tcp_input.c revision 1.222 1 /* $NetBSD: tcp_input.c,v 1.222 2005/02/28 16:20:59 jonathan Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 *
80 * Redistribution and use in source and binary forms, with or without
81 * modification, are permitted provided that the following conditions
82 * are met:
83 * 1. Redistributions of source code must retain the above copyright
84 * notice, this list of conditions and the following disclaimer.
85 * 2. Redistributions in binary form must reproduce the above copyright
86 * notice, this list of conditions and the following disclaimer in the
87 * documentation and/or other materials provided with the distribution.
88 * 3. All advertising materials mentioning features or use of this software
89 * must display the following acknowledgement:
90 * This product includes software developed by the NetBSD
91 * Foundation, Inc. and its contributors.
92 * 4. Neither the name of The NetBSD Foundation nor the names of its
93 * contributors may be used to endorse or promote products derived
94 * from this software without specific prior written permission.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.222 2005/02/28 16:20:59 jonathan Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173
174 #include <net/if.h>
175 #include <net/route.h>
176 #include <net/if_types.h>
177
178 #include <netinet/in.h>
179 #include <netinet/in_systm.h>
180 #include <netinet/ip.h>
181 #include <netinet/in_pcb.h>
182 #include <netinet/in_var.h>
183 #include <netinet/ip_var.h>
184
185 #ifdef INET6
186 #ifndef INET
187 #include <netinet/in.h>
188 #endif
189 #include <netinet/ip6.h>
190 #include <netinet6/ip6_var.h>
191 #include <netinet6/in6_pcb.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_var.h>
194 #include <netinet/icmp6.h>
195 #include <netinet6/nd6.h>
196 #endif
197
198 #ifndef INET6
199 /* always need ip6.h for IP6_EXTHDR_GET */
200 #include <netinet/ip6.h>
201 #endif
202
203 #include <netinet/tcp.h>
204 #include <netinet/tcp_fsm.h>
205 #include <netinet/tcp_seq.h>
206 #include <netinet/tcp_timer.h>
207 #include <netinet/tcp_var.h>
208 #include <netinet/tcpip.h>
209 #include <netinet/tcp_debug.h>
210
211 #include <machine/stdarg.h>
212
213 #ifdef IPSEC
214 #include <netinet6/ipsec.h>
215 #include <netkey/key.h>
216 #endif /*IPSEC*/
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif /* IPSEC */
223
224 #ifdef FAST_IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* FAST_IPSEC*/
232
233 int tcprexmtthresh = 3;
234 int tcp_log_refused;
235
236 static int tcp_rst_ppslim_count = 0;
237 static struct timeval tcp_rst_ppslim_last;
238 static int tcp_ackdrop_ppslim_count = 0;
239 static struct timeval tcp_ackdrop_ppslim_last;
240
241 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
242
243 /* for modulo comparisons of timestamps */
244 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
245 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
246
247 /*
248 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
249 */
250 #ifdef INET6
251 #define ND6_HINT(tp) \
252 do { \
253 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
254 tp->t_in6pcb->in6p_route.ro_rt) { \
255 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
256 } \
257 } while (/*CONSTCOND*/ 0)
258 #else
259 #define ND6_HINT(tp)
260 #endif
261
262 /*
263 * Macro to compute ACK transmission behavior. Delay the ACK unless
264 * we have already delayed an ACK (must send an ACK every two segments).
265 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
266 * option is enabled.
267 */
268 #define TCP_SETUP_ACK(tp, th) \
269 do { \
270 if ((tp)->t_flags & TF_DELACK || \
271 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
272 tp->t_flags |= TF_ACKNOW; \
273 else \
274 TCP_SET_DELACK(tp); \
275 } while (/*CONSTCOND*/ 0)
276
277 /*
278 * Convert TCP protocol fields to host order for easier processing.
279 */
280 #define TCP_FIELDS_TO_HOST(th) \
281 do { \
282 NTOHL((th)->th_seq); \
283 NTOHL((th)->th_ack); \
284 NTOHS((th)->th_win); \
285 NTOHS((th)->th_urp); \
286 } while (/*CONSTCOND*/ 0)
287
288 /*
289 * ... and reverse the above.
290 */
291 #define TCP_FIELDS_TO_NET(th) \
292 do { \
293 HTONL((th)->th_seq); \
294 HTONL((th)->th_ack); \
295 HTONS((th)->th_win); \
296 HTONS((th)->th_urp); \
297 } while (/*CONSTCOND*/ 0)
298
299 #ifdef TCP_CSUM_COUNTERS
300 #include <sys/device.h>
301
302 extern struct evcnt tcp_hwcsum_ok;
303 extern struct evcnt tcp_hwcsum_bad;
304 extern struct evcnt tcp_hwcsum_data;
305 extern struct evcnt tcp_swcsum;
306
307 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
308
309 #else
310
311 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
312
313 #endif /* TCP_CSUM_COUNTERS */
314
315 #ifdef TCP_REASS_COUNTERS
316 #include <sys/device.h>
317
318 extern struct evcnt tcp_reass_;
319 extern struct evcnt tcp_reass_empty;
320 extern struct evcnt tcp_reass_iteration[8];
321 extern struct evcnt tcp_reass_prependfirst;
322 extern struct evcnt tcp_reass_prepend;
323 extern struct evcnt tcp_reass_insert;
324 extern struct evcnt tcp_reass_inserttail;
325 extern struct evcnt tcp_reass_append;
326 extern struct evcnt tcp_reass_appendtail;
327 extern struct evcnt tcp_reass_overlaptail;
328 extern struct evcnt tcp_reass_overlapfront;
329 extern struct evcnt tcp_reass_segdup;
330 extern struct evcnt tcp_reass_fragdup;
331
332 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
333
334 #else
335
336 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
337
338 #endif /* TCP_REASS_COUNTERS */
339
340 #ifdef INET
341 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
342 #endif
343 #ifdef INET6
344 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
345 #endif
346
347 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
348
349 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
350
351 int
352 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
353 {
354 struct ipqent *p, *q, *nq, *tiqe = NULL;
355 struct socket *so = NULL;
356 int pkt_flags;
357 tcp_seq pkt_seq;
358 unsigned pkt_len;
359 u_long rcvpartdupbyte = 0;
360 u_long rcvoobyte;
361 #ifdef TCP_REASS_COUNTERS
362 u_int count = 0;
363 #endif
364
365 if (tp->t_inpcb)
366 so = tp->t_inpcb->inp_socket;
367 #ifdef INET6
368 else if (tp->t_in6pcb)
369 so = tp->t_in6pcb->in6p_socket;
370 #endif
371
372 TCP_REASS_LOCK_CHECK(tp);
373
374 /*
375 * Call with th==0 after become established to
376 * force pre-ESTABLISHED data up to user socket.
377 */
378 if (th == 0)
379 goto present;
380
381 rcvoobyte = *tlen;
382 /*
383 * Copy these to local variables because the tcpiphdr
384 * gets munged while we are collapsing mbufs.
385 */
386 pkt_seq = th->th_seq;
387 pkt_len = *tlen;
388 pkt_flags = th->th_flags;
389
390 TCP_REASS_COUNTER_INCR(&tcp_reass_);
391
392 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
393 /*
394 * When we miss a packet, the vast majority of time we get
395 * packets that follow it in order. So optimize for that.
396 */
397 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
398 p->ipqe_len += pkt_len;
399 p->ipqe_flags |= pkt_flags;
400 m_cat(p->ipre_mlast, m);
401 TRAVERSE(p->ipre_mlast);
402 m = NULL;
403 tiqe = p;
404 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
405 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
406 goto skip_replacement;
407 }
408 /*
409 * While we're here, if the pkt is completely beyond
410 * anything we have, just insert it at the tail.
411 */
412 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
413 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
414 goto insert_it;
415 }
416 }
417
418 q = TAILQ_FIRST(&tp->segq);
419
420 if (q != NULL) {
421 /*
422 * If this segment immediately precedes the first out-of-order
423 * block, simply slap the segment in front of it and (mostly)
424 * skip the complicated logic.
425 */
426 if (pkt_seq + pkt_len == q->ipqe_seq) {
427 q->ipqe_seq = pkt_seq;
428 q->ipqe_len += pkt_len;
429 q->ipqe_flags |= pkt_flags;
430 m_cat(m, q->ipqe_m);
431 q->ipqe_m = m;
432 q->ipre_mlast = m; /* last mbuf may have changed */
433 TRAVERSE(q->ipre_mlast);
434 tiqe = q;
435 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
436 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
437 goto skip_replacement;
438 }
439 } else {
440 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
441 }
442
443 /*
444 * Find a segment which begins after this one does.
445 */
446 for (p = NULL; q != NULL; q = nq) {
447 nq = TAILQ_NEXT(q, ipqe_q);
448 #ifdef TCP_REASS_COUNTERS
449 count++;
450 #endif
451 /*
452 * If the received segment is just right after this
453 * fragment, merge the two together and then check
454 * for further overlaps.
455 */
456 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
457 #ifdef TCPREASS_DEBUG
458 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
459 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
460 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
461 #endif
462 pkt_len += q->ipqe_len;
463 pkt_flags |= q->ipqe_flags;
464 pkt_seq = q->ipqe_seq;
465 m_cat(q->ipre_mlast, m);
466 TRAVERSE(q->ipre_mlast);
467 m = q->ipqe_m;
468 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
469 goto free_ipqe;
470 }
471 /*
472 * If the received segment is completely past this
473 * fragment, we need to go the next fragment.
474 */
475 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
476 p = q;
477 continue;
478 }
479 /*
480 * If the fragment is past the received segment,
481 * it (or any following) can't be concatenated.
482 */
483 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
484 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
485 break;
486 }
487
488 /*
489 * We've received all the data in this segment before.
490 * mark it as a duplicate and return.
491 */
492 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
493 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
494 tcpstat.tcps_rcvduppack++;
495 tcpstat.tcps_rcvdupbyte += pkt_len;
496 tcp_new_dsack(tp, pkt_seq, pkt_len);
497 m_freem(m);
498 if (tiqe != NULL)
499 pool_put(&tcpipqent_pool, tiqe);
500 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
501 return (0);
502 }
503 /*
504 * Received segment completely overlaps this fragment
505 * so we drop the fragment (this keeps the temporal
506 * ordering of segments correct).
507 */
508 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
509 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
510 rcvpartdupbyte += q->ipqe_len;
511 m_freem(q->ipqe_m);
512 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
513 goto free_ipqe;
514 }
515 /*
516 * RX'ed segment extends past the end of the
517 * fragment. Drop the overlapping bytes. Then
518 * merge the fragment and segment then treat as
519 * a longer received packet.
520 */
521 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
522 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
523 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
524 #ifdef TCPREASS_DEBUG
525 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
526 tp, overlap,
527 pkt_seq, pkt_seq + pkt_len, pkt_len);
528 #endif
529 m_adj(m, overlap);
530 rcvpartdupbyte += overlap;
531 m_cat(q->ipre_mlast, m);
532 TRAVERSE(q->ipre_mlast);
533 m = q->ipqe_m;
534 pkt_seq = q->ipqe_seq;
535 pkt_len += q->ipqe_len - overlap;
536 rcvoobyte -= overlap;
537 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
538 goto free_ipqe;
539 }
540 /*
541 * RX'ed segment extends past the front of the
542 * fragment. Drop the overlapping bytes on the
543 * received packet. The packet will then be
544 * contatentated with this fragment a bit later.
545 */
546 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
547 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
548 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
549 #ifdef TCPREASS_DEBUG
550 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
551 tp, overlap,
552 pkt_seq, pkt_seq + pkt_len, pkt_len);
553 #endif
554 m_adj(m, -overlap);
555 pkt_len -= overlap;
556 rcvpartdupbyte += overlap;
557 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
558 rcvoobyte -= overlap;
559 }
560 /*
561 * If the received segment immediates precedes this
562 * fragment then tack the fragment onto this segment
563 * and reinsert the data.
564 */
565 if (q->ipqe_seq == pkt_seq + pkt_len) {
566 #ifdef TCPREASS_DEBUG
567 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
568 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
569 pkt_seq, pkt_seq + pkt_len, pkt_len);
570 #endif
571 pkt_len += q->ipqe_len;
572 pkt_flags |= q->ipqe_flags;
573 m_cat(m, q->ipqe_m);
574 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
575 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
576 if (tiqe == NULL)
577 tiqe = q;
578 else
579 pool_put(&tcpipqent_pool, q);
580 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
581 break;
582 }
583 /*
584 * If the fragment is before the segment, remember it.
585 * When this loop is terminated, p will contain the
586 * pointer to fragment that is right before the received
587 * segment.
588 */
589 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
590 p = q;
591
592 continue;
593
594 /*
595 * This is a common operation. It also will allow
596 * to save doing a malloc/free in most instances.
597 */
598 free_ipqe:
599 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
600 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
601 if (tiqe == NULL)
602 tiqe = q;
603 else
604 pool_put(&tcpipqent_pool, q);
605 }
606
607 #ifdef TCP_REASS_COUNTERS
608 if (count > 7)
609 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
610 else if (count > 0)
611 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
612 #endif
613
614 insert_it:
615
616 /*
617 * Allocate a new queue entry since the received segment did not
618 * collapse onto any other out-of-order block; thus we are allocating
619 * a new block. If it had collapsed, tiqe would not be NULL and
620 * we would be reusing it.
621 * XXX If we can't, just drop the packet. XXX
622 */
623 if (tiqe == NULL) {
624 tiqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
625 if (tiqe == NULL) {
626 tcpstat.tcps_rcvmemdrop++;
627 m_freem(m);
628 return (0);
629 }
630 }
631
632 /*
633 * Update the counters.
634 */
635 tcpstat.tcps_rcvoopack++;
636 tcpstat.tcps_rcvoobyte += rcvoobyte;
637 if (rcvpartdupbyte) {
638 tcpstat.tcps_rcvpartduppack++;
639 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
640 }
641
642 /*
643 * Insert the new fragment queue entry into both queues.
644 */
645 tiqe->ipqe_m = m;
646 tiqe->ipre_mlast = m;
647 tiqe->ipqe_seq = pkt_seq;
648 tiqe->ipqe_len = pkt_len;
649 tiqe->ipqe_flags = pkt_flags;
650 if (p == NULL) {
651 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
652 #ifdef TCPREASS_DEBUG
653 if (tiqe->ipqe_seq != tp->rcv_nxt)
654 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
655 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
656 #endif
657 } else {
658 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
659 #ifdef TCPREASS_DEBUG
660 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
661 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
662 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
663 #endif
664 }
665
666 skip_replacement:
667
668 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
669
670 present:
671 /*
672 * Present data to user, advancing rcv_nxt through
673 * completed sequence space.
674 */
675 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
676 return (0);
677 q = TAILQ_FIRST(&tp->segq);
678 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
679 return (0);
680 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
681 return (0);
682
683 tp->rcv_nxt += q->ipqe_len;
684 pkt_flags = q->ipqe_flags & TH_FIN;
685 ND6_HINT(tp);
686
687 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
688 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
689 if (so->so_state & SS_CANTRCVMORE)
690 m_freem(q->ipqe_m);
691 else
692 sbappendstream(&so->so_rcv, q->ipqe_m);
693 pool_put(&tcpipqent_pool, q);
694 sorwakeup(so);
695 return (pkt_flags);
696 }
697
698 #ifdef INET6
699 int
700 tcp6_input(struct mbuf **mp, int *offp, int proto)
701 {
702 struct mbuf *m = *mp;
703
704 /*
705 * draft-itojun-ipv6-tcp-to-anycast
706 * better place to put this in?
