tcp_input.c revision 1.216 1 /* $NetBSD: tcp_input.c,v 1.216 2005/01/27 17:10:07 mycroft Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.216 2005/01/27 17:10:07 mycroft Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210
211 #include <machine/stdarg.h>
212
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif /* IPSEC */
223
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* FAST_IPSEC*/
232
233 int tcprexmtthresh = 3;
234 int tcp_log_refused;
235
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240
241 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
242
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
246
247 /*
248 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249 */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 tp->t_in6pcb->in6p_route.ro_rt) { \
255 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 } \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261
262 /*
263 * Macro to compute ACK transmission behavior. Delay the ACK unless
264 * we have already delayed an ACK (must send an ACK every two segments).
265 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266 * option is enabled.
267 */
268 #define TCP_SETUP_ACK(tp, th) \
269 do { \
270 if ((tp)->t_flags & TF_DELACK || \
271 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 tp->t_flags |= TF_ACKNOW; \
273 else \
274 TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276
277 /*
278 * Convert TCP protocol fields to host order for easier processing.
279 */
280 #define TCP_FIELDS_TO_HOST(th) \
281 do { \
282 NTOHL((th)->th_seq); \
283 NTOHL((th)->th_ack); \
284 NTOHS((th)->th_win); \
285 NTOHS((th)->th_urp); \
286 } while (/*CONSTCOND*/ 0)
287
288 /*
289 * ... and reverse the above.
290 */
291 #define TCP_FIELDS_TO_NET(th) \
292 do { \
293 HTONL((th)->th_seq); \
294 HTONL((th)->th_ack); \
295 HTONS((th)->th_win); \
296 HTONS((th)->th_urp); \
297 } while (/*CONSTCOND*/ 0)
298
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306
307 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
308
309 #else
310
311 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
312
313 #endif /* TCP_CSUM_COUNTERS */
314
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331
332 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
333
334 #else
335
336 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef INET
341 static void tcp4_log_refused __P((const struct ip *, const struct tcphdr *));
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused
345 __P((const struct ip6_hdr *, const struct tcphdr *));
346 #endif
347
348 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
349
350 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
351
352 int
353 tcp_reass(tp, th, m, tlen)
354 struct tcpcb *tp;
355 struct tcphdr *th;
356 struct mbuf *m;
357 int *tlen;
358 {
359 struct ipqent *p, *q, *nq, *tiqe = NULL;
360 struct socket *so = NULL;
361 int pkt_flags;
362 tcp_seq pkt_seq;
363 unsigned pkt_len;
364 u_long rcvpartdupbyte = 0;
365 u_long rcvoobyte;
366 #ifdef TCP_REASS_COUNTERS
367 u_int count = 0;
368 #endif
369
370 if (tp->t_inpcb)
371 so = tp->t_inpcb->inp_socket;
372 #ifdef INET6
373 else if (tp->t_in6pcb)
374 so = tp->t_in6pcb->in6p_socket;
375 #endif
376
377 TCP_REASS_LOCK_CHECK(tp);
378
379 /*
380 * Call with th==0 after become established to
381 * force pre-ESTABLISHED data up to user socket.
382 */
383 if (th == 0)
384 goto present;
385
386 rcvoobyte = *tlen;
387 /*
388 * Copy these to local variables because the tcpiphdr
389 * gets munged while we are collapsing mbufs.
390 */
391 pkt_seq = th->th_seq;
392 pkt_len = *tlen;
393 pkt_flags = th->th_flags;
394
395 TCP_REASS_COUNTER_INCR(&tcp_reass_);
396
397 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
398 /*
399 * When we miss a packet, the vast majority of time we get
400 * packets that follow it in order. So optimize for that.
401 */
402 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
403 p->ipqe_len += pkt_len;
404 p->ipqe_flags |= pkt_flags;
405 m_cat(p->ipre_mlast, m);
406 TRAVERSE(p->ipre_mlast);
407 m = NULL;
408 tiqe = p;
409 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
410 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
411 goto skip_replacement;
412 }
413 /*
414 * While we're here, if the pkt is completely beyond
415 * anything we have, just insert it at the tail.
416 */
417 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
418 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
419 goto insert_it;
420 }
421 }
422
423 q = TAILQ_FIRST(&tp->segq);
424
425 if (q != NULL) {
426 /*
427 * If this segment immediately precedes the first out-of-order
428 * block, simply slap the segment in front of it and (mostly)
429 * skip the complicated logic.
430 */
431 if (pkt_seq + pkt_len == q->ipqe_seq) {
432 q->ipqe_seq = pkt_seq;
433 q->ipqe_len += pkt_len;
434 q->ipqe_flags |= pkt_flags;
435 m_cat(m, q->ipqe_m);
436 q->ipqe_m = m;
437 q->ipre_mlast = m; /* last mbuf may have changed */
438 TRAVERSE(q->ipre_mlast);
439 tiqe = q;
440 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
441 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
442 goto skip_replacement;
443 }
444 } else {
445 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
446 }
447
448 /*
449 * Find a segment which begins after this one does.
450 */
451 for (p = NULL; q != NULL; q = nq) {
452 nq = TAILQ_NEXT(q, ipqe_q);
453 #ifdef TCP_REASS_COUNTERS
454 count++;
455 #endif
456 /*
457 * If the received segment is just right after this
458 * fragment, merge the two together and then check
459 * for further overlaps.
460 */
461 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
462 #ifdef TCPREASS_DEBUG
463 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
464 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
465 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
466 #endif
467 pkt_len += q->ipqe_len;
468 pkt_flags |= q->ipqe_flags;
469 pkt_seq = q->ipqe_seq;
470 m_cat(q->ipre_mlast, m);
471 TRAVERSE(q->ipre_mlast);
472 m = q->ipqe_m;
473 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
474 goto free_ipqe;
475 }
476 /*
477 * If the received segment is completely past this
478 * fragment, we need to go the next fragment.
479 */
480 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
481 p = q;
482 continue;
483 }
484 /*
485 * If the fragment is past the received segment,
486 * it (or any following) can't be concatenated.
487 */
488 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
489 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
490 break;
491 }
492
493 /*
494 * We've received all the data in this segment before.
495 * mark it as a duplicate and return.
496 */
497 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
498 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
499 tcpstat.tcps_rcvduppack++;
500 tcpstat.tcps_rcvdupbyte += pkt_len;
501 m_freem(m);
502 if (tiqe != NULL)
503 pool_put(&tcpipqent_pool, tiqe);
504 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
505 return (0);
506 }
507 /*
508 * Received segment completely overlaps this fragment
509 * so we drop the fragment (this keeps the temporal
510 * ordering of segments correct).
511 */
512 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
513 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
514 rcvpartdupbyte += q->ipqe_len;
515 m_freem(q->ipqe_m);
516 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
517 goto free_ipqe;
518 }
519 /*
520 * RX'ed segment extends past the end of the
521 * fragment. Drop the overlapping bytes. Then
522 * merge the fragment and segment then treat as
523 * a longer received packet.
524 */
525 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
526 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
527 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
528 #ifdef TCPREASS_DEBUG
529 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
530 tp, overlap,
531 pkt_seq, pkt_seq + pkt_len, pkt_len);
532 #endif
533 m_adj(m, overlap);
534 rcvpartdupbyte += overlap;
535 m_cat(q->ipre_mlast, m);
536 TRAVERSE(q->ipre_mlast);
537 m = q->ipqe_m;
538 pkt_seq = q->ipqe_seq;
539 pkt_len += q->ipqe_len - overlap;
540 rcvoobyte -= overlap;
541 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
542 goto free_ipqe;
543 }
544 /*
545 * RX'ed segment extends past the front of the
546 * fragment. Drop the overlapping bytes on the
547 * received packet. The packet will then be
548 * contatentated with this fragment a bit later.
549 */
550 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
551 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
552 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
553 #ifdef TCPREASS_DEBUG
554 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
555 tp, overlap,
556 pkt_seq, pkt_seq + pkt_len, pkt_len);
557 #endif
558 m_adj(m, -overlap);
559 pkt_len -= overlap;
560 rcvpartdupbyte += overlap;
561 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
562 rcvoobyte -= overlap;
563 }
564 /*
565 * If the received segment immediates precedes this
566 * fragment then tack the fragment onto this segment
567 * and reinsert the data.
568 */
569 if (q->ipqe_seq == pkt_seq + pkt_len) {
570 #ifdef TCPREASS_DEBUG
571 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
572 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
573 pkt_seq, pkt_seq + pkt_len, pkt_len);
574 #endif
575 pkt_len += q->ipqe_len;
576 pkt_flags |= q->ipqe_flags;
577 m_cat(m, q->ipqe_m);
578 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
579 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
580 if (tiqe == NULL)
581 tiqe = q;
582 else
583 pool_put(&tcpipqent_pool, q);
584 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
585 break;
586 }
587 /*
588 * If the fragment is before the segment, remember it.
589 * When this loop is terminated, p will contain the
590 * pointer to fragment that is right before the received
591 * segment.
592 */
593 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
594 p = q;
595
596 continue;
597
598 /*
599 * This is a common operation. It also will allow
600 * to save doing a malloc/free in most instances.
601 */
602 free_ipqe:
603 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
604 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
605 if (tiqe == NULL)
606 tiqe = q;
607 else
608 pool_put(&tcpipqent_pool, q);
609 }
610
611 #ifdef TCP_REASS_COUNTERS
612 if (count > 7)
613 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
614 else if (count > 0)
615 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
616 #endif
617
618 insert_it:
619
620 /*
621 * Allocate a new queue entry since the received segment did not
622 * collapse onto any other out-of-order block; thus we are allocating
623 * a new block. If it had collapsed, tiqe would not be NULL and
624 * we would be reusing it.
625 * XXX If we can't, just drop the packet. XXX
626 */
627 if (tiqe == NULL) {
628 tiqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
629 if (tiqe == NULL) {
630 tcpstat.tcps_rcvmemdrop++;
631 m_freem(m);
632 return (0);
633 }
634 }
635
636 /*
637 * Update the counters.
638 */
639 tcpstat.tcps_rcvoopack++;
640 tcpstat.tcps_rcvoobyte += rcvoobyte;
641 if (rcvpartdupbyte) {
642 tcpstat.tcps_rcvpartduppack++;
643 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
644 }
645
646 /*
647 * Insert the new fragment queue entry into both queues.
648 */
649 tiqe->ipqe_m = m;
650 tiqe->ipre_mlast = m;
651 tiqe->ipqe_seq = pkt_seq;
652 tiqe->ipqe_len = pkt_len;
653 tiqe->ipqe_flags = pkt_flags;
654 if (p == NULL) {
655 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
656 #ifdef TCPREASS_DEBUG
657 if (tiqe->ipqe_seq != tp->rcv_nxt)
658 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
659 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
660 #endif
661 } else {
662 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
663 #ifdef TCPREASS_DEBUG
664 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
665 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
666 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
667 #endif
668 }
669
670 skip_replacement:
671
672 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
673
674 present:
675 /*
676 * Present data to user, advancing rcv_nxt through
677 * completed sequence space.
678 */
679 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
680 return (0);
681 q = TAILQ_FIRST(&tp->segq);
682 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
683 return (0);
684 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
685 return (0);
686
687 tp->rcv_nxt += q->ipqe_len;
688 pkt_flags = q->ipqe_flags & TH_FIN;
689 ND6_HINT(tp);
690
691 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
692 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
693 if (so->so_state & SS_CANTRCVMORE)
694 m_freem(q->ipqe_m);
695 else
696 sbappendstream(&so->so_rcv, q->ipqe_m);
697 pool_put(&tcpipqent_pool, q);
698 sorwakeup(so);
699 return (pkt_flags);
700 }
701
702 #ifdef INET6
703 int
704 tcp6_input(mp, offp, proto)
705 struct mbuf **mp;
706 int *offp, proto;
707 {
708 struct mbuf *m = *mp;
709
710 /*
711 * draft-itojun-ipv6-tcp-to-anycast
712 * better place to put this in?
713 */
714 if (m->m_flags & M_ANYCAST6) {
715 struct ip6_hdr *ip6;
716 if (m->m_len < sizeof(struct ip6_hdr)) {
717 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
718 tcpstat.tcps_rcvshort++;
719 return IPPROTO_DONE;
720 }
721 }
722 ip6 = mtod(m, struct ip6_hdr *);
723 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
724 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
725 return IPPROTO_DONE;
726 }
727
728 tcp_input(m, *offp, proto);
729 return IPPROTO_DONE;
730 }
731 #endif
732
733 #ifdef INET
734 static void
735 tcp4_log_refused(ip, th)
736 const struct ip *ip;
737 const struct tcphdr *th;
738 {
739 char src[4*sizeof "123"];
740 char dst[4*sizeof "123"];
741
742 if (ip) {
743 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
744 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
745 }
746 else {
747 strlcpy(src, "(unknown)", sizeof(src));
748 strlcpy(dst, "(unknown)", sizeof(dst));
749 }
750 log(LOG_INFO,
751 "Connection attempt to TCP %s:%d from %s:%d\n",
752 dst, ntohs(th->th_dport),
753 src, ntohs(th->th_sport));
754 }
755 #endif
756
757 #ifdef INET6
758 static void
759 tcp6_log_refused(ip6, th)
760 const struct ip6_hdr *ip6;
761 const struct tcphdr *th;
762 {
763 char src[INET6_ADDRSTRLEN];
764 char dst[INET6_ADDRSTRLEN];
765
766 if (ip6) {
767 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
768 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
769 }
770 else {
771 strlcpy(src, "(unknown v6)", sizeof(src));
772 strlcpy(dst, "(unknown v6)", sizeof(dst));
773 }
774 log(LOG_INFO,
775 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
776 dst, ntohs(th->th_dport),
777 src, ntohs(th->th_sport));
778 }
779 #endif
780
781 /*
782 * Checksum extended TCP header and data.
783 */
784 int
785 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
786 int off, int tlen)
787 {
788
789 /*
790 * XXX it's better to record and check if this mbuf is
791 * already checked.
792 */
793
794 switch (af) {
795 #ifdef INET
796 case AF_INET:
797 switch (m->m_pkthdr.csum_flags &
798 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
799 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
800 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
801 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
802 goto badcsum;
803
804 case M_CSUM_TCPv4|M_CSUM_DATA: {
805 u_int32_t hw_csum = m->m_pkthdr.csum_data;
806
807 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
808 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
809 const struct ip *ip =
810 mtod(m, const struct ip *);
811
812 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
813 ip->ip_dst.s_addr,
814 htons(hw_csum + tlen + off + IPPROTO_TCP));
815 }
816 if ((hw_csum ^ 0xffff) != 0)
817 goto badcsum;
818 break;
819 }
820
821 case M_CSUM_TCPv4:
822 /* Checksum was okay. */
823 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
824 break;
825
826 default:
827 /*
828 * Must compute it ourselves. Maybe skip checksum
829 * on loopback interfaces.
830 */
831 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
832 IFF_LOOPBACK) ||
833 tcp_do_loopback_cksum)) {
834 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
835 if (in4_cksum(m, IPPROTO_TCP, toff,
836 tlen + off) != 0)
837 goto badcsum;
838 }
839 break;
840 }
841 break;
842 #endif /* INET4 */
843
844 #ifdef INET6
845 case AF_INET6:
846 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
847 tcp_do_loopback_cksum)) {
848 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
849 goto badcsum;
850 }
851 break;
852 #endif /* INET6 */
853 }
854
855 return 0;
856
857 badcsum:
858 tcpstat.tcps_rcvbadsum++;
859 return -1;
860 }
861
862 /*
863 * TCP input routine, follows pages 65-76 of the
864 * protocol specification dated September, 1981 very closely.
