tcp_input.c revision 1.219 1 /* $NetBSD: tcp_input.c,v 1.219 2005/02/02 21:41:55 perry Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.219 2005/02/02 21:41:55 perry Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210
211 #include <machine/stdarg.h>
212
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif /* IPSEC */
223
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* FAST_IPSEC*/
232
233 int tcprexmtthresh = 3;
234 int tcp_log_refused;
235
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240
241 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
242
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
246
247 /*
248 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249 */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 tp->t_in6pcb->in6p_route.ro_rt) { \
255 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 } \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261
262 /*
263 * Macro to compute ACK transmission behavior. Delay the ACK unless
264 * we have already delayed an ACK (must send an ACK every two segments).
265 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266 * option is enabled.
267 */
268 #define TCP_SETUP_ACK(tp, th) \
269 do { \
270 if ((tp)->t_flags & TF_DELACK || \
271 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 tp->t_flags |= TF_ACKNOW; \
273 else \
274 TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276
277 /*
278 * Convert TCP protocol fields to host order for easier processing.
279 */
280 #define TCP_FIELDS_TO_HOST(th) \
281 do { \
282 NTOHL((th)->th_seq); \
283 NTOHL((th)->th_ack); \
284 NTOHS((th)->th_win); \
285 NTOHS((th)->th_urp); \
286 } while (/*CONSTCOND*/ 0)
287
288 /*
289 * ... and reverse the above.
290 */
291 #define TCP_FIELDS_TO_NET(th) \
292 do { \
293 HTONL((th)->th_seq); \
294 HTONL((th)->th_ack); \
295 HTONS((th)->th_win); \
296 HTONS((th)->th_urp); \
297 } while (/*CONSTCOND*/ 0)
298
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306
307 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
308
309 #else
310
311 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
312
313 #endif /* TCP_CSUM_COUNTERS */
314
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331
332 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
333
334 #else
335
336 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef INET
341 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
345 #endif
346
347 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
348
349 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
350
351 int
352 tcp_reass(tp, th, m, tlen)
353 struct tcpcb *tp;
354 struct tcphdr *th;
355 struct mbuf *m;
356 int *tlen;
357 {
358 struct ipqent *p, *q, *nq, *tiqe = NULL;
359 struct socket *so = NULL;
360 int pkt_flags;
361 tcp_seq pkt_seq;
362 unsigned pkt_len;
363 u_long rcvpartdupbyte = 0;
364 u_long rcvoobyte;
365 #ifdef TCP_REASS_COUNTERS
366 u_int count = 0;
367 #endif
368
369 if (tp->t_inpcb)
370 so = tp->t_inpcb->inp_socket;
371 #ifdef INET6
372 else if (tp->t_in6pcb)
373 so = tp->t_in6pcb->in6p_socket;
374 #endif
375
376 TCP_REASS_LOCK_CHECK(tp);
377
378 /*
379 * Call with th==0 after become established to
380 * force pre-ESTABLISHED data up to user socket.
381 */
382 if (th == 0)
383 goto present;
384
385 rcvoobyte = *tlen;
386 /*
387 * Copy these to local variables because the tcpiphdr
388 * gets munged while we are collapsing mbufs.
389 */
390 pkt_seq = th->th_seq;
391 pkt_len = *tlen;
392 pkt_flags = th->th_flags;
393
394 TCP_REASS_COUNTER_INCR(&tcp_reass_);
395
396 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
397 /*
398 * When we miss a packet, the vast majority of time we get
399 * packets that follow it in order. So optimize for that.
400 */
401 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
402 p->ipqe_len += pkt_len;
403 p->ipqe_flags |= pkt_flags;
404 m_cat(p->ipre_mlast, m);
405 TRAVERSE(p->ipre_mlast);
406 m = NULL;
407 tiqe = p;
408 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
409 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
410 goto skip_replacement;
411 }
412 /*
413 * While we're here, if the pkt is completely beyond
414 * anything we have, just insert it at the tail.
415 */
416 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
417 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
418 goto insert_it;
419 }
420 }
421
422 q = TAILQ_FIRST(&tp->segq);
423
424 if (q != NULL) {
425 /*
426 * If this segment immediately precedes the first out-of-order
427 * block, simply slap the segment in front of it and (mostly)
428 * skip the complicated logic.
429 */
430 if (pkt_seq + pkt_len == q->ipqe_seq) {
431 q->ipqe_seq = pkt_seq;
432 q->ipqe_len += pkt_len;
433 q->ipqe_flags |= pkt_flags;
434 m_cat(m, q->ipqe_m);
435 q->ipqe_m = m;
436 q->ipre_mlast = m; /* last mbuf may have changed */
437 TRAVERSE(q->ipre_mlast);
438 tiqe = q;
439 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
440 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
441 goto skip_replacement;
442 }
443 } else {
444 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
445 }
446
447 /*
448 * Find a segment which begins after this one does.
449 */
450 for (p = NULL; q != NULL; q = nq) {
451 nq = TAILQ_NEXT(q, ipqe_q);
452 #ifdef TCP_REASS_COUNTERS
453 count++;
454 #endif
455 /*
456 * If the received segment is just right after this
457 * fragment, merge the two together and then check
458 * for further overlaps.
459 */
460 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
461 #ifdef TCPREASS_DEBUG
462 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
463 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
464 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
465 #endif
466 pkt_len += q->ipqe_len;
467 pkt_flags |= q->ipqe_flags;
468 pkt_seq = q->ipqe_seq;
469 m_cat(q->ipre_mlast, m);
470 TRAVERSE(q->ipre_mlast);
471 m = q->ipqe_m;
472 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
473 goto free_ipqe;
474 }
475 /*
476 * If the received segment is completely past this
477 * fragment, we need to go the next fragment.
478 */
479 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
480 p = q;
481 continue;
482 }
483 /*
484 * If the fragment is past the received segment,
485 * it (or any following) can't be concatenated.
486 */
487 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
488 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
489 break;
490 }
491
492 /*
493 * We've received all the data in this segment before.
494 * mark it as a duplicate and return.
495 */
496 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
497 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
498 tcpstat.tcps_rcvduppack++;
499 tcpstat.tcps_rcvdupbyte += pkt_len;
500 m_freem(m);
501 if (tiqe != NULL)
502 pool_put(&tcpipqent_pool, tiqe);
503 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
504 return (0);
505 }
506 /*
507 * Received segment completely overlaps this fragment
508 * so we drop the fragment (this keeps the temporal
509 * ordering of segments correct).
510 */
511 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
512 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
513 rcvpartdupbyte += q->ipqe_len;
514 m_freem(q->ipqe_m);
515 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
516 goto free_ipqe;
517 }
518 /*
519 * RX'ed segment extends past the end of the
520 * fragment. Drop the overlapping bytes. Then
521 * merge the fragment and segment then treat as
522 * a longer received packet.
523 */
524 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
525 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
526 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
527 #ifdef TCPREASS_DEBUG
528 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
529 tp, overlap,
530 pkt_seq, pkt_seq + pkt_len, pkt_len);
531 #endif
532 m_adj(m, overlap);
533 rcvpartdupbyte += overlap;
534 m_cat(q->ipre_mlast, m);
535 TRAVERSE(q->ipre_mlast);
536 m = q->ipqe_m;
537 pkt_seq = q->ipqe_seq;
538 pkt_len += q->ipqe_len - overlap;
539 rcvoobyte -= overlap;
540 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
541 goto free_ipqe;
542 }
543 /*
544 * RX'ed segment extends past the front of the
545 * fragment. Drop the overlapping bytes on the
546 * received packet. The packet will then be
547 * contatentated with this fragment a bit later.
548 */
549 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
550 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
551 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
552 #ifdef TCPREASS_DEBUG
553 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
554 tp, overlap,
555 pkt_seq, pkt_seq + pkt_len, pkt_len);
556 #endif
557 m_adj(m, -overlap);
558 pkt_len -= overlap;
559 rcvpartdupbyte += overlap;
560 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
561 rcvoobyte -= overlap;
562 }
563 /*
564 * If the received segment immediates precedes this
565 * fragment then tack the fragment onto this segment
566 * and reinsert the data.
567 */
568 if (q->ipqe_seq == pkt_seq + pkt_len) {
569 #ifdef TCPREASS_DEBUG
570 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
571 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
572 pkt_seq, pkt_seq + pkt_len, pkt_len);
573 #endif
574 pkt_len += q->ipqe_len;
575 pkt_flags |= q->ipqe_flags;
576 m_cat(m, q->ipqe_m);
577 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
578 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
579 if (tiqe == NULL)
580 tiqe = q;
581 else
582 pool_put(&tcpipqent_pool, q);
583 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
584 break;
585 }
586 /*
587 * If the fragment is before the segment, remember it.
588 * When this loop is terminated, p will contain the
589 * pointer to fragment that is right before the received
590 * segment.
591 */
592 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
593 p = q;
594
595 continue;
596
597 /*
598 * This is a common operation. It also will allow
599 * to save doing a malloc/free in most instances.
600 */
601 free_ipqe:
602 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
603 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
604 if (tiqe == NULL)
605 tiqe = q;
606 else
607 pool_put(&tcpipqent_pool, q);
608 }
609
610 #ifdef TCP_REASS_COUNTERS
611 if (count > 7)
612 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
613 else if (count > 0)
614 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
615 #endif
616
617 insert_it:
618
619 /*
620 * Allocate a new queue entry since the received segment did not
621 * collapse onto any other out-of-order block; thus we are allocating
622 * a new block. If it had collapsed, tiqe would not be NULL and
623 * we would be reusing it.
624 * XXX If we can't, just drop the packet. XXX
625 */
626 if (tiqe == NULL) {
627 tiqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
628 if (tiqe == NULL) {
629 tcpstat.tcps_rcvmemdrop++;
630 m_freem(m);
631 return (0);
632 }
633 }
634
635 /*
636 * Update the counters.
637 */
638 tcpstat.tcps_rcvoopack++;
639 tcpstat.tcps_rcvoobyte += rcvoobyte;
640 if (rcvpartdupbyte) {
641 tcpstat.tcps_rcvpartduppack++;
642 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
643 }
644
645 /*
646 * Insert the new fragment queue entry into both queues.
647 */
648 tiqe->ipqe_m = m;
649 tiqe->ipre_mlast = m;
650 tiqe->ipqe_seq = pkt_seq;
651 tiqe->ipqe_len = pkt_len;
652 tiqe->ipqe_flags = pkt_flags;
653 if (p == NULL) {
654 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
655 #ifdef TCPREASS_DEBUG
656 if (tiqe->ipqe_seq != tp->rcv_nxt)
657 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
658 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
659 #endif
660 } else {
661 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
662 #ifdef TCPREASS_DEBUG
663 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
664 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
665 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
666 #endif
667 }
668
669 skip_replacement:
670
671 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
672
673 present:
674 /*
675 * Present data to user, advancing rcv_nxt through
676 * completed sequence space.
677 */
678 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
679 return (0);
680 q = TAILQ_FIRST(&tp->segq);
681 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
682 return (0);
683 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
684 return (0);
685
686 tp->rcv_nxt += q->ipqe_len;
687 pkt_flags = q->ipqe_flags & TH_FIN;
688 ND6_HINT(tp);
689
690 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
691 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
692 if (so->so_state & SS_CANTRCVMORE)
693 m_freem(q->ipqe_m);
694 else
695 sbappendstream(&so->so_rcv, q->ipqe_m);
696 pool_put(&tcpipqent_pool, q);
697 sorwakeup(so);
698 return (pkt_flags);
699 }
700
701 #ifdef INET6
702 int
703 tcp6_input(mp, offp, proto)
704 struct mbuf **mp;
705 int *offp, proto;
706 {
707 struct mbuf *m = *mp;
708
709 /*
710 * draft-itojun-ipv6-tcp-to-anycast
711 * better place to put this in?
712 */
713 if (m->m_flags & M_ANYCAST6) {
714 struct ip6_hdr *ip6;
715 if (m->m_len < sizeof(struct ip6_hdr)) {
716 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
717 tcpstat.tcps_rcvshort++;
718 return IPPROTO_DONE;
719 }
720 }
721 ip6 = mtod(m, struct ip6_hdr *);
722 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
723 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
724 return IPPROTO_DONE;
725 }
726
727 tcp_input(m, *offp, proto);
728 return IPPROTO_DONE;
729 }
730 #endif
731
732 #ifdef INET
733 static void
734 tcp4_log_refused(ip, th)
735 const struct ip *ip;
736 const struct tcphdr *th;
737 {
738 char src[4*sizeof "123"];
739 char dst[4*sizeof "123"];
740
741 if (ip) {
742 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
743 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
744 }
745 else {
746 strlcpy(src, "(unknown)", sizeof(src));
747 strlcpy(dst, "(unknown)", sizeof(dst));
748 }
749 log(LOG_INFO,
750 "Connection attempt to TCP %s:%d from %s:%d\n",
751 dst, ntohs(th->th_dport),
752 src, ntohs(th->th_sport));
753 }
754 #endif
755
756 #ifdef INET6
757 static void
758 tcp6_log_refused(ip6, th)
759 const struct ip6_hdr *ip6;
760 const struct tcphdr *th;
761 {
762 char src[INET6_ADDRSTRLEN];
763 char dst[INET6_ADDRSTRLEN];
764
765 if (ip6) {
766 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
767 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
768 }
769 else {
770 strlcpy(src, "(unknown v6)", sizeof(src));
771 strlcpy(dst, "(unknown v6)", sizeof(dst));
772 }
773 log(LOG_INFO,
774 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
775 dst, ntohs(th->th_dport),
776 src, ntohs(th->th_sport));
777 }
778 #endif
779
780 /*
781 * Checksum extended TCP header and data.
782 */
783 int
784 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
785 int off, int tlen)
786 {
787
788 /*
789 * XXX it's better to record and check if this mbuf is
790 * already checked.
791 */
792
793 switch (af) {
794 #ifdef INET
795 case AF_INET:
796 switch (m->m_pkthdr.csum_flags &
797 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
798 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
799 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
800 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
801 goto badcsum;
802
803 case M_CSUM_TCPv4|M_CSUM_DATA: {
804 u_int32_t hw_csum = m->m_pkthdr.csum_data;
805
806 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
807 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
808 const struct ip *ip =
809 mtod(m, const struct ip *);
810
811 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
812 ip->ip_dst.s_addr,
813 htons(hw_csum + tlen + off + IPPROTO_TCP));
814 }
815 if ((hw_csum ^ 0xffff) != 0)
816 goto badcsum;
817 break;
818 }
819
820 case M_CSUM_TCPv4:
821 /* Checksum was okay. */
822 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
823 break;
824
825 default:
826 /*
827 * Must compute it ourselves. Maybe skip checksum
828 * on loopback interfaces.
829 */
830 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
831 IFF_LOOPBACK) ||
832 tcp_do_loopback_cksum)) {
833 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
834 if (in4_cksum(m, IPPROTO_TCP, toff,
835 tlen + off) != 0)
836 goto badcsum;
837 }
838 break;
839 }
840 break;
841 #endif /* INET4 */
842
843 #ifdef INET6
844 case AF_INET6:
845 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
846 tcp_do_loopback_cksum)) {
847 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
848 goto badcsum;
849 }
850 break;
851 #endif /* INET6 */
852 }
853
854 return 0;
855
856 badcsum:
857 tcpstat.tcps_rcvbadsum++;
858 return -1;
859 }
860
861 /*
862 * TCP input routine, follows pages 65-76 of the
863 * protocol specification dated September, 1981 very closely.