707 */
708 if (m->m_flags & M_ANYCAST6) {
709 struct ip6_hdr *ip6;
710 if (m->m_len < sizeof(struct ip6_hdr)) {
711 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
712 tcpstat.tcps_rcvshort++;
713 return IPPROTO_DONE;
714 }
715 }
716 ip6 = mtod(m, struct ip6_hdr *);
717 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
718 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
719 return IPPROTO_DONE;
720 }
721
722 tcp_input(m, *offp, proto);
723 return IPPROTO_DONE;
724 }
725 #endif
726
727 #ifdef INET
728 static void
729 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
730 {
731 char src[4*sizeof "123"];
732 char dst[4*sizeof "123"];
733
734 if (ip) {
735 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
736 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
737 }
738 else {
739 strlcpy(src, "(unknown)", sizeof(src));
740 strlcpy(dst, "(unknown)", sizeof(dst));
741 }
742 log(LOG_INFO,
743 "Connection attempt to TCP %s:%d from %s:%d\n",
744 dst, ntohs(th->th_dport),
745 src, ntohs(th->th_sport));
746 }
747 #endif
748
749 #ifdef INET6
750 static void
751 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
752 {
753 char src[INET6_ADDRSTRLEN];
754 char dst[INET6_ADDRSTRLEN];
755
756 if (ip6) {
757 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
758 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
759 }
760 else {
761 strlcpy(src, "(unknown v6)", sizeof(src));
762 strlcpy(dst, "(unknown v6)", sizeof(dst));
763 }
764 log(LOG_INFO,
765 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
766 dst, ntohs(th->th_dport),
767 src, ntohs(th->th_sport));
768 }
769 #endif
770
771 /*
772 * Checksum extended TCP header and data.
773 */
774 int
775 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
776 int off, int tlen)
777 {
778
779 /*
780 * XXX it's better to record and check if this mbuf is
781 * already checked.
782 */
783
784 switch (af) {
785 #ifdef INET
786 case AF_INET:
787 switch (m->m_pkthdr.csum_flags &
788 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
789 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
790 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
791 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
792 goto badcsum;
793
794 case M_CSUM_TCPv4|M_CSUM_DATA: {
795 u_int32_t hw_csum = m->m_pkthdr.csum_data;
796
797 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
798 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
799 const struct ip *ip =
800 mtod(m, const struct ip *);
801
802 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
803 ip->ip_dst.s_addr,
804 htons(hw_csum + tlen + off + IPPROTO_TCP));
805 }
806 if ((hw_csum ^ 0xffff) != 0)
807 goto badcsum;
808 break;
809 }
810
811 case M_CSUM_TCPv4:
812 /* Checksum was okay. */
813 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
814 break;
815
816 default:
817 /*
818 * Must compute it ourselves. Maybe skip checksum
819 * on loopback interfaces.
820 */
821 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
822 IFF_LOOPBACK) ||
823 tcp_do_loopback_cksum)) {
824 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
825 if (in4_cksum(m, IPPROTO_TCP, toff,
826 tlen + off) != 0)
827 goto badcsum;
828 }
829 break;
830 }
831 break;
832 #endif /* INET4 */
833
834 #ifdef INET6
835 case AF_INET6:
836 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
837 tcp_do_loopback_cksum)) {
838 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
839 goto badcsum;
840 }
841 break;
842 #endif /* INET6 */
843 }
844
845 return 0;
846
847 badcsum:
848 tcpstat.tcps_rcvbadsum++;
849 return -1;
850 }
851
852 /*
853 * TCP input routine, follows pages 65-76 of the
854 * protocol specification dated September, 1981 very closely.
855 */
856 void
857 tcp_input(struct mbuf *m, ...)
858 {
859 struct tcphdr *th;
860 struct ip *ip;
861 struct inpcb *inp;
862 #ifdef INET6
863 struct ip6_hdr *ip6;
864 struct in6pcb *in6p;
865 #endif
866 u_int8_t *optp = NULL;
867 int optlen = 0;
868 int len, tlen, toff, hdroptlen = 0;
869 struct tcpcb *tp = 0;
870 int tiflags;
871 struct socket *so = NULL;
872 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
873 #ifdef TCP_DEBUG
874 short ostate = 0;
875 #endif
876 int iss = 0;
877 u_long tiwin;
878 struct tcp_opt_info opti;
879 int off, iphlen;
880 va_list ap;
881 int af; /* af on the wire */
882 struct mbuf *tcp_saveti = NULL;
883
884 MCLAIM(m, &tcp_rx_mowner);
885 va_start(ap, m);
886 toff = va_arg(ap, int);
887 (void)va_arg(ap, int); /* ignore value, advance ap */
888 va_end(ap);
889
890 tcpstat.tcps_rcvtotal++;
891
892 bzero(&opti, sizeof(opti));
893 opti.ts_present = 0;
894 opti.maxseg = 0;
895
896 /*
897 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
898 *
899 * TCP is, by definition, unicast, so we reject all
900 * multicast outright.
901 *
902 * Note, there are additional src/dst address checks in
903 * the AF-specific code below.
904 */
905 if (m->m_flags & (M_BCAST|M_MCAST)) {
906 /* XXX stat */
907 goto drop;
908 }
909 #ifdef INET6
910 if (m->m_flags & M_ANYCAST6) {
911 /* XXX stat */
912 goto drop;
913 }
914 #endif
915
916 /*
917 * Get IP and TCP header.
918 * Note: IP leaves IP header in first mbuf.
919 */
920 ip = mtod(m, struct ip *);
921 #ifdef INET6
922 ip6 = NULL;
923 #endif
924 switch (ip->ip_v) {
925 #ifdef INET
926 case 4:
927 af = AF_INET;
928 iphlen = sizeof(struct ip);
929 ip = mtod(m, struct ip *);
930 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
931 sizeof(struct tcphdr));
932 if (th == NULL) {
933 tcpstat.tcps_rcvshort++;
934 return;
935 }
936 /* We do the checksum after PCB lookup... */
937 len = ntohs(ip->ip_len);
938 tlen = len - toff;
939 break;
940 #endif
941 #ifdef INET6
942 case 6:
943 ip = NULL;
944 iphlen = sizeof(struct ip6_hdr);
945 af = AF_INET6;
946 ip6 = mtod(m, struct ip6_hdr *);
947 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
948 sizeof(struct tcphdr));
949 if (th == NULL) {
950 tcpstat.tcps_rcvshort++;
951 return;
952 }
953
954 /* Be proactive about malicious use of IPv4 mapped address */
955 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
956 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
957 /* XXX stat */
958 goto drop;
959 }
960
961 /*
962 * Be proactive about unspecified IPv6 address in source.
963 * As we use all-zero to indicate unbounded/unconnected pcb,
964 * unspecified IPv6 address can be used to confuse us.
965 *
966 * Note that packets with unspecified IPv6 destination is
967 * already dropped in ip6_input.
968 */
969 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
970 /* XXX stat */
971 goto drop;
972 }
973
974 /*
975 * Make sure destination address is not multicast.
976 * Source address checked in ip6_input().
977 */
978 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
979 /* XXX stat */
980 goto drop;
981 }
982
983 /* We do the checksum after PCB lookup... */
984 len = m->m_pkthdr.len;
985 tlen = len - toff;
986 break;
987 #endif
988 default:
989 m_freem(m);
990 return;
991 }
992
993 KASSERT(TCP_HDR_ALIGNED_P(th));
994
995 /*
996 * Check that TCP offset makes sense,
997 * pull out TCP options and adjust length. XXX
998 */
999 off = th->th_off << 2;
1000 if (off < sizeof (struct tcphdr) || off > tlen) {
1001 tcpstat.tcps_rcvbadoff++;
1002 goto drop;
1003 }
1004 tlen -= off;
1005
1006 /*
1007 * tcp_input() has been modified to use tlen to mean the TCP data
1008 * length throughout the function. Other functions can use
1009 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1010 * rja
1011 */
1012
1013 if (off > sizeof (struct tcphdr)) {
1014 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1015 if (th == NULL) {
1016 tcpstat.tcps_rcvshort++;
1017 return;
1018 }
1019 /*
1020 * NOTE: ip/ip6 will not be affected by m_pulldown()
1021 * (as they're before toff) and we don't need to update those.
1022 */
1023 KASSERT(TCP_HDR_ALIGNED_P(th));
1024 optlen = off - sizeof (struct tcphdr);
1025 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1026 /*
1027 * Do quick retrieval of timestamp options ("options
1028 * prediction?"). If timestamp is the only option and it's
1029 * formatted as recommended in RFC 1323 appendix A, we
1030 * quickly get the values now and not bother calling
1031 * tcp_dooptions(), etc.
1032 */
1033 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1034 (optlen > TCPOLEN_TSTAMP_APPA &&
1035 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1036 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1037 (th->th_flags & TH_SYN) == 0) {
1038 opti.ts_present = 1;
1039 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1040 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1041 optp = NULL; /* we've parsed the options */
1042 }
1043 }
1044 tiflags = th->th_flags;
1045
1046 /*
1047 * Locate pcb for segment.
1048 */
1049 findpcb:
1050 inp = NULL;
1051 #ifdef INET6
1052 in6p = NULL;
1053 #endif
1054 switch (af) {
1055 #ifdef INET
1056 case AF_INET:
1057 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1058 ip->ip_dst, th->th_dport);
1059 if (inp == 0) {
1060 ++tcpstat.tcps_pcbhashmiss;
1061 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1062 }
1063 #ifdef INET6
1064 if (inp == 0) {
1065 struct in6_addr s, d;
1066
1067 /* mapped addr case */
1068 bzero(&s, sizeof(s));
1069 s.s6_addr16[5] = htons(0xffff);
1070 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1071 bzero(&d, sizeof(d));
1072 d.s6_addr16[5] = htons(0xffff);
1073 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1074 in6p = in6_pcblookup_connect(&tcbtable, &s,
1075 th->th_sport, &d, th->th_dport, 0);
1076 if (in6p == 0) {
1077 ++tcpstat.tcps_pcbhashmiss;
1078 in6p = in6_pcblookup_bind(&tcbtable, &d,
1079 th->th_dport, 0);
1080 }
1081 }
1082 #endif
1083 #ifndef INET6
1084 if (inp == 0)
1085 #else
1086 if (inp == 0 && in6p == 0)
1087 #endif
1088 {
1089 ++tcpstat.tcps_noport;
1090 if (tcp_log_refused &&
1091 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1092 tcp4_log_refused(ip, th);
1093 }
1094 TCP_FIELDS_TO_HOST(th);
1095 goto dropwithreset_ratelim;
1096 }
1097 #if defined(IPSEC) || defined(FAST_IPSEC)
1098 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1099 ipsec4_in_reject(m, inp)) {
1100 ipsecstat.in_polvio++;
1101 goto drop;
1102 }
1103 #ifdef INET6
1104 else if (in6p &&
1105 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1106 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1107 ipsecstat.in_polvio++;
1108 goto drop;
1109 }
1110 #endif
1111 #endif /*IPSEC*/
1112 break;
1113 #endif /*INET*/
1114 #ifdef INET6
1115 case AF_INET6:
1116 {
1117 int faith;
1118
1119 #if defined(NFAITH) && NFAITH > 0
1120 faith = faithprefix(&ip6->ip6_dst);
1121 #else
1122 faith = 0;
1123 #endif
1124 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1125 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1126 if (in6p == NULL) {
1127 ++tcpstat.tcps_pcbhashmiss;
1128 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1129 th->th_dport, faith);
1130 }
1131 if (in6p == NULL) {
1132 ++tcpstat.tcps_noport;
1133 if (tcp_log_refused &&
1134 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1135 tcp6_log_refused(ip6, th);
1136 }
1137 TCP_FIELDS_TO_HOST(th);
1138 goto dropwithreset_ratelim;
1139 }
1140 #if defined(IPSEC) || defined(FAST_IPSEC)
1141 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1142 ipsec6_in_reject(m, in6p)) {
1143 ipsec6stat.in_polvio++;
1144 goto drop;
1145 }
1146 #endif /*IPSEC*/
1147 break;
1148 }
1149 #endif
1150 }
1151
1152 /*
1153 * If the state is CLOSED (i.e., TCB does not exist) then
1154 * all data in the incoming segment is discarded.
1155 * If the TCB exists but is in CLOSED state, it is embryonic,
1156 * but should either do a listen or a connect soon.
1157 */
1158 tp = NULL;
1159 so = NULL;
1160 if (inp) {
1161 tp = intotcpcb(inp);
1162 so = inp->inp_socket;
1163 }
1164 #ifdef INET6
1165 else if (in6p) {
1166 tp = in6totcpcb(in6p);
1167 so = in6p->in6p_socket;
1168 }
1169 #endif
1170 if (tp == 0) {
1171 TCP_FIELDS_TO_HOST(th);
1172 goto dropwithreset_ratelim;
1173 }
1174 if (tp->t_state == TCPS_CLOSED)
1175 goto drop;
1176
1177 /*
1178 * Checksum extended TCP header and data.
1179 */
1180 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1181 goto badcsum;
1182
1183 TCP_FIELDS_TO_HOST(th);
1184
1185 /* Unscale the window into a 32-bit value. */
1186 if ((tiflags & TH_SYN) == 0)
1187 tiwin = th->th_win << tp->snd_scale;
1188 else
1189 tiwin = th->th_win;
1190
1191 #ifdef INET6
1192 /* save packet options if user wanted */
1193 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1194 if (in6p->in6p_options) {
1195 m_freem(in6p->in6p_options);
1196 in6p->in6p_options = 0;
1197 }
1198 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1199 }
1200 #endif
1201
1202 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1203 union syn_cache_sa src;
1204 union syn_cache_sa dst;
1205
1206 bzero(&src, sizeof(src));
1207 bzero(&dst, sizeof(dst));
1208 switch (af) {
1209 #ifdef INET
1210 case AF_INET:
1211 src.sin.sin_len = sizeof(struct sockaddr_in);
1212 src.sin.sin_family = AF_INET;
1213 src.sin.sin_addr = ip->ip_src;
1214 src.sin.sin_port = th->th_sport;
1215
1216 dst.sin.sin_len = sizeof(struct sockaddr_in);
1217 dst.sin.sin_family = AF_INET;
1218 dst.sin.sin_addr = ip->ip_dst;
1219 dst.sin.sin_port = th->th_dport;
1220 break;
1221 #endif
1222 #ifdef INET6
1223 case AF_INET6:
1224 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1225 src.sin6.sin6_family = AF_INET6;
1226 src.sin6.sin6_addr = ip6->ip6_src;
1227 src.sin6.sin6_port = th->th_sport;
1228
1229 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1230 dst.sin6.sin6_family = AF_INET6;
1231 dst.sin6.sin6_addr = ip6->ip6_dst;
1232 dst.sin6.sin6_port = th->th_dport;
1233 break;
1234 #endif /* INET6 */
1235 default:
1236 goto badsyn; /*sanity*/
1237 }
1238
1239 if (so->so_options & SO_DEBUG) {
1240 #ifdef TCP_DEBUG
1241 ostate = tp->t_state;
1242 #endif
1243
1244 tcp_saveti = NULL;
1245 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1246 goto nosave;
1247
1248 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1249 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1250 if (!tcp_saveti)
1251 goto nosave;
1252 } else {
1253 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1254 if (!tcp_saveti)
1255 goto nosave;
1256 MCLAIM(m, &tcp_mowner);
1257 tcp_saveti->m_len = iphlen;
1258 m_copydata(m, 0, iphlen,
1259 mtod(tcp_saveti, caddr_t));
1260 }
1261
1262 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1263 m_freem(tcp_saveti);
1264 tcp_saveti = NULL;
1265 } else {
1266 tcp_saveti->m_len += sizeof(struct tcphdr);
1267 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1268 sizeof(struct tcphdr));
1269 }
1270 nosave:;
1271 }
1272 if (so->so_options & SO_ACCEPTCONN) {
1273 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1274 if (tiflags & TH_RST) {
1275 syn_cache_reset(&src.sa, &dst.sa, th);
1276 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1277 (TH_ACK|TH_SYN)) {
1278 /*
1279 * Received a SYN,ACK. This should
1280 * never happen while we are in
1281 * LISTEN. Send an RST.
