcp with
2387 * control block tp. Return TH_FIN if reassembly now includes
2388 * a segment with FIN. The macro form does the common case
2389 * inline (segment is the next to be received on an
2390 * established connection, and the queue is empty),
2391 * avoiding linkage into and removal from the queue and
2392 * repetition of various conversions.
2393 * Set DELACK for segments received in order, but ack
2394 * immediately when segments are out of order
2395 * (so fast retransmit can work).
2396 */
2397 /* NOTE: this was TCP_REASS() macro, but used only once */
2398 TCP_REASS_LOCK(tp);
2399 if (th->th_seq == tp->rcv_nxt &&
2400 TAILQ_FIRST(&tp->segq) == NULL &&
2401 tp->t_state == TCPS_ESTABLISHED) {
2402 TCP_SETUP_ACK(tp, th);
2403 tp->rcv_nxt += tlen;
2404 tiflags = th->th_flags & TH_FIN;
2405 tcpstat.tcps_rcvpack++;
2406 tcpstat.tcps_rcvbyte += tlen;
2407 ND6_HINT(tp);
2408 if (so->so_state & SS_CANTRCVMORE)
2409 m_freem(m);
2410 else {
2411 m_adj(m, hdroptlen);
2412 sbappendstream(&(so)->so_rcv, m);
2413 }
2414 sorwakeup(so);
2415 } else {
2416 m_adj(m, hdroptlen);
2417 tiflags = tcp_reass(tp, th, m, &tlen);
2418 tp->t_flags |= TF_ACKNOW;
2419 }
2420 TCP_REASS_UNLOCK(tp);
2421
2422 /*
2423 * Note the amount of data that peer has sent into
2424 * our window, in order to estimate the sender's
2425 * buffer size.
2426 */
2427 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2428 } else {
2429 m_freem(m);
2430 m = NULL;
2431 tiflags &= ~TH_FIN;
2432 }
2433
2434 /*
2435 * If FIN is received ACK the FIN and let the user know
2436 * that the connection is closing. Ignore a FIN received before
2437 * the connection is fully established.
2438 */
2439 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2440 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2441 socantrcvmore(so);
2442 tp->t_flags |= TF_ACKNOW;
2443 tp->rcv_nxt++;
2444 }
2445 switch (tp->t_state) {
2446
2447 /*
2448 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2449 */
2450 case TCPS_ESTABLISHED:
2451 tp->t_state = TCPS_CLOSE_WAIT;
2452 break;
2453
2454 /*
2455 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2456 * enter the CLOSING state.
2457 */
2458 case TCPS_FIN_WAIT_1:
2459 tp->t_state = TCPS_CLOSING;
2460 break;
2461
2462 /*
2463 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2464 * starting the time-wait timer, turning off the other
2465 * standard timers.
2466 */
2467 case TCPS_FIN_WAIT_2:
2468 tp->t_state = TCPS_TIME_WAIT;
2469 tcp_canceltimers(tp);
2470 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2471 soisdisconnected(so);
2472 break;
2473
2474 /*
2475 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2476 */
2477 case TCPS_TIME_WAIT:
2478 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2479 break;
2480 }
2481 }
2482 #ifdef TCP_DEBUG
2483 if (so->so_options & SO_DEBUG)
2484 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2485 #endif
2486
2487 /*
2488 * Return any desired output.
2489 */
2490 if (needoutput || (tp->t_flags & TF_ACKNOW))
2491 (void) tcp_output(tp);
2492 if (tcp_saveti)
2493 m_freem(tcp_saveti);
2494 return;
2495
2496 badsyn:
2497 /*
2498 * Received a bad SYN. Increment counters and dropwithreset.
2499 */
2500 tcpstat.tcps_badsyn++;
2501 tp = NULL;
2502 goto dropwithreset;
2503
2504 dropafterack:
2505 /*
2506 * Generate an ACK dropping incoming segment if it occupies
2507 * sequence space, where the ACK reflects our state.
2508 */
2509 if (tiflags & TH_RST)
2510 goto drop;
2511 goto dropafterack2;
2512
2513 dropafterack_ratelim:
2514 /*
2515 * We may want to rate-limit ACKs against SYN/RST attack.
2516 */
2517 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2518 tcp_ackdrop_ppslim) == 0) {
2519 /* XXX stat */
2520 goto drop;
2521 }
2522 /* ...fall into dropafterack2... */
2523
2524 dropafterack2:
2525 m_freem(m);
2526 tp->t_flags |= TF_ACKNOW;
2527 (void) tcp_output(tp);
2528 if (tcp_saveti)
2529 m_freem(tcp_saveti);
2530 return;
2531
2532 dropwithreset_ratelim:
2533 /*
2534 * We may want to rate-limit RSTs in certain situations,
2535 * particularly if we are sending an RST in response to
2536 * an attempt to connect to or otherwise communicate with
2537 * a port for which we have no socket.
2538 */
2539 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2540 tcp_rst_ppslim) == 0) {
2541 /* XXX stat */
2542 goto drop;
2543 }
2544 /* ...fall into dropwithreset... */
2545
2546 dropwithreset:
2547 /*
2548 * Generate a RST, dropping incoming segment.
2549 * Make ACK acceptable to originator of segment.
2550 */
2551 if (tiflags & TH_RST)
2552 goto drop;
2553
2554 switch (af) {
2555 #ifdef INET6
2556 case AF_INET6:
2557 /* For following calls to tcp_respond */
2558 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2559 goto drop;
2560 break;
2561 #endif /* INET6 */
2562 case AF_INET:
2563 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2564 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2565 goto drop;
2566 }
2567
2568 if (tiflags & TH_ACK)
2569 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2570 else {
2571 if (tiflags & TH_SYN)
2572 tlen++;
2573 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2574 TH_RST|TH_ACK);
2575 }
2576 if (tcp_saveti)
2577 m_freem(tcp_saveti);
2578 return;
2579
2580 badcsum:
2581 drop:
2582 /*
2583 * Drop space held by incoming segment and return.
2584 */
2585 if (tp) {
2586 if (tp->t_inpcb)
2587 so = tp->t_inpcb->inp_socket;
2588 #ifdef INET6
2589 else if (tp->t_in6pcb)
2590 so = tp->t_in6pcb->in6p_socket;
2591 #endif
2592 else
2593 so = NULL;
2594 #ifdef TCP_DEBUG
2595 if (so && (so->so_options & SO_DEBUG) != 0)
2596 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2597 #endif
2598 }
2599 if (tcp_saveti)
2600 m_freem(tcp_saveti);
2601 m_freem(m);
2602 return;
2603 }
2604
2605 #ifdef TCP_SIGNATURE
2606 int
2607 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2608 {
2609
2610 MD5Update(fstate, (u_char *)data, len);
2611 return (0);
2612 }
2613
2614 struct secasvar *
2615 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2616 {
2617 struct secasvar *sav;
2618 #ifdef FAST_IPSEC
2619 union sockaddr_union dst;
2620 #endif
2621 struct ip *ip;
2622 struct ip6_hdr *ip6;
2623
2624 ip = mtod(m, struct ip *);
2625 switch (ip->ip_v) {
2626 case 4:
2627 ip = mtod(m, struct ip *);
2628 ip6 = NULL;
2629 break;
2630 case 6:
2631 ip = NULL;
2632 ip6 = mtod(m, struct ip6_hdr *);
2633 break;
2634 default:
2635 return (NULL);
2636 }
2637
2638 #ifdef FAST_IPSEC
2639 /* Extract the destination from the IP header in the mbuf. */
2640 bzero(&dst, sizeof(union sockaddr_union));
2641 dst.sa.sa_len = sizeof(struct sockaddr_in);
2642 dst.sa.sa_family = AF_INET;
2643 dst.sin.sin_addr = ip->ip_dst;
2644
2645 /*
2646 * Look up an SADB entry which matches the address of the peer.
