tcp_input.c revision 1.221 1 /* $NetBSD: tcp_input.c,v 1.221 2005/02/26 22:45:12 perry Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.221 2005/02/26 22:45:12 perry Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210
211 #include <machine/stdarg.h>
212
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif /* IPSEC */
223
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* FAST_IPSEC*/
232
233 int tcprexmtthresh = 3;
234 int tcp_log_refused;
235
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240
241 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
242
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
246
247 /*
248 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249 */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 tp->t_in6pcb->in6p_route.ro_rt) { \
255 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 } \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261
262 /*
263 * Macro to compute ACK transmission behavior. Delay the ACK unless
264 * we have already delayed an ACK (must send an ACK every two segments).
265 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266 * option is enabled.
267 */
268 #define TCP_SETUP_ACK(tp, th) \
269 do { \
270 if ((tp)->t_flags & TF_DELACK || \
271 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 tp->t_flags |= TF_ACKNOW; \
273 else \
274 TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276
277 /*
278 * Convert TCP protocol fields to host order for easier processing.
279 */
280 #define TCP_FIELDS_TO_HOST(th) \
281 do { \
282 NTOHL((th)->th_seq); \
283 NTOHL((th)->th_ack); \
284 NTOHS((th)->th_win); \
285 NTOHS((th)->th_urp); \
286 } while (/*CONSTCOND*/ 0)
287
288 /*
289 * ... and reverse the above.
290 */
291 #define TCP_FIELDS_TO_NET(th) \
292 do { \
293 HTONL((th)->th_seq); \
294 HTONL((th)->th_ack); \
295 HTONS((th)->th_win); \
296 HTONS((th)->th_urp); \
297 } while (/*CONSTCOND*/ 0)
298
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306
307 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
308
309 #else
310
311 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
312
313 #endif /* TCP_CSUM_COUNTERS */
314
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331
332 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
333
334 #else
335
336 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef INET
341 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
345 #endif
346
347 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
348
349 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
350
351 int
352 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
353 {
354 struct ipqent *p, *q, *nq, *tiqe = NULL;
355 struct socket *so = NULL;
356 int pkt_flags;
357 tcp_seq pkt_seq;
358 unsigned pkt_len;
359 u_long rcvpartdupbyte = 0;
360 u_long rcvoobyte;
361 #ifdef TCP_REASS_COUNTERS
362 u_int count = 0;
363 #endif
364
365 if (tp->t_inpcb)
366 so = tp->t_inpcb->inp_socket;
367 #ifdef INET6
368 else if (tp->t_in6pcb)
369 so = tp->t_in6pcb->in6p_socket;
370 #endif
371
372 TCP_REASS_LOCK_CHECK(tp);
373
374 /*
375 * Call with th==0 after become established to
376 * force pre-ESTABLISHED data up to user socket.
377 */
378 if (th == 0)
379 goto present;
380
381 rcvoobyte = *tlen;
382 /*
383 * Copy these to local variables because the tcpiphdr
384 * gets munged while we are collapsing mbufs.
385 */
386 pkt_seq = th->th_seq;
387 pkt_len = *tlen;
388 pkt_flags = th->th_flags;
389
390 TCP_REASS_COUNTER_INCR(&tcp_reass_);
391
392 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
393 /*
394 * When we miss a packet, the vast majority of time we get
395 * packets that follow it in order. So optimize for that.
396 */
397 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
398 p->ipqe_len += pkt_len;
399 p->ipqe_flags |= pkt_flags;
400 m_cat(p->ipre_mlast, m);
401 TRAVERSE(p->ipre_mlast);
402 m = NULL;
403 tiqe = p;
404 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
405 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
406 goto skip_replacement;
407 }
408 /*
409 * While we're here, if the pkt is completely beyond
410 * anything we have, just insert it at the tail.
411 */
412 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
413 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
414 goto insert_it;
415 }
416 }
417
418 q = TAILQ_FIRST(&tp->segq);
419
420 if (q != NULL) {
421 /*
422 * If this segment immediately precedes the first out-of-order
423 * block, simply slap the segment in front of it and (mostly)
424 * skip the complicated logic.
425 */
426 if (pkt_seq + pkt_len == q->ipqe_seq) {
427 q->ipqe_seq = pkt_seq;
428 q->ipqe_len += pkt_len;
429 q->ipqe_flags |= pkt_flags;
430 m_cat(m, q->ipqe_m);
431 q->ipqe_m = m;
432 q->ipre_mlast = m; /* last mbuf may have changed */
433 TRAVERSE(q->ipre_mlast);
434 tiqe = q;
435 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
436 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
437 goto skip_replacement;
438 }
439 } else {
440 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
441 }
442
443 /*
444 * Find a segment which begins after this one does.
445 */
446 for (p = NULL; q != NULL; q = nq) {
447 nq = TAILQ_NEXT(q, ipqe_q);
448 #ifdef TCP_REASS_COUNTERS
449 count++;
450 #endif
451 /*
452 * If the received segment is just right after this
453 * fragment, merge the two together and then check
454 * for further overlaps.
455 */
456 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
457 #ifdef TCPREASS_DEBUG
458 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
459 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
460 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
461 #endif
462 pkt_len += q->ipqe_len;
463 pkt_flags |= q->ipqe_flags;
464 pkt_seq = q->ipqe_seq;
465 m_cat(q->ipre_mlast, m);
466 TRAVERSE(q->ipre_mlast);
467 m = q->ipqe_m;
468 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
469 goto free_ipqe;
470 }
471 /*
472 * If the received segment is completely past this
473 * fragment, we need to go the next fragment.
474 */
475 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
476 p = q;
477 continue;
478 }
479 /*
480 * If the fragment is past the received segment,
481 * it (or any following) can't be concatenated.
482 */
483 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
484 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
485 break;
486 }
487
488 /*
489 * We've received all the data in this segment before.
490 * mark it as a duplicate and return.
491 */
492 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
493 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
494 tcpstat.tcps_rcvduppack++;
495 tcpstat.tcps_rcvdupbyte += pkt_len;
496 m_freem(m);
497 if (tiqe != NULL)
498 pool_put(&tcpipqent_pool, tiqe);
499 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
500 return (0);
501 }
502 /*
503 * Received segment completely overlaps this fragment
504 * so we drop the fragment (this keeps the temporal
505 * ordering of segments correct).
506 */
507 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
508 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
509 rcvpartdupbyte += q->ipqe_len;
510 m_freem(q->ipqe_m);
511 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
512 goto free_ipqe;
513 }
514 /*
515 * RX'ed segment extends past the end of the
516 * fragment. Drop the overlapping bytes. Then
517 * merge the fragment and segment then treat as
518 * a longer received packet.
519 */
520 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
521 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
522 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
523 #ifdef TCPREASS_DEBUG
524 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
525 tp, overlap,
526 pkt_seq, pkt_seq + pkt_len, pkt_len);
527 #endif
528 m_adj(m, overlap);
529 rcvpartdupbyte += overlap;
530 m_cat(q->ipre_mlast, m);
531 TRAVERSE(q->ipre_mlast);
532 m = q->ipqe_m;
533 pkt_seq = q->ipqe_seq;
534 pkt_len += q->ipqe_len - overlap;
535 rcvoobyte -= overlap;
536 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
537 goto free_ipqe;
538 }
539 /*
540 * RX'ed segment extends past the front of the
541 * fragment. Drop the overlapping bytes on the
542 * received packet. The packet will then be
543 * contatentated with this fragment a bit later.
544 */
545 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
546 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
547 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
548 #ifdef TCPREASS_DEBUG
549 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
550 tp, overlap,
551 pkt_seq, pkt_seq + pkt_len, pkt_len);
552 #endif
553 m_adj(m, -overlap);
554 pkt_len -= overlap;
555 rcvpartdupbyte += overlap;
556 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
557 rcvoobyte -= overlap;
558 }
559 /*
560 * If the received segment immediates precedes this
561 * fragment then tack the fragment onto this segment
562 * and reinsert the data.
563 */
564 if (q->ipqe_seq == pkt_seq + pkt_len) {
565 #ifdef TCPREASS_DEBUG
566 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
567 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
568 pkt_seq, pkt_seq + pkt_len, pkt_len);
569 #endif
570 pkt_len += q->ipqe_len;
571 pkt_flags |= q->ipqe_flags;
572 m_cat(m, q->ipqe_m);
573 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
574 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
575 if (tiqe == NULL)
576 tiqe = q;
577 else
578 pool_put(&tcpipqent_pool, q);
579 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
580 break;
581 }
582 /*
583 * If the fragment is before the segment, remember it.
584 * When this loop is terminated, p will contain the
585 * pointer to fragment that is right before the received
586 * segment.
587 */
588 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
589 p = q;
590
591 continue;
592
593 /*
594 * This is a common operation. It also will allow
595 * to save doing a malloc/free in most instances.
596 */
597 free_ipqe:
598 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
599 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
600 if (tiqe == NULL)
601 tiqe = q;
602 else
603 pool_put(&tcpipqent_pool, q);
604 }
605
606 #ifdef TCP_REASS_COUNTERS
607 if (count > 7)
608 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
609 else if (count > 0)
610 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
611 #endif
612
613 insert_it:
614
615 /*
616 * Allocate a new queue entry since the received segment did not
617 * collapse onto any other out-of-order block; thus we are allocating
618 * a new block. If it had collapsed, tiqe would not be NULL and
619 * we would be reusing it.
620 * XXX If we can't, just drop the packet. XXX
621 */
622 if (tiqe == NULL) {
623 tiqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
624 if (tiqe == NULL) {
625 tcpstat.tcps_rcvmemdrop++;
626 m_freem(m);
627 return (0);
628 }
629 }
630
631 /*
632 * Update the counters.
633 */
634 tcpstat.tcps_rcvoopack++;
635 tcpstat.tcps_rcvoobyte += rcvoobyte;
636 if (rcvpartdupbyte) {
637 tcpstat.tcps_rcvpartduppack++;
638 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
639 }
640
641 /*
642 * Insert the new fragment queue entry into both queues.
643 */
644 tiqe->ipqe_m = m;
645 tiqe->ipre_mlast = m;
646 tiqe->ipqe_seq = pkt_seq;
647 tiqe->ipqe_len = pkt_len;
648 tiqe->ipqe_flags = pkt_flags;
649 if (p == NULL) {
650 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
651 #ifdef TCPREASS_DEBUG
652 if (tiqe->ipqe_seq != tp->rcv_nxt)
653 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
654 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
655 #endif
656 } else {
657 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
658 #ifdef TCPREASS_DEBUG
659 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
660 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
661 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
662 #endif
663 }
664
665 skip_replacement:
666
667 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
668
669 present:
670 /*
671 * Present data to user, advancing rcv_nxt through
672 * completed sequence space.
673 */
674 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
675 return (0);
676 q = TAILQ_FIRST(&tp->segq);
677 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
678 return (0);
679 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
680 return (0);
681
682 tp->rcv_nxt += q->ipqe_len;
683 pkt_flags = q->ipqe_flags & TH_FIN;
684 ND6_HINT(tp);
685
686 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
687 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
688 if (so->so_state & SS_CANTRCVMORE)
689 m_freem(q->ipqe_m);
690 else
691 sbappendstream(&so->so_rcv, q->ipqe_m);
692 pool_put(&tcpipqent_pool, q);
693 sorwakeup(so);
694 return (pkt_flags);
695 }
696
697 #ifdef INET6
698 int
699 tcp6_input(struct mbuf **mp, int *offp, int proto)
700 {
701 struct mbuf *m = *mp;
702
703 /*
704 * draft-itojun-ipv6-tcp-to-anycast
705 * better place to put this in?
706 */
707 if (m->m_flags & M_ANYCAST6) {
708 struct ip6_hdr *ip6;
709 if (m->m_len < sizeof(struct ip6_hdr)) {
710 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
711 tcpstat.tcps_rcvshort++;
712 return IPPROTO_DONE;
713 }
714 }
715 ip6 = mtod(m, struct ip6_hdr *);
716 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
717 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
718 return IPPROTO_DONE;
719 }
720
721 tcp_input(m, *offp, proto);
722 return IPPROTO_DONE;
723 }
724 #endif
725
726 #ifdef INET
727 static void
728 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
729 {
730 char src[4*sizeof "123"];
731 char dst[4*sizeof "123"];
732
733 if (ip) {
734 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
735 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
736 }
737 else {
738 strlcpy(src, "(unknown)", sizeof(src));
739 strlcpy(dst, "(unknown)", sizeof(dst));
740 }
741 log(LOG_INFO,
742 "Connection attempt to TCP %s:%d from %s:%d\n",
743 dst, ntohs(th->th_dport),
744 src, ntohs(th->th_sport));
745 }
746 #endif
747
748 #ifdef INET6
749 static void
750 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
751 {
752 char src[INET6_ADDRSTRLEN];
753 char dst[INET6_ADDRSTRLEN];
754
755 if (ip6) {
756 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
757 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
758 }
759 else {
760 strlcpy(src, "(unknown v6)", sizeof(src));
761 strlcpy(dst, "(unknown v6)", sizeof(dst));
762 }
763 log(LOG_INFO,
764 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
765 dst, ntohs(th->th_dport),
766 src, ntohs(th->th_sport));
767 }
768 #endif
769
770 /*
771 * Checksum extended TCP header and data.
772 */
773 int
774 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
775 int off, int tlen)
776 {
777
778 /*
779 * XXX it's better to record and check if this mbuf is
780 * already checked.
781 */
782
783 switch (af) {
784 #ifdef INET
785 case AF_INET:
786 switch (m->m_pkthdr.csum_flags &
787 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
788 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
789 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
790 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
791 goto badcsum;
792
793 case M_CSUM_TCPv4|M_CSUM_DATA: {
794 u_int32_t hw_csum = m->m_pkthdr.csum_data;
795
796 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
797 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
798 const struct ip *ip =
799 mtod(m, const struct ip *);
800
801 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
802 ip->ip_dst.s_addr,
803 htons(hw_csum + tlen + off + IPPROTO_TCP));
804 }
805 if ((hw_csum ^ 0xffff) != 0)
806 goto badcsum;
807 break;
808 }
809
810 case M_CSUM_TCPv4:
811 /* Checksum was okay. */
812 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
813 break;
814
815 default:
816 /*
817 * Must compute it ourselves. Maybe skip checksum
818 * on loopback interfaces.
819 */
820 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
821 IFF_LOOPBACK) ||
822 tcp_do_loopback_cksum)) {
823 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
824 if (in4_cksum(m, IPPROTO_TCP, toff,
825 tlen + off) != 0)
826 goto badcsum;
827 }
828 break;
829 }
830 break;
831 #endif /* INET4 */
832
833 #ifdef INET6
834 case AF_INET6:
835 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
836 tcp_do_loopback_cksum)) {
837 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
838 goto badcsum;
839 }
840 break;
841 #endif /* INET6 */
842 }
843
844 return 0;
845
846 badcsum:
847 tcpstat.tcps_rcvbadsum++;
848 return -1;
849 }
850
851 /*
852 * TCP input routine, follows pages 65-76 of the
853 * protocol specification dated September, 1981 very closely.
854 */
855 void
856 tcp_input(struct mbuf *m, ...)