1282 */
1283 goto badsyn;
1284 } else if (tiflags & TH_ACK) {
1285 so = syn_cache_get(&src.sa, &dst.sa,
1286 th, toff, tlen, so, m);
1287 if (so == NULL) {
1288 /*
1289 * We don't have a SYN for
1290 * this ACK; send an RST.
1291 */
1292 goto badsyn;
1293 } else if (so ==
1294 (struct socket *)(-1)) {
1295 /*
1296 * We were unable to create
1297 * the connection. If the
1298 * 3-way handshake was
1299 * completed, and RST has
1300 * been sent to the peer.
1301 * Since the mbuf might be
1302 * in use for the reply,
1303 * do not free it.
1304 */
1305 m = NULL;
1306 } else {
1307 /*
1308 * We have created a
1309 * full-blown connection.
1310 */
1311 tp = NULL;
1312 inp = NULL;
1313 #ifdef INET6
1314 in6p = NULL;
1315 #endif
1316 switch (so->so_proto->pr_domain->dom_family) {
1317 #ifdef INET
1318 case AF_INET:
1319 inp = sotoinpcb(so);
1320 tp = intotcpcb(inp);
1321 break;
1322 #endif
1323 #ifdef INET6
1324 case AF_INET6:
1325 in6p = sotoin6pcb(so);
1326 tp = in6totcpcb(in6p);
1327 break;
1328 #endif
1329 }
1330 if (tp == NULL)
1331 goto badsyn; /*XXX*/
1332 tiwin <<= tp->snd_scale;
1333 goto after_listen;
1334 }
1335 } else {
1336 /*
1337 * None of RST, SYN or ACK was set.
1338 * This is an invalid packet for a
1339 * TCB in LISTEN state. Send a RST.
1340 */
1341 goto badsyn;
1342 }
1343 } else {
1344 /*
1345 * Received a SYN.
1346 */
1347
1348 #ifdef INET6
1349 /*
1350 * If deprecated address is forbidden, we do
1351 * not accept SYN to deprecated interface
1352 * address to prevent any new inbound
1353 * connection from getting established.
1354 * When we do not accept SYN, we send a TCP
1355 * RST, with deprecated source address (instead
1356 * of dropping it). We compromise it as it is
1357 * much better for peer to send a RST, and
1358 * RST will be the final packet for the
1359 * exchange.
1360 *
1361 * If we do not forbid deprecated addresses, we
1362 * accept the SYN packet. RFC2462 does not
1363 * suggest dropping SYN in this case.
1364 * If we decipher RFC2462 5.5.4, it says like
1365 * this:
1366 * 1. use of deprecated addr with existing
1367 * communication is okay - "SHOULD continue
1368 * to be used"
1369 * 2. use of it with new communication:
1370 * (2a) "SHOULD NOT be used if alternate
1371 * address with sufficient scope is
1372 * available"
1373 * (2b) nothing mentioned otherwise.
1374 * Here we fall into (2b) case as we have no
1375 * choice in our source address selection - we
1376 * must obey the peer.
1377 *
1378 * The wording in RFC2462 is confusing, and
1379 * there are multiple description text for
1380 * deprecated address handling - worse, they
1381 * are not exactly the same. I believe 5.5.4
1382 * is the best one, so we follow 5.5.4.
1383 */
1384 if (af == AF_INET6 && !ip6_use_deprecated) {
1385 struct in6_ifaddr *ia6;
1386 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1387 &ip6->ip6_dst)) &&
1388 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1389 tp = NULL;
1390 goto dropwithreset;
1391 }
1392 }
1393 #endif
1394
1395 #ifdef IPSEC
1396 switch (af) {
1397 #ifdef INET
1398 case AF_INET:
1399 if (ipsec4_in_reject_so(m, so)) {
1400 ipsecstat.in_polvio++;
1401 tp = NULL;
1402 goto dropwithreset;
1403 }
1404 break;
1405 #endif
1406 #ifdef INET6
1407 case AF_INET6:
1408 if (ipsec6_in_reject_so(m, so)) {
1409 ipsec6stat.in_polvio++;
1410 tp = NULL;
1411 goto dropwithreset;
1412 }
1413 break;
1414 #endif
1415 }
1416 #endif
1417
1418 /*
1419 * LISTEN socket received a SYN
1420 * from itself? This can't possibly
1421 * be valid; drop the packet.
1422 */
1423 if (th->th_sport == th->th_dport) {
1424 int i;
1425
1426 switch (af) {
1427 #ifdef INET
1428 case AF_INET:
1429 i = in_hosteq(ip->ip_src, ip->ip_dst);
1430 break;
1431 #endif
1432 #ifdef INET6
1433 case AF_INET6:
1434 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1435 break;
1436 #endif
1437 default:
1438 i = 1;
1439 }
1440 if (i) {
1441 tcpstat.tcps_badsyn++;
1442 goto drop;
1443 }
1444 }
1445
1446 /*
1447 * SYN looks ok; create compressed TCP
1448 * state for it.
1449 */
1450 if (so->so_qlen <= so->so_qlimit &&
1451 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1452 so, m, optp, optlen, &opti))
1453 m = NULL;
1454 }
1455 goto drop;
1456 }
1457 }
1458
1459 after_listen:
1460 #ifdef DIAGNOSTIC
1461 /*
1462 * Should not happen now that all embryonic connections
1463 * are handled with compressed state.
1464 */
1465 if (tp->t_state == TCPS_LISTEN)
1466 panic("tcp_input: TCPS_LISTEN");
1467 #endif
1468
1469 /*
1470 * Segment received on connection.
1471 * Reset idle time and keep-alive timer.
1472 */
1473 tp->t_rcvtime = tcp_now;
1474 if (TCPS_HAVEESTABLISHED(tp->t_state))
1475 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1476
1477 /*
1478 * Process options.
1479 */
1480 #ifdef TCP_SIGNATURE
1481 if (optp || (tp->t_flags & TF_SIGNATURE))
1482 #else
1483 if (optp)
1484 #endif
1485 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1486 goto drop;
1487
1488 if (TCP_SACK_ENABLED(tp)) {
1489 tcp_del_sackholes(tp, th);
1490 }
1491
1492 if (opti.ts_present && opti.ts_ecr) {
1493 /*
1494 * Calculate the RTT from the returned time stamp and the
1495 * connection's time base. If the time stamp is later than
1496 * the current time, or is extremely old, fall back to non-1323
1497 * RTT calculation. Since ts_ecr is unsigned, we can test both
1498 * at the same time.
1499 */
1500 opti.ts_ecr = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1501 if (opti.ts_ecr > TCP_PAWS_IDLE)
1502 opti.ts_ecr = 0;
1503 }
1504
1505 /*
1506 * Header prediction: check for the two common cases
1507 * of a uni-directional data xfer. If the packet has
1508 * no control flags, is in-sequence, the window didn't
1509 * change and we're not retransmitting, it's a
1510 * candidate. If the length is zero and the ack moved
1511 * forward, we're the sender side of the xfer. Just
1512 * free the data acked & wake any higher level process
1513 * that was blocked waiting for space. If the length
1514 * is non-zero and the ack didn't move, we're the
1515 * receiver side. If we're getting packets in-order
1516 * (the reassembly queue is empty), add the data to
1517 * the socket buffer and note that we need a delayed ack.
1518 */
1519 if (tp->t_state == TCPS_ESTABLISHED &&
1520 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1521 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1522 th->th_seq == tp->rcv_nxt &&
1523 tiwin && tiwin == tp->snd_wnd &&
1524 tp->snd_nxt == tp->snd_max) {
1525
1526 /*
1527 * If last ACK falls within this segment's sequence numbers,
1528 * record the timestamp.
1529 */
1530 if (opti.ts_present &&
1531 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1532 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1533 tp->ts_recent_age = tcp_now;
1534 tp->ts_recent = opti.ts_val;
1535 }
1536
1537 if (tlen == 0) {
1538 /* Ack prediction. */
1539 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1540 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1541 tp->snd_cwnd >= tp->snd_wnd &&
1542 tp->t_partialacks < 0) {
1543 /*
1544 * this is a pure ack for outstanding data.
1545 */
1546 ++tcpstat.tcps_predack;
1547 if (opti.ts_present && opti.ts_ecr)
1548 tcp_xmit_timer(tp, opti.ts_ecr);
1549 else if (tp->t_rtttime &&
1550 SEQ_GT(th->th_ack, tp->t_rtseq))
1551 tcp_xmit_timer(tp,
1552 tcp_now - tp->t_rtttime);
1553 acked = th->th_ack - tp->snd_una;
1554 tcpstat.tcps_rcvackpack++;
1555 tcpstat.tcps_rcvackbyte += acked;
1556 ND6_HINT(tp);
1557
1558 if (acked > (tp->t_lastoff - tp->t_inoff))
1559 tp->t_lastm = NULL;
1560 sbdrop(&so->so_snd, acked);
1561 tp->t_lastoff -= acked;
1562
1563 tp->snd_una = th->th_ack;
1564 tp->snd_fack = tp->snd_una;
1565 if (SEQ_LT(tp->snd_high, tp->snd_una))
1566 tp->snd_high = tp->snd_una;
1567 m_freem(m);
1568
1569 /*
1570 * If all outstanding data are acked, stop
1571 * retransmit timer, otherwise restart timer
1572 * using current (possibly backed-off) value.
1573 * If process is waiting for space,
1574 * wakeup/selwakeup/signal. If data
1575 * are ready to send, let tcp_output
1576 * decide between more output or persist.
1577 */
1578 if (tp->snd_una == tp->snd_max)
1579 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1580 else if (TCP_TIMER_ISARMED(tp,
1581 TCPT_PERSIST) == 0)
1582 TCP_TIMER_ARM(tp, TCPT_REXMT,
1583 tp->t_rxtcur);
1584
1585 sowwakeup(so);
1586 if (so->so_snd.sb_cc)
1587 (void) tcp_output(tp);
1588 if (tcp_saveti)
1589 m_freem(tcp_saveti);
1590 return;
1591 }
1592 } else if (th->th_ack == tp->snd_una &&
1593 TAILQ_FIRST(&tp->segq) == NULL &&
1594 tlen <= sbspace(&so->so_rcv)) {
1595 /*
1596 * this is a pure, in-sequence data packet
1597 * with nothing on the reassembly queue and
1598 * we have enough buffer space to take it.
1599 */
1600 ++tcpstat.tcps_preddat;
1601 tp->rcv_sack_num = 0;
1602 tp->rcv_nxt += tlen;
1603 tcpstat.tcps_rcvpack++;
1604 tcpstat.tcps_rcvbyte += tlen;
1605 ND6_HINT(tp);
1606 /*
1607 * Drop TCP, IP headers and TCP options then add data
1608 * to socket buffer.
1609 */
1610 if (so->so_state & SS_CANTRCVMORE)
1611 m_freem(m);
1612 else {
1613 m_adj(m, toff + off);
1614 sbappendstream(&so->so_rcv, m);
1615 }
1616 sorwakeup(so);
1617 TCP_SETUP_ACK(tp, th);
1618 if (tp->t_flags & TF_ACKNOW)
1619 (void) tcp_output(tp);
1620 if (tcp_saveti)
1621 m_freem(tcp_saveti);
1622 return;
1623 }
1624 }
1625
1626 /*
1627 * Compute mbuf offset to TCP data segment.
1628 */
1629 hdroptlen = toff + off;
1630
1631 /*
1632 * Calculate amount of space in receive window,
1633 * and then do TCP input processing.
1634 * Receive window is amount of space in rcv queue,
1635 * but not less than advertised window.
1636 */
1637 { int win;
1638
1639 win = sbspace(&so->so_rcv);
1640 if (win < 0)
1641 win = 0;
1642 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1643 }
1644
1645 switch (tp->t_state) {
1646 case TCPS_LISTEN:
1647 /*
1648 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1649 */
1650 if (m->m_flags & (M_BCAST|M_MCAST))
1651 goto drop;
1652 switch (af) {
1653 #ifdef INET6
1654 case AF_INET6:
1655 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1656 goto drop;
1657 break;
1658 #endif /* INET6 */
1659 case AF_INET:
1660 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1661 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1662 goto drop;
1663 break;
1664 }
1665 break;
1666
1667 /*
1668 * If the state is SYN_SENT:
1669 * if seg contains an ACK, but not for our SYN, drop the input.
1670 * if seg contains a RST, then drop the connection.
1671 * if seg does not contain SYN, then drop it.
1672 * Otherwise this is an acceptable SYN segment
1673 * initialize tp->rcv_nxt and tp->irs
1674 * if seg contains ack then advance tp->snd_una
1675 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1676 * arrange for segment to be acked (eventually)
1677 * continue processing rest of data/controls, beginning with URG
1678 */
1679 case TCPS_SYN_SENT:
1680 if ((tiflags & TH_ACK) &&
1681 (SEQ_LEQ(th->th_ack, tp->iss) ||
1682 SEQ_GT(th->th_ack, tp->snd_max)))
1683 goto dropwithreset;
1684 if (tiflags & TH_RST) {
1685 if (tiflags & TH_ACK)
1686 tp = tcp_drop(tp, ECONNREFUSED);
1687 goto drop;
1688 }
1689 if ((tiflags & TH_SYN) == 0)
1690 goto drop;
1691 if (tiflags & TH_ACK) {
1692 tp->snd_una = th->th_ack;
1693 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1694 tp->snd_nxt = tp->snd_una;
1695 if (SEQ_LT(tp->snd_high, tp->snd_una))
1696 tp->snd_high = tp->snd_una;
1697 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1698 }
1699 tp->irs = th->th_seq;
1700 tcp_rcvseqinit(tp);
1701 tp->t_flags |= TF_ACKNOW;
1702 tcp_mss_from_peer(tp, opti.maxseg);
1703
1704 /*
1705 * Initialize the initial congestion window. If we
1706 * had to retransmit the SYN, we must initialize cwnd
1707 * to 1 segment (i.e. the Loss Window).
1708 */
1709 if (tp->t_flags & TF_SYN_REXMT)
1710 tp->snd_cwnd = tp->t_peermss;
1711 else {
1712 int ss = tcp_init_win;
1713 #ifdef INET
1714 if (inp != NULL && in_localaddr(inp->inp_faddr))
1715 ss = tcp_init_win_local;
1716 #endif
1717 #ifdef INET6
1718 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1719 ss = tcp_init_win_local;
1720 #endif
1721 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1722 }
1723
1724 tcp_rmx_rtt(tp);
1725 if (tiflags & TH_ACK) {
1726 tcpstat.tcps_connects++;
1727 soisconnected(so);
1728 tcp_established(tp);
1729 /* Do window scaling on this connection? */
1730 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1731 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1732 tp->snd_scale = tp->requested_s_scale;
1733 tp->rcv_scale = tp->request_r_scale;
1734 }
1735 TCP_REASS_LOCK(tp);
1736 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1737 TCP_REASS_UNLOCK(tp);
1738 /*
1739 * if we didn't have to retransmit the SYN,
1740 * use its rtt as our initial srtt & rtt var.
1741 */
1742 if (tp->t_rtttime)
1743 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1744 } else
1745 tp->t_state = TCPS_SYN_RECEIVED;
1746
1747 /*
1748 * Advance th->th_seq to correspond to first data byte.
1749 * If data, trim to stay within window,
1750 * dropping FIN if necessary.
