tcp_input.c revision 1.227 1 /* $NetBSD: tcp_input.c,v 1.227 2005/04/26 05:37:45 manu Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the NetBSD
93 * Foundation, Inc. and its contributors.
94 * 4. Neither the name of The NetBSD Foundation nor the names of its
95 * contributors may be used to endorse or promote products derived
96 * from this software without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
99 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
100 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
101 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
102 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
103 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
104 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
105 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
106 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
107 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
108 * POSSIBILITY OF SUCH DAMAGE.
109 */
110
111 /*
112 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
113 * The Regents of the University of California. All rights reserved.
114 *
115 * Redistribution and use in source and binary forms, with or without
116 * modification, are permitted provided that the following conditions
117 * are met:
118 * 1. Redistributions of source code must retain the above copyright
119 * notice, this list of conditions and the following disclaimer.
120 * 2. Redistributions in binary form must reproduce the above copyright
121 * notice, this list of conditions and the following disclaimer in the
122 * documentation and/or other materials provided with the distribution.
123 * 3. Neither the name of the University nor the names of its contributors
124 * may be used to endorse or promote products derived from this software
125 * without specific prior written permission.
126 *
127 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
128 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
129 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
130 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
131 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
132 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
133 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
134 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
135 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
136 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
137 * SUCH DAMAGE.
138 *
139 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
140 */
141
142 /*
143 * TODO list for SYN cache stuff:
144 *
145 * Find room for a "state" field, which is needed to keep a
146 * compressed state for TIME_WAIT TCBs. It's been noted already
147 * that this is fairly important for very high-volume web and
148 * mail servers, which use a large number of short-lived
149 * connections.
150 */
151
152 #include <sys/cdefs.h>
153 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.227 2005/04/26 05:37:45 manu Exp $");
154
155 #include "opt_inet.h"
156 #include "opt_ipsec.h"
157 #include "opt_inet_csum.h"
158 #include "opt_tcp_debug.h"
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175
176 #include <net/if.h>
177 #include <net/route.h>
178 #include <net/if_types.h>
179
180 #include <netinet/in.h>
181 #include <netinet/in_systm.h>
182 #include <netinet/ip.h>
183 #include <netinet/in_pcb.h>
184 #include <netinet/in_var.h>
185 #include <netinet/ip_var.h>
186
187 #ifdef INET6
188 #ifndef INET
189 #include <netinet/in.h>
190 #endif
191 #include <netinet/ip6.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_pcb.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_var.h>
196 #include <netinet/icmp6.h>
197 #include <netinet6/nd6.h>
198 #endif
199
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif /* IPSEC */
225
226 #ifdef FAST_IPSEC
227 #include <netipsec/ipsec.h>
228 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
229 #include <netipsec/key.h>
230 #ifdef INET6
231 #include <netipsec/ipsec6.h>
232 #endif
233 #endif /* FAST_IPSEC*/
234
235 int tcprexmtthresh = 3;
236 int tcp_log_refused;
237
238 static int tcp_rst_ppslim_count = 0;
239 static struct timeval tcp_rst_ppslim_last;
240 static int tcp_ackdrop_ppslim_count = 0;
241 static struct timeval tcp_ackdrop_ppslim_last;
242
243 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
244
245 /* for modulo comparisons of timestamps */
246 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
247 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
248
249 /*
250 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
251 */
252 #ifdef INET6
253 #define ND6_HINT(tp) \
254 do { \
255 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
256 tp->t_in6pcb->in6p_route.ro_rt) { \
257 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
258 } \
259 } while (/*CONSTCOND*/ 0)
260 #else
261 #define ND6_HINT(tp)
262 #endif
263
264 /*
265 * Macro to compute ACK transmission behavior. Delay the ACK unless
266 * we have already delayed an ACK (must send an ACK every two segments).
267 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
268 * option is enabled.
269 */
270 #define TCP_SETUP_ACK(tp, th) \
271 do { \
272 if ((tp)->t_flags & TF_DELACK || \
273 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
274 tp->t_flags |= TF_ACKNOW; \
275 else \
276 TCP_SET_DELACK(tp); \
277 } while (/*CONSTCOND*/ 0)
278
279 /*
280 * Convert TCP protocol fields to host order for easier processing.
281 */
282 #define TCP_FIELDS_TO_HOST(th) \
283 do { \
284 NTOHL((th)->th_seq); \
285 NTOHL((th)->th_ack); \
286 NTOHS((th)->th_win); \
287 NTOHS((th)->th_urp); \
288 } while (/*CONSTCOND*/ 0)
289
290 /*
291 * ... and reverse the above.
292 */
293 #define TCP_FIELDS_TO_NET(th) \
294 do { \
295 HTONL((th)->th_seq); \
296 HTONL((th)->th_ack); \
297 HTONS((th)->th_win); \
298 HTONS((th)->th_urp); \
299 } while (/*CONSTCOND*/ 0)
300
301 #ifdef TCP_CSUM_COUNTERS
302 #include <sys/device.h>
303
304 extern struct evcnt tcp_hwcsum_ok;
305 extern struct evcnt tcp_hwcsum_bad;
306 extern struct evcnt tcp_hwcsum_data;
307 extern struct evcnt tcp_swcsum;
308
309 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
310
311 #else
312
313 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
314
315 #endif /* TCP_CSUM_COUNTERS */
316
317 #ifdef TCP_REASS_COUNTERS
318 #include <sys/device.h>
319
320 extern struct evcnt tcp_reass_;
321 extern struct evcnt tcp_reass_empty;
322 extern struct evcnt tcp_reass_iteration[8];
323 extern struct evcnt tcp_reass_prependfirst;
324 extern struct evcnt tcp_reass_prepend;
325 extern struct evcnt tcp_reass_insert;
326 extern struct evcnt tcp_reass_inserttail;
327 extern struct evcnt tcp_reass_append;
328 extern struct evcnt tcp_reass_appendtail;
329 extern struct evcnt tcp_reass_overlaptail;
330 extern struct evcnt tcp_reass_overlapfront;
331 extern struct evcnt tcp_reass_segdup;
332 extern struct evcnt tcp_reass_fragdup;
333
334 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
335
336 #else
337
338 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
339
340 #endif /* TCP_REASS_COUNTERS */
341
342 #ifdef INET
343 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
344 #endif
345 #ifdef INET6
346 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
347 #endif
348
349 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
350
351 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
352
353 struct ipqent *
354 tcpipqent_alloc()
355 {
356 struct ipqent *ipqe;
357 int s;
358
359 s = splvm();
360 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
361 splx(s);
362
363 return ipqe;
364 }
365
366 void
367 tcpipqent_free(struct ipqent *ipqe)
368 {
369 int s;
370
371 s = splvm();
372 pool_put(&tcpipqent_pool, ipqe);
373 splx(s);
374 }
375
376 int
377 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
378 {
379 struct ipqent *p, *q, *nq, *tiqe = NULL;
380 struct socket *so = NULL;
381 int pkt_flags;
382 tcp_seq pkt_seq;
383 unsigned pkt_len;
384 u_long rcvpartdupbyte = 0;
385 u_long rcvoobyte;
386 #ifdef TCP_REASS_COUNTERS
387 u_int count = 0;
388 #endif
389
390 if (tp->t_inpcb)
391 so = tp->t_inpcb->inp_socket;
392 #ifdef INET6
393 else if (tp->t_in6pcb)
394 so = tp->t_in6pcb->in6p_socket;
395 #endif
396
397 TCP_REASS_LOCK_CHECK(tp);
398
399 /*
400 * Call with th==0 after become established to
401 * force pre-ESTABLISHED data up to user socket.
402 */
403 if (th == 0)
404 goto present;
405
406 rcvoobyte = *tlen;
407 /*
408 * Copy these to local variables because the tcpiphdr
409 * gets munged while we are collapsing mbufs.
410 */
411 pkt_seq = th->th_seq;
412 pkt_len = *tlen;
413 pkt_flags = th->th_flags;
414
415 TCP_REASS_COUNTER_INCR(&tcp_reass_);
416
417 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
418 /*
419 * When we miss a packet, the vast majority of time we get
420 * packets that follow it in order. So optimize for that.
421 */
422 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
423 p->ipqe_len += pkt_len;
424 p->ipqe_flags |= pkt_flags;
425 m_cat(p->ipre_mlast, m);
426 TRAVERSE(p->ipre_mlast);
427 m = NULL;
428 tiqe = p;
429 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
430 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
431 goto skip_replacement;
432 }
433 /*
434 * While we're here, if the pkt is completely beyond
435 * anything we have, just insert it at the tail.
436 */
437 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
438 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
439 goto insert_it;
440 }
441 }
442
443 q = TAILQ_FIRST(&tp->segq);
444
445 if (q != NULL) {
446 /*
447 * If this segment immediately precedes the first out-of-order
448 * block, simply slap the segment in front of it and (mostly)
449 * skip the complicated logic.
450 */
451 if (pkt_seq + pkt_len == q->ipqe_seq) {
452 q->ipqe_seq = pkt_seq;
453 q->ipqe_len += pkt_len;
454 q->ipqe_flags |= pkt_flags;
455 m_cat(m, q->ipqe_m);
456 q->ipqe_m = m;
457 q->ipre_mlast = m; /* last mbuf may have changed */
458 TRAVERSE(q->ipre_mlast);
459 tiqe = q;
460 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
461 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
462 goto skip_replacement;
463 }
464 } else {
465 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
466 }
467
468 /*
469 * Find a segment which begins after this one does.
470 */
471 for (p = NULL; q != NULL; q = nq) {
472 nq = TAILQ_NEXT(q, ipqe_q);
473 #ifdef TCP_REASS_COUNTERS
474 count++;
475 #endif
476 /*
477 * If the received segment is just right after this
478 * fragment, merge the two together and then check
479 * for further overlaps.
480 */
481 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
482 #ifdef TCPREASS_DEBUG
483 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
484 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
485 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
486 #endif
487 pkt_len += q->ipqe_len;
488 pkt_flags |= q->ipqe_flags;
489 pkt_seq = q->ipqe_seq;
490 m_cat(q->ipre_mlast, m);
491 TRAVERSE(q->ipre_mlast);
492 m = q->ipqe_m;
493 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
494 goto free_ipqe;
495 }
496 /*
497 * If the received segment is completely past this
498 * fragment, we need to go the next fragment.
499 */
500 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
501 p = q;
502 continue;
503 }
504 /*
505 * If the fragment is past the received segment,
506 * it (or any following) can't be concatenated.
507 */
508 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
509 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
510 break;
511 }
512
513 /*
514 * We've received all the data in this segment before.
515 * mark it as a duplicate and return.
516 */
517 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
518 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
519 tcpstat.tcps_rcvduppack++;
520 tcpstat.tcps_rcvdupbyte += pkt_len;
521 tcp_new_dsack(tp, pkt_seq, pkt_len);
522 m_freem(m);
523 if (tiqe != NULL) {
524 tcpipqent_free(tiqe);
525 }
526 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
527 return (0);
528 }
529 /*
530 * Received segment completely overlaps this fragment
531 * so we drop the fragment (this keeps the temporal
532 * ordering of segments correct).
533 */
534 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
535 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
536 rcvpartdupbyte += q->ipqe_len;
537 m_freem(q->ipqe_m);
538 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
539 goto free_ipqe;
540 }
541 /*
542 * RX'ed segment extends past the end of the
543 * fragment. Drop the overlapping bytes. Then
544 * merge the fragment and segment then treat as
545 * a longer received packet.
546 */
547 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
548 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
549 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
550 #ifdef TCPREASS_DEBUG
551 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
552 tp, overlap,
553 pkt_seq, pkt_seq + pkt_len, pkt_len);
554 #endif
555 m_adj(m, overlap);
556 rcvpartdupbyte += overlap;
557 m_cat(q->ipre_mlast, m);
558 TRAVERSE(q->ipre_mlast);
559 m = q->ipqe_m;
560 pkt_seq = q->ipqe_seq;
561 pkt_len += q->ipqe_len - overlap;
562 rcvoobyte -= overlap;
563 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
564 goto free_ipqe;
565 }
566 /*
567 * RX'ed segment extends past the front of the
568 * fragment. Drop the overlapping bytes on the
569 * received packet. The packet will then be
570 * contatentated with this fragment a bit later.
571 */
572 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
573 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
574 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
575 #ifdef TCPREASS_DEBUG
576 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
577 tp, overlap,
578 pkt_seq, pkt_seq + pkt_len, pkt_len);
579 #endif
580 m_adj(m, -overlap);
581 pkt_len -= overlap;
582 rcvpartdupbyte += overlap;
583 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
584 rcvoobyte -= overlap;
585 }
586 /*
587 * If the received segment immediates precedes this
588 * fragment then tack the fragment onto this segment
589 * and reinsert the data.
590 */
591 if (q->ipqe_seq == pkt_seq + pkt_len) {
592 #ifdef TCPREASS_DEBUG
593 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
594 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
595 pkt_seq, pkt_seq + pkt_len, pkt_len);
596 #endif
597 pkt_len += q->ipqe_len;
598 pkt_flags |= q->ipqe_flags;
599 m_cat(m, q->ipqe_m);
600 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
601 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
602 tp->t_segqlen--;
603 KASSERT(tp->t_segqlen >= 0);
604 KASSERT(tp->t_segqlen != 0 ||
605 (TAILQ_EMPTY(&tp->segq) &&
606 TAILQ_EMPTY(&tp->timeq)));
607 if (tiqe == NULL) {
608 tiqe = q;
609 } else {
610 tcpipqent_free(q);
611 }
612 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
613 break;
614 }
615 /*
616 * If the fragment is before the segment, remember it.
617 * When this loop is terminated, p will contain the
618 * pointer to fragment that is right before the received
619 * segment.
620 */
621 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
622 p = q;
623
624 continue;
625
626 /*
627 * This is a common operation. It also will allow
628 * to save doing a malloc/free in most instances.
629 */
630 free_ipqe:
631 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
632 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
633 tp->t_segqlen--;
634 KASSERT(tp->t_segqlen >= 0);
635 KASSERT(tp->t_segqlen != 0 ||
636 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
637 if (tiqe == NULL) {
638 tiqe = q;
639 } else {
640 tcpipqent_free(q);
641 }
642 }
643
644 #ifdef TCP_REASS_COUNTERS
645 if (count > 7)
646 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
647 else if (count > 0)
648 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
649 #endif
650
651 insert_it:
652
653 /*
654 * Allocate a new queue entry since the received segment did not
655 * collapse onto any other out-of-order block; thus we are allocating
656 * a new block. If it had collapsed, tiqe would not be NULL and
657 * we would be reusing it.
658 * XXX If we can't, just drop the packet. XXX
659 */
660 if (tiqe == NULL) {
661 tiqe = tcpipqent_alloc();
662 if (tiqe == NULL) {
663 tcpstat.tcps_rcvmemdrop++;
664 m_freem(m);
665 return (0);
666 }
667 }
668
669 /*
670 * Update the counters.
671 */
672 tcpstat.tcps_rcvoopack++;
673 tcpstat.tcps_rcvoobyte += rcvoobyte;
674 if (rcvpartdupbyte) {
675 tcpstat.tcps_rcvpartduppack++;
676 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
677 }
678
679 /*
680 * Insert the new fragment queue entry into both queues.
681 */
682 tiqe->ipqe_m = m;
683 tiqe->ipre_mlast = m;
684 tiqe->ipqe_seq = pkt_seq;
685 tiqe->ipqe_len = pkt_len;
686 tiqe->ipqe_flags = pkt_flags;
687 if (p == NULL) {
688 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
689 #ifdef TCPREASS_DEBUG
690 if (tiqe->ipqe_seq != tp->rcv_nxt)
691 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
692 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
693 #endif
694 } else {
695 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
696 #ifdef TCPREASS_DEBUG
697 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
698 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
699 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
700 #endif
701 }
702 tp->t_segqlen++;
703
704 skip_replacement:
705
706 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
707
708 present:
709 /*
710 * Present data to user, advancing rcv_nxt through
711 * completed sequence space.