865 */
866 void
867 tcp_input(struct mbuf *m, ...)
868 {
869 struct tcphdr *th;
870 struct ip *ip;
871 struct inpcb *inp;
872 #ifdef INET6
873 struct ip6_hdr *ip6;
874 struct in6pcb *in6p;
875 #endif
876 u_int8_t *optp = NULL;
877 int optlen = 0;
878 int len, tlen, toff, hdroptlen = 0;
879 struct tcpcb *tp = 0;
880 int tiflags;
881 struct socket *so = NULL;
882 int todrop, acked, ourfinisacked, needoutput = 0;
883 #ifdef TCP_DEBUG
884 short ostate = 0;
885 #endif
886 int iss = 0;
887 u_long tiwin;
888 struct tcp_opt_info opti;
889 int off, iphlen;
890 va_list ap;
891 int af; /* af on the wire */
892 struct mbuf *tcp_saveti = NULL;
893
894 MCLAIM(m, &tcp_rx_mowner);
895 va_start(ap, m);
896 toff = va_arg(ap, int);
897 (void)va_arg(ap, int); /* ignore value, advance ap */
898 va_end(ap);
899
900 tcpstat.tcps_rcvtotal++;
901
902 bzero(&opti, sizeof(opti));
903 opti.ts_present = 0;
904 opti.maxseg = 0;
905
906 /*
907 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
908 *
909 * TCP is, by definition, unicast, so we reject all
910 * multicast outright.
911 *
912 * Note, there are additional src/dst address checks in
913 * the AF-specific code below.
914 */
915 if (m->m_flags & (M_BCAST|M_MCAST)) {
916 /* XXX stat */
917 goto drop;
918 }
919 #ifdef INET6
920 if (m->m_flags & M_ANYCAST6) {
921 /* XXX stat */
922 goto drop;
923 }
924 #endif
925
926 /*
927 * Get IP and TCP header.
928 * Note: IP leaves IP header in first mbuf.
929 */
930 ip = mtod(m, struct ip *);
931 #ifdef INET6
932 ip6 = NULL;
933 #endif
934 switch (ip->ip_v) {
935 #ifdef INET
936 case 4:
937 af = AF_INET;
938 iphlen = sizeof(struct ip);
939 ip = mtod(m, struct ip *);
940 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
941 sizeof(struct tcphdr));
942 if (th == NULL) {
943 tcpstat.tcps_rcvshort++;
944 return;
945 }
946 /* We do the checksum after PCB lookup... */
947 len = ntohs(ip->ip_len);
948 tlen = len - toff;
949 break;
950 #endif
951 #ifdef INET6
952 case 6:
953 ip = NULL;
954 iphlen = sizeof(struct ip6_hdr);
955 af = AF_INET6;
956 ip6 = mtod(m, struct ip6_hdr *);
957 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
958 sizeof(struct tcphdr));
959 if (th == NULL) {
960 tcpstat.tcps_rcvshort++;
961 return;
962 }
963
964 /* Be proactive about malicious use of IPv4 mapped address */
965 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
966 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
967 /* XXX stat */
968 goto drop;
969 }
970
971 /*
972 * Be proactive about unspecified IPv6 address in source.
973 * As we use all-zero to indicate unbounded/unconnected pcb,
974 * unspecified IPv6 address can be used to confuse us.
975 *
976 * Note that packets with unspecified IPv6 destination is
977 * already dropped in ip6_input.
978 */
979 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
980 /* XXX stat */
981 goto drop;
982 }
983
984 /*
985 * Make sure destination address is not multicast.
986 * Source address checked in ip6_input().
987 */
988 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
989 /* XXX stat */
990 goto drop;
991 }
992
993 /* We do the checksum after PCB lookup... */
994 len = m->m_pkthdr.len;
995 tlen = len - toff;
996 break;
997 #endif
998 default:
999 m_freem(m);
1000 return;
1001 }
1002
1003 KASSERT(TCP_HDR_ALIGNED_P(th));
1004
1005 /*
1006 * Check that TCP offset makes sense,
1007 * pull out TCP options and adjust length. XXX
1008 */
1009 off = th->th_off << 2;
1010 if (off < sizeof (struct tcphdr) || off > tlen) {
1011 tcpstat.tcps_rcvbadoff++;
1012 goto drop;
1013 }
1014 tlen -= off;
1015
1016 /*
1017 * tcp_input() has been modified to use tlen to mean the TCP data
1018 * length throughout the function. Other functions can use
1019 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1020 * rja
1021 */
1022
1023 if (off > sizeof (struct tcphdr)) {
1024 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1025 if (th == NULL) {
1026 tcpstat.tcps_rcvshort++;
1027 return;
1028 }
1029 /*
1030 * NOTE: ip/ip6 will not be affected by m_pulldown()
1031 * (as they're before toff) and we don't need to update those.
1032 */
1033 KASSERT(TCP_HDR_ALIGNED_P(th));
1034 optlen = off - sizeof (struct tcphdr);
1035 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1036 /*
1037 * Do quick retrieval of timestamp options ("options
1038 * prediction?"). If timestamp is the only option and it's
1039 * formatted as recommended in RFC 1323 appendix A, we
1040 * quickly get the values now and not bother calling
1041 * tcp_dooptions(), etc.
1042 */
1043 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1044 (optlen > TCPOLEN_TSTAMP_APPA &&
1045 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1046 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1047 (th->th_flags & TH_SYN) == 0) {
1048 opti.ts_present = 1;
1049 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1050 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1051 optp = NULL; /* we've parsed the options */
1052 }
1053 }
1054 tiflags = th->th_flags;
1055
1056 /*
1057 * Locate pcb for segment.
1058 */
1059 findpcb:
1060 inp = NULL;
1061 #ifdef INET6
1062 in6p = NULL;
1063 #endif
1064 switch (af) {
1065 #ifdef INET
1066 case AF_INET:
1067 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1068 ip->ip_dst, th->th_dport);
1069 if (inp == 0) {
1070 ++tcpstat.tcps_pcbhashmiss;
1071 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1072 }
1073 #ifdef INET6
1074 if (inp == 0) {
1075 struct in6_addr s, d;
1076
1077 /* mapped addr case */
1078 bzero(&s, sizeof(s));
1079 s.s6_addr16[5] = htons(0xffff);
1080 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1081 bzero(&d, sizeof(d));
1082 d.s6_addr16[5] = htons(0xffff);
1083 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1084 in6p = in6_pcblookup_connect(&tcbtable, &s,
1085 th->th_sport, &d, th->th_dport, 0);
1086 if (in6p == 0) {
1087 ++tcpstat.tcps_pcbhashmiss;
1088 in6p = in6_pcblookup_bind(&tcbtable, &d,
1089 th->th_dport, 0);
1090 }
1091 }
1092 #endif
1093 #ifndef INET6
1094 if (inp == 0)
1095 #else
1096 if (inp == 0 && in6p == 0)
1097 #endif
1098 {
1099 ++tcpstat.tcps_noport;
1100 if (tcp_log_refused &&
1101 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1102 tcp4_log_refused(ip, th);
1103 }
1104 TCP_FIELDS_TO_HOST(th);
1105 goto dropwithreset_ratelim;
1106 }
1107 #if defined(IPSEC) || defined(FAST_IPSEC)
1108 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1109 ipsec4_in_reject(m, inp)) {
1110 ipsecstat.in_polvio++;
1111 goto drop;
1112 }
1113 #ifdef INET6
1114 else if (in6p &&
1115 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1116 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1117 ipsecstat.in_polvio++;
1118 goto drop;
1119 }
1120 #endif
1121 #endif /*IPSEC*/
1122 break;
1123 #endif /*INET*/
1124 #ifdef INET6
1125 case AF_INET6:
1126 {
1127 int faith;
1128
1129 #if defined(NFAITH) && NFAITH > 0
1130 faith = faithprefix(&ip6->ip6_dst);
1131 #else
1132 faith = 0;
1133 #endif
1134 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1135 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1136 if (in6p == NULL) {
1137 ++tcpstat.tcps_pcbhashmiss;
1138 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1139 th->th_dport, faith);
1140 }
1141 if (in6p == NULL) {
1142 ++tcpstat.tcps_noport;
1143 if (tcp_log_refused &&
1144 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1145 tcp6_log_refused(ip6, th);
1146 }
1147 TCP_FIELDS_TO_HOST(th);
1148 goto dropwithreset_ratelim;
1149 }
1150 #if defined(IPSEC) || defined(FAST_IPSEC)
1151 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1152 ipsec6_in_reject(m, in6p)) {
1153 ipsec6stat.in_polvio++;
1154 goto drop;
1155 }
1156 #endif /*IPSEC*/
1157 break;
1158 }
1159 #endif
1160 }
1161
1162 /*
1163 * If the state is CLOSED (i.e., TCB does not exist) then
1164 * all data in the incoming segment is discarded.
1165 * If the TCB exists but is in CLOSED state, it is embryonic,
1166 * but should either do a listen or a connect soon.
1167 */
1168 tp = NULL;
1169 so = NULL;
1170 if (inp) {
1171 tp = intotcpcb(inp);
1172 so = inp->inp_socket;
1173 }
1174 #ifdef INET6
1175 else if (in6p) {
1176 tp = in6totcpcb(in6p);
1177 so = in6p->in6p_socket;
1178 }
1179 #endif
1180 if (tp == 0) {
1181 TCP_FIELDS_TO_HOST(th);
1182 goto dropwithreset_ratelim;
1183 }
1184 if (tp->t_state == TCPS_CLOSED)
1185 goto drop;
1186
1187 /*
1188 * Checksum extended TCP header and data.
1189 */
1190 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1191 goto badcsum;
1192
1193 TCP_FIELDS_TO_HOST(th);
1194
1195 /* Unscale the window into a 32-bit value. */
1196 if ((tiflags & TH_SYN) == 0)
1197 tiwin = th->th_win << tp->snd_scale;
1198 else
1199 tiwin = th->th_win;
1200
1201 #ifdef INET6
1202 /* save packet options if user wanted */
1203 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1204 if (in6p->in6p_options) {
1205 m_freem(in6p->in6p_options);
1206 in6p->in6p_options = 0;
1207 }
1208 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1209 }
1210 #endif
1211
1212 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1213 union syn_cache_sa src;
1214 union syn_cache_sa dst;
1215
1216 bzero(&src, sizeof(src));
1217 bzero(&dst, sizeof(dst));
1218 switch (af) {
1219 #ifdef INET
1220 case AF_INET:
1221 src.sin.sin_len = sizeof(struct sockaddr_in);
1222 src.sin.sin_family = AF_INET;
1223 src.sin.sin_addr = ip->ip_src;
1224 src.sin.sin_port = th->th_sport;
1225
1226 dst.sin.sin_len = sizeof(struct sockaddr_in);
1227 dst.sin.sin_family = AF_INET;
1228 dst.sin.sin_addr = ip->ip_dst;
1229 dst.sin.sin_port = th->th_dport;
1230 break;
1231 #endif
1232 #ifdef INET6
1233 case AF_INET6:
1234 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1235 src.sin6.sin6_family = AF_INET6;
1236 src.sin6.sin6_addr = ip6->ip6_src;
1237 src.sin6.sin6_port = th->th_sport;
1238
1239 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1240 dst.sin6.sin6_family = AF_INET6;
1241 dst.sin6.sin6_addr = ip6->ip6_dst;
1242 dst.sin6.sin6_port = th->th_dport;
1243 break;
1244 #endif /* INET6 */
1245 default:
1246 goto badsyn; /*sanity*/
1247 }
1248
1249 if (so->so_options & SO_DEBUG) {
1250 #ifdef TCP_DEBUG
1251 ostate = tp->t_state;
1252 #endif
1253
1254 tcp_saveti = NULL;
1255 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1256 goto nosave;
1257
1258 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1259 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1260 if (!tcp_saveti)
1261 goto nosave;
1262 } else {
1263 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1264 if (!tcp_saveti)
1265 goto nosave;
1266 MCLAIM(m, &tcp_mowner);
1267 tcp_saveti->m_len = iphlen;
1268 m_copydata(m, 0, iphlen,
1269 mtod(tcp_saveti, caddr_t));
1270 }
1271
1272 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1273 m_freem(tcp_saveti);
1274 tcp_saveti = NULL;
1275 } else {
1276 tcp_saveti->m_len += sizeof(struct tcphdr);
1277 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1278 sizeof(struct tcphdr));
1279 }
1280 nosave:;
1281 }
1282 if (so->so_options & SO_ACCEPTCONN) {
1283 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1284 if (tiflags & TH_RST) {
1285 syn_cache_reset(&src.sa, &dst.sa, th);
1286 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1287 (TH_ACK|TH_SYN)) {
1288 /*
1289 * Received a SYN,ACK. This should
1290 * never happen while we are in
1291 * LISTEN. Send an RST.
1292 */
1293 goto badsyn;
1294 } else if (tiflags & TH_ACK) {
1295 so = syn_cache_get(&src.sa, &dst.sa,
1296 th, toff, tlen, so, m);
1297 if (so == NULL) {
1298 /*
1299 * We don't have a SYN for
1300 * this ACK; send an RST.
1301 */
1302 goto badsyn;
1303 } else if (so ==
1304 (struct socket *)(-1)) {
1305 /*
1306 * We were unable to create
1307 * the connection. If the
1308 * 3-way handshake was
1309 * completed, and RST has
1310 * been sent to the peer.
1311 * Since the mbuf might be
1312 * in use for the reply,
1313 * do not free it.
1314 */
1315 m = NULL;
1316 } else {
1317 /*
1318 * We have created a
1319 * full-blown connection.
1320 */
1321 tp = NULL;
1322 inp = NULL;
1323 #ifdef INET6
1324 in6p = NULL;
1325 #endif
1326 switch (so->so_proto->pr_domain->dom_family) {
1327 #ifdef INET
1328 case AF_INET:
1329 inp = sotoinpcb(so);
1330 tp = intotcpcb(inp);
1331 break;
1332 #endif
1333 #ifdef INET6
1334 case AF_INET6:
1335 in6p = sotoin6pcb(so);
1336 tp = in6totcpcb(in6p);
1337 break;
1338 #endif
1339 }
1340 if (tp == NULL)
1341 goto badsyn; /*XXX*/
1342 tiwin <<= tp->snd_scale;
1343 goto after_listen;
1344 }
1345 } else {
1346 /*
1347 * None of RST, SYN or ACK was set.
1348 * This is an invalid packet for a
1349 * TCB in LISTEN state. Send a RST.
1350 */
1351 goto badsyn;
1352 }
1353 } else {
1354 /*
1355 * Received a SYN.
1356 */
1357
1358 #ifdef INET6
1359 /*
1360 * If deprecated address is forbidden, we do
1361 * not accept SYN to deprecated interface
1362 * address to prevent any new inbound
1363 * connection from getting established.
1364 * When we do not accept SYN, we send a TCP
1365 * RST, with deprecated source address (instead
1366 * of dropping it). We compromise it as it is
1367 * much better for peer to send a RST, and
1368 * RST will be the final packet for the
1369 * exchange.
1370 *
1371 * If we do not forbid deprecated addresses, we
1372 * accept the SYN packet. RFC2462 does not
1373 * suggest dropping SYN in this case.