1751 */
1752 th->th_seq++;
1753 if (tlen > tp->rcv_wnd) {
1754 todrop = tlen - tp->rcv_wnd;
1755 m_adj(m, -todrop);
1756 tlen = tp->rcv_wnd;
1757 tiflags &= ~TH_FIN;
1758 tcpstat.tcps_rcvpackafterwin++;
1759 tcpstat.tcps_rcvbyteafterwin += todrop;
1760 }
1761 tp->snd_wl1 = th->th_seq - 1;
1762 tp->rcv_up = th->th_seq;
1763 goto step6;
1764
1765 /*
1766 * If the state is SYN_RECEIVED:
1767 * If seg contains an ACK, but not for our SYN, drop the input
1768 * and generate an RST. See page 36, rfc793
1769 */
1770 case TCPS_SYN_RECEIVED:
1771 if ((tiflags & TH_ACK) &&
1772 (SEQ_LEQ(th->th_ack, tp->iss) ||
1773 SEQ_GT(th->th_ack, tp->snd_max)))
1774 goto dropwithreset;
1775 break;
1776 }
1777
1778 /*
1779 * States other than LISTEN or SYN_SENT.
1780 * First check timestamp, if present.
1781 * Then check that at least some bytes of segment are within
1782 * receive window. If segment begins before rcv_nxt,
1783 * drop leading data (and SYN); if nothing left, just ack.
1784 *
1785 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1786 * and it's less than ts_recent, drop it.
1787 */
1788 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1789 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1790
1791 /* Check to see if ts_recent is over 24 days old. */
1792 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1793 /*
1794 * Invalidate ts_recent. If this segment updates
1795 * ts_recent, the age will be reset later and ts_recent
1796 * will get a valid value. If it does not, setting
1797 * ts_recent to zero will at least satisfy the
1798 * requirement that zero be placed in the timestamp
1799 * echo reply when ts_recent isn't valid. The
1800 * age isn't reset until we get a valid ts_recent
1801 * because we don't want out-of-order segments to be
1802 * dropped when ts_recent is old.
1803 */
1804 tp->ts_recent = 0;
1805 } else {
1806 tcpstat.tcps_rcvduppack++;
1807 tcpstat.tcps_rcvdupbyte += tlen;
1808 tcpstat.tcps_pawsdrop++;
1809 tcp_new_dsack(tp, th->th_seq, tlen);
1810 goto dropafterack;
1811 }
1812 }
1813
1814 todrop = tp->rcv_nxt - th->th_seq;
1815 dupseg = FALSE;
1816 if (todrop > 0) {
1817 if (tiflags & TH_SYN) {
1818 tiflags &= ~TH_SYN;
1819 th->th_seq++;
1820 if (th->th_urp > 1)
1821 th->th_urp--;
1822 else {
1823 tiflags &= ~TH_URG;
1824 th->th_urp = 0;
1825 }
1826 todrop--;
1827 }
1828 if (todrop > tlen ||
1829 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1830 /*
1831 * Any valid FIN or RST must be to the left of the
1832 * window. At this point the FIN or RST must be a
1833 * duplicate or out of sequence; drop it.
1834 */
1835 if (tiflags & TH_RST)
1836 goto drop;
1837 tiflags &= ~(TH_FIN|TH_RST);
1838 /*
1839 * Send an ACK to resynchronize and drop any data.
1840 * But keep on processing for RST or ACK.
1841 */
1842 tp->t_flags |= TF_ACKNOW;
1843 todrop = tlen;
1844 dupseg = TRUE;
1845 tcpstat.tcps_rcvdupbyte += todrop;
1846 tcpstat.tcps_rcvduppack++;
1847 } else if ((tiflags & TH_RST) &&
1848 th->th_seq != tp->last_ack_sent) {
1849 /*
1850 * Test for reset before adjusting the sequence
1851 * number for overlapping data.
1852 */
1853 goto dropafterack_ratelim;
1854 } else {
1855 tcpstat.tcps_rcvpartduppack++;
1856 tcpstat.tcps_rcvpartdupbyte += todrop;
1857 }
1858 tcp_new_dsack(tp, th->th_seq, todrop);
1859 hdroptlen += todrop; /*drop from head afterwards*/
1860 th->th_seq += todrop;
1861 tlen -= todrop;
1862 if (th->th_urp > todrop)
1863 th->th_urp -= todrop;
1864 else {
1865 tiflags &= ~TH_URG;
1866 th->th_urp = 0;
1867 }
1868 }
1869
1870 /*
1871 * If new data are received on a connection after the
1872 * user processes are gone, then RST the other end.
1873 */
1874 if ((so->so_state & SS_NOFDREF) &&
1875 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1876 tp = tcp_close(tp);
1877 tcpstat.tcps_rcvafterclose++;
1878 goto dropwithreset;
1879 }
1880
1881 /*
1882 * If segment ends after window, drop trailing data
1883 * (and PUSH and FIN); if nothing left, just ACK.
1884 */
1885 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1886 if (todrop > 0) {
1887 tcpstat.tcps_rcvpackafterwin++;
1888 if (todrop >= tlen) {
1889 /*
1890 * The segment actually starts after the window.
1891 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1892 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1893 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1894 */
1895 tcpstat.tcps_rcvbyteafterwin += tlen;
1896 /*
1897 * If a new connection request is received
1898 * while in TIME_WAIT, drop the old connection
1899 * and start over if the sequence numbers
1900 * are above the previous ones.
1901 *
1902 * NOTE: We will checksum the packet again, and
1903 * so we need to put the header fields back into
1904 * network order!
1905 * XXX This kind of sucks, but we don't expect
1906 * XXX this to happen very often, so maybe it
1907 * XXX doesn't matter so much.
1908 */
1909 if (tiflags & TH_SYN &&
1910 tp->t_state == TCPS_TIME_WAIT &&
1911 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1912 iss = tcp_new_iss(tp, tp->snd_nxt);
1913 tp = tcp_close(tp);
1914 TCP_FIELDS_TO_NET(th);
1915 goto findpcb;
1916 }
1917 /*
1918 * If window is closed can only take segments at
1919 * window edge, and have to drop data and PUSH from
1920 * incoming segments. Continue processing, but
1921 * remember to ack. Otherwise, drop segment
1922 * and (if not RST) ack.
1923 */
1924 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1925 tp->t_flags |= TF_ACKNOW;
1926 tcpstat.tcps_rcvwinprobe++;
1927 } else
1928 goto dropafterack;
1929 } else
1930 tcpstat.tcps_rcvbyteafterwin += todrop;
1931 m_adj(m, -todrop);
1932 tlen -= todrop;
1933 tiflags &= ~(TH_PUSH|TH_FIN);
1934 }
1935
1936 /*
1937 * If last ACK falls within this segment's sequence numbers,
1938 * and the timestamp is newer, record it.
1939 */
1940 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1941 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1942 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1943 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1944 tp->ts_recent_age = tcp_now;
1945 tp->ts_recent = opti.ts_val;
1946 }
1947
1948 /*
1949 * If the RST bit is set examine the state:
1950 * SYN_RECEIVED STATE:
1951 * If passive open, return to LISTEN state.
1952 * If active open, inform user that connection was refused.
1953 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1954 * Inform user that connection was reset, and close tcb.
1955 * CLOSING, LAST_ACK, TIME_WAIT STATES
1956 * Close the tcb.
1957 */
1958 if (tiflags & TH_RST) {
1959 if (th->th_seq != tp->last_ack_sent)
1960 goto dropafterack_ratelim;
1961
1962 switch (tp->t_state) {
1963 case TCPS_SYN_RECEIVED:
1964 so->so_error = ECONNREFUSED;
1965 goto close;
1966
1967 case TCPS_ESTABLISHED:
1968 case TCPS_FIN_WAIT_1:
1969 case TCPS_FIN_WAIT_2:
1970 case TCPS_CLOSE_WAIT:
1971 so->so_error = ECONNRESET;
1972 close:
1973 tp->t_state = TCPS_CLOSED;
1974 tcpstat.tcps_drops++;
1975 tp = tcp_close(tp);
1976 goto drop;
1977
1978 case TCPS_CLOSING:
1979 case TCPS_LAST_ACK:
1980 case TCPS_TIME_WAIT:
1981 tp = tcp_close(tp);
1982 goto drop;
1983 }
1984 }
1985
1986 /*
1987 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
1988 * we must be in a synchronized state. RFC791 states (under RST
1989 * generation) that any unacceptable segment (an out-of-order SYN
1990 * qualifies) received in a synchronized state must elicit only an
1991 * empty acknowledgment segment ... and the connection remains in
1992 * the same state.
1993 */
1994 if (tiflags & TH_SYN) {
1995 if (tp->rcv_nxt == th->th_seq) {
1996 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
1997 TH_ACK);
1998 if (tcp_saveti)
1999 m_freem(tcp_saveti);
2000 return;
2001 }
2002
2003 goto dropafterack_ratelim;
2004 }
2005
2006 /*
2007 * If the ACK bit is off we drop the segment and return.
2008 */
2009 if ((tiflags & TH_ACK) == 0) {
2010 if (tp->t_flags & TF_ACKNOW)
2011 goto dropafterack;
2012 else
2013 goto drop;
2014 }
2015
2016 /*
2017 * Ack processing.
2018 */
2019 switch (tp->t_state) {
2020
2021 /*
2022 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2023 * ESTABLISHED state and continue processing, otherwise
2024 * send an RST.
2025 */
2026 case TCPS_SYN_RECEIVED:
2027 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2028 SEQ_GT(th->th_ack, tp->snd_max))
2029 goto dropwithreset;
2030 tcpstat.tcps_connects++;
2031 soisconnected(so);
2032 tcp_established(tp);
2033 /* Do window scaling? */
2034 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2035 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2036 tp->snd_scale = tp->requested_s_scale;
2037 tp->rcv_scale = tp->request_r_scale;
2038 }
2039 TCP_REASS_LOCK(tp);
2040 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2041 TCP_REASS_UNLOCK(tp);
2042 tp->snd_wl1 = th->th_seq - 1;
2043 /* fall into ... */
2044
2045 /*
2046 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2047 * ACKs. If the ack is in the range
2048 * tp->snd_una < th->th_ack <= tp->snd_max
2049 * then advance tp->snd_una to th->th_ack and drop
2050 * data from the retransmission queue. If this ACK reflects
2051 * more up to date window information we update our window information.
2052 */
2053 case TCPS_ESTABLISHED:
2054 case TCPS_FIN_WAIT_1:
2055 case TCPS_FIN_WAIT_2:
2056 case TCPS_CLOSE_WAIT:
2057 case TCPS_CLOSING:
2058 case TCPS_LAST_ACK:
2059 case TCPS_TIME_WAIT:
2060
2061 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2062 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2063 tcpstat.tcps_rcvdupack++;
2064 /*
2065 * If we have outstanding data (other than
2066 * a window probe), this is a completely
2067 * duplicate ack (ie, window info didn't
2068 * change), the ack is the biggest we've
2069 * seen and we've seen exactly our rexmt
2070 * threshhold of them, assume a packet
2071 * has been dropped and retransmit it.
2072 * Kludge snd_nxt & the congestion
2073 * window so we send only this one
2074 * packet.
2075 *
2076 * We know we're losing at the current
2077 * window size so do congestion avoidance
2078 * (set ssthresh to half the current window
2079 * and pull our congestion window back to
2080 * the new ssthresh).
2081 *
2082 * Dup acks mean that packets have left the
2083 * network (they're now cached at the receiver)
2084 * so bump cwnd by the amount in the receiver
2085 * to keep a constant cwnd packets in the
2086 * network.
2087 *
2088 * If we are using TCP/SACK, then enter
2089 * Fast Recovery if the receiver SACKs
2090 * data that is tcprexmtthresh * MSS
2091 * bytes past the last ACKed segment,
2092 * irrespective of the number of DupAcks.
2093 */
2094 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2095 th->th_ack != tp->snd_una)
2096 tp->t_dupacks = 0;
2097 else if (tp->t_partialacks < 0 &&
2098 (++tp->t_dupacks == tcprexmtthresh ||
2099 TCP_FACK_FASTRECOV(tp))) {
2100 tcp_seq onxt;
2101 u_int win;
2102
2103 if (tcp_do_newreno &&
2104 SEQ_LT(th->th_ack, tp->snd_high)) {
2105 /*
2106 * False fast retransmit after
2107 * timeout. Do not enter fast
2108 * recovery.
2109 */
2110 tp->t_dupacks = 0;
2111 break;
2112 }
2113
2114 onxt = tp->snd_nxt;
2115 win = min(tp->snd_wnd, tp->snd_cwnd) /
2116 2 / tp->t_segsz;
2117 if (win < 2)
2118 win = 2;
2119 tp->snd_ssthresh = win * tp->t_segsz;
2120 tp->snd_recover = tp->snd_max;
2121 tp->t_partialacks = 0;
2122 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2123 tp->t_rtttime = 0;
2124 if (TCP_SACK_ENABLED(tp)) {
2125 tp->t_dupacks = tcprexmtthresh;
2126 tp->sack_newdata = tp->snd_nxt;
2127 tp->snd_cwnd = tp->t_segsz;
2128 (void) tcp_output(tp);
2129 goto drop;
2130 }
2131 tp->snd_nxt = th->th_ack;
2132 tp->snd_cwnd = tp->t_segsz;
2133 (void) tcp_output(tp);
2134 tp->snd_cwnd = tp->snd_ssthresh +
2135 tp->t_segsz * tp->t_dupacks;
2136 if (SEQ_GT(onxt, tp->snd_nxt))
2137 tp->snd_nxt = onxt;
2138 goto drop;
2139 } else if (tp->t_dupacks > tcprexmtthresh) {
2140 tp->snd_cwnd += tp->t_segsz;
2141 (void) tcp_output(tp);
2142 goto drop;
2143 }
2144 } else {
2145 /*
2146 * If the ack appears to be very old, only
2147 * allow data that is in-sequence. This
2148 * makes it somewhat more difficult to insert
2149 * forged data by guessing sequence numbers.
2150 * Sent an ack to try to update the send
2151 * sequence number on the other side.
2152 */
2153 if (tlen && th->th_seq != tp->rcv_nxt &&
2154 SEQ_LT(th->th_ack,
2155 tp->snd_una - tp->max_sndwnd))
2156 goto dropafterack;
2157 }
2158 break;
2159 }
2160 /*
2161 * If the congestion window was inflated to account
2162 * for the other side's cached packets, retract it.
2163 */
2164 if (TCP_SACK_ENABLED(tp))
2165 tcp_sack_newack(tp, th);
2166 else if (tcp_do_newreno)
2167 tcp_newreno_newack(tp, th);
2168 else
2169 tcp_reno_newack(tp, th);
2170 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2171 tcpstat.tcps_rcvacktoomuch++;
2172 goto dropafterack;
2173 }
2174 acked = th->th_ack - tp->snd_una;
2175 tcpstat.tcps_rcvackpack++;
2176 tcpstat.tcps_rcvackbyte += acked;
2177
2178 /*
2179 * If we have a timestamp reply, update smoothed
2180 * round trip time. If no timestamp is present but
2181 * transmit timer is running and timed sequence
2182 * number was acked, update smoothed round trip time.
2183 * Since we now have an rtt measurement, cancel the
2184 * timer backoff (cf., Phil Karn's retransmit alg.).
2185 * Recompute the initial retransmit timer.
2186 */
2187 if (opti.ts_present && opti.ts_ecr)
2188 tcp_xmit_timer(tp, opti.ts_ecr);
2189 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2190 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2191
2192 /*
2193 * If all outstanding data is acked, stop retransmit
2194 * timer and remember to restart (more output or persist).
2195 * If there is more data to be acked, restart retransmit
2196 * timer, using current (possibly backed-off) value.
2197 */
2198 if (th->th_ack == tp->snd_max) {
2199 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2200 needoutput = 1;
2201 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2202 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2203 /*
2204 * When new data is acked, open the congestion window.
2205 * If the window gives us less than ssthresh packets
2206 * in flight, open exponentially (segsz per packet).
2207 * Otherwise open linearly: segsz per window
2208 * (segsz^2 / cwnd per packet), plus a constant
2209 * fraction of a packet (segsz/8) to help larger windows
2210 * open quickly enough.
