tcp_input.c revision 1.215 1 /* $NetBSD: tcp_input.c,v 1.215 2005/01/27 16:56:06 mycroft Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.215 2005/01/27 16:56:06 mycroft Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210
211 #include <machine/stdarg.h>
212
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif /* IPSEC */
223
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* FAST_IPSEC*/
232
233 int tcprexmtthresh = 3;
234 int tcp_log_refused;
235
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240
241 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
242
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
246
247 /*
248 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249 */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 tp->t_in6pcb->in6p_route.ro_rt) { \
255 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 } \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261
262 /*
263 * Macro to compute ACK transmission behavior. Delay the ACK unless
264 * we have already delayed an ACK (must send an ACK every two segments).
265 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266 * option is enabled.
267 */
268 #define TCP_SETUP_ACK(tp, th) \
269 do { \
270 if ((tp)->t_flags & TF_DELACK || \
271 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 tp->t_flags |= TF_ACKNOW; \
273 else \
274 TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276
277 /*
278 * Convert TCP protocol fields to host order for easier processing.
279 */
280 #define TCP_FIELDS_TO_HOST(th) \
281 do { \
282 NTOHL((th)->th_seq); \
283 NTOHL((th)->th_ack); \
284 NTOHS((th)->th_win); \
285 NTOHS((th)->th_urp); \
286 } while (/*CONSTCOND*/ 0)
287
288 /*
289 * ... and reverse the above.
290 */
291 #define TCP_FIELDS_TO_NET(th) \
292 do { \
293 HTONL((th)->th_seq); \
294 HTONL((th)->th_ack); \
295 HTONS((th)->th_win); \
296 HTONS((th)->th_urp); \
297 } while (/*CONSTCOND*/ 0)
298
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306
307 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
308
309 #else
310
311 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
312
313 #endif /* TCP_CSUM_COUNTERS */
314
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331
332 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
333
334 #else
335
336 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef INET
341 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused
345 __P((const struct ip6_hdr *, const struct tcphdr *));
346 #endif
347
348 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
349
350 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
351
352 int
353 tcp_reass(tp, th, m, tlen)
354 struct tcpcb *tp;
355 struct tcphdr *th;
356 struct mbuf *m;
357 int *tlen;
358 {
359 struct ipqent *p, *q, *nq, *tiqe = NULL;
360 struct socket *so = NULL;
361 int pkt_flags;
362 tcp_seq pkt_seq;
363 unsigned pkt_len;
364 u_long rcvpartdupbyte = 0;
365 u_long rcvoobyte;
366 #ifdef TCP_REASS_COUNTERS
367 u_int count = 0;
368 #endif
369
370 if (tp->t_inpcb)
371 so = tp->t_inpcb->inp_socket;
372 #ifdef INET6
373 else if (tp->t_in6pcb)
374 so = tp->t_in6pcb->in6p_socket;
375 #endif
376
377 TCP_REASS_LOCK_CHECK(tp);
378
379 /*
380 * Call with th==0 after become established to
381 * force pre-ESTABLISHED data up to user socket.
382 */
383 if (th == 0)
384 goto present;
385
386 rcvoobyte = *tlen;
387 /*
388 * Copy these to local variables because the tcpiphdr
389 * gets munged while we are collapsing mbufs.
390 */
391 pkt_seq = th->th_seq;
392 pkt_len = *tlen;
393 pkt_flags = th->th_flags;
394
395 TCP_REASS_COUNTER_INCR(&tcp_reass_);
396
397 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
398 /*
399 * When we miss a packet, the vast majority of time we get
400 * packets that follow it in order. So optimize for that.
401 */
402 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
403 p->ipqe_len += pkt_len;
404 p->ipqe_flags |= pkt_flags;
405 m_cat(p->ipre_mlast, m);
406 TRAVERSE(p->ipre_mlast);
407 m = NULL;
408 tiqe = p;
409 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
410 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
411 goto skip_replacement;
412 }
413 /*
414 * While we're here, if the pkt is completely beyond
415 * anything we have, just insert it at the tail.
416 */
417 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
418 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
419 goto insert_it;
420 }
421 }
422
423 q = TAILQ_FIRST(&tp->segq);
424
425 if (q != NULL) {
426 /*
427 * If this segment immediately precedes the first out-of-order
428 * block, simply slap the segment in front of it and (mostly)
429 * skip the complicated logic.
430 */
431 if (pkt_seq + pkt_len == q->ipqe_seq) {
432 q->ipqe_seq = pkt_seq;
433 q->ipqe_len += pkt_len;
434 q->ipqe_flags |= pkt_flags;
435 m_cat(m, q->ipqe_m);
436 q->ipqe_m = m;
437 q->ipre_mlast = m; /* last mbuf may have changed */
438 TRAVERSE(q->ipre_mlast);
439 tiqe = q;
440 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
441 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
442 goto skip_replacement;
443 }
444 } else {
445 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
446 }
447
448 /*
449 * Find a segment which begins after this one does.
450 */
451 for (p = NULL; q != NULL; q = nq) {
452 nq = TAILQ_NEXT(q, ipqe_q);
453 #ifdef TCP_REASS_COUNTERS
454 count++;
455 #endif
456 /*
457 * If the received segment is just right after this
458 * fragment, merge the two together and then check
459 * for further overlaps.
460 */
461 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
462 #ifdef TCPREASS_DEBUG
463 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
464 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
465 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
466 #endif
467 pkt_len += q->ipqe_len;
468 pkt_flags |= q->ipqe_flags;
469 pkt_seq = q->ipqe_seq;
470 m_cat(q->ipre_mlast, m);
471 TRAVERSE(q->ipre_mlast);
472 m = q->ipqe_m;
473 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
474 goto free_ipqe;
475 }
476 /*
477 * If the received segment is completely past this
478 * fragment, we need to go the next fragment.
479 */
480 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
481 p = q;
482 continue;
483 }
484 /*
485 * If the fragment is past the received segment,
486 * it (or any following) can't be concatenated.
487 */
488 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
489 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
490 break;
491 }
492
493 /*
494 * We've received all the data in this segment before.
495 * mark it as a duplicate and return.
496 */
497 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
498 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
499 tcpstat.tcps_rcvduppack++;
500 tcpstat.tcps_rcvdupbyte += pkt_len;
501 m_freem(m);
502 if (tiqe != NULL)
503 pool_put(&tcpipqent_pool, tiqe);
504 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
505 return (0);
506 }
507 /*
508 * Received segment completely overlaps this fragment
509 * so we drop the fragment (this keeps the temporal
510 * ordering of segments correct).
511 */
512 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
513 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
514 rcvpartdupbyte += q->ipqe_len;
515 m_freem(q->ipqe_m);
516 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
517 goto free_ipqe;
518 }
519 /*
520 * RX'ed segment extends past the end of the
521 * fragment. Drop the overlapping bytes. Then
522 * merge the fragment and segment then treat as
523 * a longer received packet.
524 */
525 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
526 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
527 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
528 #ifdef TCPREASS_DEBUG
529 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
530 tp, overlap,
531 pkt_seq, pkt_seq + pkt_len, pkt_len);
532 #endif
533 m_adj(m, overlap);
534 rcvpartdupbyte += overlap;
535 m_cat(q->ipre_mlast, m);
536 TRAVERSE(q->ipre_mlast);
537 m = q->ipqe_m;
538 pkt_seq = q->ipqe_seq;
539 pkt_len += q->ipqe_len - overlap;
540 rcvoobyte -= overlap;
541 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
542 goto free_ipqe;
543 }
544 /*
545 * RX'ed segment extends past the front of the
546 * fragment. Drop the overlapping bytes on the
547 * received packet. The packet will then be
548 * contatentated with this fragment a bit later.
549 */
550 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
551 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
552 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
553 #ifdef TCPREASS_DEBUG
554 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
555 tp, overlap,
556 pkt_seq, pkt_seq + pkt_len, pkt_len);
557 #endif
558 m_adj(m, -overlap);
559 pkt_len -= overlap;
560 rcvpartdupbyte += overlap;
561 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
562 rcvoobyte -= overlap;
563 }
564 /*
565 * If the received segment immediates precedes this
566 * fragment then tack the fragment onto this segment
567 * and reinsert the data.
568 */
569 if (q->ipqe_seq == pkt_seq + pkt_len) {
570 #ifdef TCPREASS_DEBUG
571 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
572 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
573 pkt_seq, pkt_seq + pkt_len, pkt_len);
574 #endif
575 pkt_len += q->ipqe_len;
576 pkt_flags |= q->ipqe_flags;
577 m_cat(m, q->ipqe_m);
578 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
579 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
580 if (tiqe == NULL)
581 tiqe = q;
582 else
583 pool_put(&tcpipqent_pool, q);
584 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
585 break;
586 }
587 /*
588 * If the fragment is before the segment, remember it.
589 * When this loop is terminated, p will contain the
590 * pointer to fragment that is right before the received
591 * segment.
592 */
593 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
594 p = q;
595
596 continue;
597
598 /*
599 * This is a common operation. It also will allow
600 * to save doing a malloc/free in most instances.
601 */
602 free_ipqe:
603 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
604 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
605 if (tiqe == NULL)
606 tiqe = q;
607 else
608 pool_put(&tcpipqent_pool, q);
609 }
610
611 #ifdef TCP_REASS_COUNTERS
612 if (count > 7)
613 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
614 else if (count > 0)
615 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
616 #endif
617
618 insert_it:
619
620 /*
621 * Allocate a new queue entry since the received segment did not
622 * collapse onto any other out-of-order block; thus we are allocating
623 * a new block. If it had collapsed, tiqe would not be NULL and
624 * we would be reusing it.
625 * XXX If we can't, just drop the packet. XXX
626 */
627 if (tiqe == NULL) {
628 tiqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
629 if (tiqe == NULL) {
630 tcpstat.tcps_rcvmemdrop++;
631 m_freem(m);
632 return (0);
633 }
634 }
635
636 /*
637 * Update the counters.
638 */
639 tcpstat.tcps_rcvoopack++;
640 tcpstat.tcps_rcvoobyte += rcvoobyte;
641 if (rcvpartdupbyte) {
642 tcpstat.tcps_rcvpartduppack++;
643 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
644 }
645
646 /*
647 * Insert the new fragment queue entry into both queues.
648 */
649 tiqe->ipqe_m = m;
650 tiqe->ipre_mlast = m;
651 tiqe->ipqe_seq = pkt_seq;
652 tiqe->ipqe_len = pkt_len;
653 tiqe->ipqe_flags = pkt_flags;
654 if (p == NULL) {
655 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
656 #ifdef TCPREASS_DEBUG
657 if (tiqe->ipqe_seq != tp->rcv_nxt)
658 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
659 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
660 #endif
661 } else {
662 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
663 #ifdef TCPREASS_DEBUG
664 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
665 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
666 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
667 #endif
668 }
669
670 skip_replacement:
671
672 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
673
674 present:
675 /*
676 * Present data to user, advancing rcv_nxt through
677 * completed sequence space.
678 */
679 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
680 return (0);
681 q = TAILQ_FIRST(&tp->segq);
682 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
683 return (0);
684 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
685 return (0);
686
687 tp->rcv_nxt += q->ipqe_len;
688 pkt_flags = q->ipqe_flags & TH_FIN;
689 ND6_HINT(tp);
690
691 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
692 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
693 if (so->so_state & SS_CANTRCVMORE)
694 m_freem(q->ipqe_m);
695 else
696 sbappendstream(&so->so_rcv, q->ipqe_m);
697 pool_put(&tcpipqent_pool, q);
698 sorwakeup(so);
699 return (pkt_flags);
700 }
701
702 #ifdef INET6
703 int
704 tcp6_input(mp, offp, proto)
705 struct mbuf **mp;
706 int *offp, proto;
707 {
708 struct mbuf *m = *mp;
709
710 /*
711 * draft-itojun-ipv6-tcp-to-anycast
712 * better place to put this in?
713 */
714 if (m->m_flags & M_ANYCAST6) {
715 struct ip6_hdr *ip6;
716 if (m->m_len < sizeof(struct ip6_hdr)) {
717 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
718 tcpstat.tcps_rcvshort++;
719 return IPPROTO_DONE;
720 }
721 }
722 ip6 = mtod(m, struct ip6_hdr *);
723 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
724 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
725 return IPPROTO_DONE;
726 }
727
728 tcp_input(m, *offp, proto);
729 return IPPROTO_DONE;
730 }
731 #endif
732
733 #ifdef INET
734 static void
735 tcp4_log_refused(ip, th)
736 const struct ip *ip;
737 const struct tcphdr *th;
738 {
739 char src[4*sizeof "123"];
740 char dst[4*sizeof "123"];
741
742 if (ip) {
743 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
744 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
745 }
746 else {
747 strlcpy(src, "(unknown)", sizeof(src));
748 strlcpy(dst, "(unknown)", sizeof(dst));
749 }
750 log(LOG_INFO,
751 "Connection attempt to TCP %s:%d from %s:%d\n",
752 dst, ntohs(th->th_dport),
753 src, ntohs(th->th_sport));
754 }
755 #endif
756
757 #ifdef INET6
758 static void
759 tcp6_log_refused(ip6, th)
760 const struct ip6_hdr *ip6;
761 const struct tcphdr *th;
762 {
763 char src[INET6_ADDRSTRLEN];
764 char dst[INET6_ADDRSTRLEN];
765
766 if (ip6) {
767 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
768 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
769 }
770 else {
771 strlcpy(src, "(unknown v6)", sizeof(src));
772 strlcpy(dst, "(unknown v6)", sizeof(dst));
773 }
774 log(LOG_INFO,
775 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
776 dst, ntohs(th->th_dport),
777 src, ntohs(th->th_sport));
778 }
779 #endif
780
781 /*
782 * Checksum extended TCP header and data.
783 */
784 int
785 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
786 int off, int tlen)
787 {
788
789 /*
790 * XXX it's better to record and check if this mbuf is
791 * already checked.
792 */
793
794 switch (af) {
795 #ifdef INET
796 case AF_INET:
797 switch (m->m_pkthdr.csum_flags &
798 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
799 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
800 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
801 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
802 goto badcsum;
803
804 case M_CSUM_TCPv4|M_CSUM_DATA: {
805 u_int32_t hw_csum = m->m_pkthdr.csum_data;
806
807 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
808 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
809 const struct ip *ip =
810 mtod(m, const struct ip *);
811
812 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
813 ip->ip_dst.s_addr,
814 htons(hw_csum + tlen + off + IPPROTO_TCP));
815 }
816 if ((hw_csum ^ 0xffff) != 0)
817 goto badcsum;
818 break;
819 }
820
821 case M_CSUM_TCPv4:
822 /* Checksum was okay. */
823 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
824 break;
825
826 default:
827 /*
828 * Must compute it ourselves. Maybe skip checksum
829 * on loopback interfaces.
830 */
831 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
832 IFF_LOOPBACK) ||
833 tcp_do_loopback_cksum)) {
834 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
835 if (in4_cksum(m, IPPROTO_TCP, toff,
836 tlen + off) != 0)
837 goto badcsum;
838 }
839 break;
840 }
841 break;
842 #endif /* INET4 */
843
844 #ifdef INET6
845 case AF_INET6:
846 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
847 tcp_do_loopback_cksum)) {
848 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
849 goto badcsum;
850 }
851 break;
852 #endif /* INET6 */
853 }
854
855 return 0;
856
857 badcsum:
858 tcpstat.tcps_rcvbadsum++;
859 return -1;
860 }
861
862 /*
863 * TCP input routine, follows pages 65-76 of the
864 * protocol specification dated September, 1981 very closely.