857 {
858 struct tcphdr *th;
859 struct ip *ip;
860 struct inpcb *inp;
861 #ifdef INET6
862 struct ip6_hdr *ip6;
863 struct in6pcb *in6p;
864 #endif
865 u_int8_t *optp = NULL;
866 int optlen = 0;
867 int len, tlen, toff, hdroptlen = 0;
868 struct tcpcb *tp = 0;
869 int tiflags;
870 struct socket *so = NULL;
871 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
872 #ifdef TCP_DEBUG
873 short ostate = 0;
874 #endif
875 int iss = 0;
876 u_long tiwin;
877 struct tcp_opt_info opti;
878 int off, iphlen;
879 va_list ap;
880 int af; /* af on the wire */
881 struct mbuf *tcp_saveti = NULL;
882
883 MCLAIM(m, &tcp_rx_mowner);
884 va_start(ap, m);
885 toff = va_arg(ap, int);
886 (void)va_arg(ap, int); /* ignore value, advance ap */
887 va_end(ap);
888
889 tcpstat.tcps_rcvtotal++;
890
891 bzero(&opti, sizeof(opti));
892 opti.ts_present = 0;
893 opti.maxseg = 0;
894
895 /*
896 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
897 *
898 * TCP is, by definition, unicast, so we reject all
899 * multicast outright.
900 *
901 * Note, there are additional src/dst address checks in
902 * the AF-specific code below.
903 */
904 if (m->m_flags & (M_BCAST|M_MCAST)) {
905 /* XXX stat */
906 goto drop;
907 }
908 #ifdef INET6
909 if (m->m_flags & M_ANYCAST6) {
910 /* XXX stat */
911 goto drop;
912 }
913 #endif
914
915 /*
916 * Get IP and TCP header.
917 * Note: IP leaves IP header in first mbuf.
918 */
919 ip = mtod(m, struct ip *);
920 #ifdef INET6
921 ip6 = NULL;
922 #endif
923 switch (ip->ip_v) {
924 #ifdef INET
925 case 4:
926 af = AF_INET;
927 iphlen = sizeof(struct ip);
928 ip = mtod(m, struct ip *);
929 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
930 sizeof(struct tcphdr));
931 if (th == NULL) {
932 tcpstat.tcps_rcvshort++;
933 return;
934 }
935 /* We do the checksum after PCB lookup... */
936 len = ntohs(ip->ip_len);
937 tlen = len - toff;
938 break;
939 #endif
940 #ifdef INET6
941 case 6:
942 ip = NULL;
943 iphlen = sizeof(struct ip6_hdr);
944 af = AF_INET6;
945 ip6 = mtod(m, struct ip6_hdr *);
946 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
947 sizeof(struct tcphdr));
948 if (th == NULL) {
949 tcpstat.tcps_rcvshort++;
950 return;
951 }
952
953 /* Be proactive about malicious use of IPv4 mapped address */
954 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
955 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
956 /* XXX stat */
957 goto drop;
958 }
959
960 /*
961 * Be proactive about unspecified IPv6 address in source.
962 * As we use all-zero to indicate unbounded/unconnected pcb,
963 * unspecified IPv6 address can be used to confuse us.
964 *
965 * Note that packets with unspecified IPv6 destination is
966 * already dropped in ip6_input.
967 */
968 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
969 /* XXX stat */
970 goto drop;
971 }
972
973 /*
974 * Make sure destination address is not multicast.
975 * Source address checked in ip6_input().
976 */
977 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
978 /* XXX stat */
979 goto drop;
980 }
981
982 /* We do the checksum after PCB lookup... */
983 len = m->m_pkthdr.len;
984 tlen = len - toff;
985 break;
986 #endif
987 default:
988 m_freem(m);
989 return;
990 }
991
992 KASSERT(TCP_HDR_ALIGNED_P(th));
993
994 /*
995 * Check that TCP offset makes sense,
996 * pull out TCP options and adjust length. XXX
997 */
998 off = th->th_off << 2;
999 if (off < sizeof (struct tcphdr) || off > tlen) {
1000 tcpstat.tcps_rcvbadoff++;
1001 goto drop;
1002 }
1003 tlen -= off;
1004
1005 /*
1006 * tcp_input() has been modified to use tlen to mean the TCP data
1007 * length throughout the function. Other functions can use
1008 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1009 * rja
1010 */
1011
1012 if (off > sizeof (struct tcphdr)) {
1013 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1014 if (th == NULL) {
1015 tcpstat.tcps_rcvshort++;
1016 return;
1017 }
1018 /*
1019 * NOTE: ip/ip6 will not be affected by m_pulldown()
1020 * (as they're before toff) and we don't need to update those.
1021 */
1022 KASSERT(TCP_HDR_ALIGNED_P(th));
1023 optlen = off - sizeof (struct tcphdr);
1024 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1025 /*
1026 * Do quick retrieval of timestamp options ("options
1027 * prediction?"). If timestamp is the only option and it's
1028 * formatted as recommended in RFC 1323 appendix A, we
1029 * quickly get the values now and not bother calling
1030 * tcp_dooptions(), etc.
1031 */
1032 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1033 (optlen > TCPOLEN_TSTAMP_APPA &&
1034 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1035 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1036 (th->th_flags & TH_SYN) == 0) {
1037 opti.ts_present = 1;
1038 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1039 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1040 optp = NULL; /* we've parsed the options */
1041 }
1042 }
1043 tiflags = th->th_flags;
1044
1045 /*
1046 * Locate pcb for segment.
1047 */
1048 findpcb:
1049 inp = NULL;
1050 #ifdef INET6
1051 in6p = NULL;
1052 #endif
1053 switch (af) {
1054 #ifdef INET
1055 case AF_INET:
1056 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1057 ip->ip_dst, th->th_dport);
1058 if (inp == 0) {
1059 ++tcpstat.tcps_pcbhashmiss;
1060 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1061 }
1062 #ifdef INET6
1063 if (inp == 0) {
1064 struct in6_addr s, d;
1065
1066 /* mapped addr case */
1067 bzero(&s, sizeof(s));
1068 s.s6_addr16[5] = htons(0xffff);
1069 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1070 bzero(&d, sizeof(d));
1071 d.s6_addr16[5] = htons(0xffff);
1072 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1073 in6p = in6_pcblookup_connect(&tcbtable, &s,
1074 th->th_sport, &d, th->th_dport, 0);
1075 if (in6p == 0) {
1076 ++tcpstat.tcps_pcbhashmiss;
1077 in6p = in6_pcblookup_bind(&tcbtable, &d,
1078 th->th_dport, 0);
1079 }
1080 }
1081 #endif
1082 #ifndef INET6
1083 if (inp == 0)
1084 #else
1085 if (inp == 0 && in6p == 0)
1086 #endif
1087 {
1088 ++tcpstat.tcps_noport;
1089 if (tcp_log_refused &&
1090 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1091 tcp4_log_refused(ip, th);
1092 }
1093 TCP_FIELDS_TO_HOST(th);
1094 goto dropwithreset_ratelim;
1095 }
1096 #if defined(IPSEC) || defined(FAST_IPSEC)
1097 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1098 ipsec4_in_reject(m, inp)) {
1099 ipsecstat.in_polvio++;
1100 goto drop;
1101 }
1102 #ifdef INET6
1103 else if (in6p &&
1104 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1105 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1106 ipsecstat.in_polvio++;
1107 goto drop;
1108 }
1109 #endif
1110 #endif /*IPSEC*/
1111 break;
1112 #endif /*INET*/
1113 #ifdef INET6
1114 case AF_INET6:
1115 {
1116 int faith;
1117
1118 #if defined(NFAITH) && NFAITH > 0
1119 faith = faithprefix(&ip6->ip6_dst);
1120 #else
1121 faith = 0;
1122 #endif
1123 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1124 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1125 if (in6p == NULL) {
1126 ++tcpstat.tcps_pcbhashmiss;
1127 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1128 th->th_dport, faith);
1129 }
1130 if (in6p == NULL) {
1131 ++tcpstat.tcps_noport;
1132 if (tcp_log_refused &&
1133 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1134 tcp6_log_refused(ip6, th);
1135 }
1136 TCP_FIELDS_TO_HOST(th);
1137 goto dropwithreset_ratelim;
1138 }
1139 #if defined(IPSEC) || defined(FAST_IPSEC)
1140 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1141 ipsec6_in_reject(m, in6p)) {
1142 ipsec6stat.in_polvio++;
1143 goto drop;
1144 }
1145 #endif /*IPSEC*/
1146 break;
1147 }
1148 #endif
1149 }
1150
1151 /*
1152 * If the state is CLOSED (i.e., TCB does not exist) then
1153 * all data in the incoming segment is discarded.
1154 * If the TCB exists but is in CLOSED state, it is embryonic,
1155 * but should either do a listen or a connect soon.
1156 */
1157 tp = NULL;
1158 so = NULL;
1159 if (inp) {
1160 tp = intotcpcb(inp);
1161 so = inp->inp_socket;
1162 }
1163 #ifdef INET6
1164 else if (in6p) {
1165 tp = in6totcpcb(in6p);
1166 so = in6p->in6p_socket;
1167 }
1168 #endif
1169 if (tp == 0) {
1170 TCP_FIELDS_TO_HOST(th);
1171 goto dropwithreset_ratelim;
1172 }
1173 if (tp->t_state == TCPS_CLOSED)
1174 goto drop;
1175
1176 /*
1177 * Checksum extended TCP header and data.
1178 */
1179 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1180 goto badcsum;
1181
1182 TCP_FIELDS_TO_HOST(th);
1183
1184 /* Unscale the window into a 32-bit value. */
1185 if ((tiflags & TH_SYN) == 0)
1186 tiwin = th->th_win << tp->snd_scale;
1187 else
1188 tiwin = th->th_win;
1189
1190 #ifdef INET6
1191 /* save packet options if user wanted */
1192 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1193 if (in6p->in6p_options) {
1194 m_freem(in6p->in6p_options);
1195 in6p->in6p_options = 0;
1196 }
1197 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1198 }
1199 #endif
1200
1201 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1202 union syn_cache_sa src;
1203 union syn_cache_sa dst;
1204
1205 bzero(&src, sizeof(src));
1206 bzero(&dst, sizeof(dst));
1207 switch (af) {
1208 #ifdef INET
1209 case AF_INET:
1210 src.sin.sin_len = sizeof(struct sockaddr_in);
1211 src.sin.sin_family = AF_INET;
1212 src.sin.sin_addr = ip->ip_src;
1213 src.sin.sin_port = th->th_sport;
1214
1215 dst.sin.sin_len = sizeof(struct sockaddr_in);
1216 dst.sin.sin_family = AF_INET;
1217 dst.sin.sin_addr = ip->ip_dst;
1218 dst.sin.sin_port = th->th_dport;
1219 break;
1220 #endif
1221 #ifdef INET6
1222 case AF_INET6:
1223 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1224 src.sin6.sin6_family = AF_INET6;
1225 src.sin6.sin6_addr = ip6->ip6_src;
1226 src.sin6.sin6_port = th->th_sport;
1227
1228 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1229 dst.sin6.sin6_family = AF_INET6;
1230 dst.sin6.sin6_addr = ip6->ip6_dst;
1231 dst.sin6.sin6_port = th->th_dport;
1232 break;
1233 #endif /* INET6 */
1234 default:
1235 goto badsyn; /*sanity*/
1236 }
1237
1238 if (so->so_options & SO_DEBUG) {
1239 #ifdef TCP_DEBUG
1240 ostate = tp->t_state;
1241 #endif
1242
1243 tcp_saveti = NULL;
1244 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1245 goto nosave;
1246
1247 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1248 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1249 if (!tcp_saveti)
1250 goto nosave;
1251 } else {
1252 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1253 if (!tcp_saveti)
1254 goto nosave;
1255 MCLAIM(m, &tcp_mowner);
1256 tcp_saveti->m_len = iphlen;
1257 m_copydata(m, 0, iphlen,
1258 mtod(tcp_saveti, caddr_t));
1259 }
1260
1261 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1262 m_freem(tcp_saveti);
1263 tcp_saveti = NULL;
1264 } else {
1265 tcp_saveti->m_len += sizeof(struct tcphdr);
1266 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1267 sizeof(struct tcphdr));
1268 }
1269 nosave:;
1270 }
1271 if (so->so_options & SO_ACCEPTCONN) {
1272 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1273 if (tiflags & TH_RST) {
1274 syn_cache_reset(&src.sa, &dst.sa, th);
1275 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1276 (TH_ACK|TH_SYN)) {
1277 /*
1278 * Received a SYN,ACK. This should
1279 * never happen while we are in
1280 * LISTEN. Send an RST.
1281 */
1282 goto badsyn;
1283 } else if (tiflags & TH_ACK) {
1284 so = syn_cache_get(&src.sa, &dst.sa,
1285 th, toff, tlen, so, m);
1286 if (so == NULL) {
1287 /*
1288 * We don't have a SYN for
1289 * this ACK; send an RST.
1290 */
1291 goto badsyn;
1292 } else if (so ==
1293 (struct socket *)(-1)) {
1294 /*
1295 * We were unable to create
1296 * the connection. If the
1297 * 3-way handshake was
1298 * completed, and RST has
1299 * been sent to the peer.
1300 * Since the mbuf might be
1301 * in use for the reply,
1302 * do not free it.
1303 */
1304 m = NULL;
1305 } else {
1306 /*
1307 * We have created a
1308 * full-blown connection.
1309 */
1310 tp = NULL;
1311 inp = NULL;
1312 #ifdef INET6
1313 in6p = NULL;
1314 #endif
1315 switch (so->so_proto->pr_domain->dom_family) {
1316 #ifdef INET
1317 case AF_INET:
1318 inp = sotoinpcb(so);
1319 tp = intotcpcb(inp);
1320 break;
1321 #endif
1322 #ifdef INET6
1323 case AF_INET6:
1324 in6p = sotoin6pcb(so);
1325 tp = in6totcpcb(in6p);
1326 break;
1327 #endif
1328 }
1329 if (tp == NULL)
1330 goto badsyn; /*XXX*/
1331 tiwin <<= tp->snd_scale;
1332 goto after_listen;
1333 }
1334 } else {
1335 /*
1336 * None of RST, SYN or ACK was set.
1337 * This is an invalid packet for a
1338 * TCB in LISTEN state. Send a RST.
1339 */
1340 goto badsyn;
1341 }
1342 } else {
1343 /*
1344 * Received a SYN.
1345 */
1346
1347 #ifdef INET6
1348 /*
1349 * If deprecated address is forbidden, we do
1350 * not accept SYN to deprecated interface
1351 * address to prevent any new inbound
1352 * connection from getting established.
1353 * When we do not accept SYN, we send a TCP
1354 * RST, with deprecated source address (instead
1355 * of dropping it). We compromise it as it is
1356 * much better for peer to send a RST, and
1357 * RST will be the final packet for the
1358 * exchange.
1359 *
1360 * If we do not forbid deprecated addresses, we
1361 * accept the SYN packet. RFC2462 does not
1362 * suggest dropping SYN in this case.