864 */
865 void
866 tcp_input(struct mbuf *m, ...)
867 {
868 struct tcphdr *th;
869 struct ip *ip;
870 struct inpcb *inp;
871 #ifdef INET6
872 struct ip6_hdr *ip6;
873 struct in6pcb *in6p;
874 #endif
875 u_int8_t *optp = NULL;
876 int optlen = 0;
877 int len, tlen, toff, hdroptlen = 0;
878 struct tcpcb *tp = 0;
879 int tiflags;
880 struct socket *so = NULL;
881 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
882 #ifdef TCP_DEBUG
883 short ostate = 0;
884 #endif
885 int iss = 0;
886 u_long tiwin;
887 struct tcp_opt_info opti;
888 int off, iphlen;
889 va_list ap;
890 int af; /* af on the wire */
891 struct mbuf *tcp_saveti = NULL;
892
893 MCLAIM(m, &tcp_rx_mowner);
894 va_start(ap, m);
895 toff = va_arg(ap, int);
896 (void)va_arg(ap, int); /* ignore value, advance ap */
897 va_end(ap);
898
899 tcpstat.tcps_rcvtotal++;
900
901 bzero(&opti, sizeof(opti));
902 opti.ts_present = 0;
903 opti.maxseg = 0;
904
905 /*
906 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
907 *
908 * TCP is, by definition, unicast, so we reject all
909 * multicast outright.
910 *
911 * Note, there are additional src/dst address checks in
912 * the AF-specific code below.
913 */
914 if (m->m_flags & (M_BCAST|M_MCAST)) {
915 /* XXX stat */
916 goto drop;
917 }
918 #ifdef INET6
919 if (m->m_flags & M_ANYCAST6) {
920 /* XXX stat */
921 goto drop;
922 }
923 #endif
924
925 /*
926 * Get IP and TCP header.
927 * Note: IP leaves IP header in first mbuf.
928 */
929 ip = mtod(m, struct ip *);
930 #ifdef INET6
931 ip6 = NULL;
932 #endif
933 switch (ip->ip_v) {
934 #ifdef INET
935 case 4:
936 af = AF_INET;
937 iphlen = sizeof(struct ip);
938 ip = mtod(m, struct ip *);
939 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
940 sizeof(struct tcphdr));
941 if (th == NULL) {
942 tcpstat.tcps_rcvshort++;
943 return;
944 }
945 /* We do the checksum after PCB lookup... */
946 len = ntohs(ip->ip_len);
947 tlen = len - toff;
948 break;
949 #endif
950 #ifdef INET6
951 case 6:
952 ip = NULL;
953 iphlen = sizeof(struct ip6_hdr);
954 af = AF_INET6;
955 ip6 = mtod(m, struct ip6_hdr *);
956 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
957 sizeof(struct tcphdr));
958 if (th == NULL) {
959 tcpstat.tcps_rcvshort++;
960 return;
961 }
962
963 /* Be proactive about malicious use of IPv4 mapped address */
964 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
965 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
966 /* XXX stat */
967 goto drop;
968 }
969
970 /*
971 * Be proactive about unspecified IPv6 address in source.
972 * As we use all-zero to indicate unbounded/unconnected pcb,
973 * unspecified IPv6 address can be used to confuse us.
974 *
975 * Note that packets with unspecified IPv6 destination is
976 * already dropped in ip6_input.
977 */
978 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
979 /* XXX stat */
980 goto drop;
981 }
982
983 /*
984 * Make sure destination address is not multicast.
985 * Source address checked in ip6_input().
986 */
987 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
988 /* XXX stat */
989 goto drop;
990 }
991
992 /* We do the checksum after PCB lookup... */
993 len = m->m_pkthdr.len;
994 tlen = len - toff;
995 break;
996 #endif
997 default:
998 m_freem(m);
999 return;
1000 }
1001
1002 KASSERT(TCP_HDR_ALIGNED_P(th));
1003
1004 /*
1005 * Check that TCP offset makes sense,
1006 * pull out TCP options and adjust length. XXX
1007 */
1008 off = th->th_off << 2;
1009 if (off < sizeof (struct tcphdr) || off > tlen) {
1010 tcpstat.tcps_rcvbadoff++;
1011 goto drop;
1012 }
1013 tlen -= off;
1014
1015 /*
1016 * tcp_input() has been modified to use tlen to mean the TCP data
1017 * length throughout the function. Other functions can use
1018 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1019 * rja
1020 */
1021
1022 if (off > sizeof (struct tcphdr)) {
1023 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1024 if (th == NULL) {
1025 tcpstat.tcps_rcvshort++;
1026 return;
1027 }
1028 /*
1029 * NOTE: ip/ip6 will not be affected by m_pulldown()
1030 * (as they're before toff) and we don't need to update those.
1031 */
1032 KASSERT(TCP_HDR_ALIGNED_P(th));
1033 optlen = off - sizeof (struct tcphdr);
1034 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1035 /*
1036 * Do quick retrieval of timestamp options ("options
1037 * prediction?"). If timestamp is the only option and it's
1038 * formatted as recommended in RFC 1323 appendix A, we
1039 * quickly get the values now and not bother calling
1040 * tcp_dooptions(), etc.
1041 */
1042 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1043 (optlen > TCPOLEN_TSTAMP_APPA &&
1044 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1045 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1046 (th->th_flags & TH_SYN) == 0) {
1047 opti.ts_present = 1;
1048 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1049 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1050 optp = NULL; /* we've parsed the options */
1051 }
1052 }
1053 tiflags = th->th_flags;
1054
1055 /*
1056 * Locate pcb for segment.
1057 */
1058 findpcb:
1059 inp = NULL;
1060 #ifdef INET6
1061 in6p = NULL;
1062 #endif
1063 switch (af) {
1064 #ifdef INET
1065 case AF_INET:
1066 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1067 ip->ip_dst, th->th_dport);
1068 if (inp == 0) {
1069 ++tcpstat.tcps_pcbhashmiss;
1070 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1071 }
1072 #ifdef INET6
1073 if (inp == 0) {
1074 struct in6_addr s, d;
1075
1076 /* mapped addr case */
1077 bzero(&s, sizeof(s));
1078 s.s6_addr16[5] = htons(0xffff);
1079 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1080 bzero(&d, sizeof(d));
1081 d.s6_addr16[5] = htons(0xffff);
1082 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1083 in6p = in6_pcblookup_connect(&tcbtable, &s,
1084 th->th_sport, &d, th->th_dport, 0);
1085 if (in6p == 0) {
1086 ++tcpstat.tcps_pcbhashmiss;
1087 in6p = in6_pcblookup_bind(&tcbtable, &d,
1088 th->th_dport, 0);
1089 }
1090 }
1091 #endif
1092 #ifndef INET6
1093 if (inp == 0)
1094 #else
1095 if (inp == 0 && in6p == 0)
1096 #endif
1097 {
1098 ++tcpstat.tcps_noport;
1099 if (tcp_log_refused &&
1100 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1101 tcp4_log_refused(ip, th);
1102 }
1103 TCP_FIELDS_TO_HOST(th);
1104 goto dropwithreset_ratelim;
1105 }
1106 #if defined(IPSEC) || defined(FAST_IPSEC)
1107 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1108 ipsec4_in_reject(m, inp)) {
1109 ipsecstat.in_polvio++;
1110 goto drop;
1111 }
1112 #ifdef INET6
1113 else if (in6p &&
1114 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1115 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1116 ipsecstat.in_polvio++;
1117 goto drop;
1118 }
1119 #endif
1120 #endif /*IPSEC*/
1121 break;
1122 #endif /*INET*/
1123 #ifdef INET6
1124 case AF_INET6:
1125 {
1126 int faith;
1127
1128 #if defined(NFAITH) && NFAITH > 0
1129 faith = faithprefix(&ip6->ip6_dst);
1130 #else
1131 faith = 0;
1132 #endif
1133 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1134 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1135 if (in6p == NULL) {
1136 ++tcpstat.tcps_pcbhashmiss;
1137 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1138 th->th_dport, faith);
1139 }
1140 if (in6p == NULL) {
1141 ++tcpstat.tcps_noport;
1142 if (tcp_log_refused &&
1143 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1144 tcp6_log_refused(ip6, th);
1145 }
1146 TCP_FIELDS_TO_HOST(th);
1147 goto dropwithreset_ratelim;
1148 }
1149 #if defined(IPSEC) || defined(FAST_IPSEC)
1150 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1151 ipsec6_in_reject(m, in6p)) {
1152 ipsec6stat.in_polvio++;
1153 goto drop;
1154 }
1155 #endif /*IPSEC*/
1156 break;
1157 }
1158 #endif
1159 }
1160
1161 /*
1162 * If the state is CLOSED (i.e., TCB does not exist) then
1163 * all data in the incoming segment is discarded.
1164 * If the TCB exists but is in CLOSED state, it is embryonic,
1165 * but should either do a listen or a connect soon.
1166 */
1167 tp = NULL;
1168 so = NULL;
1169 if (inp) {
1170 tp = intotcpcb(inp);
1171 so = inp->inp_socket;
1172 }
1173 #ifdef INET6
1174 else if (in6p) {
1175 tp = in6totcpcb(in6p);
1176 so = in6p->in6p_socket;
1177 }
1178 #endif
1179 if (tp == 0) {
1180 TCP_FIELDS_TO_HOST(th);
1181 goto dropwithreset_ratelim;
1182 }
1183 if (tp->t_state == TCPS_CLOSED)
1184 goto drop;
1185
1186 /*
1187 * Checksum extended TCP header and data.
1188 */
1189 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1190 goto badcsum;
1191
1192 TCP_FIELDS_TO_HOST(th);
1193
1194 /* Unscale the window into a 32-bit value. */
1195 if ((tiflags & TH_SYN) == 0)
1196 tiwin = th->th_win << tp->snd_scale;
1197 else
1198 tiwin = th->th_win;
1199
1200 #ifdef INET6
1201 /* save packet options if user wanted */
1202 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1203 if (in6p->in6p_options) {
1204 m_freem(in6p->in6p_options);
1205 in6p->in6p_options = 0;
1206 }
1207 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1208 }
1209 #endif
1210
1211 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1212 union syn_cache_sa src;
1213 union syn_cache_sa dst;
1214
1215 bzero(&src, sizeof(src));
1216 bzero(&dst, sizeof(dst));
1217 switch (af) {
1218 #ifdef INET
1219 case AF_INET:
1220 src.sin.sin_len = sizeof(struct sockaddr_in);
1221 src.sin.sin_family = AF_INET;
1222 src.sin.sin_addr = ip->ip_src;
1223 src.sin.sin_port = th->th_sport;
1224
1225 dst.sin.sin_len = sizeof(struct sockaddr_in);
1226 dst.sin.sin_family = AF_INET;
1227 dst.sin.sin_addr = ip->ip_dst;
1228 dst.sin.sin_port = th->th_dport;
1229 break;
1230 #endif
1231 #ifdef INET6
1232 case AF_INET6:
1233 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1234 src.sin6.sin6_family = AF_INET6;
1235 src.sin6.sin6_addr = ip6->ip6_src;
1236 src.sin6.sin6_port = th->th_sport;
1237
1238 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1239 dst.sin6.sin6_family = AF_INET6;
1240 dst.sin6.sin6_addr = ip6->ip6_dst;
1241 dst.sin6.sin6_port = th->th_dport;
1242 break;
1243 #endif /* INET6 */
1244 default:
1245 goto badsyn; /*sanity*/
1246 }
1247
1248 if (so->so_options & SO_DEBUG) {
1249 #ifdef TCP_DEBUG
1250 ostate = tp->t_state;
1251 #endif
1252
1253 tcp_saveti = NULL;
1254 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1255 goto nosave;
1256
1257 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1258 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1259 if (!tcp_saveti)
1260 goto nosave;
1261 } else {
1262 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1263 if (!tcp_saveti)
1264 goto nosave;
1265 MCLAIM(m, &tcp_mowner);
1266 tcp_saveti->m_len = iphlen;
1267 m_copydata(m, 0, iphlen,
1268 mtod(tcp_saveti, caddr_t));
1269 }
1270
1271 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1272 m_freem(tcp_saveti);
1273 tcp_saveti = NULL;
1274 } else {
1275 tcp_saveti->m_len += sizeof(struct tcphdr);
1276 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1277 sizeof(struct tcphdr));
1278 }
1279 nosave:;
1280 }
1281 if (so->so_options & SO_ACCEPTCONN) {
1282 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1283 if (tiflags & TH_RST) {
1284 syn_cache_reset(&src.sa, &dst.sa, th);
1285 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1286 (TH_ACK|TH_SYN)) {
1287 /*
1288 * Received a SYN,ACK. This should
1289 * never happen while we are in
1290 * LISTEN. Send an RST.
1291 */
1292 goto badsyn;
1293 } else if (tiflags & TH_ACK) {
1294 so = syn_cache_get(&src.sa, &dst.sa,
1295 th, toff, tlen, so, m);
1296 if (so == NULL) {
1297 /*
1298 * We don't have a SYN for
1299 * this ACK; send an RST.
1300 */
1301 goto badsyn;
1302 } else if (so ==
1303 (struct socket *)(-1)) {
1304 /*
1305 * We were unable to create
1306 * the connection. If the
1307 * 3-way handshake was
1308 * completed, and RST has
1309 * been sent to the peer.
1310 * Since the mbuf might be
1311 * in use for the reply,
1312 * do not free it.
1313 */
1314 m = NULL;
1315 } else {
1316 /*
1317 * We have created a
1318 * full-blown connection.
1319 */
1320 tp = NULL;
1321 inp = NULL;
1322 #ifdef INET6
1323 in6p = NULL;
1324 #endif
1325 switch (so->so_proto->pr_domain->dom_family) {
1326 #ifdef INET
1327 case AF_INET:
1328 inp = sotoinpcb(so);
1329 tp = intotcpcb(inp);
1330 break;
1331 #endif
1332 #ifdef INET6
1333 case AF_INET6:
1334 in6p = sotoin6pcb(so);
1335 tp = in6totcpcb(in6p);
1336 break;
1337 #endif
1338 }
1339 if (tp == NULL)
1340 goto badsyn; /*XXX*/
1341 tiwin <<= tp->snd_scale;
1342 goto after_listen;
1343 }
1344 } else {
1345 /*
1346 * None of RST, SYN or ACK was set.
1347 * This is an invalid packet for a
1348 * TCB in LISTEN state. Send a RST.
1349 */
1350 goto badsyn;
1351 }
1352 } else {
1353 /*
1354 * Received a SYN.
1355 */
1356
1357 #ifdef INET6
1358 /*
1359 * If deprecated address is forbidden, we do
1360 * not accept SYN to deprecated interface
1361 * address to prevent any new inbound
1362 * connection from getting established.
1363 * When we do not accept SYN, we send a TCP
1364 * RST, with deprecated source address (instead
1365 * of dropping it). We compromise it as it is
1366 * much better for peer to send a RST, and
1367 * RST will be the final packet for the
1368 * exchange.
1369 *
1370 * If we do not forbid deprecated addresses, we
1371 * accept the SYN packet. RFC2462 does not
1372 * suggest dropping SYN in this case.
1373 * If we decipher RFC2462 5.5.4, it says like
1374 * this:
1375 * 1. use of deprecated addr with existing
1376 * communication is okay - "SHOULD continue
1377 * to be used"
1378 * 2. use of it with new communication:
1379 * (2a) "SHOULD NOT be used if alternate
1380 * address with sufficient scope is
1381 * available"
1382 * (2b) nothing mentioned otherwise.