865 */
866 void
867 tcp_input(struct mbuf *m, ...)
868 {
869 struct tcphdr *th;
870 struct ip *ip;
871 struct inpcb *inp;
872 #ifdef INET6
873 struct ip6_hdr *ip6;
874 struct in6pcb *in6p;
875 #endif
876 u_int8_t *optp = NULL;
877 int optlen = 0;
878 int len, tlen, toff, hdroptlen = 0;
879 struct tcpcb *tp = 0;
880 int tiflags;
881 struct socket *so = NULL;
882 int todrop, acked, ourfinisacked, needoutput = 0;
883 #ifdef TCP_DEBUG
884 short ostate = 0;
885 #endif
886 int iss = 0;
887 u_long tiwin;
888 struct tcp_opt_info opti;
889 int off, iphlen;
890 va_list ap;
891 int af; /* af on the wire */
892 struct mbuf *tcp_saveti = NULL;
893
894 MCLAIM(m, &tcp_rx_mowner);
895 va_start(ap, m);
896 toff = va_arg(ap, int);
897 (void)va_arg(ap, int); /* ignore value, advance ap */
898 va_end(ap);
899
900 tcpstat.tcps_rcvtotal++;
901
902 bzero(&opti, sizeof(opti));
903 opti.ts_present = 0;
904 opti.maxseg = 0;
905
906 /*
907 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
908 *
909 * TCP is, by definition, unicast, so we reject all
910 * multicast outright.
911 *
912 * Note, there are additional src/dst address checks in
913 * the AF-specific code below.
914 */
915 if (m->m_flags & (M_BCAST|M_MCAST)) {
916 /* XXX stat */
917 goto drop;
918 }
919 #ifdef INET6
920 if (m->m_flags & M_ANYCAST6) {
921 /* XXX stat */
922 goto drop;
923 }
924 #endif
925
926 /*
927 * Get IP and TCP header.
928 * Note: IP leaves IP header in first mbuf.
929 */
930 ip = mtod(m, struct ip *);
931 #ifdef INET6
932 ip6 = NULL;
933 #endif
934 switch (ip->ip_v) {
935 #ifdef INET
936 case 4:
937 af = AF_INET;
938 iphlen = sizeof(struct ip);
939 ip = mtod(m, struct ip *);
940 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
941 sizeof(struct tcphdr));
942 if (th == NULL) {
943 tcpstat.tcps_rcvshort++;
944 return;
945 }
946 /* We do the checksum after PCB lookup... */
947 len = ntohs(ip->ip_len);
948 tlen = len - toff;
949 break;
950 #endif
951 #ifdef INET6
952 case 6:
953 ip = NULL;
954 iphlen = sizeof(struct ip6_hdr);
955 af = AF_INET6;
956 ip6 = mtod(m, struct ip6_hdr *);
957 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
958 sizeof(struct tcphdr));
959 if (th == NULL) {
960 tcpstat.tcps_rcvshort++;
961 return;
962 }
963
964 /* Be proactive about malicious use of IPv4 mapped address */
965 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
966 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
967 /* XXX stat */
968 goto drop;
969 }
970
971 /*
972 * Be proactive about unspecified IPv6 address in source.
973 * As we use all-zero to indicate unbounded/unconnected pcb,
974 * unspecified IPv6 address can be used to confuse us.
975 *
976 * Note that packets with unspecified IPv6 destination is
977 * already dropped in ip6_input.
978 */
979 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
980 /* XXX stat */
981 goto drop;
982 }
983
984 /*
985 * Make sure destination address is not multicast.
986 * Source address checked in ip6_input().
987 */
988 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
989 /* XXX stat */
990 goto drop;
991 }
992
993 /* We do the checksum after PCB lookup... */
994 len = m->m_pkthdr.len;
995 tlen = len - toff;
996 break;
997 #endif
998 default:
999 m_freem(m);
1000 return;
1001 }
1002
1003 KASSERT(TCP_HDR_ALIGNED_P(th));
1004
1005 /*
1006 * Check that TCP offset makes sense,
1007 * pull out TCP options and adjust length. XXX
1008 */
1009 off = th->th_off << 2;
1010 if (off < sizeof (struct tcphdr) || off > tlen) {
1011 tcpstat.tcps_rcvbadoff++;
1012 goto drop;
1013 }
1014 tlen -= off;
1015
1016 /*
1017 * tcp_input() has been modified to use tlen to mean the TCP data
1018 * length throughout the function. Other functions can use
1019 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1020 * rja
1021 */
1022
1023 if (off > sizeof (struct tcphdr)) {
1024 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1025 if (th == NULL) {
1026 tcpstat.tcps_rcvshort++;
1027 return;
1028 }
1029 /*
1030 * NOTE: ip/ip6 will not be affected by m_pulldown()
1031 * (as they're before toff) and we don't need to update those.
1032 */
1033 KASSERT(TCP_HDR_ALIGNED_P(th));
1034 optlen = off - sizeof (struct tcphdr);
1035 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1036 /*
1037 * Do quick retrieval of timestamp options ("options
1038 * prediction?"). If timestamp is the only option and it's
1039 * formatted as recommended in RFC 1323 appendix A, we
1040 * quickly get the values now and not bother calling
1041 * tcp_dooptions(), etc.
1042 */
1043 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1044 (optlen > TCPOLEN_TSTAMP_APPA &&
1045 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1046 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1047 (th->th_flags & TH_SYN) == 0) {
1048 opti.ts_present = 1;
1049 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1050 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1051 optp = NULL; /* we've parsed the options */
1052 }
1053 }
1054 tiflags = th->th_flags;
1055
1056 /*
1057 * Locate pcb for segment.
1058 */
1059 findpcb:
1060 inp = NULL;
1061 #ifdef INET6
1062 in6p = NULL;
1063 #endif
1064 switch (af) {
1065 #ifdef INET
1066 case AF_INET:
1067 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1068 ip->ip_dst, th->th_dport);
1069 if (inp == 0) {
1070 ++tcpstat.tcps_pcbhashmiss;
1071 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1072 }
1073 #ifdef INET6
1074 if (inp == 0) {
1075 struct in6_addr s, d;
1076
1077 /* mapped addr case */
1078 bzero(&s, sizeof(s));
1079 s.s6_addr16[5] = htons(0xffff);
1080 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1081 bzero(&d, sizeof(d));
1082 d.s6_addr16[5] = htons(0xffff);
1083 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1084 in6p = in6_pcblookup_connect(&tcbtable, &s,
1085 th->th_sport, &d, th->th_dport, 0);
1086 if (in6p == 0) {
1087 ++tcpstat.tcps_pcbhashmiss;
1088 in6p = in6_pcblookup_bind(&tcbtable, &d,
1089 th->th_dport, 0);
1090 }
1091 }
1092 #endif
1093 #ifndef INET6
1094 if (inp == 0)
1095 #else
1096 if (inp == 0 && in6p == 0)
1097 #endif
1098 {
1099 ++tcpstat.tcps_noport;
1100 if (tcp_log_refused &&
1101 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1102 tcp4_log_refused(ip, th);
1103 }
1104 TCP_FIELDS_TO_HOST(th);
1105 goto dropwithreset_ratelim;
1106 }
1107 #if defined(IPSEC) || defined(FAST_IPSEC)
1108 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1109 ipsec4_in_reject(m, inp)) {
1110 ipsecstat.in_polvio++;
1111 goto drop;
1112 }
1113 #ifdef INET6
1114 else if (in6p &&
1115 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1116 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1117 ipsecstat.in_polvio++;
1118 goto drop;
1119 }
1120 #endif
1121 #endif /*IPSEC*/
1122 break;
1123 #endif /*INET*/
1124 #ifdef INET6
1125 case AF_INET6:
1126 {
1127 int faith;
1128
1129 #if defined(NFAITH) && NFAITH > 0
1130 faith = faithprefix(&ip6->ip6_dst);
1131 #else
1132 faith = 0;
1133 #endif
1134 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1135 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1136 if (in6p == NULL) {
1137 ++tcpstat.tcps_pcbhashmiss;
1138 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1139 th->th_dport, faith);
1140 }
1141 if (in6p == NULL) {
1142 ++tcpstat.tcps_noport;
1143 if (tcp_log_refused &&
1144 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1145 tcp6_log_refused(ip6, th);
1146 }
1147 TCP_FIELDS_TO_HOST(th);
1148 goto dropwithreset_ratelim;
1149 }
1150 #if defined(IPSEC) || defined(FAST_IPSEC)
1151 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1152 ipsec6_in_reject(m, in6p)) {
1153 ipsec6stat.in_polvio++;
1154 goto drop;
1155 }
1156 #endif /*IPSEC*/
1157 break;
1158 }
1159 #endif
1160 }
1161
1162 /*
1163 * If the state is CLOSED (i.e., TCB does not exist) then
1164 * all data in the incoming segment is discarded.
1165 * If the TCB exists but is in CLOSED state, it is embryonic,
1166 * but should either do a listen or a connect soon.
1167 */
1168 tp = NULL;
1169 so = NULL;
1170 if (inp) {
1171 tp = intotcpcb(inp);
1172 so = inp->inp_socket;
1173 }
1174 #ifdef INET6
1175 else if (in6p) {
1176 tp = in6totcpcb(in6p);
1177 so = in6p->in6p_socket;
1178 }
1179 #endif
1180 if (tp == 0) {
1181 TCP_FIELDS_TO_HOST(th);
1182 goto dropwithreset_ratelim;
1183 }
1184 if (tp->t_state == TCPS_CLOSED)
1185 goto drop;
1186
1187 /*
1188 * Checksum extended TCP header and data.
1189 */
1190 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1191 goto badcsum;
1192
1193 TCP_FIELDS_TO_HOST(th);
1194
1195 /* Unscale the window into a 32-bit value. */
1196 if ((tiflags & TH_SYN) == 0)
1197 tiwin = th->th_win << tp->snd_scale;
1198 else
1199 tiwin = th->th_win;
1200
1201 #ifdef INET6
1202 /* save packet options if user wanted */
1203 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1204 if (in6p->in6p_options) {
1205 m_freem(in6p->in6p_options);
1206 in6p->in6p_options = 0;
1207 }
1208 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1209 }
1210 #endif
1211
1212 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1213 union syn_cache_sa src;
1214 union syn_cache_sa dst;
1215
1216 bzero(&src, sizeof(src));
1217 bzero(&dst, sizeof(dst));
1218 switch (af) {
1219 #ifdef INET
1220 case AF_INET:
1221 src.sin.sin_len = sizeof(struct sockaddr_in);
1222 src.sin.sin_family = AF_INET;
1223 src.sin.sin_addr = ip->ip_src;
1224 src.sin.sin_port = th->th_sport;
1225
1226 dst.sin.sin_len = sizeof(struct sockaddr_in);
1227 dst.sin.sin_family = AF_INET;
1228 dst.sin.sin_addr = ip->ip_dst;
1229 dst.sin.sin_port = th->th_dport;
1230 break;
1231 #endif
1232 #ifdef INET6
1233 case AF_INET6:
1234 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1235 src.sin6.sin6_family = AF_INET6;
1236 src.sin6.sin6_addr = ip6->ip6_src;
1237 src.sin6.sin6_port = th->th_sport;
1238
1239 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1240 dst.sin6.sin6_family = AF_INET6;
1241 dst.sin6.sin6_addr = ip6->ip6_dst;
1242 dst.sin6.sin6_port = th->th_dport;
1243 break;
1244 #endif /* INET6 */
1245 default:
1246 goto badsyn; /*sanity*/
1247 }
1248
1249 if (so->so_options & SO_DEBUG) {
1250 #ifdef TCP_DEBUG
1251 ostate = tp->t_state;
1252 #endif
1253
1254 tcp_saveti = NULL;
1255 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1256 goto nosave;
1257
1258 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1259 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1260 if (!tcp_saveti)
1261 goto nosave;
1262 } else {
1263 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1264 if (!tcp_saveti)
1265 goto nosave;
1266 MCLAIM(m, &tcp_mowner);
1267 tcp_saveti->m_len = iphlen;
1268 m_copydata(m, 0, iphlen,
1269 mtod(tcp_saveti, caddr_t));
1270 }
1271
1272 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1273 m_freem(tcp_saveti);
1274 tcp_saveti = NULL;
1275 } else {
1276 tcp_saveti->m_len += sizeof(struct tcphdr);
1277 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1278 sizeof(struct tcphdr));
1279 }
1280 nosave:;
1281 }
1282 if (so->so_options & SO_ACCEPTCONN) {
1283 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1284 if (tiflags & TH_RST) {
1285 syn_cache_reset(&src.sa, &dst.sa, th);
1286 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1287 (TH_ACK|TH_SYN)) {
1288 /*
1289 * Received a SYN,ACK. This should
1290 * never happen while we are in
1291 * LISTEN. Send an RST.
1292 */
1293 goto badsyn;
1294 } else if (tiflags & TH_ACK) {
1295 so = syn_cache_get(&src.sa, &dst.sa,
1296 th, toff, tlen, so, m);
1297 if (so == NULL) {
1298 /*
1299 * We don't have a SYN for
1300 * this ACK; send an RST.
1301 */
1302 goto badsyn;
1303 } else if (so ==
1304 (struct socket *)(-1)) {
1305 /*
1306 * We were unable to create
1307 * the connection. If the
1308 * 3-way handshake was
1309 * completed, and RST has
1310 * been sent to the peer.
1311 * Since the mbuf might be
1312 * in use for the reply,
1313 * do not free it.
1314 */
1315 m = NULL;
1316 } else {
1317 /*
1318 * We have created a
1319 * full-blown connection.
1320 */
1321 tp = NULL;
1322 inp = NULL;
1323 #ifdef INET6
1324 in6p = NULL;
1325 #endif
1326 switch (so->so_proto->pr_domain->dom_family) {
1327 #ifdef INET
1328 case AF_INET:
1329 inp = sotoinpcb(so);
1330 tp = intotcpcb(inp);
1331 break;
1332 #endif
1333 #ifdef INET6
1334 case AF_INET6:
1335 in6p = sotoin6pcb(so);
1336 tp = in6totcpcb(in6p);
1337 break;
1338 #endif
1339 }
1340 if (tp == NULL)
1341 goto badsyn; /*XXX*/
1342 tiwin <<= tp->snd_scale;
1343 goto after_listen;
1344 }
1345 } else {
1346 /*
1347 * None of RST, SYN or ACK was set.
1348 * This is an invalid packet for a
1349 * TCB in LISTEN state. Send a RST.
1350 */
1351 goto badsyn;
1352 }
1353 } else {
1354 /*
1355 * Received a SYN.
1356 */
1357
1358 #ifdef INET6
1359 /*
1360 * If deprecated address is forbidden, we do
1361 * not accept SYN to deprecated interface
1362 * address to prevent any new inbound
1363 * connection from getting established.
1364 * When we do not accept SYN, we send a TCP
1365 * RST, with deprecated source address (instead
1366 * of dropping it). We compromise it as it is
1367 * much better for peer to send a RST, and
1368 * RST will be the final packet for the
1369 * exchange.
1370 *
1371 * If we do not forbid deprecated addresses, we
1372 * accept the SYN packet. RFC2462 does not
1373 * suggest dropping SYN in this case.