2647 */
2648 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2649 #else
2650 if (ip)
2651 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2652 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2653 htonl(TCP_SIG_SPI));
2654 else
2655 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2656 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2657 htonl(TCP_SIG_SPI));
2658 #endif
2659
2660 return (sav); /* freesav must be performed by caller */
2661 }
2662
2663 int
2664 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2665 struct secasvar *sav, char *sig)
2666 {
2667 MD5_CTX ctx;
2668 struct ip *ip;
2669 struct ipovly *ipovly;
2670 struct ip6_hdr *ip6;
2671 struct ippseudo ippseudo;
2672 struct ip6_hdr_pseudo ip6pseudo;
2673 struct tcphdr th0;
2674 int l, tcphdrlen;
2675
2676 if (sav == NULL)
2677 return (-1);
2678
2679 tcphdrlen = th->th_off * 4;
2680
2681 switch (mtod(m, struct ip *)->ip_v) {
2682 case 4:
2683 ip = mtod(m, struct ip *);
2684 ip6 = NULL;
2685 break;
2686 case 6:
2687 ip = NULL;
2688 ip6 = mtod(m, struct ip6_hdr *);
2689 break;
2690 default:
2691 return (-1);
2692 }
2693
2694 MD5Init(&ctx);
2695
2696 if (ip) {
2697 memset(&ippseudo, 0, sizeof(ippseudo));
2698 ipovly = (struct ipovly *)ip;
2699 ippseudo.ippseudo_src = ipovly->ih_src;
2700 ippseudo.ippseudo_dst = ipovly->ih_dst;
2701 ippseudo.ippseudo_pad = 0;
2702 ippseudo.ippseudo_p = IPPROTO_TCP;
2703 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2704 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2705 } else {
2706 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2707 ip6pseudo.ip6ph_src = ip6->ip6_src;
2708 in6_clearscope(&ip6pseudo.ip6ph_src);
2709 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2710 in6_clearscope(&ip6pseudo.ip6ph_dst);
2711 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2712 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2713 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2714 }
2715
2716 th0 = *th;
2717 th0.th_sum = 0;
2718 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2719
2720 l = m->m_pkthdr.len - thoff - tcphdrlen;
2721 if (l > 0)
2722 m_apply(m, thoff + tcphdrlen,
2723 m->m_pkthdr.len - thoff - tcphdrlen,
2724 tcp_signature_apply, &ctx);
2725
2726 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2727 MD5Final(sig, &ctx);
2728
2729 return (0);
2730 }
2731 #endif
2732
2733 int
2734 tcp_dooptions(tp, cp, cnt, th, m, toff, oi)
2735 struct tcpcb *tp;
2736 u_char *cp;
2737 int cnt;
2738 struct tcphdr *th;
2739 struct mbuf *m;
2740 int toff;
2741 struct tcp_opt_info *oi;
2742 {
2743 u_int16_t mss;
2744 int opt, optlen = 0;
2745 #ifdef TCP_SIGNATURE
2746 caddr_t sigp = NULL;
2747 char sigbuf[TCP_SIGLEN];
2748 struct secasvar *sav = NULL;
2749 #endif
2750
2751 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2752 opt = cp[0];
2753 if (opt == TCPOPT_EOL)
2754 break;
2755 if (opt == TCPOPT_NOP)
2756 optlen = 1;
2757 else {
2758 if (cnt < 2)
2759 break;
2760 optlen = cp[1];
2761 if (optlen < 2 || optlen > cnt)
2762 break;
2763 }
2764 switch (opt) {
2765
2766 default:
2767 continue;
2768
2769 case TCPOPT_MAXSEG:
2770 if (optlen != TCPOLEN_MAXSEG)
2771 continue;
2772 if (!(th->th_flags & TH_SYN))
2773 continue;
2774 bcopy(cp + 2, &mss, sizeof(mss));
2775 oi->maxseg = ntohs(mss);
2776 break;
2777
2778 case TCPOPT_WINDOW:
2779 if (optlen != TCPOLEN_WINDOW)
2780 continue;
2781 if (!(th->th_flags & TH_SYN))
2782 continue;
2783 tp->t_flags |= TF_RCVD_SCALE;
2784 tp->requested_s_scale = cp[2];
2785 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2786 #if 0 /*XXX*/
2787 char *p;
2788
2789 if (ip)
2790 p = ntohl(ip->ip_src);
2791 #ifdef INET6
2792 else if (ip6)
2793 p = ip6_sprintf(&ip6->ip6_src);
2794 #endif
2795 else
2796 p = "(unknown)";
2797 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2798 "assuming %d\n",
2799 tp->requested_s_scale, p,
2800 TCP_MAX_WINSHIFT);
2801 #else
2802 log(LOG_ERR, "TCP: invalid wscale %d, "
2803 "assuming %d\n",
2804 tp->requested_s_scale,
2805 TCP_MAX_WINSHIFT);
2806 #endif
2807 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2808 }
2809 break;
2810
2811 case TCPOPT_TIMESTAMP:
2812 if (optlen != TCPOLEN_TIMESTAMP)
2813 continue;
2814 oi->ts_present = 1;
2815 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2816 NTOHL(oi->ts_val);
2817 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2818 NTOHL(oi->ts_ecr);
2819
2820 /*
2821 * A timestamp received in a SYN makes
2822 * it ok to send timestamp requests and replies.