1363 * If we decipher RFC2462 5.5.4, it says like
1364 * this:
1365 * 1. use of deprecated addr with existing
1366 * communication is okay - "SHOULD continue
1367 * to be used"
1368 * 2. use of it with new communication:
1369 * (2a) "SHOULD NOT be used if alternate
1370 * address with sufficient scope is
1371 * available"
1372 * (2b) nothing mentioned otherwise.
1373 * Here we fall into (2b) case as we have no
1374 * choice in our source address selection - we
1375 * must obey the peer.
1376 *
1377 * The wording in RFC2462 is confusing, and
1378 * there are multiple description text for
1379 * deprecated address handling - worse, they
1380 * are not exactly the same. I believe 5.5.4
1381 * is the best one, so we follow 5.5.4.
1382 */
1383 if (af == AF_INET6 && !ip6_use_deprecated) {
1384 struct in6_ifaddr *ia6;
1385 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1386 &ip6->ip6_dst)) &&
1387 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1388 tp = NULL;
1389 goto dropwithreset;
1390 }
1391 }
1392 #endif
1393
1394 #ifdef IPSEC
1395 switch (af) {
1396 #ifdef INET
1397 case AF_INET:
1398 if (ipsec4_in_reject_so(m, so)) {
1399 ipsecstat.in_polvio++;
1400 tp = NULL;
1401 goto dropwithreset;
1402 }
1403 break;
1404 #endif
1405 #ifdef INET6
1406 case AF_INET6:
1407 if (ipsec6_in_reject_so(m, so)) {
1408 ipsec6stat.in_polvio++;
1409 tp = NULL;
1410 goto dropwithreset;
1411 }
1412 break;
1413 #endif
1414 }
1415 #endif
1416
1417 /*
1418 * LISTEN socket received a SYN
1419 * from itself? This can't possibly
1420 * be valid; drop the packet.
1421 */
1422 if (th->th_sport == th->th_dport) {
1423 int i;
1424
1425 switch (af) {
1426 #ifdef INET
1427 case AF_INET:
1428 i = in_hosteq(ip->ip_src, ip->ip_dst);
1429 break;
1430 #endif
1431 #ifdef INET6
1432 case AF_INET6:
1433 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1434 break;
1435 #endif
1436 default:
1437 i = 1;
1438 }
1439 if (i) {
1440 tcpstat.tcps_badsyn++;
1441 goto drop;
1442 }
1443 }
1444
1445 /*
1446 * SYN looks ok; create compressed TCP
1447 * state for it.
1448 */
1449 if (so->so_qlen <= so->so_qlimit &&
1450 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1451 so, m, optp, optlen, &opti))
1452 m = NULL;
1453 }
1454 goto drop;
1455 }
1456 }
1457
1458 after_listen:
1459 #ifdef DIAGNOSTIC
1460 /*
1461 * Should not happen now that all embryonic connections
1462 * are handled with compressed state.
1463 */
1464 if (tp->t_state == TCPS_LISTEN)
1465 panic("tcp_input: TCPS_LISTEN");
1466 #endif
1467
1468 /*
1469 * Segment received on connection.
1470 * Reset idle time and keep-alive timer.
1471 */
1472 tp->t_rcvtime = tcp_now;
1473 if (TCPS_HAVEESTABLISHED(tp->t_state))
1474 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1475
1476 /*
1477 * Process options.
1478 */
1479 #ifdef TCP_SIGNATURE
1480 if (optp || (tp->t_flags & TF_SIGNATURE))
1481 #else
1482 if (optp)
1483 #endif
1484 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1485 goto drop;
1486
1487 if (opti.ts_present && opti.ts_ecr) {
1488 /*
1489 * Calculate the RTT from the returned time stamp and the
1490 * connection's time base. If the time stamp is later than
1491 * the current time, or is extremely old, fall back to non-1323
1492 * RTT calculation. Since ts_ecr is unsigned, we can test both
1493 * at the same time.
1494 */
1495 opti.ts_ecr = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1496 if (opti.ts_ecr > TCP_PAWS_IDLE)
1497 opti.ts_ecr = 0;
1498 }
1499
1500 /*
1501 * Header prediction: check for the two common cases
1502 * of a uni-directional data xfer. If the packet has
1503 * no control flags, is in-sequence, the window didn't
1504 * change and we're not retransmitting, it's a
1505 * candidate. If the length is zero and the ack moved
1506 * forward, we're the sender side of the xfer. Just
1507 * free the data acked & wake any higher level process
1508 * that was blocked waiting for space. If the length
1509 * is non-zero and the ack didn't move, we're the
1510 * receiver side. If we're getting packets in-order
1511 * (the reassembly queue is empty), add the data to
1512 * the socket buffer and note that we need a delayed ack.
1513 */
1514 if (tp->t_state == TCPS_ESTABLISHED &&
1515 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1516 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1517 th->th_seq == tp->rcv_nxt &&
1518 tiwin && tiwin == tp->snd_wnd &&
1519 tp->snd_nxt == tp->snd_max) {
1520
1521 /*
1522 * If last ACK falls within this segment's sequence numbers,
1523 * record the timestamp.
1524 */
1525 if (opti.ts_present &&
1526 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1527 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1528 tp->ts_recent_age = tcp_now;
1529 tp->ts_recent = opti.ts_val;
1530 }
1531
1532 if (tlen == 0) {
1533 /* Ack prediction. */
1534 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1535 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1536 tp->snd_cwnd >= tp->snd_wnd &&
1537 tp->t_partialacks < 0) {
1538 /*
1539 * this is a pure ack for outstanding data.
1540 */
1541 ++tcpstat.tcps_predack;
1542 if (opti.ts_present && opti.ts_ecr)
1543 tcp_xmit_timer(tp, opti.ts_ecr);
1544 else if (tp->t_rtttime &&
1545 SEQ_GT(th->th_ack, tp->t_rtseq))
1546 tcp_xmit_timer(tp,
1547 tcp_now - tp->t_rtttime);
1548 acked = th->th_ack - tp->snd_una;
1549 tcpstat.tcps_rcvackpack++;
1550 tcpstat.tcps_rcvackbyte += acked;
1551 ND6_HINT(tp);
1552
1553 if (acked > (tp->t_lastoff - tp->t_inoff))
1554 tp->t_lastm = NULL;
1555 sbdrop(&so->so_snd, acked);
1556 tp->t_lastoff -= acked;
1557
1558 tp->snd_una = th->th_ack;
1559 if (SEQ_LT(tp->snd_high, tp->snd_una))
1560 tp->snd_high = tp->snd_una;
1561 m_freem(m);
1562
1563 /*
1564 * If all outstanding data are acked, stop
1565 * retransmit timer, otherwise restart timer
1566 * using current (possibly backed-off) value.
1567 * If process is waiting for space,
1568 * wakeup/selwakeup/signal. If data
1569 * are ready to send, let tcp_output
1570 * decide between more output or persist.
1571 */
1572 if (tp->snd_una == tp->snd_max)
1573 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1574 else if (TCP_TIMER_ISARMED(tp,
1575 TCPT_PERSIST) == 0)
1576 TCP_TIMER_ARM(tp, TCPT_REXMT,
1577 tp->t_rxtcur);
1578
1579 sowwakeup(so);
1580 if (so->so_snd.sb_cc)
1581 (void) tcp_output(tp);
1582 if (tcp_saveti)
1583 m_freem(tcp_saveti);
1584 return;
1585 }
1586 } else if (th->th_ack == tp->snd_una &&
1587 TAILQ_FIRST(&tp->segq) == NULL &&
1588 tlen <= sbspace(&so->so_rcv)) {
1589 /*
1590 * this is a pure, in-sequence data packet
1591 * with nothing on the reassembly queue and
1592 * we have enough buffer space to take it.
1593 */
1594 ++tcpstat.tcps_preddat;
1595 tp->rcv_nxt += tlen;
1596 tcpstat.tcps_rcvpack++;
1597 tcpstat.tcps_rcvbyte += tlen;
1598 ND6_HINT(tp);
1599 /*
1600 * Drop TCP, IP headers and TCP options then add data
1601 * to socket buffer.
1602 */
1603 if (so->so_state & SS_CANTRCVMORE)
1604 m_freem(m);
1605 else {
1606 m_adj(m, toff + off);
1607 sbappendstream(&so->so_rcv, m);
1608 }
1609 sorwakeup(so);
1610 TCP_SETUP_ACK(tp, th);
1611 if (tp->t_flags & TF_ACKNOW)
1612 (void) tcp_output(tp);
1613 if (tcp_saveti)
1614 m_freem(tcp_saveti);
1615 return;
1616 }
1617 }
1618
1619 /*
1620 * Compute mbuf offset to TCP data segment.
1621 */
1622 hdroptlen = toff + off;
1623
1624 /*
1625 * Calculate amount of space in receive window,
1626 * and then do TCP input processing.
1627 * Receive window is amount of space in rcv queue,
1628 * but not less than advertised window.
1629 */
1630 { int win;
1631
1632 win = sbspace(&so->so_rcv);
1633 if (win < 0)
1634 win = 0;
1635 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1636 }
1637
1638 switch (tp->t_state) {
1639 case TCPS_LISTEN:
1640 /*
1641 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1642 */
1643 if (m->m_flags & (M_BCAST|M_MCAST))
1644 goto drop;
1645 switch (af) {
1646 #ifdef INET6
1647 case AF_INET6:
1648 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1649 goto drop;
1650 break;
1651 #endif /* INET6 */
1652 case AF_INET:
1653 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1654 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1655 goto drop;
1656 break;
1657 }
1658 break;
1659
1660 /*
1661 * If the state is SYN_SENT:
1662 * if seg contains an ACK, but not for our SYN, drop the input.
1663 * if seg contains a RST, then drop the connection.
1664 * if seg does not contain SYN, then drop it.
1665 * Otherwise this is an acceptable SYN segment
1666 * initialize tp->rcv_nxt and tp->irs
1667 * if seg contains ack then advance tp->snd_una
1668 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1669 * arrange for segment to be acked (eventually)
1670 * continue processing rest of data/controls, beginning with URG
1671 */
1672 case TCPS_SYN_SENT:
1673 if ((tiflags & TH_ACK) &&
1674 (SEQ_LEQ(th->th_ack, tp->iss) ||
1675 SEQ_GT(th->th_ack, tp->snd_max)))
1676 goto dropwithreset;
1677 if (tiflags & TH_RST) {
1678 if (tiflags & TH_ACK)
1679 tp = tcp_drop(tp, ECONNREFUSED);
1680 goto drop;
1681 }
1682 if ((tiflags & TH_SYN) == 0)
1683 goto drop;
1684 if (tiflags & TH_ACK) {
1685 tp->snd_una = th->th_ack;
1686 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1687 tp->snd_nxt = tp->snd_una;
1688 if (SEQ_LT(tp->snd_high, tp->snd_una))
1689 tp->snd_high = tp->snd_una;
1690 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1691 }
1692 tp->irs = th->th_seq;
1693 tcp_rcvseqinit(tp);
1694 tp->t_flags |= TF_ACKNOW;
1695 tcp_mss_from_peer(tp, opti.maxseg);
1696
1697 /*
1698 * Initialize the initial congestion window. If we
1699 * had to retransmit the SYN, we must initialize cwnd
1700 * to 1 segment (i.e. the Loss Window).
1701 */
1702 if (tp->t_flags & TF_SYN_REXMT)
1703 tp->snd_cwnd = tp->t_peermss;
1704 else {
1705 int ss = tcp_init_win;
1706 #ifdef INET
1707 if (inp != NULL && in_localaddr(inp->inp_faddr))
1708 ss = tcp_init_win_local;
1709 #endif
1710 #ifdef INET6
1711 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1712 ss = tcp_init_win_local;
1713 #endif
1714 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1715 }
1716
1717 tcp_rmx_rtt(tp);
1718 if (tiflags & TH_ACK) {
1719 tcpstat.tcps_connects++;
1720 soisconnected(so);
1721 tcp_established(tp);
1722 /* Do window scaling on this connection? */
1723 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1724 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1725 tp->snd_scale = tp->requested_s_scale;
1726 tp->rcv_scale = tp->request_r_scale;
1727 }
1728 TCP_REASS_LOCK(tp);
1729 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1730 TCP_REASS_UNLOCK(tp);
1731 /*
1732 * if we didn't have to retransmit the SYN,
1733 * use its rtt as our initial srtt & rtt var.
1734 */
1735 if (tp->t_rtttime)
1736 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1737 } else
1738 tp->t_state = TCPS_SYN_RECEIVED;
1739
1740 /*
1741 * Advance th->th_seq to correspond to first data byte.
1742 * If data, trim to stay within window,
1743 * dropping FIN if necessary.
1744 */
1745 th->th_seq++;
1746 if (tlen > tp->rcv_wnd) {
1747 todrop = tlen - tp->rcv_wnd;
1748 m_adj(m, -todrop);
1749 tlen = tp->rcv_wnd;
1750 tiflags &= ~TH_FIN;
1751 tcpstat.tcps_rcvpackafterwin++;
1752 tcpstat.tcps_rcvbyteafterwin += todrop;
1753 }
1754 tp->snd_wl1 = th->th_seq - 1;
1755 tp->rcv_up = th->th_seq;
1756 goto step6;
1757
1758 /*
1759 * If the state is SYN_RECEIVED:
1760 * If seg contains an ACK, but not for our SYN, drop the input
1761 * and generate an RST. See page 36, rfc793
1762 */
1763 case TCPS_SYN_RECEIVED:
1764 if ((tiflags & TH_ACK) &&
1765 (SEQ_LEQ(th->th_ack, tp->iss) ||
1766 SEQ_GT(th->th_ack, tp->snd_max)))
1767 goto dropwithreset;
1768 break;
1769 }
1770
1771 /*
1772 * States other than LISTEN or SYN_SENT.
1773 * First check timestamp, if present.
1774 * Then check that at least some bytes of segment are within
1775 * receive window. If segment begins before rcv_nxt,
1776 * drop leading data (and SYN); if nothing left, just ack.
1777 *
1778 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1779 * and it's less than ts_recent, drop it.
1780 */
1781 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1782 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1783
1784 /* Check to see if ts_recent is over 24 days old. */
1785 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1786 /*
1787 * Invalidate ts_recent. If this segment updates
1788 * ts_recent, the age will be reset later and ts_recent
1789 * will get a valid value. If it does not, setting
1790 * ts_recent to zero will at least satisfy the
1791 * requirement that zero be placed in the timestamp
1792 * echo reply when ts_recent isn't valid. The
1793 * age isn't reset until we get a valid ts_recent
1794 * because we don't want out-of-order segments to be
1795 * dropped when ts_recent is old.
1796 */
1797 tp->ts_recent = 0;
1798 } else {
1799 tcpstat.tcps_rcvduppack++;
1800 tcpstat.tcps_rcvdupbyte += tlen;
1801 tcpstat.tcps_pawsdrop++;
1802 goto dropafterack;
1803 }
1804 }
1805
1806 todrop = tp->rcv_nxt - th->th_seq;
1807 dupseg = FALSE;
1808 if (todrop > 0) {
1809 if (tiflags & TH_SYN) {
1810 tiflags &= ~TH_SYN;
1811 th->th_seq++;
1812 if (th->th_urp > 1)
1813 th->th_urp--;
1814 else {
1815 tiflags &= ~TH_URG;
1816 th->th_urp = 0;
1817 }
1818 todrop--;
1819 }
1820 if (todrop > tlen ||
1821 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1822 /*
1823 * Any valid FIN or RST must be to the left of the
1824 * window. At this point the FIN or RST must be a
1825 * duplicate or out of sequence; drop it.