1383 * Here we fall into (2b) case as we have no
1384 * choice in our source address selection - we
1385 * must obey the peer.
1386 *
1387 * The wording in RFC2462 is confusing, and
1388 * there are multiple description text for
1389 * deprecated address handling - worse, they
1390 * are not exactly the same. I believe 5.5.4
1391 * is the best one, so we follow 5.5.4.
1392 */
1393 if (af == AF_INET6 && !ip6_use_deprecated) {
1394 struct in6_ifaddr *ia6;
1395 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1396 &ip6->ip6_dst)) &&
1397 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1398 tp = NULL;
1399 goto dropwithreset;
1400 }
1401 }
1402 #endif
1403
1404 #ifdef IPSEC
1405 switch (af) {
1406 #ifdef INET
1407 case AF_INET:
1408 if (ipsec4_in_reject_so(m, so)) {
1409 ipsecstat.in_polvio++;
1410 tp = NULL;
1411 goto dropwithreset;
1412 }
1413 break;
1414 #endif
1415 #ifdef INET6
1416 case AF_INET6:
1417 if (ipsec6_in_reject_so(m, so)) {
1418 ipsec6stat.in_polvio++;
1419 tp = NULL;
1420 goto dropwithreset;
1421 }
1422 break;
1423 #endif
1424 }
1425 #endif
1426
1427 /*
1428 * LISTEN socket received a SYN
1429 * from itself? This can't possibly
1430 * be valid; drop the packet.
1431 */
1432 if (th->th_sport == th->th_dport) {
1433 int i;
1434
1435 switch (af) {
1436 #ifdef INET
1437 case AF_INET:
1438 i = in_hosteq(ip->ip_src, ip->ip_dst);
1439 break;
1440 #endif
1441 #ifdef INET6
1442 case AF_INET6:
1443 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1444 break;
1445 #endif
1446 default:
1447 i = 1;
1448 }
1449 if (i) {
1450 tcpstat.tcps_badsyn++;
1451 goto drop;
1452 }
1453 }
1454
1455 /*
1456 * SYN looks ok; create compressed TCP
1457 * state for it.
1458 */
1459 if (so->so_qlen <= so->so_qlimit &&
1460 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1461 so, m, optp, optlen, &opti))
1462 m = NULL;
1463 }
1464 goto drop;
1465 }
1466 }
1467
1468 after_listen:
1469 #ifdef DIAGNOSTIC
1470 /*
1471 * Should not happen now that all embryonic connections
1472 * are handled with compressed state.
1473 */
1474 if (tp->t_state == TCPS_LISTEN)
1475 panic("tcp_input: TCPS_LISTEN");
1476 #endif
1477
1478 /*
1479 * Segment received on connection.
1480 * Reset idle time and keep-alive timer.
1481 */
1482 tp->t_rcvtime = tcp_now;
1483 if (TCPS_HAVEESTABLISHED(tp->t_state))
1484 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1485
1486 /*
1487 * Process options.
1488 */
1489 #ifdef TCP_SIGNATURE
1490 if (optp || (tp->t_flags & TF_SIGNATURE))
1491 #else
1492 if (optp)
1493 #endif
1494 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1495 goto drop;
1496
1497 if (opti.ts_present && opti.ts_ecr) {
1498 /*
1499 * Calculate the RTT from the returned time stamp and the
1500 * connection's time base. If the time stamp is later than
1501 * the current time, or is extremely old, fall back to non-1323
1502 * RTT calculation. Since ts_ecr is unsigned, we can test both
1503 * at the same time.
1504 */
1505 opti.ts_ecr = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1506 if (opti.ts_ecr > TCP_PAWS_IDLE)
1507 opti.ts_ecr = 0;
1508 }
1509
1510 /*
1511 * Header prediction: check for the two common cases
1512 * of a uni-directional data xfer. If the packet has
1513 * no control flags, is in-sequence, the window didn't
1514 * change and we're not retransmitting, it's a
1515 * candidate. If the length is zero and the ack moved
1516 * forward, we're the sender side of the xfer. Just
1517 * free the data acked & wake any higher level process
1518 * that was blocked waiting for space. If the length
1519 * is non-zero and the ack didn't move, we're the
1520 * receiver side. If we're getting packets in-order
1521 * (the reassembly queue is empty), add the data to
1522 * the socket buffer and note that we need a delayed ack.
1523 */
1524 if (tp->t_state == TCPS_ESTABLISHED &&
1525 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1526 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1527 th->th_seq == tp->rcv_nxt &&
1528 tiwin && tiwin == tp->snd_wnd &&
1529 tp->snd_nxt == tp->snd_max) {
1530
1531 /*
1532 * If last ACK falls within this segment's sequence numbers,
1533 * record the timestamp.
1534 */
1535 if (opti.ts_present &&
1536 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1537 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1538 tp->ts_recent_age = tcp_now;
1539 tp->ts_recent = opti.ts_val;
1540 }
1541
1542 if (tlen == 0) {
1543 /* Ack prediction. */
1544 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1545 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1546 tp->snd_cwnd >= tp->snd_wnd &&
1547 tp->t_partialacks < 0) {
1548 /*
1549 * this is a pure ack for outstanding data.
1550 */
1551 ++tcpstat.tcps_predack;
1552 if (opti.ts_present && opti.ts_ecr)
1553 tcp_xmit_timer(tp, opti.ts_ecr);
1554 else if (tp->t_rtttime &&
1555 SEQ_GT(th->th_ack, tp->t_rtseq))
1556 tcp_xmit_timer(tp,
1557 tcp_now - tp->t_rtttime);
1558 acked = th->th_ack - tp->snd_una;
1559 tcpstat.tcps_rcvackpack++;
1560 tcpstat.tcps_rcvackbyte += acked;
1561 ND6_HINT(tp);
1562
1563 if (acked > (tp->t_lastoff - tp->t_inoff))
1564 tp->t_lastm = NULL;
1565 sbdrop(&so->so_snd, acked);
1566 tp->t_lastoff -= acked;
1567
1568 tp->snd_una = th->th_ack;
1569 if (SEQ_LT(tp->snd_high, tp->snd_una))
1570 tp->snd_high = tp->snd_una;
1571 m_freem(m);
1572
1573 /*
1574 * If all outstanding data are acked, stop
1575 * retransmit timer, otherwise restart timer
1576 * using current (possibly backed-off) value.
1577 * If process is waiting for space,
1578 * wakeup/selwakeup/signal. If data
1579 * are ready to send, let tcp_output
1580 * decide between more output or persist.
1581 */
1582 if (tp->snd_una == tp->snd_max)
1583 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1584 else if (TCP_TIMER_ISARMED(tp,
1585 TCPT_PERSIST) == 0)
1586 TCP_TIMER_ARM(tp, TCPT_REXMT,
1587 tp->t_rxtcur);
1588
1589 sowwakeup(so);
1590 if (so->so_snd.sb_cc)
1591 (void) tcp_output(tp);
1592 if (tcp_saveti)
1593 m_freem(tcp_saveti);
1594 return;
1595 }
1596 } else if (th->th_ack == tp->snd_una &&
1597 TAILQ_FIRST(&tp->segq) == NULL &&
1598 tlen <= sbspace(&so->so_rcv)) {
1599 /*
1600 * this is a pure, in-sequence data packet
1601 * with nothing on the reassembly queue and
1602 * we have enough buffer space to take it.
1603 */
1604 ++tcpstat.tcps_preddat;
1605 tp->rcv_nxt += tlen;
1606 tcpstat.tcps_rcvpack++;
1607 tcpstat.tcps_rcvbyte += tlen;
1608 ND6_HINT(tp);
1609 /*
1610 * Drop TCP, IP headers and TCP options then add data
1611 * to socket buffer.
1612 */
1613 if (so->so_state & SS_CANTRCVMORE)
1614 m_freem(m);
1615 else {
1616 m_adj(m, toff + off);
1617 sbappendstream(&so->so_rcv, m);
1618 }
1619 sorwakeup(so);
1620 TCP_SETUP_ACK(tp, th);
1621 if (tp->t_flags & TF_ACKNOW)
1622 (void) tcp_output(tp);
1623 if (tcp_saveti)
1624 m_freem(tcp_saveti);
1625 return;
1626 }
1627 }
1628
1629 /*
1630 * Compute mbuf offset to TCP data segment.
1631 */
1632 hdroptlen = toff + off;
1633
1634 /*
1635 * Calculate amount of space in receive window,
1636 * and then do TCP input processing.
1637 * Receive window is amount of space in rcv queue,
1638 * but not less than advertised window.
1639 */
1640 { int win;
1641
1642 win = sbspace(&so->so_rcv);
1643 if (win < 0)
1644 win = 0;
1645 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1646 }
1647
1648 switch (tp->t_state) {
1649 case TCPS_LISTEN:
1650 /*
1651 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1652 */
1653 if (m->m_flags & (M_BCAST|M_MCAST))
1654 goto drop;
1655 switch (af) {
1656 #ifdef INET6
1657 case AF_INET6:
1658 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1659 goto drop;
1660 break;
1661 #endif /* INET6 */
1662 case AF_INET:
1663 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1664 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1665 goto drop;
1666 break;
1667 }
1668 break;
1669
1670 /*
1671 * If the state is SYN_SENT:
1672 * if seg contains an ACK, but not for our SYN, drop the input.
1673 * if seg contains a RST, then drop the connection.
1674 * if seg does not contain SYN, then drop it.
1675 * Otherwise this is an acceptable SYN segment
1676 * initialize tp->rcv_nxt and tp->irs
1677 * if seg contains ack then advance tp->snd_una
1678 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1679 * arrange for segment to be acked (eventually)
1680 * continue processing rest of data/controls, beginning with URG
1681 */
1682 case TCPS_SYN_SENT:
1683 if ((tiflags & TH_ACK) &&
1684 (SEQ_LEQ(th->th_ack, tp->iss) ||
1685 SEQ_GT(th->th_ack, tp->snd_max)))
1686 goto dropwithreset;
1687 if (tiflags & TH_RST) {
1688 if (tiflags & TH_ACK)
1689 tp = tcp_drop(tp, ECONNREFUSED);
1690 goto drop;
1691 }
1692 if ((tiflags & TH_SYN) == 0)
1693 goto drop;
1694 if (tiflags & TH_ACK) {
1695 tp->snd_una = th->th_ack;
1696 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1697 tp->snd_nxt = tp->snd_una;
1698 if (SEQ_LT(tp->snd_high, tp->snd_una))
1699 tp->snd_high = tp->snd_una;
1700 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1701 }
1702 tp->irs = th->th_seq;
1703 tcp_rcvseqinit(tp);
1704 tp->t_flags |= TF_ACKNOW;
1705 tcp_mss_from_peer(tp, opti.maxseg);
1706
1707 /*
1708 * Initialize the initial congestion window. If we
1709 * had to retransmit the SYN, we must initialize cwnd
1710 * to 1 segment (i.e. the Loss Window).
1711 */
1712 if (tp->t_flags & TF_SYN_REXMT)
1713 tp->snd_cwnd = tp->t_peermss;
1714 else {
1715 int ss = tcp_init_win;
1716 #ifdef INET
1717 if (inp != NULL && in_localaddr(inp->inp_faddr))
1718 ss = tcp_init_win_local;
1719 #endif
1720 #ifdef INET6
1721 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1722 ss = tcp_init_win_local;
1723 #endif
1724 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1725 }
1726
1727 tcp_rmx_rtt(tp);
1728 if (tiflags & TH_ACK) {
1729 tcpstat.tcps_connects++;
1730 soisconnected(so);
1731 tcp_established(tp);
1732 /* Do window scaling on this connection? */
1733 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1734 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1735 tp->snd_scale = tp->requested_s_scale;
1736 tp->rcv_scale = tp->request_r_scale;
1737 }
1738 TCP_REASS_LOCK(tp);
1739 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1740 TCP_REASS_UNLOCK(tp);
1741 /*
1742 * if we didn't have to retransmit the SYN,
1743 * use its rtt as our initial srtt & rtt var.
1744 */
1745 if (tp->t_rtttime)
1746 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1747 } else
1748 tp->t_state = TCPS_SYN_RECEIVED;
1749
1750 /*
1751 * Advance th->th_seq to correspond to first data byte.
1752 * If data, trim to stay within window,
1753 * dropping FIN if necessary.
1754 */
1755 th->th_seq++;
1756 if (tlen > tp->rcv_wnd) {
1757 todrop = tlen - tp->rcv_wnd;
1758 m_adj(m, -todrop);
1759 tlen = tp->rcv_wnd;
1760 tiflags &= ~TH_FIN;
1761 tcpstat.tcps_rcvpackafterwin++;
1762 tcpstat.tcps_rcvbyteafterwin += todrop;
1763 }
1764 tp->snd_wl1 = th->th_seq - 1;
1765 tp->rcv_up = th->th_seq;
1766 goto step6;
1767
1768 /*
1769 * If the state is SYN_RECEIVED:
1770 * If seg contains an ACK, but not for our SYN, drop the input
1771 * and generate an RST. See page 36, rfc793
1772 */
1773 case TCPS_SYN_RECEIVED:
1774 if ((tiflags & TH_ACK) &&
1775 (SEQ_LEQ(th->th_ack, tp->iss) ||
1776 SEQ_GT(th->th_ack, tp->snd_max)))
1777 goto dropwithreset;
1778 break;
1779 }
1780
1781 /*
1782 * States other than LISTEN or SYN_SENT.
1783 * First check timestamp, if present.
1784 * Then check that at least some bytes of segment are within
1785 * receive window. If segment begins before rcv_nxt,
1786 * drop leading data (and SYN); if nothing left, just ack.
1787 *
1788 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1789 * and it's less than ts_recent, drop it.
1790 */
1791 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1792 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1793
1794 /* Check to see if ts_recent is over 24 days old. */
1795 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1796 /*
1797 * Invalidate ts_recent. If this segment updates
1798 * ts_recent, the age will be reset later and ts_recent
1799 * will get a valid value. If it does not, setting
1800 * ts_recent to zero will at least satisfy the
1801 * requirement that zero be placed in the timestamp
1802 * echo reply when ts_recent isn't valid. The
1803 * age isn't reset until we get a valid ts_recent
1804 * because we don't want out-of-order segments to be
1805 * dropped when ts_recent is old.
1806 */
1807 tp->ts_recent = 0;
1808 } else {
1809 tcpstat.tcps_rcvduppack++;
1810 tcpstat.tcps_rcvdupbyte += tlen;
1811 tcpstat.tcps_pawsdrop++;
1812 goto dropafterack;
1813 }
1814 }
1815
1816 todrop = tp->rcv_nxt - th->th_seq;
1817 dupseg = FALSE;
1818 if (todrop > 0) {
1819 if (tiflags & TH_SYN) {
1820 tiflags &= ~TH_SYN;
1821 th->th_seq++;
1822 if (th->th_urp > 1)
1823 th->th_urp--;
1824 else {
1825 tiflags &= ~TH_URG;
1826 th->th_urp = 0;
1827 }
1828 todrop--;
1829 }
1830 if (todrop > tlen ||
1831 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1832 /*
1833 * Any valid FIN or RST must be to the left of the
1834 * window. At this point the FIN or RST must be a
1835 * duplicate or out of sequence; drop it.