712 */
713 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
714 return (0);
715 q = TAILQ_FIRST(&tp->segq);
716 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
717 return (0);
718 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
719 return (0);
720
721 tp->rcv_nxt += q->ipqe_len;
722 pkt_flags = q->ipqe_flags & TH_FIN;
723 ND6_HINT(tp);
724
725 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
726 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
727 tp->t_segqlen--;
728 KASSERT(tp->t_segqlen >= 0);
729 KASSERT(tp->t_segqlen != 0 ||
730 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
731 if (so->so_state & SS_CANTRCVMORE)
732 m_freem(q->ipqe_m);
733 else
734 sbappendstream(&so->so_rcv, q->ipqe_m);
735 tcpipqent_free(q);
736 sorwakeup(so);
737 return (pkt_flags);
738 }
739
740 #ifdef INET6
741 int
742 tcp6_input(struct mbuf **mp, int *offp, int proto)
743 {
744 struct mbuf *m = *mp;
745
746 /*
747 * draft-itojun-ipv6-tcp-to-anycast
748 * better place to put this in?
749 */
750 if (m->m_flags & M_ANYCAST6) {
751 struct ip6_hdr *ip6;
752 if (m->m_len < sizeof(struct ip6_hdr)) {
753 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
754 tcpstat.tcps_rcvshort++;
755 return IPPROTO_DONE;
756 }
757 }
758 ip6 = mtod(m, struct ip6_hdr *);
759 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
760 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
761 return IPPROTO_DONE;
762 }
763
764 tcp_input(m, *offp, proto);
765 return IPPROTO_DONE;
766 }
767 #endif
768
769 #ifdef INET
770 static void
771 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
772 {
773 char src[4*sizeof "123"];
774 char dst[4*sizeof "123"];
775
776 if (ip) {
777 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
778 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
779 }
780 else {
781 strlcpy(src, "(unknown)", sizeof(src));
782 strlcpy(dst, "(unknown)", sizeof(dst));
783 }
784 log(LOG_INFO,
785 "Connection attempt to TCP %s:%d from %s:%d\n",
786 dst, ntohs(th->th_dport),
787 src, ntohs(th->th_sport));
788 }
789 #endif
790
791 #ifdef INET6
792 static void
793 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
794 {
795 char src[INET6_ADDRSTRLEN];
796 char dst[INET6_ADDRSTRLEN];
797
798 if (ip6) {
799 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
800 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
801 }
802 else {
803 strlcpy(src, "(unknown v6)", sizeof(src));
804 strlcpy(dst, "(unknown v6)", sizeof(dst));
805 }
806 log(LOG_INFO,
807 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
808 dst, ntohs(th->th_dport),
809 src, ntohs(th->th_sport));
810 }
811 #endif
812
813 /*
814 * Checksum extended TCP header and data.
815 */
816 int
817 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
818 int off, int tlen)
819 {
820
821 /*
822 * XXX it's better to record and check if this mbuf is
823 * already checked.
824 */
825
826 switch (af) {
827 #ifdef INET
828 case AF_INET:
829 switch (m->m_pkthdr.csum_flags &
830 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
831 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
832 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
833 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
834 goto badcsum;
835
836 case M_CSUM_TCPv4|M_CSUM_DATA: {
837 u_int32_t hw_csum = m->m_pkthdr.csum_data;
838
839 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
840 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
841 const struct ip *ip =
842 mtod(m, const struct ip *);
843
844 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
845 ip->ip_dst.s_addr,
846 htons(hw_csum + tlen + off + IPPROTO_TCP));
847 }
848 if ((hw_csum ^ 0xffff) != 0)
849 goto badcsum;
850 break;
851 }
852
853 case M_CSUM_TCPv4:
854 /* Checksum was okay. */
855 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
856 break;
857
858 default:
859 /*
860 * Must compute it ourselves. Maybe skip checksum
861 * on loopback interfaces.
862 */
863 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
864 IFF_LOOPBACK) ||
865 tcp_do_loopback_cksum)) {
866 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
867 if (in4_cksum(m, IPPROTO_TCP, toff,
868 tlen + off) != 0)
869 goto badcsum;
870 }
871 break;
872 }
873 break;
874 #endif /* INET4 */
875
876 #ifdef INET6
877 case AF_INET6:
878 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
879 tcp_do_loopback_cksum)) {
880 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
881 goto badcsum;
882 }
883 break;
884 #endif /* INET6 */
885 }
886
887 return 0;
888
889 badcsum:
890 tcpstat.tcps_rcvbadsum++;
891 return -1;
892 }
893
894 /*
895 * TCP input routine, follows pages 65-76 of the
896 * protocol specification dated September, 1981 very closely.
897 */
898 void
899 tcp_input(struct mbuf *m, ...)
900 {
901 struct tcphdr *th;
902 struct ip *ip;
903 struct inpcb *inp;
904 #ifdef INET6
905 struct ip6_hdr *ip6;
906 struct in6pcb *in6p;
907 #endif
908 u_int8_t *optp = NULL;
909 int optlen = 0;
910 int len, tlen, toff, hdroptlen = 0;
911 struct tcpcb *tp = 0;
912 int tiflags;
913 struct socket *so = NULL;
914 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
915 #ifdef TCP_DEBUG
916 short ostate = 0;
917 #endif
918 int iss = 0;
919 u_long tiwin;
920 struct tcp_opt_info opti;
921 int off, iphlen;
922 va_list ap;
923 int af; /* af on the wire */
924 struct mbuf *tcp_saveti = NULL;
925
926 MCLAIM(m, &tcp_rx_mowner);
927 va_start(ap, m);
928 toff = va_arg(ap, int);
929 (void)va_arg(ap, int); /* ignore value, advance ap */
930 va_end(ap);
931
932 tcpstat.tcps_rcvtotal++;
933
934 bzero(&opti, sizeof(opti));
935 opti.ts_present = 0;
936 opti.maxseg = 0;
937
938 /*
939 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
940 *
941 * TCP is, by definition, unicast, so we reject all
942 * multicast outright.
943 *
944 * Note, there are additional src/dst address checks in
945 * the AF-specific code below.
946 */
947 if (m->m_flags & (M_BCAST|M_MCAST)) {
948 /* XXX stat */
949 goto drop;
950 }
951 #ifdef INET6
952 if (m->m_flags & M_ANYCAST6) {
953 /* XXX stat */
954 goto drop;
955 }
956 #endif
957
958 /*
959 * Get IP and TCP header.
960 * Note: IP leaves IP header in first mbuf.
961 */
962 ip = mtod(m, struct ip *);
963 #ifdef INET6
964 ip6 = NULL;
965 #endif
966 switch (ip->ip_v) {
967 #ifdef INET
968 case 4:
969 af = AF_INET;
970 iphlen = sizeof(struct ip);
971 ip = mtod(m, struct ip *);
972 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
973 sizeof(struct tcphdr));
974 if (th == NULL) {
975 tcpstat.tcps_rcvshort++;
976 return;
977 }
978 /* We do the checksum after PCB lookup... */
979 len = ntohs(ip->ip_len);
980 tlen = len - toff;
981 break;
982 #endif
983 #ifdef INET6
984 case 6:
985 ip = NULL;
986 iphlen = sizeof(struct ip6_hdr);
987 af = AF_INET6;
988 ip6 = mtod(m, struct ip6_hdr *);
989 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
990 sizeof(struct tcphdr));
991 if (th == NULL) {
992 tcpstat.tcps_rcvshort++;
993 return;
994 }
995
996 /* Be proactive about malicious use of IPv4 mapped address */
997 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
998 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
999 /* XXX stat */
1000 goto drop;
1001 }
1002
1003 /*
1004 * Be proactive about unspecified IPv6 address in source.
1005 * As we use all-zero to indicate unbounded/unconnected pcb,
1006 * unspecified IPv6 address can be used to confuse us.
1007 *
1008 * Note that packets with unspecified IPv6 destination is
1009 * already dropped in ip6_input.
1010 */
1011 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1012 /* XXX stat */
1013 goto drop;
1014 }
1015
1016 /*
1017 * Make sure destination address is not multicast.
1018 * Source address checked in ip6_input().
1019 */
1020 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1021 /* XXX stat */
1022 goto drop;
1023 }
1024
1025 /* We do the checksum after PCB lookup... */
1026 len = m->m_pkthdr.len;
1027 tlen = len - toff;
1028 break;
1029 #endif
1030 default:
1031 m_freem(m);
1032 return;
1033 }
1034
1035 KASSERT(TCP_HDR_ALIGNED_P(th));
1036
1037 /*
1038 * Check that TCP offset makes sense,
1039 * pull out TCP options and adjust length. XXX
1040 */
1041 off = th->th_off << 2;
1042 if (off < sizeof (struct tcphdr) || off > tlen) {
1043 tcpstat.tcps_rcvbadoff++;
1044 goto drop;
1045 }
1046 tlen -= off;
1047
1048 /*
1049 * tcp_input() has been modified to use tlen to mean the TCP data
1050 * length throughout the function. Other functions can use
1051 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1052 * rja
1053 */
1054
1055 if (off > sizeof (struct tcphdr)) {
1056 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1057 if (th == NULL) {
1058 tcpstat.tcps_rcvshort++;
1059 return;
1060 }
1061 /*
1062 * NOTE: ip/ip6 will not be affected by m_pulldown()
1063 * (as they're before toff) and we don't need to update those.
1064 */
1065 KASSERT(TCP_HDR_ALIGNED_P(th));
1066 optlen = off - sizeof (struct tcphdr);
1067 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1068 /*
1069 * Do quick retrieval of timestamp options ("options
1070 * prediction?"). If timestamp is the only option and it's
1071 * formatted as recommended in RFC 1323 appendix A, we
1072 * quickly get the values now and not bother calling
1073 * tcp_dooptions(), etc.
1074 */
1075 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1076 (optlen > TCPOLEN_TSTAMP_APPA &&
1077 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1078 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1079 (th->th_flags & TH_SYN) == 0) {
1080 opti.ts_present = 1;
1081 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1082 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1083 optp = NULL; /* we've parsed the options */
1084 }
1085 }
1086 tiflags = th->th_flags;
1087
1088 /*
1089 * Locate pcb for segment.
1090 */
1091 findpcb:
1092 inp = NULL;
1093 #ifdef INET6
1094 in6p = NULL;
1095 #endif
1096 switch (af) {
1097 #ifdef INET
1098 case AF_INET:
1099 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1100 ip->ip_dst, th->th_dport);
1101 if (inp == 0) {
1102 ++tcpstat.tcps_pcbhashmiss;
1103 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1104 }
1105 #ifdef INET6
1106 if (inp == 0) {
1107 struct in6_addr s, d;
1108
1109 /* mapped addr case */
1110 bzero(&s, sizeof(s));
1111 s.s6_addr16[5] = htons(0xffff);
1112 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1113 bzero(&d, sizeof(d));
1114 d.s6_addr16[5] = htons(0xffff);
1115 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1116 in6p = in6_pcblookup_connect(&tcbtable, &s,
1117 th->th_sport, &d, th->th_dport, 0);
1118 if (in6p == 0) {
1119 ++tcpstat.tcps_pcbhashmiss;
1120 in6p = in6_pcblookup_bind(&tcbtable, &d,
1121 th->th_dport, 0);
1122 }
1123 }
1124 #endif
1125 #ifndef INET6
1126 if (inp == 0)
1127 #else
1128 if (inp == 0 && in6p == 0)
1129 #endif
1130 {
1131 ++tcpstat.tcps_noport;
1132 if (tcp_log_refused &&
1133 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1134 tcp4_log_refused(ip, th);
1135 }
1136 TCP_FIELDS_TO_HOST(th);
1137 goto dropwithreset_ratelim;
1138 }
1139 #if defined(IPSEC) || defined(FAST_IPSEC)
1140 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1141 ipsec4_in_reject(m, inp)) {
1142 ipsecstat.in_polvio++;
1143 goto drop;
1144 }
1145 #ifdef INET6
1146 else if (in6p &&
1147 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1148 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1149 ipsecstat.in_polvio++;
1150 goto drop;
1151 }
1152 #endif
1153 #endif /*IPSEC*/
1154 break;
1155 #endif /*INET*/
1156 #ifdef INET6
1157 case AF_INET6:
1158 {
1159 int faith;
1160
1161 #if defined(NFAITH) && NFAITH > 0
1162 faith = faithprefix(&ip6->ip6_dst);
1163 #else
1164 faith = 0;
1165 #endif
1166 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1167 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1168 if (in6p == NULL) {
1169 ++tcpstat.tcps_pcbhashmiss;
1170 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1171 th->th_dport, faith);
1172 }
1173 if (in6p == NULL) {
1174 ++tcpstat.tcps_noport;
1175 if (tcp_log_refused &&
1176 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1177 tcp6_log_refused(ip6, th);
1178 }
1179 TCP_FIELDS_TO_HOST(th);
1180 goto dropwithreset_ratelim;
1181 }
1182 #if defined(IPSEC) || defined(FAST_IPSEC)
1183 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1184 ipsec6_in_reject(m, in6p)) {
1185 ipsec6stat.in_polvio++;
1186 goto drop;
1187 }
1188 #endif /*IPSEC*/
1189 break;
1190 }
1191 #endif
1192 }
1193
1194 /*
1195 * If the state is CLOSED (i.e., TCB does not exist) then
1196 * all data in the incoming segment is discarded.
1197 * If the TCB exists but is in CLOSED state, it is embryonic,
1198 * but should either do a listen or a connect soon.
1199 */
1200 tp = NULL;
1201 so = NULL;
1202 if (inp) {
1203 tp = intotcpcb(inp);
1204 so = inp->inp_socket;
1205 }
1206 #ifdef INET6
1207 else if (in6p) {
1208 tp = in6totcpcb(in6p);
1209 so = in6p->in6p_socket;
1210 }
1211 #endif
1212 if (tp == 0) {
1213 TCP_FIELDS_TO_HOST(th);
1214 goto dropwithreset_ratelim;
1215 }
1216 if (tp->t_state == TCPS_CLOSED)
1217 goto drop;
1218
1219 /*
1220 * Checksum extended TCP header and data.
1221 */
1222 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1223 goto badcsum;
1224
1225 TCP_FIELDS_TO_HOST(th);
1226
1227 /* Unscale the window into a 32-bit value. */
1228 if ((tiflags & TH_SYN) == 0)
1229 tiwin = th->th_win << tp->snd_scale;
1230 else
1231 tiwin = th->th_win;
1232
1233 #ifdef INET6
1234 /* save packet options if user wanted */
1235 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1236 if (in6p->in6p_options) {
1237 m_freem(in6p->in6p_options);
1238 in6p->in6p_options = 0;
1239 }
1240 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1241 }
1242 #endif
1243
1244 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1245 union syn_cache_sa src;
1246 union syn_cache_sa dst;
1247
1248 bzero(&src, sizeof(src));
1249 bzero(&dst, sizeof(dst));
1250 switch (af) {
1251 #ifdef INET
1252 case AF_INET:
1253 src.sin.sin_len = sizeof(struct sockaddr_in);
1254 src.sin.sin_family = AF_INET;
1255 src.sin.sin_addr = ip->ip_src;
1256 src.sin.sin_port = th->th_sport;
1257
1258 dst.sin.sin_len = sizeof(struct sockaddr_in);
1259 dst.sin.sin_family = AF_INET;
1260 dst.sin.sin_addr = ip->ip_dst;
1261 dst.sin.sin_port = th->th_dport;
1262 break;
1263 #endif
1264 #ifdef INET6
1265 case AF_INET6:
1266 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1267 src.sin6.sin6_family = AF_INET6;
1268 src.sin6.sin6_addr = ip6->ip6_src;
1269 src.sin6.sin6_port = th->th_sport;
1270
1271 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1272 dst.sin6.sin6_family = AF_INET6;
1273 dst.sin6.sin6_addr = ip6->ip6_dst;
1274 dst.sin6.sin6_port = th->th_dport;
1275 break;
1276 #endif /* INET6 */
1277 default:
1278 goto badsyn; /*sanity*/
1279 }
1280
1281 if (so->so_options & SO_DEBUG) {
1282 #ifdef TCP_DEBUG
1283 ostate = tp->t_state;
1284 #endif
1285
1286 tcp_saveti = NULL;
1287 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1288 goto nosave;
1289
1290 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1291 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1292 if (!tcp_saveti)
1293 goto nosave;
1294 } else {
1295 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1296 if (!tcp_saveti)
1297 goto nosave;
1298 MCLAIM(m, &tcp_mowner);
1299 tcp_saveti->m_len = iphlen;
1300 m_copydata(m, 0, iphlen,
1301 mtod(tcp_saveti, caddr_t));
1302 }
1303
1304 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1305 m_freem(tcp_saveti);
1306 tcp_saveti = NULL;
1307 } else {
1308 tcp_saveti->m_len += sizeof(struct tcphdr);
1309 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1310 sizeof(struct tcphdr));
1311 }
1312 nosave:;
1313 }
1314 if (so->so_options & SO_ACCEPTCONN) {
1315 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1316 if (tiflags & TH_RST) {
1317 syn_cache_reset(&src.sa, &dst.sa, th);
1318 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1319 (TH_ACK|TH_SYN)) {
1320 /*
1321 * Received a SYN,ACK. This should
1322 * never happen while we are in
1323 * LISTEN. Send an RST.