1374 * If we decipher RFC2462 5.5.4, it says like
1375 * this:
1376 * 1. use of deprecated addr with existing
1377 * communication is okay - "SHOULD continue
1378 * to be used"
1379 * 2. use of it with new communication:
1380 * (2a) "SHOULD NOT be used if alternate
1381 * address with sufficient scope is
1382 * available"
1383 * (2b) nothing mentioned otherwise.
1384 * Here we fall into (2b) case as we have no
1385 * choice in our source address selection - we
1386 * must obey the peer.
1387 *
1388 * The wording in RFC2462 is confusing, and
1389 * there are multiple description text for
1390 * deprecated address handling - worse, they
1391 * are not exactly the same. I believe 5.5.4
1392 * is the best one, so we follow 5.5.4.
1393 */
1394 if (af == AF_INET6 && !ip6_use_deprecated) {
1395 struct in6_ifaddr *ia6;
1396 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1397 &ip6->ip6_dst)) &&
1398 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1399 tp = NULL;
1400 goto dropwithreset;
1401 }
1402 }
1403 #endif
1404
1405 #ifdef IPSEC
1406 switch (af) {
1407 #ifdef INET
1408 case AF_INET:
1409 if (ipsec4_in_reject_so(m, so)) {
1410 ipsecstat.in_polvio++;
1411 tp = NULL;
1412 goto dropwithreset;
1413 }
1414 break;
1415 #endif
1416 #ifdef INET6
1417 case AF_INET6:
1418 if (ipsec6_in_reject_so(m, so)) {
1419 ipsec6stat.in_polvio++;
1420 tp = NULL;
1421 goto dropwithreset;
1422 }
1423 break;
1424 #endif
1425 }
1426 #endif
1427
1428 /*
1429 * LISTEN socket received a SYN
1430 * from itself? This can't possibly
1431 * be valid; drop the packet.
1432 */
1433 if (th->th_sport == th->th_dport) {
1434 int i;
1435
1436 switch (af) {
1437 #ifdef INET
1438 case AF_INET:
1439 i = in_hosteq(ip->ip_src, ip->ip_dst);
1440 break;
1441 #endif
1442 #ifdef INET6
1443 case AF_INET6:
1444 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1445 break;
1446 #endif
1447 default:
1448 i = 1;
1449 }
1450 if (i) {
1451 tcpstat.tcps_badsyn++;
1452 goto drop;
1453 }
1454 }
1455
1456 /*
1457 * SYN looks ok; create compressed TCP
1458 * state for it.
1459 */
1460 if (so->so_qlen <= so->so_qlimit &&
1461 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1462 so, m, optp, optlen, &opti))
1463 m = NULL;
1464 }
1465 goto drop;
1466 }
1467 }
1468
1469 after_listen:
1470 #ifdef DIAGNOSTIC
1471 /*
1472 * Should not happen now that all embryonic connections
1473 * are handled with compressed state.
1474 */
1475 if (tp->t_state == TCPS_LISTEN)
1476 panic("tcp_input: TCPS_LISTEN");
1477 #endif
1478
1479 /*
1480 * Segment received on connection.
1481 * Reset idle time and keep-alive timer.
1482 */
1483 tp->t_rcvtime = tcp_now;
1484 if (TCPS_HAVEESTABLISHED(tp->t_state))
1485 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1486
1487 /*
1488 * Process options.
1489 */
1490 #ifdef TCP_SIGNATURE
1491 if (optp || (tp->t_flags & TF_SIGNATURE))
1492 #else
1493 if (optp)
1494 #endif
1495 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1496 goto drop;
1497
1498 if (opti.ts_present && opti.ts_ecr) {
1499 /*
1500 * Calculate the RTT from the returned time stamp and the
1501 * connection's time base. If the time stamp is later than
1502 * the current time, or is extremely old, fall back to non-1323
1503 * RTT calculation. Since ts_ecr is unsigned, we can test both
1504 * at the same time.
1505 */
1506 opti.ts_ecr = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1507 if (opti.ts_ecr > TCP_PAWS_IDLE)
1508 opti.ts_ecr = 0;
1509 }
1510
1511 /*
1512 * Header prediction: check for the two common cases
1513 * of a uni-directional data xfer. If the packet has
1514 * no control flags, is in-sequence, the window didn't
1515 * change and we're not retransmitting, it's a
1516 * candidate. If the length is zero and the ack moved
1517 * forward, we're the sender side of the xfer. Just
1518 * free the data acked & wake any higher level process
1519 * that was blocked waiting for space. If the length
1520 * is non-zero and the ack didn't move, we're the
1521 * receiver side. If we're getting packets in-order
1522 * (the reassembly queue is empty), add the data to
1523 * the socket buffer and note that we need a delayed ack.
1524 */
1525 if (tp->t_state == TCPS_ESTABLISHED &&
1526 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1527 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1528 th->th_seq == tp->rcv_nxt &&
1529 tiwin && tiwin == tp->snd_wnd &&
1530 tp->snd_nxt == tp->snd_max) {
1531
1532 /*
1533 * If last ACK falls within this segment's sequence numbers,
1534 * record the timestamp.
1535 */
1536 if (opti.ts_present &&
1537 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1538 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1539 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1540 tp->ts_recent = opti.ts_val;
1541 }
1542
1543 if (tlen == 0) {
1544 /* Ack prediction. */
1545 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1546 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1547 tp->snd_cwnd >= tp->snd_wnd &&
1548 tp->t_partialacks < 0) {
1549 /*
1550 * this is a pure ack for outstanding data.
1551 */
1552 ++tcpstat.tcps_predack;
1553 if (opti.ts_present && opti.ts_ecr)
1554 tcp_xmit_timer(tp, opti.ts_ecr);
1555 else if (tp->t_rtttime &&
1556 SEQ_GT(th->th_ack, tp->t_rtseq))
1557 tcp_xmit_timer(tp,
1558 tcp_now - tp->t_rtttime);
1559 acked = th->th_ack - tp->snd_una;
1560 tcpstat.tcps_rcvackpack++;
1561 tcpstat.tcps_rcvackbyte += acked;
1562 ND6_HINT(tp);
1563
1564 if (acked > (tp->t_lastoff - tp->t_inoff))
1565 tp->t_lastm = NULL;
1566 sbdrop(&so->so_snd, acked);
1567 tp->t_lastoff -= acked;
1568
1569 tp->snd_una = th->th_ack;
1570 if (SEQ_LT(tp->snd_high, tp->snd_una))
1571 tp->snd_high = tp->snd_una;
1572 m_freem(m);
1573
1574 /*
1575 * If all outstanding data are acked, stop
1576 * retransmit timer, otherwise restart timer
1577 * using current (possibly backed-off) value.
1578 * If process is waiting for space,
1579 * wakeup/selwakeup/signal. If data
1580 * are ready to send, let tcp_output
1581 * decide between more output or persist.
1582 */
1583 if (tp->snd_una == tp->snd_max)
1584 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1585 else if (TCP_TIMER_ISARMED(tp,
1586 TCPT_PERSIST) == 0)
1587 TCP_TIMER_ARM(tp, TCPT_REXMT,
1588 tp->t_rxtcur);
1589
1590 sowwakeup(so);
1591 if (so->so_snd.sb_cc)
1592 (void) tcp_output(tp);
1593 if (tcp_saveti)
1594 m_freem(tcp_saveti);
1595 return;
1596 }
1597 } else if (th->th_ack == tp->snd_una &&
1598 TAILQ_FIRST(&tp->segq) == NULL &&
1599 tlen <= sbspace(&so->so_rcv)) {
1600 /*
1601 * this is a pure, in-sequence data packet
1602 * with nothing on the reassembly queue and
1603 * we have enough buffer space to take it.
1604 */
1605 ++tcpstat.tcps_preddat;
1606 tp->rcv_nxt += tlen;
1607 tcpstat.tcps_rcvpack++;
1608 tcpstat.tcps_rcvbyte += tlen;
1609 ND6_HINT(tp);
1610 /*
1611 * Drop TCP, IP headers and TCP options then add data
1612 * to socket buffer.
1613 */
1614 if (so->so_state & SS_CANTRCVMORE)
1615 m_freem(m);
1616 else {
1617 m_adj(m, toff + off);
1618 sbappendstream(&so->so_rcv, m);
1619 }
1620 sorwakeup(so);
1621 TCP_SETUP_ACK(tp, th);
1622 if (tp->t_flags & TF_ACKNOW)
1623 (void) tcp_output(tp);
1624 if (tcp_saveti)
1625 m_freem(tcp_saveti);
1626 return;
1627 }
1628 }
1629
1630 /*
1631 * Compute mbuf offset to TCP data segment.
1632 */
1633 hdroptlen = toff + off;
1634
1635 /*
1636 * Calculate amount of space in receive window,
1637 * and then do TCP input processing.
1638 * Receive window is amount of space in rcv queue,
1639 * but not less than advertised window.
1640 */
1641 { int win;
1642
1643 win = sbspace(&so->so_rcv);
1644 if (win < 0)
1645 win = 0;
1646 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1647 }
1648
1649 switch (tp->t_state) {
1650 case TCPS_LISTEN:
1651 /*
1652 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1653 */
1654 if (m->m_flags & (M_BCAST|M_MCAST))
1655 goto drop;
1656 switch (af) {
1657 #ifdef INET6
1658 case AF_INET6:
1659 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1660 goto drop;
1661 break;
1662 #endif /* INET6 */
1663 case AF_INET:
1664 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1665 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1666 goto drop;
1667 break;
1668 }
1669 break;
1670
1671 /*
1672 * If the state is SYN_SENT:
1673 * if seg contains an ACK, but not for our SYN, drop the input.
1674 * if seg contains a RST, then drop the connection.
1675 * if seg does not contain SYN, then drop it.
1676 * Otherwise this is an acceptable SYN segment
1677 * initialize tp->rcv_nxt and tp->irs
1678 * if seg contains ack then advance tp->snd_una
1679 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1680 * arrange for segment to be acked (eventually)
1681 * continue processing rest of data/controls, beginning with URG
1682 */
1683 case TCPS_SYN_SENT:
1684 if ((tiflags & TH_ACK) &&
1685 (SEQ_LEQ(th->th_ack, tp->iss) ||
1686 SEQ_GT(th->th_ack, tp->snd_max)))
1687 goto dropwithreset;
1688 if (tiflags & TH_RST) {
1689 if (tiflags & TH_ACK)
1690 tp = tcp_drop(tp, ECONNREFUSED);
1691 goto drop;
1692 }
1693 if ((tiflags & TH_SYN) == 0)
1694 goto drop;
1695 if (tiflags & TH_ACK) {
1696 tp->snd_una = th->th_ack;
1697 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1698 tp->snd_nxt = tp->snd_una;
1699 if (SEQ_LT(tp->snd_high, tp->snd_una))
1700 tp->snd_high = tp->snd_una;
1701 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1702 }
1703 tp->irs = th->th_seq;
1704 tcp_rcvseqinit(tp);
1705 tp->t_flags |= TF_ACKNOW;
1706 tcp_mss_from_peer(tp, opti.maxseg);
1707
1708 /*
1709 * Initialize the initial congestion window. If we
1710 * had to retransmit the SYN, we must initialize cwnd
1711 * to 1 segment (i.e. the Loss Window).
1712 */
1713 if (tp->t_flags & TF_SYN_REXMT)
1714 tp->snd_cwnd = tp->t_peermss;
1715 else {
1716 int ss = tcp_init_win;
1717 #ifdef INET
1718 if (inp != NULL && in_localaddr(inp->inp_faddr))
1719 ss = tcp_init_win_local;
1720 #endif
1721 #ifdef INET6
1722 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1723 ss = tcp_init_win_local;
1724 #endif
1725 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1726 }
1727
1728 tcp_rmx_rtt(tp);
1729 if (tiflags & TH_ACK) {
1730 tcpstat.tcps_connects++;
1731 soisconnected(so);
1732 tcp_established(tp);
1733 /* Do window scaling on this connection? */
1734 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1735 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1736 tp->snd_scale = tp->requested_s_scale;
1737 tp->rcv_scale = tp->request_r_scale;
1738 }
1739 TCP_REASS_LOCK(tp);
1740 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1741 TCP_REASS_UNLOCK(tp);
1742 /*
1743 * if we didn't have to retransmit the SYN,
1744 * use its rtt as our initial srtt & rtt var.
1745 */
1746 if (tp->t_rtttime)
1747 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1748 } else
1749 tp->t_state = TCPS_SYN_RECEIVED;
1750
1751 /*
1752 * Advance th->th_seq to correspond to first data byte.
1753 * If data, trim to stay within window,
1754 * dropping FIN if necessary.
1755 */
1756 th->th_seq++;
1757 if (tlen > tp->rcv_wnd) {
1758 todrop = tlen - tp->rcv_wnd;
1759 m_adj(m, -todrop);
1760 tlen = tp->rcv_wnd;
1761 tiflags &= ~TH_FIN;
1762 tcpstat.tcps_rcvpackafterwin++;
1763 tcpstat.tcps_rcvbyteafterwin += todrop;
1764 }
1765 tp->snd_wl1 = th->th_seq - 1;
1766 tp->rcv_up = th->th_seq;
1767 goto step6;
1768
1769 /*
1770 * If the state is SYN_RECEIVED:
1771 * If seg contains an ACK, but not for our SYN, drop the input
1772 * and generate an RST. See page 36, rfc793
1773 */
1774 case TCPS_SYN_RECEIVED:
1775 if ((tiflags & TH_ACK) &&
1776 (SEQ_LEQ(th->th_ack, tp->iss) ||
1777 SEQ_GT(th->th_ack, tp->snd_max)))
1778 goto dropwithreset;
1779 break;
1780 }
1781
1782 /*
1783 * States other than LISTEN or SYN_SENT.
1784 * First check timestamp, if present.
1785 * Then check that at least some bytes of segment are within
1786 * receive window. If segment begins before rcv_nxt,
1787 * drop leading data (and SYN); if nothing left, just ack.
1788 *
1789 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1790 * and it's less than ts_recent, drop it.
1791 */
1792 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1793 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1794
1795 /* Check to see if ts_recent is over 24 days old. */
1796 if ((int)(TCP_TIMESTAMP(tp) - tp->ts_recent_age) >
1797 TCP_PAWS_IDLE) {
1798 /*
1799 * Invalidate ts_recent. If this segment updates
1800 * ts_recent, the age will be reset later and ts_recent
1801 * will get a valid value. If it does not, setting
1802 * ts_recent to zero will at least satisfy the
1803 * requirement that zero be placed in the timestamp
1804 * echo reply when ts_recent isn't valid. The
1805 * age isn't reset until we get a valid ts_recent
1806 * because we don't want out-of-order segments to be
1807 * dropped when ts_recent is old.
1808 */
1809 tp->ts_recent = 0;
1810 } else {
1811 tcpstat.tcps_rcvduppack++;
1812 tcpstat.tcps_rcvdupbyte += tlen;
1813 tcpstat.tcps_pawsdrop++;
1814 goto dropafterack;
1815 }
1816 }
1817
1818 todrop = tp->rcv_nxt - th->th_seq;
1819 if (todrop > 0) {
1820 if (tiflags & TH_SYN) {
1821 tiflags &= ~TH_SYN;
1822 th->th_seq++;
1823 if (th->th_urp > 1)
1824 th->th_urp--;
1825 else {
1826 tiflags &= ~TH_URG;
1827 th->th_urp = 0;
1828 }
1829 todrop--;
1830 }
1831 if (todrop > tlen ||
1832 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1833 /*
1834 * Any valid FIN or RST must be to the left of the
1835 * window. At this point the FIN or RST must be a
1836 * duplicate or out of sequence; drop it.