1836 */
1837 if (tiflags & TH_RST)
1838 goto drop;
1839 tiflags &= ~(TH_FIN|TH_RST);
1840 /*
1841 * Send an ACK to resynchronize and drop any data.
1842 * But keep on processing for RST or ACK.
1843 */
1844 tp->t_flags |= TF_ACKNOW;
1845 todrop = tlen;
1846 dupseg = TRUE;
1847 tcpstat.tcps_rcvdupbyte += todrop;
1848 tcpstat.tcps_rcvduppack++;
1849 } else if ((tiflags & TH_RST) &&
1850 th->th_seq != tp->last_ack_sent) {
1851 /*
1852 * Test for reset before adjusting the sequence
1853 * number for overlapping data.
1854 */
1855 goto dropafterack_ratelim;
1856 } else {
1857 tcpstat.tcps_rcvpartduppack++;
1858 tcpstat.tcps_rcvpartdupbyte += todrop;
1859 }
1860 hdroptlen += todrop; /*drop from head afterwards*/
1861 th->th_seq += todrop;
1862 tlen -= todrop;
1863 if (th->th_urp > todrop)
1864 th->th_urp -= todrop;
1865 else {
1866 tiflags &= ~TH_URG;
1867 th->th_urp = 0;
1868 }
1869 }
1870
1871 /*
1872 * If new data are received on a connection after the
1873 * user processes are gone, then RST the other end.
1874 */
1875 if ((so->so_state & SS_NOFDREF) &&
1876 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1877 tp = tcp_close(tp);
1878 tcpstat.tcps_rcvafterclose++;
1879 goto dropwithreset;
1880 }
1881
1882 /*
1883 * If segment ends after window, drop trailing data
1884 * (and PUSH and FIN); if nothing left, just ACK.
1885 */
1886 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1887 if (todrop > 0) {
1888 tcpstat.tcps_rcvpackafterwin++;
1889 if (todrop >= tlen) {
1890 /*
1891 * The segment actually starts after the window.
1892 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1893 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1894 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1895 */
1896 tcpstat.tcps_rcvbyteafterwin += tlen;
1897 /*
1898 * If a new connection request is received
1899 * while in TIME_WAIT, drop the old connection
1900 * and start over if the sequence numbers
1901 * are above the previous ones.
1902 *
1903 * NOTE: We will checksum the packet again, and
1904 * so we need to put the header fields back into
1905 * network order!
1906 * XXX This kind of sucks, but we don't expect
1907 * XXX this to happen very often, so maybe it
1908 * XXX doesn't matter so much.
1909 */
1910 if (tiflags & TH_SYN &&
1911 tp->t_state == TCPS_TIME_WAIT &&
1912 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1913 iss = tcp_new_iss(tp, tp->snd_nxt);
1914 tp = tcp_close(tp);
1915 TCP_FIELDS_TO_NET(th);
1916 goto findpcb;
1917 }
1918 /*
1919 * If window is closed can only take segments at
1920 * window edge, and have to drop data and PUSH from
1921 * incoming segments. Continue processing, but
1922 * remember to ack. Otherwise, drop segment
1923 * and (if not RST) ack.
1924 */
1925 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1926 tp->t_flags |= TF_ACKNOW;
1927 tcpstat.tcps_rcvwinprobe++;
1928 } else
1929 goto dropafterack;
1930 } else
1931 tcpstat.tcps_rcvbyteafterwin += todrop;
1932 m_adj(m, -todrop);
1933 tlen -= todrop;
1934 tiflags &= ~(TH_PUSH|TH_FIN);
1935 }
1936
1937 /*
1938 * If last ACK falls within this segment's sequence numbers,
1939 * and the timestamp is newer, record it.
1940 */
1941 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1942 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1943 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1944 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1945 tp->ts_recent_age = tcp_now;
1946 tp->ts_recent = opti.ts_val;
1947 }
1948
1949 /*
1950 * If the RST bit is set examine the state:
1951 * SYN_RECEIVED STATE:
1952 * If passive open, return to LISTEN state.
1953 * If active open, inform user that connection was refused.
1954 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1955 * Inform user that connection was reset, and close tcb.
1956 * CLOSING, LAST_ACK, TIME_WAIT STATES
1957 * Close the tcb.
1958 */
1959 if (tiflags & TH_RST) {
1960 if (th->th_seq != tp->last_ack_sent)
1961 goto dropafterack_ratelim;
1962
1963 switch (tp->t_state) {
1964 case TCPS_SYN_RECEIVED:
1965 so->so_error = ECONNREFUSED;
1966 goto close;
1967
1968 case TCPS_ESTABLISHED:
1969 case TCPS_FIN_WAIT_1:
1970 case TCPS_FIN_WAIT_2:
1971 case TCPS_CLOSE_WAIT:
1972 so->so_error = ECONNRESET;
1973 close:
1974 tp->t_state = TCPS_CLOSED;
1975 tcpstat.tcps_drops++;
1976 tp = tcp_close(tp);
1977 goto drop;
1978
1979 case TCPS_CLOSING:
1980 case TCPS_LAST_ACK:
1981 case TCPS_TIME_WAIT:
1982 tp = tcp_close(tp);
1983 goto drop;
1984 }
1985 }
1986
1987 /*
1988 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1989 * we must be in a synchronized state. RFC791 states (under RST
1990 * generation) that any unacceptable segment (an out-of-order SYN
1991 * qualifies) received in a synchronized state must elicit only an
1992 * empty acknowledgment segment ... and the connection remains in
1993 * the same state.
1994 */
1995 if (tiflags & TH_SYN) {
1996 if (tp->rcv_nxt == th->th_seq) {
1997 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1998 TH_ACK);
1999 if (tcp_saveti)
2000 m_freem(tcp_saveti);
2001 return;
2002 }
2003
2004 goto dropafterack_ratelim;
2005 }
2006
2007 /*
2008 * If the ACK bit is off we drop the segment and return.
2009 */
2010 if ((tiflags & TH_ACK) == 0) {
2011 if (tp->t_flags & TF_ACKNOW)
2012 goto dropafterack;
2013 else
2014 goto drop;
2015 }
2016
2017 /*
2018 * Ack processing.
2019 */
2020 switch (tp->t_state) {
2021
2022 /*
2023 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2024 * ESTABLISHED state and continue processing, otherwise
2025 * send an RST.
2026 */
2027 case TCPS_SYN_RECEIVED:
2028 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2029 SEQ_GT(th->th_ack, tp->snd_max))
2030 goto dropwithreset;
2031 tcpstat.tcps_connects++;
2032 soisconnected(so);
2033 tcp_established(tp);
2034 /* Do window scaling? */
2035 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2036 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2037 tp->snd_scale = tp->requested_s_scale;
2038 tp->rcv_scale = tp->request_r_scale;
2039 }
2040 TCP_REASS_LOCK(tp);
2041 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2042 TCP_REASS_UNLOCK(tp);
2043 tp->snd_wl1 = th->th_seq - 1;
2044 /* fall into ... */
2045
2046 /*
2047 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2048 * ACKs. If the ack is in the range
2049 * tp->snd_una < th->th_ack <= tp->snd_max
2050 * then advance tp->snd_una to th->th_ack and drop
2051 * data from the retransmission queue. If this ACK reflects
2052 * more up to date window information we update our window information.
2053 */
2054 case TCPS_ESTABLISHED:
2055 case TCPS_FIN_WAIT_1:
2056 case TCPS_FIN_WAIT_2:
2057 case TCPS_CLOSE_WAIT:
2058 case TCPS_CLOSING:
2059 case TCPS_LAST_ACK:
2060 case TCPS_TIME_WAIT:
2061
2062 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2063 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2064 tcpstat.tcps_rcvdupack++;
2065 /*
2066 * If we have outstanding data (other than
2067 * a window probe), this is a completely
2068 * duplicate ack (ie, window info didn't
2069 * change), the ack is the biggest we've
2070 * seen and we've seen exactly our rexmt
2071 * threshhold of them, assume a packet
2072 * has been dropped and retransmit it.
2073 * Kludge snd_nxt & the congestion
2074 * window so we send only this one
2075 * packet.
2076 *
2077 * We know we're losing at the current
2078 * window size so do congestion avoidance
2079 * (set ssthresh to half the current window
2080 * and pull our congestion window back to
2081 * the new ssthresh).
2082 *
2083 * Dup acks mean that packets have left the
2084 * network (they're now cached at the receiver)
2085 * so bump cwnd by the amount in the receiver
2086 * to keep a constant cwnd packets in the
2087 * network.
2088 */
2089 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2090 th->th_ack != tp->snd_una)
2091 tp->t_dupacks = 0;
2092 else if (++tp->t_dupacks == tcprexmtthresh &&
2093 tp->t_partialacks < 0) {
2094 tcp_seq onxt;
2095 u_int win;
2096
2097 if (tcp_do_newreno &&
2098 SEQ_LT(th->th_ack, tp->snd_high)) {
2099 /*
2100 * False fast retransmit after
2101 * timeout. Do not enter fast
2102 * recovery.
2103 */
2104 tp->t_dupacks = 0;
2105 break;
2106 }
2107
2108 onxt = tp->snd_nxt;
2109 win = min(tp->snd_wnd, tp->snd_cwnd) /
2110 2 / tp->t_segsz;
2111 if (win < 2)
2112 win = 2;
2113 tp->snd_ssthresh = win * tp->t_segsz;
2114 tp->snd_recover = tp->snd_max;
2115 tp->t_partialacks = 0;
2116 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2117 tp->t_rtttime = 0;
2118 tp->snd_nxt = th->th_ack;
2119 tp->snd_cwnd = tp->t_segsz;
2120 (void) tcp_output(tp);
2121 tp->snd_cwnd = tp->snd_ssthresh +
2122 tp->t_segsz * tp->t_dupacks;
2123 if (SEQ_GT(onxt, tp->snd_nxt))
2124 tp->snd_nxt = onxt;
2125 goto drop;
2126 } else if (tp->t_dupacks > tcprexmtthresh) {
2127 tp->snd_cwnd += tp->t_segsz;
2128 (void) tcp_output(tp);
2129 goto drop;
2130 }
2131 } else {
2132 /*
2133 * If the ack appears to be very old, only
2134 * allow data that is in-sequence. This
2135 * makes it somewhat more difficult to insert
2136 * forged data by guessing sequence numbers.
2137 * Sent an ack to try to update the send
2138 * sequence number on the other side.
2139 */
2140 if (tlen && th->th_seq != tp->rcv_nxt &&
2141 SEQ_LT(th->th_ack,
2142 tp->snd_una - tp->max_sndwnd))
2143 goto dropafterack;
2144 }
2145 break;
2146 }
2147 /*
2148 * If the congestion window was inflated to account
2149 * for the other side's cached packets, retract it.
2150 */
2151 if (!tcp_do_newreno)
2152 tcp_reno_newack(tp, th);
2153 else
2154 tcp_newreno_newack(tp, th);
2155 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2156 tcpstat.tcps_rcvacktoomuch++;
2157 goto dropafterack;
2158 }
2159 acked = th->th_ack - tp->snd_una;
2160 tcpstat.tcps_rcvackpack++;
2161 tcpstat.tcps_rcvackbyte += acked;
2162
2163 /*
2164 * If we have a timestamp reply, update smoothed
2165 * round trip time. If no timestamp is present but
2166 * transmit timer is running and timed sequence
2167 * number was acked, update smoothed round trip time.
2168 * Since we now have an rtt measurement, cancel the
2169 * timer backoff (cf., Phil Karn's retransmit alg.).
2170 * Recompute the initial retransmit timer.
2171 */
2172 if (opti.ts_present && opti.ts_ecr)
2173 tcp_xmit_timer(tp, opti.ts_ecr);
2174 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2175 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2176
2177 /*
2178 * If all outstanding data is acked, stop retransmit
2179 * timer and remember to restart (more output or persist).
2180 * If there is more data to be acked, restart retransmit
2181 * timer, using current (possibly backed-off) value.
2182 */
2183 if (th->th_ack == tp->snd_max) {
2184 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2185 needoutput = 1;
2186 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2187 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2188 /*
2189 * When new data is acked, open the congestion window.
2190 * If the window gives us less than ssthresh packets
2191 * in flight, open exponentially (segsz per packet).
2192 * Otherwise open linearly: segsz per window
2193 * (segsz^2 / cwnd per packet), plus a constant
2194 * fraction of a packet (segsz/8) to help larger windows
2195 * open quickly enough.
2196 *
2197 * If we are still in fast recovery (meaning we are using
2198 * NewReno and we have only received partial acks), do not
2199 * inflate the window yet.
2200 */
2201 if (tp->t_partialacks < 0) {
2202 u_int cw = tp->snd_cwnd;
2203 u_int incr = tp->t_segsz;
2204
2205 if (cw >= tp->snd_ssthresh)
2206 incr = incr * incr / cw;
2207 tp->snd_cwnd = min(cw + incr,
2208 TCP_MAXWIN << tp->snd_scale);
2209 }
2210 ND6_HINT(tp);
2211 if (acked > so->so_snd.sb_cc) {
2212 tp->snd_wnd -= so->so_snd.sb_cc;
2213 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2214 ourfinisacked = 1;
2215 } else {
2216 if (acked > (tp->t_lastoff - tp->t_inoff))
2217 tp->t_lastm = NULL;
2218 sbdrop(&so->so_snd, acked);
2219 tp->t_lastoff -= acked;
2220 tp->snd_wnd -= acked;
2221 ourfinisacked = 0;
2222 }
2223 sowwakeup(so);
2224 tp->snd_una = th->th_ack;
2225 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2226 tp->snd_nxt = tp->snd_una;
2227 if (SEQ_LT(tp->snd_high, tp->snd_una))
2228 tp->snd_high = tp->snd_una;
2229
2230 switch (tp->t_state) {
2231
2232 /*
2233 * In FIN_WAIT_1 STATE in addition to the processing
2234 * for the ESTABLISHED state if our FIN is now acknowledged
2235 * then enter FIN_WAIT_2.
2236 */
2237 case TCPS_FIN_WAIT_1:
2238 if (ourfinisacked) {
2239 /*
2240 * If we can't receive any more
2241 * data, then closing user can proceed.
2242 * Starting the timer is contrary to the
2243 * specification, but if we don't get a FIN
2244 * we'll hang forever.
2245 */
2246 if (so->so_state & SS_CANTRCVMORE) {
2247 soisdisconnected(so);
2248 if (tcp_maxidle > 0)
2249 TCP_TIMER_ARM(tp, TCPT_2MSL,
2250 tcp_maxidle);
2251 }
2252 tp->t_state = TCPS_FIN_WAIT_2;
2253 }
2254 break;
2255
2256 /*
2257 * In CLOSING STATE in addition to the processing for
2258 * the ESTABLISHED state if the ACK acknowledges our FIN
2259 * then enter the TIME-WAIT state, otherwise ignore
2260 * the segment.
2261 */
2262 case TCPS_CLOSING:
2263 if (ourfinisacked) {
2264 tp->t_state = TCPS_TIME_WAIT;
2265 tcp_canceltimers(tp);
2266 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2267 soisdisconnected(so);
2268 }
2269 break;
2270
2271 /*
2272 * In LAST_ACK, we may still be waiting for data to drain
2273 * and/or to be acked, as well as for the ack of our FIN.
2274 * If our FIN is now acknowledged, delete the TCB,
2275 * enter the closed state and return.