2823 */
2824 if (th->th_flags & TH_SYN) {
2825 tp->t_flags |= TF_RCVD_TSTMP;
2826 tp->ts_recent = oi->ts_val;
2827 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2828 }
2829 break;
2830 case TCPOPT_SACK_PERMITTED:
2831 if (optlen != TCPOLEN_SACK_PERMITTED)
2832 continue;
2833 if (!(th->th_flags & TH_SYN))
2834 continue;
2835 tp->t_flags &= ~TF_CANT_TXSACK;
2836 break;
2837
2838 case TCPOPT_SACK:
2839 if (tp->t_flags & TF_IGNR_RXSACK)
2840 continue;
2841 if (optlen % 8 != 2 || optlen < 10)
2842 continue;
2843 cp += 2;
2844 optlen -= 2;
2845 for (; optlen > 0; cp -= 8, optlen -= 8) {
2846 tcp_seq lwe, rwe;
2847 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2848 NTOHL(lwe);
2849 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2850 NTOHL(rwe);
2851 /* tcp_mark_sacked(tp, lwe, rwe); */
2852 }
2853 break;
2854 #ifdef TCP_SIGNATURE
2855 case TCPOPT_SIGNATURE:
2856 if (optlen != TCPOLEN_SIGNATURE)
2857 continue;
2858 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2859 return (-1);
2860
2861 sigp = sigbuf;
2862 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2863 memset(cp + 2, 0, TCP_SIGLEN);
2864 tp->t_flags |= TF_SIGNATURE;
2865 break;
2866 #endif
2867 }
2868 }
2869
2870 #ifdef TCP_SIGNATURE
2871 if (tp->t_flags & TF_SIGNATURE) {
2872
2873 sav = tcp_signature_getsav(m, th);
2874
2875 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2876 return (-1);
2877 }
2878
2879 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2880 if (sav == NULL)
2881 return (-1);
2882 #ifdef FAST_IPSEC
2883 KEY_FREESAV(&sav);
2884 #else
2885 key_freesav(sav);
2886 #endif
2887 return (-1);
2888 }
2889
2890 if (sigp) {
2891 char sig[TCP_SIGLEN];
2892
2893 TCP_FIELDS_TO_NET(th);
2894 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2895 TCP_FIELDS_TO_HOST(th);
2896 if (sav == NULL)
2897 return (-1);
2898 #ifdef FAST_IPSEC
2899 KEY_FREESAV(&sav);
2900 #else
2901 key_freesav(sav);
2902 #endif
2903 return (-1);
2904 }
2905 TCP_FIELDS_TO_HOST(th);
2906
2907 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2908 tcpstat.tcps_badsig++;
2909 if (sav == NULL)
2910 return (-1);
2911 #ifdef FAST_IPSEC
2912 KEY_FREESAV(&sav);
2913 #else
2914 key_freesav(sav);
2915 #endif
2916 return (-1);
2917 } else
2918 tcpstat.tcps_goodsig++;
2919
2920 key_sa_recordxfer(sav, m);
2921 #ifdef FAST_IPSEC
2922 KEY_FREESAV(&sav);
2923 #else
2924 key_freesav(sav);
2925 #endif
2926 }
2927 #endif
2928
2929 return (0);
2930 }
2931
2932 /*
2933 * Pull out of band byte out of a segment so
2934 * it doesn't appear in the user's data queue.
2935 * It is still reflected in the segment length for
2936 * sequencing purposes.
2937 */
2938 void
2939 tcp_pulloutofband(so, th, m, off)
2940 struct socket *so;
2941 struct tcphdr *th;
2942 struct mbuf *m;
2943 int off;
2944 {
2945 int cnt = off + th->th_urp - 1;
2946
2947 while (cnt >= 0) {
2948 if (m->m_len > cnt) {
2949 char *cp = mtod(m, caddr_t) + cnt;
2950 struct tcpcb *tp = sototcpcb(so);
2951
2952 tp->t_iobc = *cp;
2953 tp->t_oobflags |= TCPOOB_HAVEDATA;
2954 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2955 m->m_len--;
2956 return;
2957 }
2958 cnt -= m->m_len;
2959 m = m->m_next;
2960 if (m == 0)
2961 break;
2962 }
2963 panic("tcp_pulloutofband");
2964 }
2965
2966 /*
2967 * Collect new round-trip time estimate
2968 * and update averages and current timeout.
2969 */
2970 void
2971 tcp_xmit_timer(tp, rtt)
2972 struct tcpcb *tp;
2973 uint32_t rtt;
2974 {
2975 int32_t delta;
2976
2977 tcpstat.tcps_rttupdated++;
2978 if (tp->t_srtt != 0) {
2979 /*
2980 * srtt is stored as fixed point with 3 bits after the
2981 * binary point (i.e., scaled by 8). The following magic
2982 * is equivalent to the smoothing algorithm in rfc793 with
2983 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2984 * point). Adjust rtt to origin 0.
2985 */
2986 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2987 if ((tp->t_srtt += delta) <= 0)
2988 tp->t_srtt = 1 << 2;
2989 /*
2990 * We accumulate a smoothed rtt variance (actually, a
2991 * smoothed mean difference), then set the retransmit
2992 * timer to smoothed rtt + 4 times the smoothed variance.
2993 * rttvar is stored as fixed point with 2 bits after the
2994 * binary point (scaled by 4). The following is
2995 * equivalent to rfc793 smoothing with an alpha of .75
2996 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2997 * rfc793's wired-in beta.
2998 */
2999 if (delta < 0)
3000 delta = -delta;
3001 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3002 if ((tp->t_rttvar += delta) <= 0)
3003 tp->t_rttvar = 1 << 2;
3004 } else {
3005 /*
3006 * No rtt measurement yet - use the unsmoothed rtt.
3007 * Set the variance to half the rtt (so our first
3008 * retransmit happens at 3*rtt).
3009 */
3010 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3011 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3012 }
3013 tp->t_rtttime = 0;
3014 tp->t_rxtshift = 0;
3015
3016 /*
3017 * the retransmit should happen at rtt + 4 * rttvar.
3018 * Because of the way we do the smoothing, srtt and rttvar
3019 * will each average +1/2 tick of bias. When we compute
3020 * the retransmit timer, we want 1/2 tick of rounding and
3021 * 1 extra tick because of +-1/2 tick uncertainty in the
3022 * firing of the timer. The bias will give us exactly the
3023 * 1.5 tick we need. But, because the bias is
3024 * statistical, we have to test that we don't drop below
3025 * the minimum feasible timer (which is 2 ticks).
3026 */
3027 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3028 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3029
3030 /*
3031 * We received an ack for a packet that wasn't retransmitted;
3032 * it is probably safe to discard any error indications we've
3033 * received recently. This isn't quite right, but close enough
3034 * for now (a route might have failed after we sent a segment,
3035 * and the return path might not be symmetrical).
3036 */
3037 tp->t_softerror = 0;
3038 }
3039
3040 void
3041 tcp_reno_newack(tp, th)
3042 struct tcpcb *tp;
3043 struct tcphdr *th;
3044 {
3045 if (tp->t_partialacks < 0) {
3046 /*
3047 * We were not in fast recovery. Reset the duplicate ack
3048 * counter.
3049 */
3050 tp->t_dupacks = 0;
3051 } else {
3052 /*
3053 * Clamp the congestion window to the crossover point and
3054 * exit fast recovery.
3055 */
3056 if (tp->snd_cwnd > tp->snd_ssthresh)
3057 tp->snd_cwnd = tp->snd_ssthresh;
3058 tp->t_partialacks = -1;
3059 tp->t_dupacks = 0;
3060 }
3061 }
3062
3063 /*
3064 * Implement the NewReno response to a new ack, checking for partial acks in
3065 * fast recovery.
3066 */
3067 void
3068 tcp_newreno_newack(tp, th)
3069 struct tcpcb *tp;
3070 struct tcphdr *th;
3071 {
3072 if (tp->t_partialacks < 0) {
3073 /*
3074 * We were not in fast recovery. Reset the duplicate ack
3075 * counter.
3076 */
3077 tp->t_dupacks = 0;
3078 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3079 /*
3080 * This is a partial ack. Retransmit the first unacknowledged
3081 * segment and deflate the congestion window by the amount of
3082 * acknowledged data. Do not exit fast recovery.
3083 */
3084 tcp_seq onxt = tp->snd_nxt;
3085 u_long ocwnd = tp->snd_cwnd;
3086
3087 /*
3088 * snd_una has not yet been updated and the socket's send
3089 * buffer has not yet drained off the ACK'd data, so we
3090 * have to leave snd_una as it was to get the correct data
3091 * offset in tcp_output().
3092 */
3093 if (++tp->t_partialacks == 1)
3094 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3095 tp->t_rtttime = 0;
3096 tp->snd_nxt = th->th_ack;
3097 /*
3098 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3099 * is not yet updated when we're called.