1324 */
1325 goto badsyn;
1326 } else if (tiflags & TH_ACK) {
1327 so = syn_cache_get(&src.sa, &dst.sa,
1328 th, toff, tlen, so, m);
1329 if (so == NULL) {
1330 /*
1331 * We don't have a SYN for
1332 * this ACK; send an RST.
1333 */
1334 goto badsyn;
1335 } else if (so ==
1336 (struct socket *)(-1)) {
1337 /*
1338 * We were unable to create
1339 * the connection. If the
1340 * 3-way handshake was
1341 * completed, and RST has
1342 * been sent to the peer.
1343 * Since the mbuf might be
1344 * in use for the reply,
1345 * do not free it.
1346 */
1347 m = NULL;
1348 } else {
1349 /*
1350 * We have created a
1351 * full-blown connection.
1352 */
1353 tp = NULL;
1354 inp = NULL;
1355 #ifdef INET6
1356 in6p = NULL;
1357 #endif
1358 switch (so->so_proto->pr_domain->dom_family) {
1359 #ifdef INET
1360 case AF_INET:
1361 inp = sotoinpcb(so);
1362 tp = intotcpcb(inp);
1363 break;
1364 #endif
1365 #ifdef INET6
1366 case AF_INET6:
1367 in6p = sotoin6pcb(so);
1368 tp = in6totcpcb(in6p);
1369 break;
1370 #endif
1371 }
1372 if (tp == NULL)
1373 goto badsyn; /*XXX*/
1374 tiwin <<= tp->snd_scale;
1375 goto after_listen;
1376 }
1377 } else {
1378 /*
1379 * None of RST, SYN or ACK was set.
1380 * This is an invalid packet for a
1381 * TCB in LISTEN state. Send a RST.
1382 */
1383 goto badsyn;
1384 }
1385 } else {
1386 /*
1387 * Received a SYN.
1388 */
1389
1390 #ifdef INET6
1391 /*
1392 * If deprecated address is forbidden, we do
1393 * not accept SYN to deprecated interface
1394 * address to prevent any new inbound
1395 * connection from getting established.
1396 * When we do not accept SYN, we send a TCP
1397 * RST, with deprecated source address (instead
1398 * of dropping it). We compromise it as it is
1399 * much better for peer to send a RST, and
1400 * RST will be the final packet for the
1401 * exchange.
1402 *
1403 * If we do not forbid deprecated addresses, we
1404 * accept the SYN packet. RFC2462 does not
1405 * suggest dropping SYN in this case.
1406 * If we decipher RFC2462 5.5.4, it says like
1407 * this:
1408 * 1. use of deprecated addr with existing
1409 * communication is okay - "SHOULD continue
1410 * to be used"
1411 * 2. use of it with new communication:
1412 * (2a) "SHOULD NOT be used if alternate
1413 * address with sufficient scope is
1414 * available"
1415 * (2b) nothing mentioned otherwise.
1416 * Here we fall into (2b) case as we have no
1417 * choice in our source address selection - we
1418 * must obey the peer.
1419 *
1420 * The wording in RFC2462 is confusing, and
1421 * there are multiple description text for
1422 * deprecated address handling - worse, they
1423 * are not exactly the same. I believe 5.5.4
1424 * is the best one, so we follow 5.5.4.
1425 */
1426 if (af == AF_INET6 && !ip6_use_deprecated) {
1427 struct in6_ifaddr *ia6;
1428 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1429 &ip6->ip6_dst)) &&
1430 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1431 tp = NULL;
1432 goto dropwithreset;
1433 }
1434 }
1435 #endif
1436
1437 #ifdef IPSEC
1438 switch (af) {
1439 #ifdef INET
1440 case AF_INET:
1441 if (ipsec4_in_reject_so(m, so)) {
1442 ipsecstat.in_polvio++;
1443 tp = NULL;
1444 goto dropwithreset;
1445 }
1446 break;
1447 #endif
1448 #ifdef INET6
1449 case AF_INET6:
1450 if (ipsec6_in_reject_so(m, so)) {
1451 ipsec6stat.in_polvio++;
1452 tp = NULL;
1453 goto dropwithreset;
1454 }
1455 break;
1456 #endif
1457 }
1458 #endif
1459
1460 /*
1461 * LISTEN socket received a SYN
1462 * from itself? This can't possibly
1463 * be valid; drop the packet.
1464 */
1465 if (th->th_sport == th->th_dport) {
1466 int i;
1467
1468 switch (af) {
1469 #ifdef INET
1470 case AF_INET:
1471 i = in_hosteq(ip->ip_src, ip->ip_dst);
1472 break;
1473 #endif
1474 #ifdef INET6
1475 case AF_INET6:
1476 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1477 break;
1478 #endif
1479 default:
1480 i = 1;
1481 }
1482 if (i) {
1483 tcpstat.tcps_badsyn++;
1484 goto drop;
1485 }
1486 }
1487
1488 /*
1489 * SYN looks ok; create compressed TCP
1490 * state for it.
1491 */
1492 if (so->so_qlen <= so->so_qlimit &&
1493 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1494 so, m, optp, optlen, &opti))
1495 m = NULL;
1496 }
1497 goto drop;
1498 }
1499 }
1500
1501 after_listen:
1502 #ifdef DIAGNOSTIC
1503 /*
1504 * Should not happen now that all embryonic connections
1505 * are handled with compressed state.
1506 */
1507 if (tp->t_state == TCPS_LISTEN)
1508 panic("tcp_input: TCPS_LISTEN");
1509 #endif
1510
1511 /*
1512 * Segment received on connection.
1513 * Reset idle time and keep-alive timer.
1514 */
1515 tp->t_rcvtime = tcp_now;
1516 if (TCPS_HAVEESTABLISHED(tp->t_state))
1517 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1518
1519 /*
1520 * Process options.
1521 */
1522 #ifdef TCP_SIGNATURE
1523 if (optp || (tp->t_flags & TF_SIGNATURE))
1524 #else
1525 if (optp)
1526 #endif
1527 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1528 goto drop;
1529
1530 if (TCP_SACK_ENABLED(tp)) {
1531 tcp_del_sackholes(tp, th);
1532 }
1533
1534 if (opti.ts_present && opti.ts_ecr) {
1535 /*
1536 * Calculate the RTT from the returned time stamp and the
1537 * connection's time base. If the time stamp is later than
1538 * the current time, or is extremely old, fall back to non-1323
1539 * RTT calculation. Since ts_ecr is unsigned, we can test both
1540 * at the same time.
1541 */
1542 opti.ts_ecr = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1543 if (opti.ts_ecr > TCP_PAWS_IDLE)
1544 opti.ts_ecr = 0;
1545 }
1546
1547 /*
1548 * Header prediction: check for the two common cases
1549 * of a uni-directional data xfer. If the packet has
1550 * no control flags, is in-sequence, the window didn't
1551 * change and we're not retransmitting, it's a
1552 * candidate. If the length is zero and the ack moved
1553 * forward, we're the sender side of the xfer. Just
1554 * free the data acked & wake any higher level process
1555 * that was blocked waiting for space. If the length
1556 * is non-zero and the ack didn't move, we're the
1557 * receiver side. If we're getting packets in-order
1558 * (the reassembly queue is empty), add the data to
1559 * the socket buffer and note that we need a delayed ack.
1560 */
1561 if (tp->t_state == TCPS_ESTABLISHED &&
1562 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1563 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1564 th->th_seq == tp->rcv_nxt &&
1565 tiwin && tiwin == tp->snd_wnd &&
1566 tp->snd_nxt == tp->snd_max) {
1567
1568 /*
1569 * If last ACK falls within this segment's sequence numbers,
1570 * record the timestamp.
1571 */
1572 if (opti.ts_present &&
1573 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1574 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1575 tp->ts_recent_age = tcp_now;
1576 tp->ts_recent = opti.ts_val;
1577 }
1578
1579 if (tlen == 0) {
1580 /* Ack prediction. */
1581 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1582 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1583 tp->snd_cwnd >= tp->snd_wnd &&
1584 tp->t_partialacks < 0) {
1585 /*
1586 * this is a pure ack for outstanding data.
1587 */
1588 ++tcpstat.tcps_predack;
1589 if (opti.ts_present && opti.ts_ecr)
1590 tcp_xmit_timer(tp, opti.ts_ecr);
1591 else if (tp->t_rtttime &&
1592 SEQ_GT(th->th_ack, tp->t_rtseq))
1593 tcp_xmit_timer(tp,
1594 tcp_now - tp->t_rtttime);
1595 acked = th->th_ack - tp->snd_una;
1596 tcpstat.tcps_rcvackpack++;
1597 tcpstat.tcps_rcvackbyte += acked;
1598 ND6_HINT(tp);
1599
1600 if (acked > (tp->t_lastoff - tp->t_inoff))
1601 tp->t_lastm = NULL;
1602 sbdrop(&so->so_snd, acked);
1603 tp->t_lastoff -= acked;
1604
1605 tp->snd_una = th->th_ack;
1606 tp->snd_fack = tp->snd_una;
1607 if (SEQ_LT(tp->snd_high, tp->snd_una))
1608 tp->snd_high = tp->snd_una;
1609 m_freem(m);
1610
1611 /*
1612 * If all outstanding data are acked, stop
1613 * retransmit timer, otherwise restart timer
1614 * using current (possibly backed-off) value.
1615 * If process is waiting for space,
1616 * wakeup/selwakeup/signal. If data
1617 * are ready to send, let tcp_output
1618 * decide between more output or persist.
1619 */
1620 if (tp->snd_una == tp->snd_max)
1621 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1622 else if (TCP_TIMER_ISARMED(tp,
1623 TCPT_PERSIST) == 0)
1624 TCP_TIMER_ARM(tp, TCPT_REXMT,
1625 tp->t_rxtcur);
1626
1627 sowwakeup(so);
1628 if (so->so_snd.sb_cc)
1629 (void) tcp_output(tp);
1630 if (tcp_saveti)
1631 m_freem(tcp_saveti);
1632 return;
1633 }
1634 } else if (th->th_ack == tp->snd_una &&
1635 TAILQ_FIRST(&tp->segq) == NULL &&
1636 tlen <= sbspace(&so->so_rcv)) {
1637 /*
1638 * this is a pure, in-sequence data packet
1639 * with nothing on the reassembly queue and
1640 * we have enough buffer space to take it.
1641 */
1642 ++tcpstat.tcps_preddat;
1643 tp->rcv_nxt += tlen;
1644 tcpstat.tcps_rcvpack++;
1645 tcpstat.tcps_rcvbyte += tlen;
1646 ND6_HINT(tp);
1647 /*
1648 * Drop TCP, IP headers and TCP options then add data
1649 * to socket buffer.
1650 */
1651 if (so->so_state & SS_CANTRCVMORE)
1652 m_freem(m);
1653 else {
1654 m_adj(m, toff + off);
1655 sbappendstream(&so->so_rcv, m);
1656 }
1657 sorwakeup(so);
1658 TCP_SETUP_ACK(tp, th);
1659 if (tp->t_flags & TF_ACKNOW)
1660 (void) tcp_output(tp);
1661 if (tcp_saveti)
1662 m_freem(tcp_saveti);
1663 return;
1664 }
1665 }
1666
1667 /*
1668 * Compute mbuf offset to TCP data segment.
1669 */
1670 hdroptlen = toff + off;
1671
1672 /*
1673 * Calculate amount of space in receive window,
1674 * and then do TCP input processing.
1675 * Receive window is amount of space in rcv queue,
1676 * but not less than advertised window.
1677 */
1678 { int win;
1679
1680 win = sbspace(&so->so_rcv);
1681 if (win < 0)
1682 win = 0;
1683 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1684 }
1685
1686 switch (tp->t_state) {
1687 case TCPS_LISTEN:
1688 /*
1689 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1690 */
1691 if (m->m_flags & (M_BCAST|M_MCAST))
1692 goto drop;
1693 switch (af) {
1694 #ifdef INET6
1695 case AF_INET6:
1696 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1697 goto drop;
1698 break;
1699 #endif /* INET6 */
1700 case AF_INET:
1701 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1702 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1703 goto drop;
1704 break;
1705 }
1706 break;
1707
1708 /*
1709 * If the state is SYN_SENT:
1710 * if seg contains an ACK, but not for our SYN, drop the input.
1711 * if seg contains a RST, then drop the connection.
1712 * if seg does not contain SYN, then drop it.
1713 * Otherwise this is an acceptable SYN segment
1714 * initialize tp->rcv_nxt and tp->irs
1715 * if seg contains ack then advance tp->snd_una
1716 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1717 * arrange for segment to be acked (eventually)
1718 * continue processing rest of data/controls, beginning with URG
1719 */
1720 case TCPS_SYN_SENT:
1721 if ((tiflags & TH_ACK) &&
1722 (SEQ_LEQ(th->th_ack, tp->iss) ||
1723 SEQ_GT(th->th_ack, tp->snd_max)))
1724 goto dropwithreset;
1725 if (tiflags & TH_RST) {
1726 if (tiflags & TH_ACK)
1727 tp = tcp_drop(tp, ECONNREFUSED);
1728 goto drop;
1729 }
1730 if ((tiflags & TH_SYN) == 0)
1731 goto drop;
1732 if (tiflags & TH_ACK) {
1733 tp->snd_una = th->th_ack;
1734 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1735 tp->snd_nxt = tp->snd_una;
1736 if (SEQ_LT(tp->snd_high, tp->snd_una))
1737 tp->snd_high = tp->snd_una;
1738 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1739 }
1740 tp->irs = th->th_seq;
1741 tcp_rcvseqinit(tp);
1742 tp->t_flags |= TF_ACKNOW;
1743 tcp_mss_from_peer(tp, opti.maxseg);
1744
1745 /*
1746 * Initialize the initial congestion window. If we
1747 * had to retransmit the SYN, we must initialize cwnd
1748 * to 1 segment (i.e. the Loss Window).
1749 */
1750 if (tp->t_flags & TF_SYN_REXMT)
1751 tp->snd_cwnd = tp->t_peermss;
1752 else {
1753 int ss = tcp_init_win;
1754 #ifdef INET
1755 if (inp != NULL && in_localaddr(inp->inp_faddr))
1756 ss = tcp_init_win_local;
1757 #endif
1758 #ifdef INET6
1759 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1760 ss = tcp_init_win_local;
1761 #endif
1762 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1763 }
1764
1765 tcp_rmx_rtt(tp);
1766 if (tiflags & TH_ACK) {
1767 tcpstat.tcps_connects++;
1768 soisconnected(so);
1769 tcp_established(tp);
1770 /* Do window scaling on this connection? */
1771 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1772 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1773 tp->snd_scale = tp->requested_s_scale;
1774 tp->rcv_scale = tp->request_r_scale;
1775 }
1776 TCP_REASS_LOCK(tp);
1777 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1778 TCP_REASS_UNLOCK(tp);
1779 /*
1780 * if we didn't have to retransmit the SYN,
1781 * use its rtt as our initial srtt & rtt var.