2276 */
2277 case TCPS_LAST_ACK:
2278 if (ourfinisacked) {
2279 tp = tcp_close(tp);
2280 goto drop;
2281 }
2282 break;
2283
2284 /*
2285 * In TIME_WAIT state the only thing that should arrive
2286 * is a retransmission of the remote FIN. Acknowledge
2287 * it and restart the finack timer.
2288 */
2289 case TCPS_TIME_WAIT:
2290 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2291 goto dropafterack;
2292 }
2293 }
2294
2295 step6:
2296 /*
2297 * Update window information.
2298 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2299 */
2300 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2301 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2302 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2303 /* keep track of pure window updates */
2304 if (tlen == 0 &&
2305 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2306 tcpstat.tcps_rcvwinupd++;
2307 tp->snd_wnd = tiwin;
2308 tp->snd_wl1 = th->th_seq;
2309 tp->snd_wl2 = th->th_ack;
2310 if (tp->snd_wnd > tp->max_sndwnd)
2311 tp->max_sndwnd = tp->snd_wnd;
2312 needoutput = 1;
2313 }
2314
2315 /*
2316 * Process segments with URG.
2317 */
2318 if ((tiflags & TH_URG) && th->th_urp &&
2319 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2320 /*
2321 * This is a kludge, but if we receive and accept
2322 * random urgent pointers, we'll crash in
2323 * soreceive. It's hard to imagine someone
2324 * actually wanting to send this much urgent data.
2325 */
2326 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2327 th->th_urp = 0; /* XXX */
2328 tiflags &= ~TH_URG; /* XXX */
2329 goto dodata; /* XXX */
2330 }
2331 /*
2332 * If this segment advances the known urgent pointer,
2333 * then mark the data stream. This should not happen
2334 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2335 * a FIN has been received from the remote side.
2336 * In these states we ignore the URG.
2337 *
2338 * According to RFC961 (Assigned Protocols),
2339 * the urgent pointer points to the last octet
2340 * of urgent data. We continue, however,
2341 * to consider it to indicate the first octet
2342 * of data past the urgent section as the original
2343 * spec states (in one of two places).
2344 */
2345 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2346 tp->rcv_up = th->th_seq + th->th_urp;
2347 so->so_oobmark = so->so_rcv.sb_cc +
2348 (tp->rcv_up - tp->rcv_nxt) - 1;
2349 if (so->so_oobmark == 0)
2350 so->so_state |= SS_RCVATMARK;
2351 sohasoutofband(so);
2352 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2353 }
2354 /*
2355 * Remove out of band data so doesn't get presented to user.
2356 * This can happen independent of advancing the URG pointer,
2357 * but if two URG's are pending at once, some out-of-band
2358 * data may creep in... ick.
2359 */
2360 if (th->th_urp <= (u_int16_t) tlen
2361 #ifdef SO_OOBINLINE
2362 && (so->so_options & SO_OOBINLINE) == 0
2363 #endif
2364 )
2365 tcp_pulloutofband(so, th, m, hdroptlen);
2366 } else
2367 /*
2368 * If no out of band data is expected,
2369 * pull receive urgent pointer along
2370 * with the receive window.
2371 */
2372 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2373 tp->rcv_up = tp->rcv_nxt;
2374 dodata: /* XXX */
2375
2376 /*
2377 * Process the segment text, merging it into the TCP sequencing queue,
2378 * and arranging for acknowledgement of receipt if necessary.
2379 * This process logically involves adjusting tp->rcv_wnd as data
2380 * is presented to the user (this happens in tcp_usrreq.c,
2381 * case PRU_RCVD). If a FIN has already been received on this
2382 * connection then we just ignore the text.
2383 */
2384 if ((tlen || (tiflags & TH_FIN)) &&
2385 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2386 /*
2387 * Insert segment ti into reassembly queue of tcp with
2388 * control block tp. Return TH_FIN if reassembly now includes
2389 * a segment with FIN. The macro form does the common case
2390 * inline (segment is the next to be received on an
2391 * established connection, and the queue is empty),
2392 * avoiding linkage into and removal from the queue and
2393 * repetition of various conversions.
2394 * Set DELACK for segments received in order, but ack
2395 * immediately when segments are out of order
2396 * (so fast retransmit can work).
2397 */
2398 /* NOTE: this was TCP_REASS() macro, but used only once */
2399 TCP_REASS_LOCK(tp);
2400 if (th->th_seq == tp->rcv_nxt &&
2401 TAILQ_FIRST(&tp->segq) == NULL &&
2402 tp->t_state == TCPS_ESTABLISHED) {
2403 TCP_SETUP_ACK(tp, th);
2404 tp->rcv_nxt += tlen;
2405 tiflags = th->th_flags & TH_FIN;
2406 tcpstat.tcps_rcvpack++;
2407 tcpstat.tcps_rcvbyte += tlen;
2408 ND6_HINT(tp);
2409 if (so->so_state & SS_CANTRCVMORE)
2410 m_freem(m);
2411 else {
2412 m_adj(m, hdroptlen);
2413 sbappendstream(&(so)->so_rcv, m);
2414 }
2415 sorwakeup(so);
2416 } else {
2417 m_adj(m, hdroptlen);
2418 tiflags = tcp_reass(tp, th, m, &tlen);
2419 tp->t_flags |= TF_ACKNOW;
2420 }
2421 TCP_REASS_UNLOCK(tp);
2422
2423 /*
2424 * Note the amount of data that peer has sent into
2425 * our window, in order to estimate the sender's
2426 * buffer size.
2427 */
2428 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2429 } else {
2430 m_freem(m);
2431 m = NULL;
2432 tiflags &= ~TH_FIN;
2433 }
2434
2435 /*
2436 * If FIN is received ACK the FIN and let the user know
2437 * that the connection is closing. Ignore a FIN received before
2438 * the connection is fully established.
2439 */
2440 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2441 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2442 socantrcvmore(so);
2443 tp->t_flags |= TF_ACKNOW;
2444 tp->rcv_nxt++;
2445 }
2446 switch (tp->t_state) {
2447
2448 /*
2449 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2450 */
2451 case TCPS_ESTABLISHED:
2452 tp->t_state = TCPS_CLOSE_WAIT;
2453 break;
2454
2455 /*
2456 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2457 * enter the CLOSING state.
2458 */
2459 case TCPS_FIN_WAIT_1:
2460 tp->t_state = TCPS_CLOSING;
2461 break;
2462
2463 /*
2464 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2465 * starting the time-wait timer, turning off the other
2466 * standard timers.
2467 */
2468 case TCPS_FIN_WAIT_2:
2469 tp->t_state = TCPS_TIME_WAIT;
2470 tcp_canceltimers(tp);
2471 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2472 soisdisconnected(so);
2473 break;
2474
2475 /*
2476 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2477 */
2478 case TCPS_TIME_WAIT:
2479 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2480 break;
2481 }
2482 }
2483 #ifdef TCP_DEBUG
2484 if (so->so_options & SO_DEBUG)
2485 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2486 #endif
2487
2488 /*
2489 * Return any desired output.
2490 */
2491 if (needoutput || (tp->t_flags & TF_ACKNOW))
2492 (void) tcp_output(tp);
2493 if (tcp_saveti)
2494 m_freem(tcp_saveti);
2495 return;
2496
2497 badsyn:
2498 /*
2499 * Received a bad SYN. Increment counters and dropwithreset.
2500 */
2501 tcpstat.tcps_badsyn++;
2502 tp = NULL;
2503 goto dropwithreset;
2504
2505 dropafterack:
2506 /*
2507 * Generate an ACK dropping incoming segment if it occupies
2508 * sequence space, where the ACK reflects our state.
2509 */
2510 if (tiflags & TH_RST)
2511 goto drop;
2512 goto dropafterack2;
2513
2514 dropafterack_ratelim:
2515 /*
2516 * We may want to rate-limit ACKs against SYN/RST attack.
2517 */
2518 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2519 tcp_ackdrop_ppslim) == 0) {
2520 /* XXX stat */
2521 goto drop;
2522 }
2523 /* ...fall into dropafterack2... */
2524
2525 dropafterack2:
2526 m_freem(m);
2527 tp->t_flags |= TF_ACKNOW;
2528 (void) tcp_output(tp);
2529 if (tcp_saveti)
2530 m_freem(tcp_saveti);
2531 return;
2532
2533 dropwithreset_ratelim:
2534 /*
2535 * We may want to rate-limit RSTs in certain situations,
2536 * particularly if we are sending an RST in response to
2537 * an attempt to connect to or otherwise communicate with
2538 * a port for which we have no socket.
2539 */
2540 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2541 tcp_rst_ppslim) == 0) {
2542 /* XXX stat */
2543 goto drop;
2544 }
2545 /* ...fall into dropwithreset... */
2546
2547 dropwithreset:
2548 /*
2549 * Generate a RST, dropping incoming segment.
2550 * Make ACK acceptable to originator of segment.
2551 */
2552 if (tiflags & TH_RST)
2553 goto drop;
2554
2555 switch (af) {
2556 #ifdef INET6
2557 case AF_INET6:
2558 /* For following calls to tcp_respond */
2559 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2560 goto drop;
2561 break;
2562 #endif /* INET6 */
2563 case AF_INET:
2564 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2565 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2566 goto drop;
2567 }
2568
2569 if (tiflags & TH_ACK)
2570 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2571 else {
2572 if (tiflags & TH_SYN)
2573 tlen++;
2574 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2575 TH_RST|TH_ACK);
2576 }
2577 if (tcp_saveti)
2578 m_freem(tcp_saveti);
2579 return;
2580
2581 badcsum:
2582 drop:
2583 /*
2584 * Drop space held by incoming segment and return.
2585 */
2586 if (tp) {
2587 if (tp->t_inpcb)
2588 so = tp->t_inpcb->inp_socket;
2589 #ifdef INET6
2590 else if (tp->t_in6pcb)
2591 so = tp->t_in6pcb->in6p_socket;
2592 #endif
2593 else
2594 so = NULL;
2595 #ifdef TCP_DEBUG
2596 if (so && (so->so_options & SO_DEBUG) != 0)
2597 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2598 #endif
2599 }
2600 if (tcp_saveti)
2601 m_freem(tcp_saveti);
2602 m_freem(m);
2603 return;
2604 }
2605
2606 #ifdef TCP_SIGNATURE
2607 int
2608 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2609 {
2610
2611 MD5Update(fstate, (u_char *)data, len);
2612 return (0);
2613 }
2614
2615 struct secasvar *
2616 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2617 {
2618 struct secasvar *sav;
2619 #ifdef FAST_IPSEC
2620 union sockaddr_union dst;
2621 #endif
2622 struct ip *ip;
2623 struct ip6_hdr *ip6;
2624
2625 ip = mtod(m, struct ip *);
2626 switch (ip->ip_v) {
2627 case 4:
2628 ip = mtod(m, struct ip *);
2629 ip6 = NULL;
2630 break;
2631 case 6:
2632 ip = NULL;
2633 ip6 = mtod(m, struct ip6_hdr *);
2634 break;
2635 default:
2636 return (NULL);
2637 }
2638
2639 #ifdef FAST_IPSEC
2640 /* Extract the destination from the IP header in the mbuf. */
2641 bzero(&dst, sizeof(union sockaddr_union));
2642 dst.sa.sa_len = sizeof(struct sockaddr_in);
2643 dst.sa.sa_family = AF_INET;
2644 dst.sin.sin_addr = ip->ip_dst;
2645
2646 /*
2647 * Look up an SADB entry which matches the address of the peer.
2648 */
2649 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2650 #else
2651 if (ip)
2652 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2653 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2654 htonl(TCP_SIG_SPI));
2655 else
2656 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2657 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2658 htonl(TCP_SIG_SPI));
2659 #endif
2660
2661 return (sav); /* freesav must be performed by caller */
2662 }
2663
2664 int
2665 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2666 struct secasvar *sav, char *sig)
2667 {
2668 MD5_CTX ctx;
2669 struct ip *ip;
2670 struct ipovly *ipovly;
2671 struct ip6_hdr *ip6;
2672 struct ippseudo ippseudo;
2673 struct ip6_hdr_pseudo ip6pseudo;
2674 struct tcphdr th0;
2675 int l, tcphdrlen;
2676
2677 if (sav == NULL)
2678 return (-1);
2679
2680 tcphdrlen = th->th_off * 4;
2681
2682 switch (mtod(m, struct ip *)->ip_v) {
2683 case 4:
2684 ip = mtod(m, struct ip *);
2685 ip6 = NULL;
2686 break;
2687 case 6:
2688 ip = NULL;
2689 ip6 = mtod(m, struct ip6_hdr *);
2690 break;
2691 default:
2692 return (-1);
2693 }
2694
2695 MD5Init(&ctx);
2696
2697 if (ip) {
2698 memset(&ippseudo, 0, sizeof(ippseudo));
2699 ipovly = (struct ipovly *)ip;
2700 ippseudo.ippseudo_src = ipovly->ih_src;
2701 ippseudo.ippseudo_dst = ipovly->ih_dst;
2702 ippseudo.ippseudo_pad = 0;
2703 ippseudo.ippseudo_p = IPPROTO_TCP;
2704 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2705 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2706 } else {
2707 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2708 ip6pseudo.ip6ph_src = ip6->ip6_src;
2709 in6_clearscope(&ip6pseudo.ip6ph_src);
2710 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2711 in6_clearscope(&ip6pseudo.ip6ph_dst);
2712 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2713 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2714 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2715 }
2716
2717 th0 = *th;
2718 th0.th_sum = 0;
2719 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2720
2721 l = m->m_pkthdr.len - thoff - tcphdrlen;
2722 if (l > 0)
2723 m_apply(m, thoff + tcphdrlen,
2724 m->m_pkthdr.len - thoff - tcphdrlen,
2725 tcp_signature_apply, &ctx);
2726
2727 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2728 MD5Final(sig, &ctx);
2729
2730 return (0);
2731 }
2732 #endif
2733
2734 int
2735 tcp_dooptions(tp, cp, cnt, th, m, toff, oi)
2736 struct tcpcb *tp;
2737 u_char *cp;
2738 int cnt;
2739 struct tcphdr *th;
2740 struct mbuf *m;
2741 int toff;
2742 struct tcp_opt_info *oi;
2743 {
2744 u_int16_t mss;
2745 int opt, optlen = 0;
2746 #ifdef TCP_SIGNATURE
2747 caddr_t sigp = NULL;
2748 char sigbuf[TCP_SIGLEN];
2749 struct secasvar *sav = NULL;
2750 #endif
2751
2752 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2753 opt = cp[0];
2754 if (opt == TCPOPT_EOL)
2755 break;
2756 if (opt == TCPOPT_NOP)
2757 optlen = 1;
2758 else {
2759 if (cnt < 2)
2760 break;
2761 optlen = cp[1];
2762 if (optlen < 2 || optlen > cnt)
2763 break;
2764 }
2765 switch (opt) {
2766
2767 default:
2768 continue;
2769
2770 case TCPOPT_MAXSEG:
2771 if (optlen != TCPOLEN_MAXSEG)
2772 continue;
2773 if (!(th->th_flags & TH_SYN))
2774 continue;
2775 bcopy(cp + 2, &mss, sizeof(mss));
2776 oi->maxseg = ntohs(mss);
2777 break;
2778
2779 case TCPOPT_WINDOW:
2780 if (optlen != TCPOLEN_WINDOW)
2781 continue;
2782 if (!(th->th_flags & TH_SYN))
2783 continue;
2784 tp->t_flags |= TF_RCVD_SCALE;
2785 tp->requested_s_scale = cp[2];
2786 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2787 #if 0 /*XXX*/
2788 char *p;
2789
2790 if (ip)
2791 p = ntohl(ip->ip_src);
2792 #ifdef INET6
2793 else if (ip6)
2794 p = ip6_sprintf(&ip6->ip6_src);
2795 #endif
2796 else
2797 p = "(unknown)";
2798 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2799 "assuming %d\n",
2800 tp->requested_s_scale, p,
2801 TCP_MAX_WINSHIFT);
2802 #else
2803 log(LOG_ERR, "TCP: invalid wscale %d, "
2804 "assuming %d\n",
2805 tp->requested_s_scale,
2806 TCP_MAX_WINSHIFT);
2807 #endif
2808 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2809 }
2810 break;
2811
2812 case TCPOPT_TIMESTAMP:
2813 if (optlen != TCPOLEN_TIMESTAMP)
2814 continue;
2815 oi->ts_present = 1;
2816 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2817 NTOHL(oi->ts_val);
2818 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2819 NTOHL(oi->ts_ecr);
2820
2821 /*
2822 * A timestamp received in a SYN makes
2823 * it ok to send timestamp requests and replies.