3100 */
3101 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3102 (void) tcp_output(tp);
3103 tp->snd_cwnd = ocwnd;
3104 if (SEQ_GT(onxt, tp->snd_nxt))
3105 tp->snd_nxt = onxt;
3106 /*
3107 * Partial window deflation. Relies on fact that tp->snd_una
3108 * not updated yet.
3109 */
3110 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3111 } else {
3112 /*
3113 * Complete ack. Inflate the congestion window to ssthresh
3114 * and exit fast recovery.
3115 *
3116 * Window inflation should have left us with approx.
3117 * snd_ssthresh outstanding data. But in case we
3118 * would be inclined to send a burst, better to do
3119 * it via the slow start mechanism.
3120 */
3121 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3122 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3123 + tp->t_segsz;
3124 else
3125 tp->snd_cwnd = tp->snd_ssthresh;
3126 tp->t_partialacks = -1;
3127 tp->t_dupacks = 0;
3128 }
3129 }
3130
3131
3132 /*
3133 * TCP compressed state engine. Currently used to hold compressed
3134 * state for SYN_RECEIVED.
3135 */
3136
3137 u_long syn_cache_count;
3138 u_int32_t syn_hash1, syn_hash2;
3139
3140 #define SYN_HASH(sa, sp, dp) \
3141 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3142 ((u_int32_t)(sp)))^syn_hash2)))
3143 #ifndef INET6
3144 #define SYN_HASHALL(hash, src, dst) \
3145 do { \
3146 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3147 ((struct sockaddr_in *)(src))->sin_port, \
3148 ((struct sockaddr_in *)(dst))->sin_port); \
3149 } while (/*CONSTCOND*/ 0)
3150 #else
3151 #define SYN_HASH6(sa, sp, dp) \
3152 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3153 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3154 & 0x7fffffff)
3155
3156 #define SYN_HASHALL(hash, src, dst) \
3157 do { \
3158 switch ((src)->sa_family) { \
3159 case AF_INET: \
3160 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3161 ((struct sockaddr_in *)(src))->sin_port, \
3162 ((struct sockaddr_in *)(dst))->sin_port); \
3163 break; \
3164 case AF_INET6: \
3165 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3166 ((struct sockaddr_in6 *)(src))->sin6_port, \
3167 ((struct sockaddr_in6 *)(dst))->sin6_port); \
3168 break; \
3169 default: \
3170 hash = 0; \
3171 } \
3172 } while (/*CONSTCOND*/0)
3173 #endif /* INET6 */
3174
3175 #define SYN_CACHE_RM(sc) \
3176 do { \
3177 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3178 (sc), sc_bucketq); \
3179 (sc)->sc_tp = NULL; \
3180 LIST_REMOVE((sc), sc_tpq); \
3181 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3182 callout_stop(&(sc)->sc_timer); \
3183 syn_cache_count--; \
3184 } while (/*CONSTCOND*/0)
3185
3186 #define SYN_CACHE_PUT(sc) \
3187 do { \
3188 if ((sc)->sc_ipopts) \
3189 (void) m_free((sc)->sc_ipopts); \
3190 if ((sc)->sc_route4.ro_rt != NULL) \
3191 RTFREE((sc)->sc_route4.ro_rt); \
3192 if (callout_invoking(&(sc)->sc_timer)) \
3193 (sc)->sc_flags |= SCF_DEAD; \
3194 else \
3195 pool_put(&syn_cache_pool, (sc)); \
3196 } while (/*CONSTCOND*/0)
3197
3198 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3199
3200 /*
3201 * We don't estimate RTT with SYNs, so each packet starts with the default
3202 * RTT and each timer step has a fixed timeout value.
3203 */
3204 #define SYN_CACHE_TIMER_ARM(sc) \
3205 do { \
3206 TCPT_RANGESET((sc)->sc_rxtcur, \
3207 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3208 TCPTV_REXMTMAX); \
3209 callout_reset(&(sc)->sc_timer, \
3210 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3211 } while (/*CONSTCOND*/0)
3212
3213 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3214
3215 void
3216 syn_cache_init()
3217 {
3218 int i;
3219
3220 /* Initialize the hash buckets. */
3221 for (i = 0; i < tcp_syn_cache_size; i++)
3222 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3223 }
3224
3225 void
3226 syn_cache_insert(sc, tp)
3227 struct syn_cache *sc;
3228 struct tcpcb *tp;
3229 {
3230 struct syn_cache_head *scp;
3231 struct syn_cache *sc2;
3232 int s;
3233
3234 /*
3235 * If there are no entries in the hash table, reinitialize
3236 * the hash secrets.
3237 */
3238 if (syn_cache_count == 0) {
3239 syn_hash1 = arc4random();
3240 syn_hash2 = arc4random();
3241 }
3242
3243 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3244 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3245 scp = &tcp_syn_cache[sc->sc_bucketidx];
3246
3247 /*
3248 * Make sure that we don't overflow the per-bucket
3249 * limit or the total cache size limit.
3250 */
3251 s = splsoftnet();
3252 if (scp->sch_length >= tcp_syn_bucket_limit) {
3253 tcpstat.tcps_sc_bucketoverflow++;
3254 /*
3255 * The bucket is full. Toss the oldest element in the
3256 * bucket. This will be the first entry in the bucket.
3257 */
3258 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3259 #ifdef DIAGNOSTIC
3260 /*
3261 * This should never happen; we should always find an
3262 * entry in our bucket.
3263 */
3264 if (sc2 == NULL)
3265 panic("syn_cache_insert: bucketoverflow: impossible");
3266 #endif
3267 SYN_CACHE_RM(sc2);
3268 SYN_CACHE_PUT(sc2);
3269 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3270 struct syn_cache_head *scp2, *sce;
3271
3272 tcpstat.tcps_sc_overflowed++;
3273 /*
3274 * The cache is full. Toss the oldest entry in the
3275 * first non-empty bucket we can find.
3276 *
3277 * XXX We would really like to toss the oldest
3278 * entry in the cache, but we hope that this
3279 * condition doesn't happen very often.
3280 */
3281 scp2 = scp;
3282 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3283 sce = &tcp_syn_cache[tcp_syn_cache_size];
3284 for (++scp2; scp2 != scp; scp2++) {
3285 if (scp2 >= sce)
3286 scp2 = &tcp_syn_cache[0];
3287 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3288 break;
3289 }
3290 #ifdef DIAGNOSTIC
3291 /*
3292 * This should never happen; we should always find a
3293 * non-empty bucket.
3294 */
3295 if (scp2 == scp)
3296 panic("syn_cache_insert: cacheoverflow: "
3297 "impossible");
3298 #endif
3299 }
3300 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3301 SYN_CACHE_RM(sc2);
3302 SYN_CACHE_PUT(sc2);
3303 }
3304
3305 /*
3306 * Initialize the entry's timer.
3307 */
3308 sc->sc_rxttot = 0;
3309 sc->sc_rxtshift = 0;
3310 SYN_CACHE_TIMER_ARM(sc);
3311
3312 /* Link it from tcpcb entry */
3313 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3314
3315 /* Put it into the bucket. */
3316 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3317 scp->sch_length++;
3318 syn_cache_count++;
3319
3320 tcpstat.tcps_sc_added++;
3321 splx(s);
3322 }
3323
3324 /*
3325 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3326 * If we have retransmitted an entry the maximum number of times, expire
3327 * that entry.