1374 * If we decipher RFC2462 5.5.4, it says like
1375 * this:
1376 * 1. use of deprecated addr with existing
1377 * communication is okay - "SHOULD continue
1378 * to be used"
1379 * 2. use of it with new communication:
1380 * (2a) "SHOULD NOT be used if alternate
1381 * address with sufficient scope is
1382 * available"
1383 * (2b) nothing mentioned otherwise.
1384 * Here we fall into (2b) case as we have no
1385 * choice in our source address selection - we
1386 * must obey the peer.
1387 *
1388 * The wording in RFC2462 is confusing, and
1389 * there are multiple description text for
1390 * deprecated address handling - worse, they
1391 * are not exactly the same. I believe 5.5.4
1392 * is the best one, so we follow 5.5.4.
1393 */
1394 if (af == AF_INET6 && !ip6_use_deprecated) {
1395 struct in6_ifaddr *ia6;
1396 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1397 &ip6->ip6_dst)) &&
1398 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1399 tp = NULL;
1400 goto dropwithreset;
1401 }
1402 }
1403 #endif
1404
1405 #ifdef IPSEC
1406 switch (af) {
1407 #ifdef INET
1408 case AF_INET:
1409 if (ipsec4_in_reject_so(m, so)) {
1410 ipsecstat.in_polvio++;
1411 tp = NULL;
1412 goto dropwithreset;
1413 }
1414 break;
1415 #endif
1416 #ifdef INET6
1417 case AF_INET6:
1418 if (ipsec6_in_reject_so(m, so)) {
1419 ipsec6stat.in_polvio++;
1420 tp = NULL;
1421 goto dropwithreset;
1422 }
1423 break;
1424 #endif
1425 }
1426 #endif
1427
1428 /*
1429 * LISTEN socket received a SYN
1430 * from itself? This can't possibly
1431 * be valid; drop the packet.
1432 */
1433 if (th->th_sport == th->th_dport) {
1434 int i;
1435
1436 switch (af) {
1437 #ifdef INET
1438 case AF_INET:
1439 i = in_hosteq(ip->ip_src, ip->ip_dst);
1440 break;
1441 #endif
1442 #ifdef INET6
1443 case AF_INET6:
1444 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1445 break;
1446 #endif
1447 default:
1448 i = 1;
1449 }
1450 if (i) {
1451 tcpstat.tcps_badsyn++;
1452 goto drop;
1453 }
1454 }
1455
1456 /*
1457 * SYN looks ok; create compressed TCP
1458 * state for it.
1459 */
1460 if (so->so_qlen <= so->so_qlimit &&
1461 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1462 so, m, optp, optlen, &opti))
1463 m = NULL;
1464 }
1465 goto drop;
1466 }
1467 }
1468
1469 after_listen:
1470 #ifdef DIAGNOSTIC
1471 /*
1472 * Should not happen now that all embryonic connections
1473 * are handled with compressed state.
1474 */
1475 if (tp->t_state == TCPS_LISTEN)
1476 panic("tcp_input: TCPS_LISTEN");
1477 #endif
1478
1479 /*
1480 * Segment received on connection.
1481 * Reset idle time and keep-alive timer.
1482 */
1483 tp->t_rcvtime = tcp_now;
1484 if (TCPS_HAVEESTABLISHED(tp->t_state))
1485 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1486
1487 /*
1488 * Process options.
1489 */
1490 #ifdef TCP_SIGNATURE
1491 if (optp || (tp->t_flags & TF_SIGNATURE))
1492 #else
1493 if (optp)
1494 #endif
1495 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1496 goto drop;
1497
1498 if (opti.ts_present && opti.ts_ecr) {
1499 /*
1500 * Calculate the RTT from the returned time stamp and the
1501 * connection's time base. If the time stamp is later than
1502 * the current time, or is extremely old, fall back to non-1323
1503 * RTT calculation. Since ts_ecr is unsigned, we can test both
1504 * at the same time.
1505 */
1506 opti.ts_ecr = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1507 if (opti.ts_ecr > TCP_PAWS_IDLE)
1508 opti.ts_ecr = 0;
1509 }
1510
1511 /*
1512 * Header prediction: check for the two common cases
1513 * of a uni-directional data xfer. If the packet has
1514 * no control flags, is in-sequence, the window didn't
1515 * change and we're not retransmitting, it's a
1516 * candidate. If the length is zero and the ack moved
1517 * forward, we're the sender side of the xfer. Just
1518 * free the data acked & wake any higher level process
1519 * that was blocked waiting for space. If the length
1520 * is non-zero and the ack didn't move, we're the
1521 * receiver side. If we're getting packets in-order
1522 * (the reassembly queue is empty), add the data to
1523 * the socket buffer and note that we need a delayed ack.
1524 */
1525 if (tp->t_state == TCPS_ESTABLISHED &&
1526 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1527 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1528 th->th_seq == tp->rcv_nxt &&
1529 tiwin && tiwin == tp->snd_wnd &&
1530 tp->snd_nxt == tp->snd_max) {
1531
1532 /*
1533 * If last ACK falls within this segment's sequence numbers,
1534 * record the timestamp.
1535 */
1536 if (opti.ts_present &&
1537 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1538 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1539 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1540 tp->ts_recent = opti.ts_val;
1541 }
1542
1543 if (tlen == 0) {
1544 /* Ack prediction. */
1545 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1546 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1547 tp->snd_cwnd >= tp->snd_wnd &&
1548 tp->t_partialacks < 0) {
1549 /*
1550 * this is a pure ack for outstanding data.
1551 */
1552 ++tcpstat.tcps_predack;
1553 if (opti.ts_present && opti.ts_ecr)
1554 tcp_xmit_timer(tp, opti.ts_ecr);
1555 else if (tp->t_rtttime &&
1556 SEQ_GT(th->th_ack, tp->t_rtseq))
1557 tcp_xmit_timer(tp,
1558 tcp_now - tp->t_rtttime);
1559 acked = th->th_ack - tp->snd_una;
1560 tcpstat.tcps_rcvackpack++;
1561 tcpstat.tcps_rcvackbyte += acked;
1562 ND6_HINT(tp);
1563
1564 if (acked > (tp->t_lastoff - tp->t_inoff))
1565 tp->t_lastm = NULL;
1566 sbdrop(&so->so_snd, acked);
1567 tp->t_lastoff -= acked;
1568
1569 tp->snd_una = th->th_ack;
1570 if (SEQ_LT(tp->snd_high, tp->snd_una))
1571 tp->snd_high = tp->snd_una;
1572 m_freem(m);
1573
1574 /*
1575 * If all outstanding data are acked, stop
1576 * retransmit timer, otherwise restart timer
1577 * using current (possibly backed-off) value.
1578 * If process is waiting for space,
1579 * wakeup/selwakeup/signal. If data
1580 * are ready to send, let tcp_output
1581 * decide between more output or persist.
1582 */
1583 if (tp->snd_una == tp->snd_max)
1584 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1585 else if (TCP_TIMER_ISARMED(tp,
1586 TCPT_PERSIST) == 0)
1587 TCP_TIMER_ARM(tp, TCPT_REXMT,
1588 tp->t_rxtcur);
1589
1590 sowwakeup(so);
1591 if (so->so_snd.sb_cc)
1592 (void) tcp_output(tp);
1593 if (tcp_saveti)
1594 m_freem(tcp_saveti);
1595 return;
1596 }
1597 } else if (th->th_ack == tp->snd_una &&
1598 TAILQ_FIRST(&tp->segq) == NULL &&
1599 tlen <= sbspace(&so->so_rcv)) {
1600 /*
1601 * this is a pure, in-sequence data packet
1602 * with nothing on the reassembly queue and
1603 * we have enough buffer space to take it.
1604 */
1605 ++tcpstat.tcps_preddat;
1606 tp->rcv_nxt += tlen;
1607 tcpstat.tcps_rcvpack++;
1608 tcpstat.tcps_rcvbyte += tlen;
1609 ND6_HINT(tp);
1610 /*
1611 * Drop TCP, IP headers and TCP options then add data
1612 * to socket buffer.
1613 */
1614 if (so->so_state & SS_CANTRCVMORE)
1615 m_freem(m);
1616 else {
1617 m_adj(m, toff + off);
1618 sbappendstream(&so->so_rcv, m);
1619 }
1620 sorwakeup(so);
1621 TCP_SETUP_ACK(tp, th);
1622 if (tp->t_flags & TF_ACKNOW)
1623 (void) tcp_output(tp);
1624 if (tcp_saveti)
1625 m_freem(tcp_saveti);
1626 return;
1627 }
1628 }
1629
1630 /*
1631 * Compute mbuf offset to TCP data segment.
1632 */
1633 hdroptlen = toff + off;
1634
1635 /*
1636 * Calculate amount of space in receive window,
1637 * and then do TCP input processing.
1638 * Receive window is amount of space in rcv queue,
1639 * but not less than advertised window.
1640 */
1641 { int win;
1642
1643 win = sbspace(&so->so_rcv);
1644 if (win < 0)
1645 win = 0;
1646 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1647 }
1648
1649 switch (tp->t_state) {
1650 case TCPS_LISTEN:
1651 /*
1652 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1653 */
1654 if (m->m_flags & (M_BCAST|M_MCAST))
1655 goto drop;
1656 switch (af) {
1657 #ifdef INET6
1658 case AF_INET6:
1659 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1660 goto drop;
1661 break;
1662 #endif /* INET6 */
1663 case AF_INET:
1664 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1665 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1666 goto drop;
1667 break;
1668 }
1669 break;
1670
1671 /*
1672 * If the state is SYN_SENT:
1673 * if seg contains an ACK, but not for our SYN, drop the input.
1674 * if seg contains a RST, then drop the connection.
1675 * if seg does not contain SYN, then drop it.
1676 * Otherwise this is an acceptable SYN segment
1677 * initialize tp->rcv_nxt and tp->irs
1678 * if seg contains ack then advance tp->snd_una
1679 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1680 * arrange for segment to be acked (eventually)
1681 * continue processing rest of data/controls, beginning with URG
1682 */
1683 case TCPS_SYN_SENT:
1684 if ((tiflags & TH_ACK) &&
1685 (SEQ_LEQ(th->th_ack, tp->iss) ||
1686 SEQ_GT(th->th_ack, tp->snd_max)))
1687 goto dropwithreset;
1688 if (tiflags & TH_RST) {
1689 if (tiflags & TH_ACK)
1690 tp = tcp_drop(tp, ECONNREFUSED);
1691 goto drop;
1692 }
1693 if ((tiflags & TH_SYN) == 0)
1694 goto drop;
1695 if (tiflags & TH_ACK) {
1696 tp->snd_una = th->th_ack;
1697 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1698 tp->snd_nxt = tp->snd_una;
1699 if (SEQ_LT(tp->snd_high, tp->snd_una))
1700 tp->snd_high = tp->snd_una;
1701 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1702 }
1703 tp->irs = th->th_seq;
1704 tcp_rcvseqinit(tp);
1705 tp->t_flags |= TF_ACKNOW;
1706 tcp_mss_from_peer(tp, opti.maxseg);
1707
1708 /*
1709 * Initialize the initial congestion window. If we
1710 * had to retransmit the SYN, we must initialize cwnd
1711 * to 1 segment (i.e. the Loss Window).
1712 */
1713 if (tp->t_flags & TF_SYN_REXMT)
1714 tp->snd_cwnd = tp->t_peermss;
1715 else {
1716 int ss = tcp_init_win;
1717 #ifdef INET
1718 if (inp != NULL && in_localaddr(inp->inp_faddr))
1719 ss = tcp_init_win_local;
1720 #endif
1721 #ifdef INET6
1722 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1723 ss = tcp_init_win_local;
1724 #endif
1725 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1726 }
1727
1728 tcp_rmx_rtt(tp);
1729 if (tiflags & TH_ACK) {
1730 tcpstat.tcps_connects++;
1731 soisconnected(so);
1732 tcp_established(tp);
1733 /* Do window scaling on this connection? */
1734 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1735 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1736 tp->snd_scale = tp->requested_s_scale;
1737 tp->rcv_scale = tp->request_r_scale;
1738 }
1739 TCP_REASS_LOCK(tp);
1740 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1741 TCP_REASS_UNLOCK(tp);
1742 /*
1743 * if we didn't have to retransmit the SYN,
1744 * use its rtt as our initial srtt & rtt var.
1745 */
1746 if (tp->t_rtttime)
1747 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1748 } else
1749 tp->t_state = TCPS_SYN_RECEIVED;
1750
1751 /*
1752 * Advance th->th_seq to correspond to first data byte.
1753 * If data, trim to stay within window,
1754 * dropping FIN if necessary.
1755 */
1756 th->th_seq++;
1757 if (tlen > tp->rcv_wnd) {
1758 todrop = tlen - tp->rcv_wnd;
1759 m_adj(m, -todrop);
1760 tlen = tp->rcv_wnd;
1761 tiflags &= ~TH_FIN;
1762 tcpstat.tcps_rcvpackafterwin++;
1763 tcpstat.tcps_rcvbyteafterwin += todrop;
1764 }
1765 tp->snd_wl1 = th->th_seq - 1;
1766 tp->rcv_up = th->th_seq;
1767 goto step6;
1768
1769 /*
1770 * If the state is SYN_RECEIVED:
1771 * If seg contains an ACK, but not for our SYN, drop the input
1772 * and generate an RST. See page 36, rfc793
1773 */
1774 case TCPS_SYN_RECEIVED:
1775 if ((tiflags & TH_ACK) &&
1776 (SEQ_LEQ(th->th_ack, tp->iss) ||
1777 SEQ_GT(th->th_ack, tp->snd_max)))
1778 goto dropwithreset;
1779 break;
1780 }
1781
1782 /*
1783 * States other than LISTEN or SYN_SENT.
1784 * First check timestamp, if present.
1785 * Then check that at least some bytes of segment are within
1786 * receive window. If segment begins before rcv_nxt,
1787 * drop leading data (and SYN); if nothing left, just ack.
1788 *
1789 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1790 * and it's less than ts_recent, drop it.
1791 */
1792 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1793 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1794
1795 /* Check to see if ts_recent is over 24 days old. */
1796 if (TCP_TIMESTAMP(tp) - tp->ts_recent_age > TCP_PAWS_IDLE) {
1797 /*
1798 * Invalidate ts_recent. If this segment updates
1799 * ts_recent, the age will be reset later and ts_recent
1800 * will get a valid value. If it does not, setting
1801 * ts_recent to zero will at least satisfy the
1802 * requirement that zero be placed in the timestamp
1803 * echo reply when ts_recent isn't valid. The
1804 * age isn't reset until we get a valid ts_recent
1805 * because we don't want out-of-order segments to be
1806 * dropped when ts_recent is old.
1807 */
1808 tp->ts_recent = 0;
1809 } else {
1810 tcpstat.tcps_rcvduppack++;
1811 tcpstat.tcps_rcvdupbyte += tlen;
1812 tcpstat.tcps_pawsdrop++;
1813 goto dropafterack;
1814 }
1815 }
1816
1817 todrop = tp->rcv_nxt - th->th_seq;
1818 if (todrop > 0) {
1819 if (tiflags & TH_SYN) {
1820 tiflags &= ~TH_SYN;
1821 th->th_seq++;
1822 if (th->th_urp > 1)
1823 th->th_urp--;
1824 else {
1825 tiflags &= ~TH_URG;
1826 th->th_urp = 0;
1827 }
1828 todrop--;
1829 }
1830 if (todrop > tlen ||
1831 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1832 /*
1833 * Any valid FIN or RST must be to the left of the
1834 * window. At this point the FIN or RST must be a
1835 * duplicate or out of sequence; drop it.