2824 */
2825 if (th->th_flags & TH_SYN) {
2826 tp->t_flags |= TF_RCVD_TSTMP;
2827 tp->ts_recent = oi->ts_val;
2828 tp->ts_recent_age = tcp_now;
2829 }
2830 break;
2831 case TCPOPT_SACK_PERMITTED:
2832 if (optlen != TCPOLEN_SACK_PERMITTED)
2833 continue;
2834 if (!(th->th_flags & TH_SYN))
2835 continue;
2836 tp->t_flags &= ~TF_CANT_TXSACK;
2837 break;
2838
2839 case TCPOPT_SACK:
2840 if (tp->t_flags & TF_IGNR_RXSACK)
2841 continue;
2842 if (optlen % 8 != 2 || optlen < 10)
2843 continue;
2844 cp += 2;
2845 optlen -= 2;
2846 for (; optlen > 0; cp -= 8, optlen -= 8) {
2847 tcp_seq lwe, rwe;
2848 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2849 NTOHL(lwe);
2850 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2851 NTOHL(rwe);
2852 /* tcp_mark_sacked(tp, lwe, rwe); */
2853 }
2854 break;
2855 #ifdef TCP_SIGNATURE
2856 case TCPOPT_SIGNATURE:
2857 if (optlen != TCPOLEN_SIGNATURE)
2858 continue;
2859 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2860 return (-1);
2861
2862 sigp = sigbuf;
2863 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2864 memset(cp + 2, 0, TCP_SIGLEN);
2865 tp->t_flags |= TF_SIGNATURE;
2866 break;
2867 #endif
2868 }
2869 }
2870
2871 #ifdef TCP_SIGNATURE
2872 if (tp->t_flags & TF_SIGNATURE) {
2873
2874 sav = tcp_signature_getsav(m, th);
2875
2876 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2877 return (-1);
2878 }
2879
2880 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2881 if (sav == NULL)
2882 return (-1);
2883 #ifdef FAST_IPSEC
2884 KEY_FREESAV(&sav);
2885 #else
2886 key_freesav(sav);
2887 #endif
2888 return (-1);
2889 }
2890
2891 if (sigp) {
2892 char sig[TCP_SIGLEN];
2893
2894 TCP_FIELDS_TO_NET(th);
2895 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2896 TCP_FIELDS_TO_HOST(th);
2897 if (sav == NULL)
2898 return (-1);
2899 #ifdef FAST_IPSEC
2900 KEY_FREESAV(&sav);
2901 #else
2902 key_freesav(sav);
2903 #endif
2904 return (-1);
2905 }
2906 TCP_FIELDS_TO_HOST(th);
2907
2908 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2909 tcpstat.tcps_badsig++;
2910 if (sav == NULL)
2911 return (-1);
2912 #ifdef FAST_IPSEC
2913 KEY_FREESAV(&sav);
2914 #else
2915 key_freesav(sav);
2916 #endif
2917 return (-1);
2918 } else
2919 tcpstat.tcps_goodsig++;
2920
2921 key_sa_recordxfer(sav, m);
2922 #ifdef FAST_IPSEC
2923 KEY_FREESAV(&sav);
2924 #else
2925 key_freesav(sav);
2926 #endif
2927 }
2928 #endif
2929
2930 return (0);
2931 }
2932
2933 /*
2934 * Pull out of band byte out of a segment so
2935 * it doesn't appear in the user's data queue.
2936 * It is still reflected in the segment length for
2937 * sequencing purposes.
2938 */
2939 void
2940 tcp_pulloutofband(so, th, m, off)
2941 struct socket *so;
2942 struct tcphdr *th;
2943 struct mbuf *m;
2944 int off;
2945 {
2946 int cnt = off + th->th_urp - 1;
2947
2948 while (cnt >= 0) {
2949 if (m->m_len > cnt) {
2950 char *cp = mtod(m, caddr_t) + cnt;
2951 struct tcpcb *tp = sototcpcb(so);
2952
2953 tp->t_iobc = *cp;
2954 tp->t_oobflags |= TCPOOB_HAVEDATA;
2955 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2956 m->m_len--;
2957 return;
2958 }
2959 cnt -= m->m_len;
2960 m = m->m_next;
2961 if (m == 0)
2962 break;
2963 }
2964 panic("tcp_pulloutofband");
2965 }
2966
2967 /*
2968 * Collect new round-trip time estimate
2969 * and update averages and current timeout.
2970 */
2971 void
2972 tcp_xmit_timer(tp, rtt)
2973 struct tcpcb *tp;
2974 uint32_t rtt;
2975 {
2976 int32_t delta;
2977
2978 tcpstat.tcps_rttupdated++;
2979 if (tp->t_srtt != 0) {
2980 /*
2981 * srtt is stored as fixed point with 3 bits after the
2982 * binary point (i.e., scaled by 8). The following magic
2983 * is equivalent to the smoothing algorithm in rfc793 with
2984 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2985 * point). Adjust rtt to origin 0.
2986 */
2987 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2988 if ((tp->t_srtt += delta) <= 0)
2989 tp->t_srtt = 1 << 2;
2990 /*
2991 * We accumulate a smoothed rtt variance (actually, a
2992 * smoothed mean difference), then set the retransmit
2993 * timer to smoothed rtt + 4 times the smoothed variance.
2994 * rttvar is stored as fixed point with 2 bits after the
2995 * binary point (scaled by 4). The following is
2996 * equivalent to rfc793 smoothing with an alpha of .75
2997 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2998 * rfc793's wired-in beta.
2999 */
3000 if (delta < 0)
3001 delta = -delta;
3002 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3003 if ((tp->t_rttvar += delta) <= 0)
3004 tp->t_rttvar = 1 << 2;
3005 } else {
3006 /*
3007 * No rtt measurement yet - use the unsmoothed rtt.
3008 * Set the variance to half the rtt (so our first
3009 * retransmit happens at 3*rtt).
3010 */
3011 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3012 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3013 }
3014 tp->t_rtttime = 0;
3015 tp->t_rxtshift = 0;
3016
3017 /*
3018 * the retransmit should happen at rtt + 4 * rttvar.
3019 * Because of the way we do the smoothing, srtt and rttvar
3020 * will each average +1/2 tick of bias. When we compute
3021 * the retransmit timer, we want 1/2 tick of rounding and
3022 * 1 extra tick because of +-1/2 tick uncertainty in the
3023 * firing of the timer. The bias will give us exactly the
3024 * 1.5 tick we need. But, because the bias is
3025 * statistical, we have to test that we don't drop below
3026 * the minimum feasible timer (which is 2 ticks).
3027 */
3028 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3029 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3030
3031 /*
3032 * We received an ack for a packet that wasn't retransmitted;
3033 * it is probably safe to discard any error indications we've
3034 * received recently. This isn't quite right, but close enough
3035 * for now (a route might have failed after we sent a segment,
3036 * and the return path might not be symmetrical).
3037 */
3038 tp->t_softerror = 0;
3039 }
3040
3041 void
3042 tcp_reno_newack(tp, th)
3043 struct tcpcb *tp;
3044 struct tcphdr *th;
3045 {
3046 if (tp->t_partialacks < 0) {
3047 /*
3048 * We were not in fast recovery. Reset the duplicate ack
3049 * counter.
3050 */
3051 tp->t_dupacks = 0;
3052 } else {
3053 /*
3054 * Clamp the congestion window to the crossover point and
3055 * exit fast recovery.
3056 */
3057 if (tp->snd_cwnd > tp->snd_ssthresh)
3058 tp->snd_cwnd = tp->snd_ssthresh;
3059 tp->t_partialacks = -1;
3060 tp->t_dupacks = 0;
3061 }
3062 }
3063
3064 /*
3065 * Implement the NewReno response to a new ack, checking for partial acks in
3066 * fast recovery.
3067 */
3068 void
3069 tcp_newreno_newack(tp, th)
3070 struct tcpcb *tp;
3071 struct tcphdr *th;
3072 {
3073 if (tp->t_partialacks < 0) {
3074 /*
3075 * We were not in fast recovery. Reset the duplicate ack
3076 * counter.
3077 */
3078 tp->t_dupacks = 0;
3079 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3080 /*
3081 * This is a partial ack. Retransmit the first unacknowledged
3082 * segment and deflate the congestion window by the amount of
3083 * acknowledged data. Do not exit fast recovery.
3084 */
3085 tcp_seq onxt = tp->snd_nxt;
3086 u_long ocwnd = tp->snd_cwnd;
3087
3088 /*
3089 * snd_una has not yet been updated and the socket's send
3090 * buffer has not yet drained off the ACK'd data, so we
3091 * have to leave snd_una as it was to get the correct data
3092 * offset in tcp_output().
3093 */
3094 if (++tp->t_partialacks == 1)
3095 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3096 tp->t_rtttime = 0;
3097 tp->snd_nxt = th->th_ack;
3098 /*
3099 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3100 * is not yet updated when we're called.
3101 */
3102 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3103 (void) tcp_output(tp);
3104 tp->snd_cwnd = ocwnd;
3105 if (SEQ_GT(onxt, tp->snd_nxt))
3106 tp->snd_nxt = onxt;
3107 /*
3108 * Partial window deflation. Relies on fact that tp->snd_una
3109 * not updated yet.
3110 */
3111 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3112 } else {
3113 /*
3114 * Complete ack. Inflate the congestion window to ssthresh
3115 * and exit fast recovery.
3116 *
3117 * Window inflation should have left us with approx.
3118 * snd_ssthresh outstanding data. But in case we
3119 * would be inclined to send a burst, better to do
3120 * it via the slow start mechanism.
3121 */
3122 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3123 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3124 + tp->t_segsz;
3125 else
3126 tp->snd_cwnd = tp->snd_ssthresh;
3127 tp->t_partialacks = -1;
3128 tp->t_dupacks = 0;
3129 }
3130 }
3131
3132
3133 /*
3134 * TCP compressed state engine. Currently used to hold compressed
3135 * state for SYN_RECEIVED.
3136 */
3137
3138 u_long syn_cache_count;
3139 u_int32_t syn_hash1, syn_hash2;
3140
3141 #define SYN_HASH(sa, sp, dp) \
3142 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3143 ((u_int32_t)(sp)))^syn_hash2)))
3144 #ifndef INET6
3145 #define SYN_HASHALL(hash, src, dst) \
3146 do { \
3147 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3148 ((struct sockaddr_in *)(src))->sin_port, \
3149 ((struct sockaddr_in *)(dst))->sin_port); \
3150 } while (/*CONSTCOND*/ 0)
3151 #else
3152 #define SYN_HASH6(sa, sp, dp) \
3153 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3154 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3155 & 0x7fffffff)
3156
3157 #define SYN_HASHALL(hash, src, dst) \
3158 do { \
3159 switch ((src)->sa_family) { \
3160 case AF_INET: \
3161 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3162 ((struct sockaddr_in *)(src))->sin_port, \
3163 ((struct sockaddr_in *)(dst))->sin_port); \
3164 break; \
3165 case AF_INET6: \
3166 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3167 ((struct sockaddr_in6 *)(src))->sin6_port, \
3168 ((struct sockaddr_in6 *)(dst))->sin6_port); \
3169 break; \
3170 default: \
3171 hash = 0; \
3172 } \
3173 } while (/*CONSTCOND*/0)
3174 #endif /* INET6 */
3175
3176 #define SYN_CACHE_RM(sc) \
3177 do { \
3178 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3179 (sc), sc_bucketq); \
3180 (sc)->sc_tp = NULL; \
3181 LIST_REMOVE((sc), sc_tpq); \
3182 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3183 callout_stop(&(sc)->sc_timer); \
3184 syn_cache_count--; \
3185 } while (/*CONSTCOND*/0)
3186
3187 #define SYN_CACHE_PUT(sc) \
3188 do { \
3189 if ((sc)->sc_ipopts) \
3190 (void) m_free((sc)->sc_ipopts); \
3191 if ((sc)->sc_route4.ro_rt != NULL) \
3192 RTFREE((sc)->sc_route4.ro_rt); \
3193 if (callout_invoking(&(sc)->sc_timer)) \
3194 (sc)->sc_flags |= SCF_DEAD; \
3195 else \
3196 pool_put(&syn_cache_pool, (sc)); \
3197 } while (/*CONSTCOND*/0)
3198
3199 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3200
3201 /*
3202 * We don't estimate RTT with SYNs, so each packet starts with the default
3203 * RTT and each timer step has a fixed timeout value.
3204 */
3205 #define SYN_CACHE_TIMER_ARM(sc) \
3206 do { \
3207 TCPT_RANGESET((sc)->sc_rxtcur, \
3208 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3209 TCPTV_REXMTMAX); \
3210 callout_reset(&(sc)->sc_timer, \
3211 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3212 } while (/*CONSTCOND*/0)
3213
3214 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3215
3216 void
3217 syn_cache_init()
3218 {
3219 int i;
3220
3221 /* Initialize the hash buckets. */
3222 for (i = 0; i < tcp_syn_cache_size; i++)
3223 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3224 }
3225
3226 void
3227 syn_cache_insert(sc, tp)
3228 struct syn_cache *sc;
3229 struct tcpcb *tp;
3230 {
3231 struct syn_cache_head *scp;
3232 struct syn_cache *sc2;
3233 int s;
3234
3235 /*
3236 * If there are no entries in the hash table, reinitialize
3237 * the hash secrets.
3238 */
3239 if (syn_cache_count == 0) {
3240 syn_hash1 = arc4random();
3241 syn_hash2 = arc4random();
3242 }
3243
3244 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3245 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3246 scp = &tcp_syn_cache[sc->sc_bucketidx];
3247
3248 /*
3249 * Make sure that we don't overflow the per-bucket
3250 * limit or the total cache size limit.
3251 */
3252 s = splsoftnet();
3253 if (scp->sch_length >= tcp_syn_bucket_limit) {
3254 tcpstat.tcps_sc_bucketoverflow++;
3255 /*
3256 * The bucket is full. Toss the oldest element in the
3257 * bucket. This will be the first entry in the bucket.
3258 */
3259 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3260 #ifdef DIAGNOSTIC
3261 /*
3262 * This should never happen; we should always find an
3263 * entry in our bucket.