3328 */
3329 void
3330 syn_cache_timer(void *arg)
3331 {
3332 struct syn_cache *sc = arg;
3333 int s;
3334
3335 s = splsoftnet();
3336 callout_ack(&sc->sc_timer);
3337
3338 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3339 tcpstat.tcps_sc_delayed_free++;
3340 pool_put(&syn_cache_pool, sc);
3341 splx(s);
3342 return;
3343 }
3344
3345 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3346 /* Drop it -- too many retransmissions. */
3347 goto dropit;
3348 }
3349
3350 /*
3351 * Compute the total amount of time this entry has
3352 * been on a queue. If this entry has been on longer
3353 * than the keep alive timer would allow, expire it.
3354 */
3355 sc->sc_rxttot += sc->sc_rxtcur;
3356 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3357 goto dropit;
3358
3359 tcpstat.tcps_sc_retransmitted++;
3360 (void) syn_cache_respond(sc, NULL);
3361
3362 /* Advance the timer back-off. */
3363 sc->sc_rxtshift++;
3364 SYN_CACHE_TIMER_ARM(sc);
3365
3366 splx(s);
3367 return;
3368
3369 dropit:
3370 tcpstat.tcps_sc_timed_out++;
3371 SYN_CACHE_RM(sc);
3372 SYN_CACHE_PUT(sc);
3373 splx(s);
3374 }
3375
3376 /*
3377 * Remove syn cache created by the specified tcb entry,
3378 * because this does not make sense to keep them
3379 * (if there's no tcb entry, syn cache entry will never be used)
3380 */
3381 void
3382 syn_cache_cleanup(tp)
3383 struct tcpcb *tp;
3384 {
3385 struct syn_cache *sc, *nsc;
3386 int s;
3387
3388 s = splsoftnet();
3389
3390 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3391 nsc = LIST_NEXT(sc, sc_tpq);
3392
3393 #ifdef DIAGNOSTIC
3394 if (sc->sc_tp != tp)
3395 panic("invalid sc_tp in syn_cache_cleanup");
3396 #endif
3397 SYN_CACHE_RM(sc);
3398 SYN_CACHE_PUT(sc);
3399 }
3400 /* just for safety */
3401 LIST_INIT(&tp->t_sc);
3402
3403 splx(s);
3404 }
3405
3406 /*
3407 * Find an entry in the syn cache.
3408 */
3409 struct syn_cache *
3410 syn_cache_lookup(src, dst, headp)
3411 struct sockaddr *src;
3412 struct sockaddr *dst;
3413 struct syn_cache_head **headp;
3414 {
3415 struct syn_cache *sc;
3416 struct syn_cache_head *scp;
3417 u_int32_t hash;
3418 int s;
3419
3420 SYN_HASHALL(hash, src, dst);
3421
3422 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3423 *headp = scp;
3424 s = splsoftnet();
3425 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3426 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3427 if (sc->sc_hash != hash)
3428 continue;
3429 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3430 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3431 splx(s);
3432 return (sc);
3433 }
3434 }
3435 splx(s);
3436 return (NULL);
3437 }
3438
3439 /*
3440 * This function gets called when we receive an ACK for a
3441 * socket in the LISTEN state. We look up the connection
3442 * in the syn cache, and if its there, we pull it out of
3443 * the cache and turn it into a full-blown connection in
3444 * the SYN-RECEIVED state.
3445 *
3446 * The return values may not be immediately obvious, and their effects
3447 * can be subtle, so here they are:
3448 *
3449 * NULL SYN was not found in cache; caller should drop the
3450 * packet and send an RST.
3451 *
3452 * -1 We were unable to create the new connection, and are
3453 * aborting it. An ACK,RST is being sent to the peer
3454 * (unless we got screwey sequence numbners; see below),
3455 * because the 3-way handshake has been completed. Caller
3456 * should not free the mbuf, since we may be using it. If
3457 * we are not, we will free it.
3458 *
3459 * Otherwise, the return value is a pointer to the new socket
3460 * associated with the connection.
3461 */
3462 struct socket *
3463 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3464 struct sockaddr *src;
3465 struct sockaddr *dst;
3466 struct tcphdr *th;
3467 unsigned int hlen, tlen;
3468 struct socket *so;
3469 struct mbuf *m;
3470 {
3471 struct syn_cache *sc;
3472 struct syn_cache_head *scp;
3473 struct inpcb *inp = NULL;
3474 #ifdef INET6
3475 struct in6pcb *in6p = NULL;
3476 #endif
3477 struct tcpcb *tp = 0;
3478 struct mbuf *am;
3479 int s;
3480 struct socket *oso;
3481
3482 s = splsoftnet();
3483 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3484 splx(s);
3485 return (NULL);
3486 }
3487
3488 /*
3489 * Verify the sequence and ack numbers. Try getting the correct
3490 * response again.
3491 */
3492 if ((th->th_ack != sc->sc_iss + 1) ||
3493 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3494 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3495 (void) syn_cache_respond(sc, m);
3496 splx(s);
3497 return ((struct socket *)(-1));
3498 }
3499
3500 /* Remove this cache entry */
3501 SYN_CACHE_RM(sc);
3502 splx(s);
3503
3504 /*
3505 * Ok, create the full blown connection, and set things up
3506 * as they would have been set up if we had created the
3507 * connection when the SYN arrived. If we can't create
3508 * the connection, abort it.
3509 */
3510 /*
3511 * inp still has the OLD in_pcb stuff, set the
3512 * v6-related flags on the new guy, too. This is
3513 * done particularly for the case where an AF_INET6
3514 * socket is bound only to a port, and a v4 connection
3515 * comes in on that port.
3516 * we also copy the flowinfo from the original pcb
3517 * to the new one.
3518 */
3519 oso = so;
3520 so = sonewconn(so, SS_ISCONNECTED);
3521 if (so == NULL)
3522 goto resetandabort;
3523
3524 switch (so->so_proto->pr_domain->dom_family) {
3525 #ifdef INET
3526 case AF_INET:
3527 inp = sotoinpcb(so);
3528 break;
3529 #endif
3530 #ifdef INET6
3531 case AF_INET6:
3532 in6p = sotoin6pcb(so);
3533 break;
3534 #endif
3535 }
3536 switch (src->sa_family) {
3537 #ifdef INET
3538 case AF_INET:
3539 if (inp) {
3540 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3541 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3542 inp->inp_options = ip_srcroute();
3543 in_pcbstate(inp, INP_BOUND);
3544 if (inp->inp_options == NULL) {
3545 inp->inp_options = sc->sc_ipopts;
3546 sc->sc_ipopts = NULL;
3547 }
3548 }
3549 #ifdef INET6
3550 else if (in6p) {
3551 /* IPv4 packet to AF_INET6 socket */
3552 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3553 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3554 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3555 &in6p->in6p_laddr.s6_addr32[3],
3556 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3557 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3558 in6totcpcb(in6p)->t_family = AF_INET;
3559 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3560 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3561 else
3562 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3563 in6_pcbstate(in6p, IN6P_BOUND);
3564 }
3565 #endif
3566 break;
3567 #endif
3568 #ifdef INET6
3569 case AF_INET6:
3570 if (in6p) {
3571 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3572 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3573 in6_pcbstate(in6p, IN6P_BOUND);
3574 }
3575 break;
3576 #endif
3577 }
3578 #ifdef INET6
3579 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3580 struct in6pcb *oin6p = sotoin6pcb(oso);
3581 /* inherit socket options from the listening socket */
3582 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3583 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3584 m_freem(in6p->in6p_options);
3585 in6p->in6p_options = 0;
3586 }
3587 ip6_savecontrol(in6p, &in6p->in6p_options,
3588 mtod(m, struct ip6_hdr *), m);
3589 }
3590 #endif
3591
3592 #if defined(IPSEC) || defined(FAST_IPSEC)
3593 /*
3594 * we make a copy of policy, instead of sharing the policy,
3595 * for better behavior in terms of SA lookup and dead SA removal.