1836 */
1837 if (tiflags & TH_RST)
1838 goto drop;
1839 tiflags &= ~(TH_FIN|TH_RST);
1840 /*
1841 * Send an ACK to resynchronize and drop any data.
1842 * But keep on processing for RST or ACK.
1843 */
1844 tp->t_flags |= TF_ACKNOW;
1845 todrop = tlen;
1846 tcpstat.tcps_rcvdupbyte += todrop;
1847 tcpstat.tcps_rcvduppack++;
1848 } else if ((tiflags & TH_RST) &&
1849 th->th_seq != tp->last_ack_sent) {
1850 /*
1851 * Test for reset before adjusting the sequence
1852 * number for overlapping data.
1853 */
1854 goto dropafterack_ratelim;
1855 } else {
1856 tcpstat.tcps_rcvpartduppack++;
1857 tcpstat.tcps_rcvpartdupbyte += todrop;
1858 }
1859 hdroptlen += todrop; /*drop from head afterwards*/
1860 th->th_seq += todrop;
1861 tlen -= todrop;
1862 if (th->th_urp > todrop)
1863 th->th_urp -= todrop;
1864 else {
1865 tiflags &= ~TH_URG;
1866 th->th_urp = 0;
1867 }
1868 }
1869
1870 /*
1871 * If new data are received on a connection after the
1872 * user processes are gone, then RST the other end.
1873 */
1874 if ((so->so_state & SS_NOFDREF) &&
1875 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1876 tp = tcp_close(tp);
1877 tcpstat.tcps_rcvafterclose++;
1878 goto dropwithreset;
1879 }
1880
1881 /*
1882 * If segment ends after window, drop trailing data
1883 * (and PUSH and FIN); if nothing left, just ACK.
1884 */
1885 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1886 if (todrop > 0) {
1887 tcpstat.tcps_rcvpackafterwin++;
1888 if (todrop >= tlen) {
1889 /*
1890 * The segment actually starts after the window.
1891 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1892 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1893 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1894 */
1895 tcpstat.tcps_rcvbyteafterwin += tlen;
1896 /*
1897 * If a new connection request is received
1898 * while in TIME_WAIT, drop the old connection
1899 * and start over if the sequence numbers
1900 * are above the previous ones.
1901 *
1902 * NOTE: We will checksum the packet again, and
1903 * so we need to put the header fields back into
1904 * network order!
1905 * XXX This kind of sucks, but we don't expect
1906 * XXX this to happen very often, so maybe it
1907 * XXX doesn't matter so much.
1908 */
1909 if (tiflags & TH_SYN &&
1910 tp->t_state == TCPS_TIME_WAIT &&
1911 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1912 iss = tcp_new_iss(tp, tp->snd_nxt);
1913 tp = tcp_close(tp);
1914 TCP_FIELDS_TO_NET(th);
1915 goto findpcb;
1916 }
1917 /*
1918 * If window is closed can only take segments at
1919 * window edge, and have to drop data and PUSH from
1920 * incoming segments. Continue processing, but
1921 * remember to ack. Otherwise, drop segment
1922 * and (if not RST) ack.
1923 */
1924 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1925 tp->t_flags |= TF_ACKNOW;
1926 tcpstat.tcps_rcvwinprobe++;
1927 } else
1928 goto dropafterack;
1929 } else
1930 tcpstat.tcps_rcvbyteafterwin += todrop;
1931 m_adj(m, -todrop);
1932 tlen -= todrop;
1933 tiflags &= ~(TH_PUSH|TH_FIN);
1934 }
1935
1936 /*
1937 * If last ACK falls within this segment's sequence numbers,
1938 * and the timestamp is newer, record it.
1939 */
1940 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1941 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1942 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1943 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1944 tp->ts_recent_age = TCP_TIMESTAMP(tp);
1945 tp->ts_recent = opti.ts_val;
1946 }
1947
1948 /*
1949 * If the RST bit is set examine the state:
1950 * SYN_RECEIVED STATE:
1951 * If passive open, return to LISTEN state.
1952 * If active open, inform user that connection was refused.
1953 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1954 * Inform user that connection was reset, and close tcb.
1955 * CLOSING, LAST_ACK, TIME_WAIT STATES
1956 * Close the tcb.
1957 */
1958 if (tiflags & TH_RST) {
1959 if (th->th_seq != tp->last_ack_sent)
1960 goto dropafterack_ratelim;
1961
1962 switch (tp->t_state) {
1963 case TCPS_SYN_RECEIVED:
1964 so->so_error = ECONNREFUSED;
1965 goto close;
1966
1967 case TCPS_ESTABLISHED:
1968 case TCPS_FIN_WAIT_1:
1969 case TCPS_FIN_WAIT_2:
1970 case TCPS_CLOSE_WAIT:
1971 so->so_error = ECONNRESET;
1972 close:
1973 tp->t_state = TCPS_CLOSED;
1974 tcpstat.tcps_drops++;
1975 tp = tcp_close(tp);
1976 goto drop;
1977
1978 case TCPS_CLOSING:
1979 case TCPS_LAST_ACK:
1980 case TCPS_TIME_WAIT:
1981 tp = tcp_close(tp);
1982 goto drop;
1983 }
1984 }
1985
1986 /*
1987 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1988 * we must be in a synchronized state. RFC791 states (under RST
1989 * generation) that any unacceptable segment (an out-of-order SYN
1990 * qualifies) received in a synchronized state must elicit only an
1991 * empty acknowledgment segment ... and the connection remains in
1992 * the same state.
1993 */
1994 if (tiflags & TH_SYN) {
1995 if (tp->rcv_nxt == th->th_seq) {
1996 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1997 TH_ACK);
1998 if (tcp_saveti)
1999 m_freem(tcp_saveti);
2000 return;
2001 }
2002
2003 goto dropafterack_ratelim;
2004 }
2005
2006 /*
2007 * If the ACK bit is off we drop the segment and return.
2008 */
2009 if ((tiflags & TH_ACK) == 0) {
2010 if (tp->t_flags & TF_ACKNOW)
2011 goto dropafterack;
2012 else
2013 goto drop;
2014 }
2015
2016 /*
2017 * Ack processing.
2018 */
2019 switch (tp->t_state) {
2020
2021 /*
2022 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2023 * ESTABLISHED state and continue processing, otherwise
2024 * send an RST.
2025 */
2026 case TCPS_SYN_RECEIVED:
2027 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2028 SEQ_GT(th->th_ack, tp->snd_max))
2029 goto dropwithreset;
2030 tcpstat.tcps_connects++;
2031 soisconnected(so);
2032 tcp_established(tp);
2033 /* Do window scaling? */
2034 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2035 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2036 tp->snd_scale = tp->requested_s_scale;
2037 tp->rcv_scale = tp->request_r_scale;
2038 }
2039 TCP_REASS_LOCK(tp);
2040 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2041 TCP_REASS_UNLOCK(tp);
2042 tp->snd_wl1 = th->th_seq - 1;
2043 /* fall into ... */
2044
2045 /*
2046 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2047 * ACKs. If the ack is in the range
2048 * tp->snd_una < th->th_ack <= tp->snd_max
2049 * then advance tp->snd_una to th->th_ack and drop
2050 * data from the retransmission queue. If this ACK reflects
2051 * more up to date window information we update our window information.
2052 */
2053 case TCPS_ESTABLISHED:
2054 case TCPS_FIN_WAIT_1:
2055 case TCPS_FIN_WAIT_2:
2056 case TCPS_CLOSE_WAIT:
2057 case TCPS_CLOSING:
2058 case TCPS_LAST_ACK:
2059 case TCPS_TIME_WAIT:
2060
2061 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2062 if (tlen == 0 && tiwin == tp->snd_wnd) {
2063 tcpstat.tcps_rcvdupack++;
2064 /*
2065 * If we have outstanding data (other than
2066 * a window probe), this is a completely
2067 * duplicate ack (ie, window info didn't
2068 * change), the ack is the biggest we've
2069 * seen and we've seen exactly our rexmt
2070 * threshhold of them, assume a packet
2071 * has been dropped and retransmit it.
2072 * Kludge snd_nxt & the congestion
2073 * window so we send only this one
2074 * packet.
2075 *
2076 * We know we're losing at the current
2077 * window size so do congestion avoidance
2078 * (set ssthresh to half the current window
2079 * and pull our congestion window back to
2080 * the new ssthresh).
2081 *
2082 * Dup acks mean that packets have left the
2083 * network (they're now cached at the receiver)
2084 * so bump cwnd by the amount in the receiver
2085 * to keep a constant cwnd packets in the
2086 * network.
2087 */
2088 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2089 th->th_ack != tp->snd_una)
2090 tp->t_dupacks = 0;
2091 else if (++tp->t_dupacks == tcprexmtthresh &&
2092 tp->t_partialacks < 0) {
2093 tcp_seq onxt;
2094 u_int win;
2095
2096 if (tcp_do_newreno &&
2097 SEQ_LT(th->th_ack, tp->snd_high)) {
2098 /*
2099 * False fast retransmit after
2100 * timeout. Do not enter fast
2101 * recovery.
2102 */
2103 tp->t_dupacks = 0;
2104 break;
2105 }
2106
2107 onxt = tp->snd_nxt;
2108 win = min(tp->snd_wnd, tp->snd_cwnd) /
2109 2 / tp->t_segsz;
2110 if (win < 2)
2111 win = 2;
2112 tp->snd_ssthresh = win * tp->t_segsz;
2113 tp->snd_recover = tp->snd_max;
2114 tp->t_partialacks = 0;
2115 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2116 tp->t_rtttime = 0;
2117 tp->snd_nxt = th->th_ack;
2118 tp->snd_cwnd = tp->t_segsz;
2119 (void) tcp_output(tp);
2120 tp->snd_cwnd = tp->snd_ssthresh +
2121 tp->t_segsz * tp->t_dupacks;
2122 if (SEQ_GT(onxt, tp->snd_nxt))
2123 tp->snd_nxt = onxt;
2124 goto drop;
2125 } else if (tp->t_dupacks > tcprexmtthresh) {
2126 tp->snd_cwnd += tp->t_segsz;
2127 (void) tcp_output(tp);
2128 goto drop;
2129 }
2130 } else if (tlen) {
2131 tp->t_dupacks = 0; /*XXX*/
2132 /* drop very old ACKs unless th_seq matches */
2133 if (th->th_seq != tp->rcv_nxt &&
2134 SEQ_LT(th->th_ack,
2135 tp->snd_una - tp->max_sndwnd)) {
2136 goto drop;
2137 }
2138 break;
2139 } else
2140 tp->t_dupacks = 0;
2141 break;
2142 }
2143 /*
2144 * If the congestion window was inflated to account
2145 * for the other side's cached packets, retract it.
2146 */
2147 if (!tcp_do_newreno)
2148 tcp_reno_newack(tp, th);
2149 else
2150 tcp_newreno_newack(tp, th);
2151 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2152 tcpstat.tcps_rcvacktoomuch++;
2153 goto dropafterack;
2154 }
2155 acked = th->th_ack - tp->snd_una;
2156 tcpstat.tcps_rcvackpack++;
2157 tcpstat.tcps_rcvackbyte += acked;
2158
2159 /*
2160 * If we have a timestamp reply, update smoothed
2161 * round trip time. If no timestamp is present but
2162 * transmit timer is running and timed sequence
2163 * number was acked, update smoothed round trip time.
2164 * Since we now have an rtt measurement, cancel the
2165 * timer backoff (cf., Phil Karn's retransmit alg.).
2166 * Recompute the initial retransmit timer.
2167 */
2168 if (opti.ts_present && opti.ts_ecr)
2169 tcp_xmit_timer(tp, opti.ts_ecr);
2170 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2171 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2172
2173 /*
2174 * If all outstanding data is acked, stop retransmit
2175 * timer and remember to restart (more output or persist).
2176 * If there is more data to be acked, restart retransmit
2177 * timer, using current (possibly backed-off) value.
2178 */
2179 if (th->th_ack == tp->snd_max) {
2180 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2181 needoutput = 1;
2182 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2183 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2184 /*
2185 * When new data is acked, open the congestion window.
2186 * If the window gives us less than ssthresh packets
2187 * in flight, open exponentially (segsz per packet).
2188 * Otherwise open linearly: segsz per window
2189 * (segsz^2 / cwnd per packet), plus a constant
2190 * fraction of a packet (segsz/8) to help larger windows
2191 * open quickly enough.
2192 *
2193 * If we are still in fast recovery (meaning we are using
2194 * NewReno and we have only received partial acks), do not
2195 * inflate the window yet.
2196 */
2197 if (tp->t_partialacks < 0) {
2198 u_int cw = tp->snd_cwnd;
2199 u_int incr = tp->t_segsz;
2200
2201 if (cw > tp->snd_ssthresh)
2202 incr = incr * incr / cw;
2203 tp->snd_cwnd = min(cw + incr,
2204 TCP_MAXWIN << tp->snd_scale);
2205 }
2206 ND6_HINT(tp);
2207 if (acked > so->so_snd.sb_cc) {
2208 tp->snd_wnd -= so->so_snd.sb_cc;
2209 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2210 ourfinisacked = 1;
2211 } else {
2212 if (acked > (tp->t_lastoff - tp->t_inoff))
2213 tp->t_lastm = NULL;
2214 sbdrop(&so->so_snd, acked);
2215 tp->t_lastoff -= acked;
2216 tp->snd_wnd -= acked;
2217 ourfinisacked = 0;
2218 }
2219 sowwakeup(so);
2220 tp->snd_una = th->th_ack;
2221 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2222 tp->snd_nxt = tp->snd_una;
2223 if (SEQ_LT(tp->snd_high, tp->snd_una))
2224 tp->snd_high = tp->snd_una;
2225
2226 switch (tp->t_state) {
2227
2228 /*
2229 * In FIN_WAIT_1 STATE in addition to the processing
2230 * for the ESTABLISHED state if our FIN is now acknowledged
2231 * then enter FIN_WAIT_2.
2232 */
2233 case TCPS_FIN_WAIT_1:
2234 if (ourfinisacked) {
2235 /*
2236 * If we can't receive any more
2237 * data, then closing user can proceed.
2238 * Starting the timer is contrary to the
2239 * specification, but if we don't get a FIN
2240 * we'll hang forever.
2241 */
2242 if (so->so_state & SS_CANTRCVMORE) {
2243 soisdisconnected(so);
2244 if (tcp_maxidle > 0)
2245 TCP_TIMER_ARM(tp, TCPT_2MSL,
2246 tcp_maxidle);
2247 }
2248 tp->t_state = TCPS_FIN_WAIT_2;
2249 }
2250 break;
2251
2252 /*
2253 * In CLOSING STATE in addition to the processing for
2254 * the ESTABLISHED state if the ACK acknowledges our FIN
2255 * then enter the TIME-WAIT state, otherwise ignore
2256 * the segment.
2257 */
2258 case TCPS_CLOSING:
2259 if (ourfinisacked) {
2260 tp->t_state = TCPS_TIME_WAIT;
2261 tcp_canceltimers(tp);
2262 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2263 soisdisconnected(so);
2264 }
2265 break;
2266
2267 /*
2268 * In LAST_ACK, we may still be waiting for data to drain
2269 * and/or to be acked, as well as for the ack of our FIN.
2270 * If our FIN is now acknowledged, delete the TCB,
2271 * enter the closed state and return.