3264 */
3265 if (sc2 == NULL)
3266 panic("syn_cache_insert: bucketoverflow: impossible");
3267 #endif
3268 SYN_CACHE_RM(sc2);
3269 SYN_CACHE_PUT(sc2);
3270 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3271 struct syn_cache_head *scp2, *sce;
3272
3273 tcpstat.tcps_sc_overflowed++;
3274 /*
3275 * The cache is full. Toss the oldest entry in the
3276 * first non-empty bucket we can find.
3277 *
3278 * XXX We would really like to toss the oldest
3279 * entry in the cache, but we hope that this
3280 * condition doesn't happen very often.
3281 */
3282 scp2 = scp;
3283 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3284 sce = &tcp_syn_cache[tcp_syn_cache_size];
3285 for (++scp2; scp2 != scp; scp2++) {
3286 if (scp2 >= sce)
3287 scp2 = &tcp_syn_cache[0];
3288 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3289 break;
3290 }
3291 #ifdef DIAGNOSTIC
3292 /*
3293 * This should never happen; we should always find a
3294 * non-empty bucket.
3295 */
3296 if (scp2 == scp)
3297 panic("syn_cache_insert: cacheoverflow: "
3298 "impossible");
3299 #endif
3300 }
3301 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3302 SYN_CACHE_RM(sc2);
3303 SYN_CACHE_PUT(sc2);
3304 }
3305
3306 /*
3307 * Initialize the entry's timer.
3308 */
3309 sc->sc_rxttot = 0;
3310 sc->sc_rxtshift = 0;
3311 SYN_CACHE_TIMER_ARM(sc);
3312
3313 /* Link it from tcpcb entry */
3314 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3315
3316 /* Put it into the bucket. */
3317 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3318 scp->sch_length++;
3319 syn_cache_count++;
3320
3321 tcpstat.tcps_sc_added++;
3322 splx(s);
3323 }
3324
3325 /*
3326 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3327 * If we have retransmitted an entry the maximum number of times, expire
3328 * that entry.
3329 */
3330 void
3331 syn_cache_timer(void *arg)
3332 {
3333 struct syn_cache *sc = arg;
3334 int s;
3335
3336 s = splsoftnet();
3337 callout_ack(&sc->sc_timer);
3338
3339 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3340 tcpstat.tcps_sc_delayed_free++;
3341 pool_put(&syn_cache_pool, sc);
3342 splx(s);
3343 return;
3344 }
3345
3346 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3347 /* Drop it -- too many retransmissions. */
3348 goto dropit;
3349 }
3350
3351 /*
3352 * Compute the total amount of time this entry has
3353 * been on a queue. If this entry has been on longer
3354 * than the keep alive timer would allow, expire it.
3355 */
3356 sc->sc_rxttot += sc->sc_rxtcur;
3357 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3358 goto dropit;
3359
3360 tcpstat.tcps_sc_retransmitted++;
3361 (void) syn_cache_respond(sc, NULL);
3362
3363 /* Advance the timer back-off. */
3364 sc->sc_rxtshift++;
3365 SYN_CACHE_TIMER_ARM(sc);
3366
3367 splx(s);
3368 return;
3369
3370 dropit:
3371 tcpstat.tcps_sc_timed_out++;
3372 SYN_CACHE_RM(sc);
3373 SYN_CACHE_PUT(sc);
3374 splx(s);
3375 }
3376
3377 /*
3378 * Remove syn cache created by the specified tcb entry,
3379 * because this does not make sense to keep them
3380 * (if there's no tcb entry, syn cache entry will never be used)
3381 */
3382 void
3383 syn_cache_cleanup(tp)
3384 struct tcpcb *tp;
3385 {
3386 struct syn_cache *sc, *nsc;
3387 int s;
3388
3389 s = splsoftnet();
3390
3391 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3392 nsc = LIST_NEXT(sc, sc_tpq);
3393
3394 #ifdef DIAGNOSTIC
3395 if (sc->sc_tp != tp)
3396 panic("invalid sc_tp in syn_cache_cleanup");
3397 #endif
3398 SYN_CACHE_RM(sc);
3399 SYN_CACHE_PUT(sc);
3400 }
3401 /* just for safety */
3402 LIST_INIT(&tp->t_sc);
3403
3404 splx(s);
3405 }
3406
3407 /*
3408 * Find an entry in the syn cache.
3409 */
3410 struct syn_cache *
3411 syn_cache_lookup(src, dst, headp)
3412 struct sockaddr *src;
3413 struct sockaddr *dst;
3414 struct syn_cache_head **headp;
3415 {
3416 struct syn_cache *sc;
3417 struct syn_cache_head *scp;
3418 u_int32_t hash;
3419 int s;
3420
3421 SYN_HASHALL(hash, src, dst);
3422
3423 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3424 *headp = scp;
3425 s = splsoftnet();
3426 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3427 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3428 if (sc->sc_hash != hash)
3429 continue;
3430 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3431 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3432 splx(s);
3433 return (sc);
3434 }
3435 }
3436 splx(s);
3437 return (NULL);
3438 }
3439
3440 /*
3441 * This function gets called when we receive an ACK for a
3442 * socket in the LISTEN state. We look up the connection
3443 * in the syn cache, and if its there, we pull it out of
3444 * the cache and turn it into a full-blown connection in
3445 * the SYN-RECEIVED state.
3446 *
3447 * The return values may not be immediately obvious, and their effects
3448 * can be subtle, so here they are:
3449 *
3450 * NULL SYN was not found in cache; caller should drop the
3451 * packet and send an RST.
3452 *
3453 * -1 We were unable to create the new connection, and are
3454 * aborting it. An ACK,RST is being sent to the peer
3455 * (unless we got screwey sequence numbners; see below),
3456 * because the 3-way handshake has been completed. Caller
3457 * should not free the mbuf, since we may be using it. If
3458 * we are not, we will free it.
3459 *
3460 * Otherwise, the return value is a pointer to the new socket
3461 * associated with the connection.
3462 */
3463 struct socket *
3464 syn_cache_get(src, dst, th, hlen, tlen, so, m)
3465 struct sockaddr *src;
3466 struct sockaddr *dst;
3467 struct tcphdr *th;
3468 unsigned int hlen, tlen;
3469 struct socket *so;
3470 struct mbuf *m;
3471 {
3472 struct syn_cache *sc;
3473 struct syn_cache_head *scp;
3474 struct inpcb *inp = NULL;
3475 #ifdef INET6
3476 struct in6pcb *in6p = NULL;
3477 #endif
3478 struct tcpcb *tp = 0;
3479 struct mbuf *am;
3480 int s;
3481 struct socket *oso;
3482
3483 s = splsoftnet();
3484 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3485 splx(s);
3486 return (NULL);
3487 }
3488
3489 /*
3490 * Verify the sequence and ack numbers. Try getting the correct
3491 * response again.
3492 */
3493 if ((th->th_ack != sc->sc_iss + 1) ||
3494 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3495 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3496 (void) syn_cache_respond(sc, m);
3497 splx(s);
3498 return ((struct socket *)(-1));
3499 }
3500
3501 /* Remove this cache entry */
3502 SYN_CACHE_RM(sc);
3503 splx(s);
3504
3505 /*
3506 * Ok, create the full blown connection, and set things up
3507 * as they would have been set up if we had created the
3508 * connection when the SYN arrived. If we can't create
3509 * the connection, abort it.
3510 */
3511 /*
3512 * inp still has the OLD in_pcb stuff, set the
3513 * v6-related flags on the new guy, too. This is
3514 * done particularly for the case where an AF_INET6
3515 * socket is bound only to a port, and a v4 connection
3516 * comes in on that port.
3517 * we also copy the flowinfo from the original pcb
3518 * to the new one.
3519 */
3520 oso = so;
3521 so = sonewconn(so, SS_ISCONNECTED);
3522 if (so == NULL)
3523 goto resetandabort;
3524
3525 switch (so->so_proto->pr_domain->dom_family) {
3526 #ifdef INET
3527 case AF_INET:
3528 inp = sotoinpcb(so);
3529 break;
3530 #endif
3531 #ifdef INET6
3532 case AF_INET6:
3533 in6p = sotoin6pcb(so);
3534 break;
3535 #endif
3536 }
3537 switch (src->sa_family) {
3538 #ifdef INET
3539 case AF_INET:
3540 if (inp) {
3541 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3542 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3543 inp->inp_options = ip_srcroute();
3544 in_pcbstate(inp, INP_BOUND);
3545 if (inp->inp_options == NULL) {
3546 inp->inp_options = sc->sc_ipopts;
3547 sc->sc_ipopts = NULL;
3548 }
3549 }
3550 #ifdef INET6
3551 else if (in6p) {
3552 /* IPv4 packet to AF_INET6 socket */
3553 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3554 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3555 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3556 &in6p->in6p_laddr.s6_addr32[3],
3557 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3558 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3559 in6totcpcb(in6p)->t_family = AF_INET;
3560 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3561 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3562 else
3563 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3564 in6_pcbstate(in6p, IN6P_BOUND);
3565 }
3566 #endif
3567 break;
3568 #endif
3569 #ifdef INET6
3570 case AF_INET6:
3571 if (in6p) {
3572 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3573 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3574 in6_pcbstate(in6p, IN6P_BOUND);
3575 }
3576 break;
3577 #endif
3578 }
3579 #ifdef INET6
3580 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3581 struct in6pcb *oin6p = sotoin6pcb(oso);
3582 /* inherit socket options from the listening socket */
3583 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3584 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3585 m_freem(in6p->in6p_options);
3586 in6p->in6p_options = 0;
3587 }
3588 ip6_savecontrol(in6p, &in6p->in6p_options,
3589 mtod(m, struct ip6_hdr *), m);
3590 }
3591 #endif
3592
3593 #if defined(IPSEC) || defined(FAST_IPSEC)
3594 /*
3595 * we make a copy of policy, instead of sharing the policy,
3596 * for better behavior in terms of SA lookup and dead SA removal.
3597 */
3598 if (inp) {
3599 /* copy old policy into new socket's */
3600 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3601 printf("tcp_input: could not copy policy\n");
3602 }
3603 #ifdef INET6
3604 else if (in6p) {
3605 /* copy old policy into new socket's */
3606 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3607 in6p->in6p_sp))
3608 printf("tcp_input: could not copy policy\n");
3609 }
3610 #endif
3611 #endif
3612
3613 /*
3614 * Give the new socket our cached route reference.
3615 */
3616 if (inp)
3617 inp->inp_route = sc->sc_route4; /* struct assignment */
3618 #ifdef INET6
3619 else
3620 in6p->in6p_route = sc->sc_route6;
3621 #endif
3622 sc->sc_route4.ro_rt = NULL;
3623
3624 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3625 if (am == NULL)
3626 goto resetandabort;
3627 MCLAIM(am, &tcp_mowner);
3628 am->m_len = src->sa_len;
3629 bcopy(src, mtod(am, caddr_t), src->sa_len);
3630 if (inp) {
3631 if (in_pcbconnect(inp, am)) {
3632 (void) m_free(am);
3633 goto resetandabort;
3634 }
3635 }
3636 #ifdef INET6
3637 else if (in6p) {
3638 if (src->sa_family == AF_INET) {
3639 /* IPv4 packet to AF_INET6 socket */
3640 struct sockaddr_in6 *sin6;
3641 sin6 = mtod(am, struct sockaddr_in6 *);
3642 am->m_len = sizeof(*sin6);
3643 bzero(sin6, sizeof(*sin6));
3644 sin6->sin6_family = AF_INET6;
3645 sin6->sin6_len = sizeof(*sin6);
3646 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3647 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3648 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3649 &sin6->sin6_addr.s6_addr32[3],
3650 sizeof(sin6->sin6_addr.s6_addr32[3]));
3651 }
3652 if (in6_pcbconnect(in6p, am)) {
3653 (void) m_free(am);
3654 goto resetandabort;
3655 }
3656 }
3657 #endif
3658 else {
3659 (void) m_free(am);
3660 goto resetandabort;
3661 }
3662 (void) m_free(am);
3663
3664 if (inp)
3665 tp = intotcpcb(inp);
3666 #ifdef INET6
3667 else if (in6p)
3668 tp = in6totcpcb(in6p);
3669 #endif
3670 else
3671 tp = NULL;
3672 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3673 if (sc->sc_request_r_scale != 15) {
3674 tp->requested_s_scale = sc->sc_requested_s_scale;
3675 tp->request_r_scale = sc->sc_request_r_scale;
3676 tp->snd_scale = sc->sc_requested_s_scale;
3677 tp->rcv_scale = sc->sc_request_r_scale;
3678 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3679 }
3680 if (sc->sc_flags & SCF_TIMESTAMP)
3681 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3682 tp->ts_timebase = sc->sc_timebase;
3683
3684 tp->t_template = tcp_template(tp);
3685 if (tp->t_template == 0) {
3686 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3687 so = NULL;
3688 m_freem(m);
3689 goto abort;
3690 }
3691
3692 tp->iss = sc->sc_iss;
3693 tp->irs = sc->sc_irs;
3694 tcp_sendseqinit(tp);
3695 tcp_rcvseqinit(tp);
3696 tp->t_state = TCPS_SYN_RECEIVED;
3697 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3698 tcpstat.tcps_accepts++;
3699
3700 #ifdef TCP_SIGNATURE
3701 if (sc->sc_flags & SCF_SIGNATURE)
3702 tp->t_flags |= TF_SIGNATURE;
3703 #endif
3704
3705 /* Initialize tp->t_ourmss before we deal with the peer's! */
3706 tp->t_ourmss = sc->sc_ourmaxseg;
3707 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3708
3709 /*
3710 * Initialize the initial congestion window. If we
3711 * had to retransmit the SYN,ACK, we must initialize cwnd
3712 * to 1 segment (i.e. the Loss Window).
3713 */
3714 if (sc->sc_rxtshift)
3715 tp->snd_cwnd = tp->t_peermss;
3716 else {
3717 int ss = tcp_init_win;
3718 #ifdef INET
3719 if (inp != NULL && in_localaddr(inp->inp_faddr))
3720 ss = tcp_init_win_local;
3721 #endif
3722 #ifdef INET6
3723 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3724 ss = tcp_init_win_local;
3725 #endif
3726 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3727 }
3728
3729 tcp_rmx_rtt(tp);
3730 tp->snd_wl1 = sc->sc_irs;
3731 tp->rcv_up = sc->sc_irs + 1;
3732
3733 /*
3734 * This is what whould have happened in tcp_output() when
3735 * the SYN,ACK was sent.
3736 */
3737 tp->snd_up = tp->snd_una;
3738 tp->snd_max = tp->snd_nxt = tp->iss+1;
3739 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3740 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3741 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3742 tp->last_ack_sent = tp->rcv_nxt;
3743 tp->t_partialacks = -1;
3744 tp->t_dupacks = 0;
3745
3746 tcpstat.tcps_sc_completed++;
3747 SYN_CACHE_PUT(sc);
3748 return (so);
3749
3750 resetandabort:
3751 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3752 abort:
3753 if (so != NULL)
3754 (void) soabort(so);
3755 SYN_CACHE_PUT(sc);
3756 tcpstat.tcps_sc_aborted++;
3757 return ((struct socket *)(-1));
3758 }
3759
3760 /*
3761 * This function is called when we get a RST for a
3762 * non-existent connection, so that we can see if the
3763 * connection is in the syn cache. If it is, zap it.