3596 */
3597 if (inp) {
3598 /* copy old policy into new socket's */
3599 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3600 printf("tcp_input: could not copy policy\n");
3601 }
3602 #ifdef INET6
3603 else if (in6p) {
3604 /* copy old policy into new socket's */
3605 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3606 in6p->in6p_sp))
3607 printf("tcp_input: could not copy policy\n");
3608 }
3609 #endif
3610 #endif
3611
3612 /*
3613 * Give the new socket our cached route reference.
3614 */
3615 if (inp)
3616 inp->inp_route = sc->sc_route4; /* struct assignment */
3617 #ifdef INET6
3618 else
3619 in6p->in6p_route = sc->sc_route6;
3620 #endif
3621 sc->sc_route4.ro_rt = NULL;
3622
3623 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3624 if (am == NULL)
3625 goto resetandabort;
3626 MCLAIM(am, &tcp_mowner);
3627 am->m_len = src->sa_len;
3628 bcopy(src, mtod(am, caddr_t), src->sa_len);
3629 if (inp) {
3630 if (in_pcbconnect(inp, am)) {
3631 (void) m_free(am);
3632 goto resetandabort;
3633 }
3634 }
3635 #ifdef INET6
3636 else if (in6p) {
3637 if (src->sa_family == AF_INET) {
3638 /* IPv4 packet to AF_INET6 socket */
3639 struct sockaddr_in6 *sin6;
3640 sin6 = mtod(am, struct sockaddr_in6 *);
3641 am->m_len = sizeof(*sin6);
3642 bzero(sin6, sizeof(*sin6));
3643 sin6->sin6_family = AF_INET6;
3644 sin6->sin6_len = sizeof(*sin6);
3645 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3646 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3647 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3648 &sin6->sin6_addr.s6_addr32[3],
3649 sizeof(sin6->sin6_addr.s6_addr32[3]));
3650 }
3651 if (in6_pcbconnect(in6p, am)) {
3652 (void) m_free(am);
3653 goto resetandabort;
3654 }
3655 }
3656 #endif
3657 else {
3658 (void) m_free(am);
3659 goto resetandabort;
3660 }
3661 (void) m_free(am);
3662
3663 if (inp)
3664 tp = intotcpcb(inp);
3665 #ifdef INET6
3666 else if (in6p)
3667 tp = in6totcpcb(in6p);
3668 #endif
3669 else
3670 tp = NULL;
3671 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3672 if (sc->sc_request_r_scale != 15) {
3673 tp->requested_s_scale = sc->sc_requested_s_scale;
3674 tp->request_r_scale = sc->sc_request_r_scale;
3675 tp->snd_scale = sc->sc_requested_s_scale;
3676 tp->rcv_scale = sc->sc_request_r_scale;
3677 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3678 }
3679 if (sc->sc_flags & SCF_TIMESTAMP)
3680 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3681 tp->ts_timebase = sc->sc_timebase;
3682
3683 tp->t_template = tcp_template(tp);
3684 if (tp->t_template == 0) {
3685 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3686 so = NULL;
3687 m_freem(m);
3688 goto abort;
3689 }
3690
3691 tp->iss = sc->sc_iss;
3692 tp->irs = sc->sc_irs;
3693 tcp_sendseqinit(tp);
3694 tcp_rcvseqinit(tp);
3695 tp->t_state = TCPS_SYN_RECEIVED;
3696 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3697 tcpstat.tcps_accepts++;
3698
3699 #ifdef TCP_SIGNATURE
3700 if (sc->sc_flags & SCF_SIGNATURE)
3701 tp->t_flags |= TF_SIGNATURE;
3702 #endif
3703
3704 /* Initialize tp->t_ourmss before we deal with the peer's! */
3705 tp->t_ourmss = sc->sc_ourmaxseg;
3706 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3707
3708 /*
3709 * Initialize the initial congestion window. If we
3710 * had to retransmit the SYN,ACK, we must initialize cwnd
3711 * to 1 segment (i.e. the Loss Window).
3712 */
3713 if (sc->sc_rxtshift)
3714 tp->snd_cwnd = tp->t_peermss;
3715 else {
3716 int ss = tcp_init_win;
3717 #ifdef INET
3718 if (inp != NULL && in_localaddr(inp->inp_faddr))
3719 ss = tcp_init_win_local;
3720 #endif
3721 #ifdef INET6
3722 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3723 ss = tcp_init_win_local;
3724 #endif
3725 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3726 }
3727
3728 tcp_rmx_rtt(tp);
3729 tp->snd_wl1 = sc->sc_irs;
3730 tp->rcv_up = sc->sc_irs + 1;
3731
3732 /*
3733 * This is what whould have happened in tcp_output() when
3734 * the SYN,ACK was sent.
3735 */
3736 tp->snd_up = tp->snd_una;
3737 tp->snd_max = tp->snd_nxt = tp->iss+1;
3738 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3739 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3740 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3741 tp->last_ack_sent = tp->rcv_nxt;
3742 tp->t_partialacks = -1;
3743 tp->t_dupacks = 0;
3744
3745 tcpstat.tcps_sc_completed++;
3746 SYN_CACHE_PUT(sc);
3747 return (so);
3748
3749 resetandabort:
3750 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3751 abort:
3752 if (so != NULL)
3753 (void) soabort(so);
3754 SYN_CACHE_PUT(sc);
3755 tcpstat.tcps_sc_aborted++;
3756 return ((struct socket *)(-1));
3757 }
3758
3759 /*
3760 * This function is called when we get a RST for a
3761 * non-existent connection, so that we can see if the
3762 * connection is in the syn cache. If it is, zap it.
3763 */
3764
3765 void
3766 syn_cache_reset(src, dst, th)
3767 struct sockaddr *src;
3768 struct sockaddr *dst;
3769 struct tcphdr *th;
3770 {
3771 struct syn_cache *sc;
3772 struct syn_cache_head *scp;
3773 int s = splsoftnet();
3774
3775 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3776 splx(s);
3777 return;
3778 }
3779 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3780 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3781 splx(s);
3782 return;
3783 }
3784 SYN_CACHE_RM(sc);
3785 splx(s);
3786 tcpstat.tcps_sc_reset++;
3787 SYN_CACHE_PUT(sc);
3788 }
3789
3790 void
3791 syn_cache_unreach(src, dst, th)
3792 struct sockaddr *src;
3793 struct sockaddr *dst;
3794 struct tcphdr *th;
3795 {
3796 struct syn_cache *sc;
3797 struct syn_cache_head *scp;
3798 int s;
3799
3800 s = splsoftnet();
3801 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3802 splx(s);
3803 return;
3804 }
3805 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3806 if (ntohl (th->th_seq) != sc->sc_iss) {
3807 splx(s);
3808 return;
3809 }
3810
3811 /*
3812 * If we've retransmitted 3 times and this is our second error,
3813 * we remove the entry. Otherwise, we allow it to continue on.