1782 */
1783 if (tp->t_rtttime)
1784 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1785 } else
1786 tp->t_state = TCPS_SYN_RECEIVED;
1787
1788 /*
1789 * Advance th->th_seq to correspond to first data byte.
1790 * If data, trim to stay within window,
1791 * dropping FIN if necessary.
1792 */
1793 th->th_seq++;
1794 if (tlen > tp->rcv_wnd) {
1795 todrop = tlen - tp->rcv_wnd;
1796 m_adj(m, -todrop);
1797 tlen = tp->rcv_wnd;
1798 tiflags &= ~TH_FIN;
1799 tcpstat.tcps_rcvpackafterwin++;
1800 tcpstat.tcps_rcvbyteafterwin += todrop;
1801 }
1802 tp->snd_wl1 = th->th_seq - 1;
1803 tp->rcv_up = th->th_seq;
1804 goto step6;
1805
1806 /*
1807 * If the state is SYN_RECEIVED:
1808 * If seg contains an ACK, but not for our SYN, drop the input
1809 * and generate an RST. See page 36, rfc793
1810 */
1811 case TCPS_SYN_RECEIVED:
1812 if ((tiflags & TH_ACK) &&
1813 (SEQ_LEQ(th->th_ack, tp->iss) ||
1814 SEQ_GT(th->th_ack, tp->snd_max)))
1815 goto dropwithreset;
1816 break;
1817 }
1818
1819 /*
1820 * States other than LISTEN or SYN_SENT.
1821 * First check timestamp, if present.
1822 * Then check that at least some bytes of segment are within
1823 * receive window. If segment begins before rcv_nxt,
1824 * drop leading data (and SYN); if nothing left, just ack.
1825 *
1826 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1827 * and it's less than ts_recent, drop it.
1828 */
1829 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1830 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1831
1832 /* Check to see if ts_recent is over 24 days old. */
1833 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1834 /*
1835 * Invalidate ts_recent. If this segment updates
1836 * ts_recent, the age will be reset later and ts_recent
1837 * will get a valid value. If it does not, setting
1838 * ts_recent to zero will at least satisfy the
1839 * requirement that zero be placed in the timestamp
1840 * echo reply when ts_recent isn't valid. The
1841 * age isn't reset until we get a valid ts_recent
1842 * because we don't want out-of-order segments to be
1843 * dropped when ts_recent is old.
1844 */
1845 tp->ts_recent = 0;
1846 } else {
1847 tcpstat.tcps_rcvduppack++;
1848 tcpstat.tcps_rcvdupbyte += tlen;
1849 tcpstat.tcps_pawsdrop++;
1850 tcp_new_dsack(tp, th->th_seq, tlen);
1851 goto dropafterack;
1852 }
1853 }
1854
1855 todrop = tp->rcv_nxt - th->th_seq;
1856 dupseg = FALSE;
1857 if (todrop > 0) {
1858 if (tiflags & TH_SYN) {
1859 tiflags &= ~TH_SYN;
1860 th->th_seq++;
1861 if (th->th_urp > 1)
1862 th->th_urp--;
1863 else {
1864 tiflags &= ~TH_URG;
1865 th->th_urp = 0;
1866 }
1867 todrop--;
1868 }
1869 if (todrop > tlen ||
1870 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1871 /*
1872 * Any valid FIN or RST must be to the left of the
1873 * window. At this point the FIN or RST must be a
1874 * duplicate or out of sequence; drop it.
1875 */
1876 if (tiflags & TH_RST)
1877 goto drop;
1878 tiflags &= ~(TH_FIN|TH_RST);
1879 /*
1880 * Send an ACK to resynchronize and drop any data.
1881 * But keep on processing for RST or ACK.
1882 */
1883 tp->t_flags |= TF_ACKNOW;
1884 todrop = tlen;
1885 dupseg = TRUE;
1886 tcpstat.tcps_rcvdupbyte += todrop;
1887 tcpstat.tcps_rcvduppack++;
1888 } else if ((tiflags & TH_RST) &&
1889 th->th_seq != tp->last_ack_sent) {
1890 /*
1891 * Test for reset before adjusting the sequence
1892 * number for overlapping data.
1893 */
1894 goto dropafterack_ratelim;
1895 } else {
1896 tcpstat.tcps_rcvpartduppack++;
1897 tcpstat.tcps_rcvpartdupbyte += todrop;
1898 }
1899 tcp_new_dsack(tp, th->th_seq, todrop);
1900 hdroptlen += todrop; /*drop from head afterwards*/
1901 th->th_seq += todrop;
1902 tlen -= todrop;
1903 if (th->th_urp > todrop)
1904 th->th_urp -= todrop;
1905 else {
1906 tiflags &= ~TH_URG;
1907 th->th_urp = 0;
1908 }
1909 }
1910
1911 /*
1912 * If new data are received on a connection after the
1913 * user processes are gone, then RST the other end.
1914 */
1915 if ((so->so_state & SS_NOFDREF) &&
1916 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1917 tp = tcp_close(tp);
1918 tcpstat.tcps_rcvafterclose++;
1919 goto dropwithreset;
1920 }
1921
1922 /*
1923 * If segment ends after window, drop trailing data
1924 * (and PUSH and FIN); if nothing left, just ACK.
1925 */
1926 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1927 if (todrop > 0) {
1928 tcpstat.tcps_rcvpackafterwin++;
1929 if (todrop >= tlen) {
1930 /*
1931 * The segment actually starts after the window.
1932 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1933 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1934 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1935 */
1936 tcpstat.tcps_rcvbyteafterwin += tlen;
1937 /*
1938 * If a new connection request is received
1939 * while in TIME_WAIT, drop the old connection
1940 * and start over if the sequence numbers
1941 * are above the previous ones.
1942 *
1943 * NOTE: We will checksum the packet again, and
1944 * so we need to put the header fields back into
1945 * network order!
1946 * XXX This kind of sucks, but we don't expect
1947 * XXX this to happen very often, so maybe it
1948 * XXX doesn't matter so much.
1949 */
1950 if (tiflags & TH_SYN &&
1951 tp->t_state == TCPS_TIME_WAIT &&
1952 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1953 iss = tcp_new_iss(tp, tp->snd_nxt);
1954 tp = tcp_close(tp);
1955 TCP_FIELDS_TO_NET(th);
1956 goto findpcb;
1957 }
1958 /*
1959 * If window is closed can only take segments at
1960 * window edge, and have to drop data and PUSH from
1961 * incoming segments. Continue processing, but
1962 * remember to ack. Otherwise, drop segment
1963 * and (if not RST) ack.
1964 */
1965 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1966 tp->t_flags |= TF_ACKNOW;
1967 tcpstat.tcps_rcvwinprobe++;
1968 } else
1969 goto dropafterack;
1970 } else
1971 tcpstat.tcps_rcvbyteafterwin += todrop;
1972 m_adj(m, -todrop);
1973 tlen -= todrop;
1974 tiflags &= ~(TH_PUSH|TH_FIN);
1975 }
1976
1977 /*
1978 * If last ACK falls within this segment's sequence numbers,
1979 * and the timestamp is newer, record it.
1980 */
1981 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1982 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1983 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1984 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1985 tp->ts_recent_age = tcp_now;
1986 tp->ts_recent = opti.ts_val;
1987 }
1988
1989 /*
1990 * If the RST bit is set examine the state:
1991 * SYN_RECEIVED STATE:
1992 * If passive open, return to LISTEN state.
1993 * If active open, inform user that connection was refused.
1994 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1995 * Inform user that connection was reset, and close tcb.
1996 * CLOSING, LAST_ACK, TIME_WAIT STATES
1997 * Close the tcb.
1998 */
1999 if (tiflags & TH_RST) {
2000 if (th->th_seq != tp->last_ack_sent)
2001 goto dropafterack_ratelim;
2002
2003 switch (tp->t_state) {
2004 case TCPS_SYN_RECEIVED:
2005 so->so_error = ECONNREFUSED;
2006 goto close;
2007
2008 case TCPS_ESTABLISHED:
2009 case TCPS_FIN_WAIT_1:
2010 case TCPS_FIN_WAIT_2:
2011 case TCPS_CLOSE_WAIT:
2012 so->so_error = ECONNRESET;
2013 close:
2014 tp->t_state = TCPS_CLOSED;
2015 tcpstat.tcps_drops++;
2016 tp = tcp_close(tp);
2017 goto drop;
2018
2019 case TCPS_CLOSING:
2020 case TCPS_LAST_ACK:
2021 case TCPS_TIME_WAIT:
2022 tp = tcp_close(tp);
2023 goto drop;
2024 }
2025 }
2026
2027 /*
2028 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2029 * we must be in a synchronized state. RFC791 states (under RST
2030 * generation) that any unacceptable segment (an out-of-order SYN
2031 * qualifies) received in a synchronized state must elicit only an
2032 * empty acknowledgment segment ... and the connection remains in
2033 * the same state.
2034 */
2035 if (tiflags & TH_SYN) {
2036 if (tp->rcv_nxt == th->th_seq) {
2037 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2038 TH_ACK);
2039 if (tcp_saveti)
2040 m_freem(tcp_saveti);
2041 return;
2042 }
2043
2044 goto dropafterack_ratelim;
2045 }
2046
2047 /*
2048 * If the ACK bit is off we drop the segment and return.
2049 */
2050 if ((tiflags & TH_ACK) == 0) {
2051 if (tp->t_flags & TF_ACKNOW)
2052 goto dropafterack;
2053 else
2054 goto drop;
2055 }
2056
2057 /*
2058 * Ack processing.
2059 */
2060 switch (tp->t_state) {
2061
2062 /*
2063 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2064 * ESTABLISHED state and continue processing, otherwise
2065 * send an RST.
2066 */
2067 case TCPS_SYN_RECEIVED:
2068 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2069 SEQ_GT(th->th_ack, tp->snd_max))
2070 goto dropwithreset;
2071 tcpstat.tcps_connects++;
2072 soisconnected(so);
2073 tcp_established(tp);
2074 /* Do window scaling? */
2075 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2076 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2077 tp->snd_scale = tp->requested_s_scale;
2078 tp->rcv_scale = tp->request_r_scale;
2079 }
2080 TCP_REASS_LOCK(tp);
2081 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2082 TCP_REASS_UNLOCK(tp);
2083 tp->snd_wl1 = th->th_seq - 1;
2084 /* fall into ... */
2085
2086 /*
2087 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2088 * ACKs. If the ack is in the range
2089 * tp->snd_una < th->th_ack <= tp->snd_max
2090 * then advance tp->snd_una to th->th_ack and drop
2091 * data from the retransmission queue. If this ACK reflects
2092 * more up to date window information we update our window information.
2093 */
2094 case TCPS_ESTABLISHED:
2095 case TCPS_FIN_WAIT_1:
2096 case TCPS_FIN_WAIT_2:
2097 case TCPS_CLOSE_WAIT:
2098 case TCPS_CLOSING:
2099 case TCPS_LAST_ACK:
2100 case TCPS_TIME_WAIT:
2101
2102 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2103 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2104 tcpstat.tcps_rcvdupack++;
2105 /*
2106 * If we have outstanding data (other than
2107 * a window probe), this is a completely
2108 * duplicate ack (ie, window info didn't
2109 * change), the ack is the biggest we've
2110 * seen and we've seen exactly our rexmt
2111 * threshhold of them, assume a packet
2112 * has been dropped and retransmit it.
2113 * Kludge snd_nxt & the congestion
2114 * window so we send only this one
2115 * packet.
2116 *
2117 * We know we're losing at the current
2118 * window size so do congestion avoidance
2119 * (set ssthresh to half the current window
2120 * and pull our congestion window back to
2121 * the new ssthresh).
2122 *
2123 * Dup acks mean that packets have left the
2124 * network (they're now cached at the receiver)
2125 * so bump cwnd by the amount in the receiver
2126 * to keep a constant cwnd packets in the
2127 * network.
2128 *
2129 * If we are using TCP/SACK, then enter
2130 * Fast Recovery if the receiver SACKs
2131 * data that is tcprexmtthresh * MSS
2132 * bytes past the last ACKed segment,
2133 * irrespective of the number of DupAcks.
2134 */
2135 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2136 th->th_ack != tp->snd_una)
2137 tp->t_dupacks = 0;
2138 else if (tp->t_partialacks < 0 &&
2139 (++tp->t_dupacks == tcprexmtthresh ||
2140 TCP_FACK_FASTRECOV(tp))) {
2141 tcp_seq onxt;
2142 u_int win;
2143
2144 if (tcp_do_newreno &&
2145 SEQ_LT(th->th_ack, tp->snd_high)) {
2146 /*
2147 * False fast retransmit after
2148 * timeout. Do not enter fast
2149 * recovery.
2150 */
2151 tp->t_dupacks = 0;
2152 break;
2153 }
2154
2155 onxt = tp->snd_nxt;
2156 win = min(tp->snd_wnd, tp->snd_cwnd) /
2157 2 / tp->t_segsz;
2158 if (win < 2)
2159 win = 2;
2160 tp->snd_ssthresh = win * tp->t_segsz;
2161 tp->snd_recover = tp->snd_max;
2162 tp->t_partialacks = 0;
2163 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2164 tp->t_rtttime = 0;
2165 if (TCP_SACK_ENABLED(tp)) {
2166 tp->t_dupacks = tcprexmtthresh;
2167 tp->sack_newdata = tp->snd_nxt;
2168 tp->snd_cwnd = tp->t_segsz;
2169 (void) tcp_output(tp);
2170 goto drop;
2171 }
2172 tp->snd_nxt = th->th_ack;
2173 tp->snd_cwnd = tp->t_segsz;
2174 (void) tcp_output(tp);
2175 tp->snd_cwnd = tp->snd_ssthresh +
2176 tp->t_segsz * tp->t_dupacks;
2177 if (SEQ_GT(onxt, tp->snd_nxt))
2178 tp->snd_nxt = onxt;
2179 goto drop;
2180 } else if (tp->t_dupacks > tcprexmtthresh) {
2181 tp->snd_cwnd += tp->t_segsz;
2182 (void) tcp_output(tp);
2183 goto drop;
2184 }
2185 } else {
2186 /*
2187 * If the ack appears to be very old, only
2188 * allow data that is in-sequence. This
2189 * makes it somewhat more difficult to insert
2190 * forged data by guessing sequence numbers.
2191 * Sent an ack to try to update the send
2192 * sequence number on the other side.
2193 */
2194 if (tlen && th->th_seq != tp->rcv_nxt &&
2195 SEQ_LT(th->th_ack,
2196 tp->snd_una - tp->max_sndwnd))
2197 goto dropafterack;
2198 }
2199 break;
2200 }
2201 /*
2202 * If the congestion window was inflated to account
2203 * for the other side's cached packets, retract it.
2204 */
2205 if (TCP_SACK_ENABLED(tp))
2206 tcp_sack_newack(tp, th);
2207 else if (tcp_do_newreno)
2208 tcp_newreno_newack(tp, th);
2209 else
2210 tcp_reno_newack(tp, th);
2211 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2212 tcpstat.tcps_rcvacktoomuch++;
2213 goto dropafterack;
2214 }
2215 acked = th->th_ack - tp->snd_una;
2216 tcpstat.tcps_rcvackpack++;
2217 tcpstat.tcps_rcvackbyte += acked;
2218
2219 /*
2220 * If we have a timestamp reply, update smoothed
2221 * round trip time. If no timestamp is present but
2222 * transmit timer is running and timed sequence
2223 * number was acked, update smoothed round trip time.
2224 * Since we now have an rtt measurement, cancel the
2225 * timer backoff (cf., Phil Karn's retransmit alg.).
2226 * Recompute the initial retransmit timer.
2227 */
2228 if (opti.ts_present && opti.ts_ecr)
2229 tcp_xmit_timer(tp, opti.ts_ecr);
2230 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2231 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2232
2233 /*
2234 * If all outstanding data is acked, stop retransmit
2235 * timer and remember to restart (more output or persist).