3764 */
3765
3766 void
3767 syn_cache_reset(src, dst, th)
3768 struct sockaddr *src;
3769 struct sockaddr *dst;
3770 struct tcphdr *th;
3771 {
3772 struct syn_cache *sc;
3773 struct syn_cache_head *scp;
3774 int s = splsoftnet();
3775
3776 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3777 splx(s);
3778 return;
3779 }
3780 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3781 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3782 splx(s);
3783 return;
3784 }
3785 SYN_CACHE_RM(sc);
3786 splx(s);
3787 tcpstat.tcps_sc_reset++;
3788 SYN_CACHE_PUT(sc);
3789 }
3790
3791 void
3792 syn_cache_unreach(src, dst, th)
3793 struct sockaddr *src;
3794 struct sockaddr *dst;
3795 struct tcphdr *th;
3796 {
3797 struct syn_cache *sc;
3798 struct syn_cache_head *scp;
3799 int s;
3800
3801 s = splsoftnet();
3802 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3803 splx(s);
3804 return;
3805 }
3806 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3807 if (ntohl (th->th_seq) != sc->sc_iss) {
3808 splx(s);
3809 return;
3810 }
3811
3812 /*
3813 * If we've retransmitted 3 times and this is our second error,
3814 * we remove the entry. Otherwise, we allow it to continue on.
3815 * This prevents us from incorrectly nuking an entry during a
3816 * spurious network outage.
3817 *
3818 * See tcp_notify().
3819 */
3820 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3821 sc->sc_flags |= SCF_UNREACH;
3822 splx(s);
3823 return;
3824 }
3825
3826 SYN_CACHE_RM(sc);
3827 splx(s);
3828 tcpstat.tcps_sc_unreach++;
3829 SYN_CACHE_PUT(sc);
3830 }
3831
3832 /*
3833 * Given a LISTEN socket and an inbound SYN request, add
3834 * this to the syn cache, and send back a segment:
3835 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3836 * to the source.
3837 *
3838 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3839 * Doing so would require that we hold onto the data and deliver it
3840 * to the application. However, if we are the target of a SYN-flood
3841 * DoS attack, an attacker could send data which would eventually
3842 * consume all available buffer space if it were ACKed. By not ACKing
3843 * the data, we avoid this DoS scenario.
3844 */
3845
3846 int
3847 syn_cache_add(src, dst, th, hlen, so, m, optp, optlen, oi)
3848 struct sockaddr *src;
3849 struct sockaddr *dst;
3850 struct tcphdr *th;
3851 unsigned int hlen;
3852 struct socket *so;
3853 struct mbuf *m;
3854 u_char *optp;
3855 int optlen;
3856 struct tcp_opt_info *oi;
3857 {
3858 struct tcpcb tb, *tp;
3859 long win;
3860 struct syn_cache *sc;
3861 struct syn_cache_head *scp;
3862 struct mbuf *ipopts;
3863 struct tcp_opt_info opti;
3864
3865 tp = sototcpcb(so);
3866
3867 bzero(&opti, sizeof(opti));
3868
3869 /*
3870 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3871 *
3872 * Note this check is performed in tcp_input() very early on.
3873 */
3874
3875 /*
3876 * Initialize some local state.
3877 */
3878 win = sbspace(&so->so_rcv);
3879 if (win > TCP_MAXWIN)
3880 win = TCP_MAXWIN;
3881
3882 switch (src->sa_family) {
3883 #ifdef INET
3884 case AF_INET:
3885 /*
3886 * Remember the IP options, if any.
3887 */
3888 ipopts = ip_srcroute();
3889 break;
3890 #endif
3891 default:
3892 ipopts = NULL;
3893 }
3894
3895 #ifdef TCP_SIGNATURE
3896 if (optp || (tp->t_flags & TF_SIGNATURE))
3897 #else
3898 if (optp)
3899 #endif
3900 {
3901 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3902 #ifdef TCP_SIGNATURE
3903 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3904 #endif
3905 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3906 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3907 return (0);
3908 } else
3909 tb.t_flags = 0;
3910
3911 /*
3912 * See if we already have an entry for this connection.
3913 * If we do, resend the SYN,ACK. We do not count this
3914 * as a retransmission (XXX though maybe we should).
3915 */
3916 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3917 tcpstat.tcps_sc_dupesyn++;
3918 if (ipopts) {
3919 /*
3920 * If we were remembering a previous source route,
3921 * forget it and use the new one we've been given.
3922 */
3923 if (sc->sc_ipopts)
3924 (void) m_free(sc->sc_ipopts);
3925 sc->sc_ipopts = ipopts;
3926 }
3927 sc->sc_timestamp = tb.ts_recent;
3928 if (syn_cache_respond(sc, m) == 0) {
3929 tcpstat.tcps_sndacks++;
3930 tcpstat.tcps_sndtotal++;
3931 }
3932 return (1);
3933 }
3934
3935 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3936 if (sc == NULL) {
3937 if (ipopts)
3938 (void) m_free(ipopts);
3939 return (0);
3940 }
3941
3942 /*
3943 * Fill in the cache, and put the necessary IP and TCP
3944 * options into the reply.
3945 */
3946 bzero(sc, sizeof(struct syn_cache));
3947 callout_init(&sc->sc_timer);
3948 bcopy(src, &sc->sc_src, src->sa_len);
3949 bcopy(dst, &sc->sc_dst, dst->sa_len);
3950 sc->sc_flags = 0;
3951 sc->sc_ipopts = ipopts;
3952 sc->sc_irs = th->th_seq;
3953 switch (src->sa_family) {
3954 #ifdef INET
3955 case AF_INET:
3956 {
3957 struct sockaddr_in *srcin = (void *) src;
3958 struct sockaddr_in *dstin = (void *) dst;
3959
3960 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3961 &srcin->sin_addr, dstin->sin_port,
3962 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3963 break;
3964 }
3965 #endif /* INET */
3966 #ifdef INET6
3967 case AF_INET6:
3968 {
3969 struct sockaddr_in6 *srcin6 = (void *) src;
3970 struct sockaddr_in6 *dstin6 = (void *) dst;
3971
3972 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3973 &srcin6->sin6_addr, dstin6->sin6_port,
3974 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3975 break;
3976 }
3977 #endif /* INET6 */
3978 }
3979 sc->sc_peermaxseg = oi->maxseg;
3980 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3981 m->m_pkthdr.rcvif : NULL,
3982 sc->sc_src.sa.sa_family);
3983 sc->sc_win = win;
3984 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3985 sc->sc_timestamp = tb.ts_recent;
3986 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3987 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3988 sc->sc_flags |= SCF_TIMESTAMP;
3989 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3990 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3991 sc->sc_requested_s_scale = tb.requested_s_scale;
3992 sc->sc_request_r_scale = 0;
3993 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3994 TCP_MAXWIN << sc->sc_request_r_scale <
3995 so->so_rcv.sb_hiwat)
3996 sc->sc_request_r_scale++;
3997 } else {
3998 sc->sc_requested_s_scale = 15;
3999 sc->sc_request_r_scale = 15;
4000 }
4001 #ifdef TCP_SIGNATURE
4002 if (tb.t_flags & TF_SIGNATURE)
4003 sc->sc_flags |= SCF_SIGNATURE;
4004 #endif
4005 sc->sc_tp = tp;
4006 if (syn_cache_respond(sc, m) == 0) {
4007 syn_cache_insert(sc, tp);
4008 tcpstat.tcps_sndacks++;
4009 tcpstat.tcps_sndtotal++;
4010 } else {
4011 SYN_CACHE_PUT(sc);
4012 tcpstat.tcps_sc_dropped++;
4013 }
4014 return (1);
4015 }
4016
4017 int
4018 syn_cache_respond(sc, m)
4019 struct syn_cache *sc;
4020 struct mbuf *m;
4021 {
4022 struct route *ro;
4023 u_int8_t *optp;
4024 int optlen, error;
4025 u_int16_t tlen;
4026 struct ip *ip = NULL;
4027 #ifdef INET6
4028 struct ip6_hdr *ip6 = NULL;
4029 #endif
4030 struct tcpcb *tp;
4031 struct tcphdr *th;
4032 u_int hlen;
4033 struct socket *so;
4034
4035 switch (sc->sc_src.sa.sa_family) {
4036 case AF_INET:
4037 hlen = sizeof(struct ip);
4038 ro = &sc->sc_route4;
4039 break;
4040 #ifdef INET6
4041 case AF_INET6:
4042 hlen = sizeof(struct ip6_hdr);
4043 ro = (struct route *)&sc->sc_route6;
4044 break;
4045 #endif
4046 default:
4047 if (m)
4048 m_freem(m);
4049 return (EAFNOSUPPORT);
4050 }
4051
4052 /* Compute the size of the TCP options. */
4053 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4054 #ifdef TCP_SIGNATURE
4055 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4056 #endif
4057 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4058
4059 tlen = hlen + sizeof(struct tcphdr) + optlen;
4060
4061 /*
4062 * Create the IP+TCP header from scratch.
4063 */
4064 if (m)
4065 m_freem(m);
4066 #ifdef DIAGNOSTIC
4067 if (max_linkhdr + tlen > MCLBYTES)
4068 return (ENOBUFS);
4069 #endif
4070 MGETHDR(m, M_DONTWAIT, MT_DATA);
4071 if (m && tlen > MHLEN) {
4072 MCLGET(m, M_DONTWAIT);
4073 if ((m->m_flags & M_EXT) == 0) {
4074 m_freem(m);
4075 m = NULL;
4076 }
4077 }
4078 if (m == NULL)
4079 return (ENOBUFS);
4080 MCLAIM(m, &tcp_tx_mowner);
4081
4082 /* Fixup the mbuf. */
4083 m->m_data += max_linkhdr;
4084 m->m_len = m->m_pkthdr.len = tlen;
4085 if (sc->sc_tp) {
4086 tp = sc->sc_tp;
4087 if (tp->t_inpcb)
4088 so = tp->t_inpcb->inp_socket;
4089 #ifdef INET6
4090 else if (tp->t_in6pcb)
4091 so = tp->t_in6pcb->in6p_socket;
4092 #endif
4093 else
4094 so = NULL;
4095 } else
4096 so = NULL;
4097 m->m_pkthdr.rcvif = NULL;
4098 memset(mtod(m, u_char *), 0, tlen);
4099
4100 switch (sc->sc_src.sa.sa_family) {
4101 case AF_INET:
4102 ip = mtod(m, struct ip *);
4103 ip->ip_v = 4;
4104 ip->ip_dst = sc->sc_src.sin.sin_addr;
4105 ip->ip_src = sc->sc_dst.sin.sin_addr;
4106 ip->ip_p = IPPROTO_TCP;
4107 th = (struct tcphdr *)(ip + 1);
4108 th->th_dport = sc->sc_src.sin.sin_port;
4109 th->th_sport = sc->sc_dst.sin.sin_port;
4110 break;
4111 #ifdef INET6
4112 case AF_INET6:
4113 ip6 = mtod(m, struct ip6_hdr *);
4114 ip6->ip6_vfc = IPV6_VERSION;
4115 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4116 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4117 ip6->ip6_nxt = IPPROTO_TCP;
4118 /* ip6_plen will be updated in ip6_output() */
4119 th = (struct tcphdr *)(ip6 + 1);
4120 th->th_dport = sc->sc_src.sin6.sin6_port;
4121 th->th_sport = sc->sc_dst.sin6.sin6_port;
4122 break;
4123 #endif
4124 default:
4125 th = NULL;
4126 }
4127
4128 th->th_seq = htonl(sc->sc_iss);
4129 th->th_ack = htonl(sc->sc_irs + 1);
4130 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4131 th->th_flags = TH_SYN|TH_ACK;
4132 th->th_win = htons(sc->sc_win);
4133 /* th_sum already 0 */
4134 /* th_urp already 0 */
4135
4136 /* Tack on the TCP options. */
4137 optp = (u_int8_t *)(th + 1);
4138 *optp++ = TCPOPT_MAXSEG;
4139 *optp++ = 4;
4140 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4141 *optp++ = sc->sc_ourmaxseg & 0xff;
4142
4143 if (sc->sc_request_r_scale != 15) {
4144 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4145 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4146 sc->sc_request_r_scale);
4147 optp += 4;
4148 }
4149
4150 if (sc->sc_flags & SCF_TIMESTAMP) {
4151 u_int32_t *lp = (u_int32_t *)(optp);
4152 /* Form timestamp option as shown in appendix A of RFC 1323. */
4153 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4154 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4155 *lp = htonl(sc->sc_timestamp);
4156 optp += TCPOLEN_TSTAMP_APPA;
4157 }
4158
4159 #ifdef TCP_SIGNATURE
4160 if (sc->sc_flags & SCF_SIGNATURE) {
4161 struct secasvar *sav;
4162 u_int8_t *sigp;
4163
4164 sav = tcp_signature_getsav(m, th);
4165
4166 if (sav == NULL) {
4167 if (m)
4168 m_freem(m);
4169 return (EPERM);
4170 }
4171
4172 *optp++ = TCPOPT_SIGNATURE;
4173 *optp++ = TCPOLEN_SIGNATURE;
4174 sigp = optp;
4175 bzero(optp, TCP_SIGLEN);
4176 optp += TCP_SIGLEN;
4177 *optp++ = TCPOPT_NOP;
4178 *optp++ = TCPOPT_EOL;
4179
4180 (void)tcp_signature(m, th, hlen, sav, sigp);
4181
4182 key_sa_recordxfer(sav, m);
4183 #ifdef FAST_IPSEC
4184 KEY_FREESAV(&sav);
4185 #else
4186 key_freesav(sav);
4187 #endif
4188 }
4189 #endif
4190
4191 /* Compute the packet's checksum. */
4192 switch (sc->sc_src.sa.sa_family) {
4193 case AF_INET:
4194 ip->ip_len = htons(tlen - hlen);
4195 th->th_sum = 0;
4196 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4197 break;
4198 #ifdef INET6
4199 case AF_INET6:
4200 ip6->ip6_plen = htons(tlen - hlen);
4201 th->th_sum = 0;
4202 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4203 break;
4204 #endif
4205 }
4206
4207 /*
4208 * Fill in some straggling IP bits. Note the stack expects
4209 * ip_len to be in host order, for convenience.
4210 */
4211 switch (sc->sc_src.sa.sa_family) {
4212 #ifdef INET
4213 case AF_INET:
4214 ip->ip_len = htons(tlen);
4215 ip->ip_ttl = ip_defttl;
4216 /* XXX tos? */
4217 break;
4218 #endif
4219 #ifdef INET6
4220 case AF_INET6:
4221 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4222 ip6->ip6_vfc |= IPV6_VERSION;
4223 ip6->ip6_plen = htons(tlen - hlen);
4224 /* ip6_hlim will be initialized afterwards */
4225 /* XXX flowlabel? */
4226 break;
4227 #endif
4228 }
4229
4230 /* XXX use IPsec policy on listening socket, on SYN ACK */
4231 tp = sc->sc_tp;
4232
4233 switch (sc->sc_src.sa.sa_family) {
4234 #ifdef INET
4235 case AF_INET:
4236 error = ip_output(m, sc->sc_ipopts, ro,
4237 (ip_mtudisc ? IP_MTUDISC : 0),
4238 (struct ip_moptions *)NULL, so);
4239 break;
4240 #endif
4241 #ifdef INET6
4242 case AF_INET6:
4243 ip6->ip6_hlim = in6_selecthlim(NULL,
4244 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4245
4246 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4247 (struct ip6_moptions *)0, so, NULL);
4248 break;
4249 #endif
4250 default:
4251 error = EAFNOSUPPORT;
4252 break;
4253 }
4254 return (error);
4255 }
4256