1837 */
1838 if (tiflags & TH_RST)
1839 goto drop;
1840 tiflags &= ~(TH_FIN|TH_RST);
1841 /*
1842 * Send an ACK to resynchronize and drop any data.
1843 * But keep on processing for RST or ACK.
1844 */
1845 tp->t_flags |= TF_ACKNOW;
1846 todrop = tlen;
1847 tcpstat.tcps_rcvdupbyte += todrop;
1848 tcpstat.tcps_rcvduppack++;
1849 } else if ((tiflags & TH_RST) &&
1850 th->th_seq != tp->last_ack_sent) {
1851 /*
1852 * Test for reset before adjusting the sequence
1853 * number for overlapping data.
1854 */
1855 goto dropafterack_ratelim;
1856 } else {
1857 tcpstat.tcps_rcvpartduppack++;
1858 tcpstat.tcps_rcvpartdupbyte += todrop;
1859 }
1860 hdroptlen += todrop; /*drop from head afterwards*/
1861 th->th_seq += todrop;
1862 tlen -= todrop;
1863 if (th->th_urp > todrop)
1864 th->th_urp -= todrop;
1865 else {
1866 tiflags &= ~TH_URG;
1867 th->th_urp = 0;
1868 }
1869 }
1870
1871 /*
1872 * If new data are received on a connection after the
1873 * user processes are gone, then RST the other end.
1874 */
1875 if ((so->so_state & SS_NOFDREF) &&
1876 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1877 tp = tcp_close(tp);
1878 tcpstat.tcps_rcvafterclose++;
1879 goto dropwithreset;
1880 }
1881
1882 /*
1883 * If segment ends after window, drop trailing data
1884 * (and PUSH and FIN); if nothing left, just ACK.
1885 */
1886 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1887 if (todrop > 0) {
1888 tcpstat.tcps_rcvpackafterwin++;
1889 if (todrop >= tlen) {
1890 /*
1891 * The segment actually starts after the window.
1892 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1893 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1894 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1895 */
1896 tcpstat.tcps_rcvbyteafterwin += tlen;
1897 /*
1898 * If a new connection request is received
1899 * while in TIME_WAIT, drop the old connection
1900 * and start over if the sequence numbers
1901 * are above the previous ones.
1902 *
1903 * NOTE: We will checksum the packet again, and
1904 * so we need to put the header fields back into
1905 * network order!
1906 * XXX This kind of sucks, but we don't expect
1907 * XXX this to happen very often, so maybe it
1908 * XXX doesn't matter so much.
1909 */
1910 if (tiflags & TH_SYN &&
1911 tp->t_state == TCPS_TIME_WAIT &&
1912 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1913 iss = tcp_new_iss(tp, tp->snd_nxt);
1914 tp = tcp_close(tp);
1915 TCP_FIELDS_TO_NET(th);
1916 goto findpcb;
1917 }
1918 /*
1919 * If window is closed can only take segments at
1920 * window edge, and have to drop data and PUSH from
1921 * incoming segments. Continue processing, but
1922 * remember to ack. Otherwise, drop segment
1923 * and (if not RST) ack.
1924 */
1925 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1926 tp->t_flags |= TF_ACKNOW;
1927 tcpstat.tcps_rcvwinprobe++;
1928 } else
1929 goto dropafterack;
1930 } else
1931 tcpstat.tcps_rcvbyteafterwin += todrop;
1932 m_adj(m, -todrop);
1933 tlen -= todrop;
1934 tiflags &= ~(TH_PUSH|TH_FIN);
1935 }
1936
1937 /*
1938 * If last ACK falls within this segment's sequence numbers,
1939 * and the timestamp is newer, record it.
1940 */
1941 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1942 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1943 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1944 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1945 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1946 tp->ts_recent = opti.ts_val;
1947 }
1948
1949 /*
1950 * If the RST bit is set examine the state:
1951 * SYN_RECEIVED STATE:
1952 * If passive open, return to LISTEN state.
1953 * If active open, inform user that connection was refused.
1954 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1955 * Inform user that connection was reset, and close tcb.
1956 * CLOSING, LAST_ACK, TIME_WAIT STATES
1957 * Close the tcb.
1958 */
1959 if (tiflags & TH_RST) {
1960 if (th->th_seq != tp->last_ack_sent)
1961 goto dropafterack_ratelim;
1962
1963 switch (tp->t_state) {
1964 case TCPS_SYN_RECEIVED:
1965 so->so_error = ECONNREFUSED;
1966 goto close;
1967
1968 case TCPS_ESTABLISHED:
1969 case TCPS_FIN_WAIT_1:
1970 case TCPS_FIN_WAIT_2:
1971 case TCPS_CLOSE_WAIT:
1972 so->so_error = ECONNRESET;
1973 close:
1974 tp->t_state = TCPS_CLOSED;
1975 tcpstat.tcps_drops++;
1976 tp = tcp_close(tp);
1977 goto drop;
1978
1979 case TCPS_CLOSING:
1980 case TCPS_LAST_ACK:
1981 case TCPS_TIME_WAIT:
1982 tp = tcp_close(tp);
1983 goto drop;
1984 }
1985 }
1986
1987 /*
1988 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1989 * we must be in a synchronized state. RFC791 states (under RST
1990 * generation) that any unacceptable segment (an out-of-order SYN
1991 * qualifies) received in a synchronized state must elicit only an
1992 * empty acknowledgment segment ... and the connection remains in
1993 * the same state.
1994 */
1995 if (tiflags & TH_SYN) {
1996 if (tp->rcv_nxt == th->th_seq) {
1997 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1998 TH_ACK);
1999 if (tcp_saveti)
2000 m_freem(tcp_saveti);
2001 return;
2002 }
2003
2004 goto dropafterack_ratelim;
2005 }
2006
2007 /*
2008 * If the ACK bit is off we drop the segment and return.
2009 */
2010 if ((tiflags & TH_ACK) == 0) {
2011 if (tp->t_flags & TF_ACKNOW)
2012 goto dropafterack;
2013 else
2014 goto drop;
2015 }
2016
2017 /*
2018 * Ack processing.
2019 */
2020 switch (tp->t_state) {
2021
2022 /*
2023 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2024 * ESTABLISHED state and continue processing, otherwise
2025 * send an RST.
2026 */
2027 case TCPS_SYN_RECEIVED:
2028 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2029 SEQ_GT(th->th_ack, tp->snd_max))
2030 goto dropwithreset;
2031 tcpstat.tcps_connects++;
2032 soisconnected(so);
2033 tcp_established(tp);
2034 /* Do window scaling? */
2035 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2036 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2037 tp->snd_scale = tp->requested_s_scale;
2038 tp->rcv_scale = tp->request_r_scale;
2039 }
2040 TCP_REASS_LOCK(tp);
2041 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2042 TCP_REASS_UNLOCK(tp);
2043 tp->snd_wl1 = th->th_seq - 1;
2044 /* fall into ... */
2045
2046 /*
2047 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2048 * ACKs. If the ack is in the range
2049 * tp->snd_una < th->th_ack <= tp->snd_max
2050 * then advance tp->snd_una to th->th_ack and drop
2051 * data from the retransmission queue. If this ACK reflects
2052 * more up to date window information we update our window information.
2053 */
2054 case TCPS_ESTABLISHED:
2055 case TCPS_FIN_WAIT_1:
2056 case TCPS_FIN_WAIT_2:
2057 case TCPS_CLOSE_WAIT:
2058 case TCPS_CLOSING:
2059 case TCPS_LAST_ACK:
2060 case TCPS_TIME_WAIT:
2061
2062 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2063 if (tlen == 0 && tiwin == tp->snd_wnd) {
2064 tcpstat.tcps_rcvdupack++;
2065 /*
2066 * If we have outstanding data (other than
2067 * a window probe), this is a completely
2068 * duplicate ack (ie, window info didn't
2069 * change), the ack is the biggest we've
2070 * seen and we've seen exactly our rexmt
2071 * threshhold of them, assume a packet
2072 * has been dropped and retransmit it.
2073 * Kludge snd_nxt & the congestion
2074 * window so we send only this one
2075 * packet.
2076 *
2077 * We know we're losing at the current
2078 * window size so do congestion avoidance
2079 * (set ssthresh to half the current window
2080 * and pull our congestion window back to
2081 * the new ssthresh).
2082 *
2083 * Dup acks mean that packets have left the
2084 * network (they're now cached at the receiver)
2085 * so bump cwnd by the amount in the receiver
2086 * to keep a constant cwnd packets in the
2087 * network.
2088 */
2089 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2090 th->th_ack != tp->snd_una)
2091 tp->t_dupacks = 0;
2092 else if (++tp->t_dupacks == tcprexmtthresh &&
2093 tp->t_partialacks < 0) {
2094 tcp_seq onxt;
2095 u_int win;
2096
2097 if (tcp_do_newreno &&
2098 SEQ_LT(th->th_ack, tp->snd_high)) {
2099 /*
2100 * False fast retransmit after
2101 * timeout. Do not enter fast
2102 * recovery.
2103 */
2104 tp->t_dupacks = 0;
2105 break;
2106 }
2107
2108 onxt = tp->snd_nxt;
2109 win = min(tp->snd_wnd, tp->snd_cwnd) /
2110 2 / tp->t_segsz;
2111 if (win < 2)
2112 win = 2;
2113 tp->snd_ssthresh = win * tp->t_segsz;
2114 tp->snd_recover = tp->snd_max;
2115 tp->t_partialacks = 0;
2116 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2117 tp->t_rtttime = 0;
2118 tp->snd_nxt = th->th_ack;
2119 tp->snd_cwnd = tp->t_segsz;
2120 (void) tcp_output(tp);
2121 tp->snd_cwnd = tp->snd_ssthresh +
2122 tp->t_segsz * tp->t_dupacks;
2123 if (SEQ_GT(onxt, tp->snd_nxt))
2124 tp->snd_nxt = onxt;
2125 goto drop;
2126 } else if (tp->t_dupacks > tcprexmtthresh) {
2127 tp->snd_cwnd += tp->t_segsz;
2128 (void) tcp_output(tp);
2129 goto drop;
2130 }
2131 } else if (tlen) {
2132 tp->t_dupacks = 0; /*XXX*/
2133 /* drop very old ACKs unless th_seq matches */
2134 if (th->th_seq != tp->rcv_nxt &&
2135 SEQ_LT(th->th_ack,
2136 tp->snd_una - tp->max_sndwnd)) {
2137 goto drop;
2138 }
2139 break;
2140 } else
2141 tp->t_dupacks = 0;
2142 break;
2143 }
2144 /*
2145 * If the congestion window was inflated to account
2146 * for the other side's cached packets, retract it.
2147 */
2148 if (!tcp_do_newreno)
2149 tcp_reno_newack(tp, th);
2150 else
2151 tcp_newreno_newack(tp, th);
2152 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2153 tcpstat.tcps_rcvacktoomuch++;
2154 goto dropafterack;
2155 }
2156 acked = th->th_ack - tp->snd_una;
2157 tcpstat.tcps_rcvackpack++;
2158 tcpstat.tcps_rcvackbyte += acked;
2159
2160 /*
2161 * If we have a timestamp reply, update smoothed
2162 * round trip time. If no timestamp is present but
2163 * transmit timer is running and timed sequence
2164 * number was acked, update smoothed round trip time.
2165 * Since we now have an rtt measurement, cancel the
2166 * timer backoff (cf., Phil Karn's retransmit alg.).
2167 * Recompute the initial retransmit timer.
2168 */
2169 if (opti.ts_present && opti.ts_ecr)
2170 tcp_xmit_timer(tp, opti.ts_ecr);
2171 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2172 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2173
2174 /*
2175 * If all outstanding data is acked, stop retransmit
2176 * timer and remember to restart (more output or persist).
2177 * If there is more data to be acked, restart retransmit
2178 * timer, using current (possibly backed-off) value.
2179 */
2180 if (th->th_ack == tp->snd_max) {
2181 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2182 needoutput = 1;
2183 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2184 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2185 /*
2186 * When new data is acked, open the congestion window.
2187 * If the window gives us less than ssthresh packets
2188 * in flight, open exponentially (segsz per packet).
2189 * Otherwise open linearly: segsz per window
2190 * (segsz^2 / cwnd per packet), plus a constant
2191 * fraction of a packet (segsz/8) to help larger windows
2192 * open quickly enough.
2193 *
2194 * If we are still in fast recovery (meaning we are using
2195 * NewReno and we have only received partial acks), do not
2196 * inflate the window yet.
2197 */
2198 if (tp->t_partialacks < 0) {
2199 u_int cw = tp->snd_cwnd;
2200 u_int incr = tp->t_segsz;
2201
2202 if (cw > tp->snd_ssthresh)
2203 incr = incr * incr / cw;
2204 tp->snd_cwnd = min(cw + incr,
2205 TCP_MAXWIN << tp->snd_scale);
2206 }
2207 ND6_HINT(tp);
2208 if (acked > so->so_snd.sb_cc) {
2209 tp->snd_wnd -= so->so_snd.sb_cc;
2210 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2211 ourfinisacked = 1;
2212 } else {
2213 if (acked > (tp->t_lastoff - tp->t_inoff))
2214 tp->t_lastm = NULL;
2215 sbdrop(&so->so_snd, acked);
2216 tp->t_lastoff -= acked;
2217 tp->snd_wnd -= acked;
2218 ourfinisacked = 0;
2219 }
2220 sowwakeup(so);
2221 tp->snd_una = th->th_ack;
2222 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2223 tp->snd_nxt = tp->snd_una;
2224 if (SEQ_LT(tp->snd_high, tp->snd_una))
2225 tp->snd_high = tp->snd_una;
2226
2227 switch (tp->t_state) {
2228
2229 /*
2230 * In FIN_WAIT_1 STATE in addition to the processing
2231 * for the ESTABLISHED state if our FIN is now acknowledged
2232 * then enter FIN_WAIT_2.
2233 */
2234 case TCPS_FIN_WAIT_1:
2235 if (ourfinisacked) {
2236 /*
2237 * If we can't receive any more
2238 * data, then closing user can proceed.
2239 * Starting the timer is contrary to the
2240 * specification, but if we don't get a FIN
2241 * we'll hang forever.
2242 */
2243 if (so->so_state & SS_CANTRCVMORE) {
2244 soisdisconnected(so);
2245 if (tcp_maxidle > 0)
2246 TCP_TIMER_ARM(tp, TCPT_2MSL,
2247 tcp_maxidle);
2248 }
2249 tp->t_state = TCPS_FIN_WAIT_2;
2250 }
2251 break;
2252
2253 /*
2254 * In CLOSING STATE in addition to the processing for
2255 * the ESTABLISHED state if the ACK acknowledges our FIN
2256 * then enter the TIME-WAIT state, otherwise ignore
2257 * the segment.
2258 */
2259 case TCPS_CLOSING:
2260 if (ourfinisacked) {
2261 tp->t_state = TCPS_TIME_WAIT;
2262 tcp_canceltimers(tp);
2263 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2264 soisdisconnected(so);
2265 }
2266 break;
2267
2268 /*
2269 * In LAST_ACK, we may still be waiting for data to drain
2270 * and/or to be acked, as well as for the ack of our FIN.
2271 * If our FIN is now acknowledged, delete the TCB,
2272 * enter the closed state and return.