1826 */
1827 if (tiflags & TH_RST)
1828 goto drop;
1829 tiflags &= ~(TH_FIN|TH_RST);
1830 /*
1831 * Send an ACK to resynchronize and drop any data.
1832 * But keep on processing for RST or ACK.
1833 */
1834 tp->t_flags |= TF_ACKNOW;
1835 todrop = tlen;
1836 dupseg = TRUE;
1837 tcpstat.tcps_rcvdupbyte += todrop;
1838 tcpstat.tcps_rcvduppack++;
1839 } else if ((tiflags & TH_RST) &&
1840 th->th_seq != tp->last_ack_sent) {
1841 /*
1842 * Test for reset before adjusting the sequence
1843 * number for overlapping data.
1844 */
1845 goto dropafterack_ratelim;
1846 } else {
1847 tcpstat.tcps_rcvpartduppack++;
1848 tcpstat.tcps_rcvpartdupbyte += todrop;
1849 }
1850 hdroptlen += todrop; /*drop from head afterwards*/
1851 th->th_seq += todrop;
1852 tlen -= todrop;
1853 if (th->th_urp > todrop)
1854 th->th_urp -= todrop;
1855 else {
1856 tiflags &= ~TH_URG;
1857 th->th_urp = 0;
1858 }
1859 }
1860
1861 /*
1862 * If new data are received on a connection after the
1863 * user processes are gone, then RST the other end.
1864 */
1865 if ((so->so_state & SS_NOFDREF) &&
1866 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1867 tp = tcp_close(tp);
1868 tcpstat.tcps_rcvafterclose++;
1869 goto dropwithreset;
1870 }
1871
1872 /*
1873 * If segment ends after window, drop trailing data
1874 * (and PUSH and FIN); if nothing left, just ACK.
1875 */
1876 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1877 if (todrop > 0) {
1878 tcpstat.tcps_rcvpackafterwin++;
1879 if (todrop >= tlen) {
1880 /*
1881 * The segment actually starts after the window.
1882 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1883 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1884 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1885 */
1886 tcpstat.tcps_rcvbyteafterwin += tlen;
1887 /*
1888 * If a new connection request is received
1889 * while in TIME_WAIT, drop the old connection
1890 * and start over if the sequence numbers
1891 * are above the previous ones.
1892 *
1893 * NOTE: We will checksum the packet again, and
1894 * so we need to put the header fields back into
1895 * network order!
1896 * XXX This kind of sucks, but we don't expect
1897 * XXX this to happen very often, so maybe it
1898 * XXX doesn't matter so much.
1899 */
1900 if (tiflags & TH_SYN &&
1901 tp->t_state == TCPS_TIME_WAIT &&
1902 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1903 iss = tcp_new_iss(tp, tp->snd_nxt);
1904 tp = tcp_close(tp);
1905 TCP_FIELDS_TO_NET(th);
1906 goto findpcb;
1907 }
1908 /*
1909 * If window is closed can only take segments at
1910 * window edge, and have to drop data and PUSH from
1911 * incoming segments. Continue processing, but
1912 * remember to ack. Otherwise, drop segment
1913 * and (if not RST) ack.
1914 */
1915 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1916 tp->t_flags |= TF_ACKNOW;
1917 tcpstat.tcps_rcvwinprobe++;
1918 } else
1919 goto dropafterack;
1920 } else
1921 tcpstat.tcps_rcvbyteafterwin += todrop;
1922 m_adj(m, -todrop);
1923 tlen -= todrop;
1924 tiflags &= ~(TH_PUSH|TH_FIN);
1925 }
1926
1927 /*
1928 * If last ACK falls within this segment's sequence numbers,
1929 * and the timestamp is newer, record it.
1930 */
1931 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1932 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1933 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1934 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1935 tp->ts_recent_age = tcp_now;
1936 tp->ts_recent = opti.ts_val;
1937 }
1938
1939 /*
1940 * If the RST bit is set examine the state:
1941 * SYN_RECEIVED STATE:
1942 * If passive open, return to LISTEN state.
1943 * If active open, inform user that connection was refused.
1944 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1945 * Inform user that connection was reset, and close tcb.
1946 * CLOSING, LAST_ACK, TIME_WAIT STATES
1947 * Close the tcb.
1948 */
1949 if (tiflags & TH_RST) {
1950 if (th->th_seq != tp->last_ack_sent)
1951 goto dropafterack_ratelim;
1952
1953 switch (tp->t_state) {
1954 case TCPS_SYN_RECEIVED:
1955 so->so_error = ECONNREFUSED;
1956 goto close;
1957
1958 case TCPS_ESTABLISHED:
1959 case TCPS_FIN_WAIT_1:
1960 case TCPS_FIN_WAIT_2:
1961 case TCPS_CLOSE_WAIT:
1962 so->so_error = ECONNRESET;
1963 close:
1964 tp->t_state = TCPS_CLOSED;
1965 tcpstat.tcps_drops++;
1966 tp = tcp_close(tp);
1967 goto drop;
1968
1969 case TCPS_CLOSING:
1970 case TCPS_LAST_ACK:
1971 case TCPS_TIME_WAIT:
1972 tp = tcp_close(tp);
1973 goto drop;
1974 }
1975 }
1976
1977 /*
1978 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1979 * we must be in a synchronized state. RFC791 states (under RST
1980 * generation) that any unacceptable segment (an out-of-order SYN
1981 * qualifies) received in a synchronized state must elicit only an
1982 * empty acknowledgment segment ... and the connection remains in
1983 * the same state.
1984 */
1985 if (tiflags & TH_SYN) {
1986 if (tp->rcv_nxt == th->th_seq) {
1987 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1988 TH_ACK);
1989 if (tcp_saveti)
1990 m_freem(tcp_saveti);
1991 return;
1992 }
1993
1994 goto dropafterack_ratelim;
1995 }
1996
1997 /*
1998 * If the ACK bit is off we drop the segment and return.
1999 */
2000 if ((tiflags & TH_ACK) == 0) {
2001 if (tp->t_flags & TF_ACKNOW)
2002 goto dropafterack;
2003 else
2004 goto drop;
2005 }
2006
2007 /*
2008 * Ack processing.
2009 */
2010 switch (tp->t_state) {
2011
2012 /*
2013 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2014 * ESTABLISHED state and continue processing, otherwise
2015 * send an RST.
2016 */
2017 case TCPS_SYN_RECEIVED:
2018 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2019 SEQ_GT(th->th_ack, tp->snd_max))
2020 goto dropwithreset;
2021 tcpstat.tcps_connects++;
2022 soisconnected(so);
2023 tcp_established(tp);
2024 /* Do window scaling? */
2025 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2026 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2027 tp->snd_scale = tp->requested_s_scale;
2028 tp->rcv_scale = tp->request_r_scale;
2029 }
2030 TCP_REASS_LOCK(tp);
2031 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2032 TCP_REASS_UNLOCK(tp);
2033 tp->snd_wl1 = th->th_seq - 1;
2034 /* fall into ... */
2035
2036 /*
2037 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2038 * ACKs. If the ack is in the range
2039 * tp->snd_una < th->th_ack <= tp->snd_max
2040 * then advance tp->snd_una to th->th_ack and drop
2041 * data from the retransmission queue. If this ACK reflects
2042 * more up to date window information we update our window information.
2043 */
2044 case TCPS_ESTABLISHED:
2045 case TCPS_FIN_WAIT_1:
2046 case TCPS_FIN_WAIT_2:
2047 case TCPS_CLOSE_WAIT:
2048 case TCPS_CLOSING:
2049 case TCPS_LAST_ACK:
2050 case TCPS_TIME_WAIT:
2051
2052 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2053 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2054 tcpstat.tcps_rcvdupack++;
2055 /*
2056 * If we have outstanding data (other than
2057 * a window probe), this is a completely
2058 * duplicate ack (ie, window info didn't
2059 * change), the ack is the biggest we've
2060 * seen and we've seen exactly our rexmt
2061 * threshhold of them, assume a packet
2062 * has been dropped and retransmit it.
2063 * Kludge snd_nxt & the congestion
2064 * window so we send only this one
2065 * packet.
2066 *
2067 * We know we're losing at the current
2068 * window size so do congestion avoidance
2069 * (set ssthresh to half the current window
2070 * and pull our congestion window back to
2071 * the new ssthresh).
2072 *
2073 * Dup acks mean that packets have left the
2074 * network (they're now cached at the receiver)
2075 * so bump cwnd by the amount in the receiver
2076 * to keep a constant cwnd packets in the
2077 * network.
2078 */
2079 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2080 th->th_ack != tp->snd_una)
2081 tp->t_dupacks = 0;
2082 else if (++tp->t_dupacks == tcprexmtthresh &&
2083 tp->t_partialacks < 0) {
2084 tcp_seq onxt;
2085 u_int win;
2086
2087 if (tcp_do_newreno &&
2088 SEQ_LT(th->th_ack, tp->snd_high)) {
2089 /*
2090 * False fast retransmit after
2091 * timeout. Do not enter fast
2092 * recovery.
2093 */
2094 tp->t_dupacks = 0;
2095 break;
2096 }
2097
2098 onxt = tp->snd_nxt;
2099 win = min(tp->snd_wnd, tp->snd_cwnd) /
2100 2 / tp->t_segsz;
2101 if (win < 2)
2102 win = 2;
2103 tp->snd_ssthresh = win * tp->t_segsz;
2104 tp->snd_recover = tp->snd_max;
2105 tp->t_partialacks = 0;
2106 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2107 tp->t_rtttime = 0;
2108 tp->snd_nxt = th->th_ack;
2109 tp->snd_cwnd = tp->t_segsz;
2110 (void) tcp_output(tp);
2111 tp->snd_cwnd = tp->snd_ssthresh +
2112 tp->t_segsz * tp->t_dupacks;
2113 if (SEQ_GT(onxt, tp->snd_nxt))
2114 tp->snd_nxt = onxt;
2115 goto drop;
2116 } else if (tp->t_dupacks > tcprexmtthresh) {
2117 tp->snd_cwnd += tp->t_segsz;
2118 (void) tcp_output(tp);
2119 goto drop;
2120 }
2121 } else {
2122 /*
2123 * If the ack appears to be very old, only
2124 * allow data that is in-sequence. This
2125 * makes it somewhat more difficult to insert
2126 * forged data by guessing sequence numbers.
2127 * Sent an ack to try to update the send
2128 * sequence number on the other side.
2129 */
2130 if (tlen && th->th_seq != tp->rcv_nxt &&
2131 SEQ_LT(th->th_ack,
2132 tp->snd_una - tp->max_sndwnd))
2133 goto dropafterack;
2134 }
2135 break;
2136 }
2137 /*
2138 * If the congestion window was inflated to account
2139 * for the other side's cached packets, retract it.
2140 */
2141 if (!tcp_do_newreno)
2142 tcp_reno_newack(tp, th);
2143 else
2144 tcp_newreno_newack(tp, th);
2145 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2146 tcpstat.tcps_rcvacktoomuch++;
2147 goto dropafterack;
2148 }
2149 acked = th->th_ack - tp->snd_una;
2150 tcpstat.tcps_rcvackpack++;
2151 tcpstat.tcps_rcvackbyte += acked;
2152
2153 /*
2154 * If we have a timestamp reply, update smoothed
2155 * round trip time. If no timestamp is present but
2156 * transmit timer is running and timed sequence
2157 * number was acked, update smoothed round trip time.
2158 * Since we now have an rtt measurement, cancel the
2159 * timer backoff (cf., Phil Karn's retransmit alg.).
2160 * Recompute the initial retransmit timer.
2161 */
2162 if (opti.ts_present && opti.ts_ecr)
2163 tcp_xmit_timer(tp, opti.ts_ecr);
2164 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2165 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2166
2167 /*
2168 * If all outstanding data is acked, stop retransmit
2169 * timer and remember to restart (more output or persist).
2170 * If there is more data to be acked, restart retransmit
2171 * timer, using current (possibly backed-off) value.
2172 */
2173 if (th->th_ack == tp->snd_max) {
2174 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2175 needoutput = 1;
2176 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2177 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2178 /*
2179 * When new data is acked, open the congestion window.
2180 * If the window gives us less than ssthresh packets
2181 * in flight, open exponentially (segsz per packet).
2182 * Otherwise open linearly: segsz per window
2183 * (segsz^2 / cwnd per packet), plus a constant
2184 * fraction of a packet (segsz/8) to help larger windows
2185 * open quickly enough.
2186 *
2187 * If we are still in fast recovery (meaning we are using
2188 * NewReno and we have only received partial acks), do not
2189 * inflate the window yet.
2190 */
2191 if (tp->t_partialacks < 0) {
2192 u_int cw = tp->snd_cwnd;
2193 u_int incr = tp->t_segsz;
2194
2195 if (cw >= tp->snd_ssthresh)
2196 incr = incr * incr / cw;
2197 tp->snd_cwnd = min(cw + incr,
2198 TCP_MAXWIN << tp->snd_scale);
2199 }
2200 ND6_HINT(tp);
2201 if (acked > so->so_snd.sb_cc) {
2202 tp->snd_wnd -= so->so_snd.sb_cc;
2203 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2204 ourfinisacked = 1;
2205 } else {
2206 if (acked > (tp->t_lastoff - tp->t_inoff))
2207 tp->t_lastm = NULL;
2208 sbdrop(&so->so_snd, acked);
2209 tp->t_lastoff -= acked;
2210 tp->snd_wnd -= acked;
2211 ourfinisacked = 0;
2212 }
2213 sowwakeup(so);
2214 tp->snd_una = th->th_ack;
2215 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2216 tp->snd_nxt = tp->snd_una;
2217 if (SEQ_LT(tp->snd_high, tp->snd_una))
2218 tp->snd_high = tp->snd_una;
2219
2220 switch (tp->t_state) {
2221
2222 /*
2223 * In FIN_WAIT_1 STATE in addition to the processing
2224 * for the ESTABLISHED state if our FIN is now acknowledged
2225 * then enter FIN_WAIT_2.
2226 */
2227 case TCPS_FIN_WAIT_1:
2228 if (ourfinisacked) {
2229 /*
2230 * If we can't receive any more
2231 * data, then closing user can proceed.
2232 * Starting the timer is contrary to the
2233 * specification, but if we don't get a FIN
2234 * we'll hang forever.
2235 */
2236 if (so->so_state & SS_CANTRCVMORE) {
2237 soisdisconnected(so);
2238 if (tcp_maxidle > 0)
2239 TCP_TIMER_ARM(tp, TCPT_2MSL,
2240 tcp_maxidle);
2241 }
2242 tp->t_state = TCPS_FIN_WAIT_2;
2243 }
2244 break;
2245
2246 /*
2247 * In CLOSING STATE in addition to the processing for
2248 * the ESTABLISHED state if the ACK acknowledges our FIN
2249 * then enter the TIME-WAIT state, otherwise ignore
2250 * the segment.