2272 */
2273 case TCPS_LAST_ACK:
2274 if (ourfinisacked) {
2275 tp = tcp_close(tp);
2276 goto drop;
2277 }
2278 break;
2279
2280 /*
2281 * In TIME_WAIT state the only thing that should arrive
2282 * is a retransmission of the remote FIN. Acknowledge
2283 * it and restart the finack timer.
2284 */
2285 case TCPS_TIME_WAIT:
2286 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2287 goto dropafterack;
2288 }
2289 }
2290
2291 step6:
2292 /*
2293 * Update window information.
2294 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2295 */
2296 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2297 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2298 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2299 /* keep track of pure window updates */
2300 if (tlen == 0 &&
2301 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2302 tcpstat.tcps_rcvwinupd++;
2303 tp->snd_wnd = tiwin;
2304 tp->snd_wl1 = th->th_seq;
2305 tp->snd_wl2 = th->th_ack;
2306 if (tp->snd_wnd > tp->max_sndwnd)
2307 tp->max_sndwnd = tp->snd_wnd;
2308 needoutput = 1;
2309 }
2310
2311 /*
2312 * Process segments with URG.
2313 */
2314 if ((tiflags & TH_URG) && th->th_urp &&
2315 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2316 /*
2317 * This is a kludge, but if we receive and accept
2318 * random urgent pointers, we'll crash in
2319 * soreceive. It's hard to imagine someone
2320 * actually wanting to send this much urgent data.
2321 */
2322 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2323 th->th_urp = 0; /* XXX */
2324 tiflags &= ~TH_URG; /* XXX */
2325 goto dodata; /* XXX */
2326 }
2327 /*
2328 * If this segment advances the known urgent pointer,
2329 * then mark the data stream. This should not happen
2330 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2331 * a FIN has been received from the remote side.
2332 * In these states we ignore the URG.
2333 *
2334 * According to RFC961 (Assigned Protocols),
2335 * the urgent pointer points to the last octet
2336 * of urgent data. We continue, however,
2337 * to consider it to indicate the first octet
2338 * of data past the urgent section as the original
2339 * spec states (in one of two places).
2340 */
2341 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2342 tp->rcv_up = th->th_seq + th->th_urp;
2343 so->so_oobmark = so->so_rcv.sb_cc +
2344 (tp->rcv_up - tp->rcv_nxt) - 1;
2345 if (so->so_oobmark == 0)
2346 so->so_state |= SS_RCVATMARK;
2347 sohasoutofband(so);
2348 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2349 }
2350 /*
2351 * Remove out of band data so doesn't get presented to user.
2352 * This can happen independent of advancing the URG pointer,
2353 * but if two URG's are pending at once, some out-of-band
2354 * data may creep in... ick.
2355 */
2356 if (th->th_urp <= (u_int16_t) tlen
2357 #ifdef SO_OOBINLINE
2358 && (so->so_options & SO_OOBINLINE) == 0
2359 #endif
2360 )
2361 tcp_pulloutofband(so, th, m, hdroptlen);
2362 } else
2363 /*
2364 * If no out of band data is expected,
2365 * pull receive urgent pointer along
2366 * with the receive window.
2367 */
2368 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2369 tp->rcv_up = tp->rcv_nxt;
2370 dodata: /* XXX */
2371
2372 /*
2373 * Process the segment text, merging it into the TCP sequencing queue,
2374 * and arranging for acknowledgement of receipt if necessary.
2375 * This process logically involves adjusting tp->rcv_wnd as data
2376 * is presented to the user (this happens in tcp_usrreq.c,
2377 * case PRU_RCVD). If a FIN has already been received on this
2378 * connection then we just ignore the text.
2379 */
2380 if ((tlen || (tiflags & TH_FIN)) &&
2381 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2382 /*
2383 * Insert segment ti into reassembly queue of tcp with
2384 * control block tp. Return TH_FIN if reassembly now includes
2385 * a segment with FIN. The macro form does the common case
2386 * inline (segment is the next to be received on an
2387 * established connection, and the queue is empty),
2388 * avoiding linkage into and removal from the queue and
2389 * repetition of various conversions.
2390 * Set DELACK for segments received in order, but ack
2391 * immediately when segments are out of order
2392 * (so fast retransmit can work).
2393 */
2394 /* NOTE: this was TCP_REASS() macro, but used only once */
2395 TCP_REASS_LOCK(tp);
2396 if (th->th_seq == tp->rcv_nxt &&
2397 TAILQ_FIRST(&tp->segq) == NULL &&
2398 tp->t_state == TCPS_ESTABLISHED) {
2399 TCP_SETUP_ACK(tp, th);
2400 tp->rcv_nxt += tlen;
2401 tiflags = th->th_flags & TH_FIN;
2402 tcpstat.tcps_rcvpack++;
2403 tcpstat.tcps_rcvbyte += tlen;
2404 ND6_HINT(tp);
2405 if (so->so_state & SS_CANTRCVMORE)
2406 m_freem(m);
2407 else {
2408 m_adj(m, hdroptlen);
2409 sbappendstream(&(so)->so_rcv, m);
2410 }
2411 sorwakeup(so);
2412 } else {
2413 m_adj(m, hdroptlen);
2414 tiflags = tcp_reass(tp, th, m, &tlen);
2415 tp->t_flags |= TF_ACKNOW;
2416 }
2417 TCP_REASS_UNLOCK(tp);
2418
2419 /*
2420 * Note the amount of data that peer has sent into
2421 * our window, in order to estimate the sender's
2422 * buffer size.
2423 */
2424 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2425 } else {
2426 m_freem(m);
2427 m = NULL;
2428 tiflags &= ~TH_FIN;
2429 }
2430
2431 /*
2432 * If FIN is received ACK the FIN and let the user know
2433 * that the connection is closing. Ignore a FIN received before
2434 * the connection is fully established.
2435 */
2436 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2437 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2438 socantrcvmore(so);
2439 tp->t_flags |= TF_ACKNOW;
2440 tp->rcv_nxt++;
2441 }
2442 switch (tp->t_state) {
2443
2444 /*
2445 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2446 */
2447 case TCPS_ESTABLISHED:
2448 tp->t_state = TCPS_CLOSE_WAIT;
2449 break;
2450
2451 /*
2452 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2453 * enter the CLOSING state.
2454 */
2455 case TCPS_FIN_WAIT_1:
2456 tp->t_state = TCPS_CLOSING;
2457 break;
2458
2459 /*
2460 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2461 * starting the time-wait timer, turning off the other
2462 * standard timers.
2463 */
2464 case TCPS_FIN_WAIT_2:
2465 tp->t_state = TCPS_TIME_WAIT;
2466 tcp_canceltimers(tp);
2467 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2468 soisdisconnected(so);
2469 break;
2470
2471 /*
2472 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2473 */
2474 case TCPS_TIME_WAIT:
2475 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2476 break;
2477 }
2478 }
2479 #ifdef TCP_DEBUG
2480 if (so->so_options & SO_DEBUG)
2481 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2482 #endif
2483
2484 /*
2485 * Return any desired output.
2486 */
2487 if (needoutput || (tp->t_flags & TF_ACKNOW))
2488 (void) tcp_output(tp);
2489 if (tcp_saveti)
2490 m_freem(tcp_saveti);
2491 return;
2492
2493 badsyn:
2494 /*
2495 * Received a bad SYN. Increment counters and dropwithreset.
2496 */
2497 tcpstat.tcps_badsyn++;
2498 tp = NULL;
2499 goto dropwithreset;
2500
2501 dropafterack:
2502 /*
2503 * Generate an ACK dropping incoming segment if it occupies
2504 * sequence space, where the ACK reflects our state.
2505 */
2506 if (tiflags & TH_RST)
2507 goto drop;
2508 goto dropafterack2;
2509
2510 dropafterack_ratelim:
2511 /*
2512 * We may want to rate-limit ACKs against SYN/RST attack.
2513 */
2514 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2515 tcp_ackdrop_ppslim) == 0) {
2516 /* XXX stat */
2517 goto drop;
2518 }
2519 /* ...fall into dropafterack2... */
2520
2521 dropafterack2:
2522 m_freem(m);
2523 tp->t_flags |= TF_ACKNOW;
2524 (void) tcp_output(tp);
2525 if (tcp_saveti)
2526 m_freem(tcp_saveti);
2527 return;
2528
2529 dropwithreset_ratelim:
2530 /*
2531 * We may want to rate-limit RSTs in certain situations,
2532 * particularly if we are sending an RST in response to
2533 * an attempt to connect to or otherwise communicate with
2534 * a port for which we have no socket.
2535 */
2536 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2537 tcp_rst_ppslim) == 0) {
2538 /* XXX stat */
2539 goto drop;
2540 }
2541 /* ...fall into dropwithreset... */
2542
2543 dropwithreset:
2544 /*
2545 * Generate a RST, dropping incoming segment.
2546 * Make ACK acceptable to originator of segment.
2547 */
2548 if (tiflags & TH_RST)
2549 goto drop;
2550
2551 switch (af) {
2552 #ifdef INET6
2553 case AF_INET6:
2554 /* For following calls to tcp_respond */
2555 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2556 goto drop;
2557 break;
2558 #endif /* INET6 */
2559 case AF_INET:
2560 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2561 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2562 goto drop;
2563 }
2564
2565 if (tiflags & TH_ACK)
2566 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2567 else {
2568 if (tiflags & TH_SYN)
2569 tlen++;
2570 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2571 TH_RST|TH_ACK);
2572 }
2573 if (tcp_saveti)
2574 m_freem(tcp_saveti);
2575 return;
2576
2577 badcsum:
2578 drop:
2579 /*
2580 * Drop space held by incoming segment and return.
2581 */
2582 if (tp) {
2583 if (tp->t_inpcb)
2584 so = tp->t_inpcb->inp_socket;
2585 #ifdef INET6
2586 else if (tp->t_in6pcb)
2587 so = tp->t_in6pcb->in6p_socket;
2588 #endif
2589 else
2590 so = NULL;
2591 #ifdef TCP_DEBUG
2592 if (so && (so->so_options & SO_DEBUG) != 0)
2593 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2594 #endif
2595 }
2596 if (tcp_saveti)
2597 m_freem(tcp_saveti);
2598 m_freem(m);
2599 return;
2600 }
2601
2602 #ifdef TCP_SIGNATURE
2603 int
2604 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2605 {
2606
2607 MD5Update(fstate, (u_char *)data, len);
2608 return (0);
2609 }
2610
2611 struct secasvar *
2612 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2613 {
2614 struct secasvar *sav;
2615 #ifdef FAST_IPSEC
2616 union sockaddr_union dst;
2617 #endif
2618 struct ip *ip;
2619 struct ip6_hdr *ip6;
2620
2621 ip = mtod(m, struct ip *);
2622 switch (ip->ip_v) {
2623 case 4:
2624 ip = mtod(m, struct ip *);
2625 ip6 = NULL;
2626 break;
2627 case 6:
2628 ip = NULL;
2629 ip6 = mtod(m, struct ip6_hdr *);
2630 break;
2631 default:
2632 return (NULL);
2633 }
2634
2635 #ifdef FAST_IPSEC
2636 /* Extract the destination from the IP header in the mbuf. */
2637 bzero(&dst, sizeof(union sockaddr_union));
2638 dst.sa.sa_len = sizeof(struct sockaddr_in);
2639 dst.sa.sa_family = AF_INET;
2640 dst.sin.sin_addr = ip->ip_dst;
2641
2642 /*
2643 * Look up an SADB entry which matches the address of the peer.
2644 */
2645 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2646 #else
2647 if (ip)
2648 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2649 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2650 htonl(TCP_SIG_SPI));
2651 else
2652 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2653 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2654 htonl(TCP_SIG_SPI));
2655 #endif
2656
2657 return (sav); /* freesav must be performed by caller */
2658 }
2659
2660 int
2661 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2662 struct secasvar *sav, char *sig)
2663 {
2664 MD5_CTX ctx;
2665 struct ip *ip;
2666 struct ipovly *ipovly;
2667 struct ip6_hdr *ip6;
2668 struct ippseudo ippseudo;
2669 struct ip6_hdr_pseudo ip6pseudo;
2670 struct tcphdr th0;
2671 int l, tcphdrlen;
2672
2673 if (sav == NULL)
2674 return (-1);
2675
2676 tcphdrlen = th->th_off * 4;
2677
2678 switch (mtod(m, struct ip *)->ip_v) {
2679 case 4:
2680 ip = mtod(m, struct ip *);
2681 ip6 = NULL;
2682 break;
2683 case 6:
2684 ip = NULL;
2685 ip6 = mtod(m, struct ip6_hdr *);
2686 break;
2687 default:
2688 return (-1);
2689 }
2690
2691 MD5Init(&ctx);
2692
2693 if (ip) {
2694 memset(&ippseudo, 0, sizeof(ippseudo));
2695 ipovly = (struct ipovly *)ip;
2696 ippseudo.ippseudo_src = ipovly->ih_src;
2697 ippseudo.ippseudo_dst = ipovly->ih_dst;
2698 ippseudo.ippseudo_pad = 0;
2699 ippseudo.ippseudo_p = IPPROTO_TCP;
2700 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2701 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2702 } else {
2703 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2704 ip6pseudo.ip6ph_src = ip6->ip6_src;
2705 in6_clearscope(&ip6pseudo.ip6ph_src);
2706 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2707 in6_clearscope(&ip6pseudo.ip6ph_dst);
2708 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2709 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2710 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2711 }
2712
2713 th0 = *th;
2714 th0.th_sum = 0;
2715 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2716
2717 l = m->m_pkthdr.len - thoff - tcphdrlen;
2718 if (l > 0)
2719 m_apply(m, thoff + tcphdrlen,
2720 m->m_pkthdr.len - thoff - tcphdrlen,
2721 tcp_signature_apply, &ctx);
2722
2723 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2724 MD5Final(sig, &ctx);
2725
2726 return (0);
2727 }
2728 #endif
2729
2730 int
2731 tcp_dooptions(tp, cp, cnt, th, m, toff, oi)
2732 struct tcpcb *tp;
2733 u_char *cp;
2734 int cnt;
2735 struct tcphdr *th;
2736 struct mbuf *m;
2737 int toff;
2738 struct tcp_opt_info *oi;
2739 {
2740 u_int16_t mss;
2741 int opt, optlen = 0;
2742 #ifdef TCP_SIGNATURE
2743 caddr_t sigp = NULL;
2744 char sigbuf[TCP_SIGLEN];
2745 struct secasvar *sav = NULL;
2746 #endif
2747
2748 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2749 opt = cp[0];
2750 if (opt == TCPOPT_EOL)
2751 break;
2752 if (opt == TCPOPT_NOP)
2753 optlen = 1;
2754 else {
2755 if (cnt < 2)
2756 break;
2757 optlen = cp[1];
2758 if (optlen < 2 || optlen > cnt)
2759 break;
2760 }
2761 switch (opt) {
2762
2763 default:
2764 continue;
2765
2766 case TCPOPT_MAXSEG:
2767 if (optlen != TCPOLEN_MAXSEG)
2768 continue;
2769 if (!(th->th_flags & TH_SYN))
2770 continue;
2771 bcopy(cp + 2, &mss, sizeof(mss));
2772 oi->maxseg = ntohs(mss);
2773 break;
2774
2775 case TCPOPT_WINDOW:
2776 if (optlen != TCPOLEN_WINDOW)
2777 continue;
2778 if (!(th->th_flags & TH_SYN))
2779 continue;
2780 tp->t_flags |= TF_RCVD_SCALE;
2781 tp->requested_s_scale = cp[2];
2782 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2783 #if 0 /*XXX*/
2784 char *p;
2785
2786 if (ip)
2787 p = ntohl(ip->ip_src);
2788 #ifdef INET6
2789 else if (ip6)
2790 p = ip6_sprintf(&ip6->ip6_src);
2791 #endif
2792 else
2793 p = "(unknown)";
2794 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2795 "assuming %d\n",
2796 tp->requested_s_scale, p,
2797 TCP_MAX_WINSHIFT);
2798 #else
2799 log(LOG_ERR, "TCP: invalid wscale %d, "
2800 "assuming %d\n",
2801 tp->requested_s_scale,
2802 TCP_MAX_WINSHIFT);
2803 #endif
2804 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2805 }
2806 break;
2807
2808 case TCPOPT_TIMESTAMP:
2809 if (optlen != TCPOLEN_TIMESTAMP)
2810 continue;
2811 oi->ts_present = 1;
2812 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2813 NTOHL(oi->ts_val);
2814 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2815 NTOHL(oi->ts_ecr);
2816
2817 /*
2818 * A timestamp received in a SYN makes
2819 * it ok to send timestamp requests and replies.