2273 */
2274 case TCPS_LAST_ACK:
2275 if (ourfinisacked) {
2276 tp = tcp_close(tp);
2277 goto drop;
2278 }
2279 break;
2280
2281 /*
2282 * In TIME_WAIT state the only thing that should arrive
2283 * is a retransmission of the remote FIN. Acknowledge
2284 * it and restart the finack timer.
2285 */
2286 case TCPS_TIME_WAIT:
2287 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2288 goto dropafterack;
2289 }
2290 }
2291
2292 step6:
2293 /*
2294 * Update window information.
2295 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2296 */
2297 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2298 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2299 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2300 /* keep track of pure window updates */
2301 if (tlen == 0 &&
2302 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2303 tcpstat.tcps_rcvwinupd++;
2304 tp->snd_wnd = tiwin;
2305 tp->snd_wl1 = th->th_seq;
2306 tp->snd_wl2 = th->th_ack;
2307 if (tp->snd_wnd > tp->max_sndwnd)
2308 tp->max_sndwnd = tp->snd_wnd;
2309 needoutput = 1;
2310 }
2311
2312 /*
2313 * Process segments with URG.
2314 */
2315 if ((tiflags & TH_URG) && th->th_urp &&
2316 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2317 /*
2318 * This is a kludge, but if we receive and accept
2319 * random urgent pointers, we'll crash in
2320 * soreceive. It's hard to imagine someone
2321 * actually wanting to send this much urgent data.
2322 */
2323 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2324 th->th_urp = 0; /* XXX */
2325 tiflags &= ~TH_URG; /* XXX */
2326 goto dodata; /* XXX */
2327 }
2328 /*
2329 * If this segment advances the known urgent pointer,
2330 * then mark the data stream. This should not happen
2331 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2332 * a FIN has been received from the remote side.
2333 * In these states we ignore the URG.
2334 *
2335 * According to RFC961 (Assigned Protocols),
2336 * the urgent pointer points to the last octet
2337 * of urgent data. We continue, however,
2338 * to consider it to indicate the first octet
2339 * of data past the urgent section as the original
2340 * spec states (in one of two places).
2341 */
2342 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2343 tp->rcv_up = th->th_seq + th->th_urp;
2344 so->so_oobmark = so->so_rcv.sb_cc +
2345 (tp->rcv_up - tp->rcv_nxt) - 1;
2346 if (so->so_oobmark == 0)
2347 so->so_state |= SS_RCVATMARK;
2348 sohasoutofband(so);
2349 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2350 }
2351 /*
2352 * Remove out of band data so doesn't get presented to user.
2353 * This can happen independent of advancing the URG pointer,
2354 * but if two URG's are pending at once, some out-of-band
2355 * data may creep in... ick.
2356 */
2357 if (th->th_urp <= (u_int16_t) tlen
2358 #ifdef SO_OOBINLINE
2359 && (so->so_options & SO_OOBINLINE) == 0
2360 #endif
2361 )
2362 tcp_pulloutofband(so, th, m, hdroptlen);
2363 } else
2364 /*
2365 * If no out of band data is expected,
2366 * pull receive urgent pointer along
2367 * with the receive window.
2368 */
2369 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2370 tp->rcv_up = tp->rcv_nxt;
2371 dodata: /* XXX */
2372
2373 /*
2374 * Process the segment text, merging it into the TCP sequencing queue,
2375 * and arranging for acknowledgement of receipt if necessary.
2376 * This process logically involves adjusting tp->rcv_wnd as data
2377 * is presented to the user (this happens in tcp_usrreq.c,
2378 * case PRU_RCVD). If a FIN has already been received on this
2379 * connection then we just ignore the text.
2380 */
2381 if ((tlen || (tiflags & TH_FIN)) &&
2382 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2383 /*
2384 * Insert segment ti into reassembly queue of tcp with
2385 * control block tp. Return TH_FIN if reassembly now includes
2386 * a segment with FIN. The macro form does the common case
2387 * inline (segment is the next to be received on an
2388 * established connection, and the queue is empty),
2389 * avoiding linkage into and removal from the queue and
2390 * repetition of various conversions.
2391 * Set DELACK for segments received in order, but ack
2392 * immediately when segments are out of order
2393 * (so fast retransmit can work).
2394 */
2395 /* NOTE: this was TCP_REASS() macro, but used only once */
2396 TCP_REASS_LOCK(tp);
2397 if (th->th_seq == tp->rcv_nxt &&
2398 TAILQ_FIRST(&tp->segq) == NULL &&
2399 tp->t_state == TCPS_ESTABLISHED) {
2400 TCP_SETUP_ACK(tp, th);
2401 tp->rcv_nxt += tlen;
2402 tiflags = th->th_flags & TH_FIN;
2403 tcpstat.tcps_rcvpack++;
2404 tcpstat.tcps_rcvbyte += tlen;
2405 ND6_HINT(tp);
2406 if (so->so_state & SS_CANTRCVMORE)
2407 m_freem(m);
2408 else {
2409 m_adj(m, hdroptlen);
2410 sbappendstream(&(so)->so_rcv, m);
2411 }
2412 sorwakeup(so);
2413 } else {
2414 m_adj(m, hdroptlen);
2415 tiflags = tcp_reass(tp, th, m, &tlen);
2416 tp->t_flags |= TF_ACKNOW;
2417 }
2418 TCP_REASS_UNLOCK(tp);
2419
2420 /*
2421 * Note the amount of data that peer has sent into
2422 * our window, in order to estimate the sender's
2423 * buffer size.
2424 */
2425 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2426 } else {
2427 m_freem(m);
2428 m = NULL;
2429 tiflags &= ~TH_FIN;
2430 }
2431
2432 /*
2433 * If FIN is received ACK the FIN and let the user know
2434 * that the connection is closing. Ignore a FIN received before
2435 * the connection is fully established.
2436 */
2437 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2438 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2439 socantrcvmore(so);
2440 tp->t_flags |= TF_ACKNOW;
2441 tp->rcv_nxt++;
2442 }
2443 switch (tp->t_state) {
2444
2445 /*
2446 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2447 */
2448 case TCPS_ESTABLISHED:
2449 tp->t_state = TCPS_CLOSE_WAIT;
2450 break;
2451
2452 /*
2453 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2454 * enter the CLOSING state.
2455 */
2456 case TCPS_FIN_WAIT_1:
2457 tp->t_state = TCPS_CLOSING;
2458 break;
2459
2460 /*
2461 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2462 * starting the time-wait timer, turning off the other
2463 * standard timers.
2464 */
2465 case TCPS_FIN_WAIT_2:
2466 tp->t_state = TCPS_TIME_WAIT;
2467 tcp_canceltimers(tp);
2468 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2469 soisdisconnected(so);
2470 break;
2471
2472 /*
2473 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2474 */
2475 case TCPS_TIME_WAIT:
2476 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2477 break;
2478 }
2479 }
2480 #ifdef TCP_DEBUG
2481 if (so->so_options & SO_DEBUG)
2482 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2483 #endif
2484
2485 /*
2486 * Return any desired output.
2487 */
2488 if (needoutput || (tp->t_flags & TF_ACKNOW))
2489 (void) tcp_output(tp);
2490 if (tcp_saveti)
2491 m_freem(tcp_saveti);
2492 return;
2493
2494 badsyn:
2495 /*
2496 * Received a bad SYN. Increment counters and dropwithreset.
2497 */
2498 tcpstat.tcps_badsyn++;
2499 tp = NULL;
2500 goto dropwithreset;
2501
2502 dropafterack:
2503 /*
2504 * Generate an ACK dropping incoming segment if it occupies
2505 * sequence space, where the ACK reflects our state.
2506 */
2507 if (tiflags & TH_RST)
2508 goto drop;
2509 goto dropafterack2;
2510
2511 dropafterack_ratelim:
2512 /*
2513 * We may want to rate-limit ACKs against SYN/RST attack.
2514 */
2515 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2516 tcp_ackdrop_ppslim) == 0) {
2517 /* XXX stat */
2518 goto drop;
2519 }
2520 /* ...fall into dropafterack2... */
2521
2522 dropafterack2:
2523 m_freem(m);
2524 tp->t_flags |= TF_ACKNOW;
2525 (void) tcp_output(tp);
2526 if (tcp_saveti)
2527 m_freem(tcp_saveti);
2528 return;
2529
2530 dropwithreset_ratelim:
2531 /*
2532 * We may want to rate-limit RSTs in certain situations,
2533 * particularly if we are sending an RST in response to
2534 * an attempt to connect to or otherwise communicate with
2535 * a port for which we have no socket.
2536 */
2537 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2538 tcp_rst_ppslim) == 0) {
2539 /* XXX stat */
2540 goto drop;
2541 }
2542 /* ...fall into dropwithreset... */
2543
2544 dropwithreset:
2545 /*
2546 * Generate a RST, dropping incoming segment.
2547 * Make ACK acceptable to originator of segment.
2548 */
2549 if (tiflags & TH_RST)
2550 goto drop;
2551
2552 switch (af) {
2553 #ifdef INET6
2554 case AF_INET6:
2555 /* For following calls to tcp_respond */
2556 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2557 goto drop;
2558 break;
2559 #endif /* INET6 */
2560 case AF_INET:
2561 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2562 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2563 goto drop;
2564 }
2565
2566 if (tiflags & TH_ACK)
2567 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2568 else {
2569 if (tiflags & TH_SYN)
2570 tlen++;
2571 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2572 TH_RST|TH_ACK);
2573 }
2574 if (tcp_saveti)
2575 m_freem(tcp_saveti);
2576 return;
2577
2578 badcsum:
2579 drop:
2580 /*
2581 * Drop space held by incoming segment and return.
2582 */
2583 if (tp) {
2584 if (tp->t_inpcb)
2585 so = tp->t_inpcb->inp_socket;
2586 #ifdef INET6
2587 else if (tp->t_in6pcb)
2588 so = tp->t_in6pcb->in6p_socket;
2589 #endif
2590 else
2591 so = NULL;
2592 #ifdef TCP_DEBUG
2593 if (so && (so->so_options & SO_DEBUG) != 0)
2594 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2595 #endif
2596 }
2597 if (tcp_saveti)
2598 m_freem(tcp_saveti);
2599 m_freem(m);
2600 return;
2601 }
2602
2603 #ifdef TCP_SIGNATURE
2604 int
2605 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2606 {
2607
2608 MD5Update(fstate, (u_char *)data, len);
2609 return (0);
2610 }
2611
2612 struct secasvar *
2613 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2614 {
2615 struct secasvar *sav;
2616 #ifdef FAST_IPSEC
2617 union sockaddr_union dst;
2618 #endif
2619 struct ip *ip;
2620 struct ip6_hdr *ip6;
2621
2622 ip = mtod(m, struct ip *);
2623 switch (ip->ip_v) {
2624 case 4:
2625 ip = mtod(m, struct ip *);
2626 ip6 = NULL;
2627 break;
2628 case 6:
2629 ip = NULL;
2630 ip6 = mtod(m, struct ip6_hdr *);
2631 break;
2632 default:
2633 return (NULL);
2634 }
2635
2636 #ifdef FAST_IPSEC
2637 /* Extract the destination from the IP header in the mbuf. */
2638 bzero(&dst, sizeof(union sockaddr_union));
2639 dst.sa.sa_len = sizeof(struct sockaddr_in);
2640 dst.sa.sa_family = AF_INET;
2641 dst.sin.sin_addr = ip->ip_dst;
2642
2643 /*
2644 * Look up an SADB entry which matches the address of the peer.
2645 */
2646 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2647 #else
2648 if (ip)
2649 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2650 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2651 htonl(TCP_SIG_SPI));
2652 else
2653 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2654 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2655 htonl(TCP_SIG_SPI));
2656 #endif
2657
2658 return (sav); /* freesav must be performed by caller */
2659 }
2660
2661 int
2662 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2663 struct secasvar *sav, char *sig)
2664 {
2665 MD5_CTX ctx;
2666 struct ip *ip;
2667 struct ipovly *ipovly;
2668 struct ip6_hdr *ip6;
2669 struct ippseudo ippseudo;
2670 struct ip6_hdr_pseudo ip6pseudo;
2671 struct tcphdr th0;
2672 int l, tcphdrlen;
2673
2674 if (sav == NULL)
2675 return (-1);
2676
2677 tcphdrlen = th->th_off * 4;
2678
2679 switch (mtod(m, struct ip *)->ip_v) {
2680 case 4:
2681 ip = mtod(m, struct ip *);
2682 ip6 = NULL;
2683 break;
2684 case 6:
2685 ip = NULL;
2686 ip6 = mtod(m, struct ip6_hdr *);
2687 break;
2688 default:
2689 return (-1);
2690 }
2691
2692 MD5Init(&ctx);
2693
2694 if (ip) {
2695 memset(&ippseudo, 0, sizeof(ippseudo));
2696 ipovly = (struct ipovly *)ip;
2697 ippseudo.ippseudo_src = ipovly->ih_src;
2698 ippseudo.ippseudo_dst = ipovly->ih_dst;
2699 ippseudo.ippseudo_pad = 0;
2700 ippseudo.ippseudo_p = IPPROTO_TCP;
2701 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2702 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2703 } else {
2704 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2705 ip6pseudo.ip6ph_src = ip6->ip6_src;
2706 in6_clearscope(&ip6pseudo.ip6ph_src);
2707 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2708 in6_clearscope(&ip6pseudo.ip6ph_dst);
2709 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2710 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2711 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2712 }
2713
2714 th0 = *th;
2715 th0.th_sum = 0;
2716 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2717
2718 l = m->m_pkthdr.len - thoff - tcphdrlen;
2719 if (l > 0)
2720 m_apply(m, thoff + tcphdrlen,
2721 m->m_pkthdr.len - thoff - tcphdrlen,
2722 tcp_signature_apply, &ctx);
2723
2724 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2725 MD5Final(sig, &ctx);
2726
2727 return (0);
2728 }
2729 #endif
2730
2731 int
2732 tcp_dooptions(tp, cp, cnt, th, m, toff, oi)
2733 struct tcpcb *tp;
2734 u_char *cp;
2735 int cnt;
2736 struct tcphdr *th;
2737 struct mbuf *m;
2738 int toff;
2739 struct tcp_opt_info *oi;
2740 {
2741 u_int16_t mss;
2742 int opt, optlen = 0;
2743 #ifdef TCP_SIGNATURE
2744 caddr_t sigp = NULL;
2745 char sigbuf[TCP_SIGLEN];
2746 struct secasvar *sav = NULL;
2747 #endif
2748
2749 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2750 opt = cp[0];
2751 if (opt == TCPOPT_EOL)
2752 break;
2753 if (opt == TCPOPT_NOP)
2754 optlen = 1;
2755 else {
2756 if (cnt < 2)
2757 break;
2758 optlen = cp[1];
2759 if (optlen < 2 || optlen > cnt)
2760 break;
2761 }
2762 switch (opt) {
2763
2764 default:
2765 continue;
2766
2767 case TCPOPT_MAXSEG:
2768 if (optlen != TCPOLEN_MAXSEG)
2769 continue;
2770 if (!(th->th_flags & TH_SYN))
2771 continue;
2772 bcopy(cp + 2, &mss, sizeof(mss));
2773 oi->maxseg = ntohs(mss);
2774 break;
2775
2776 case TCPOPT_WINDOW:
2777 if (optlen != TCPOLEN_WINDOW)
2778 continue;
2779 if (!(th->th_flags & TH_SYN))
2780 continue;
2781 tp->t_flags |= TF_RCVD_SCALE;
2782 tp->requested_s_scale = cp[2];
2783 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2784 #if 0 /*XXX*/
2785 char *p;
2786
2787 if (ip)
2788 p = ntohl(ip->ip_src);
2789 #ifdef INET6
2790 else if (ip6)
2791 p = ip6_sprintf(&ip6->ip6_src);
2792 #endif
2793 else
2794 p = "(unknown)";
2795 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2796 "assuming %d\n",
2797 tp->requested_s_scale, p,
2798 TCP_MAX_WINSHIFT);
2799 #else
2800 log(LOG_ERR, "TCP: invalid wscale %d, "
2801 "assuming %d\n",
2802 tp->requested_s_scale,
2803 TCP_MAX_WINSHIFT);
2804 #endif
2805 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2806 }
2807 break;
2808
2809 case TCPOPT_TIMESTAMP:
2810 if (optlen != TCPOLEN_TIMESTAMP)
2811 continue;
2812 oi->ts_present = 1;
2813 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2814 NTOHL(oi->ts_val);
2815 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2816 NTOHL(oi->ts_ecr);
2817
2818 /*
2819 * A timestamp received in a SYN makes
2820 * it ok to send timestamp requests and replies.
