tcp_input.c revision 1.229 1 /* $NetBSD: tcp_input.c,v 1.229 2005/06/06 12:10:09 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the NetBSD
93 * Foundation, Inc. and its contributors.
94 * 4. Neither the name of The NetBSD Foundation nor the names of its
95 * contributors may be used to endorse or promote products derived
96 * from this software without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
99 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
100 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
101 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
102 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
103 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
104 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
105 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
106 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
107 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
108 * POSSIBILITY OF SUCH DAMAGE.
109 */
110
111 /*
112 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
113 * The Regents of the University of California. All rights reserved.
114 *
115 * Redistribution and use in source and binary forms, with or without
116 * modification, are permitted provided that the following conditions
117 * are met:
118 * 1. Redistributions of source code must retain the above copyright
119 * notice, this list of conditions and the following disclaimer.
120 * 2. Redistributions in binary form must reproduce the above copyright
121 * notice, this list of conditions and the following disclaimer in the
122 * documentation and/or other materials provided with the distribution.
123 * 3. Neither the name of the University nor the names of its contributors
124 * may be used to endorse or promote products derived from this software
125 * without specific prior written permission.
126 *
127 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
128 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
129 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
130 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
131 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
132 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
133 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
134 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
135 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
136 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
137 * SUCH DAMAGE.
138 *
139 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
140 */
141
142 /*
143 * TODO list for SYN cache stuff:
144 *
145 * Find room for a "state" field, which is needed to keep a
146 * compressed state for TIME_WAIT TCBs. It's been noted already
147 * that this is fairly important for very high-volume web and
148 * mail servers, which use a large number of short-lived
149 * connections.
150 */
151
152 #include <sys/cdefs.h>
153 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.229 2005/06/06 12:10:09 yamt Exp $");
154
155 #include "opt_inet.h"
156 #include "opt_ipsec.h"
157 #include "opt_inet_csum.h"
158 #include "opt_tcp_debug.h"
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175
176 #include <net/if.h>
177 #include <net/route.h>
178 #include <net/if_types.h>
179
180 #include <netinet/in.h>
181 #include <netinet/in_systm.h>
182 #include <netinet/ip.h>
183 #include <netinet/in_pcb.h>
184 #include <netinet/in_var.h>
185 #include <netinet/ip_var.h>
186
187 #ifdef INET6
188 #ifndef INET
189 #include <netinet/in.h>
190 #endif
191 #include <netinet/ip6.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_pcb.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_var.h>
196 #include <netinet/icmp6.h>
197 #include <netinet6/nd6.h>
198 #endif
199
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcpip.h>
211 #include <netinet/tcp_debug.h>
212
213 #include <machine/stdarg.h>
214
215 #ifdef IPSEC
216 #include <netinet6/ipsec.h>
217 #include <netkey/key.h>
218 #endif /*IPSEC*/
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif /* IPSEC */
225
226 #ifdef FAST_IPSEC
227 #include <netipsec/ipsec.h>
228 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
229 #include <netipsec/key.h>
230 #ifdef INET6
231 #include <netipsec/ipsec6.h>
232 #endif
233 #endif /* FAST_IPSEC*/
234
235 int tcprexmtthresh = 3;
236 int tcp_log_refused;
237
238 static int tcp_rst_ppslim_count = 0;
239 static struct timeval tcp_rst_ppslim_last;
240 static int tcp_ackdrop_ppslim_count = 0;
241 static struct timeval tcp_ackdrop_ppslim_last;
242
243 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
244
245 /* for modulo comparisons of timestamps */
246 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
247 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
248
249 /*
250 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
251 */
252 #ifdef INET6
253 #define ND6_HINT(tp) \
254 do { \
255 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
256 tp->t_in6pcb->in6p_route.ro_rt) { \
257 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
258 } \
259 } while (/*CONSTCOND*/ 0)
260 #else
261 #define ND6_HINT(tp)
262 #endif
263
264 /*
265 * Macro to compute ACK transmission behavior. Delay the ACK unless
266 * we have already delayed an ACK (must send an ACK every two segments).