2236 * If there is more data to be acked, restart retransmit
2237 * timer, using current (possibly backed-off) value.
2238 */
2239 if (th->th_ack == tp->snd_max) {
2240 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2241 needoutput = 1;
2242 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2243 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2244 /*
2245 * When new data is acked, open the congestion window.
2246 * If the window gives us less than ssthresh packets
2247 * in flight, open exponentially (segsz per packet).
2248 * Otherwise open linearly: segsz per window
2249 * (segsz^2 / cwnd per packet).
2250 *
2251 * If we are still in fast recovery (meaning we are using
2252 * NewReno and we have only received partial acks), do not
2253 * inflate the window yet.
2254 */
2255 if (tp->t_partialacks < 0) {
2256 u_int cw = tp->snd_cwnd;
2257 u_int incr = tp->t_segsz;
2258
2259 if (cw >= tp->snd_ssthresh)
2260 incr = incr * incr / cw;
2261 tp->snd_cwnd = min(cw + incr,
2262 TCP_MAXWIN << tp->snd_scale);
2263 }
2264 ND6_HINT(tp);
2265 if (acked > so->so_snd.sb_cc) {
2266 tp->snd_wnd -= so->so_snd.sb_cc;
2267 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2268 ourfinisacked = 1;
2269 } else {
2270 if (acked > (tp->t_lastoff - tp->t_inoff))
2271 tp->t_lastm = NULL;
2272 sbdrop(&so->so_snd, acked);
2273 tp->t_lastoff -= acked;
2274 tp->snd_wnd -= acked;
2275 ourfinisacked = 0;
2276 }
2277 sowwakeup(so);
2278 tp->snd_una = th->th_ack;
2279 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2280 tp->snd_fack = tp->snd_una;
2281 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2282 tp->snd_nxt = tp->snd_una;
2283 if (SEQ_LT(tp->snd_high, tp->snd_una))
2284 tp->snd_high = tp->snd_una;
2285
2286 switch (tp->t_state) {
2287
2288 /*
2289 * In FIN_WAIT_1 STATE in addition to the processing
2290 * for the ESTABLISHED state if our FIN is now acknowledged
2291 * then enter FIN_WAIT_2.
2292 */
2293 case TCPS_FIN_WAIT_1:
2294 if (ourfinisacked) {
2295 /*
2296 * If we can't receive any more
2297 * data, then closing user can proceed.
2298 * Starting the timer is contrary to the
2299 * specification, but if we don't get a FIN
2300 * we'll hang forever.
2301 */
2302 if (so->so_state & SS_CANTRCVMORE) {
2303 soisdisconnected(so);
2304 if (tcp_maxidle > 0)
2305 TCP_TIMER_ARM(tp, TCPT_2MSL,
2306 tcp_maxidle);
2307 }
2308 tp->t_state = TCPS_FIN_WAIT_2;
2309 }
2310 break;
2311
2312 /*
2313 * In CLOSING STATE in addition to the processing for
2314 * the ESTABLISHED state if the ACK acknowledges our FIN
2315 * then enter the TIME-WAIT state, otherwise ignore
2316 * the segment.
2317 */
2318 case TCPS_CLOSING:
2319 if (ourfinisacked) {
2320 tp->t_state = TCPS_TIME_WAIT;
2321 tcp_canceltimers(tp);
2322 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2323 soisdisconnected(so);
2324 }
2325 break;
2326
2327 /*
2328 * In LAST_ACK, we may still be waiting for data to drain
2329 * and/or to be acked, as well as for the ack of our FIN.
2330 * If our FIN is now acknowledged, delete the TCB,
2331 * enter the closed state and return.
2332 */
2333 case TCPS_LAST_ACK:
2334 if (ourfinisacked) {
2335 tp = tcp_close(tp);
2336 goto drop;
2337 }
2338 break;
2339
2340 /*
2341 * In TIME_WAIT state the only thing that should arrive
2342 * is a retransmission of the remote FIN. Acknowledge
2343 * it and restart the finack timer.
2344 */
2345 case TCPS_TIME_WAIT:
2346 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2347 goto dropafterack;
2348 }
2349 }
2350
2351 step6:
2352 /*
2353 * Update window information.
2354 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2355 */
2356 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2357 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2358 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2359 /* keep track of pure window updates */
2360 if (tlen == 0 &&
2361 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2362 tcpstat.tcps_rcvwinupd++;
2363 tp->snd_wnd = tiwin;
2364 tp->snd_wl1 = th->th_seq;
2365 tp->snd_wl2 = th->th_ack;
2366 if (tp->snd_wnd > tp->max_sndwnd)
2367 tp->max_sndwnd = tp->snd_wnd;
2368 needoutput = 1;
2369 }
2370
2371 /*
2372 * Process segments with URG.
2373 */
2374 if ((tiflags & TH_URG) && th->th_urp &&
2375 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2376 /*
2377 * This is a kludge, but if we receive and accept
2378 * random urgent pointers, we'll crash in
2379 * soreceive. It's hard to imagine someone
2380 * actually wanting to send this much urgent data.
2381 */
2382 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2383 th->th_urp = 0; /* XXX */
2384 tiflags &= ~TH_URG; /* XXX */
2385 goto dodata; /* XXX */
2386 }
2387 /*
2388 * If this segment advances the known urgent pointer,
2389 * then mark the data stream. This should not happen
2390 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2391 * a FIN has been received from the remote side.
2392 * In these states we ignore the URG.
2393 *
2394 * According to RFC961 (Assigned Protocols),
2395 * the urgent pointer points to the last octet
2396 * of urgent data. We continue, however,
2397 * to consider it to indicate the first octet
2398 * of data past the urgent section as the original
2399 * spec states (in one of two places).
2400 */
2401 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2402 tp->rcv_up = th->th_seq + th->th_urp;
2403 so->so_oobmark = so->so_rcv.sb_cc +
2404 (tp->rcv_up - tp->rcv_nxt) - 1;
2405 if (so->so_oobmark == 0)
2406 so->so_state |= SS_RCVATMARK;
2407 sohasoutofband(so);
2408 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2409 }
2410 /*
2411 * Remove out of band data so doesn't get presented to user.
2412 * This can happen independent of advancing the URG pointer,
2413 * but if two URG's are pending at once, some out-of-band
2414 * data may creep in... ick.
2415 */
2416 if (th->th_urp <= (u_int16_t) tlen
2417 #ifdef SO_OOBINLINE
2418 && (so->so_options & SO_OOBINLINE) == 0
2419 #endif
2420 )
2421 tcp_pulloutofband(so, th, m, hdroptlen);
2422 } else
2423 /*
2424 * If no out of band data is expected,
2425 * pull receive urgent pointer along
2426 * with the receive window.
2427 */
2428 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2429 tp->rcv_up = tp->rcv_nxt;
2430 dodata: /* XXX */
2431
2432 /*
2433 * Process the segment text, merging it into the TCP sequencing queue,
2434 * and arranging for acknowledgement of receipt if necessary.
2435 * This process logically involves adjusting tp->rcv_wnd as data
2436 * is presented to the user (this happens in tcp_usrreq.c,
2437 * case PRU_RCVD). If a FIN has already been received on this
2438 * connection then we just ignore the text.
2439 */
2440 if ((tlen || (tiflags & TH_FIN)) &&
2441 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2442 /*
2443 * Insert segment ti into reassembly queue of tcp with
2444 * control block tp. Return TH_FIN if reassembly now includes
2445 * a segment with FIN. The macro form does the common case
2446 * inline (segment is the next to be received on an
2447 * established connection, and the queue is empty),
2448 * avoiding linkage into and removal from the queue and
2449 * repetition of various conversions.
2450 * Set DELACK for segments received in order, but ack
2451 * immediately when segments are out of order
2452 * (so fast retransmit can work).
2453 */
2454 /* NOTE: this was TCP_REASS() macro, but used only once */
2455 TCP_REASS_LOCK(tp);
2456 if (th->th_seq == tp->rcv_nxt &&
2457 TAILQ_FIRST(&tp->segq) == NULL &&
2458 tp->t_state == TCPS_ESTABLISHED) {
2459 TCP_SETUP_ACK(tp, th);
2460 tp->rcv_nxt += tlen;
2461 tiflags = th->th_flags & TH_FIN;
2462 tcpstat.tcps_rcvpack++;
2463 tcpstat.tcps_rcvbyte += tlen;
2464 ND6_HINT(tp);
2465 if (so->so_state & SS_CANTRCVMORE)
2466 m_freem(m);
2467 else {
2468 m_adj(m, hdroptlen);
2469 sbappendstream(&(so)->so_rcv, m);
2470 }
2471 sorwakeup(so);
2472 } else {
2473 m_adj(m, hdroptlen);
2474 tiflags = tcp_reass(tp, th, m, &tlen);
2475 tp->t_flags |= TF_ACKNOW;
2476 }
2477 TCP_REASS_UNLOCK(tp);
2478
2479 /*
2480 * Note the amount of data that peer has sent into
2481 * our window, in order to estimate the sender's
2482 * buffer size.
2483 */
2484 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2485 } else {
2486 m_freem(m);
2487 m = NULL;
2488 tiflags &= ~TH_FIN;
2489 }
2490
2491 /*
2492 * If FIN is received ACK the FIN and let the user know
2493 * that the connection is closing. Ignore a FIN received before
2494 * the connection is fully established.
2495 */
2496 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2497 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2498 socantrcvmore(so);
2499 tp->t_flags |= TF_ACKNOW;
2500 tp->rcv_nxt++;
2501 }
2502 switch (tp->t_state) {
2503
2504 /*
2505 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2506 */
2507 case TCPS_ESTABLISHED:
2508 tp->t_state = TCPS_CLOSE_WAIT;
2509 break;
2510
2511 /*
2512 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2513 * enter the CLOSING state.
2514 */
2515 case TCPS_FIN_WAIT_1:
2516 tp->t_state = TCPS_CLOSING;
2517 break;
2518
2519 /*
2520 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2521 * starting the time-wait timer, turning off the other
2522 * standard timers.
2523 */
2524 case TCPS_FIN_WAIT_2:
2525 tp->t_state = TCPS_TIME_WAIT;
2526 tcp_canceltimers(tp);
2527 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2528 soisdisconnected(so);
2529 break;
2530
2531 /*
2532 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2533 */
2534 case TCPS_TIME_WAIT:
2535 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2536 break;
2537 }
2538 }
2539 #ifdef TCP_DEBUG
2540 if (so->so_options & SO_DEBUG)
2541 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2542 #endif
2543
2544 /*
2545 * Return any desired output.
2546 */
2547 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2548 (void) tcp_output(tp);
2549 }
2550 if (tcp_saveti)
2551 m_freem(tcp_saveti);
2552 return;
2553
2554 badsyn:
2555 /*
2556 * Received a bad SYN. Increment counters and dropwithreset.
2557 */
2558 tcpstat.tcps_badsyn++;
2559 tp = NULL;
2560 goto dropwithreset;
2561
2562 dropafterack:
2563 /*
2564 * Generate an ACK dropping incoming segment if it occupies
2565 * sequence space, where the ACK reflects our state.
2566 */
2567 if (tiflags & TH_RST)
2568 goto drop;
2569 goto dropafterack2;
2570
2571 dropafterack_ratelim:
2572 /*
2573 * We may want to rate-limit ACKs against SYN/RST attack.
2574 */
2575 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2576 tcp_ackdrop_ppslim) == 0) {
2577 /* XXX stat */
2578 goto drop;
2579 }
2580 /* ...fall into dropafterack2... */
2581
2582 dropafterack2:
2583 m_freem(m);
2584 tp->t_flags |= TF_ACKNOW;
2585 (void) tcp_output(tp);
2586 if (tcp_saveti)
2587 m_freem(tcp_saveti);
2588 return;
2589
2590 dropwithreset_ratelim:
2591 /*
2592 * We may want to rate-limit RSTs in certain situations,
2593 * particularly if we are sending an RST in response to
2594 * an attempt to connect to or otherwise communicate with
2595 * a port for which we have no socket.
2596 */
2597 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2598 tcp_rst_ppslim) == 0) {
2599 /* XXX stat */
2600 goto drop;
2601 }
2602 /* ...fall into dropwithreset... */
2603
2604 dropwithreset:
2605 /*
2606 * Generate a RST, dropping incoming segment.
2607 * Make ACK acceptable to originator of segment.
2608 */
2609 if (tiflags & TH_RST)
2610 goto drop;
2611
2612 switch (af) {
2613 #ifdef INET6
2614 case AF_INET6:
2615 /* For following calls to tcp_respond */
2616 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2617 goto drop;
2618 break;
2619 #endif /* INET6 */
2620 case AF_INET:
2621 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2622 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2623 goto drop;
2624 }
2625
2626 if (tiflags & TH_ACK)
2627 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2628 else {
2629 if (tiflags & TH_SYN)
2630 tlen++;
2631 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2632 TH_RST|TH_ACK);
2633 }
2634 if (tcp_saveti)
2635 m_freem(tcp_saveti);
2636 return;
2637
2638 badcsum:
2639 drop:
2640 /*
2641 * Drop space held by incoming segment and return.
2642 */
2643 if (tp) {
2644 if (tp->t_inpcb)
2645 so = tp->t_inpcb->inp_socket;
2646 #ifdef INET6
2647 else if (tp->t_in6pcb)
2648 so = tp->t_in6pcb->in6p_socket;
2649 #endif
2650 else
2651 so = NULL;
2652 #ifdef TCP_DEBUG
2653 if (so && (so->so_options & SO_DEBUG) != 0)
2654 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2655 #endif
2656 }
2657 if (tcp_saveti)
2658 m_freem(tcp_saveti);
2659 m_freem(m);
2660 return;
2661 }
2662
2663 #ifdef TCP_SIGNATURE
2664 int
2665 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2666 {
2667
2668 MD5Update(fstate, (u_char *)data, len);
2669 return (0);
2670 }
2671
2672 struct secasvar *
2673 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2674 {
2675 struct secasvar *sav;
2676 #ifdef FAST_IPSEC
2677 union sockaddr_union dst;
2678 #endif
2679 struct ip *ip;
2680 struct ip6_hdr *ip6;
2681
2682 ip = mtod(m, struct ip *);
2683 switch (ip->ip_v) {
2684 case 4:
2685 ip = mtod(m, struct ip *);
2686 ip6 = NULL;
2687 break;
2688 case 6:
2689 ip = NULL;
2690 ip6 = mtod(m, struct ip6_hdr *);
2691 break;
2692 default:
2693 return (NULL);
2694 }
2695
2696 #ifdef FAST_IPSEC
2697 /* Extract the destination from the IP header in the mbuf. */
2698 bzero(&dst, sizeof(union sockaddr_union));
2699 dst.sa.sa_len = sizeof(struct sockaddr_in);
2700 dst.sa.sa_family = AF_INET;
2701 dst.sin.sin_addr = ip->ip_dst;
2702
2703 /*
2704 * Look up an SADB entry which matches the address of the peer.