2820 */
2821 if (th->th_flags & TH_SYN) {
2822 tp->t_flags |= TF_RCVD_TSTMP;
2823 tp->ts_recent = oi->ts_val;
2824 tp->ts_recent_age = TCP_TIMESTAMP(tp);
2825 }
2826 break;
2827 case TCPOPT_SACK_PERMITTED:
2828 if (optlen != TCPOLEN_SACK_PERMITTED)
2829 continue;
2830 if (!(th->th_flags & TH_SYN))
2831 continue;
2832 tp->t_flags &= ~TF_CANT_TXSACK;
2833 break;
2834
2835 case TCPOPT_SACK:
2836 if (tp->t_flags & TF_IGNR_RXSACK)
2837 continue;
2838 if (optlen % 8 != 2 || optlen < 10)
2839 continue;
2840 cp += 2;
2841 optlen -= 2;
2842 for (; optlen > 0; cp -= 8, optlen -= 8) {
2843 tcp_seq lwe, rwe;
2844 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2845 NTOHL(lwe);
2846 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2847 NTOHL(rwe);
2848 /* tcp_mark_sacked(tp, lwe, rwe); */
2849 }
2850 break;
2851 #ifdef TCP_SIGNATURE
2852 case TCPOPT_SIGNATURE:
2853 if (optlen != TCPOLEN_SIGNATURE)
2854 continue;
2855 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2856 return (-1);
2857
2858 sigp = sigbuf;
2859 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2860 memset(cp + 2, 0, TCP_SIGLEN);
2861 tp->t_flags |= TF_SIGNATURE;
2862 break;
2863 #endif
2864 }
2865 }
2866
2867 #ifdef TCP_SIGNATURE
2868 if (tp->t_flags & TF_SIGNATURE) {
2869
2870 sav = tcp_signature_getsav(m, th);
2871
2872 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2873 return (-1);
2874 }
2875
2876 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2877 if (sav == NULL)
2878 return (-1);
2879 #ifdef FAST_IPSEC
2880 KEY_FREESAV(&sav);
2881 #else
2882 key_freesav(sav);
2883 #endif
2884 return (-1);
2885 }
2886
2887 if (sigp) {
2888 char sig[TCP_SIGLEN];
2889
2890 TCP_FIELDS_TO_NET(th);
2891 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2892 TCP_FIELDS_TO_HOST(th);
2893 if (sav == NULL)
2894 return (-1);
2895 #ifdef FAST_IPSEC
2896 KEY_FREESAV(&sav);
2897 #else
2898 key_freesav(sav);
2899 #endif
2900 return (-1);
2901 }
2902 TCP_FIELDS_TO_HOST(th);
2903
2904 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2905 tcpstat.tcps_badsig++;
2906 if (sav == NULL)
2907 return (-1);
2908 #ifdef FAST_IPSEC
2909 KEY_FREESAV(&sav);
2910 #else
2911 key_freesav(sav);
2912 #endif
2913 return (-1);
2914 } else
2915 tcpstat.tcps_goodsig++;
2916
2917 key_sa_recordxfer(sav, m);
2918 #ifdef FAST_IPSEC
2919 KEY_FREESAV(&sav);
2920 #else
2921 key_freesav(sav);
2922 #endif
2923 }
2924 #endif
2925
2926 return (0);
2927 }
2928
2929 /*
2930 * Pull out of band byte out of a segment so
2931 * it doesn't appear in the user's data queue.
2932 * It is still reflected in the segment length for
2933 * sequencing purposes.
2934 */
2935 void
2936 tcp_pulloutofband(so, th, m, off)
2937 struct socket *so;
2938 struct tcphdr *th;
2939 struct mbuf *m;
2940 int off;
2941 {
2942 int cnt = off + th->th_urp - 1;
2943
2944 while (cnt >= 0) {
2945 if (m->m_len > cnt) {
2946 char *cp = mtod(m, caddr_t) + cnt;
2947 struct tcpcb *tp = sototcpcb(so);
2948
2949 tp->t_iobc = *cp;
2950 tp->t_oobflags |= TCPOOB_HAVEDATA;
2951 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2952 m->m_len--;
2953 return;
2954 }
2955 cnt -= m->m_len;
2956 m = m->m_next;
2957 if (m == 0)
2958 break;
2959 }
2960 panic("tcp_pulloutofband");
2961 }
2962
2963 /*
2964 * Collect new round-trip time estimate
2965 * and update averages and current timeout.
2966 */
2967 void
2968 tcp_xmit_timer(tp, rtt)
2969 struct tcpcb *tp;
2970 uint32_t rtt;
2971 {
2972 int32_t delta;
2973
2974 tcpstat.tcps_rttupdated++;
2975 if (tp->t_srtt != 0) {
2976 /*
2977 * srtt is stored as fixed point with 3 bits after the
2978 * binary point (i.e., scaled by 8). The following magic
2979 * is equivalent to the smoothing algorithm in rfc793 with
2980 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2981 * point). Adjust rtt to origin 0.
2982 */
2983 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2984 if ((tp->t_srtt += delta) <= 0)
2985 tp->t_srtt = 1 << 2;
2986 /*
2987 * We accumulate a smoothed rtt variance (actually, a
2988 * smoothed mean difference), then set the retransmit
2989 * timer to smoothed rtt + 4 times the smoothed variance.
2990 * rttvar is stored as fixed point with 2 bits after the
2991 * binary point (scaled by 4). The following is
2992 * equivalent to rfc793 smoothing with an alpha of .75
2993 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2994 * rfc793's wired-in beta.
2995 */
2996 if (delta < 0)
2997 delta = -delta;
2998 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2999 if ((tp->t_rttvar += delta) <= 0)
3000 tp->t_rttvar = 1 << 2;
3001 } else {
3002 /*
3003 * No rtt measurement yet - use the unsmoothed rtt.
3004 * Set the variance to half the rtt (so our first
3005 * retransmit happens at 3*rtt).
3006 */
3007 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3008 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3009 }
3010 tp->t_rtttime = 0;
3011 tp->t_rxtshift = 0;
3012
3013 /*
3014 * the retransmit should happen at rtt + 4 * rttvar.
3015 * Because of the way we do the smoothing, srtt and rttvar
3016 * will each average +1/2 tick of bias. When we compute
3017 * the retransmit timer, we want 1/2 tick of rounding and
3018 * 1 extra tick because of +-1/2 tick uncertainty in the
3019 * firing of the timer. The bias will give us exactly the
3020 * 1.5 tick we need. But, because the bias is
3021 * statistical, we have to test that we don't drop below
3022 * the minimum feasible timer (which is 2 ticks).
3023 */
3024 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3025 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3026
3027 /*
3028 * We received an ack for a packet that wasn't retransmitted;
3029 * it is probably safe to discard any error indications we've
3030 * received recently. This isn't quite right, but close enough
3031 * for now (a route might have failed after we sent a segment,
3032 * and the return path might not be symmetrical).
3033 */
3034 tp->t_softerror = 0;
3035 }
3036
3037 void
3038 tcp_reno_newack(tp, th)
3039 struct tcpcb *tp;
3040 struct tcphdr *th;
3041 {
3042 if (tp->t_partialacks < 0) {
3043 /*
3044 * We were not in fast recovery. Reset the duplicate ack
3045 * counter.
3046 */
3047 tp->t_dupacks = 0;
3048 } else {
3049 /*
3050 * Clamp the congestion window to the crossover point and
3051 * exit fast recovery.
3052 */
3053 if (tp->snd_cwnd > tp->snd_ssthresh)
3054 tp->snd_cwnd = tp->snd_ssthresh;
3055 tp->t_partialacks = -1;
3056 tp->t_dupacks = 0;
3057 }
3058 }
3059
3060 /*
3061 * Implement the NewReno response to a new ack, checking for partial acks in
3062 * fast recovery.
3063 */
3064 void
3065 tcp_newreno_newack(tp, th)
3066 struct tcpcb *tp;
3067 struct tcphdr *th;
3068 {
3069 if (tp->t_partialacks < 0) {
3070 /*
3071 * We were not in fast recovery. Reset the duplicate ack
3072 * counter.
3073 */
3074 tp->t_dupacks = 0;
3075 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3076 /*
3077 * This is a partial ack. Retransmit the first unacknowledged
3078 * segment and deflate the congestion window by the amount of
3079 * acknowledged data. Do not exit fast recovery.
3080 */
3081 tcp_seq onxt = tp->snd_nxt;
3082 u_long ocwnd = tp->snd_cwnd;
3083
3084 /*
3085 * snd_una has not yet been updated and the socket's send
3086 * buffer has not yet drained off the ACK'd data, so we
3087 * have to leave snd_una as it was to get the correct data
3088 * offset in tcp_output().
3089 */
3090 if (++tp->t_partialacks == 1)
3091 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3092 tp->t_rtttime = 0;
3093 tp->snd_nxt = th->th_ack;
3094 /*
3095 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3096 * is not yet updated when we're called.
3097 */
3098 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3099 (void) tcp_output(tp);
3100 tp->snd_cwnd = ocwnd;
3101 if (SEQ_GT(onxt, tp->snd_nxt))
3102 tp->snd_nxt = onxt;
3103 /*
3104 * Partial window deflation. Relies on fact that tp->snd_una
3105 * not updated yet.
3106 */
3107 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3108 } else {
3109 /*
3110 * Complete ack. Inflate the congestion window to ssthresh
3111 * and exit fast recovery.
3112 *
3113 * Window inflation should have left us with approx.
3114 * snd_ssthresh outstanding data. But in case we
3115 * would be inclined to send a burst, better to do
3116 * it via the slow start mechanism.
3117 */
3118 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3119 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3120 + tp->t_segsz;
3121 else
3122 tp->snd_cwnd = tp->snd_ssthresh;
3123 tp->t_partialacks = -1;
3124 tp->t_dupacks = 0;
3125 }
3126 }
3127
3128
3129 /*
3130 * TCP compressed state engine. Currently used to hold compressed
3131 * state for SYN_RECEIVED.
3132 */
3133
3134 u_long syn_cache_count;
3135 u_int32_t syn_hash1, syn_hash2;
3136
3137 #define SYN_HASH(sa, sp, dp) \
3138 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3139 ((u_int32_t)(sp)))^syn_hash2)))
3140 #ifndef INET6
3141 #define SYN_HASHALL(hash, src, dst) \
3142 do { \
3143 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3144 ((struct sockaddr_in *)(src))->sin_port, \
3145 ((struct sockaddr_in *)(dst))->sin_port); \
3146 } while (/*CONSTCOND*/ 0)
3147 #else
3148 #define SYN_HASH6(sa, sp, dp) \
3149 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3150 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3151 & 0x7fffffff)
3152
3153 #define SYN_HASHALL(hash, src, dst) \
3154 do { \
3155 switch ((src)->sa_family) { \
3156 case AF_INET: \
3157 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3158 ((struct sockaddr_in *)(src))->sin_port, \
3159 ((struct sockaddr_in *)(dst))->sin_port); \
3160 break; \
3161 case AF_INET6: \
3162 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3163 ((struct sockaddr_in6 *)(src))->sin6_port, \
3164 ((struct sockaddr_in6 *)(dst))->sin6_port); \
3165 break; \
3166 default: \
3167 hash = 0; \
3168 } \
3169 } while (/*CONSTCOND*/0)
3170 #endif /* INET6 */
3171
3172 #define SYN_CACHE_RM(sc) \
3173 do { \
3174 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3175 (sc), sc_bucketq); \
3176 (sc)->sc_tp = NULL; \
3177 LIST_REMOVE((sc), sc_tpq); \
3178 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3179 callout_stop(&(sc)->sc_timer); \
3180 syn_cache_count--; \
3181 } while (/*CONSTCOND*/0)
3182
3183 #define SYN_CACHE_PUT(sc) \
3184 do { \
3185 if ((sc)->sc_ipopts) \
3186 (void) m_free((sc)->sc_ipopts); \
3187 if ((sc)->sc_route4.ro_rt != NULL) \
3188 RTFREE((sc)->sc_route4.ro_rt); \
3189 if (callout_invoking(&(sc)->sc_timer)) \
3190 (sc)->sc_flags |= SCF_DEAD; \
3191 else \
3192 pool_put(&syn_cache_pool, (sc)); \
3193 } while (/*CONSTCOND*/0)
3194
3195 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3196
3197 /*
3198 * We don't estimate RTT with SYNs, so each packet starts with the default
3199 * RTT and each timer step has a fixed timeout value.
3200 */
3201 #define SYN_CACHE_TIMER_ARM(sc) \
3202 do { \
3203 TCPT_RANGESET((sc)->sc_rxtcur, \
3204 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3205 TCPTV_REXMTMAX); \
3206 callout_reset(&(sc)->sc_timer, \
3207 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3208 } while (/*CONSTCOND*/0)
3209
3210 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3211
3212 void
3213 syn_cache_init()
3214 {
3215 int i;
3216
3217 /* Initialize the hash buckets. */
3218 for (i = 0; i < tcp_syn_cache_size; i++)
3219 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3220 }
3221
3222 void
3223 syn_cache_insert(sc, tp)
3224 struct syn_cache *sc;
3225 struct tcpcb *tp;
3226 {
3227 struct syn_cache_head *scp;
3228 struct syn_cache *sc2;
3229 int s;
3230
3231 /*
3232 * If there are no entries in the hash table, reinitialize
3233 * the hash secrets.
3234 */
3235 if (syn_cache_count == 0) {
3236 syn_hash1 = arc4random();
3237 syn_hash2 = arc4random();
3238 }
3239
3240 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3241 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3242 scp = &tcp_syn_cache[sc->sc_bucketidx];
3243
3244 /*
3245 * Make sure that we don't overflow the per-bucket
3246 * limit or the total cache size limit.
3247 */
3248 s = splsoftnet();
3249 if (scp->sch_length >= tcp_syn_bucket_limit) {
3250 tcpstat.tcps_sc_bucketoverflow++;
3251 /*
3252 * The bucket is full. Toss the oldest element in the
3253 * bucket. This will be the first entry in the bucket.
3254 */
3255 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3256 #ifdef DIAGNOSTIC
3257 /*
3258 * This should never happen; we should always find an
3259 * entry in our bucket.