2251 */
2252 case TCPS_CLOSING:
2253 if (ourfinisacked) {
2254 tp->t_state = TCPS_TIME_WAIT;
2255 tcp_canceltimers(tp);
2256 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2257 soisdisconnected(so);
2258 }
2259 break;
2260
2261 /*
2262 * In LAST_ACK, we may still be waiting for data to drain
2263 * and/or to be acked, as well as for the ack of our FIN.
2264 * If our FIN is now acknowledged, delete the TCB,
2265 * enter the closed state and return.
2266 */
2267 case TCPS_LAST_ACK:
2268 if (ourfinisacked) {
2269 tp = tcp_close(tp);
2270 goto drop;
2271 }
2272 break;
2273
2274 /*
2275 * In TIME_WAIT state the only thing that should arrive
2276 * is a retransmission of the remote FIN. Acknowledge
2277 * it and restart the finack timer.
2278 */
2279 case TCPS_TIME_WAIT:
2280 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2281 goto dropafterack;
2282 }
2283 }
2284
2285 step6:
2286 /*
2287 * Update window information.
2288 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2289 */
2290 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2291 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2292 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2293 /* keep track of pure window updates */
2294 if (tlen == 0 &&
2295 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2296 tcpstat.tcps_rcvwinupd++;
2297 tp->snd_wnd = tiwin;
2298 tp->snd_wl1 = th->th_seq;
2299 tp->snd_wl2 = th->th_ack;
2300 if (tp->snd_wnd > tp->max_sndwnd)
2301 tp->max_sndwnd = tp->snd_wnd;
2302 needoutput = 1;
2303 }
2304
2305 /*
2306 * Process segments with URG.
2307 */
2308 if ((tiflags & TH_URG) && th->th_urp &&
2309 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2310 /*
2311 * This is a kludge, but if we receive and accept
2312 * random urgent pointers, we'll crash in
2313 * soreceive. It's hard to imagine someone
2314 * actually wanting to send this much urgent data.
2315 */
2316 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2317 th->th_urp = 0; /* XXX */
2318 tiflags &= ~TH_URG; /* XXX */
2319 goto dodata; /* XXX */
2320 }
2321 /*
2322 * If this segment advances the known urgent pointer,
2323 * then mark the data stream. This should not happen
2324 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2325 * a FIN has been received from the remote side.
2326 * In these states we ignore the URG.
2327 *
2328 * According to RFC961 (Assigned Protocols),
2329 * the urgent pointer points to the last octet
2330 * of urgent data. We continue, however,
2331 * to consider it to indicate the first octet
2332 * of data past the urgent section as the original
2333 * spec states (in one of two places).
2334 */
2335 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2336 tp->rcv_up = th->th_seq + th->th_urp;
2337 so->so_oobmark = so->so_rcv.sb_cc +
2338 (tp->rcv_up - tp->rcv_nxt) - 1;
2339 if (so->so_oobmark == 0)
2340 so->so_state |= SS_RCVATMARK;
2341 sohasoutofband(so);
2342 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2343 }
2344 /*
2345 * Remove out of band data so doesn't get presented to user.
2346 * This can happen independent of advancing the URG pointer,
2347 * but if two URG's are pending at once, some out-of-band
2348 * data may creep in... ick.
2349 */
2350 if (th->th_urp <= (u_int16_t) tlen
2351 #ifdef SO_OOBINLINE
2352 && (so->so_options & SO_OOBINLINE) == 0
2353 #endif
2354 )
2355 tcp_pulloutofband(so, th, m, hdroptlen);
2356 } else
2357 /*
2358 * If no out of band data is expected,
2359 * pull receive urgent pointer along
2360 * with the receive window.
2361 */
2362 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2363 tp->rcv_up = tp->rcv_nxt;
2364 dodata: /* XXX */
2365
2366 /*
2367 * Process the segment text, merging it into the TCP sequencing queue,
2368 * and arranging for acknowledgement of receipt if necessary.
2369 * This process logically involves adjusting tp->rcv_wnd as data
2370 * is presented to the user (this happens in tcp_usrreq.c,
2371 * case PRU_RCVD). If a FIN has already been received on this
2372 * connection then we just ignore the text.
2373 */
2374 if ((tlen || (tiflags & TH_FIN)) &&
2375 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2376 /*
2377 * Insert segment ti into reassembly queue of tcp with
2378 * control block tp. Return TH_FIN if reassembly now includes
2379 * a segment with FIN. The macro form does the common case
2380 * inline (segment is the next to be received on an
2381 * established connection, and the queue is empty),
2382 * avoiding linkage into and removal from the queue and
2383 * repetition of various conversions.
2384 * Set DELACK for segments received in order, but ack
2385 * immediately when segments are out of order
2386 * (so fast retransmit can work).
2387 */
2388 /* NOTE: this was TCP_REASS() macro, but used only once */
2389 TCP_REASS_LOCK(tp);
2390 if (th->th_seq == tp->rcv_nxt &&
2391 TAILQ_FIRST(&tp->segq) == NULL &&
2392 tp->t_state == TCPS_ESTABLISHED) {
2393 TCP_SETUP_ACK(tp, th);
2394 tp->rcv_nxt += tlen;
2395 tiflags = th->th_flags & TH_FIN;
2396 tcpstat.tcps_rcvpack++;
2397 tcpstat.tcps_rcvbyte += tlen;
2398 ND6_HINT(tp);
2399 if (so->so_state & SS_CANTRCVMORE)
2400 m_freem(m);
2401 else {
2402 m_adj(m, hdroptlen);
2403 sbappendstream(&(so)->so_rcv, m);
2404 }
2405 sorwakeup(so);
2406 } else {
2407 m_adj(m, hdroptlen);
2408 tiflags = tcp_reass(tp, th, m, &tlen);
2409 tp->t_flags |= TF_ACKNOW;
2410 }
2411 TCP_REASS_UNLOCK(tp);
2412
2413 /*
2414 * Note the amount of data that peer has sent into
2415 * our window, in order to estimate the sender's
2416 * buffer size.
2417 */
2418 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2419 } else {
2420 m_freem(m);
2421 m = NULL;
2422 tiflags &= ~TH_FIN;
2423 }
2424
2425 /*
2426 * If FIN is received ACK the FIN and let the user know
2427 * that the connection is closing. Ignore a FIN received before
2428 * the connection is fully established.
2429 */
2430 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2431 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2432 socantrcvmore(so);
2433 tp->t_flags |= TF_ACKNOW;
2434 tp->rcv_nxt++;
2435 }
2436 switch (tp->t_state) {
2437
2438 /*
2439 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2440 */
2441 case TCPS_ESTABLISHED:
2442 tp->t_state = TCPS_CLOSE_WAIT;
2443 break;
2444
2445 /*
2446 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2447 * enter the CLOSING state.
2448 */
2449 case TCPS_FIN_WAIT_1:
2450 tp->t_state = TCPS_CLOSING;
2451 break;
2452
2453 /*
2454 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2455 * starting the time-wait timer, turning off the other
2456 * standard timers.
2457 */
2458 case TCPS_FIN_WAIT_2:
2459 tp->t_state = TCPS_TIME_WAIT;
2460 tcp_canceltimers(tp);
2461 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2462 soisdisconnected(so);
2463 break;
2464
2465 /*
2466 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2467 */
2468 case TCPS_TIME_WAIT:
2469 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2470 break;
2471 }
2472 }
2473 #ifdef TCP_DEBUG
2474 if (so->so_options & SO_DEBUG)
2475 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2476 #endif
2477
2478 /*
2479 * Return any desired output.
2480 */
2481 if (needoutput || (tp->t_flags & TF_ACKNOW))
2482 (void) tcp_output(tp);
2483 if (tcp_saveti)
2484 m_freem(tcp_saveti);
2485 return;
2486
2487 badsyn:
2488 /*
2489 * Received a bad SYN. Increment counters and dropwithreset.
2490 */
2491 tcpstat.tcps_badsyn++;
2492 tp = NULL;
2493 goto dropwithreset;
2494
2495 dropafterack:
2496 /*
2497 * Generate an ACK dropping incoming segment if it occupies
2498 * sequence space, where the ACK reflects our state.
2499 */
2500 if (tiflags & TH_RST)
2501 goto drop;
2502 goto dropafterack2;
2503
2504 dropafterack_ratelim:
2505 /*
2506 * We may want to rate-limit ACKs against SYN/RST attack.
2507 */
2508 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2509 tcp_ackdrop_ppslim) == 0) {
2510 /* XXX stat */
2511 goto drop;
2512 }
2513 /* ...fall into dropafterack2... */
2514
2515 dropafterack2:
2516 m_freem(m);
2517 tp->t_flags |= TF_ACKNOW;
2518 (void) tcp_output(tp);
2519 if (tcp_saveti)
2520 m_freem(tcp_saveti);
2521 return;
2522
2523 dropwithreset_ratelim:
2524 /*
2525 * We may want to rate-limit RSTs in certain situations,
2526 * particularly if we are sending an RST in response to
2527 * an attempt to connect to or otherwise communicate with
2528 * a port for which we have no socket.
2529 */
2530 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2531 tcp_rst_ppslim) == 0) {
2532 /* XXX stat */
2533 goto drop;
2534 }
2535 /* ...fall into dropwithreset... */
2536
2537 dropwithreset:
2538 /*
2539 * Generate a RST, dropping incoming segment.
2540 * Make ACK acceptable to originator of segment.
2541 */
2542 if (tiflags & TH_RST)
2543 goto drop;
2544
2545 switch (af) {
2546 #ifdef INET6
2547 case AF_INET6:
2548 /* For following calls to tcp_respond */
2549 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2550 goto drop;
2551 break;
2552 #endif /* INET6 */
2553 case AF_INET:
2554 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2555 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2556 goto drop;
2557 }
2558
2559 if (tiflags & TH_ACK)
2560 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2561 else {
2562 if (tiflags & TH_SYN)
2563 tlen++;
2564 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2565 TH_RST|TH_ACK);
2566 }
2567 if (tcp_saveti)
2568 m_freem(tcp_saveti);
2569 return;
2570
2571 badcsum:
2572 drop:
2573 /*
2574 * Drop space held by incoming segment and return.
2575 */
2576 if (tp) {
2577 if (tp->t_inpcb)
2578 so = tp->t_inpcb->inp_socket;
2579 #ifdef INET6
2580 else if (tp->t_in6pcb)
2581 so = tp->t_in6pcb->in6p_socket;
2582 #endif
2583 else
2584 so = NULL;
2585 #ifdef TCP_DEBUG
2586 if (so && (so->so_options & SO_DEBUG) != 0)
2587 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2588 #endif
2589 }
2590 if (tcp_saveti)
2591 m_freem(tcp_saveti);
2592 m_freem(m);
2593 return;
2594 }
2595
2596 #ifdef TCP_SIGNATURE
2597 int
2598 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2599 {
2600
2601 MD5Update(fstate, (u_char *)data, len);
2602 return (0);
2603 }
2604
2605 struct secasvar *
2606 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2607 {
2608 struct secasvar *sav;
2609 #ifdef FAST_IPSEC
2610 union sockaddr_union dst;
2611 #endif
2612 struct ip *ip;
2613 struct ip6_hdr *ip6;
2614
2615 ip = mtod(m, struct ip *);
2616 switch (ip->ip_v) {
2617 case 4:
2618 ip = mtod(m, struct ip *);
2619 ip6 = NULL;
2620 break;
2621 case 6:
2622 ip = NULL;
2623 ip6 = mtod(m, struct ip6_hdr *);
2624 break;
2625 default:
2626 return (NULL);
2627 }
2628
2629 #ifdef FAST_IPSEC
2630 /* Extract the destination from the IP header in the mbuf. */
2631 bzero(&dst, sizeof(union sockaddr_union));
2632 dst.sa.sa_len = sizeof(struct sockaddr_in);
2633 dst.sa.sa_family = AF_INET;
2634 dst.sin.sin_addr = ip->ip_dst;
2635
2636 /*
2637 * Look up an SADB entry which matches the address of the peer.
2638 */
2639 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2640 #else
2641 if (ip)
2642 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2643 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2644 htonl(TCP_SIG_SPI));
2645 else
2646 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2647 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2648 htonl(TCP_SIG_SPI));
2649 #endif
2650
2651 return (sav); /* freesav must be performed by caller */
2652 }
2653
2654 int
2655 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2656 struct secasvar *sav, char *sig)
2657 {
2658 MD5_CTX ctx;
2659 struct ip *ip;
2660 struct ipovly *ipovly;
2661 struct ip6_hdr *ip6;
2662 struct ippseudo ippseudo;
2663 struct ip6_hdr_pseudo ip6pseudo;
2664 struct tcphdr th0;
2665 int l, tcphdrlen;
2666
2667 if (sav == NULL)
2668 return (-1);
2669
2670 tcphdrlen = th->th_off * 4;
2671
2672 switch (mtod(m, struct ip *)->ip_v) {
2673 case 4:
2674 ip = mtod(m, struct ip *);
2675 ip6 = NULL;
2676 break;
2677 case 6:
2678 ip = NULL;
2679 ip6 = mtod(m, struct ip6_hdr *);
2680 break;
2681 default:
2682 return (-1);
2683 }
2684
2685 MD5Init(&ctx);
2686
2687 if (ip) {
2688 memset(&ippseudo, 0, sizeof(ippseudo));
2689 ipovly = (struct ipovly *)ip;
2690 ippseudo.ippseudo_src = ipovly->ih_src;
2691 ippseudo.ippseudo_dst = ipovly->ih_dst;
2692 ippseudo.ippseudo_pad = 0;
2693 ippseudo.ippseudo_p = IPPROTO_TCP;
2694 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2695 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2696 } else {
2697 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2698 ip6pseudo.ip6ph_src = ip6->ip6_src;
2699 in6_clearscope(&ip6pseudo.ip6ph_src);
2700 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2701 in6_clearscope(&ip6pseudo.ip6ph_dst);
2702 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2703 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2704 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2705 }
2706
2707 th0 = *th;
2708 th0.th_sum = 0;
2709 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2710
2711 l = m->m_pkthdr.len - thoff - tcphdrlen;
2712 if (l > 0)
2713 m_apply(m, thoff + tcphdrlen,
2714 m->m_pkthdr.len - thoff - tcphdrlen,
2715 tcp_signature_apply, &ctx);
2716
2717 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2718 MD5Final(sig, &ctx);
2719
2720 return (0);
2721 }
2722 #endif
2723
2724 int
2725 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2726 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2727 {
2728 u_int16_t mss;
2729 int opt, optlen = 0;
2730 #ifdef TCP_SIGNATURE
2731 caddr_t sigp = NULL;
2732 char sigbuf[TCP_SIGLEN];
2733 struct secasvar *sav = NULL;
2734 #endif
2735
2736 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2737 opt = cp[0];
2738 if (opt == TCPOPT_EOL)
2739 break;
2740 if (opt == TCPOPT_NOP)
2741 optlen = 1;
2742 else {
2743 if (cnt < 2)
2744 break;
2745 optlen = cp[1];
2746 if (optlen < 2 || optlen > cnt)
2747 break;
2748 }
2749 switch (opt) {
2750
2751 default:
2752 continue;
2753
2754 case TCPOPT_MAXSEG:
2755 if (optlen != TCPOLEN_MAXSEG)
2756 continue;
2757 if (!(th->th_flags & TH_SYN))
2758 continue;
2759 bcopy(cp + 2, &mss, sizeof(mss));
2760 oi->maxseg = ntohs(mss);
2761 break;
2762
2763 case TCPOPT_WINDOW:
2764 if (optlen != TCPOLEN_WINDOW)
2765 continue;
2766 if (!(th->th_flags & TH_SYN))
2767 continue;
2768 tp->t_flags |= TF_RCVD_SCALE;
2769 tp->requested_s_scale = cp[2];
2770 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2771 #if 0 /*XXX*/
2772 char *p;
2773
2774 if (ip)
2775 p = ntohl(ip->ip_src);
2776 #ifdef INET6
2777 else if (ip6)
2778 p = ip6_sprintf(&ip6->ip6_src);
2779 #endif
2780 else
2781 p = "(unknown)";
2782 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2783 "assuming %d\n",
2784 tp->requested_s_scale, p,
2785 TCP_MAX_WINSHIFT);
2786 #else
2787 log(LOG_ERR, "TCP: invalid wscale %d, "
2788 "assuming %d\n",
2789 tp->requested_s_scale,
2790 TCP_MAX_WINSHIFT);
2791 #endif
2792 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2793 }
2794 break;
2795
2796 case TCPOPT_TIMESTAMP:
2797 if (optlen != TCPOLEN_TIMESTAMP)
2798 continue;
2799 oi->ts_present = 1;
2800 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2801 NTOHL(oi->ts_val);
2802 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2803 NTOHL(oi->ts_ecr);
2804
2805 /*
2806 * A timestamp received in a SYN makes
2807 * it ok to send timestamp requests and replies.