2705 */
2706 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2707 #else
2708 if (ip)
2709 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2710 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2711 htonl(TCP_SIG_SPI), 0, 0);
2712 else
2713 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2714 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2715 htonl(TCP_SIG_SPI), 0, 0);
2716 #endif
2717
2718 return (sav); /* freesav must be performed by caller */
2719 }
2720
2721 int
2722 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2723 struct secasvar *sav, char *sig)
2724 {
2725 MD5_CTX ctx;
2726 struct ip *ip;
2727 struct ipovly *ipovly;
2728 struct ip6_hdr *ip6;
2729 struct ippseudo ippseudo;
2730 struct ip6_hdr_pseudo ip6pseudo;
2731 struct tcphdr th0;
2732 int l, tcphdrlen;
2733
2734 if (sav == NULL)
2735 return (-1);
2736
2737 tcphdrlen = th->th_off * 4;
2738
2739 switch (mtod(m, struct ip *)->ip_v) {
2740 case 4:
2741 ip = mtod(m, struct ip *);
2742 ip6 = NULL;
2743 break;
2744 case 6:
2745 ip = NULL;
2746 ip6 = mtod(m, struct ip6_hdr *);
2747 break;
2748 default:
2749 return (-1);
2750 }
2751
2752 MD5Init(&ctx);
2753
2754 if (ip) {
2755 memset(&ippseudo, 0, sizeof(ippseudo));
2756 ipovly = (struct ipovly *)ip;
2757 ippseudo.ippseudo_src = ipovly->ih_src;
2758 ippseudo.ippseudo_dst = ipovly->ih_dst;
2759 ippseudo.ippseudo_pad = 0;
2760 ippseudo.ippseudo_p = IPPROTO_TCP;
2761 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2762 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2763 } else {
2764 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2765 ip6pseudo.ip6ph_src = ip6->ip6_src;
2766 in6_clearscope(&ip6pseudo.ip6ph_src);
2767 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2768 in6_clearscope(&ip6pseudo.ip6ph_dst);
2769 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2770 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2771 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2772 }
2773
2774 th0 = *th;
2775 th0.th_sum = 0;
2776 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2777
2778 l = m->m_pkthdr.len - thoff - tcphdrlen;
2779 if (l > 0)
2780 m_apply(m, thoff + tcphdrlen,
2781 m->m_pkthdr.len - thoff - tcphdrlen,
2782 tcp_signature_apply, &ctx);
2783
2784 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2785 MD5Final(sig, &ctx);
2786
2787 return (0);
2788 }
2789 #endif
2790
2791 int
2792 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2793 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2794 {
2795 u_int16_t mss;
2796 int opt, optlen = 0;
2797 #ifdef TCP_SIGNATURE
2798 caddr_t sigp = NULL;
2799 char sigbuf[TCP_SIGLEN];
2800 struct secasvar *sav = NULL;
2801 #endif
2802
2803 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2804 opt = cp[0];
2805 if (opt == TCPOPT_EOL)
2806 break;
2807 if (opt == TCPOPT_NOP)
2808 optlen = 1;
2809 else {
2810 if (cnt < 2)
2811 break;
2812 optlen = cp[1];
2813 if (optlen < 2 || optlen > cnt)
2814 break;
2815 }
2816 switch (opt) {
2817
2818 default:
2819 continue;
2820
2821 case TCPOPT_MAXSEG:
2822 if (optlen != TCPOLEN_MAXSEG)
2823 continue;
2824 if (!(th->th_flags & TH_SYN))
2825 continue;
2826 bcopy(cp + 2, &mss, sizeof(mss));
2827 oi->maxseg = ntohs(mss);
2828 break;
2829
2830 case TCPOPT_WINDOW:
2831 if (optlen != TCPOLEN_WINDOW)
2832 continue;
2833 if (!(th->th_flags & TH_SYN))
2834 continue;
2835 tp->t_flags |= TF_RCVD_SCALE;
2836 tp->requested_s_scale = cp[2];
2837 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2838 #if 0 /*XXX*/
2839 char *p;
2840
2841 if (ip)
2842 p = ntohl(ip->ip_src);
2843 #ifdef INET6
2844 else if (ip6)
2845 p = ip6_sprintf(&ip6->ip6_src);
2846 #endif
2847 else
2848 p = "(unknown)";
2849 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2850 "assuming %d\n",
2851 tp->requested_s_scale, p,
2852 TCP_MAX_WINSHIFT);
2853 #else
2854 log(LOG_ERR, "TCP: invalid wscale %d, "
2855 "assuming %d\n",
2856 tp->requested_s_scale,
2857 TCP_MAX_WINSHIFT);
2858 #endif
2859 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2860 }
2861 break;
2862
2863 case TCPOPT_TIMESTAMP:
2864 if (optlen != TCPOLEN_TIMESTAMP)
2865 continue;
2866 oi->ts_present = 1;
2867 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2868 NTOHL(oi->ts_val);
2869 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2870 NTOHL(oi->ts_ecr);
2871
2872 /*
2873 * A timestamp received in a SYN makes
2874 * it ok to send timestamp requests and replies.
2875 */
2876 if (th->th_flags & TH_SYN) {
2877 tp->t_flags |= TF_RCVD_TSTMP;
2878 tp->ts_recent = oi->ts_val;
2879 tp->ts_recent_age = tcp_now;
2880 }
2881 break;
2882 case TCPOPT_SACK_PERMITTED:
2883 if (optlen != TCPOLEN_SACK_PERMITTED)
2884 continue;
2885 if (!(th->th_flags & TH_SYN))
2886 continue;
2887 if (tcp_do_sack) {
2888 tp->t_flags |= TF_SACK_PERMIT;
2889 tp->t_flags |= TF_WILL_SACK;
2890 }
2891 break;
2892
2893 case TCPOPT_SACK:
2894 tcp_sack_option(tp, th, cp, optlen);
2895 break;
2896 #ifdef TCP_SIGNATURE
2897 case TCPOPT_SIGNATURE:
2898 if (optlen != TCPOLEN_SIGNATURE)
2899 continue;
2900 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2901 return (-1);
2902
2903 sigp = sigbuf;
2904 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2905 memset(cp + 2, 0, TCP_SIGLEN);
2906 tp->t_flags |= TF_SIGNATURE;
2907 break;
2908 #endif
2909 }
2910 }
2911
2912 #ifdef TCP_SIGNATURE
2913 if (tp->t_flags & TF_SIGNATURE) {
2914
2915 sav = tcp_signature_getsav(m, th);
2916
2917 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2918 return (-1);
2919 }
2920
2921 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2922 if (sav == NULL)
2923 return (-1);
2924 #ifdef FAST_IPSEC
2925 KEY_FREESAV(&sav);
2926 #else
2927 key_freesav(sav);
2928 #endif
2929 return (-1);
2930 }
2931
2932 if (sigp) {
2933 char sig[TCP_SIGLEN];
2934
2935 TCP_FIELDS_TO_NET(th);
2936 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2937 TCP_FIELDS_TO_HOST(th);
2938 if (sav == NULL)
2939 return (-1);
2940 #ifdef FAST_IPSEC
2941 KEY_FREESAV(&sav);
2942 #else
2943 key_freesav(sav);
2944 #endif
2945 return (-1);
2946 }
2947 TCP_FIELDS_TO_HOST(th);
2948
2949 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2950 tcpstat.tcps_badsig++;
2951 if (sav == NULL)
2952 return (-1);
2953 #ifdef FAST_IPSEC
2954 KEY_FREESAV(&sav);
2955 #else
2956 key_freesav(sav);
2957 #endif
2958 return (-1);
2959 } else
2960 tcpstat.tcps_goodsig++;
2961
2962 key_sa_recordxfer(sav, m);
2963 #ifdef FAST_IPSEC
2964 KEY_FREESAV(&sav);
2965 #else
2966 key_freesav(sav);
2967 #endif
2968 }
2969 #endif
2970
2971 return (0);
2972 }
2973
2974 /*
2975 * Pull out of band byte out of a segment so
2976 * it doesn't appear in the user's data queue.
2977 * It is still reflected in the segment length for
2978 * sequencing purposes.
2979 */
2980 void
2981 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
2982 struct mbuf *m, int off)
2983 {
2984 int cnt = off + th->th_urp - 1;
2985
2986 while (cnt >= 0) {
2987 if (m->m_len > cnt) {
2988 char *cp = mtod(m, caddr_t) + cnt;
2989 struct tcpcb *tp = sototcpcb(so);
2990
2991 tp->t_iobc = *cp;
2992 tp->t_oobflags |= TCPOOB_HAVEDATA;
2993 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2994 m->m_len--;
2995 return;
2996 }
2997 cnt -= m->m_len;
2998 m = m->m_next;
2999 if (m == 0)
3000 break;
3001 }
3002 panic("tcp_pulloutofband");
3003 }
3004
3005 /*
3006 * Collect new round-trip time estimate
3007 * and update averages and current timeout.
3008 */
3009 void
3010 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3011 {
3012 int32_t delta;
3013
3014 tcpstat.tcps_rttupdated++;
3015 if (tp->t_srtt != 0) {
3016 /*
3017 * srtt is stored as fixed point with 3 bits after the
3018 * binary point (i.e., scaled by 8). The following magic
3019 * is equivalent to the smoothing algorithm in rfc793 with
3020 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3021 * point). Adjust rtt to origin 0.
3022 */
3023 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3024 if ((tp->t_srtt += delta) <= 0)
3025 tp->t_srtt = 1 << 2;
3026 /*
3027 * We accumulate a smoothed rtt variance (actually, a
3028 * smoothed mean difference), then set the retransmit
3029 * timer to smoothed rtt + 4 times the smoothed variance.
3030 * rttvar is stored as fixed point with 2 bits after the
3031 * binary point (scaled by 4). The following is
3032 * equivalent to rfc793 smoothing with an alpha of .75
3033 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3034 * rfc793's wired-in beta.
3035 */
3036 if (delta < 0)
3037 delta = -delta;
3038 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3039 if ((tp->t_rttvar += delta) <= 0)
3040 tp->t_rttvar = 1 << 2;
3041 } else {
3042 /*
3043 * No rtt measurement yet - use the unsmoothed rtt.
3044 * Set the variance to half the rtt (so our first
3045 * retransmit happens at 3*rtt).
3046 */
3047 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3048 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3049 }
3050 tp->t_rtttime = 0;
3051 tp->t_rxtshift = 0;
3052
3053 /*
3054 * the retransmit should happen at rtt + 4 * rttvar.
3055 * Because of the way we do the smoothing, srtt and rttvar
3056 * will each average +1/2 tick of bias. When we compute
3057 * the retransmit timer, we want 1/2 tick of rounding and
3058 * 1 extra tick because of +-1/2 tick uncertainty in the
3059 * firing of the timer. The bias will give us exactly the
3060 * 1.5 tick we need. But, because the bias is
3061 * statistical, we have to test that we don't drop below
3062 * the minimum feasible timer (which is 2 ticks).
3063 */
3064 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3065 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3066
3067 /*
3068 * We received an ack for a packet that wasn't retransmitted;
3069 * it is probably safe to discard any error indications we've
3070 * received recently. This isn't quite right, but close enough
3071 * for now (a route might have failed after we sent a segment,
3072 * and the return path might not be symmetrical).
3073 */
3074 tp->t_softerror = 0;
3075 }
3076
3077 void
3078 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
3079 {
3080 if (tp->t_partialacks < 0) {
3081 /*
3082 * We were not in fast recovery. Reset the duplicate ack
3083 * counter.
3084 */
3085 tp->t_dupacks = 0;
3086 } else {
3087 /*
3088 * Clamp the congestion window to the crossover point and
3089 * exit fast recovery.
3090 */
3091 if (tp->snd_cwnd > tp->snd_ssthresh)
3092 tp->snd_cwnd = tp->snd_ssthresh;
3093 tp->t_partialacks = -1;
3094 tp->t_dupacks = 0;
3095 }
3096 }
3097
3098 /*
3099 * Implement the NewReno response to a new ack, checking for partial acks in
3100 * fast recovery.
3101 */
3102 void
3103 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
3104 {
3105 if (tp->t_partialacks < 0) {
3106 /*
3107 * We were not in fast recovery. Reset the duplicate ack
3108 * counter.
3109 */
3110 tp->t_dupacks = 0;
3111 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3112 /*
3113 * This is a partial ack. Retransmit the first unacknowledged
3114 * segment and deflate the congestion window by the amount of
3115 * acknowledged data. Do not exit fast recovery.
3116 */
3117 tcp_seq onxt = tp->snd_nxt;
3118 u_long ocwnd = tp->snd_cwnd;
3119
3120 /*
3121 * snd_una has not yet been updated and the socket's send
3122 * buffer has not yet drained off the ACK'd data, so we
3123 * have to leave snd_una as it was to get the correct data
3124 * offset in tcp_output().
3125 */
3126 if (++tp->t_partialacks == 1)
3127 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3128 tp->t_rtttime = 0;
3129 tp->snd_nxt = th->th_ack;
3130 /*
3131 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3132 * is not yet updated when we're called.
3133 */
3134 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3135 (void) tcp_output(tp);
3136 tp->snd_cwnd = ocwnd;
3137 if (SEQ_GT(onxt, tp->snd_nxt))
3138 tp->snd_nxt = onxt;
3139 /*
3140 * Partial window deflation. Relies on fact that tp->snd_una
3141 * not updated yet.
3142 */
3143 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3144 } else {
3145 /*
3146 * Complete ack. Inflate the congestion window to ssthresh
3147 * and exit fast recovery.
3148 *
3149 * Window inflation should have left us with approx.
3150 * snd_ssthresh outstanding data. But in case we
3151 * would be inclined to send a burst, better to do
3152 * it via the slow start mechanism.
3153 */
3154 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3155 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3156 + tp->t_segsz;
3157 else
3158 tp->snd_cwnd = tp->snd_ssthresh;
3159 tp->t_partialacks = -1;
3160 tp->t_dupacks = 0;
3161 }
3162 }
3163
3164
3165 /*
3166 * TCP compressed state engine. Currently used to hold compressed
3167 * state for SYN_RECEIVED.
3168 */
3169
3170 u_long syn_cache_count;
3171 u_int32_t syn_hash1, syn_hash2;
3172
3173 #define SYN_HASH(sa, sp, dp) \
3174 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3175 ((u_int32_t)(sp)))^syn_hash2)))
3176 #ifndef INET6
3177 #define SYN_HASHALL(hash, src, dst) \
3178 do { \
3179 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3180 ((struct sockaddr_in *)(src))->sin_port, \
3181 ((struct sockaddr_in *)(dst))->sin_port); \
3182 } while (/*CONSTCOND*/ 0)
3183 #else
3184 #define SYN_HASH6(sa, sp, dp) \
3185 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3186 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3187 & 0x7fffffff)
3188
3189 #define SYN_HASHALL(hash, src, dst) \
3190 do { \
3191 switch ((src)->sa_family) { \
3192 case AF_INET: \
3193 hash = SYN_HASH(&((struct sockaddr_in *)(src))->sin_addr, \
3194 ((struct sockaddr_in *)(src))->sin_port, \
3195 ((struct sockaddr_in *)(dst))->sin_port); \
3196 break; \
3197 case AF_INET6: \
3198 hash = SYN_HASH6(&((struct sockaddr_in6 *)(src))->sin6_addr, \
3199 ((struct sockaddr_in6 *)(src))->sin6_port, \
3200 ((struct sockaddr_in6 *)(dst))->sin6_port); \
3201 break; \
3202 default: \
3203 hash = 0; \
3204 } \
3205 } while (/*CONSTCOND*/0)
3206 #endif /* INET6 */
3207
3208 #define SYN_CACHE_RM(sc) \
3209 do { \
3210 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3211 (sc), sc_bucketq); \
3212 (sc)->sc_tp = NULL; \
3213 LIST_REMOVE((sc), sc_tpq); \
3214 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3215 callout_stop(&(sc)->sc_timer); \
3216 syn_cache_count--; \
3217 } while (/*CONSTCOND*/0)
3218
3219 #define SYN_CACHE_PUT(sc) \
3220 do { \
3221 if ((sc)->sc_ipopts) \
3222 (void) m_free((sc)->sc_ipopts); \
3223 if ((sc)->sc_route4.ro_rt != NULL) \
3224 RTFREE((sc)->sc_route4.ro_rt); \
3225 if (callout_invoking(&(sc)->sc_timer)) \
3226 (sc)->sc_flags |= SCF_DEAD; \
3227 else \
3228 pool_put(&syn_cache_pool, (sc)); \
3229 } while (/*CONSTCOND*/0)
3230
3231 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3232
3233 /*
3234 * We don't estimate RTT with SYNs, so each packet starts with the default
3235 * RTT and each timer step has a fixed timeout value.