3260 */
3261 if (sc2 == NULL)
3262 panic("syn_cache_insert: bucketoverflow: impossible");
3263 #endif
3264 SYN_CACHE_RM(sc2);
3265 SYN_CACHE_PUT(sc2);
3266 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3267 struct syn_cache_head *scp2, *sce;
3268
3269 tcpstat.tcps_sc_overflowed++;
3270 /*
3271 * The cache is full. Toss the oldest entry in the
3272 * first non-empty bucket we can find.
3273 *
3274 * XXX We would really like to toss the oldest
3275 * entry in the cache, but we hope that this
3276 * condition doesn't happen very often.
3277 */
3278 scp2 = scp;
3279 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3280 sce = &tcp_syn_cache[tcp_syn_cache_size];
3281 for (++scp2; scp2 != scp; scp2++) {
3282 if (scp2 >= sce)
3283 scp2 = &tcp_syn_cache[0];
3284 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3285 break;
3286 }
3287 #ifdef DIAGNOSTIC
3288 /*
3289 * This should never happen; we should always find a
3290 * non-empty bucket.
3291 */
3292 if (scp2 == scp)
3293 panic("syn_cache_insert: cacheoverflow: "
3294 "impossible");
3295 #endif
3296 }
3297 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3298 SYN_CACHE_RM(sc2);
3299 SYN_CACHE_PUT(sc2);
3300 }
3301
3302 /*
3303 * Initialize the entry's timer.
3304 */
3305 sc->sc_rxttot = 0;
3306 sc->sc_rxtshift = 0;
3307 SYN_CACHE_TIMER_ARM(sc);
3308
3309 /* Link it from tcpcb entry */
3310 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3311
3312 /* Put it into the bucket. */
3313 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3314 scp->sch_length++;
3315 syn_cache_count++;
3316
3317 tcpstat.tcps_sc_added++;
3318 splx(s);
3319 }
3320
3321 /*
3322 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3323 * If we have retransmitted an entry the maximum number of times, expire
3324 * that entry.
3325 */
3326 void
3327 syn_cache_timer(void *arg)
3328 {
3329 struct syn_cache *sc = arg;
3330 int s;
3331
3332 s = splsoftnet();
3333 callout_ack(&sc->sc_timer);
3334
3335 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3336 tcpstat.tcps_sc_delayed_free++;
3337 pool_put(&syn_cache_pool, sc);
3338 splx(s);
3339 return;
3340 }
3341
3342 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3343 /* Drop it -- too many retransmissions. */
3344 goto dropit;
3345 }
3346
3347 /*
3348 * Compute the total amount of time this entry has
3349 * been on a queue. If this entry has been on longer
3350 * than the keep alive timer would allow, expire it.
3351 */
3352 sc->sc_rxttot += sc->sc_rxtcur;
3353 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3354 goto dropit;
3355
3356 tcpstat.tcps_sc_retransmitted++;
3357 (void) syn_cache_respond(sc, NULL);
3358
3359 /* Advance the timer back-off. */
3360 sc->sc_rxtshift++;
3361 SYN_CACHE_TIMER_ARM(sc);
3362
3363 splx(s);
3364 return;
3365
3366 dropit:
3367 tcpstat.tcps_sc_timed_out++;
3368 SYN_CACHE_RM(sc);
3369 SYN_CACHE_PUT(sc);
3370 splx(s);
3371 }
3372
3373 /*
3374 * Remove syn cache created by the specified tcb entry,
3375 * because this does not make sense to keep them
3376 * (if there's no tcb entry, syn cache entry will never be used)
3377 */
3378 void
3379 syn_cache_cleanup(tp)
3380 struct tcpcb *tp;
3381 {
3382 struct syn_cache *sc, *nsc;
3383 int s;
3384
3385 s = splsoftnet();
3386
3387 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3388 nsc = LIST_NEXT(sc, sc_tpq);
3389
3390 #ifdef DIAGNOSTIC
3391 if (sc->sc_tp != tp)
3392 panic("invalid sc_tp in syn_cache_cleanup");
3393 #endif
3394 SYN_CACHE_RM(sc);
3395 SYN_CACHE_PUT(sc);
3396 }
3397 /* just for safety */
3398 LIST_INIT(&tp->t_sc);
3399
3400 splx(s);
3401 }
3402
3403 /*
3404 * Find an entry in the syn cache.
3405 */
3406 struct syn_cache *
3407 syn_cache_lookup(src, dst, headp)
3408 struct sockaddr *src;
3409 struct sockaddr *dst;
3410 struct syn_cache_head **headp;
3411 {
3412 struct syn_cache *sc;
3413 struct syn_cache_head *scp;
3414 u_int32_t hash;
3415 int s;
3416
3417 SYN_HASHALL(hash, src, dst);
3418
3419 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3420 *headp = scp;
3421 s = splsoftnet();
3422 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3423 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3424 if (sc->sc_hash != hash)
3425 continue;
3426 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3427 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3428 splx(s);
3429 return (sc);
3430 }
3431 }
3432 splx(s);
3433 return (NULL);
3434 }
3435
3436 /*
3437 * This function gets called when we receive an ACK for a
3438 * socket in the LISTEN state. We look up the connection
3439 * in the syn cache, and if its there, we pull it out of
3440 * the cache and turn it into a full-blown connection in
3441 * the SYN-RECEIVED state.
3442 *
3443 * The return values may not be immediately obvious, and their effects
3444 * can be subtle, so here they are:
3445 *
3446 * NULL SYN was not found in cache; caller should drop the
3447 * packet and send an RST.
3448 *
3449 * -1 We were unable to create the new connection, and are
3450 * aborting it. An ACK,RST is being sent to the peer
3451 * (unless we got screwey sequence numbners; see below),
3452 * because the 3-way handshake has been completed. Caller
3453 * should not free the mbuf, since we may be using it. If
3454 * we are not, we will free it.
3455 *
3456 * Otherwise, the return value is a pointer to the new socket
3457 * associated with the connection.
3458 */
3459 struct socket *
3460 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3461 struct sockaddr *src;
3462 struct sockaddr *dst;
3463 struct tcphdr *th;
3464 unsigned int hlen, tlen;
3465 struct socket *so;
3466 struct mbuf *m;
3467 {
3468 struct syn_cache *sc;
3469 struct syn_cache_head *scp;
3470 struct inpcb *inp = NULL;
3471 #ifdef INET6
3472 struct in6pcb *in6p = NULL;
3473 #endif
3474 struct tcpcb *tp = 0;
3475 struct mbuf *am;
3476 int s;
3477 struct socket *oso;
3478
3479 s = splsoftnet();
3480 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3481 splx(s);
3482 return (NULL);
3483 }
3484
3485 /*
3486 * Verify the sequence and ack numbers. Try getting the correct
3487 * response again.
3488 */
3489 if ((th->th_ack != sc->sc_iss + 1) ||
3490 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3491 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3492 (void) syn_cache_respond(sc, m);
3493 splx(s);
3494 return ((struct socket *)(-1));
3495 }
3496
3497 /* Remove this cache entry */
3498 SYN_CACHE_RM(sc);
3499 splx(s);
3500
3501 /*
3502 * Ok, create the full blown connection, and set things up
3503 * as they would have been set up if we had created the
3504 * connection when the SYN arrived. If we can't create
3505 * the connection, abort it.
3506 */
3507 /*
3508 * inp still has the OLD in_pcb stuff, set the
3509 * v6-related flags on the new guy, too. This is
3510 * done particularly for the case where an AF_INET6
3511 * socket is bound only to a port, and a v4 connection
3512 * comes in on that port.
3513 * we also copy the flowinfo from the original pcb
3514 * to the new one.
3515 */
3516 oso = so;
3517 so = sonewconn(so, SS_ISCONNECTED);
3518 if (so == NULL)
3519 goto resetandabort;
3520
3521 switch (so->so_proto->pr_domain->dom_family) {
3522 #ifdef INET
3523 case AF_INET:
3524 inp = sotoinpcb(so);
3525 break;
3526 #endif
3527 #ifdef INET6
3528 case AF_INET6:
3529 in6p = sotoin6pcb(so);
3530 break;
3531 #endif
3532 }
3533 switch (src->sa_family) {
3534 #ifdef INET
3535 case AF_INET:
3536 if (inp) {
3537 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3538 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3539 inp->inp_options = ip_srcroute();
3540 in_pcbstate(inp, INP_BOUND);
3541 if (inp->inp_options == NULL) {
3542 inp->inp_options = sc->sc_ipopts;
3543 sc->sc_ipopts = NULL;
3544 }
3545 }
3546 #ifdef INET6
3547 else if (in6p) {
3548 /* IPv4 packet to AF_INET6 socket */
3549 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3550 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3551 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3552 &in6p->in6p_laddr.s6_addr32[3],
3553 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3554 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3555 in6totcpcb(in6p)->t_family = AF_INET;
3556 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3557 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3558 else
3559 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3560 in6_pcbstate(in6p, IN6P_BOUND);
3561 }
3562 #endif
3563 break;
3564 #endif
3565 #ifdef INET6
3566 case AF_INET6:
3567 if (in6p) {
3568 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3569 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3570 in6_pcbstate(in6p, IN6P_BOUND);
3571 }
3572 break;
3573 #endif
3574 }
3575 #ifdef INET6
3576 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3577 struct in6pcb *oin6p = sotoin6pcb(oso);
3578 /* inherit socket options from the listening socket */
3579 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3580 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3581 m_freem(in6p->in6p_options);
3582 in6p->in6p_options = 0;
3583 }
3584 ip6_savecontrol(in6p, &in6p->in6p_options,
3585 mtod(m, struct ip6_hdr *), m);
3586 }
3587 #endif
3588
3589 #if defined(IPSEC) || defined(FAST_IPSEC)
3590 /*
3591 * we make a copy of policy, instead of sharing the policy,
3592 * for better behavior in terms of SA lookup and dead SA removal.
3593 */
3594 if (inp) {
3595 /* copy old policy into new socket's */
3596 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3597 printf("tcp_input: could not copy policy\n");
3598 }
3599 #ifdef INET6
3600 else if (in6p) {
3601 /* copy old policy into new socket's */
3602 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3603 in6p->in6p_sp))
3604 printf("tcp_input: could not copy policy\n");
3605 }
3606 #endif
3607 #endif
3608
3609 /*
3610 * Give the new socket our cached route reference.
3611 */
3612 if (inp)
3613 inp->inp_route = sc->sc_route4; /* struct assignment */
3614 #ifdef INET6
3615 else
3616 in6p->in6p_route = sc->sc_route6;
3617 #endif
3618 sc->sc_route4.ro_rt = NULL;
3619
3620 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3621 if (am == NULL)
3622 goto resetandabort;
3623 MCLAIM(am, &tcp_mowner);
3624 am->m_len = src->sa_len;
3625 bcopy(src, mtod(am, caddr_t), src->sa_len);
3626 if (inp) {
3627 if (in_pcbconnect(inp, am)) {
3628 (void) m_free(am);
3629 goto resetandabort;
3630 }
3631 }
3632 #ifdef INET6
3633 else if (in6p) {
3634 if (src->sa_family == AF_INET) {
3635 /* IPv4 packet to AF_INET6 socket */
3636 struct sockaddr_in6 *sin6;
3637 sin6 = mtod(am, struct sockaddr_in6 *);
3638 am->m_len = sizeof(*sin6);
3639 bzero(sin6, sizeof(*sin6));
3640 sin6->sin6_family = AF_INET6;
3641 sin6->sin6_len = sizeof(*sin6);
3642 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3643 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3644 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3645 &sin6->sin6_addr.s6_addr32[3],
3646 sizeof(sin6->sin6_addr.s6_addr32[3]));
3647 }
3648 if (in6_pcbconnect(in6p, am)) {
3649 (void) m_free(am);
3650 goto resetandabort;
3651 }
3652 }
3653 #endif
3654 else {
3655 (void) m_free(am);
3656 goto resetandabort;
3657 }
3658 (void) m_free(am);
3659
3660 if (inp)
3661 tp = intotcpcb(inp);
3662 #ifdef INET6
3663 else if (in6p)
3664 tp = in6totcpcb(in6p);
3665 #endif
3666 else
3667 tp = NULL;
3668 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3669 if (sc->sc_request_r_scale != 15) {
3670 tp->requested_s_scale = sc->sc_requested_s_scale;
3671 tp->request_r_scale = sc->sc_request_r_scale;
3672 tp->snd_scale = sc->sc_requested_s_scale;
3673 tp->rcv_scale = sc->sc_request_r_scale;
3674 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3675 }
3676 if (sc->sc_flags & SCF_TIMESTAMP)
3677 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3678 tp->ts_timebase = sc->sc_timebase;
3679
3680 tp->t_template = tcp_template(tp);
3681 if (tp->t_template == 0) {
3682 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3683 so = NULL;
3684 m_freem(m);
3685 goto abort;
3686 }
3687
3688 tp->iss = sc->sc_iss;
3689 tp->irs = sc->sc_irs;
3690 tcp_sendseqinit(tp);
3691 tcp_rcvseqinit(tp);
3692 tp->t_state = TCPS_SYN_RECEIVED;
3693 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3694 tcpstat.tcps_accepts++;
3695
3696 #ifdef TCP_SIGNATURE
3697 if (sc->sc_flags & SCF_SIGNATURE)
3698 tp->t_flags |= TF_SIGNATURE;
3699 #endif
3700
3701 /* Initialize tp->t_ourmss before we deal with the peer's! */
3702 tp->t_ourmss = sc->sc_ourmaxseg;
3703 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3704
3705 /*
3706 * Initialize the initial congestion window. If we
3707 * had to retransmit the SYN,ACK, we must initialize cwnd
3708 * to 1 segment (i.e. the Loss Window).
3709 */
3710 if (sc->sc_rxtshift)
3711 tp->snd_cwnd = tp->t_peermss;
3712 else {
3713 int ss = tcp_init_win;
3714 #ifdef INET
3715 if (inp != NULL && in_localaddr(inp->inp_faddr))
3716 ss = tcp_init_win_local;
3717 #endif
3718 #ifdef INET6
3719 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3720 ss = tcp_init_win_local;
3721 #endif
3722 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3723 }
3724
3725 tcp_rmx_rtt(tp);
3726 tp->snd_wl1 = sc->sc_irs;
3727 tp->rcv_up = sc->sc_irs + 1;
3728
3729 /*
3730 * This is what whould have happened in tcp_output() when
3731 * the SYN,ACK was sent.
3732 */
3733 tp->snd_up = tp->snd_una;
3734 tp->snd_max = tp->snd_nxt = tp->iss+1;
3735 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3736 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3737 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3738 tp->last_ack_sent = tp->rcv_nxt;
3739 tp->t_partialacks = -1;
3740 tp->t_dupacks = 0;
3741
3742 tcpstat.tcps_sc_completed++;
3743 SYN_CACHE_PUT(sc);
3744 return (so);
3745
3746 resetandabort:
3747 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3748 abort:
3749 if (so != NULL)
3750 (void) soabort(so);
3751 SYN_CACHE_PUT(sc);
3752 tcpstat.tcps_sc_aborted++;
3753 return ((struct socket *)(-1));
3754 }
3755
3756 /*
3757 * This function is called when we get a RST for a
3758 * non-existent connection, so that we can see if the
3759 * connection is in the syn cache. If it is, zap it.