2808 */
2809 if (th->th_flags & TH_SYN) {
2810 tp->t_flags |= TF_RCVD_TSTMP;
2811 tp->ts_recent = oi->ts_val;
2812 tp->ts_recent_age = tcp_now;
2813 }
2814 break;
2815 case TCPOPT_SACK_PERMITTED:
2816 if (optlen != TCPOLEN_SACK_PERMITTED)
2817 continue;
2818 if (!(th->th_flags & TH_SYN))
2819 continue;
2820 tp->t_flags &= ~TF_CANT_TXSACK;
2821 break;
2822
2823 case TCPOPT_SACK:
2824 if (tp->t_flags & TF_IGNR_RXSACK)
2825 continue;
2826 if (optlen % 8 != 2 || optlen < 10)
2827 continue;
2828 cp += 2;
2829 optlen -= 2;
2830 for (; optlen > 0; cp -= 8, optlen -= 8) {
2831 tcp_seq lwe, rwe;
2832 bcopy((char *)cp, (char *) &lwe, sizeof(lwe));
2833 NTOHL(lwe);
2834 bcopy((char *)cp, (char *) &rwe, sizeof(rwe));
2835 NTOHL(rwe);
2836 /* tcp_mark_sacked(tp, lwe, rwe); */
2837 }
2838 break;
2839 #ifdef TCP_SIGNATURE
2840 case TCPOPT_SIGNATURE:
2841 if (optlen != TCPOLEN_SIGNATURE)
2842 continue;
2843 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2844 return (-1);
2845
2846 sigp = sigbuf;
2847 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2848 memset(cp + 2, 0, TCP_SIGLEN);
2849 tp->t_flags |= TF_SIGNATURE;
2850 break;
2851 #endif
2852 }
2853 }
2854
2855 #ifdef TCP_SIGNATURE
2856 if (tp->t_flags & TF_SIGNATURE) {
2857
2858 sav = tcp_signature_getsav(m, th);
2859
2860 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2861 return (-1);
2862 }
2863
2864 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2865 if (sav == NULL)
2866 return (-1);
2867 #ifdef FAST_IPSEC
2868 KEY_FREESAV(&sav);
2869 #else
2870 key_freesav(sav);
2871 #endif
2872 return (-1);
2873 }
2874
2875 if (sigp) {
2876 char sig[TCP_SIGLEN];
2877
2878 TCP_FIELDS_TO_NET(th);
2879 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2880 TCP_FIELDS_TO_HOST(th);
2881 if (sav == NULL)
2882 return (-1);
2883 #ifdef FAST_IPSEC
2884 KEY_FREESAV(&sav);
2885 #else
2886 key_freesav(sav);
2887 #endif
2888 return (-1);
2889 }
2890 TCP_FIELDS_TO_HOST(th);
2891
2892 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2893 tcpstat.tcps_badsig++;
2894 if (sav == NULL)
2895 return (-1);
2896 #ifdef FAST_IPSEC
2897 KEY_FREESAV(&sav);
2898 #else
2899 key_freesav(sav);
2900 #endif
2901 return (-1);
2902 } else
2903 tcpstat.tcps_goodsig++;
2904
2905 key_sa_recordxfer(sav, m);
2906 #ifdef FAST_IPSEC
2907 KEY_FREESAV(&sav);
2908 #else
2909 key_freesav(sav);
2910 #endif
2911 }
2912 #endif
2913
2914 return (0);
2915 }
2916
2917 /*
2918 * Pull out of band byte out of a segment so
2919 * it doesn't appear in the user's data queue.
2920 * It is still reflected in the segment length for
2921 * sequencing purposes.
2922 */
2923 void
2924 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
2925 struct mbuf *m, int off)
2926 {
2927 int cnt = off + th->th_urp - 1;
2928
2929 while (cnt >= 0) {
2930 if (m->m_len > cnt) {
2931 char *cp = mtod(m, caddr_t) + cnt;
2932 struct tcpcb *tp = sototcpcb(so);
2933
2934 tp->t_iobc = *cp;
2935 tp->t_oobflags |= TCPOOB_HAVEDATA;
2936 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2937 m->m_len--;
2938 return;
2939 }
2940 cnt -= m->m_len;
2941 m = m->m_next;
2942 if (m == 0)
2943 break;
2944 }
2945 panic("tcp_pulloutofband");
2946 }
2947
2948 /*
2949 * Collect new round-trip time estimate
2950 * and update averages and current timeout.
2951 */
2952 void
2953 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
2954 {
2955 int32_t delta;
2956
2957 tcpstat.tcps_rttupdated++;
2958 if (tp->t_srtt != 0) {
2959 /*
2960 * srtt is stored as fixed point with 3 bits after the
2961 * binary point (i.e., scaled by 8). The following magic
2962 * is equivalent to the smoothing algorithm in rfc793 with
2963 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2964 * point). Adjust rtt to origin 0.
2965 */
2966 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2967 if ((tp->t_srtt += delta) <= 0)
2968 tp->t_srtt = 1 << 2;
2969 /*
2970 * We accumulate a smoothed rtt variance (actually, a
2971 * smoothed mean difference), then set the retransmit
2972 * timer to smoothed rtt + 4 times the smoothed variance.
2973 * rttvar is stored as fixed point with 2 bits after the
2974 * binary point (scaled by 4). The following is
2975 * equivalent to rfc793 smoothing with an alpha of .75
2976 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2977 * rfc793's wired-in beta.
2978 */
2979 if (delta < 0)
2980 delta = -delta;
2981 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
2982 if ((tp->t_rttvar += delta) <= 0)
2983 tp->t_rttvar = 1 << 2;
2984 } else {
2985 /*
2986 * No rtt measurement yet - use the unsmoothed rtt.
2987 * Set the variance to half the rtt (so our first
2988 * retransmit happens at 3*rtt).
2989 */
2990 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
2991 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
2992 }
2993 tp->t_rtttime = 0;
2994 tp->t_rxtshift = 0;
2995
2996 /*
2997 * the retransmit should happen at rtt + 4 * rttvar.
2998 * Because of the way we do the smoothing, srtt and rttvar
2999 * will each average +1/2 tick of bias. When we compute
3000 * the retransmit timer, we want 1/2 tick of rounding and
3001 * 1 extra tick because of +-1/2 tick uncertainty in the
3002 * firing of the timer. The bias will give us exactly the
3003 * 1.5 tick we need. But, because the bias is
3004 * statistical, we have to test that we don't drop below
3005 * the minimum feasible timer (which is 2 ticks).
3006 */
3007 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3008 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3009
3010 /*
3011 * We received an ack for a packet that wasn't retransmitted;
3012 * it is probably safe to discard any error indications we've
3013 * received recently. This isn't quite right, but close enough
3014 * for now (a route might have failed after we sent a segment,
3015 * and the return path might not be symmetrical).
3016 */
3017 tp->t_softerror = 0;
3018 }
3019
3020 void
3021 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
3022 {
3023 if (tp->t_partialacks < 0) {
3024 /*
3025 * We were not in fast recovery. Reset the duplicate ack
3026 * counter.
3027 */
3028 tp->t_dupacks = 0;
3029 } else {
3030 /*
3031 * Clamp the congestion window to the crossover point and
3032 * exit fast recovery.
3033 */
3034 if (tp->snd_cwnd > tp->snd_ssthresh)
3035 tp->snd_cwnd = tp->snd_ssthresh;
3036 tp->t_partialacks = -1;
3037 tp->t_dupacks = 0;
3038 }
3039 }
3040
3041 /*
3042 * Implement the NewReno response to a new ack, checking for partial acks in
3043 * fast recovery.
3044 */
3045 void
3046 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
3047 {
3048 if (tp->t_partialacks < 0) {
3049 /*
3050 * We were not in fast recovery. Reset the duplicate ack
3051 * counter.
3052 */
3053 tp->t_dupacks = 0;
3054 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3055 /*
3056 * This is a partial ack. Retransmit the first unacknowledged
3057 * segment and deflate the congestion window by the amount of
3058 * acknowledged data. Do not exit fast recovery.
3059 */
3060 tcp_seq onxt = tp->snd_nxt;
3061 u_long ocwnd = tp->snd_cwnd;
3062
3063 /*
3064 * snd_una has not yet been updated and the socket's send
3065 * buffer has not yet drained off the ACK'd data, so we
3066 * have to leave snd_una as it was to get the correct data
3067 * offset in tcp_output().
3068 */
3069 if (++tp->t_partialacks == 1)
3070 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3071 tp->t_rtttime = 0;
3072 tp->snd_nxt = th->th_ack;
3073 /*
3074 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3075 * is not yet updated when we're called.
3076 */
3077 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3078 (void) tcp_output(tp);
3079 tp->snd_cwnd = ocwnd;
3080 if (SEQ_GT(onxt, tp->snd_nxt))
3081 tp->snd_nxt = onxt;
3082 /*
3083 * Partial window deflation. Relies on fact that tp->snd_una
3084 * not updated yet.
3085 */
3086 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3087 } else {
3088 /*
3089 * Complete ack. Inflate the congestion window to ssthresh
3090 * and exit fast recovery.
3091 *
3092 * Window inflation should have left us with approx.
3093 * snd_ssthresh outstanding data. But in case we
3094 * would be inclined to send a burst, better to do
3095 * it via the slow start mechanism.
3096 */
3097 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3098 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3099 + tp->t_segsz;
3100 else
3101 tp->snd_cwnd = tp->snd_ssthresh;
3102 tp->t_partialacks = -1;
3103 tp->t_dupacks = 0;
3104 }
3105 }
3106
3107
3108 /*
3109 * TCP compressed state engine. Currently used to hold compressed
3110 * state for SYN_RECEIVED.
3111 */
3112
3113 u_long syn_cache_count;
3114 u_int32_t syn_hash1, syn_hash2;
3115
3116 #define SYN_HASH(sa, sp, dp) \
3117 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3118 ((u_int32_t)(sp)))^syn_hash2)))
3119 #ifndef INET6
3120 #define SYN_HASHALL(hash, src, dst) \
3121 do { \
3122 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3123 ((struct sockaddr_in *)(src))->sin_port, \
3124 ((struct sockaddr_in *)(dst))->sin_port); \
3125 } while (/*CONSTCOND*/ 0)
3126 #else
3127 #define SYN_HASH6(sa, sp, dp) \
3128 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3129 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3130 & 0x7fffffff)
3131
3132 #define SYN_HASHALL(hash, src, dst) \
3133 do { \
3134 switch ((src)->sa_family) { \
3135 case AF_INET: \
3136 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3137 ((struct sockaddr_in *)(src))->sin_port, \
3138 ((struct sockaddr_in *)(dst))->sin_port); \
3139 break; \
3140 case AF_INET6: \
3141 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3142 ((struct sockaddr_in6 *)(src))->sin6_port, \
3143 ((struct sockaddr_in6 *)(dst))->sin6_port); \
3144 break; \
3145 default: \
3146 hash = 0; \
3147 } \
3148 } while (/*CONSTCOND*/0)
3149 #endif /* INET6 */
3150
3151 #define SYN_CACHE_RM(sc) \
3152 do { \
3153 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3154 (sc), sc_bucketq); \
3155 (sc)->sc_tp = NULL; \
3156 LIST_REMOVE((sc), sc_tpq); \
3157 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3158 callout_stop(&(sc)->sc_timer); \
3159 syn_cache_count--; \
3160 } while (/*CONSTCOND*/0)
3161
3162 #define SYN_CACHE_PUT(sc) \
3163 do { \
3164 if ((sc)->sc_ipopts) \
3165 (void) m_free((sc)->sc_ipopts); \
3166 if ((sc)->sc_route4.ro_rt != NULL) \
3167 RTFREE((sc)->sc_route4.ro_rt); \
3168 if (callout_invoking(&(sc)->sc_timer)) \
3169 (sc)->sc_flags |= SCF_DEAD; \
3170 else \
3171 pool_put(&syn_cache_pool, (sc)); \
3172 } while (/*CONSTCOND*/0)
3173
3174 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3175
3176 /*
3177 * We don't estimate RTT with SYNs, so each packet starts with the default
3178 * RTT and each timer step has a fixed timeout value.
3179 */
3180 #define SYN_CACHE_TIMER_ARM(sc) \
3181 do { \
3182 TCPT_RANGESET((sc)->sc_rxtcur, \
3183 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3184 TCPTV_REXMTMAX); \
3185 callout_reset(&(sc)->sc_timer, \
3186 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3187 } while (/*CONSTCOND*/0)
3188
3189 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3190
3191 void
3192 syn_cache_init(void)
3193 {
3194 int i;
3195
3196 /* Initialize the hash buckets. */
3197 for (i = 0; i < tcp_syn_cache_size; i++)
3198 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3199 }
3200
3201 void
3202 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3203 {
3204 struct syn_cache_head *scp;
3205 struct syn_cache *sc2;
3206 int s;
3207
3208 /*
3209 * If there are no entries in the hash table, reinitialize
3210 * the hash secrets.
3211 */
3212 if (syn_cache_count == 0) {
3213 syn_hash1 = arc4random();
3214 syn_hash2 = arc4random();
3215 }
3216
3217 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3218 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3219 scp = &tcp_syn_cache[sc->sc_bucketidx];
3220
3221 /*
3222 * Make sure that we don't overflow the per-bucket
3223 * limit or the total cache size limit.
3224 */
3225 s = splsoftnet();
3226 if (scp->sch_length >= tcp_syn_bucket_limit) {
3227 tcpstat.tcps_sc_bucketoverflow++;
3228 /*
3229 * The bucket is full. Toss the oldest element in the
3230 * bucket. This will be the first entry in the bucket.