3236 */
3237 #define SYN_CACHE_TIMER_ARM(sc) \
3238 do { \
3239 TCPT_RANGESET((sc)->sc_rxtcur, \
3240 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3241 TCPTV_REXMTMAX); \
3242 callout_reset(&(sc)->sc_timer, \
3243 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3244 } while (/*CONSTCOND*/0)
3245
3246 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3247
3248 void
3249 syn_cache_init(void)
3250 {
3251 int i;
3252
3253 /* Initialize the hash buckets. */
3254 for (i = 0; i < tcp_syn_cache_size; i++)
3255 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3256 }
3257
3258 void
3259 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3260 {
3261 struct syn_cache_head *scp;
3262 struct syn_cache *sc2;
3263 int s;
3264
3265 /*
3266 * If there are no entries in the hash table, reinitialize
3267 * the hash secrets.
3268 */
3269 if (syn_cache_count == 0) {
3270 syn_hash1 = arc4random();
3271 syn_hash2 = arc4random();
3272 }
3273
3274 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3275 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3276 scp = &tcp_syn_cache[sc->sc_bucketidx];
3277
3278 /*
3279 * Make sure that we don't overflow the per-bucket
3280 * limit or the total cache size limit.
3281 */
3282 s = splsoftnet();
3283 if (scp->sch_length >= tcp_syn_bucket_limit) {
3284 tcpstat.tcps_sc_bucketoverflow++;
3285 /*
3286 * The bucket is full. Toss the oldest element in the
3287 * bucket. This will be the first entry in the bucket.
3288 */
3289 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3290 #ifdef DIAGNOSTIC
3291 /*
3292 * This should never happen; we should always find an
3293 * entry in our bucket.
3294 */
3295 if (sc2 == NULL)
3296 panic("syn_cache_insert: bucketoverflow: impossible");
3297 #endif
3298 SYN_CACHE_RM(sc2);
3299 SYN_CACHE_PUT(sc2);
3300 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3301 struct syn_cache_head *scp2, *sce;
3302
3303 tcpstat.tcps_sc_overflowed++;
3304 /*
3305 * The cache is full. Toss the oldest entry in the
3306 * first non-empty bucket we can find.
3307 *
3308 * XXX We would really like to toss the oldest
3309 * entry in the cache, but we hope that this
3310 * condition doesn't happen very often.
3311 */
3312 scp2 = scp;
3313 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3314 sce = &tcp_syn_cache[tcp_syn_cache_size];
3315 for (++scp2; scp2 != scp; scp2++) {
3316 if (scp2 >= sce)
3317 scp2 = &tcp_syn_cache[0];
3318 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3319 break;
3320 }
3321 #ifdef DIAGNOSTIC
3322 /*
3323 * This should never happen; we should always find a
3324 * non-empty bucket.
3325 */
3326 if (scp2 == scp)
3327 panic("syn_cache_insert: cacheoverflow: "
3328 "impossible");
3329 #endif
3330 }
3331 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3332 SYN_CACHE_RM(sc2);
3333 SYN_CACHE_PUT(sc2);
3334 }
3335
3336 /*
3337 * Initialize the entry's timer.
3338 */
3339 sc->sc_rxttot = 0;
3340 sc->sc_rxtshift = 0;
3341 SYN_CACHE_TIMER_ARM(sc);
3342
3343 /* Link it from tcpcb entry */
3344 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3345
3346 /* Put it into the bucket. */
3347 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3348 scp->sch_length++;
3349 syn_cache_count++;
3350
3351 tcpstat.tcps_sc_added++;
3352 splx(s);
3353 }
3354
3355 /*
3356 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3357 * If we have retransmitted an entry the maximum number of times, expire
3358 * that entry.
3359 */
3360 void
3361 syn_cache_timer(void *arg)
3362 {
3363 struct syn_cache *sc = arg;
3364 int s;
3365
3366 s = splsoftnet();
3367 callout_ack(&sc->sc_timer);
3368
3369 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3370 tcpstat.tcps_sc_delayed_free++;
3371 pool_put(&syn_cache_pool, sc);
3372 splx(s);
3373 return;
3374 }
3375
3376 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3377 /* Drop it -- too many retransmissions. */
3378 goto dropit;
3379 }
3380
3381 /*
3382 * Compute the total amount of time this entry has
3383 * been on a queue. If this entry has been on longer
3384 * than the keep alive timer would allow, expire it.
3385 */
3386 sc->sc_rxttot += sc->sc_rxtcur;
3387 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3388 goto dropit;
3389
3390 tcpstat.tcps_sc_retransmitted++;
3391 (void) syn_cache_respond(sc, NULL);
3392
3393 /* Advance the timer back-off. */
3394 sc->sc_rxtshift++;
3395 SYN_CACHE_TIMER_ARM(sc);
3396
3397 splx(s);
3398 return;
3399
3400 dropit:
3401 tcpstat.tcps_sc_timed_out++;
3402 SYN_CACHE_RM(sc);
3403 SYN_CACHE_PUT(sc);
3404 splx(s);
3405 }
3406
3407 /*
3408 * Remove syn cache created by the specified tcb entry,
3409 * because this does not make sense to keep them
3410 * (if there's no tcb entry, syn cache entry will never be used)
3411 */
3412 void
3413 syn_cache_cleanup(struct tcpcb *tp)
3414 {
3415 struct syn_cache *sc, *nsc;
3416 int s;
3417
3418 s = splsoftnet();
3419
3420 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3421 nsc = LIST_NEXT(sc, sc_tpq);
3422
3423 #ifdef DIAGNOSTIC
3424 if (sc->sc_tp != tp)
3425 panic("invalid sc_tp in syn_cache_cleanup");
3426 #endif
3427 SYN_CACHE_RM(sc);
3428 SYN_CACHE_PUT(sc);
3429 }
3430 /* just for safety */
3431 LIST_INIT(&tp->t_sc);
3432
3433 splx(s);
3434 }
3435
3436 /*
3437 * Find an entry in the syn cache.
3438 */
3439 struct syn_cache *
3440 syn_cache_lookup(struct sockaddr *src, struct sockaddr *dst,
3441 struct syn_cache_head **headp)
3442 {
3443 struct syn_cache *sc;
3444 struct syn_cache_head *scp;
3445 u_int32_t hash;
3446 int s;
3447
3448 SYN_HASHALL(hash, src, dst);
3449
3450 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3451 *headp = scp;
3452 s = splsoftnet();
3453 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3454 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3455 if (sc->sc_hash != hash)
3456 continue;
3457 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3458 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3459 splx(s);
3460 return (sc);
3461 }
3462 }
3463 splx(s);
3464 return (NULL);
3465 }
3466
3467 /*
3468 * This function gets called when we receive an ACK for a
3469 * socket in the LISTEN state. We look up the connection
3470 * in the syn cache, and if its there, we pull it out of
3471 * the cache and turn it into a full-blown connection in
3472 * the SYN-RECEIVED state.
3473 *
3474 * The return values may not be immediately obvious, and their effects
3475 * can be subtle, so here they are:
3476 *
3477 * NULL SYN was not found in cache; caller should drop the
3478 * packet and send an RST.
3479 *
3480 * -1 We were unable to create the new connection, and are
3481 * aborting it. An ACK,RST is being sent to the peer
3482 * (unless we got screwey sequence numbners; see below),
3483 * because the 3-way handshake has been completed. Caller
3484 * should not free the mbuf, since we may be using it. If
3485 * we are not, we will free it.
3486 *
3487 * Otherwise, the return value is a pointer to the new socket
3488 * associated with the connection.
3489 */
3490 struct socket *
3491 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3492 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3493 struct socket *so, struct mbuf *m)
3494 {
3495 struct syn_cache *sc;
3496 struct syn_cache_head *scp;
3497 struct inpcb *inp = NULL;
3498 #ifdef INET6
3499 struct in6pcb *in6p = NULL;
3500 #endif
3501 struct tcpcb *tp = 0;
3502 struct mbuf *am;
3503 int s;
3504 struct socket *oso;
3505
3506 s = splsoftnet();
3507 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3508 splx(s);
3509 return (NULL);
3510 }
3511
3512 /*
3513 * Verify the sequence and ack numbers. Try getting the correct
3514 * response again.
3515 */
3516 if ((th->th_ack != sc->sc_iss + 1) ||
3517 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3518 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3519 (void) syn_cache_respond(sc, m);
3520 splx(s);
3521 return ((struct socket *)(-1));
3522 }
3523
3524 /* Remove this cache entry */
3525 SYN_CACHE_RM(sc);
3526 splx(s);
3527
3528 /*
3529 * Ok, create the full blown connection, and set things up
3530 * as they would have been set up if we had created the
3531 * connection when the SYN arrived. If we can't create
3532 * the connection, abort it.
3533 */
3534 /*
3535 * inp still has the OLD in_pcb stuff, set the
3536 * v6-related flags on the new guy, too. This is
3537 * done particularly for the case where an AF_INET6
3538 * socket is bound only to a port, and a v4 connection
3539 * comes in on that port.
3540 * we also copy the flowinfo from the original pcb
3541 * to the new one.
3542 */
3543 oso = so;
3544 so = sonewconn(so, SS_ISCONNECTED);
3545 if (so == NULL)
3546 goto resetandabort;
3547
3548 switch (so->so_proto->pr_domain->dom_family) {
3549 #ifdef INET
3550 case AF_INET:
3551 inp = sotoinpcb(so);
3552 break;
3553 #endif
3554 #ifdef INET6
3555 case AF_INET6:
3556 in6p = sotoin6pcb(so);
3557 break;
3558 #endif
3559 }
3560 switch (src->sa_family) {
3561 #ifdef INET
3562 case AF_INET:
3563 if (inp) {
3564 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3565 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3566 inp->inp_options = ip_srcroute();
3567 in_pcbstate(inp, INP_BOUND);
3568 if (inp->inp_options == NULL) {
3569 inp->inp_options = sc->sc_ipopts;
3570 sc->sc_ipopts = NULL;
3571 }
3572 }
3573 #ifdef INET6
3574 else if (in6p) {
3575 /* IPv4 packet to AF_INET6 socket */
3576 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3577 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3578 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3579 &in6p->in6p_laddr.s6_addr32[3],
3580 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3581 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3582 in6totcpcb(in6p)->t_family = AF_INET;
3583 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3584 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3585 else
3586 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3587 in6_pcbstate(in6p, IN6P_BOUND);
3588 }
3589 #endif
3590 break;
3591 #endif
3592 #ifdef INET6
3593 case AF_INET6:
3594 if (in6p) {
3595 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3596 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3597 in6_pcbstate(in6p, IN6P_BOUND);
3598 }
3599 break;
3600 #endif
3601 }
3602 #ifdef INET6
3603 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3604 struct in6pcb *oin6p = sotoin6pcb(oso);
3605 /* inherit socket options from the listening socket */
3606 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3607 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3608 m_freem(in6p->in6p_options);
3609 in6p->in6p_options = 0;
3610 }
3611 ip6_savecontrol(in6p, &in6p->in6p_options,
3612 mtod(m, struct ip6_hdr *), m);
3613 }
3614 #endif
3615
3616 #if defined(IPSEC) || defined(FAST_IPSEC)
3617 /*
3618 * we make a copy of policy, instead of sharing the policy,
3619 * for better behavior in terms of SA lookup and dead SA removal.
3620 */
3621 if (inp) {
3622 /* copy old policy into new socket's */
3623 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3624 printf("tcp_input: could not copy policy\n");
3625 }
3626 #ifdef INET6
3627 else if (in6p) {
3628 /* copy old policy into new socket's */
3629 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3630 in6p->in6p_sp))
3631 printf("tcp_input: could not copy policy\n");
3632 }
3633 #endif
3634 #endif
3635
3636 /*
3637 * Give the new socket our cached route reference.
3638 */
3639 if (inp)
3640 inp->inp_route = sc->sc_route4; /* struct assignment */
3641 #ifdef INET6
3642 else
3643 in6p->in6p_route = sc->sc_route6;
3644 #endif
3645 sc->sc_route4.ro_rt = NULL;
3646
3647 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3648 if (am == NULL)
3649 goto resetandabort;
3650 MCLAIM(am, &tcp_mowner);
3651 am->m_len = src->sa_len;
3652 bcopy(src, mtod(am, caddr_t), src->sa_len);
3653 if (inp) {
3654 if (in_pcbconnect(inp, am)) {
3655 (void) m_free(am);
3656 goto resetandabort;
3657 }
3658 }
3659 #ifdef INET6
3660 else if (in6p) {
3661 if (src->sa_family == AF_INET) {
3662 /* IPv4 packet to AF_INET6 socket */
3663 struct sockaddr_in6 *sin6;
3664 sin6 = mtod(am, struct sockaddr_in6 *);
3665 am->m_len = sizeof(*sin6);
3666 bzero(sin6, sizeof(*sin6));
3667 sin6->sin6_family = AF_INET6;
3668 sin6->sin6_len = sizeof(*sin6);
3669 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3670 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3671 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3672 &sin6->sin6_addr.s6_addr32[3],
3673 sizeof(sin6->sin6_addr.s6_addr32[3]));
3674 }
3675 if (in6_pcbconnect(in6p, am)) {
3676 (void) m_free(am);
3677 goto resetandabort;
3678 }
3679 }
3680 #endif
3681 else {
3682 (void) m_free(am);
3683 goto resetandabort;
3684 }
3685 (void) m_free(am);
3686
3687 if (inp)
3688 tp = intotcpcb(inp);
3689 #ifdef INET6
3690 else if (in6p)
3691 tp = in6totcpcb(in6p);
3692 #endif
3693 else
3694 tp = NULL;
3695 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3696 if (sc->sc_request_r_scale != 15) {
3697 tp->requested_s_scale = sc->sc_requested_s_scale;
3698 tp->request_r_scale = sc->sc_request_r_scale;
3699 tp->snd_scale = sc->sc_requested_s_scale;
3700 tp->rcv_scale = sc->sc_request_r_scale;
3701 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3702 }
3703 if (sc->sc_flags & SCF_TIMESTAMP)
3704 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3705 tp->ts_timebase = sc->sc_timebase;
3706
3707 tp->t_template = tcp_template(tp);
3708 if (tp->t_template == 0) {
3709 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3710 so = NULL;
3711 m_freem(m);
3712 goto abort;
3713 }
3714
3715 tp->iss = sc->sc_iss;
3716 tp->irs = sc->sc_irs;
3717 tcp_sendseqinit(tp);
3718 tcp_rcvseqinit(tp);
3719 tp->t_state = TCPS_SYN_RECEIVED;
3720 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3721 tcpstat.tcps_accepts++;
3722
3723 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3724 tp->t_flags |= TF_WILL_SACK;
3725
3726 #ifdef TCP_SIGNATURE
3727 if (sc->sc_flags & SCF_SIGNATURE)
3728 tp->t_flags |= TF_SIGNATURE;
3729 #endif
3730
3731 /* Initialize tp->t_ourmss before we deal with the peer's! */
3732 tp->t_ourmss = sc->sc_ourmaxseg;
3733 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3734
3735 /*
3736 * Initialize the initial congestion window. If we
3737 * had to retransmit the SYN,ACK, we must initialize cwnd
3738 * to 1 segment (i.e. the Loss Window).
3739 */
3740 if (sc->sc_rxtshift)
3741 tp->snd_cwnd = tp->t_peermss;
3742 else {
3743 int ss = tcp_init_win;
3744 #ifdef INET
3745 if (inp != NULL && in_localaddr(inp->inp_faddr))
3746 ss = tcp_init_win_local;
3747 #endif
3748 #ifdef INET6
3749 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3750 ss = tcp_init_win_local;
3751 #endif
3752 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3753 }
3754
3755 tcp_rmx_rtt(tp);
3756 tp->snd_wl1 = sc->sc_irs;
3757 tp->rcv_up = sc->sc_irs + 1;
3758
3759 /*
3760 * This is what whould have happened in tcp_output() when
3761 * the SYN,ACK was sent.