2821 */
2822 if (th->th_flags & TH_SYN) {
2823 tp->t_flags |= TF_RCVD_TSTMP;
2824 tp->ts_recent = oi->ts_val;
2825 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2826 }
2827 break;
2828 case TCPOPT_SACK_PERMITTED:
2829 if (optlen != TCPOLEN_SACK_PERMITTED)
2830 continue;
2831 if (!(th->th_flags & TH_SYN))
2832 continue;
2833 tp->t_flags &= ~TF_CANT_TXSACK;
2834 break;
2835
2836 case TCPOPT_SACK:
2837 if (tp->t_flags & TF_IGNR_RXSACK)
2838 continue;
2839 if (optlen % 8 != 2 || optlen < 10)
2840 continue;
2841 cp += 2;
2842 optlen -= 2;
2843 for (; optlen > 0; cp -= 8, optlen -= 8) {
2844 tcp_seq lwe, rwe;
2845 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2846 NTOHL(lwe);
2847 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2848 NTOHL(rwe);
2849 /* tcp_mark_sacked(tp, lwe, rwe); */
2850 }
2851 break;
2852 #ifdef TCP_SIGNATURE
2853 case TCPOPT_SIGNATURE:
2854 if (optlen != TCPOLEN_SIGNATURE)
2855 continue;
2856 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2857 return (-1);
2858
2859 sigp = sigbuf;
2860 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2861 memset(cp + 2, 0, TCP_SIGLEN);
2862 tp->t_flags |= TF_SIGNATURE;
2863 break;
2864 #endif
2865 }
2866 }
2867
2868 #ifdef TCP_SIGNATURE
2869 if (tp->t_flags & TF_SIGNATURE) {
2870
2871 sav = tcp_signature_getsav(m, th);
2872
2873 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2874 return (-1);
2875 }
2876
2877 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2878 if (sav == NULL)
2879 return (-1);
2880 #ifdef FAST_IPSEC
2881 KEY_FREESAV(&sav);
2882 #else
2883 key_freesav(sav);
2884 #endif
2885 return (-1);
2886 }
2887
2888 if (sigp) {
2889 char sig[TCP_SIGLEN];
2890
2891 TCP_FIELDS_TO_NET(th);
2892 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2893 TCP_FIELDS_TO_HOST(th);
2894 if (sav == NULL)
2895 return (-1);
2896 #ifdef FAST_IPSEC
2897 KEY_FREESAV(&sav);
2898 #else
2899 key_freesav(sav);
2900 #endif
2901 return (-1);
2902 }
2903 TCP_FIELDS_TO_HOST(th);
2904
2905 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2906 tcpstat.tcps_badsig++;
2907 if (sav == NULL)
2908 return (-1);
2909 #ifdef FAST_IPSEC
2910 KEY_FREESAV(&sav);
2911 #else
2912 key_freesav(sav);
2913 #endif
2914 return (-1);
2915 } else
2916 tcpstat.tcps_goodsig++;
2917
2918 key_sa_recordxfer(sav, m);
2919 #ifdef FAST_IPSEC
2920 KEY_FREESAV(&sav);
2921 #else
2922 key_freesav(sav);
2923 #endif
2924 }
2925 #endif
2926
2927 return (0);
2928 }
2929
2930 /*
2931 * Pull out of band byte out of a segment so
2932 * it doesn't appear in the user's data queue.
2933 * It is still reflected in the segment length for
2934 * sequencing purposes.
2935 */
2936 void
2937 tcp_pulloutofband(so, th, m, off)
2938 struct socket *so;
2939 struct tcphdr *th;
2940 struct mbuf *m;
2941 int off;
2942 {
2943 int cnt = off + th->th_urp - 1;
2944
2945 while (cnt >= 0) {
2946 if (m->m_len > cnt) {
2947 char *cp = mtod(m, caddr_t) + cnt;
2948 struct tcpcb *tp = sototcpcb(so);
2949
2950 tp->t_iobc = *cp;
2951 tp->t_oobflags |= TCPOOB_HAVEDATA;
2952 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2953 m->m_len--;
2954 return;
2955 }
2956 cnt -= m->m_len;
2957 m = m->m_next;
2958 if (m == 0)
2959 break;
2960 }
2961 panic("tcp_pulloutofband");
2962 }
2963
2964 /*
2965 * Collect new round-trip time estimate
2966 * and update averages and current timeout.
2967 */
2968 void
2969 tcp_xmit_timer(tp, rtt)
2970 struct tcpcb *tp;
2971 uint32_t rtt;
2972 {
2973 int32_t delta;
2974
2975 tcpstat.tcps_rttupdated++;
2976 if (tp->t_srtt != 0) {
2977 /*
2978 * srtt is stored as fixed point with 3 bits after the
2979 * binary point (i.e., scaled by 8). The following magic
2980 * is equivalent to the smoothing algorithm in rfc793 with
2981 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2982 * point). Adjust rtt to origin 0.
2983 */
2984 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2985 if ((tp->t_srtt += delta) <= 0)
2986 tp->t_srtt = 1 << 2;
2987 /*
2988 * We accumulate a smoothed rtt variance (actually, a
2989 * smoothed mean difference), then set the retransmit
2990 * timer to smoothed rtt + 4 times the smoothed variance.
2991 * rttvar is stored as fixed point with 2 bits after the
2992 * binary point (scaled by 4). The following is
2993 * equivalent to rfc793 smoothing with an alpha of .75
2994 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2995 * rfc793's wired-in beta.
2996 */
2997 if (delta < 0)
2998 delta = -delta;
2999 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3000 if ((tp->t_rttvar += delta) <= 0)
3001 tp->t_rttvar = 1 << 2;
3002 } else {
3003 /*
3004 * No rtt measurement yet - use the unsmoothed rtt.
3005 * Set the variance to half the rtt (so our first
3006 * retransmit happens at 3*rtt).
3007 */
3008 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3009 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3010 }
3011 tp->t_rtttime = 0;
3012 tp->t_rxtshift = 0;
3013
3014 /*
3015 * the retransmit should happen at rtt + 4 * rttvar.
3016 * Because of the way we do the smoothing, srtt and rttvar
3017 * will each average +1/2 tick of bias. When we compute
3018 * the retransmit timer, we want 1/2 tick of rounding and
3019 * 1 extra tick because of +-1/2 tick uncertainty in the
3020 * firing of the timer. The bias will give us exactly the
3021 * 1.5 tick we need. But, because the bias is
3022 * statistical, we have to test that we don't drop below
3023 * the minimum feasible timer (which is 2 ticks).
3024 */
3025 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3026 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3027
3028 /*
3029 * We received an ack for a packet that wasn't retransmitted;
3030 * it is probably safe to discard any error indications we've
3031 * received recently. This isn't quite right, but close enough
3032 * for now (a route might have failed after we sent a segment,
3033 * and the return path might not be symmetrical).
3034 */
3035 tp->t_softerror = 0;
3036 }
3037
3038 void
3039 tcp_reno_newack(tp, th)
3040 struct tcpcb *tp;
3041 struct tcphdr *th;
3042 {
3043 if (tp->t_partialacks < 0) {
3044 /*
3045 * We were not in fast recovery. Reset the duplicate ack
3046 * counter.
3047 */
3048 tp->t_dupacks = 0;
3049 } else {
3050 /*
3051 * Clamp the congestion window to the crossover point and
3052 * exit fast recovery.
3053 */
3054 if (tp->snd_cwnd > tp->snd_ssthresh)
3055 tp->snd_cwnd = tp->snd_ssthresh;
3056 tp->t_partialacks = -1;
3057 tp->t_dupacks = 0;
3058 }
3059 }
3060
3061 /*
3062 * Implement the NewReno response to a new ack, checking for partial acks in
3063 * fast recovery.
3064 */
3065 void
3066 tcp_newreno_newack(tp, th)
3067 struct tcpcb *tp;
3068 struct tcphdr *th;
3069 {
3070 if (tp->t_partialacks < 0) {
3071 /*
3072 * We were not in fast recovery. Reset the duplicate ack
3073 * counter.
3074 */
3075 tp->t_dupacks = 0;
3076 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3077 /*
3078 * This is a partial ack. Retransmit the first unacknowledged
3079 * segment and deflate the congestion window by the amount of
3080 * acknowledged data. Do not exit fast recovery.
3081 */
3082 tcp_seq onxt = tp->snd_nxt;
3083 u_long ocwnd = tp->snd_cwnd;
3084
3085 /*
3086 * snd_una has not yet been updated and the socket's send
3087 * buffer has not yet drained off the ACK'd data, so we
3088 * have to leave snd_una as it was to get the correct data
3089 * offset in tcp_output().
3090 */
3091 if (++tp->t_partialacks == 1)
3092 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3093 tp->t_rtttime = 0;
3094 tp->snd_nxt = th->th_ack;
3095 /*
3096 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3097 * is not yet updated when we're called.
3098 */
3099 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3100 (void) tcp_output(tp);
3101 tp->snd_cwnd = ocwnd;
3102 if (SEQ_GT(onxt, tp->snd_nxt))
3103 tp->snd_nxt = onxt;
3104 /*
3105 * Partial window deflation. Relies on fact that tp->snd_una
3106 * not updated yet.
3107 */
3108 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3109 } else {
3110 /*
3111 * Complete ack. Inflate the congestion window to ssthresh
3112 * and exit fast recovery.
3113 *
3114 * Window inflation should have left us with approx.
3115 * snd_ssthresh outstanding data. But in case we
3116 * would be inclined to send a burst, better to do
3117 * it via the slow start mechanism.
3118 */
3119 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3120 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3121 + tp->t_segsz;
3122 else
3123 tp->snd_cwnd = tp->snd_ssthresh;
3124 tp->t_partialacks = -1;
3125 tp->t_dupacks = 0;
3126 }
3127 }
3128
3129
3130 /*
3131 * TCP compressed state engine. Currently used to hold compressed
3132 * state for SYN_RECEIVED.
3133 */
3134
3135 u_long syn_cache_count;
3136 u_int32_t syn_hash1, syn_hash2;
3137
3138 #define SYN_HASH(sa, sp, dp) \
3139 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3140 ((u_int32_t)(sp)))^syn_hash2)))
3141 #ifndef INET6
3142 #define SYN_HASHALL(hash, src, dst) \
3143 do { \
3144 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3145 ((struct sockaddr_in *)(src))->sin_port, \
3146 ((struct sockaddr_in *)(dst))->sin_port); \
3147 } while (/*CONSTCOND*/ 0)
3148 #else
3149 #define SYN_HASH6(sa, sp, dp) \
3150 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3151 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3152 & 0x7fffffff)
3153
3154 #define SYN_HASHALL(hash, src, dst) \
3155 do { \
3156 switch ((src)->sa_family) { \
3157 case AF_INET: \
3158 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3159 ((struct sockaddr_in *)(src))->sin_port, \
3160 ((struct sockaddr_in *)(dst))->sin_port); \
3161 break; \
3162 case AF_INET6: \
3163 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3164 ((struct sockaddr_in6 *)(src))->sin6_port, \
3165 ((struct sockaddr_in6 *)(dst))->sin6_port); \
3166 break; \
3167 default: \
3168 hash = 0; \
3169 } \
3170 } while (/*CONSTCOND*/0)
3171 #endif /* INET6 */
3172
3173 #define SYN_CACHE_RM(sc) \
3174 do { \
3175 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3176 (sc), sc_bucketq); \
3177 (sc)->sc_tp = NULL; \
3178 LIST_REMOVE((sc), sc_tpq); \
3179 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3180 callout_stop(&(sc)->sc_timer); \
3181 syn_cache_count--; \
3182 } while (/*CONSTCOND*/0)
3183
3184 #define SYN_CACHE_PUT(sc) \
3185 do { \
3186 if ((sc)->sc_ipopts) \
3187 (void) m_free((sc)->sc_ipopts); \
3188 if ((sc)->sc_route4.ro_rt != NULL) \
3189 RTFREE((sc)->sc_route4.ro_rt); \
3190 if (callout_invoking(&(sc)->sc_timer)) \
3191 (sc)->sc_flags |= SCF_DEAD; \
3192 else \
3193 pool_put(&syn_cache_pool, (sc)); \
3194 } while (/*CONSTCOND*/0)
3195
3196 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3197
3198 /*
3199 * We don't estimate RTT with SYNs, so each packet starts with the default
3200 * RTT and each timer step has a fixed timeout value.
3201 */
3202 #define SYN_CACHE_TIMER_ARM(sc) \
3203 do { \
3204 TCPT_RANGESET((sc)->sc_rxtcur, \
3205 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3206 TCPTV_REXMTMAX); \
3207 callout_reset(&(sc)->sc_timer, \
3208 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3209 } while (/*CONSTCOND*/0)
3210
3211 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3212
3213 void
3214 syn_cache_init()
3215 {
3216 int i;
3217
3218 /* Initialize the hash buckets. */
3219 for (i = 0; i < tcp_syn_cache_size; i++)
3220 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3221 }
3222
3223 void
3224 syn_cache_insert(sc, tp)
3225 struct syn_cache *sc;
3226 struct tcpcb *tp;
3227 {
3228 struct syn_cache_head *scp;
3229 struct syn_cache *sc2;
3230 int s;
3231
3232 /*
3233 * If there are no entries in the hash table, reinitialize
3234 * the hash secrets.
3235 */
3236 if (syn_cache_count == 0) {
3237 syn_hash1 = arc4random();
3238 syn_hash2 = arc4random();
3239 }
3240
3241 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3242 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3243 scp = &tcp_syn_cache[sc->sc_bucketidx];
3244
3245 /*
3246 * Make sure that we don't overflow the per-bucket
3247 * limit or the total cache size limit.
3248 */
3249 s = splsoftnet();
3250 if (scp->sch_length >= tcp_syn_bucket_limit) {
3251 tcpstat.tcps_sc_bucketoverflow++;
3252 /*
3253 * The bucket is full. Toss the oldest element in the
3254 * bucket. This will be the first entry in the bucket.
3255 */
3256 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3257 #ifdef DIAGNOSTIC
3258 /*
3259 * This should never happen; we should always find an
3260 * entry in our bucket.