3231 */
3232 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3233 #ifdef DIAGNOSTIC
3234 /*
3235 * This should never happen; we should always find an
3236 * entry in our bucket.
3237 */
3238 if (sc2 == NULL)
3239 panic("syn_cache_insert: bucketoverflow: impossible");
3240 #endif
3241 SYN_CACHE_RM(sc2);
3242 SYN_CACHE_PUT(sc2);
3243 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3244 struct syn_cache_head *scp2, *sce;
3245
3246 tcpstat.tcps_sc_overflowed++;
3247 /*
3248 * The cache is full. Toss the oldest entry in the
3249 * first non-empty bucket we can find.
3250 *
3251 * XXX We would really like to toss the oldest
3252 * entry in the cache, but we hope that this
3253 * condition doesn't happen very often.
3254 */
3255 scp2 = scp;
3256 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3257 sce = &tcp_syn_cache[tcp_syn_cache_size];
3258 for (++scp2; scp2 != scp; scp2++) {
3259 if (scp2 >= sce)
3260 scp2 = &tcp_syn_cache[0];
3261 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3262 break;
3263 }
3264 #ifdef DIAGNOSTIC
3265 /*
3266 * This should never happen; we should always find a
3267 * non-empty bucket.
3268 */
3269 if (scp2 == scp)
3270 panic("syn_cache_insert: cacheoverflow: "
3271 "impossible");
3272 #endif
3273 }
3274 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3275 SYN_CACHE_RM(sc2);
3276 SYN_CACHE_PUT(sc2);
3277 }
3278
3279 /*
3280 * Initialize the entry's timer.
3281 */
3282 sc->sc_rxttot = 0;
3283 sc->sc_rxtshift = 0;
3284 SYN_CACHE_TIMER_ARM(sc);
3285
3286 /* Link it from tcpcb entry */
3287 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3288
3289 /* Put it into the bucket. */
3290 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3291 scp->sch_length++;
3292 syn_cache_count++;
3293
3294 tcpstat.tcps_sc_added++;
3295 splx(s);
3296 }
3297
3298 /*
3299 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3300 * If we have retransmitted an entry the maximum number of times, expire
3301 * that entry.
3302 */
3303 void
3304 syn_cache_timer(void *arg)
3305 {
3306 struct syn_cache *sc = arg;
3307 int s;
3308
3309 s = splsoftnet();
3310 callout_ack(&sc->sc_timer);
3311
3312 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3313 tcpstat.tcps_sc_delayed_free++;
3314 pool_put(&syn_cache_pool, sc);
3315 splx(s);
3316 return;
3317 }
3318
3319 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3320 /* Drop it -- too many retransmissions. */
3321 goto dropit;
3322 }
3323
3324 /*
3325 * Compute the total amount of time this entry has
3326 * been on a queue. If this entry has been on longer
3327 * than the keep alive timer would allow, expire it.
3328 */
3329 sc->sc_rxttot += sc->sc_rxtcur;
3330 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3331 goto dropit;
3332
3333 tcpstat.tcps_sc_retransmitted++;
3334 (void) syn_cache_respond(sc, NULL);
3335
3336 /* Advance the timer back-off. */
3337 sc->sc_rxtshift++;
3338 SYN_CACHE_TIMER_ARM(sc);
3339
3340 splx(s);
3341 return;
3342
3343 dropit:
3344 tcpstat.tcps_sc_timed_out++;
3345 SYN_CACHE_RM(sc);
3346 SYN_CACHE_PUT(sc);
3347 splx(s);
3348 }
3349
3350 /*
3351 * Remove syn cache created by the specified tcb entry,
3352 * because this does not make sense to keep them
3353 * (if there's no tcb entry, syn cache entry will never be used)
3354 */
3355 void
3356 syn_cache_cleanup(struct tcpcb *tp)
3357 {
3358 struct syn_cache *sc, *nsc;
3359 int s;
3360
3361 s = splsoftnet();
3362
3363 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3364 nsc = LIST_NEXT(sc, sc_tpq);
3365
3366 #ifdef DIAGNOSTIC
3367 if (sc->sc_tp != tp)
3368 panic("invalid sc_tp in syn_cache_cleanup");
3369 #endif
3370 SYN_CACHE_RM(sc);
3371 SYN_CACHE_PUT(sc);
3372 }
3373 /* just for safety */
3374 LIST_INIT(&tp->t_sc);
3375
3376 splx(s);
3377 }
3378
3379 /*
3380 * Find an entry in the syn cache.
3381 */
3382 struct syn_cache *
3383 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3384 struct syn_cache_head **headp)
3385 {
3386 struct syn_cache *sc;
3387 struct syn_cache_head *scp;
3388 u_int32_t hash;
3389 int s;
3390
3391 SYN_HASHALL(hash, src, dst);
3392
3393 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3394 *headp = scp;
3395 s = splsoftnet();
3396 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3397 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3398 if (sc->sc_hash != hash)
3399 continue;
3400 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3401 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3402 splx(s);
3403 return (sc);
3404 }
3405 }
3406 splx(s);
3407 return (NULL);
3408 }
3409
3410 /*
3411 * This function gets called when we receive an ACK for a
3412 * socket in the LISTEN state. We look up the connection
3413 * in the syn cache, and if its there, we pull it out of
3414 * the cache and turn it into a full-blown connection in
3415 * the SYN-RECEIVED state.
3416 *
3417 * The return values may not be immediately obvious, and their effects
3418 * can be subtle, so here they are:
3419 *
3420 * NULL SYN was not found in cache; caller should drop the
3421 * packet and send an RST.
3422 *
3423 * -1 We were unable to create the new connection, and are
3424 * aborting it. An ACK,RST is being sent to the peer
3425 * (unless we got screwey sequence numbners; see below),
3426 * because the 3-way handshake has been completed. Caller
3427 * should not free the mbuf, since we may be using it. If
3428 * we are not, we will free it.
3429 *
3430 * Otherwise, the return value is a pointer to the new socket
3431 * associated with the connection.
3432 */
3433 struct socket *
3434 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3435 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3436 struct socket *so, struct mbuf *m)
3437 {
3438 struct syn_cache *sc;
3439 struct syn_cache_head *scp;
3440 struct inpcb *inp = NULL;
3441 #ifdef INET6
3442 struct in6pcb *in6p = NULL;
3443 #endif
3444 struct tcpcb *tp = 0;
3445 struct mbuf *am;
3446 int s;
3447 struct socket *oso;
3448
3449 s = splsoftnet();
3450 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3451 splx(s);
3452 return (NULL);
3453 }
3454
3455 /*
3456 * Verify the sequence and ack numbers. Try getting the correct
3457 * response again.
3458 */
3459 if ((th->th_ack != sc->sc_iss + 1) ||
3460 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3461 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3462 (void) syn_cache_respond(sc, m);
3463 splx(s);
3464 return ((struct socket *)(-1));
3465 }
3466
3467 /* Remove this cache entry */
3468 SYN_CACHE_RM(sc);
3469 splx(s);
3470
3471 /*
3472 * Ok, create the full blown connection, and set things up
3473 * as they would have been set up if we had created the
3474 * connection when the SYN arrived. If we can't create
3475 * the connection, abort it.
3476 */
3477 /*
3478 * inp still has the OLD in_pcb stuff, set the
3479 * v6-related flags on the new guy, too. This is
3480 * done particularly for the case where an AF_INET6
3481 * socket is bound only to a port, and a v4 connection
3482 * comes in on that port.
3483 * we also copy the flowinfo from the original pcb
3484 * to the new one.
3485 */
3486 oso = so;
3487 so = sonewconn(so, SS_ISCONNECTED);
3488 if (so == NULL)
3489 goto resetandabort;
3490
3491 switch (so->so_proto->pr_domain->dom_family) {
3492 #ifdef INET
3493 case AF_INET:
3494 inp = sotoinpcb(so);
3495 break;
3496 #endif
3497 #ifdef INET6
3498 case AF_INET6:
3499 in6p = sotoin6pcb(so);
3500 break;
3501 #endif
3502 }
3503 switch (src->sa_family) {
3504 #ifdef INET
3505 case AF_INET:
3506 if (inp) {
3507 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3508 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3509 inp->inp_options = ip_srcroute();
3510 in_pcbstate(inp, INP_BOUND);
3511 if (inp->inp_options == NULL) {
3512 inp->inp_options = sc->sc_ipopts;
3513 sc->sc_ipopts = NULL;
3514 }
3515 }
3516 #ifdef INET6
3517 else if (in6p) {
3518 /* IPv4 packet to AF_INET6 socket */
3519 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3520 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3521 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3522 &in6p->in6p_laddr.s6_addr32[3],
3523 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3524 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3525 in6totcpcb(in6p)->t_family = AF_INET;
3526 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3527 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3528 else
3529 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3530 in6_pcbstate(in6p, IN6P_BOUND);
3531 }
3532 #endif
3533 break;
3534 #endif
3535 #ifdef INET6
3536 case AF_INET6:
3537 if (in6p) {
3538 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3539 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3540 in6_pcbstate(in6p, IN6P_BOUND);
3541 }
3542 break;
3543 #endif
3544 }
3545 #ifdef INET6
3546 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3547 struct in6pcb *oin6p = sotoin6pcb(oso);
3548 /* inherit socket options from the listening socket */
3549 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3550 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3551 m_freem(in6p->in6p_options);
3552 in6p->in6p_options = 0;
3553 }
3554 ip6_savecontrol(in6p, &in6p->in6p_options,
3555 mtod(m, struct ip6_hdr *), m);
3556 }
3557 #endif
3558
3559 #if defined(IPSEC) || defined(FAST_IPSEC)
3560 /*
3561 * we make a copy of policy, instead of sharing the policy,
3562 * for better behavior in terms of SA lookup and dead SA removal.
3563 */
3564 if (inp) {
3565 /* copy old policy into new socket's */
3566 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3567 printf("tcp_input: could not copy policy\n");
3568 }
3569 #ifdef INET6
3570 else if (in6p) {
3571 /* copy old policy into new socket's */
3572 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3573 in6p->in6p_sp))
3574 printf("tcp_input: could not copy policy\n");
3575 }
3576 #endif
3577 #endif
3578
3579 /*
3580 * Give the new socket our cached route reference.
3581 */
3582 if (inp)
3583 inp->inp_route = sc->sc_route4; /* struct assignment */
3584 #ifdef INET6
3585 else
3586 in6p->in6p_route = sc->sc_route6;
3587 #endif
3588 sc->sc_route4.ro_rt = NULL;
3589
3590 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3591 if (am == NULL)
3592 goto resetandabort;
3593 MCLAIM(am, &tcp_mowner);
3594 am->m_len = src->sa_len;
3595 bcopy(src, mtod(am, caddr_t), src->sa_len);
3596 if (inp) {
3597 if (in_pcbconnect(inp, am)) {
3598 (void) m_free(am);
3599 goto resetandabort;
3600 }
3601 }
3602 #ifdef INET6
3603 else if (in6p) {
3604 if (src->sa_family == AF_INET) {
3605 /* IPv4 packet to AF_INET6 socket */
3606 struct sockaddr_in6 *sin6;
3607 sin6 = mtod(am, struct sockaddr_in6 *);
3608 am->m_len = sizeof(*sin6);
3609 bzero(sin6, sizeof(*sin6));
3610 sin6->sin6_family = AF_INET6;
3611 sin6->sin6_len = sizeof(*sin6);
3612 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3613 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3614 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3615 &sin6->sin6_addr.s6_addr32[3],
3616 sizeof(sin6->sin6_addr.s6_addr32[3]));
3617 }
3618 if (in6_pcbconnect(in6p, am)) {
3619 (void) m_free(am);
3620 goto resetandabort;
3621 }
3622 }
3623 #endif
3624 else {
3625 (void) m_free(am);
3626 goto resetandabort;
3627 }
3628 (void) m_free(am);
3629
3630 if (inp)
3631 tp = intotcpcb(inp);
3632 #ifdef INET6
3633 else if (in6p)
3634 tp = in6totcpcb(in6p);
3635 #endif
3636 else
3637 tp = NULL;
3638 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3639 if (sc->sc_request_r_scale != 15) {
3640 tp->requested_s_scale = sc->sc_requested_s_scale;
3641 tp->request_r_scale = sc->sc_request_r_scale;
3642 tp->snd_scale = sc->sc_requested_s_scale;
3643 tp->rcv_scale = sc->sc_request_r_scale;
3644 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3645 }
3646 if (sc->sc_flags & SCF_TIMESTAMP)
3647 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3648 tp->ts_timebase = sc->sc_timebase;
3649
3650 tp->t_template = tcp_template(tp);
3651 if (tp->t_template == 0) {
3652 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3653 so = NULL;
3654 m_freem(m);
3655 goto abort;
3656 }
3657
3658 tp->iss = sc->sc_iss;
3659 tp->irs = sc->sc_irs;
3660 tcp_sendseqinit(tp);
3661 tcp_rcvseqinit(tp);
3662 tp->t_state = TCPS_SYN_RECEIVED;
3663 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3664 tcpstat.tcps_accepts++;
3665
3666 #ifdef TCP_SIGNATURE
3667 if (sc->sc_flags & SCF_SIGNATURE)
3668 tp->t_flags |= TF_SIGNATURE;
3669 #endif
3670
3671 /* Initialize tp->t_ourmss before we deal with the peer's! */
3672 tp->t_ourmss = sc->sc_ourmaxseg;
3673 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3674
3675 /*
3676 * Initialize the initial congestion window. If we
3677 * had to retransmit the SYN,ACK, we must initialize cwnd
3678 * to 1 segment (i.e. the Loss Window).
3679 */
3680 if (sc->sc_rxtshift)
3681 tp->snd_cwnd = tp->t_peermss;
3682 else {
3683 int ss = tcp_init_win;
3684 #ifdef INET
3685 if (inp != NULL && in_localaddr(inp->inp_faddr))
3686 ss = tcp_init_win_local;
3687 #endif
3688 #ifdef INET6
3689 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3690 ss = tcp_init_win_local;
3691 #endif
3692 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3693 }
3694
3695 tcp_rmx_rtt(tp);
3696 tp->snd_wl1 = sc->sc_irs;
3697 tp->rcv_up = sc->sc_irs + 1;
3698
3699 /*
3700 * This is what whould have happened in tcp_output() when
3701 * the SYN,ACK was sent.
3702 */
3703 tp->snd_up = tp->snd_una;
3704 tp->snd_max = tp->snd_nxt = tp->iss+1;
3705 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3706 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3707 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3708 tp->last_ack_sent = tp->rcv_nxt;
3709 tp->t_partialacks = -1;
3710 tp->t_dupacks = 0;
3711
3712 tcpstat.tcps_sc_completed++;
3713 SYN_CACHE_PUT(sc);
3714 return (so);
3715
3716 resetandabort:
3717 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3718 abort:
3719 if (so != NULL)
3720 (void) soabort(so);
3721 SYN_CACHE_PUT(sc);
3722 tcpstat.tcps_sc_aborted++;
3723 return ((struct socket *)(-1));
3724 }
3725
3726 /*
3727 * This function is called when we get a RST for a
3728 * non-existent connection, so that we can see if the
3729 * connection is in the syn cache. If it is, zap it.