3814 * This prevents us from incorrectly nuking an entry during a
3815 * spurious network outage.
3816 *
3817 * See tcp_notify().
3818 */
3819 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3820 sc->sc_flags |= SCF_UNREACH;
3821 splx(s);
3822 return;
3823 }
3824
3825 SYN_CACHE_RM(sc);
3826 splx(s);
3827 tcpstat.tcps_sc_unreach++;
3828 SYN_CACHE_PUT(sc);
3829 }
3830
3831 /*
3832 * Given a LISTEN socket and an inbound SYN request, add
3833 * this to the syn cache, and send back a segment:
3834 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3835 * to the source.
3836 *
3837 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3838 * Doing so would require that we hold onto the data and deliver it
3839 * to the application. However, if we are the target of a SYN-flood
3840 * DoS attack, an attacker could send data which would eventually
3841 * consume all available buffer space if it were ACKed. By not ACKing
3842 * the data, we avoid this DoS scenario.
3843 */
3844
3845 int
3846 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3847 struct sockaddr *src;
3848 struct sockaddr *dst;
3849 struct tcphdr *th;
3850 unsigned int hlen;
3851 struct socket *so;
3852 struct mbuf *m;
3853 u_char *optp;
3854 int optlen;
3855 struct tcp_opt_info *oi;
3856 {
3857 struct tcpcb tb, *tp;
3858 long win;
3859 struct syn_cache *sc;
3860 struct syn_cache_head *scp;
3861 struct mbuf *ipopts;
3862 struct tcp_opt_info opti;
3863
3864 tp = sototcpcb(so);
3865
3866 bzero(&opti, sizeof(opti));
3867
3868 /*
3869 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3870 *
3871 * Note this check is performed in tcp_input() very early on.
3872 */
3873
3874 /*
3875 * Initialize some local state.
3876 */
3877 win = sbspace(&so->so_rcv);
3878 if (win > TCP_MAXWIN)
3879 win = TCP_MAXWIN;
3880
3881 switch (src->sa_family) {
3882 #ifdef INET
3883 case AF_INET:
3884 /*
3885 * Remember the IP options, if any.
3886 */
3887 ipopts = ip_srcroute();
3888 break;
3889 #endif
3890 default:
3891 ipopts = NULL;
3892 }
3893
3894 #ifdef TCP_SIGNATURE
3895 if (optp || (tp->t_flags & TF_SIGNATURE))
3896 #else
3897 if (optp)
3898 #endif
3899 {
3900 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3901 #ifdef TCP_SIGNATURE
3902 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3903 #endif
3904 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3905 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3906 return (0);
3907 } else
3908 tb.t_flags = 0;
3909
3910 /*
3911 * See if we already have an entry for this connection.
3912 * If we do, resend the SYN,ACK. We do not count this
3913 * as a retransmission (XXX though maybe we should).
3914 */
3915 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3916 tcpstat.tcps_sc_dupesyn++;
3917 if (ipopts) {
3918 /*
3919 * If we were remembering a previous source route,
3920 * forget it and use the new one we've been given.
3921 */
3922 if (sc->sc_ipopts)
3923 (void) m_free(sc->sc_ipopts);
3924 sc->sc_ipopts = ipopts;
3925 }
3926 sc->sc_timestamp = tb.ts_recent;
3927 if (syn_cache_respond(sc, m) == 0) {
3928 tcpstat.tcps_sndacks++;
3929 tcpstat.tcps_sndtotal++;
3930 }
3931 return (1);
3932 }
3933
3934 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3935 if (sc == NULL) {
3936 if (ipopts)
3937 (void) m_free(ipopts);
3938 return (0);
3939 }
3940
3941 /*
3942 * Fill in the cache, and put the necessary IP and TCP
3943 * options into the reply.
3944 */
3945 bzero(sc, sizeof(struct syn_cache));
3946 callout_init(&sc->sc_timer);
3947 bcopy(src, &sc->sc_src, src->sa_len);
3948 bcopy(dst, &sc->sc_dst, dst->sa_len);
3949 sc->sc_flags = 0;
3950 sc->sc_ipopts = ipopts;
3951 sc->sc_irs = th->th_seq;
3952 switch (src->sa_family) {
3953 #ifdef INET
3954 case AF_INET:
3955 {
3956 struct sockaddr_in *srcin = (void *) src;
3957 struct sockaddr_in *dstin = (void *) dst;
3958
3959 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3960 &srcin->sin_addr, dstin->sin_port,
3961 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3962 break;
3963 }
3964 #endif /* INET */
3965 #ifdef INET6
3966 case AF_INET6:
3967 {
3968 struct sockaddr_in6 *srcin6 = (void *) src;
3969 struct sockaddr_in6 *dstin6 = (void *) dst;
3970
3971 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3972 &srcin6->sin6_addr, dstin6->sin6_port,
3973 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3974 break;
3975 }
3976 #endif /* INET6 */
3977 }
3978 sc->sc_peermaxseg = oi->maxseg;
3979 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3980 m->m_pkthdr.rcvif : NULL,
3981 sc->sc_src.sa.sa_family);
3982 sc->sc_win = win;
3983 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3984 sc->sc_timestamp = tb.ts_recent;
3985 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3986 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3987 sc->sc_flags |= SCF_TIMESTAMP;
3988 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3989 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3990 sc->sc_requested_s_scale = tb.requested_s_scale;
3991 sc->sc_request_r_scale = 0;
3992 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3993 TCP_MAXWIN << sc->sc_request_r_scale <
3994 so->so_rcv.sb_hiwat)
3995 sc->sc_request_r_scale++;
3996 } else {
3997 sc->sc_requested_s_scale = 15;
3998 sc->sc_request_r_scale = 15;
3999 }
4000 #ifdef TCP_SIGNATURE
4001 if (tb.t_flags & TF_SIGNATURE)
4002 sc->sc_flags |= SCF_SIGNATURE;
4003 #endif
4004 sc->sc_tp = tp;
4005 if (syn_cache_respond(sc, m) == 0) {
4006 syn_cache_insert(sc, tp);
4007 tcpstat.tcps_sndacks++;
4008 tcpstat.tcps_sndtotal++;
4009 } else {
4010 SYN_CACHE_PUT(sc);
4011 tcpstat.tcps_sc_dropped++;
4012 }
4013 return (1);
4014 }
4015
4016 int
4017 syn_cache_respond(sc, m)
4018 struct syn_cache *sc;
4019 struct mbuf *m;
4020 {
4021 struct route *ro;
4022 u_int8_t *optp;
4023 int optlen, error;
4024 u_int16_t tlen;
4025 struct ip *ip = NULL;
4026 #ifdef INET6
4027 struct ip6_hdr *ip6 = NULL;
4028 #endif
4029 struct tcpcb *tp;
4030 struct tcphdr *th;
4031 u_int hlen;
4032 struct socket *so;
4033
4034 switch (sc->sc_src.sa.sa_family) {
4035 case AF_INET:
4036 hlen = sizeof(struct ip);
4037 ro = &sc->sc_route4;
4038 break;
4039 #ifdef INET6
4040 case AF_INET6:
4041 hlen = sizeof(struct ip6_hdr);
4042 ro = (struct route *)&sc->sc_route6;
4043 break;
4044 #endif
4045 default:
4046 if (m)
4047 m_freem(m);
4048 return (EAFNOSUPPORT);
4049 }
4050
4051 /* Compute the size of the TCP options. */
4052 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4053 #ifdef TCP_SIGNATURE
4054 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4055 #endif
4056 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4057
4058 tlen = hlen + sizeof(struct tcphdr) + optlen;
4059
4060 /*
4061 * Create the IP+TCP header from scratch.