2211 *
2212 * If we are still in fast recovery (meaning we are using
2213 * NewReno and we have only received partial acks), do not
2214 * inflate the window yet.
2215 */
2216 if (tp->t_partialacks < 0) {
2217 u_int cw = tp->snd_cwnd;
2218 u_int incr = tp->t_segsz;
2219
2220 if (cw >= tp->snd_ssthresh)
2221 incr = incr * incr / cw;
2222 tp->snd_cwnd = min(cw + incr,
2223 TCP_MAXWIN << tp->snd_scale);
2224 }
2225 ND6_HINT(tp);
2226 if (acked > so->so_snd.sb_cc) {
2227 tp->snd_wnd -= so->so_snd.sb_cc;
2228 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2229 ourfinisacked = 1;
2230 } else {
2231 if (acked > (tp->t_lastoff - tp->t_inoff))
2232 tp->t_lastm = NULL;
2233 sbdrop(&so->so_snd, acked);
2234 tp->t_lastoff -= acked;
2235 tp->snd_wnd -= acked;
2236 ourfinisacked = 0;
2237 }
2238 sowwakeup(so);
2239 tp->snd_una = th->th_ack;
2240 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2241 tp->snd_fack = tp->snd_una;
2242 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2243 tp->snd_nxt = tp->snd_una;
2244 if (SEQ_LT(tp->snd_high, tp->snd_una))
2245 tp->snd_high = tp->snd_una;
2246
2247 switch (tp->t_state) {
2248
2249 /*
2250 * In FIN_WAIT_1 STATE in addition to the processing
2251 * for the ESTABLISHED state if our FIN is now acknowledged
2252 * then enter FIN_WAIT_2.
2253 */
2254 case TCPS_FIN_WAIT_1:
2255 if (ourfinisacked) {
2256 /*
2257 * If we can't receive any more
2258 * data, then closing user can proceed.
2259 * Starting the timer is contrary to the
2260 * specification, but if we don't get a FIN
2261 * we'll hang forever.
2262 */
2263 if (so->so_state & SS_CANTRCVMORE) {
2264 soisdisconnected(so);
2265 if (tcp_maxidle > 0)
2266 TCP_TIMER_ARM(tp, TCPT_2MSL,
2267 tcp_maxidle);
2268 }
2269 tp->t_state = TCPS_FIN_WAIT_2;
2270 }
2271 break;
2272
2273 /*
2274 * In CLOSING STATE in addition to the processing for
2275 * the ESTABLISHED state if the ACK acknowledges our FIN
2276 * then enter the TIME-WAIT state, otherwise ignore
2277 * the segment.
2278 */
2279 case TCPS_CLOSING:
2280 if (ourfinisacked) {
2281 tp->t_state = TCPS_TIME_WAIT;
2282 tcp_canceltimers(tp);
2283 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2284 soisdisconnected(so);
2285 }
2286 break;
2287
2288 /*
2289 * In LAST_ACK, we may still be waiting for data to drain
2290 * and/or to be acked, as well as for the ack of our FIN.
2291 * If our FIN is now acknowledged, delete the TCB,
2292 * enter the closed state and return.
2293 */
2294 case TCPS_LAST_ACK:
2295 if (ourfinisacked) {
2296 tp = tcp_close(tp);
2297 goto drop;
2298 }
2299 break;
2300
2301 /*
2302 * In TIME_WAIT state the only thing that should arrive
2303 * is a retransmission of the remote FIN. Acknowledge
2304 * it and restart the finack timer.
2305 */
2306 case TCPS_TIME_WAIT:
2307 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2308 goto dropafterack;
2309 }
2310 }
2311
2312 step6:
2313 /*
2314 * Update window information.
2315 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2316 */
2317 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2318 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2319 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2320 /* keep track of pure window updates */
2321 if (tlen == 0 &&
2322 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2323 tcpstat.tcps_rcvwinupd++;
2324 tp->snd_wnd = tiwin;
2325 tp->snd_wl1 = th->th_seq;
2326 tp->snd_wl2 = th->th_ack;
2327 if (tp->snd_wnd > tp->max_sndwnd)
2328 tp->max_sndwnd = tp->snd_wnd;
2329 needoutput = 1;
2330 }
2331
2332 /*
2333 * Process segments with URG.
2334 */
2335 if ((tiflags & TH_URG) && th->th_urp &&
2336 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2337 /*
2338 * This is a kludge, but if we receive and accept
2339 * random urgent pointers, we'll crash in
2340 * soreceive. It's hard to imagine someone
2341 * actually wanting to send this much urgent data.
2342 */
2343 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2344 th->th_urp = 0; /* XXX */
2345 tiflags &= ~TH_URG; /* XXX */
2346 goto dodata; /* XXX */
2347 }
2348 /*
2349 * If this segment advances the known urgent pointer,
2350 * then mark the data stream. This should not happen
2351 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2352 * a FIN has been received from the remote side.
2353 * In these states we ignore the URG.
2354 *
2355 * According to RFC961 (Assigned Protocols),
2356 * the urgent pointer points to the last octet
2357 * of urgent data. We continue, however,
2358 * to consider it to indicate the first octet
2359 * of data past the urgent section as the original
2360 * spec states (in one of two places).
2361 */
2362 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2363 tp->rcv_up = th->th_seq + th->th_urp;
2364 so->so_oobmark = so->so_rcv.sb_cc +
2365 (tp->rcv_up - tp->rcv_nxt) - 1;
2366 if (so->so_oobmark == 0)
2367 so->so_state |= SS_RCVATMARK;
2368 sohasoutofband(so);
2369 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2370 }
2371 /*
2372 * Remove out of band data so doesn't get presented to user.
2373 * This can happen independent of advancing the URG pointer,
2374 * but if two URG's are pending at once, some out-of-band
2375 * data may creep in... ick.
2376 */
2377 if (th->th_urp <= (u_int16_t) tlen
2378 #ifdef SO_OOBINLINE
2379 && (so->so_options & SO_OOBINLINE) == 0
2380 #endif
2381 )
2382 tcp_pulloutofband(so, th, m, hdroptlen);
2383 } else
2384 /*
2385 * If no out of band data is expected,
2386 * pull receive urgent pointer along
2387 * with the receive window.
2388 */
2389 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2390 tp->rcv_up = tp->rcv_nxt;
2391 dodata: /* XXX */
2392
2393 /*
2394 * Process the segment text, merging it into the TCP sequencing queue,
2395 * and arranging for acknowledgement of receipt if necessary.
2396 * This process logically involves adjusting tp->rcv_wnd as data
2397 * is presented to the user (this happens in tcp_usrreq.c,
2398 * case PRU_RCVD). If a FIN has already been received on this
2399 * connection then we just ignore the text.
2400 */
2401 if ((tlen || (tiflags & TH_FIN)) &&
2402 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2403 /*
2404 * Insert segment ti into reassembly queue of tcp with
2405 * control block tp. Return TH_FIN if reassembly now includes
2406 * a segment with FIN. The macro form does the common case
2407 * inline (segment is the next to be received on an
2408 * established connection, and the queue is empty),
2409 * avoiding linkage into and removal from the queue and
2410 * repetition of various conversions.
2411 * Set DELACK for segments received in order, but ack
2412 * immediately when segments are out of order
2413 * (so fast retransmit can work).
2414 */
2415 /* NOTE: this was TCP_REASS() macro, but used only once */
2416 TCP_REASS_LOCK(tp);
2417 if (th->th_seq == tp->rcv_nxt &&
2418 TAILQ_FIRST(&tp->segq) == NULL &&
2419 tp->t_state == TCPS_ESTABLISHED) {
2420 TCP_SETUP_ACK(tp, th);
2421 tp->rcv_nxt += tlen;
2422 tiflags = th->th_flags & TH_FIN;
2423 tcpstat.tcps_rcvpack++;
2424 tcpstat.tcps_rcvbyte += tlen;
2425 ND6_HINT(tp);
2426 if (so->so_state & SS_CANTRCVMORE)
2427 m_freem(m);
2428 else {
2429 m_adj(m, hdroptlen);
2430 sbappendstream(&(so)->so_rcv, m);
2431 }
2432 sorwakeup(so);
2433 } else {
2434 m_adj(m, hdroptlen);
2435 tiflags = tcp_reass(tp, th, m, &tlen);
2436 tcp_update_sack_list(tp);
2437 tp->t_flags |= TF_ACKNOW;
2438 }
2439 TCP_REASS_UNLOCK(tp);
2440
2441 /*
2442 * Note the amount of data that peer has sent into
2443 * our window, in order to estimate the sender's
2444 * buffer size.
2445 */
2446 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2447 } else {
2448 m_freem(m);
2449 m = NULL;
2450 tiflags &= ~TH_FIN;
2451 }
2452
2453 /*
2454 * If FIN is received ACK the FIN and let the user know
2455 * that the connection is closing. Ignore a FIN received before
2456 * the connection is fully established.
2457 */
2458 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2459 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2460 socantrcvmore(so);
2461 tp->t_flags |= TF_ACKNOW;
2462 tp->rcv_nxt++;
2463 }
2464 switch (tp->t_state) {
2465
2466 /*
2467 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2468 */
2469 case TCPS_ESTABLISHED:
2470 tp->t_state = TCPS_CLOSE_WAIT;
2471 break;
2472
2473 /*
2474 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2475 * enter the CLOSING state.
2476 */
2477 case TCPS_FIN_WAIT_1:
2478 tp->t_state = TCPS_CLOSING;
2479 break;
2480
2481 /*
2482 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2483 * starting the time-wait timer, turning off the other
2484 * standard timers.
2485 */
2486 case TCPS_FIN_WAIT_2:
2487 tp->t_state = TCPS_TIME_WAIT;
2488 tcp_canceltimers(tp);
2489 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2490 soisdisconnected(so);
2491 break;
2492
2493 /*
2494 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2495 */
2496 case TCPS_TIME_WAIT:
2497 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2498 break;
2499 }
2500 }
2501 #ifdef TCP_DEBUG
2502 if (so->so_options & SO_DEBUG)
2503 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2504 #endif
2505
2506 /*
2507 * Return any desired output.
2508 */
2509 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2510 tcp_update_sack_list(tp);
2511 (void) tcp_output(tp);
2512 }
2513 if (tcp_saveti)
2514 m_freem(tcp_saveti);
2515 return;
2516
2517 badsyn:
2518 /*
2519 * Received a bad SYN. Increment counters and dropwithreset.
2520 */
2521 tcpstat.tcps_badsyn++;
2522 tp = NULL;
2523 goto dropwithreset;
2524
2525 dropafterack:
2526 /*
2527 * Generate an ACK dropping incoming segment if it occupies
2528 * sequence space, where the ACK reflects our state.
2529 */
2530 if (tiflags & TH_RST)
2531 goto drop;
2532 goto dropafterack2;
2533
2534 dropafterack_ratelim:
2535 /*
2536 * We may want to rate-limit ACKs against SYN/RST attack.
2537 */
2538 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2539 tcp_ackdrop_ppslim) == 0) {
2540 /* XXX stat */
2541 goto drop;
2542 }
2543 /* ...fall into dropafterack2... */
2544
2545 dropafterack2:
2546 m_freem(m);
2547 tp->t_flags |= TF_ACKNOW;
2548 tcp_update_sack_list(tp);
2549 (void) tcp_output(tp);
2550 if (tcp_saveti)
2551 m_freem(tcp_saveti);
2552 return;
2553
2554 dropwithreset_ratelim:
2555 /*
2556 * We may want to rate-limit RSTs in certain situations,
2557 * particularly if we are sending an RST in response to
2558 * an attempt to connect to or otherwise communicate with
2559 * a port for which we have no socket.
2560 */
2561 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2562 tcp_rst_ppslim) == 0) {
2563 /* XXX stat */
2564 goto drop;
2565 }
2566 /* ...fall into dropwithreset... */
2567
2568 dropwithreset:
2569 /*
2570 * Generate a RST, dropping incoming segment.
2571 * Make ACK acceptable to originator of segment.
2572 */
2573 if (tiflags & TH_RST)
2574 goto drop;
2575
2576 switch (af) {
2577 #ifdef INET6
2578 case AF_INET6:
2579 /* For following calls to tcp_respond */
2580 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2581 goto drop;
2582 break;
2583 #endif /* INET6 */
2584 case AF_INET:
2585 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2586 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2587 goto drop;
2588 }
2589
2590 if (tiflags & TH_ACK)
2591 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2592 else {
2593 if (tiflags & TH_SYN)
2594 tlen++;
2595 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2596 TH_RST|TH_ACK);
2597 }
2598 if (tcp_saveti)
2599 m_freem(tcp_saveti);
2600 return;
2601
2602 badcsum:
2603 drop:
2604 /*
2605 * Drop space held by incoming segment and return.
2606 */
2607 if (tp) {
2608 if (tp->t_inpcb)
2609 so = tp->t_inpcb->inp_socket;
2610 #ifdef INET6
2611 else if (tp->t_in6pcb)
2612 so = tp->t_in6pcb->in6p_socket;
2613 #endif
2614 else
2615 so = NULL;
2616 #ifdef TCP_DEBUG
2617 if (so && (so->so_options & SO_DEBUG) != 0)
2618 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2619 #endif
2620 }
2621 if (tcp_saveti)
2622 m_freem(tcp_saveti);
2623 m_freem(m);
2624 return;
2625 }
2626
2627 #ifdef TCP_SIGNATURE
2628 int
2629 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2630 {
2631
2632 MD5Update(fstate, (u_char *)data, len);
2633 return (0);
2634 }
2635
2636 struct secasvar *
2637 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2638 {
2639 struct secasvar *sav;
2640 #ifdef FAST_IPSEC
2641 union sockaddr_union dst;
2642 #endif
2643 struct ip *ip;
2644 struct ip6_hdr *ip6;
2645
2646 ip = mtod(m, struct ip *);
2647 switch (ip->ip_v) {
2648 case 4:
2649 ip = mtod(m, struct ip *);
2650 ip6 = NULL;
2651 break;
2652 case 6:
2653 ip = NULL;
2654 ip6 = mtod(m, struct ip6_hdr *);
2655 break;
2656 default:
2657 return (NULL);
2658 }
2659
2660 #ifdef FAST_IPSEC
2661 /* Extract the destination from the IP header in the mbuf. */
2662 bzero(&dst, sizeof(union sockaddr_union));
2663 dst.sa.sa_len = sizeof(struct sockaddr_in);
2664 dst.sa.sa_family = AF_INET;
2665 dst.sin.sin_addr = ip->ip_dst;
2666
2667 /*
2668 * Look up an SADB entry which matches the address of the peer.