267 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
268 * option is enabled.
269 */
270 #define TCP_SETUP_ACK(tp, th) \
271 do { \
272 if ((tp)->t_flags & TF_DELACK || \
273 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
274 tp->t_flags |= TF_ACKNOW; \
275 else \
276 TCP_SET_DELACK(tp); \
277 } while (/*CONSTCOND*/ 0)
278
279 /*
280 * Convert TCP protocol fields to host order for easier processing.
281 */
282 #define TCP_FIELDS_TO_HOST(th) \
283 do { \
284 NTOHL((th)->th_seq); \
285 NTOHL((th)->th_ack); \
286 NTOHS((th)->th_win); \
287 NTOHS((th)->th_urp); \
288 } while (/*CONSTCOND*/ 0)
289
290 /*
291 * ... and reverse the above.
292 */
293 #define TCP_FIELDS_TO_NET(th) \
294 do { \
295 HTONL((th)->th_seq); \
296 HTONL((th)->th_ack); \
297 HTONS((th)->th_win); \
298 HTONS((th)->th_urp); \
299 } while (/*CONSTCOND*/ 0)
300
301 #ifdef TCP_CSUM_COUNTERS
302 #include <sys/device.h>
303
304 extern struct evcnt tcp_hwcsum_ok;
305 extern struct evcnt tcp_hwcsum_bad;
306 extern struct evcnt tcp_hwcsum_data;
307 extern struct evcnt tcp_swcsum;
308
309 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
310
311 #else
312
313 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
314
315 #endif /* TCP_CSUM_COUNTERS */
316
317 #ifdef TCP_REASS_COUNTERS
318 #include <sys/device.h>
319
320 extern struct evcnt tcp_reass_;
321 extern struct evcnt tcp_reass_empty;
322 extern struct evcnt tcp_reass_iteration[8];
323 extern struct evcnt tcp_reass_prependfirst;
324 extern struct evcnt tcp_reass_prepend;
325 extern struct evcnt tcp_reass_insert;
326 extern struct evcnt tcp_reass_inserttail;
327 extern struct evcnt tcp_reass_append;
328 extern struct evcnt tcp_reass_appendtail;
329 extern struct evcnt tcp_reass_overlaptail;
330 extern struct evcnt tcp_reass_overlapfront;
331 extern struct evcnt tcp_reass_segdup;
332 extern struct evcnt tcp_reass_fragdup;
333
334 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
335
336 #else
337
338 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
339
340 #endif /* TCP_REASS_COUNTERS */
341
342 #ifdef INET
343 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
344 #endif
345 #ifdef INET6
346 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
347 #endif
348
349 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
350
351 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
352
353 struct ipqent *
354 tcpipqent_alloc()
355 {
356 struct ipqent *ipqe;
357 int s;
358
359 s = splvm();
360 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
361 splx(s);
362
363 return ipqe;
364 }
365
366 void
367 tcpipqent_free(struct ipqent *ipqe)
368 {
369 int s;
370
371 s = splvm();
372 pool_put(&tcpipqent_pool, ipqe);
373 splx(s);
374 }
375
376 int
377 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
378 {
379 struct ipqent *p, *q, *nq, *tiqe = NULL;
380 struct socket *so = NULL;
381 int pkt_flags;
382 tcp_seq pkt_seq;
383 unsigned pkt_len;
384 u_long rcvpartdupbyte = 0;
385 u_long rcvoobyte;
386 #ifdef TCP_REASS_COUNTERS
387 u_int count = 0;
388 #endif
389
390 if (tp->t_inpcb)
391 so = tp->t_inpcb->inp_socket;
392 #ifdef INET6
393 else if (tp->t_in6pcb)
394 so = tp->t_in6pcb->in6p_socket;
395 #endif
396
397 TCP_REASS_LOCK_CHECK(tp);
398
399 /*
400 * Call with th==0 after become established to
401 * force pre-ESTABLISHED data up to user socket.