3730 */
3731
3732 void
3733 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3734 {
3735 struct syn_cache *sc;
3736 struct syn_cache_head *scp;
3737 int s = splsoftnet();
3738
3739 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3740 splx(s);
3741 return;
3742 }
3743 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3744 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3745 splx(s);
3746 return;
3747 }
3748 SYN_CACHE_RM(sc);
3749 splx(s);
3750 tcpstat.tcps_sc_reset++;
3751 SYN_CACHE_PUT(sc);
3752 }
3753
3754 void
3755 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst,
3756 struct tcphdr *th)
3757 {
3758 struct syn_cache *sc;
3759 struct syn_cache_head *scp;
3760 int s;
3761
3762 s = splsoftnet();
3763 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3764 splx(s);
3765 return;
3766 }
3767 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3768 if (ntohl (th->th_seq) != sc->sc_iss) {
3769 splx(s);
3770 return;
3771 }
3772
3773 /*
3774 * If we've retransmitted 3 times and this is our second error,
3775 * we remove the entry. Otherwise, we allow it to continue on.
3776 * This prevents us from incorrectly nuking an entry during a
3777 * spurious network outage.
3778 *
3779 * See tcp_notify().
3780 */
3781 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3782 sc->sc_flags |= SCF_UNREACH;
3783 splx(s);
3784 return;
3785 }
3786
3787 SYN_CACHE_RM(sc);
3788 splx(s);
3789 tcpstat.tcps_sc_unreach++;
3790 SYN_CACHE_PUT(sc);
3791 }
3792
3793 /*
3794 * Given a LISTEN socket and an inbound SYN request, add
3795 * this to the syn cache, and send back a segment:
3796 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3797 * to the source.
3798 *
3799 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3800 * Doing so would require that we hold onto the data and deliver it
3801 * to the application. However, if we are the target of a SYN-flood
3802 * DoS attack, an attacker could send data which would eventually
3803 * consume all available buffer space if it were ACKed. By not ACKing
3804 * the data, we avoid this DoS scenario.
3805 */
3806
3807 int
3808 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3809 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3810 int optlen, struct tcp_opt_info *oi)
3811 {
3812 struct tcpcb tb, *tp;
3813 long win;
3814 struct syn_cache *sc;
3815 struct syn_cache_head *scp;
3816 struct mbuf *ipopts;
3817 struct tcp_opt_info opti;
3818
3819 tp = sototcpcb(so);
3820
3821 bzero(&opti, sizeof(opti));
3822
3823 /*
3824 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3825 *
3826 * Note this check is performed in tcp_input() very early on.
3827 */
3828
3829 /*
3830 * Initialize some local state.
3831 */
3832 win = sbspace(&so->so_rcv);
3833 if (win > TCP_MAXWIN)
3834 win = TCP_MAXWIN;
3835
3836 switch (src->sa_family) {
3837 #ifdef INET
3838 case AF_INET:
3839 /*
3840 * Remember the IP options, if any.
3841 */
3842 ipopts = ip_srcroute();
3843 break;
3844 #endif
3845 default:
3846 ipopts = NULL;
3847 }
3848
3849 #ifdef TCP_SIGNATURE
3850 if (optp || (tp->t_flags & TF_SIGNATURE))
3851 #else
3852 if (optp)
3853 #endif
3854 {
3855 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3856 #ifdef TCP_SIGNATURE
3857 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3858 #endif
3859 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3860 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3861 return (0);
3862 } else
3863 tb.t_flags = 0;
3864
3865 /*
3866 * See if we already have an entry for this connection.
3867 * If we do, resend the SYN,ACK. We do not count this
3868 * as a retransmission (XXX though maybe we should).
3869 */
3870 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3871 tcpstat.tcps_sc_dupesyn++;
3872 if (ipopts) {
3873 /*
3874 * If we were remembering a previous source route,
3875 * forget it and use the new one we've been given.
3876 */
3877 if (sc->sc_ipopts)
3878 (void) m_free(sc->sc_ipopts);
3879 sc->sc_ipopts = ipopts;
3880 }
3881 sc->sc_timestamp = tb.ts_recent;
3882 if (syn_cache_respond(sc, m) == 0) {
3883 tcpstat.tcps_sndacks++;
3884 tcpstat.tcps_sndtotal++;
3885 }
3886 return (1);
3887 }
3888
3889 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3890 if (sc == NULL) {
3891 if (ipopts)
3892 (void) m_free(ipopts);
3893 return (0);
3894 }
3895
3896 /*
3897 * Fill in the cache, and put the necessary IP and TCP
3898 * options into the reply.
3899 */
3900 bzero(sc, sizeof(struct syn_cache));
3901 callout_init(&sc->sc_timer);
3902 bcopy(src, &sc->sc_src, src->sa_len);
3903 bcopy(dst, &sc->sc_dst, dst->sa_len);
3904 sc->sc_flags = 0;
3905 sc->sc_ipopts = ipopts;
3906 sc->sc_irs = th->th_seq;
3907 switch (src->sa_family) {
3908 #ifdef INET
3909 case AF_INET:
3910 {
3911 struct sockaddr_in *srcin = (void *) src;
3912 struct sockaddr_in *dstin = (void *) dst;
3913
3914 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3915 &srcin->sin_addr, dstin->sin_port,
3916 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3917 break;
3918 }
3919 #endif /* INET */
3920 #ifdef INET6
3921 case AF_INET6:
3922 {
3923 struct sockaddr_in6 *srcin6 = (void *) src;
3924 struct sockaddr_in6 *dstin6 = (void *) dst;
3925
3926 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3927 &srcin6->sin6_addr, dstin6->sin6_port,
3928 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3929 break;
3930 }
3931 #endif /* INET6 */
3932 }
3933 sc->sc_peermaxseg = oi->maxseg;
3934 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3935 m->m_pkthdr.rcvif : NULL,
3936 sc->sc_src.sa.sa_family);
3937 sc->sc_win = win;
3938 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3939 sc->sc_timestamp = tb.ts_recent;
3940 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3941 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3942 sc->sc_flags |= SCF_TIMESTAMP;
3943 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3944 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3945 sc->sc_requested_s_scale = tb.requested_s_scale;
3946 sc->sc_request_r_scale = 0;
3947 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3948 TCP_MAXWIN << sc->sc_request_r_scale <
3949 so->so_rcv.sb_hiwat)
3950 sc->sc_request_r_scale++;
3951 } else {
3952 sc->sc_requested_s_scale = 15;
3953 sc->sc_request_r_scale = 15;
3954 }
3955 #ifdef TCP_SIGNATURE
3956 if (tb.t_flags & TF_SIGNATURE)
3957 sc->sc_flags |= SCF_SIGNATURE;
3958 #endif
3959 sc->sc_tp = tp;
3960 if (syn_cache_respond(sc, m) == 0) {
3961 syn_cache_insert(sc, tp);
3962 tcpstat.tcps_sndacks++;
3963 tcpstat.tcps_sndtotal++;
3964 } else {
3965 SYN_CACHE_PUT(sc);
3966 tcpstat.tcps_sc_dropped++;
3967 }
3968 return (1);
3969 }
3970
3971 int
3972 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
3973 {
3974 struct route *ro;
3975 u_int8_t *optp;
3976 int optlen, error;
3977 u_int16_t tlen;
3978 struct ip *ip = NULL;
3979 #ifdef INET6
3980 struct ip6_hdr *ip6 = NULL;
3981 #endif
3982 struct tcpcb *tp;
3983 struct tcphdr *th;
3984 u_int hlen;
3985 struct socket *so;
3986
3987 switch (sc->sc_src.sa.sa_family) {
3988 case AF_INET:
3989 hlen = sizeof(struct ip);
3990 ro = &sc->sc_route4;
3991 break;
3992 #ifdef INET6
3993 case AF_INET6:
3994 hlen = sizeof(struct ip6_hdr);
3995 ro = (struct route *)&sc->sc_route6;
3996 break;
3997 #endif
3998 default:
3999 if (m)
4000 m_freem(m);
4001 return (EAFNOSUPPORT);
4002 }
4003
4004 /* Compute the size of the TCP options. */
4005 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4006 #ifdef TCP_SIGNATURE
4007 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4008 #endif
4009 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4010
4011 tlen = hlen + sizeof(struct tcphdr) + optlen;
4012
4013 /*
4014 * Create the IP+TCP header from scratch.
4015 */
4016 if (m)
4017 m_freem(m);
4018 #ifdef DIAGNOSTIC
4019 if (max_linkhdr + tlen > MCLBYTES)
4020 return (ENOBUFS);
4021 #endif
4022 MGETHDR(m, M_DONTWAIT, MT_DATA);
4023 if (m && tlen > MHLEN) {
4024 MCLGET(m, M_DONTWAIT);
4025 if ((m->m_flags & M_EXT) == 0) {
4026 m_freem(m);
4027 m = NULL;
4028 }
4029 }
4030 if (m == NULL)
4031 return (ENOBUFS);
4032 MCLAIM(m, &tcp_tx_mowner);
4033
4034 /* Fixup the mbuf. */
4035 m->m_data += max_linkhdr;
4036 m->m_len = m->m_pkthdr.len = tlen;
4037 if (sc->sc_tp) {
4038 tp = sc->sc_tp;
4039 if (tp->t_inpcb)
4040 so = tp->t_inpcb->inp_socket;
4041 #ifdef INET6
4042 else if (tp->t_in6pcb)
4043 so = tp->t_in6pcb->in6p_socket;
4044 #endif
4045 else
4046 so = NULL;
4047 } else
4048 so = NULL;
4049 m->m_pkthdr.rcvif = NULL;
4050 memset(mtod(m, u_char *), 0, tlen);
4051
4052 switch (sc->sc_src.sa.sa_family) {
4053 case AF_INET:
4054 ip = mtod(m, struct ip *);
4055 ip->ip_v = 4;
4056 ip->ip_dst = sc->sc_src.sin.sin_addr;
4057 ip->ip_src = sc->sc_dst.sin.sin_addr;
4058 ip->ip_p = IPPROTO_TCP;
4059 th = (struct tcphdr *)(ip + 1);
4060 th->th_dport = sc->sc_src.sin.sin_port;
4061 th->th_sport = sc->sc_dst.sin.sin_port;
4062 break;
4063 #ifdef INET6
4064 case AF_INET6:
4065 ip6 = mtod(m, struct ip6_hdr *);
4066 ip6->ip6_vfc = IPV6_VERSION;
4067 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4068 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4069 ip6->ip6_nxt = IPPROTO_TCP;
4070 /* ip6_plen will be updated in ip6_output() */
4071 th = (struct tcphdr *)(ip6 + 1);
4072 th->th_dport = sc->sc_src.sin6.sin6_port;
4073 th->th_sport = sc->sc_dst.sin6.sin6_port;
4074 break;
4075 #endif
4076 default:
4077 th = NULL;
4078 }
4079
4080 th->th_seq = htonl(sc->sc_iss);
4081 th->th_ack = htonl(sc->sc_irs + 1);
4082 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4083 th->th_flags = TH_SYN|TH_ACK;
4084 th->th_win = htons(sc->sc_win);
4085 /* th_sum already 0 */
4086 /* th_urp already 0 */
4087
4088 /* Tack on the TCP options. */
4089 optp = (u_int8_t *)(th + 1);
4090 *optp++ = TCPOPT_MAXSEG;
4091 *optp++ = 4;
4092 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4093 *optp++ = sc->sc_ourmaxseg & 0xff;
4094
4095 if (sc->sc_request_r_scale != 15) {
4096 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4097 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4098 sc->sc_request_r_scale);
4099 optp += 4;
4100 }
4101
4102 if (sc->sc_flags & SCF_TIMESTAMP) {
4103 u_int32_t *lp = (u_int32_t *)(optp);
4104 /* Form timestamp option as shown in appendix A of RFC 1323. */
4105 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4106 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4107 *lp = htonl(sc->sc_timestamp);
4108 optp += TCPOLEN_TSTAMP_APPA;
4109 }
4110
4111 #ifdef TCP_SIGNATURE
4112 if (sc->sc_flags & SCF_SIGNATURE) {
4113 struct secasvar *sav;
4114 u_int8_t *sigp;
4115
4116 sav = tcp_signature_getsav(m, th);
4117
4118 if (sav == NULL) {
4119 if (m)
4120 m_freem(m);
4121 return (EPERM);
4122 }
4123
4124 *optp++ = TCPOPT_SIGNATURE;
4125 *optp++ = TCPOLEN_SIGNATURE;
4126 sigp = optp;
4127 bzero(optp, TCP_SIGLEN);
4128 optp += TCP_SIGLEN;
4129 *optp++ = TCPOPT_NOP;
4130 *optp++ = TCPOPT_EOL;
4131
4132 (void)tcp_signature(m, th, hlen, sav, sigp);
4133
4134 key_sa_recordxfer(sav, m);
4135 #ifdef FAST_IPSEC
4136 KEY_FREESAV(&sav);
4137 #else
4138 key_freesav(sav);
4139 #endif
4140 }
4141 #endif
4142
4143 /* Compute the packet's checksum. */
4144 switch (sc->sc_src.sa.sa_family) {
4145 case AF_INET:
4146 ip->ip_len = htons(tlen - hlen);
4147 th->th_sum = 0;
4148 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4149 break;
4150 #ifdef INET6
4151 case AF_INET6:
4152 ip6->ip6_plen = htons(tlen - hlen);
4153 th->th_sum = 0;
4154 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4155 break;
4156 #endif
4157 }
4158
4159 /*
4160 * Fill in some straggling IP bits. Note the stack expects
4161 * ip_len to be in host order, for convenience.
4162 */
4163 switch (sc->sc_src.sa.sa_family) {
4164 #ifdef INET
4165 case AF_INET:
4166 ip->ip_len = htons(tlen);
4167 ip->ip_ttl = ip_defttl;
4168 /* XXX tos? */
4169 break;
4170 #endif
4171 #ifdef INET6
4172 case AF_INET6:
4173 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4174 ip6->ip6_vfc |= IPV6_VERSION;
4175 ip6->ip6_plen = htons(tlen - hlen);
4176 /* ip6_hlim will be initialized afterwards */
4177 /* XXX flowlabel? */
4178 break;
4179 #endif
4180 }
4181
4182 /* XXX use IPsec policy on listening socket, on SYN ACK */
4183 tp = sc->sc_tp;
4184
4185 switch (sc->sc_src.sa.sa_family) {
4186 #ifdef INET
4187 case AF_INET:
4188 error = ip_output(m, sc->sc_ipopts, ro,
4189 (ip_mtudisc ? IP_MTUDISC : 0),
4190 (struct ip_moptions *)NULL, so);
4191 break;
4192 #endif
4193 #ifdef INET6
4194 case AF_INET6:
4195 ip6->ip6_hlim = in6_selecthlim(NULL,
4196 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4197
4198 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4199 (struct ip6_moptions *)0, so, NULL);
4200 break;
4201 #endif
4202 default:
4203 error = EAFNOSUPPORT;
4204 break;
4205 }
4206 return (error);
4207 }
4208