2669 */
2670 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2671 #else
2672 if (ip)
2673 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2674 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2675 htonl(TCP_SIG_SPI));
2676 else
2677 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2678 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2679 htonl(TCP_SIG_SPI));
2680 #endif
2681
2682 return (sav); /* freesav must be performed by caller */
2683 }
2684
2685 int
2686 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2687 struct secasvar *sav, char *sig)
2688 {
2689 MD5_CTX ctx;
2690 struct ip *ip;
2691 struct ipovly *ipovly;
2692 struct ip6_hdr *ip6;
2693 struct ippseudo ippseudo;
2694 struct ip6_hdr_pseudo ip6pseudo;
2695 struct tcphdr th0;
2696 int l, tcphdrlen;
2697
2698 if (sav == NULL)
2699 return (-1);
2700
2701 tcphdrlen = th->th_off * 4;
2702
2703 switch (mtod(m, struct ip *)->ip_v) {
2704 case 4:
2705 ip = mtod(m, struct ip *);
2706 ip6 = NULL;
2707 break;
2708 case 6:
2709 ip = NULL;
2710 ip6 = mtod(m, struct ip6_hdr *);
2711 break;
2712 default:
2713 return (-1);
2714 }
2715
2716 MD5Init(&ctx);
2717
2718 if (ip) {
2719 memset(&ippseudo, 0, sizeof(ippseudo));
2720 ipovly = (struct ipovly *)ip;
2721 ippseudo.ippseudo_src = ipovly->ih_src;
2722 ippseudo.ippseudo_dst = ipovly->ih_dst;
2723 ippseudo.ippseudo_pad = 0;
2724 ippseudo.ippseudo_p = IPPROTO_TCP;
2725 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2726 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2727 } else {
2728 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2729 ip6pseudo.ip6ph_src = ip6->ip6_src;
2730 in6_clearscope(&ip6pseudo.ip6ph_src);
2731 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2732 in6_clearscope(&ip6pseudo.ip6ph_dst);
2733 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2734 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2735 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2736 }
2737
2738 th0 = *th;
2739 th0.th_sum = 0;
2740 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2741
2742 l = m->m_pkthdr.len - thoff - tcphdrlen;
2743 if (l > 0)
2744 m_apply(m, thoff + tcphdrlen,
2745 m->m_pkthdr.len - thoff - tcphdrlen,
2746 tcp_signature_apply, &ctx);
2747
2748 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2749 MD5Final(sig, &ctx);
2750
2751 return (0);
2752 }
2753 #endif
2754
2755 int
2756 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2757 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2758 {
2759 u_int16_t mss;
2760 int opt, optlen = 0;
2761 #ifdef TCP_SIGNATURE
2762 caddr_t sigp = NULL;
2763 char sigbuf[TCP_SIGLEN];
2764 struct secasvar *sav = NULL;
2765 #endif
2766
2767 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2768 opt = cp[0];
2769 if (opt == TCPOPT_EOL)
2770 break;
2771 if (opt == TCPOPT_NOP)
2772 optlen = 1;
2773 else {
2774 if (cnt < 2)
2775 break;
2776 optlen = cp[1];
2777 if (optlen < 2 || optlen > cnt)
2778 break;
2779 }
2780 switch (opt) {
2781
2782 default:
2783 continue;
2784
2785 case TCPOPT_MAXSEG:
2786 if (optlen != TCPOLEN_MAXSEG)
2787 continue;
2788 if (!(th->th_flags & TH_SYN))
2789 continue;
2790 bcopy(cp + 2, &mss, sizeof(mss));
2791 oi->maxseg = ntohs(mss);
2792 break;
2793
2794 case TCPOPT_WINDOW:
2795 if (optlen != TCPOLEN_WINDOW)
2796 continue;
2797 if (!(th->th_flags & TH_SYN))
2798 continue;
2799 tp->t_flags |= TF_RCVD_SCALE;
2800 tp->requested_s_scale = cp[2];
2801 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2802 #if 0 /*XXX*/
2803 char *p;
2804
2805 if (ip)
2806 p = ntohl(ip->ip_src);
2807 #ifdef INET6
2808 else if (ip6)
2809 p = ip6_sprintf(&ip6->ip6_src);
2810 #endif
2811 else
2812 p = "(unknown)";
2813 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2814 "assuming %d\n",
2815 tp->requested_s_scale, p,
2816 TCP_MAX_WINSHIFT);
2817 #else
2818 log(LOG_ERR, "TCP: invalid wscale %d, "
2819 "assuming %d\n",
2820 tp->requested_s_scale,
2821 TCP_MAX_WINSHIFT);
2822 #endif
2823 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2824 }
2825 break;
2826
2827 case TCPOPT_TIMESTAMP:
2828 if (optlen != TCPOLEN_TIMESTAMP)
2829 continue;
2830 oi->ts_present = 1;
2831 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2832 NTOHL(oi->ts_val);
2833 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2834 NTOHL(oi->ts_ecr);
2835
2836 /*
2837 * A timestamp received in a SYN makes
2838 * it ok to send timestamp requests and replies.
2839 */
2840 if (th->th_flags & TH_SYN) {
2841 tp->t_flags |= TF_RCVD_TSTMP;
2842 tp->ts_recent = oi->ts_val;
2843 tp->ts_recent_age = tcp_now;
2844 }
2845 break;
2846 case TCPOPT_SACK_PERMITTED:
2847 if (optlen != TCPOLEN_SACK_PERMITTED)
2848 continue;
2849 if (!(th->th_flags & TH_SYN))
2850 continue;
2851 if (tcp_do_sack) {
2852 tp->t_flags |= TF_SACK_PERMIT;
2853 tp->t_flags |= TF_WILL_SACK;
2854 }
2855 break;
2856
2857 case TCPOPT_SACK:
2858 tcp_sack_option(tp, th, cp, optlen);
2859 break;
2860 #ifdef TCP_SIGNATURE
2861 case TCPOPT_SIGNATURE:
2862 if (optlen != TCPOLEN_SIGNATURE)
2863 continue;
2864 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2865 return (-1);
2866
2867 sigp = sigbuf;
2868 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2869 memset(cp + 2, 0, TCP_SIGLEN);
2870 tp->t_flags |= TF_SIGNATURE;
2871 break;
2872 #endif
2873 }
2874 }
2875
2876 #ifdef TCP_SIGNATURE
2877 if (tp->t_flags & TF_SIGNATURE) {
2878
2879 sav = tcp_signature_getsav(m, th);
2880
2881 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2882 return (-1);
2883 }
2884
2885 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2886 if (sav == NULL)
2887 return (-1);
2888 #ifdef FAST_IPSEC
2889 KEY_FREESAV(&sav);
2890 #else
2891 key_freesav(sav);
2892 #endif
2893 return (-1);
2894 }
2895
2896 if (sigp) {
2897 char sig[TCP_SIGLEN];
2898
2899 TCP_FIELDS_TO_NET(th);
2900 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2901 TCP_FIELDS_TO_HOST(th);
2902 if (sav == NULL)
2903 return (-1);
2904 #ifdef FAST_IPSEC
2905 KEY_FREESAV(&sav);
2906 #else
2907 key_freesav(sav);
2908 #endif
2909 return (-1);
2910 }
2911 TCP_FIELDS_TO_HOST(th);
2912
2913 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2914 tcpstat.tcps_badsig++;
2915 if (sav == NULL)
2916 return (-1);
2917 #ifdef FAST_IPSEC
2918 KEY_FREESAV(&sav);
2919 #else
2920 key_freesav(sav);
2921 #endif
2922 return (-1);
2923 } else
2924 tcpstat.tcps_goodsig++;
2925
2926 key_sa_recordxfer(sav, m);
2927 #ifdef FAST_IPSEC
2928 KEY_FREESAV(&sav);
2929 #else
2930 key_freesav(sav);
2931 #endif
2932 }
2933 #endif
2934
2935 return (0);
2936 }
2937
2938 /*
2939 * Pull out of band byte out of a segment so
2940 * it doesn't appear in the user's data queue.
2941 * It is still reflected in the segment length for
2942 * sequencing purposes.
2943 */
2944 void
2945 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
2946 struct mbuf *m, int off)
2947 {
2948 int cnt = off + th->th_urp - 1;
2949
2950 while (cnt >= 0) {
2951 if (m->m_len > cnt) {
2952 char *cp = mtod(m, caddr_t) + cnt;
2953 struct tcpcb *tp = sototcpcb(so);
2954
2955 tp->t_iobc = *cp;
2956 tp->t_oobflags |= TCPOOB_HAVEDATA;
2957 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2958 m->m_len--;
2959 return;
2960 }
2961 cnt -= m->m_len;
2962 m = m->m_next;
2963 if (m == 0)
2964 break;
2965 }
2966 panic("tcp_pulloutofband");
2967 }
2968
2969 /*
2970 * Collect new round-trip time estimate
2971 * and update averages and current timeout.
2972 */
2973 void
2974 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
2975 {
2976 int32_t delta;
2977
2978 tcpstat.tcps_rttupdated++;
2979 if (tp->t_srtt != 0) {
2980 /*
2981 * srtt is stored as fixed point with 3 bits after the
2982 * binary point (i.e., scaled by 8). The following magic
2983 * is equivalent to the smoothing algorithm in rfc793 with
2984 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
2985 * point). Adjust rtt to origin 0.
2986 */
2987 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
2988 if ((tp->t_srtt += delta) <= 0)
2989 tp->t_srtt = 1 << 2;
2990 /*
2991 * We accumulate a smoothed rtt variance (actually, a
2992 * smoothed mean difference), then set the retransmit
2993 * timer to smoothed rtt + 4 times the smoothed variance.
2994 * rttvar is stored as fixed point with 2 bits after the
2995 * binary point (scaled by 4). The following is
2996 * equivalent to rfc793 smoothing with an alpha of .75
2997 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
2998 * rfc793's wired-in beta.
2999 */
3000 if (delta < 0)
3001 delta = -delta;
3002 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3003 if ((tp->t_rttvar += delta) <= 0)
3004 tp->t_rttvar = 1 << 2;
3005 } else {
3006 /*
3007 * No rtt measurement yet - use the unsmoothed rtt.
3008 * Set the variance to half the rtt (so our first
3009 * retransmit happens at 3*rtt).
3010 */
3011 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3012 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3013 }
3014 tp->t_rtttime = 0;
3015 tp->t_rxtshift = 0;
3016
3017 /*
3018 * the retransmit should happen at rtt + 4 * rttvar.
3019 * Because of the way we do the smoothing, srtt and rttvar
3020 * will each average +1/2 tick of bias. When we compute
3021 * the retransmit timer, we want 1/2 tick of rounding and
3022 * 1 extra tick because of +-1/2 tick uncertainty in the
3023 * firing of the timer. The bias will give us exactly the
3024 * 1.5 tick we need. But, because the bias is
3025 * statistical, we have to test that we don't drop below
3026 * the minimum feasible timer (which is 2 ticks).
3027 */
3028 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3029 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3030
3031 /*
3032 * We received an ack for a packet that wasn't retransmitted;
3033 * it is probably safe to discard any error indications we've
3034 * received recently. This isn't quite right, but close enough
3035 * for now (a route might have failed after we sent a segment,
3036 * and the return path might not be symmetrical).
3037 */
3038 tp->t_softerror = 0;
3039 }
3040
3041 void
3042 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
3043 {
3044 if (tp->t_partialacks < 0) {
3045 /*
3046 * We were not in fast recovery. Reset the duplicate ack
3047 * counter.
3048 */
3049 tp->t_dupacks = 0;
3050 } else {
3051 /*
3052 * Clamp the congestion window to the crossover point and
3053 * exit fast recovery.
3054 */
3055 if (tp->snd_cwnd > tp->snd_ssthresh)
3056 tp->snd_cwnd = tp->snd_ssthresh;
3057 tp->t_partialacks = -1;
3058 tp->t_dupacks = 0;
3059 }
3060 }
3061
3062 /*
3063 * Implement the NewReno response to a new ack, checking for partial acks in
3064 * fast recovery.
3065 */
3066 void
3067 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
3068 {
3069 if (tp->t_partialacks < 0) {
3070 /*
3071 * We were not in fast recovery. Reset the duplicate ack
3072 * counter.
3073 */
3074 tp->t_dupacks = 0;
3075 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3076 /*
3077 * This is a partial ack. Retransmit the first unacknowledged
3078 * segment and deflate the congestion window by the amount of
3079 * acknowledged data. Do not exit fast recovery.
3080 */
3081 tcp_seq onxt = tp->snd_nxt;
3082 u_long ocwnd = tp->snd_cwnd;
3083
3084 /*
3085 * snd_una has not yet been updated and the socket's send
3086 * buffer has not yet drained off the ACK'd data, so we
3087 * have to leave snd_una as it was to get the correct data
3088 * offset in tcp_output().
3089 */
3090 if (++tp->t_partialacks == 1)
3091 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3092 tp->t_rtttime = 0;
3093 tp->snd_nxt = th->th_ack;
3094 /*
3095 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3096 * is not yet updated when we're called.
3097 */
3098 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3099 (void) tcp_output(tp);
3100 tp->snd_cwnd = ocwnd;
3101 if (SEQ_GT(onxt, tp->snd_nxt))
3102 tp->snd_nxt = onxt;
3103 /*
3104 * Partial window deflation. Relies on fact that tp->snd_una
3105 * not updated yet.
3106 */
3107 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3108 } else {
3109 /*
3110 * Complete ack. Inflate the congestion window to ssthresh
3111 * and exit fast recovery.
3112 *
3113 * Window inflation should have left us with approx.
3114 * snd_ssthresh outstanding data. But in case we
3115 * would be inclined to send a burst, better to do
3116 * it via the slow start mechanism.
3117 */
3118 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3119 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3120 + tp->t_segsz;
3121 else
3122 tp->snd_cwnd = tp->snd_ssthresh;
3123 tp->t_partialacks = -1;
3124 tp->t_dupacks = 0;
3125 }
3126 }
3127
3128
3129 /*
3130 * TCP compressed state engine. Currently used to hold compressed
3131 * state for SYN_RECEIVED.
3132 */
3133
3134 u_long syn_cache_count;
3135 u_int32_t syn_hash1, syn_hash2;
3136
3137 #define SYN_HASH(sa, sp, dp) \
3138 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3139 ((u_int32_t)(sp)))^syn_hash2)))
3140 #ifndef INET6
3141 #define SYN_HASHALL(hash, src, dst) \
3142 do { \
3143 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3144 ((struct sockaddr_in *)(src))->sin_port, \
3145 ((struct sockaddr_in *)(dst))->sin_port); \
3146 } while (/*CONSTCOND*/ 0)
3147 #else
3148 #define SYN_HASH6(sa, sp, dp) \
3149 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3150 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3151 & 0x7fffffff)
3152
3153 #define SYN_HASHALL(hash, src, dst) \
3154 do { \
3155 switch ((src)->sa_family) { \
3156 case AF_INET: \
3157 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3158 ((struct sockaddr_in *)(src))->sin_port, \
3159 ((struct sockaddr_in *)(dst))->sin_port); \
3160 break; \
3161 case AF_INET6: \
3162 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3163 ((struct sockaddr_in6 *)(src))->sin6_port, \
3164 ((struct sockaddr_in6 *)(dst))->sin6_port); \
3165 break; \
3166 default: \
3167 hash = 0; \
3168 } \
3169 } while (/*CONSTCOND*/0)
3170 #endif /* INET6 */
3171
3172 #define SYN_CACHE_RM(sc) \
3173 do { \
3174 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3175 (sc), sc_bucketq); \
3176 (sc)->sc_tp = NULL; \
3177 LIST_REMOVE((sc), sc_tpq); \
3178 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3179 callout_stop(&(sc)->sc_timer); \
3180 syn_cache_count--; \
3181 } while (/*CONSTCOND*/0)
3182
3183 #define SYN_CACHE_PUT(sc) \
3184 do { \
3185 if ((sc)->sc_ipopts) \
3186 (void) m_free((sc)->sc_ipopts); \
3187 if ((sc)->sc_route4.ro_rt != NULL) \
3188 RTFREE((sc)->sc_route4.ro_rt); \
3189 if (callout_invoking(&(sc)->sc_timer)) \
3190 (sc)->sc_flags |= SCF_DEAD; \
3191 else \
3192 pool_put(&syn_cache_pool, (sc)); \
3193 } while (/*CONSTCOND*/0)
3194
3195 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3196
3197 /*
3198 * We don't estimate RTT with SYNs, so each packet starts with the default
3199 * RTT and each timer step has a fixed timeout value.
3200 */
3201 #define SYN_CACHE_TIMER_ARM(sc) \
3202 do { \
3203 TCPT_RANGESET((sc)->sc_rxtcur, \
3204 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3205 TCPTV_REXMTMAX); \
3206 callout_reset(&(sc)->sc_timer, \
3207 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3208 } while (/*CONSTCOND*/0)
3209
3210 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3211
3212 void
3213 syn_cache_init(void)
3214 {
3215 int i;
3216
3217 /* Initialize the hash buckets. */
3218 for (i = 0; i < tcp_syn_cache_size; i++)
3219 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3220 }
3221
3222 void
3223 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3224 {
3225 struct syn_cache_head *scp;
3226 struct syn_cache *sc2;
3227 int s;
3228
3229 /*
3230 * If there are no entries in the hash table, reinitialize
3231 * the hash secrets.