4062 */
4063 if (m)
4064 m_freem(m);
4065 #ifdef DIAGNOSTIC
4066 if (max_linkhdr + tlen > MCLBYTES)
4067 return (ENOBUFS);
4068 #endif
4069 MGETHDR(m, M_DONTWAIT, MT_DATA);
4070 if (m && tlen > MHLEN) {
4071 MCLGET(m, M_DONTWAIT);
4072 if ((m->m_flags & M_EXT) == 0) {
4073 m_freem(m);
4074 m = NULL;
4075 }
4076 }
4077 if (m == NULL)
4078 return (ENOBUFS);
4079 MCLAIM(m, &tcp_tx_mowner);
4080
4081 /* Fixup the mbuf. */
4082 m->m_data += max_linkhdr;
4083 m->m_len = m->m_pkthdr.len = tlen;
4084 if (sc->sc_tp) {
4085 tp = sc->sc_tp;
4086 if (tp->t_inpcb)
4087 so = tp->t_inpcb->inp_socket;
4088 #ifdef INET6
4089 else if (tp->t_in6pcb)
4090 so = tp->t_in6pcb->in6p_socket;
4091 #endif
4092 else
4093 so = NULL;
4094 } else
4095 so = NULL;
4096 m->m_pkthdr.rcvif = NULL;
4097 memset(mtod(m, u_char *), 0, tlen);
4098
4099 switch (sc->sc_src.sa.sa_family) {
4100 case AF_INET:
4101 ip = mtod(m, struct ip *);
4102 ip->ip_v = 4;
4103 ip->ip_dst = sc->sc_src.sin.sin_addr;
4104 ip->ip_src = sc->sc_dst.sin.sin_addr;
4105 ip->ip_p = IPPROTO_TCP;
4106 th = (struct tcphdr *)(ip + 1);
4107 th->th_dport = sc->sc_src.sin.sin_port;
4108 th->th_sport = sc->sc_dst.sin.sin_port;
4109 break;
4110 #ifdef INET6
4111 case AF_INET6:
4112 ip6 = mtod(m, struct ip6_hdr *);
4113 ip6->ip6_vfc = IPV6_VERSION;
4114 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4115 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4116 ip6->ip6_nxt = IPPROTO_TCP;
4117 /* ip6_plen will be updated in ip6_output() */
4118 th = (struct tcphdr *)(ip6 + 1);
4119 th->th_dport = sc->sc_src.sin6.sin6_port;
4120 th->th_sport = sc->sc_dst.sin6.sin6_port;
4121 break;
4122 #endif
4123 default:
4124 th = NULL;
4125 }
4126
4127 th->th_seq = htonl(sc->sc_iss);
4128 th->th_ack = htonl(sc->sc_irs + 1);
4129 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4130 th->th_flags = TH_SYN|TH_ACK;
4131 th->th_win = htons(sc->sc_win);
4132 /* th_sum already 0 */
4133 /* th_urp already 0 */
4134
4135 /* Tack on the TCP options. */
4136 optp = (u_int8_t *)(th + 1);
4137 *optp++ = TCPOPT_MAXSEG;
4138 *optp++ = 4;
4139 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4140 *optp++ = sc->sc_ourmaxseg & 0xff;
4141
4142 if (sc->sc_request_r_scale != 15) {
4143 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4144 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4145 sc->sc_request_r_scale);
4146 optp += 4;
4147 }
4148
4149 if (sc->sc_flags & SCF_TIMESTAMP) {
4150 u_int32_t *lp = (u_int32_t *)(optp);
4151 /* Form timestamp option as shown in appendix A of RFC 1323. */
4152 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4153 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4154 *lp = htonl(sc->sc_timestamp);
4155 optp += TCPOLEN_TSTAMP_APPA;
4156 }
4157
4158 #ifdef TCP_SIGNATURE
4159 if (sc->sc_flags & SCF_SIGNATURE) {
4160 struct secasvar *sav;
4161 u_int8_t *sigp;
4162
4163 sav = tcp_signature_getsav(m, th);
4164
4165 if (sav == NULL) {
4166 if (m)
4167 m_freem(m);
4168 return (EPERM);
4169 }
4170
4171 *optp++ = TCPOPT_SIGNATURE;
4172 *optp++ = TCPOLEN_SIGNATURE;
4173 sigp = optp;
4174 bzero(optp, TCP_SIGLEN);
4175 optp += TCP_SIGLEN;
4176 *optp++ = TCPOPT_NOP;
4177 *optp++ = TCPOPT_EOL;
4178
4179 (void)tcp_signature(m, th, hlen, sav, sigp);
4180
4181 key_sa_recordxfer(sav, m);
4182 #ifdef FAST_IPSEC
4183 KEY_FREESAV(&sav);
4184 #else
4185 key_freesav(sav);
4186 #endif
4187 }
4188 #endif
4189
4190 /* Compute the packet's checksum. */
4191 switch (sc->sc_src.sa.sa_family) {
4192 case AF_INET:
4193 ip->ip_len = htons(tlen - hlen);
4194 th->th_sum = 0;
4195 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4196 break;
4197 #ifdef INET6
4198 case AF_INET6:
4199 ip6->ip6_plen = htons(tlen - hlen);
4200 th->th_sum = 0;
4201 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4202 break;
4203 #endif
4204 }
4205
4206 /*
4207 * Fill in some straggling IP bits. Note the stack expects
4208 * ip_len to be in host order, for convenience.
4209 */
4210 switch (sc->sc_src.sa.sa_family) {
4211 #ifdef INET
4212 case AF_INET:
4213 ip->ip_len = htons(tlen);
4214 ip->ip_ttl = ip_defttl;
4215 /* XXX tos? */
4216 break;
4217 #endif
4218 #ifdef INET6
4219 case AF_INET6:
4220 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4221 ip6->ip6_vfc |= IPV6_VERSION;
4222 ip6->ip6_plen = htons(tlen - hlen);
4223 /* ip6_hlim will be initialized afterwards */
4224 /* XXX flowlabel? */
4225 break;
4226 #endif
4227 }
4228
4229 /* XXX use IPsec policy on listening socket, on SYN ACK */
4230 tp = sc->sc_tp;
4231
4232 switch (sc->sc_src.sa.sa_family) {
4233 #ifdef INET
4234 case AF_INET:
4235 error = ip_output(m, sc->sc_ipopts, ro,
4236 (ip_mtudisc ? IP_MTUDISC : 0),
4237 (struct ip_moptions *)NULL, so);
4238 break;
4239 #endif
4240 #ifdef INET6
4241 case AF_INET6:
4242 ip6->ip6_hlim = in6_selecthlim(NULL,
4243 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4244
4245 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4246 (struct ip6_moptions *)0, so, NULL);
4247 break;
4248 #endif
4249 default:
4250 error = EAFNOSUPPORT;
4251 break;
4252 }
4253 return (error);
4254 }
4255