402 */
403 if (th == 0)
404 goto present;
405
406 rcvoobyte = *tlen;
407 /*
408 * Copy these to local variables because the tcpiphdr
409 * gets munged while we are collapsing mbufs.
410 */
411 pkt_seq = th->th_seq;
412 pkt_len = *tlen;
413 pkt_flags = th->th_flags;
414
415 TCP_REASS_COUNTER_INCR(&tcp_reass_);
416
417 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
418 /*
419 * When we miss a packet, the vast majority of time we get
420 * packets that follow it in order. So optimize for that.
421 */
422 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
423 p->ipqe_len += pkt_len;
424 p->ipqe_flags |= pkt_flags;
425 m_cat(p->ipre_mlast, m);
426 TRAVERSE(p->ipre_mlast);
427 m = NULL;
428 tiqe = p;
429 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
430 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
431 goto skip_replacement;
432 }
433 /*
434 * While we're here, if the pkt is completely beyond
435 * anything we have, just insert it at the tail.
436 */
437 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
438 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
439 goto insert_it;
440 }
441 }
442
443 q = TAILQ_FIRST(&tp->segq);
444
445 if (q != NULL) {
446 /*
447 * If this segment immediately precedes the first out-of-order
448 * block, simply slap the segment in front of it and (mostly)
449 * skip the complicated logic.
450 */
451 if (pkt_seq + pkt_len == q->ipqe_seq) {
452 q->ipqe_seq = pkt_seq;
453 q->ipqe_len += pkt_len;
454 q->ipqe_flags |= pkt_flags;
455 m_cat(m, q->ipqe_m);
456 q->ipqe_m = m;
457 q->ipre_mlast = m; /* last mbuf may have changed */
458 TRAVERSE(q->ipre_mlast);
459 tiqe = q;
460 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
461 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
462 goto skip_replacement;
463 }
464 } else {
465 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
466 }
467
468 /*
469 * Find a segment which begins after this one does.
470 */
471 for (p = NULL; q != NULL; q = nq) {
472 nq = TAILQ_NEXT(q, ipqe_q);
473 #ifdef TCP_REASS_COUNTERS
474 count++;
475 #endif
476 /*
477 * If the received segment is just right after this
478 * fragment, merge the two together and then check
479 * for further overlaps.
480 */
481 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
482 #ifdef TCPREASS_DEBUG
483 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
484 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
485 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
486 #endif
487 pkt_len += q->ipqe_len;
488 pkt_flags |= q->ipqe_flags;
489 pkt_seq = q->ipqe_seq;
490 m_cat(q->ipre_mlast, m);
491 TRAVERSE(q->ipre_mlast);
492 m = q->ipqe_m;
493 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
494 goto free_ipqe;
495 }
496 /*
497 * If the received segment is completely past this
498 * fragment, we need to go the next fragment.
499 */
500 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
501 p = q;
502 continue;
503 }
504 /*
505 * If the fragment is past the received segment,
506 * it (or any following) can't be concatenated.
507 */
508 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
509 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
510 break;
511 }
512
513 /*
514 * We've received all the data in this segment before.
515 * mark it as a duplicate and return.
516 */
517 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
518 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
519 tcpstat.tcps_rcvduppack++;
520 tcpstat.tcps_rcvdupbyte += pkt_len;
521 tcp_new_dsack(tp, pkt_seq, pkt_len);
522 m_freem(m);
523 if (tiqe != NULL) {
524 tcpipqent_free(tiqe);
525 }
526 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
527 return (0);
528 }
529 /*
530 * Received segment completely overlaps this fragment
531 * so we drop the fragment (this keeps the temporal
532 * ordering of segments correct).