3261 */
3262 if (sc2 == NULL)
3263 panic("syn_cache_insert: bucketoverflow: impossible");
3264 #endif
3265 SYN_CACHE_RM(sc2);
3266 SYN_CACHE_PUT(sc2);
3267 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3268 struct syn_cache_head *scp2, *sce;
3269
3270 tcpstat.tcps_sc_overflowed++;
3271 /*
3272 * The cache is full. Toss the oldest entry in the
3273 * first non-empty bucket we can find.
3274 *
3275 * XXX We would really like to toss the oldest
3276 * entry in the cache, but we hope that this
3277 * condition doesn't happen very often.
3278 */
3279 scp2 = scp;
3280 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3281 sce = &tcp_syn_cache[tcp_syn_cache_size];
3282 for (++scp2; scp2 != scp; scp2++) {
3283 if (scp2 >= sce)
3284 scp2 = &tcp_syn_cache[0];
3285 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3286 break;
3287 }
3288 #ifdef DIAGNOSTIC
3289 /*
3290 * This should never happen; we should always find a
3291 * non-empty bucket.
3292 */
3293 if (scp2 == scp)
3294 panic("syn_cache_insert: cacheoverflow: "
3295 "impossible");
3296 #endif
3297 }
3298 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3299 SYN_CACHE_RM(sc2);
3300 SYN_CACHE_PUT(sc2);
3301 }
3302
3303 /*
3304 * Initialize the entry's timer.
3305 */
3306 sc->sc_rxttot = 0;
3307 sc->sc_rxtshift = 0;
3308 SYN_CACHE_TIMER_ARM(sc);
3309
3310 /* Link it from tcpcb entry */
3311 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3312
3313 /* Put it into the bucket. */
3314 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3315 scp->sch_length++;
3316 syn_cache_count++;
3317
3318 tcpstat.tcps_sc_added++;
3319 splx(s);
3320 }
3321
3322 /*
3323 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3324 * If we have retransmitted an entry the maximum number of times, expire
3325 * that entry.
3326 */
3327 void
3328 syn_cache_timer(void *arg)
3329 {
3330 struct syn_cache *sc = arg;
3331 int s;
3332
3333 s = splsoftnet();
3334 callout_ack(&sc->sc_timer);
3335
3336 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3337 tcpstat.tcps_sc_delayed_free++;
3338 pool_put(&syn_cache_pool, sc);
3339 splx(s);
3340 return;
3341 }
3342
3343 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3344 /* Drop it -- too many retransmissions. */
3345 goto dropit;
3346 }
3347
3348 /*
3349 * Compute the total amount of time this entry has
3350 * been on a queue. If this entry has been on longer
3351 * than the keep alive timer would allow, expire it.
3352 */
3353 sc->sc_rxttot += sc->sc_rxtcur;
3354 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3355 goto dropit;
3356
3357 tcpstat.tcps_sc_retransmitted++;
3358 (void) syn_cache_respond(sc, NULL);
3359
3360 /* Advance the timer back-off. */
3361 sc->sc_rxtshift++;
3362 SYN_CACHE_TIMER_ARM(sc);
3363
3364 splx(s);
3365 return;
3366
3367 dropit:
3368 tcpstat.tcps_sc_timed_out++;
3369 SYN_CACHE_RM(sc);
3370 SYN_CACHE_PUT(sc);
3371 splx(s);
3372 }
3373
3374 /*
3375 * Remove syn cache created by the specified tcb entry,
3376 * because this does not make sense to keep them
3377 * (if there's no tcb entry, syn cache entry will never be used)
3378 */
3379 void
3380 syn_cache_cleanup(tp)
3381 struct tcpcb *tp;
3382 {
3383 struct syn_cache *sc, *nsc;
3384 int s;
3385
3386 s = splsoftnet();
3387
3388 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3389 nsc = LIST_NEXT(sc, sc_tpq);
3390
3391 #ifdef DIAGNOSTIC
3392 if (sc->sc_tp != tp)
3393 panic("invalid sc_tp in syn_cache_cleanup");
3394 #endif
3395 SYN_CACHE_RM(sc);
3396 SYN_CACHE_PUT(sc);
3397 }
3398 /* just for safety */
3399 LIST_INIT(&tp->t_sc);
3400
3401 splx(s);
3402 }
3403
3404 /*
3405 * Find an entry in the syn cache.
3406 */
3407 struct syn_cache *
3408 syn_cache_lookup(src, dst, headp)
3409 struct sockaddr *src;
3410 struct sockaddr *dst;
3411 struct syn_cache_head **headp;
3412 {
3413 struct syn_cache *sc;
3414 struct syn_cache_head *scp;
3415 u_int32_t hash;
3416 int s;
3417
3418 SYN_HASHALL(hash, src, dst);
3419
3420 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3421 *headp = scp;
3422 s = splsoftnet();
3423 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3424 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3425 if (sc->sc_hash != hash)
3426 continue;
3427 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3428 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3429 splx(s);
3430 return (sc);
3431 }
3432 }
3433 splx(s);
3434 return (NULL);
3435 }
3436
3437 /*
3438 * This function gets called when we receive an ACK for a
3439 * socket in the LISTEN state. We look up the connection
3440 * in the syn cache, and if its there, we pull it out of
3441 * the cache and turn it into a full-blown connection in
3442 * the SYN-RECEIVED state.
3443 *
3444 * The return values may not be immediately obvious, and their effects
3445 * can be subtle, so here they are:
3446 *
3447 * NULL SYN was not found in cache; caller should drop the
3448 * packet and send an RST.
3449 *
3450 * -1 We were unable to create the new connection, and are
3451 * aborting it. An ACK,RST is being sent to the peer
3452 * (unless we got screwey sequence numbners; see below),
3453 * because the 3-way handshake has been completed. Caller
3454 * should not free the mbuf, since we may be using it. If
3455 * we are not, we will free it.
3456 *
3457 * Otherwise, the return value is a pointer to the new socket
3458 * associated with the connection.
3459 */
3460 struct socket *
3461 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3462 struct sockaddr *src;
3463 struct sockaddr *dst;
3464 struct tcphdr *th;
3465 unsigned int hlen, tlen;
3466 struct socket *so;
3467 struct mbuf *m;
3468 {
3469 struct syn_cache *sc;
3470 struct syn_cache_head *scp;
3471 struct inpcb *inp = NULL;
3472 #ifdef INET6
3473 struct in6pcb *in6p = NULL;
3474 #endif
3475 struct tcpcb *tp = 0;
3476 struct mbuf *am;
3477 int s;
3478 struct socket *oso;
3479
3480 s = splsoftnet();
3481 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3482 splx(s);
3483 return (NULL);
3484 }
3485
3486 /*
3487 * Verify the sequence and ack numbers. Try getting the correct
3488 * response again.
3489 */
3490 if ((th->th_ack != sc->sc_iss + 1) ||
3491 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3492 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3493 (void) syn_cache_respond(sc, m);
3494 splx(s);
3495 return ((struct socket *)(-1));
3496 }
3497
3498 /* Remove this cache entry */
3499 SYN_CACHE_RM(sc);
3500 splx(s);
3501
3502 /*
3503 * Ok, create the full blown connection, and set things up
3504 * as they would have been set up if we had created the
3505 * connection when the SYN arrived. If we can't create
3506 * the connection, abort it.
3507 */
3508 /*
3509 * inp still has the OLD in_pcb stuff, set the
3510 * v6-related flags on the new guy, too. This is
3511 * done particularly for the case where an AF_INET6
3512 * socket is bound only to a port, and a v4 connection
3513 * comes in on that port.
3514 * we also copy the flowinfo from the original pcb
3515 * to the new one.
3516 */
3517 oso = so;
3518 so = sonewconn(so, SS_ISCONNECTED);
3519 if (so == NULL)
3520 goto resetandabort;
3521
3522 switch (so->so_proto->pr_domain->dom_family) {
3523 #ifdef INET
3524 case AF_INET:
3525 inp = sotoinpcb(so);
3526 break;
3527 #endif
3528 #ifdef INET6
3529 case AF_INET6:
3530 in6p = sotoin6pcb(so);
3531 break;
3532 #endif
3533 }
3534 switch (src->sa_family) {
3535 #ifdef INET
3536 case AF_INET:
3537 if (inp) {
3538 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3539 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3540 inp->inp_options = ip_srcroute();
3541 in_pcbstate(inp, INP_BOUND);
3542 if (inp->inp_options == NULL) {
3543 inp->inp_options = sc->sc_ipopts;
3544 sc->sc_ipopts = NULL;
3545 }
3546 }
3547 #ifdef INET6
3548 else if (in6p) {
3549 /* IPv4 packet to AF_INET6 socket */
3550 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3551 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3552 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3553 &in6p->in6p_laddr.s6_addr32[3],
3554 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3555 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3556 in6totcpcb(in6p)->t_family = AF_INET;
3557 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3558 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3559 else
3560 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3561 in6_pcbstate(in6p, IN6P_BOUND);
3562 }
3563 #endif
3564 break;
3565 #endif
3566 #ifdef INET6
3567 case AF_INET6:
3568 if (in6p) {
3569 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3570 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3571 in6_pcbstate(in6p, IN6P_BOUND);
3572 }
3573 break;
3574 #endif
3575 }
3576 #ifdef INET6
3577 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3578 struct in6pcb *oin6p = sotoin6pcb(oso);
3579 /* inherit socket options from the listening socket */
3580 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3581 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3582 m_freem(in6p->in6p_options);
3583 in6p->in6p_options = 0;
3584 }
3585 ip6_savecontrol(in6p, &in6p->in6p_options,
3586 mtod(m, struct ip6_hdr *), m);
3587 }
3588 #endif
3589
3590 #if defined(IPSEC) || defined(FAST_IPSEC)
3591 /*
3592 * we make a copy of policy, instead of sharing the policy,
3593 * for better behavior in terms of SA lookup and dead SA removal.
3594 */
3595 if (inp) {
3596 /* copy old policy into new socket's */
3597 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3598 printf("tcp_input: could not copy policy\n");
3599 }
3600 #ifdef INET6
3601 else if (in6p) {
3602 /* copy old policy into new socket's */
3603 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3604 in6p->in6p_sp))
3605 printf("tcp_input: could not copy policy\n");
3606 }
3607 #endif
3608 #endif
3609
3610 /*
3611 * Give the new socket our cached route reference.
3612 */
3613 if (inp)
3614 inp->inp_route = sc->sc_route4; /* struct assignment */
3615 #ifdef INET6
3616 else
3617 in6p->in6p_route = sc->sc_route6;
3618 #endif
3619 sc->sc_route4.ro_rt = NULL;
3620
3621 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3622 if (am == NULL)
3623 goto resetandabort;
3624 MCLAIM(am, &tcp_mowner);
3625 am->m_len = src->sa_len;
3626 bcopy(src, mtod(am, caddr_t), src->sa_len);
3627 if (inp) {
3628 if (in_pcbconnect(inp, am)) {
3629 (void) m_free(am);
3630 goto resetandabort;
3631 }
3632 }
3633 #ifdef INET6
3634 else if (in6p) {
3635 if (src->sa_family == AF_INET) {
3636 /* IPv4 packet to AF_INET6 socket */
3637 struct sockaddr_in6 *sin6;
3638 sin6 = mtod(am, struct sockaddr_in6 *);
3639 am->m_len = sizeof(*sin6);
3640 bzero(sin6, sizeof(*sin6));
3641 sin6->sin6_family = AF_INET6;
3642 sin6->sin6_len = sizeof(*sin6);
3643 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3644 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3645 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3646 &sin6->sin6_addr.s6_addr32[3],
3647 sizeof(sin6->sin6_addr.s6_addr32[3]));
3648 }
3649 if (in6_pcbconnect(in6p, am)) {
3650 (void) m_free(am);
3651 goto resetandabort;
3652 }
3653 }
3654 #endif
3655 else {
3656 (void) m_free(am);
3657 goto resetandabort;
3658 }
3659 (void) m_free(am);
3660
3661 if (inp)
3662 tp = intotcpcb(inp);
3663 #ifdef INET6
3664 else if (in6p)
3665 tp = in6totcpcb(in6p);
3666 #endif
3667 else
3668 tp = NULL;
3669 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3670 if (sc->sc_request_r_scale != 15) {
3671 tp->requested_s_scale = sc->sc_requested_s_scale;
3672 tp->request_r_scale = sc->sc_request_r_scale;
3673 tp->snd_scale = sc->sc_requested_s_scale;
3674 tp->rcv_scale = sc->sc_request_r_scale;
3675 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3676 }
3677 if (sc->sc_flags & SCF_TIMESTAMP)
3678 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3679 tp->ts_timebase = sc->sc_timebase;
3680
3681 tp->t_template = tcp_template(tp);
3682 if (tp->t_template == 0) {
3683 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3684 so = NULL;
3685 m_freem(m);
3686 goto abort;
3687 }
3688
3689 tp->iss = sc->sc_iss;
3690 tp->irs = sc->sc_irs;
3691 tcp_sendseqinit(tp);
3692 tcp_rcvseqinit(tp);
3693 tp->t_state = TCPS_SYN_RECEIVED;
3694 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3695 tcpstat.tcps_accepts++;
3696
3697 #ifdef TCP_SIGNATURE
3698 if (sc->sc_flags & SCF_SIGNATURE)
3699 tp->t_flags |= TF_SIGNATURE;
3700 #endif
3701
3702 /* Initialize tp->t_ourmss before we deal with the peer's! */
3703 tp->t_ourmss = sc->sc_ourmaxseg;
3704 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3705
3706 /*
3707 * Initialize the initial congestion window. If we
3708 * had to retransmit the SYN,ACK, we must initialize cwnd
3709 * to 1 segment (i.e. the Loss Window).
3710 */
3711 if (sc->sc_rxtshift)
3712 tp->snd_cwnd = tp->t_peermss;
3713 else {
3714 int ss = tcp_init_win;
3715 #ifdef INET
3716 if (inp != NULL && in_localaddr(inp->inp_faddr))
3717 ss = tcp_init_win_local;
3718 #endif
3719 #ifdef INET6
3720 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3721 ss = tcp_init_win_local;
3722 #endif
3723 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3724 }
3725
3726 tcp_rmx_rtt(tp);
3727 tp->snd_wl1 = sc->sc_irs;
3728 tp->rcv_up = sc->sc_irs + 1;
3729
3730 /*
3731 * This is what whould have happened in tcp_output() when
3732 * the SYN,ACK was sent.
3733 */
3734 tp->snd_up = tp->snd_una;
3735 tp->snd_max = tp->snd_nxt = tp->iss+1;
3736 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3737 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3738 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3739 tp->last_ack_sent = tp->rcv_nxt;
3740 tp->t_partialacks = -1;
3741 tp->t_dupacks = 0;
3742
3743 tcpstat.tcps_sc_completed++;
3744 SYN_CACHE_PUT(sc);
3745 return (so);
3746
3747 resetandabort:
3748 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3749 abort:
3750 if (so != NULL)
3751 (void) soabort(so);
3752 SYN_CACHE_PUT(sc);
3753 tcpstat.tcps_sc_aborted++;
3754 return ((struct socket *)(-1));
3755 }
3756
3757 /*
3758 * This function is called when we get a RST for a
3759 * non-existent connection, so that we can see if the
3760 * connection is in the syn cache. If it is, zap it.