3762 */
3763 tp->snd_up = tp->snd_una;
3764 tp->snd_max = tp->snd_nxt = tp->iss+1;
3765 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3766 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3767 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3768 tp->last_ack_sent = tp->rcv_nxt;
3769 tp->t_partialacks = -1;
3770 tp->t_dupacks = 0;
3771
3772 tcpstat.tcps_sc_completed++;
3773 SYN_CACHE_PUT(sc);
3774 return (so);
3775
3776 resetandabort:
3777 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3778 abort:
3779 if (so != NULL)
3780 (void) soabort(so);
3781 SYN_CACHE_PUT(sc);
3782 tcpstat.tcps_sc_aborted++;
3783 return ((struct socket *)(-1));
3784 }
3785
3786 /*
3787 * This function is called when we get a RST for a
3788 * non-existent connection, so that we can see if the
3789 * connection is in the syn cache. If it is, zap it.
3790 */
3791
3792 void
3793 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3794 {
3795 struct syn_cache *sc;
3796 struct syn_cache_head *scp;
3797 int s = splsoftnet();
3798
3799 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3800 splx(s);
3801 return;
3802 }
3803 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3804 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3805 splx(s);
3806 return;
3807 }
3808 SYN_CACHE_RM(sc);
3809 splx(s);
3810 tcpstat.tcps_sc_reset++;
3811 SYN_CACHE_PUT(sc);
3812 }
3813
3814 void
3815 syn_cache_unreach(struct sockaddr *src, struct sockaddr *dst,
3816 struct tcphdr *th)
3817 {
3818 struct syn_cache *sc;
3819 struct syn_cache_head *scp;
3820 int s;
3821
3822 s = splsoftnet();
3823 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3824 splx(s);
3825 return;
3826 }
3827 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3828 if (ntohl (th->th_seq) != sc->sc_iss) {
3829 splx(s);
3830 return;
3831 }
3832
3833 /*
3834 * If we've retransmitted 3 times and this is our second error,
3835 * we remove the entry. Otherwise, we allow it to continue on.
3836 * This prevents us from incorrectly nuking an entry during a
3837 * spurious network outage.
3838 *
3839 * See tcp_notify().
3840 */
3841 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3842 sc->sc_flags |= SCF_UNREACH;
3843 splx(s);
3844 return;
3845 }
3846
3847 SYN_CACHE_RM(sc);
3848 splx(s);
3849 tcpstat.tcps_sc_unreach++;
3850 SYN_CACHE_PUT(sc);
3851 }
3852
3853 /*
3854 * Given a LISTEN socket and an inbound SYN request, add
3855 * this to the syn cache, and send back a segment:
3856 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3857 * to the source.
3858 *
3859 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3860 * Doing so would require that we hold onto the data and deliver it
3861 * to the application. However, if we are the target of a SYN-flood
3862 * DoS attack, an attacker could send data which would eventually
3863 * consume all available buffer space if it were ACKed. By not ACKing
3864 * the data, we avoid this DoS scenario.
3865 */
3866
3867 int
3868 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3869 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3870 int optlen, struct tcp_opt_info *oi)
3871 {
3872 struct tcpcb tb, *tp;
3873 long win;
3874 struct syn_cache *sc;
3875 struct syn_cache_head *scp;
3876 struct mbuf *ipopts;
3877 struct tcp_opt_info opti;
3878
3879 tp = sototcpcb(so);
3880
3881 bzero(&opti, sizeof(opti));
3882
3883 /*
3884 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3885 *
3886 * Note this check is performed in tcp_input() very early on.
3887 */
3888
3889 /*
3890 * Initialize some local state.
3891 */
3892 win = sbspace(&so->so_rcv);
3893 if (win > TCP_MAXWIN)
3894 win = TCP_MAXWIN;
3895
3896 switch (src->sa_family) {
3897 #ifdef INET
3898 case AF_INET:
3899 /*
3900 * Remember the IP options, if any.
3901 */
3902 ipopts = ip_srcroute();
3903 break;
3904 #endif
3905 default:
3906 ipopts = NULL;
3907 }
3908
3909 #ifdef TCP_SIGNATURE
3910 if (optp || (tp->t_flags & TF_SIGNATURE))
3911 #else
3912 if (optp)
3913 #endif
3914 {
3915 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3916 #ifdef TCP_SIGNATURE
3917 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3918 #endif
3919 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3920 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3921 return (0);
3922 } else
3923 tb.t_flags = 0;
3924
3925 /*
3926 * See if we already have an entry for this connection.
3927 * If we do, resend the SYN,ACK. We do not count this
3928 * as a retransmission (XXX though maybe we should).
3929 */
3930 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3931 tcpstat.tcps_sc_dupesyn++;
3932 if (ipopts) {
3933 /*
3934 * If we were remembering a previous source route,
3935 * forget it and use the new one we've been given.
3936 */
3937 if (sc->sc_ipopts)
3938 (void) m_free(sc->sc_ipopts);
3939 sc->sc_ipopts = ipopts;
3940 }
3941 sc->sc_timestamp = tb.ts_recent;
3942 if (syn_cache_respond(sc, m) == 0) {
3943 tcpstat.tcps_sndacks++;
3944 tcpstat.tcps_sndtotal++;
3945 }
3946 return (1);
3947 }
3948
3949 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3950 if (sc == NULL) {
3951 if (ipopts)
3952 (void) m_free(ipopts);
3953 return (0);
3954 }
3955
3956 /*
3957 * Fill in the cache, and put the necessary IP and TCP
3958 * options into the reply.
3959 */
3960 bzero(sc, sizeof(struct syn_cache));
3961 callout_init(&sc->sc_timer);
3962 bcopy(src, &sc->sc_src, src->sa_len);
3963 bcopy(dst, &sc->sc_dst, dst->sa_len);
3964 sc->sc_flags = 0;
3965 sc->sc_ipopts = ipopts;
3966 sc->sc_irs = th->th_seq;
3967 switch (src->sa_family) {
3968 #ifdef INET
3969 case AF_INET:
3970 {
3971 struct sockaddr_in *srcin = (void *) src;
3972 struct sockaddr_in *dstin = (void *) dst;
3973
3974 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3975 &srcin->sin_addr, dstin->sin_port,
3976 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3977 break;
3978 }
3979 #endif /* INET */
3980 #ifdef INET6
3981 case AF_INET6:
3982 {
3983 struct sockaddr_in6 *srcin6 = (void *) src;
3984 struct sockaddr_in6 *dstin6 = (void *) dst;
3985
3986 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3987 &srcin6->sin6_addr, dstin6->sin6_port,
3988 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3989 break;
3990 }
3991 #endif /* INET6 */
3992 }
3993 sc->sc_peermaxseg = oi->maxseg;
3994 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3995 m->m_pkthdr.rcvif : NULL,
3996 sc->sc_src.sa.sa_family);
3997 sc->sc_win = win;
3998 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
3999 sc->sc_timestamp = tb.ts_recent;
4000 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4001 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4002 sc->sc_flags |= SCF_TIMESTAMP;
4003 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4004 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4005 sc->sc_requested_s_scale = tb.requested_s_scale;
4006 sc->sc_request_r_scale = 0;
4007 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4008 TCP_MAXWIN << sc->sc_request_r_scale <
4009 so->so_rcv.sb_hiwat)
4010 sc->sc_request_r_scale++;
4011 } else {
4012 sc->sc_requested_s_scale = 15;
4013 sc->sc_request_r_scale = 15;
4014 }
4015 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4016 sc->sc_flags |= SCF_SACK_PERMIT;
4017 #ifdef TCP_SIGNATURE
4018 if (tb.t_flags & TF_SIGNATURE)
4019 sc->sc_flags |= SCF_SIGNATURE;
4020 #endif
4021 sc->sc_tp = tp;
4022 if (syn_cache_respond(sc, m) == 0) {
4023 syn_cache_insert(sc, tp);
4024 tcpstat.tcps_sndacks++;
4025 tcpstat.tcps_sndtotal++;
4026 } else {
4027 SYN_CACHE_PUT(sc);
4028 tcpstat.tcps_sc_dropped++;
4029 }
4030 return (1);
4031 }
4032
4033 int
4034 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4035 {
4036 struct route *ro;
4037 u_int8_t *optp;
4038 int optlen, error;
4039 u_int16_t tlen;
4040 struct ip *ip = NULL;
4041 #ifdef INET6
4042 struct ip6_hdr *ip6 = NULL;
4043 #endif
4044 struct tcpcb *tp;
4045 struct tcphdr *th;
4046 u_int hlen;
4047 struct socket *so;
4048
4049 switch (sc->sc_src.sa.sa_family) {
4050 case AF_INET:
4051 hlen = sizeof(struct ip);
4052 ro = &sc->sc_route4;
4053 break;
4054 #ifdef INET6
4055 case AF_INET6:
4056 hlen = sizeof(struct ip6_hdr);
4057 ro = (struct route *)&sc->sc_route6;
4058 break;
4059 #endif
4060 default:
4061 if (m)
4062 m_freem(m);
4063 return (EAFNOSUPPORT);
4064 }
4065
4066 /* Compute the size of the TCP options. */
4067 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4068 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4069 #ifdef TCP_SIGNATURE
4070 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4071 #endif
4072 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4073
4074 tlen = hlen + sizeof(struct tcphdr) + optlen;
4075
4076 /*
4077 * Create the IP+TCP header from scratch.
4078 */
4079 if (m)
4080 m_freem(m);
4081 #ifdef DIAGNOSTIC
4082 if (max_linkhdr + tlen > MCLBYTES)
4083 return (ENOBUFS);
4084 #endif
4085 MGETHDR(m, M_DONTWAIT, MT_DATA);
4086 if (m && tlen > MHLEN) {
4087 MCLGET(m, M_DONTWAIT);
4088 if ((m->m_flags & M_EXT) == 0) {
4089 m_freem(m);
4090 m = NULL;
4091 }
4092 }
4093 if (m == NULL)
4094 return (ENOBUFS);
4095 MCLAIM(m, &tcp_tx_mowner);
4096
4097 /* Fixup the mbuf. */
4098 m->m_data += max_linkhdr;
4099 m->m_len = m->m_pkthdr.len = tlen;
4100 if (sc->sc_tp) {
4101 tp = sc->sc_tp;
4102 if (tp->t_inpcb)
4103 so = tp->t_inpcb->inp_socket;
4104 #ifdef INET6
4105 else if (tp->t_in6pcb)
4106 so = tp->t_in6pcb->in6p_socket;
4107 #endif
4108 else
4109 so = NULL;
4110 } else
4111 so = NULL;
4112 m->m_pkthdr.rcvif = NULL;
4113 memset(mtod(m, u_char *), 0, tlen);
4114
4115 switch (sc->sc_src.sa.sa_family) {
4116 case AF_INET:
4117 ip = mtod(m, struct ip *);
4118 ip->ip_v = 4;
4119 ip->ip_dst = sc->sc_src.sin.sin_addr;
4120 ip->ip_src = sc->sc_dst.sin.sin_addr;
4121 ip->ip_p = IPPROTO_TCP;
4122 th = (struct tcphdr *)(ip + 1);
4123 th->th_dport = sc->sc_src.sin.sin_port;
4124 th->th_sport = sc->sc_dst.sin.sin_port;
4125 break;
4126 #ifdef INET6
4127 case AF_INET6:
4128 ip6 = mtod(m, struct ip6_hdr *);
4129 ip6->ip6_vfc = IPV6_VERSION;
4130 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4131 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4132 ip6->ip6_nxt = IPPROTO_TCP;
4133 /* ip6_plen will be updated in ip6_output() */
4134 th = (struct tcphdr *)(ip6 + 1);
4135 th->th_dport = sc->sc_src.sin6.sin6_port;
4136 th->th_sport = sc->sc_dst.sin6.sin6_port;
4137 break;
4138 #endif
4139 default:
4140 th = NULL;
4141 }
4142
4143 th->th_seq = htonl(sc->sc_iss);
4144 th->th_ack = htonl(sc->sc_irs + 1);
4145 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4146 th->th_flags = TH_SYN|TH_ACK;
4147 th->th_win = htons(sc->sc_win);
4148 /* th_sum already 0 */
4149 /* th_urp already 0 */
4150
4151 /* Tack on the TCP options. */
4152 optp = (u_int8_t *)(th + 1);
4153 *optp++ = TCPOPT_MAXSEG;
4154 *optp++ = 4;
4155 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4156 *optp++ = sc->sc_ourmaxseg & 0xff;
4157
4158 if (sc->sc_request_r_scale != 15) {
4159 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4160 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4161 sc->sc_request_r_scale);
4162 optp += 4;
4163 }
4164
4165 if (sc->sc_flags & SCF_TIMESTAMP) {
4166 u_int32_t *lp = (u_int32_t *)(optp);
4167 /* Form timestamp option as shown in appendix A of RFC 1323. */
4168 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4169 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4170 *lp = htonl(sc->sc_timestamp);
4171 optp += TCPOLEN_TSTAMP_APPA;
4172 }
4173
4174 if (sc->sc_flags & SCF_SACK_PERMIT) {
4175 u_int8_t *p = optp;
4176
4177 /* Let the peer know that we will SACK. */
4178 p[0] = TCPOPT_SACK_PERMITTED;
4179 p[1] = 2;
4180 p[2] = TCPOPT_NOP;
4181 p[3] = TCPOPT_NOP;
4182 optp += 4;
4183 }
4184
4185 #ifdef TCP_SIGNATURE
4186 if (sc->sc_flags & SCF_SIGNATURE) {
4187 struct secasvar *sav;
4188 u_int8_t *sigp;
4189
4190 sav = tcp_signature_getsav(m, th);
4191
4192 if (sav == NULL) {
4193 if (m)
4194 m_freem(m);
4195 return (EPERM);
4196 }
4197
4198 *optp++ = TCPOPT_SIGNATURE;
4199 *optp++ = TCPOLEN_SIGNATURE;
4200 sigp = optp;
4201 bzero(optp, TCP_SIGLEN);
4202 optp += TCP_SIGLEN;
4203 *optp++ = TCPOPT_NOP;
4204 *optp++ = TCPOPT_EOL;
4205
4206 (void)tcp_signature(m, th, hlen, sav, sigp);
4207
4208 key_sa_recordxfer(sav, m);
4209 #ifdef FAST_IPSEC
4210 KEY_FREESAV(&sav);
4211 #else
4212 key_freesav(sav);
4213 #endif
4214 }
4215 #endif
4216
4217 /* Compute the packet's checksum. */
4218 switch (sc->sc_src.sa.sa_family) {
4219 case AF_INET:
4220 ip->ip_len = htons(tlen - hlen);
4221 th->th_sum = 0;
4222 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4223 break;
4224 #ifdef INET6
4225 case AF_INET6:
4226 ip6->ip6_plen = htons(tlen - hlen);
4227 th->th_sum = 0;
4228 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4229 break;
4230 #endif
4231 }
4232
4233 /*
4234 * Fill in some straggling IP bits. Note the stack expects
4235 * ip_len to be in host order, for convenience.
4236 */
4237 switch (sc->sc_src.sa.sa_family) {
4238 #ifdef INET
4239 case AF_INET:
4240 ip->ip_len = htons(tlen);
4241 ip->ip_ttl = ip_defttl;
4242 /* XXX tos? */
4243 break;
4244 #endif
4245 #ifdef INET6
4246 case AF_INET6:
4247 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4248 ip6->ip6_vfc |= IPV6_VERSION;
4249 ip6->ip6_plen = htons(tlen - hlen);
4250 /* ip6_hlim will be initialized afterwards */
4251 /* XXX flowlabel? */
4252 break;
4253 #endif
4254 }
4255
4256 /* XXX use IPsec policy on listening socket, on SYN ACK */
4257 tp = sc->sc_tp;
4258
4259 switch (sc->sc_src.sa.sa_family) {
4260 #ifdef INET
4261 case AF_INET:
4262 error = ip_output(m, sc->sc_ipopts, ro,
4263 (ip_mtudisc ? IP_MTUDISC : 0),
4264 (struct ip_moptions *)NULL, so);
4265 break;
4266 #endif
4267 #ifdef INET6
4268 case AF_INET6:
4269 ip6->ip6_hlim = in6_selecthlim(NULL,
4270 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4271
4272 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4273 (struct ip6_moptions *)0, so, NULL);
4274 break;
4275 #endif
4276 default:
4277 error = EAFNOSUPPORT;
4278 break;
4279 }
4280 return (error);
4281 }
4282