533 */
534 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
535 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
536 rcvpartdupbyte += q->ipqe_len;
537 m_freem(q->ipqe_m);
538 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
539 goto free_ipqe;
540 }
541 /*
542 * RX'ed segment extends past the end of the
543 * fragment. Drop the overlapping bytes. Then
544 * merge the fragment and segment then treat as
545 * a longer received packet.
546 */
547 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
548 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
549 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
550 #ifdef TCPREASS_DEBUG
551 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
552 tp, overlap,
553 pkt_seq, pkt_seq + pkt_len, pkt_len);
554 #endif
555 m_adj(m, overlap);
556 rcvpartdupbyte += overlap;
557 m_cat(q->ipre_mlast, m);
558 TRAVERSE(q->ipre_mlast);
559 m = q->ipqe_m;
560 pkt_seq = q->ipqe_seq;
561 pkt_len += q->ipqe_len - overlap;
562 rcvoobyte -= overlap;
563 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
564 goto free_ipqe;
565 }
566 /*
567 * RX'ed segment extends past the front of the
568 * fragment. Drop the overlapping bytes on the
569 * received packet. The packet will then be
570 * contatentated with this fragment a bit later.
571 */
572 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
573 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
574 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
575 #ifdef TCPREASS_DEBUG
576 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
577 tp, overlap,
578 pkt_seq, pkt_seq + pkt_len, pkt_len);
579 #endif
580 m_adj(m, -overlap);
581 pkt_len -= overlap;
582 rcvpartdupbyte += overlap;
583 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
584 rcvoobyte -= overlap;
585 }
586 /*
587 * If the received segment immediates precedes this
588 * fragment then tack the fragment onto this segment
589 * and reinsert the data.
590 */
591 if (q->ipqe_seq == pkt_seq + pkt_len) {
592 #ifdef TCPREASS_DEBUG
593 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
594 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
595 pkt_seq, pkt_seq + pkt_len, pkt_len);
596 #endif
597 pkt_len += q->ipqe_len;
598 pkt_flags |= q->ipqe_flags;
599 m_cat(m, q->ipqe_m);
600 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
601 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
602 tp->t_segqlen--;
603 KASSERT(tp->t_segqlen >= 0);
604 KASSERT(tp->t_segqlen != 0 ||
605 (TAILQ_EMPTY(&tp->segq) &&
606 TAILQ_EMPTY(&tp->timeq)));
607 if (tiqe == NULL) {
608 tiqe = q;
609 } else {
610 tcpipqent_free(q);
611 }
612 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
613 break;
614 }
615 /*
616 * If the fragment is before the segment, remember it.
617 * When this loop is terminated, p will contain the
618 * pointer to fragment that is right before the received
619 * segment.
620 */
621 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
622 p = q;
623
624 continue;
625
626 /*
627 * This is a common operation. It also will allow
628 * to save doing a malloc/free in most instances.
629 */
630 free_ipqe:
631 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
632 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
633 tp->t_segqlen--;
634 KASSERT(tp->t_segqlen >= 0);
635 KASSERT(tp->t_segqlen != 0 ||
636 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
637 if (tiqe == NULL) {
638 tiqe = q;
639 } else {
640 tcpipqent_free(q);
641 }
642 }
643
644 #ifdef TCP_REASS_COUNTERS
645 if (count > 7)
646 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
647 else if (count > 0)
648 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
649 #endif
650
651 insert_it:
652
653 /*
654 * Allocate a new queue entry since the received segment did not
655 * collapse onto any other out-of-order block; thus we are allocating
656 * a new block. If it had collapsed, tiqe would not be NULL and
657 * we would be reusing it.
658 * XXX If we can't, just drop the packet. XXX
659 */
660 if (tiqe == NULL) {
661 tiqe = tcpipqent_alloc();
662 if (tiqe == NULL) {
663 tcpstat.tcps_rcvmemdrop++;
664 m_freem(m);
665 return (0);
666 }
667 }
668
669 /*
670 * Update the counters.