3232 */
3233 if (syn_cache_count == 0) {
3234 syn_hash1 = arc4random();
3235 syn_hash2 = arc4random();
3236 }
3237
3238 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3239 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3240 scp = &tcp_syn_cache[sc->sc_bucketidx];
3241
3242 /*
3243 * Make sure that we don't overflow the per-bucket
3244 * limit or the total cache size limit.
3245 */
3246 s = splsoftnet();
3247 if (scp->sch_length >= tcp_syn_bucket_limit) {
3248 tcpstat.tcps_sc_bucketoverflow++;
3249 /*
3250 * The bucket is full. Toss the oldest element in the
3251 * bucket. This will be the first entry in the bucket.
3252 */
3253 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3254 #ifdef DIAGNOSTIC
3255 /*
3256 * This should never happen; we should always find an
3257 * entry in our bucket.
3258 */
3259 if (sc2 == NULL)
3260 panic("syn_cache_insert: bucketoverflow: impossible");
3261 #endif
3262 SYN_CACHE_RM(sc2);
3263 SYN_CACHE_PUT(sc2);
3264 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3265 struct syn_cache_head *scp2, *sce;
3266
3267 tcpstat.tcps_sc_overflowed++;
3268 /*
3269 * The cache is full. Toss the oldest entry in the
3270 * first non-empty bucket we can find.
3271 *
3272 * XXX We would really like to toss the oldest
3273 * entry in the cache, but we hope that this
3274 * condition doesn't happen very often.
3275 */
3276 scp2 = scp;
3277 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3278 sce = &tcp_syn_cache[tcp_syn_cache_size];
3279 for (++scp2; scp2 != scp; scp2++) {
3280 if (scp2 >= sce)
3281 scp2 = &tcp_syn_cache[0];
3282 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3283 break;
3284 }
3285 #ifdef DIAGNOSTIC
3286 /*
3287 * This should never happen; we should always find a
3288 * non-empty bucket.
3289 */
3290 if (scp2 == scp)
3291 panic("syn_cache_insert: cacheoverflow: "
3292 "impossible");
3293 #endif
3294 }
3295 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3296 SYN_CACHE_RM(sc2);
3297 SYN_CACHE_PUT(sc2);
3298 }
3299
3300 /*
3301 * Initialize the entry's timer.
3302 */
3303 sc->sc_rxttot = 0;
3304 sc->sc_rxtshift = 0;
3305 SYN_CACHE_TIMER_ARM(sc);
3306
3307 /* Link it from tcpcb entry */
3308 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3309
3310 /* Put it into the bucket. */
3311 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3312 scp->sch_length++;
3313 syn_cache_count++;
3314
3315 tcpstat.tcps_sc_added++;
3316 splx(s);
3317 }
3318
3319 /*
3320 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3321 * If we have retransmitted an entry the maximum number of times, expire
3322 * that entry.
3323 */
3324 void
3325 syn_cache_timer(void *arg)
3326 {
3327 struct syn_cache *sc = arg;
3328 int s;
3329
3330 s = splsoftnet();
3331 callout_ack(&sc->sc_timer);
3332
3333 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3334 tcpstat.tcps_sc_delayed_free++;
3335 pool_put(&syn_cache_pool, sc);
3336 splx(s);
3337 return;
3338 }
3339
3340 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3341 /* Drop it -- too many retransmissions. */
3342 goto dropit;
3343 }
3344
3345 /*
3346 * Compute the total amount of time this entry has
3347 * been on a queue. If this entry has been on longer
3348 * than the keep alive timer would allow, expire it.
3349 */
3350 sc->sc_rxttot += sc->sc_rxtcur;
3351 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3352 goto dropit;
3353
3354 tcpstat.tcps_sc_retransmitted++;
3355 (void) syn_cache_respond(sc, NULL);
3356
3357 /* Advance the timer back-off. */
3358 sc->sc_rxtshift++;
3359 SYN_CACHE_TIMER_ARM(sc);
3360
3361 splx(s);
3362 return;
3363
3364 dropit:
3365 tcpstat.tcps_sc_timed_out++;
3366 SYN_CACHE_RM(sc);
3367 SYN_CACHE_PUT(sc);
3368 splx(s);
3369 }
3370
3371 /*
3372 * Remove syn cache created by the specified tcb entry,
3373 * because this does not make sense to keep them
3374 * (if there's no tcb entry, syn cache entry will never be used)
3375 */
3376 void
3377 syn_cache_cleanup(struct tcpcb *tp)
3378 {
3379 struct syn_cache *sc, *nsc;
3380 int s;
3381
3382 s = splsoftnet();
3383
3384 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3385 nsc = LIST_NEXT(sc, sc_tpq);
3386
3387 #ifdef DIAGNOSTIC
3388 if (sc->sc_tp != tp)
3389 panic("invalid sc_tp in syn_cache_cleanup");
3390 #endif
3391 SYN_CACHE_RM(sc);
3392 SYN_CACHE_PUT(sc);
3393 }
3394 /* just for safety */
3395 LIST_INIT(&tp->t_sc);
3396
3397 splx(s);
3398 }
3399
3400 /*
3401 * Find an entry in the syn cache.
3402 */
3403 struct syn_cache *
3404 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3405 struct syn_cache_head **headp)
3406 {
3407 struct syn_cache *sc;
3408 struct syn_cache_head *scp;
3409 u_int32_t hash;
3410 int s;
3411
3412 SYN_HASHALL(hash, src, dst);
3413
3414 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3415 *headp = scp;
3416 s = splsoftnet();
3417 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3418 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3419 if (sc->sc_hash != hash)
3420 continue;
3421 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3422 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3423 splx(s);
3424 return (sc);
3425 }
3426 }
3427 splx(s);
3428 return (NULL);
3429 }
3430
3431 /*
3432 * This function gets called when we receive an ACK for a
3433 * socket in the LISTEN state. We look up the connection
3434 * in the syn cache, and if its there, we pull it out of
3435 * the cache and turn it into a full-blown connection in
3436 * the SYN-RECEIVED state.
3437 *
3438 * The return values may not be immediately obvious, and their effects
3439 * can be subtle, so here they are:
3440 *
3441 * NULL SYN was not found in cache; caller should drop the
3442 * packet and send an RST.
3443 *
3444 * -1 We were unable to create the new connection, and are
3445 * aborting it. An ACK,RST is being sent to the peer
3446 * (unless we got screwey sequence numbners; see below),
3447 * because the 3-way handshake has been completed. Caller
3448 * should not free the mbuf, since we may be using it. If
3449 * we are not, we will free it.
3450 *
3451 * Otherwise, the return value is a pointer to the new socket
3452 * associated with the connection.
3453 */
3454 struct socket *
3455 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3456 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3457 struct socket *so, struct mbuf *m)
3458 {
3459 struct syn_cache *sc;
3460 struct syn_cache_head *scp;
3461 struct inpcb *inp = NULL;
3462 #ifdef INET6
3463 struct in6pcb *in6p = NULL;
3464 #endif
3465 struct tcpcb *tp = 0;
3466 struct mbuf *am;
3467 int s;
3468 struct socket *oso;
3469
3470 s = splsoftnet();
3471 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3472 splx(s);
3473 return (NULL);
3474 }
3475
3476 /*
3477 * Verify the sequence and ack numbers. Try getting the correct
3478 * response again.
3479 */
3480 if ((th->th_ack != sc->sc_iss + 1) ||
3481 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3482 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3483 (void) syn_cache_respond(sc, m);
3484 splx(s);
3485 return ((struct socket *)(-1));
3486 }
3487
3488 /* Remove this cache entry */
3489 SYN_CACHE_RM(sc);
3490 splx(s);
3491
3492 /*
3493 * Ok, create the full blown connection, and set things up
3494 * as they would have been set up if we had created the
3495 * connection when the SYN arrived. If we can't create
3496 * the connection, abort it.
3497 */
3498 /*
3499 * inp still has the OLD in_pcb stuff, set the
3500 * v6-related flags on the new guy, too. This is
3501 * done particularly for the case where an AF_INET6
3502 * socket is bound only to a port, and a v4 connection
3503 * comes in on that port.
3504 * we also copy the flowinfo from the original pcb
3505 * to the new one.
3506 */
3507 oso = so;
3508 so = sonewconn(so, SS_ISCONNECTED);
3509 if (so == NULL)
3510 goto resetandabort;
3511
3512 switch (so->so_proto->pr_domain->dom_family) {
3513 #ifdef INET
3514 case AF_INET:
3515 inp = sotoinpcb(so);
3516 break;
3517 #endif
3518 #ifdef INET6
3519 case AF_INET6:
3520 in6p = sotoin6pcb(so);
3521 break;
3522 #endif
3523 }
3524 switch (src->sa_family) {
3525 #ifdef INET
3526 case AF_INET:
3527 if (inp) {
3528 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3529 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3530 inp->inp_options = ip_srcroute();
3531 in_pcbstate(inp, INP_BOUND);
3532 if (inp->inp_options == NULL) {
3533 inp->inp_options = sc->sc_ipopts;
3534 sc->sc_ipopts = NULL;
3535 }
3536 }
3537 #ifdef INET6
3538 else if (in6p) {
3539 /* IPv4 packet to AF_INET6 socket */
3540 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3541 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3542 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3543 &in6p->in6p_laddr.s6_addr32[3],
3544 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3545 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3546 in6totcpcb(in6p)->t_family = AF_INET;
3547 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3548 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3549 else
3550 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3551 in6_pcbstate(in6p, IN6P_BOUND);
3552 }
3553 #endif
3554 break;
3555 #endif
3556 #ifdef INET6
3557 case AF_INET6:
3558 if (in6p) {
3559 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3560 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3561 in6_pcbstate(in6p, IN6P_BOUND);
3562 }
3563 break;
3564 #endif
3565 }
3566 #ifdef INET6
3567 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3568 struct in6pcb *oin6p = sotoin6pcb(oso);
3569 /* inherit socket options from the listening socket */
3570 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3571 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3572 m_freem(in6p->in6p_options);
3573 in6p->in6p_options = 0;
3574 }
3575 ip6_savecontrol(in6p, &in6p->in6p_options,
3576 mtod(m, struct ip6_hdr *), m);
3577 }
3578 #endif
3579
3580 #if defined(IPSEC) || defined(FAST_IPSEC)
3581 /*
3582 * we make a copy of policy, instead of sharing the policy,
3583 * for better behavior in terms of SA lookup and dead SA removal.
3584 */
3585 if (inp) {
3586 /* copy old policy into new socket's */
3587 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3588 printf("tcp_input: could not copy policy\n");
3589 }
3590 #ifdef INET6
3591 else if (in6p) {
3592 /* copy old policy into new socket's */
3593 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3594 in6p->in6p_sp))
3595 printf("tcp_input: could not copy policy\n");
3596 }
3597 #endif
3598 #endif
3599
3600 /*
3601 * Give the new socket our cached route reference.
3602 */
3603 if (inp)
3604 inp->inp_route = sc->sc_route4; /* struct assignment */
3605 #ifdef INET6
3606 else
3607 in6p->in6p_route = sc->sc_route6;
3608 #endif
3609 sc->sc_route4.ro_rt = NULL;
3610
3611 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3612 if (am == NULL)
3613 goto resetandabort;
3614 MCLAIM(am, &tcp_mowner);
3615 am->m_len = src->sa_len;
3616 bcopy(src, mtod(am, caddr_t), src->sa_len);
3617 if (inp) {
3618 if (in_pcbconnect(inp, am)) {
3619 (void) m_free(am);
3620 goto resetandabort;
3621 }
3622 }
3623 #ifdef INET6
3624 else if (in6p) {
3625 if (src->sa_family == AF_INET) {
3626 /* IPv4 packet to AF_INET6 socket */
3627 struct sockaddr_in6 *sin6;
3628 sin6 = mtod(am, struct sockaddr_in6 *);
3629 am->m_len = sizeof(*sin6);
3630 bzero(sin6, sizeof(*sin6));
3631 sin6->sin6_family = AF_INET6;
3632 sin6->sin6_len = sizeof(*sin6);
3633 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3634 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3635 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3636 &sin6->sin6_addr.s6_addr32[3],
3637 sizeof(sin6->sin6_addr.s6_addr32[3]));
3638 }
3639 if (in6_pcbconnect(in6p, am)) {
3640 (void) m_free(am);
3641 goto resetandabort;
3642 }
3643 }
3644 #endif
3645 else {
3646 (void) m_free(am);
3647 goto resetandabort;
3648 }
3649 (void) m_free(am);
3650
3651 if (inp)
3652 tp = intotcpcb(inp);
3653 #ifdef INET6
3654 else if (in6p)
3655 tp = in6totcpcb(in6p);
3656 #endif
3657 else
3658 tp = NULL;
3659 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3660 if (sc->sc_request_r_scale != 15) {
3661 tp->requested_s_scale = sc->sc_requested_s_scale;
3662 tp->request_r_scale = sc->sc_request_r_scale;
3663 tp->snd_scale = sc->sc_requested_s_scale;
3664 tp->rcv_scale = sc->sc_request_r_scale;
3665 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3666 }
3667 if (sc->sc_flags & SCF_TIMESTAMP)
3668 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3669 tp->ts_timebase = sc->sc_timebase;
3670
3671 tp->t_template = tcp_template(tp);
3672 if (tp->t_template == 0) {
3673 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3674 so = NULL;
3675 m_freem(m);
3676 goto abort;
3677 }
3678
3679 tp->iss = sc->sc_iss;
3680 tp->irs = sc->sc_irs;
3681 tcp_sendseqinit(tp);
3682 tcp_rcvseqinit(tp);
3683 tp->t_state = TCPS_SYN_RECEIVED;
3684 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3685 tcpstat.tcps_accepts++;
3686
3687 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3688 tp->t_flags |= TF_WILL_SACK;
3689
3690 #ifdef TCP_SIGNATURE
3691 if (sc->sc_flags & SCF_SIGNATURE)
3692 tp->t_flags |= TF_SIGNATURE;
3693 #endif
3694
3695 /* Initialize tp->t_ourmss before we deal with the peer's! */
3696 tp->t_ourmss = sc->sc_ourmaxseg;
3697 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3698
3699 /*
3700 * Initialize the initial congestion window. If we
3701 * had to retransmit the SYN,ACK, we must initialize cwnd
3702 * to 1 segment (i.e. the Loss Window).
3703 */
3704 if (sc->sc_rxtshift)
3705 tp->snd_cwnd = tp->t_peermss;
3706 else {
3707 int ss = tcp_init_win;
3708 #ifdef INET
3709 if (inp != NULL && in_localaddr(inp->inp_faddr))
3710 ss = tcp_init_win_local;
3711 #endif
3712 #ifdef INET6
3713 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3714 ss = tcp_init_win_local;
3715 #endif
3716 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3717 }
3718
3719 tcp_rmx_rtt(tp);
3720 tp->snd_wl1 = sc->sc_irs;
3721 tp->rcv_up = sc->sc_irs + 1;
3722
3723 /*
3724 * This is what whould have happened in tcp_output() when
3725 * the SYN,ACK was sent.
3726 */
3727 tp->snd_up = tp->snd_una;
3728 tp->snd_max = tp->snd_nxt = tp->iss+1;
3729 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3730 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3731 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3732 tp->last_ack_sent = tp->rcv_nxt;
3733 tp->t_partialacks = -1;
3734 tp->t_dupacks = 0;
3735
3736 tcpstat.tcps_sc_completed++;
3737 SYN_CACHE_PUT(sc);
3738 return (so);
3739
3740 resetandabort:
3741 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3742 abort:
3743 if (so != NULL)
3744 (void) soabort(so);
3745 SYN_CACHE_PUT(sc);
3746 tcpstat.tcps_sc_aborted++;
3747 return ((struct socket *)(-1));
3748 }
3749
3750 /*
3751 * This function is called when we get a RST for a
3752 * non-existent connection, so that we can see if the
3753 * connection is in the syn cache. If it is, zap it.