3761 */
3762
3763 void
3764 syn_cache_reset(src, dst, th)
3765 struct sockaddr *src;
3766 struct sockaddr *dst;
3767 struct tcphdr *th;
3768 {
3769 struct syn_cache *sc;
3770 struct syn_cache_head *scp;
3771 int s = splsoftnet();
3772
3773 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3774 splx(s);
3775 return;
3776 }
3777 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3778 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3779 splx(s);
3780 return;
3781 }
3782 SYN_CACHE_RM(sc);
3783 splx(s);
3784 tcpstat.tcps_sc_reset++;
3785 SYN_CACHE_PUT(sc);
3786 }
3787
3788 void
3789 syn_cache_unreach(src, dst, th)
3790 struct sockaddr *src;
3791 struct sockaddr *dst;
3792 struct tcphdr *th;
3793 {
3794 struct syn_cache *sc;
3795 struct syn_cache_head *scp;
3796 int s;
3797
3798 s = splsoftnet();
3799 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3800 splx(s);
3801 return;
3802 }
3803 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3804 if (ntohl (th->th_seq) != sc->sc_iss) {
3805 splx(s);
3806 return;
3807 }
3808
3809 /*
3810 * If we've retransmitted 3 times and this is our second error,
3811 * we remove the entry. Otherwise, we allow it to continue on.
3812 * This prevents us from incorrectly nuking an entry during a
3813 * spurious network outage.
3814 *
3815 * See tcp_notify().
3816 */
3817 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3818 sc->sc_flags |= SCF_UNREACH;
3819 splx(s);
3820 return;
3821 }
3822
3823 SYN_CACHE_RM(sc);
3824 splx(s);
3825 tcpstat.tcps_sc_unreach++;
3826 SYN_CACHE_PUT(sc);
3827 }
3828
3829 /*
3830 * Given a LISTEN socket and an inbound SYN request, add
3831 * this to the syn cache, and send back a segment:
3832 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3833 * to the source.
3834 *
3835 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3836 * Doing so would require that we hold onto the data and deliver it
3837 * to the application. However, if we are the target of a SYN-flood
3838 * DoS attack, an attacker could send data which would eventually
3839 * consume all available buffer space if it were ACKed. By not ACKing
3840 * the data, we avoid this DoS scenario.
3841 */
3842
3843 int
3844 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3845 struct sockaddr *src;
3846 struct sockaddr *dst;
3847 struct tcphdr *th;
3848 unsigned int hlen;
3849 struct socket *so;
3850 struct mbuf *m;
3851 u_char *optp;
3852 int optlen;
3853 struct tcp_opt_info *oi;
3854 {
3855 struct tcpcb tb, *tp;
3856 long win;
3857 struct syn_cache *sc;
3858 struct syn_cache_head *scp;
3859 struct mbuf *ipopts;
3860 struct tcp_opt_info opti;
3861
3862 tp = sototcpcb(so);
3863
3864 bzero(&opti, sizeof(opti));
3865
3866 /*
3867 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3868 *
3869 * Note this check is performed in tcp_input() very early on.
3870 */
3871
3872 /*
3873 * Initialize some local state.
3874 */
3875 win = sbspace(&so->so_rcv);
3876 if (win > TCP_MAXWIN)
3877 win = TCP_MAXWIN;
3878
3879 switch (src->sa_family) {
3880 #ifdef INET
3881 case AF_INET:
3882 /*
3883 * Remember the IP options, if any.
3884 */
3885 ipopts = ip_srcroute();
3886 break;
3887 #endif
3888 default:
3889 ipopts = NULL;
3890 }
3891
3892 #ifdef TCP_SIGNATURE
3893 if (optp || (tp->t_flags & TF_SIGNATURE))
3894 #else
3895 if (optp)
3896 #endif
3897 {
3898 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3899 #ifdef TCP_SIGNATURE
3900 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3901 #endif
3902 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3903 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3904 return (0);
3905 } else
3906 tb.t_flags = 0;
3907
3908 /*
3909 * See if we already have an entry for this connection.
3910 * If we do, resend the SYN,ACK. We do not count this
3911 * as a retransmission (XXX though maybe we should).
3912 */
3913 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3914 tcpstat.tcps_sc_dupesyn++;
3915 if (ipopts) {
3916 /*
3917 * If we were remembering a previous source route,
3918 * forget it and use the new one we've been given.
3919 */
3920 if (sc->sc_ipopts)
3921 (void) m_free(sc->sc_ipopts);
3922 sc->sc_ipopts = ipopts;
3923 }
3924 sc->sc_timestamp = tb.ts_recent;
3925 if (syn_cache_respond(sc, m) == 0) {
3926 tcpstat.tcps_sndacks++;
3927 tcpstat.tcps_sndtotal++;
3928 }
3929 return (1);
3930 }
3931
3932 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3933 if (sc == NULL) {
3934 if (ipopts)
3935 (void) m_free(ipopts);
3936 return (0);
3937 }
3938
3939 /*
3940 * Fill in the cache, and put the necessary IP and TCP
3941 * options into the reply.
3942 */
3943 bzero(sc, sizeof(struct syn_cache));
3944 callout_init(&sc->sc_timer);
3945 bcopy(src, &sc->sc_src, src->sa_len);
3946 bcopy(dst, &sc->sc_dst, dst->sa_len);
3947 sc->sc_flags = 0;
3948 sc->sc_ipopts = ipopts;
3949 sc->sc_irs = th->th_seq;
3950 switch (src->sa_family) {
3951 #ifdef INET
3952 case AF_INET:
3953 {
3954 struct sockaddr_in *srcin = (void *) src;
3955 struct sockaddr_in *dstin = (void *) dst;
3956
3957 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3958 &srcin->sin_addr, dstin->sin_port,
3959 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3960 break;
3961 }
3962 #endif /* INET */
3963 #ifdef INET6
3964 case AF_INET6:
3965 {
3966 struct sockaddr_in6 *srcin6 = (void *) src;
3967 struct sockaddr_in6 *dstin6 = (void *) dst;
3968
3969 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3970 &srcin6->sin6_addr, dstin6->sin6_port,
3971 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3972 break;
3973 }
3974 #endif /* INET6 */
3975 }
3976 sc->sc_peermaxseg = oi->maxseg;
3977 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3978 m->m_pkthdr.rcvif : NULL,
3979 sc->sc_src.sa.sa_family);
3980 sc->sc_win = win;
3981 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3982 sc->sc_timestamp = tb.ts_recent;
3983 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3984 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3985 sc->sc_flags |= SCF_TIMESTAMP;
3986 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3987 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3988 sc->sc_requested_s_scale = tb.requested_s_scale;
3989 sc->sc_request_r_scale = 0;
3990 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3991 TCP_MAXWIN << sc->sc_request_r_scale <
3992 so->so_rcv.sb_hiwat)
3993 sc->sc_request_r_scale++;
3994 } else {
3995 sc->sc_requested_s_scale = 15;
3996 sc->sc_request_r_scale = 15;
3997 }
3998 #ifdef TCP_SIGNATURE
3999 if (tb.t_flags & TF_SIGNATURE)
4000 sc->sc_flags |= SCF_SIGNATURE;
4001 #endif
4002 sc->sc_tp = tp;
4003 if (syn_cache_respond(sc, m) == 0) {
4004 syn_cache_insert(sc, tp);
4005 tcpstat.tcps_sndacks++;
4006 tcpstat.tcps_sndtotal++;
4007 } else {
4008 SYN_CACHE_PUT(sc);
4009 tcpstat.tcps_sc_dropped++;
4010 }
4011 return (1);
4012 }
4013
4014 int
4015 syn_cache_respond(sc, m)
4016 struct syn_cache *sc;
4017 struct mbuf *m;
4018 {
4019 struct route *ro;
4020 u_int8_t *optp;
4021 int optlen, error;
4022 u_int16_t tlen;
4023 struct ip *ip = NULL;
4024 #ifdef INET6
4025 struct ip6_hdr *ip6 = NULL;
4026 #endif
4027 struct tcpcb *tp;
4028 struct tcphdr *th;
4029 u_int hlen;
4030 struct socket *so;
4031
4032 switch (sc->sc_src.sa.sa_family) {
4033 case AF_INET:
4034 hlen = sizeof(struct ip);
4035 ro = &sc->sc_route4;
4036 break;
4037 #ifdef INET6
4038 case AF_INET6:
4039 hlen = sizeof(struct ip6_hdr);
4040 ro = (struct route *)&sc->sc_route6;
4041 break;
4042 #endif
4043 default:
4044 if (m)
4045 m_freem(m);
4046 return (EAFNOSUPPORT);
4047 }
4048
4049 /* Compute the size of the TCP options. */
4050 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4051 #ifdef TCP_SIGNATURE
4052 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4053 #endif
4054 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4055
4056 tlen = hlen + sizeof(struct tcphdr) + optlen;
4057
4058 /*
4059 * Create the IP+TCP header from scratch.
4060 */
4061 if (m)
4062 m_freem(m);
4063 #ifdef DIAGNOSTIC
4064 if (max_linkhdr + tlen > MCLBYTES)
4065 return (ENOBUFS);
4066 #endif
4067 MGETHDR(m, M_DONTWAIT, MT_DATA);
4068 if (m && tlen > MHLEN) {
4069 MCLGET(m, M_DONTWAIT);
4070 if ((m->m_flags & M_EXT) == 0) {
4071 m_freem(m);
4072 m = NULL;
4073 }
4074 }
4075 if (m == NULL)
4076 return (ENOBUFS);
4077 MCLAIM(m, &tcp_tx_mowner);
4078
4079 /* Fixup the mbuf. */
4080 m->m_data += max_linkhdr;
4081 m->m_len = m->m_pkthdr.len = tlen;
4082 if (sc->sc_tp) {
4083 tp = sc->sc_tp;
4084 if (tp->t_inpcb)
4085 so = tp->t_inpcb->inp_socket;
4086 #ifdef INET6
4087 else if (tp->t_in6pcb)
4088 so = tp->t_in6pcb->in6p_socket;
4089 #endif
4090 else
4091 so = NULL;
4092 } else
4093 so = NULL;
4094 m->m_pkthdr.rcvif = NULL;
4095 memset(mtod(m, u_char *), 0, tlen);
4096
4097 switch (sc->sc_src.sa.sa_family) {
4098 case AF_INET:
4099 ip = mtod(m, struct ip *);
4100 ip->ip_v = 4;
4101 ip->ip_dst = sc->sc_src.sin.sin_addr;
4102 ip->ip_src = sc->sc_dst.sin.sin_addr;
4103 ip->ip_p = IPPROTO_TCP;
4104 th = (struct tcphdr *)(ip + 1);
4105 th->th_dport = sc->sc_src.sin.sin_port;
4106 th->th_sport = sc->sc_dst.sin.sin_port;
4107 break;
4108 #ifdef INET6
4109 case AF_INET6:
4110 ip6 = mtod(m, struct ip6_hdr *);
4111 ip6->ip6_vfc = IPV6_VERSION;
4112 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4113 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4114 ip6->ip6_nxt = IPPROTO_TCP;
4115 /* ip6_plen will be updated in ip6_output() */
4116 th = (struct tcphdr *)(ip6 + 1);
4117 th->th_dport = sc->sc_src.sin6.sin6_port;
4118 th->th_sport = sc->sc_dst.sin6.sin6_port;
4119 break;
4120 #endif
4121 default:
4122 th = NULL;
4123 }
4124
4125 th->th_seq = htonl(sc->sc_iss);
4126 th->th_ack = htonl(sc->sc_irs + 1);
4127 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4128 th->th_flags = TH_SYN|TH_ACK;
4129 th->th_win = htons(sc->sc_win);
4130 /* th_sum already 0 */
4131 /* th_urp already 0 */
4132
4133 /* Tack on the TCP options. */
4134 optp = (u_int8_t *)(th + 1);
4135 *optp++ = TCPOPT_MAXSEG;
4136 *optp++ = 4;
4137 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4138 *optp++ = sc->sc_ourmaxseg & 0xff;
4139
4140 if (sc->sc_request_r_scale != 15) {
4141 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4142 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4143 sc->sc_request_r_scale);
4144 optp += 4;
4145 }
4146
4147 if (sc->sc_flags & SCF_TIMESTAMP) {
4148 u_int32_t *lp = (u_int32_t *)(optp);
4149 /* Form timestamp option as shown in appendix A of RFC 1323. */
4150 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4151 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4152 *lp = htonl(sc->sc_timestamp);
4153 optp += TCPOLEN_TSTAMP_APPA;
4154 }
4155
4156 #ifdef TCP_SIGNATURE
4157 if (sc->sc_flags & SCF_SIGNATURE) {
4158 struct secasvar *sav;
4159 u_int8_t *sigp;
4160
4161 sav = tcp_signature_getsav(m, th);
4162
4163 if (sav == NULL) {
4164 if (m)
4165 m_freem(m);
4166 return (EPERM);
4167 }
4168
4169 *optp++ = TCPOPT_SIGNATURE;
4170 *optp++ = TCPOLEN_SIGNATURE;
4171 sigp = optp;
4172 bzero(optp, TCP_SIGLEN);
4173 optp += TCP_SIGLEN;
4174 *optp++ = TCPOPT_NOP;
4175 *optp++ = TCPOPT_EOL;
4176
4177 (void)tcp_signature(m, th, hlen, sav, sigp);
4178
4179 key_sa_recordxfer(sav, m);
4180 #ifdef FAST_IPSEC
4181 KEY_FREESAV(&sav);
4182 #else
4183 key_freesav(sav);
4184 #endif
4185 }
4186 #endif
4187
4188 /* Compute the packet's checksum. */
4189 switch (sc->sc_src.sa.sa_family) {
4190 case AF_INET:
4191 ip->ip_len = htons(tlen - hlen);
4192 th->th_sum = 0;
4193 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4194 break;
4195 #ifdef INET6
4196 case AF_INET6:
4197 ip6->ip6_plen = htons(tlen - hlen);
4198 th->th_sum = 0;
4199 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4200 break;
4201 #endif
4202 }
4203
4204 /*
4205 * Fill in some straggling IP bits. Note the stack expects
4206 * ip_len to be in host order, for convenience.
4207 */
4208 switch (sc->sc_src.sa.sa_family) {
4209 #ifdef INET
4210 case AF_INET:
4211 ip->ip_len = htons(tlen);
4212 ip->ip_ttl = ip_defttl;
4213 /* XXX tos? */
4214 break;
4215 #endif
4216 #ifdef INET6
4217 case AF_INET6:
4218 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4219 ip6->ip6_vfc |= IPV6_VERSION;
4220 ip6->ip6_plen = htons(tlen - hlen);
4221 /* ip6_hlim will be initialized afterwards */
4222 /* XXX flowlabel? */
4223 break;
4224 #endif
4225 }
4226
4227 /* XXX use IPsec policy on listening socket, on SYN ACK */
4228 tp = sc->sc_tp;
4229
4230 switch (sc->sc_src.sa.sa_family) {
4231 #ifdef INET
4232 case AF_INET:
4233 error = ip_output(m, sc->sc_ipopts, ro,
4234 (ip_mtudisc ? IP_MTUDISC : 0),
4235 (struct ip_moptions *)NULL, so);
4236 break;
4237 #endif
4238 #ifdef INET6
4239 case AF_INET6:
4240 ip6->ip6_hlim = in6_selecthlim(NULL,
4241 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4242
4243 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4244 (struct ip6_moptions *)0, so, NULL);
4245 break;
4246 #endif
4247 default:
4248 error = EAFNOSUPPORT;
4249 break;
4250 }
4251 return (error);
4252 }
4253