3760 */
3761
3762 void
3763 syn_cache_reset(src, dst, th)
3764 struct sockaddr *src;
3765 struct sockaddr *dst;
3766 struct tcphdr *th;
3767 {
3768 struct syn_cache *sc;
3769 struct syn_cache_head *scp;
3770 int s = splsoftnet();
3771
3772 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3773 splx(s);
3774 return;
3775 }
3776 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3777 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3778 splx(s);
3779 return;
3780 }
3781 SYN_CACHE_RM(sc);
3782 splx(s);
3783 tcpstat.tcps_sc_reset++;
3784 SYN_CACHE_PUT(sc);
3785 }
3786
3787 void
3788 syn_cache_unreach(src, dst, th)
3789 struct sockaddr *src;
3790 struct sockaddr *dst;
3791 struct tcphdr *th;
3792 {
3793 struct syn_cache *sc;
3794 struct syn_cache_head *scp;
3795 int s;
3796
3797 s = splsoftnet();
3798 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3799 splx(s);
3800 return;
3801 }
3802 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3803 if (ntohl (th->th_seq) != sc->sc_iss) {
3804 splx(s);
3805 return;
3806 }
3807
3808 /*
3809 * If we've retransmitted 3 times and this is our second error,
3810 * we remove the entry. Otherwise, we allow it to continue on.
3811 * This prevents us from incorrectly nuking an entry during a
3812 * spurious network outage.
3813 *
3814 * See tcp_notify().
3815 */
3816 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3817 sc->sc_flags |= SCF_UNREACH;
3818 splx(s);
3819 return;
3820 }
3821
3822 SYN_CACHE_RM(sc);
3823 splx(s);
3824 tcpstat.tcps_sc_unreach++;
3825 SYN_CACHE_PUT(sc);
3826 }
3827
3828 /*
3829 * Given a LISTEN socket and an inbound SYN request, add
3830 * this to the syn cache, and send back a segment:
3831 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3832 * to the source.
3833 *
3834 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3835 * Doing so would require that we hold onto the data and deliver it
3836 * to the application. However, if we are the target of a SYN-flood
3837 * DoS attack, an attacker could send data which would eventually
3838 * consume all available buffer space if it were ACKed. By not ACKing
3839 * the data, we avoid this DoS scenario.
3840 */
3841
3842 int
3843 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3844 struct sockaddr *src;
3845 struct sockaddr *dst;
3846 struct tcphdr *th;
3847 unsigned int hlen;
3848 struct socket *so;
3849 struct mbuf *m;
3850 u_char *optp;
3851 int optlen;
3852 struct tcp_opt_info *oi;
3853 {
3854 struct tcpcb tb, *tp;
3855 long win;
3856 struct syn_cache *sc;
3857 struct syn_cache_head *scp;
3858 struct mbuf *ipopts;
3859 struct tcp_opt_info opti;
3860
3861 tp = sototcpcb(so);
3862
3863 bzero(&opti, sizeof(opti));
3864
3865 /*
3866 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3867 *
3868 * Note this check is performed in tcp_input() very early on.
3869 */
3870
3871 /*
3872 * Initialize some local state.
3873 */
3874 win = sbspace(&so->so_rcv);
3875 if (win > TCP_MAXWIN)
3876 win = TCP_MAXWIN;
3877
3878 switch (src->sa_family) {
3879 #ifdef INET
3880 case AF_INET:
3881 /*
3882 * Remember the IP options, if any.
3883 */
3884 ipopts = ip_srcroute();
3885 break;
3886 #endif
3887 default:
3888 ipopts = NULL;
3889 }
3890
3891 #ifdef TCP_SIGNATURE
3892 if (optp || (tp->t_flags & TF_SIGNATURE))
3893 #else
3894 if (optp)
3895 #endif
3896 {
3897 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3898 #ifdef TCP_SIGNATURE
3899 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3900 #endif
3901 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3902 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3903 return (0);
3904 } else
3905 tb.t_flags = 0;
3906
3907 /*
3908 * See if we already have an entry for this connection.
3909 * If we do, resend the SYN,ACK. We do not count this
3910 * as a retransmission (XXX though maybe we should).
3911 */
3912 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3913 tcpstat.tcps_sc_dupesyn++;
3914 if (ipopts) {
3915 /*
3916 * If we were remembering a previous source route,
3917 * forget it and use the new one we've been given.
3918 */
3919 if (sc->sc_ipopts)
3920 (void) m_free(sc->sc_ipopts);
3921 sc->sc_ipopts = ipopts;
3922 }
3923 sc->sc_timestamp = tb.ts_recent;
3924 if (syn_cache_respond(sc, m) == 0) {
3925 tcpstat.tcps_sndacks++;
3926 tcpstat.tcps_sndtotal++;
3927 }
3928 return (1);
3929 }
3930
3931 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3932 if (sc == NULL) {
3933 if (ipopts)
3934 (void) m_free(ipopts);
3935 return (0);
3936 }
3937
3938 /*
3939 * Fill in the cache, and put the necessary IP and TCP
3940 * options into the reply.
3941 */
3942 bzero(sc, sizeof(struct syn_cache));
3943 callout_init(&sc->sc_timer);
3944 bcopy(src, &sc->sc_src, src->sa_len);
3945 bcopy(dst, &sc->sc_dst, dst->sa_len);
3946 sc->sc_flags = 0;
3947 sc->sc_ipopts = ipopts;
3948 sc->sc_irs = th->th_seq;
3949 switch (src->sa_family) {
3950 #ifdef INET
3951 case AF_INET:
3952 {
3953 struct sockaddr_in *srcin = (void *) src;
3954 struct sockaddr_in *dstin = (void *) dst;
3955
3956 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3957 &srcin->sin_addr, dstin->sin_port,
3958 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3959 break;
3960 }
3961 #endif /* INET */
3962 #ifdef INET6
3963 case AF_INET6:
3964 {
3965 struct sockaddr_in6 *srcin6 = (void *) src;
3966 struct sockaddr_in6 *dstin6 = (void *) dst;
3967
3968 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3969 &srcin6->sin6_addr, dstin6->sin6_port,
3970 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3971 break;
3972 }
3973 #endif /* INET6 */
3974 }
3975 sc->sc_peermaxseg = oi->maxseg;
3976 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3977 m->m_pkthdr.rcvif : NULL,
3978 sc->sc_src.sa.sa_family);
3979 sc->sc_win = win;
3980 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3981 sc->sc_timestamp = tb.ts_recent;
3982 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3983 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3984 sc->sc_flags |= SCF_TIMESTAMP;
3985 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3986 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3987 sc->sc_requested_s_scale = tb.requested_s_scale;
3988 sc->sc_request_r_scale = 0;
3989 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3990 TCP_MAXWIN << sc->sc_request_r_scale <
3991 so->so_rcv.sb_hiwat)
3992 sc->sc_request_r_scale++;
3993 } else {
3994 sc->sc_requested_s_scale = 15;
3995 sc->sc_request_r_scale = 15;
3996 }
3997 #ifdef TCP_SIGNATURE
3998 if (tb.t_flags & TF_SIGNATURE)
3999 sc->sc_flags |= SCF_SIGNATURE;
4000 #endif
4001 sc->sc_tp = tp;
4002 if (syn_cache_respond(sc, m) == 0) {
4003 syn_cache_insert(sc, tp);
4004 tcpstat.tcps_sndacks++;
4005 tcpstat.tcps_sndtotal++;
4006 } else {
4007 SYN_CACHE_PUT(sc);
4008 tcpstat.tcps_sc_dropped++;
4009 }
4010 return (1);
4011 }
4012
4013 int
4014 syn_cache_respond(sc, m)
4015 struct syn_cache *sc;
4016 struct mbuf *m;
4017 {
4018 struct route *ro;
4019 u_int8_t *optp;
4020 int optlen, error;
4021 u_int16_t tlen;
4022 struct ip *ip = NULL;
4023 #ifdef INET6
4024 struct ip6_hdr *ip6 = NULL;
4025 #endif
4026 struct tcpcb *tp;
4027 struct tcphdr *th;
4028 u_int hlen;
4029 struct socket *so;
4030
4031 switch (sc->sc_src.sa.sa_family) {
4032 case AF_INET:
4033 hlen = sizeof(struct ip);
4034 ro = &sc->sc_route4;
4035 break;
4036 #ifdef INET6
4037 case AF_INET6:
4038 hlen = sizeof(struct ip6_hdr);
4039 ro = (struct route *)&sc->sc_route6;
4040 break;
4041 #endif
4042 default:
4043 if (m)
4044 m_freem(m);
4045 return (EAFNOSUPPORT);
4046 }
4047
4048 /* Compute the size of the TCP options. */
4049 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4050 #ifdef TCP_SIGNATURE
4051 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4052 #endif
4053 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4054
4055 tlen = hlen + sizeof(struct tcphdr) + optlen;
4056
4057 /*
4058 * Create the IP+TCP header from scratch.
4059 */
4060 if (m)
4061 m_freem(m);
4062 #ifdef DIAGNOSTIC
4063 if (max_linkhdr + tlen > MCLBYTES)
4064 return (ENOBUFS);
4065 #endif
4066 MGETHDR(m, M_DONTWAIT, MT_DATA);
4067 if (m && tlen > MHLEN) {
4068 MCLGET(m, M_DONTWAIT);
4069 if ((m->m_flags & M_EXT) == 0) {
4070 m_freem(m);
4071 m = NULL;
4072 }
4073 }
4074 if (m == NULL)
4075 return (ENOBUFS);
4076 MCLAIM(m, &tcp_tx_mowner);
4077
4078 /* Fixup the mbuf. */
4079 m->m_data += max_linkhdr;
4080 m->m_len = m->m_pkthdr.len = tlen;
4081 if (sc->sc_tp) {
4082 tp = sc->sc_tp;
4083 if (tp->t_inpcb)
4084 so = tp->t_inpcb->inp_socket;
4085 #ifdef INET6
4086 else if (tp->t_in6pcb)
4087 so = tp->t_in6pcb->in6p_socket;
4088 #endif
4089 else
4090 so = NULL;
4091 } else
4092 so = NULL;
4093 m->m_pkthdr.rcvif = NULL;
4094 memset(mtod(m, u_char *), 0, tlen);
4095
4096 switch (sc->sc_src.sa.sa_family) {
4097 case AF_INET:
4098 ip = mtod(m, struct ip *);
4099 ip->ip_v = 4;
4100 ip->ip_dst = sc->sc_src.sin.sin_addr;
4101 ip->ip_src = sc->sc_dst.sin.sin_addr;
4102 ip->ip_p = IPPROTO_TCP;
4103 th = (struct tcphdr *)(ip + 1);
4104 th->th_dport = sc->sc_src.sin.sin_port;
4105 th->th_sport = sc->sc_dst.sin.sin_port;
4106 break;
4107 #ifdef INET6
4108 case AF_INET6:
4109 ip6 = mtod(m, struct ip6_hdr *);
4110 ip6->ip6_vfc = IPV6_VERSION;
4111 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4112 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4113 ip6->ip6_nxt = IPPROTO_TCP;
4114 /* ip6_plen will be updated in ip6_output() */
4115 th = (struct tcphdr *)(ip6 + 1);
4116 th->th_dport = sc->sc_src.sin6.sin6_port;
4117 th->th_sport = sc->sc_dst.sin6.sin6_port;
4118 break;
4119 #endif
4120 default:
4121 th = NULL;
4122 }
4123
4124 th->th_seq = htonl(sc->sc_iss);
4125 th->th_ack = htonl(sc->sc_irs + 1);
4126 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4127 th->th_flags = TH_SYN|TH_ACK;
4128 th->th_win = htons(sc->sc_win);
4129 /* th_sum already 0 */
4130 /* th_urp already 0 */
4131
4132 /* Tack on the TCP options. */
4133 optp = (u_int8_t *)(th + 1);
4134 *optp++ = TCPOPT_MAXSEG;
4135 *optp++ = 4;
4136 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4137 *optp++ = sc->sc_ourmaxseg & 0xff;
4138
4139 if (sc->sc_request_r_scale != 15) {
4140 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4141 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4142 sc->sc_request_r_scale);
4143 optp += 4;
4144 }
4145
4146 if (sc->sc_flags & SCF_TIMESTAMP) {
4147 u_int32_t *lp = (u_int32_t *)(optp);
4148 /* Form timestamp option as shown in appendix A of RFC 1323. */
4149 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4150 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4151 *lp = htonl(sc->sc_timestamp);
4152 optp += TCPOLEN_TSTAMP_APPA;
4153 }
4154
4155 #ifdef TCP_SIGNATURE
4156 if (sc->sc_flags & SCF_SIGNATURE) {
4157 struct secasvar *sav;
4158 u_int8_t *sigp;
4159
4160 sav = tcp_signature_getsav(m, th);
4161
4162 if (sav == NULL) {
4163 if (m)
4164 m_freem(m);
4165 return (EPERM);
4166 }
4167
4168 *optp++ = TCPOPT_SIGNATURE;
4169 *optp++ = TCPOLEN_SIGNATURE;
4170 sigp = optp;
4171 bzero(optp, TCP_SIGLEN);
4172 optp += TCP_SIGLEN;
4173 *optp++ = TCPOPT_NOP;
4174 *optp++ = TCPOPT_EOL;
4175
4176 (void)tcp_signature(m, th, hlen, sav, sigp);
4177
4178 key_sa_recordxfer(sav, m);
4179 #ifdef FAST_IPSEC
4180 KEY_FREESAV(&sav);
4181 #else
4182 key_freesav(sav);
4183 #endif
4184 }
4185 #endif
4186
4187 /* Compute the packet's checksum. */
4188 switch (sc->sc_src.sa.sa_family) {
4189 case AF_INET:
4190 ip->ip_len = htons(tlen - hlen);
4191 th->th_sum = 0;
4192 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4193 break;
4194 #ifdef INET6
4195 case AF_INET6:
4196 ip6->ip6_plen = htons(tlen - hlen);
4197 th->th_sum = 0;
4198 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4199 break;
4200 #endif
4201 }
4202
4203 /*
4204 * Fill in some straggling IP bits. Note the stack expects
4205 * ip_len to be in host order, for convenience.
4206 */
4207 switch (sc->sc_src.sa.sa_family) {
4208 #ifdef INET
4209 case AF_INET:
4210 ip->ip_len = htons(tlen);
4211 ip->ip_ttl = ip_defttl;
4212 /* XXX tos? */
4213 break;
4214 #endif
4215 #ifdef INET6
4216 case AF_INET6:
4217 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4218 ip6->ip6_vfc |= IPV6_VERSION;
4219 ip6->ip6_plen = htons(tlen - hlen);
4220 /* ip6_hlim will be initialized afterwards */
4221 /* XXX flowlabel? */
4222 break;
4223 #endif
4224 }
4225
4226 /* XXX use IPsec policy on listening socket, on SYN ACK */
4227 tp = sc->sc_tp;
4228
4229 switch (sc->sc_src.sa.sa_family) {
4230 #ifdef INET
4231 case AF_INET:
4232 error = ip_output(m, sc->sc_ipopts, ro,
4233 (ip_mtudisc ? IP_MTUDISC : 0),
4234 (struct ip_moptions *)NULL, so);
4235 break;
4236 #endif
4237 #ifdef INET6
4238 case AF_INET6:
4239 ip6->ip6_hlim = in6_selecthlim(NULL,
4240 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4241
4242 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4243 (struct ip6_moptions *)0, so, NULL);
4244 break;
4245 #endif
4246 default:
4247 error = EAFNOSUPPORT;
4248 break;
4249 }
4250 return (error);
4251 }
4252