3754 */
3755
3756 void
3757 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3758 {
3759 struct syn_cache *sc;
3760 struct syn_cache_head *scp;
3761 int s = splsoftnet();
3762
3763 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3764 splx(s);
3765 return;
3766 }
3767 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3768 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3769 splx(s);
3770 return;
3771 }
3772 SYN_CACHE_RM(sc);
3773 splx(s);
3774 tcpstat.tcps_sc_reset++;
3775 SYN_CACHE_PUT(sc);
3776 }
3777
3778 void
3779 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst,
3780 struct tcphdr *th)
3781 {
3782 struct syn_cache *sc;
3783 struct syn_cache_head *scp;
3784 int s;
3785
3786 s = splsoftnet();
3787 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3788 splx(s);
3789 return;
3790 }
3791 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3792 if (ntohl (th->th_seq) != sc->sc_iss) {
3793 splx(s);
3794 return;
3795 }
3796
3797 /*
3798 * If we've retransmitted 3 times and this is our second error,
3799 * we remove the entry. Otherwise, we allow it to continue on.
3800 * This prevents us from incorrectly nuking an entry during a
3801 * spurious network outage.
3802 *
3803 * See tcp_notify().
3804 */
3805 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3806 sc->sc_flags |= SCF_UNREACH;
3807 splx(s);
3808 return;
3809 }
3810
3811 SYN_CACHE_RM(sc);
3812 splx(s);
3813 tcpstat.tcps_sc_unreach++;
3814 SYN_CACHE_PUT(sc);
3815 }
3816
3817 /*
3818 * Given a LISTEN socket and an inbound SYN request, add
3819 * this to the syn cache, and send back a segment:
3820 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3821 * to the source.
3822 *
3823 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3824 * Doing so would require that we hold onto the data and deliver it
3825 * to the application. However, if we are the target of a SYN-flood
3826 * DoS attack, an attacker could send data which would eventually
3827 * consume all available buffer space if it were ACKed. By not ACKing
3828 * the data, we avoid this DoS scenario.
3829 */
3830
3831 int
3832 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3833 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3834 int optlen, struct tcp_opt_info *oi)
3835 {
3836 struct tcpcb tb, *tp;
3837 long win;
3838 struct syn_cache *sc;
3839 struct syn_cache_head *scp;
3840 struct mbuf *ipopts;
3841 struct tcp_opt_info opti;
3842
3843 tp = sototcpcb(so);
3844
3845 bzero(&opti, sizeof(opti));
3846
3847 /*
3848 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3849 *
3850 * Note this check is performed in tcp_input() very early on.
3851 */
3852
3853 /*
3854 * Initialize some local state.
3855 */
3856 win = sbspace(&so->so_rcv);
3857 if (win > TCP_MAXWIN)
3858 win = TCP_MAXWIN;
3859
3860 switch (src->sa_family) {
3861 #ifdef INET
3862 case AF_INET:
3863 /*
3864 * Remember the IP options, if any.
3865 */
3866 ipopts = ip_srcroute();
3867 break;
3868 #endif
3869 default:
3870 ipopts = NULL;
3871 }
3872
3873 #ifdef TCP_SIGNATURE
3874 if (optp || (tp->t_flags & TF_SIGNATURE))
3875 #else
3876 if (optp)
3877 #endif
3878 {
3879 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3880 #ifdef TCP_SIGNATURE
3881 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3882 #endif
3883 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3884 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3885 return (0);
3886 } else
3887 tb.t_flags = 0;
3888
3889 /*
3890 * See if we already have an entry for this connection.
3891 * If we do, resend the SYN,ACK. We do not count this
3892 * as a retransmission (XXX though maybe we should).
3893 */
3894 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3895 tcpstat.tcps_sc_dupesyn++;
3896 if (ipopts) {
3897 /*
3898 * If we were remembering a previous source route,
3899 * forget it and use the new one we've been given.
3900 */
3901 if (sc->sc_ipopts)
3902 (void) m_free(sc->sc_ipopts);
3903 sc->sc_ipopts = ipopts;
3904 }
3905 sc->sc_timestamp = tb.ts_recent;
3906 if (syn_cache_respond(sc, m) == 0) {
3907 tcpstat.tcps_sndacks++;
3908 tcpstat.tcps_sndtotal++;
3909 }
3910 return (1);
3911 }
3912
3913 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3914 if (sc == NULL) {
3915 if (ipopts)
3916 (void) m_free(ipopts);
3917 return (0);
3918 }
3919
3920 /*
3921 * Fill in the cache, and put the necessary IP and TCP
3922 * options into the reply.
3923 */
3924 bzero(sc, sizeof(struct syn_cache));
3925 callout_init(&sc->sc_timer);
3926 bcopy(src, &sc->sc_src, src->sa_len);
3927 bcopy(dst, &sc->sc_dst, dst->sa_len);
3928 sc->sc_flags = 0;
3929 sc->sc_ipopts = ipopts;
3930 sc->sc_irs = th->th_seq;
3931 switch (src->sa_family) {
3932 #ifdef INET
3933 case AF_INET:
3934 {
3935 struct sockaddr_in *srcin = (void *) src;
3936 struct sockaddr_in *dstin = (void *) dst;
3937
3938 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3939 &srcin->sin_addr, dstin->sin_port,
3940 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3941 break;
3942 }
3943 #endif /* INET */
3944 #ifdef INET6
3945 case AF_INET6:
3946 {
3947 struct sockaddr_in6 *srcin6 = (void *) src;
3948 struct sockaddr_in6 *dstin6 = (void *) dst;
3949
3950 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3951 &srcin6->sin6_addr, dstin6->sin6_port,
3952 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3953 break;
3954 }
3955 #endif /* INET6 */
3956 }
3957 sc->sc_peermaxseg = oi->maxseg;
3958 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3959 m->m_pkthdr.rcvif : NULL,
3960 sc->sc_src.sa.sa_family);
3961 sc->sc_win = win;
3962 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3963 sc->sc_timestamp = tb.ts_recent;
3964 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
3965 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
3966 sc->sc_flags |= SCF_TIMESTAMP;
3967 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
3968 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
3969 sc->sc_requested_s_scale = tb.requested_s_scale;
3970 sc->sc_request_r_scale = 0;
3971 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
3972 TCP_MAXWIN << sc->sc_request_r_scale <
3973 so->so_rcv.sb_hiwat)
3974 sc->sc_request_r_scale++;
3975 } else {
3976 sc->sc_requested_s_scale = 15;
3977 sc->sc_request_r_scale = 15;
3978 }
3979 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
3980 sc->sc_flags |= SCF_SACK_PERMIT;
3981 #ifdef TCP_SIGNATURE
3982 if (tb.t_flags & TF_SIGNATURE)
3983 sc->sc_flags |= SCF_SIGNATURE;
3984 #endif
3985 sc->sc_tp = tp;
3986 if (syn_cache_respond(sc, m) == 0) {
3987 syn_cache_insert(sc, tp);
3988 tcpstat.tcps_sndacks++;
3989 tcpstat.tcps_sndtotal++;
3990 } else {
3991 SYN_CACHE_PUT(sc);
3992 tcpstat.tcps_sc_dropped++;
3993 }
3994 return (1);
3995 }
3996
3997 int
3998 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
3999 {
4000 struct route *ro;
4001 u_int8_t *optp;
4002 int optlen, error;
4003 u_int16_t tlen;
4004 struct ip *ip = NULL;
4005 #ifdef INET6
4006 struct ip6_hdr *ip6 = NULL;
4007 #endif
4008 struct tcpcb *tp;
4009 struct tcphdr *th;
4010 u_int hlen;
4011 struct socket *so;
4012
4013 switch (sc->sc_src.sa.sa_family) {
4014 case AF_INET:
4015 hlen = sizeof(struct ip);
4016 ro = &sc->sc_route4;
4017 break;
4018 #ifdef INET6
4019 case AF_INET6:
4020 hlen = sizeof(struct ip6_hdr);
4021 ro = (struct route *)&sc->sc_route6;
4022 break;
4023 #endif
4024 default:
4025 if (m)
4026 m_freem(m);
4027 return (EAFNOSUPPORT);
4028 }
4029
4030 /* Compute the size of the TCP options. */
4031 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4032 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4033 #ifdef TCP_SIGNATURE
4034 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4035 #endif
4036 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4037
4038 tlen = hlen + sizeof(struct tcphdr) + optlen;
4039
4040 /*
4041 * Create the IP+TCP header from scratch.
4042 */
4043 if (m)
4044 m_freem(m);
4045 #ifdef DIAGNOSTIC
4046 if (max_linkhdr + tlen > MCLBYTES)
4047 return (ENOBUFS);
4048 #endif
4049 MGETHDR(m, M_DONTWAIT, MT_DATA);
4050 if (m && tlen > MHLEN) {
4051 MCLGET(m, M_DONTWAIT);
4052 if ((m->m_flags & M_EXT) == 0) {
4053 m_freem(m);
4054 m = NULL;
4055 }
4056 }
4057 if (m == NULL)
4058 return (ENOBUFS);
4059 MCLAIM(m, &tcp_tx_mowner);
4060
4061 /* Fixup the mbuf. */
4062 m->m_data += max_linkhdr;
4063 m->m_len = m->m_pkthdr.len = tlen;
4064 if (sc->sc_tp) {
4065 tp = sc->sc_tp;
4066 if (tp->t_inpcb)
4067 so = tp->t_inpcb->inp_socket;
4068 #ifdef INET6
4069 else if (tp->t_in6pcb)
4070 so = tp->t_in6pcb->in6p_socket;
4071 #endif
4072 else
4073 so = NULL;
4074 } else
4075 so = NULL;
4076 m->m_pkthdr.rcvif = NULL;
4077 memset(mtod(m, u_char *), 0, tlen);
4078
4079 switch (sc->sc_src.sa.sa_family) {
4080 case AF_INET:
4081 ip = mtod(m, struct ip *);
4082 ip->ip_v = 4;
4083 ip->ip_dst = sc->sc_src.sin.sin_addr;
4084 ip->ip_src = sc->sc_dst.sin.sin_addr;
4085 ip->ip_p = IPPROTO_TCP;
4086 th = (struct tcphdr *)(ip + 1);
4087 th->th_dport = sc->sc_src.sin.sin_port;
4088 th->th_sport = sc->sc_dst.sin.sin_port;
4089 break;
4090 #ifdef INET6
4091 case AF_INET6:
4092 ip6 = mtod(m, struct ip6_hdr *);
4093 ip6->ip6_vfc = IPV6_VERSION;
4094 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4095 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4096 ip6->ip6_nxt = IPPROTO_TCP;
4097 /* ip6_plen will be updated in ip6_output() */
4098 th = (struct tcphdr *)(ip6 + 1);
4099 th->th_dport = sc->sc_src.sin6.sin6_port;
4100 th->th_sport = sc->sc_dst.sin6.sin6_port;
4101 break;
4102 #endif
4103 default:
4104 th = NULL;
4105 }
4106
4107 th->th_seq = htonl(sc->sc_iss);
4108 th->th_ack = htonl(sc->sc_irs + 1);
4109 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4110 th->th_flags = TH_SYN|TH_ACK;
4111 th->th_win = htons(sc->sc_win);
4112 /* th_sum already 0 */
4113 /* th_urp already 0 */
4114
4115 /* Tack on the TCP options. */
4116 optp = (u_int8_t *)(th + 1);
4117 *optp++ = TCPOPT_MAXSEG;
4118 *optp++ = 4;
4119 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4120 *optp++ = sc->sc_ourmaxseg & 0xff;
4121
4122 if (sc->sc_request_r_scale != 15) {
4123 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4124 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4125 sc->sc_request_r_scale);
4126 optp += 4;
4127 }
4128
4129 if (sc->sc_flags & SCF_TIMESTAMP) {
4130 u_int32_t *lp = (u_int32_t *)(optp);
4131 /* Form timestamp option as shown in appendix A of RFC 1323. */
4132 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4133 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4134 *lp = htonl(sc->sc_timestamp);
4135 optp += TCPOLEN_TSTAMP_APPA;
4136 }
4137
4138 if (sc->sc_flags & SCF_SACK_PERMIT) {
4139 u_int8_t *p = optp;
4140
4141 /* Let the peer know that we will SACK. */
4142 p[0] = TCPOPT_SACK_PERMITTED;
4143 p[1] = 2;
4144 p[2] = TCPOPT_NOP;
4145 p[3] = TCPOPT_NOP;
4146 optp += 4;
4147 }
4148
4149 #ifdef TCP_SIGNATURE
4150 if (sc->sc_flags & SCF_SIGNATURE) {
4151 struct secasvar *sav;
4152 u_int8_t *sigp;
4153
4154 sav = tcp_signature_getsav(m, th);
4155
4156 if (sav == NULL) {
4157 if (m)
4158 m_freem(m);
4159 return (EPERM);
4160 }
4161
4162 *optp++ = TCPOPT_SIGNATURE;
4163 *optp++ = TCPOLEN_SIGNATURE;
4164 sigp = optp;
4165 bzero(optp, TCP_SIGLEN);
4166 optp += TCP_SIGLEN;
4167 *optp++ = TCPOPT_NOP;
4168 *optp++ = TCPOPT_EOL;
4169
4170 (void)tcp_signature(m, th, hlen, sav, sigp);
4171
4172 key_sa_recordxfer(sav, m);
4173 #ifdef FAST_IPSEC
4174 KEY_FREESAV(&sav);
4175 #else
4176 key_freesav(sav);
4177 #endif
4178 }
4179 #endif
4180
4181 /* Compute the packet's checksum. */
4182 switch (sc->sc_src.sa.sa_family) {
4183 case AF_INET:
4184 ip->ip_len = htons(tlen - hlen);
4185 th->th_sum = 0;
4186 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4187 break;
4188 #ifdef INET6
4189 case AF_INET6:
4190 ip6->ip6_plen = htons(tlen - hlen);
4191 th->th_sum = 0;
4192 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4193 break;
4194 #endif
4195 }
4196
4197 /*
4198 * Fill in some straggling IP bits. Note the stack expects
4199 * ip_len to be in host order, for convenience.
4200 */
4201 switch (sc->sc_src.sa.sa_family) {
4202 #ifdef INET
4203 case AF_INET:
4204 ip->ip_len = htons(tlen);
4205 ip->ip_ttl = ip_defttl;
4206 /* XXX tos? */
4207 break;
4208 #endif
4209 #ifdef INET6
4210 case AF_INET6:
4211 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4212 ip6->ip6_vfc |= IPV6_VERSION;
4213 ip6->ip6_plen = htons(tlen - hlen);
4214 /* ip6_hlim will be initialized afterwards */
4215 /* XXX flowlabel? */
4216 break;
4217 #endif
4218 }
4219
4220 /* XXX use IPsec policy on listening socket, on SYN ACK */
4221 tp = sc->sc_tp;
4222
4223 switch (sc->sc_src.sa.sa_family) {
4224 #ifdef INET
4225 case AF_INET:
4226 error = ip_output(m, sc->sc_ipopts, ro,
4227 (ip_mtudisc ? IP_MTUDISC : 0),
4228 (struct ip_moptions *)NULL, so);
4229 break;
4230 #endif
4231 #ifdef INET6
4232 case AF_INET6:
4233 ip6->ip6_hlim = in6_selecthlim(NULL,
4234 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4235
4236 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4237 (struct ip6_moptions *)0, so, NULL);
4238 break;
4239 #endif
4240 default:
4241 error = EAFNOSUPPORT;
4242 break;
4243 }
4244 return (error);
4245 }
4246