671 */
672 tcpstat.tcps_rcvoopack++;
673 tcpstat.tcps_rcvoobyte += rcvoobyte;
674 if (rcvpartdupbyte) {
675 tcpstat.tcps_rcvpartduppack++;
676 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
677 }
678
679 /*
680 * Insert the new fragment queue entry into both queues.
681 */
682 tiqe->ipqe_m = m;
683 tiqe->ipre_mlast = m;
684 tiqe->ipqe_seq = pkt_seq;
685 tiqe->ipqe_len = pkt_len;
686 tiqe->ipqe_flags = pkt_flags;
687 if (p == NULL) {
688 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
689 #ifdef TCPREASS_DEBUG
690 if (tiqe->ipqe_seq != tp->rcv_nxt)
691 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
692 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
693 #endif
694 } else {
695 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
696 #ifdef TCPREASS_DEBUG
697 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
698 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
699 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
700 #endif
701 }
702 tp->t_segqlen++;
703
704 skip_replacement:
705
706 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
707
708 present:
709 /*
710 * Present data to user, advancing rcv_nxt through
711 * completed sequence space.
712 */
713 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
714 return (0);
715 q = TAILQ_FIRST(&tp->segq);
716 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
717 return (0);
718 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
719 return (0);
720
721 tp->rcv_nxt += q->ipqe_len;
722 pkt_flags = q->ipqe_flags & TH_FIN;
723 ND6_HINT(tp);
724
725 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
726 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
727 tp->t_segqlen--;
728 KASSERT(tp->t_segqlen >= 0);
729 KASSERT(tp->t_segqlen != 0 ||
730 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
731 if (so->so_state & SS_CANTRCVMORE)
732 m_freem(q->ipqe_m);
733 else
734 sbappendstream(&so->so_rcv, q->ipqe_m);
735 tcpipqent_free(q);
736 sorwakeup(so);
737 return (pkt_flags);
738 }
739
740 #ifdef INET6
741 int
742 tcp6_input(struct mbuf **mp, int *offp, int proto)
743 {
744 struct mbuf *m = *mp;
745
746 /*
747 * draft-itojun-ipv6-tcp-to-anycast
748 * better place to put this in?
749 */
750 if (m->m_flags & M_ANYCAST6) {
751 struct ip6_hdr *ip6;
752 if (m->m_len < sizeof(struct ip6_hdr)) {
753 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
754 tcpstat.tcps_rcvshort++;
755 return IPPROTO_DONE;
756 }
757 }
758 ip6 = mtod(m, struct ip6_hdr *);
759 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
760 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
761 return IPPROTO_DONE;
762 }
763
764 tcp_input(m, *offp, proto);
765 return IPPROTO_DONE;
766 }
767 #endif
768
769 #ifdef INET
770 static void
771 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
772 {
773 char src[4*sizeof "123"];
774 char dst[4*sizeof "123"];
775
776 if (ip) {
777 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
778 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
779 }
780 else {
781 strlcpy(src, "(unknown)", sizeof(src));
782 strlcpy(dst, "(unknown)", sizeof(dst));
783 }
784 log(LOG_INFO,
785 "Connection attempt to TCP %s:%d from %s:%d\n",
786 dst, ntohs(th->th_dport),
787 src, ntohs(th->th_sport));
788 }
789 #endif
790
791 #ifdef INET6
792 static void
793 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
794 {
795 char src[INET6_ADDRSTRLEN];
796 char dst[INET6_ADDRSTRLEN];
797
798 if (ip6) {
799 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
800 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
801 }
802 else {
803 strlcpy(src, "(unknown v6)", sizeof(src));
804 strlcpy(dst, "(unknown v6)", sizeof(dst));
805 }
806 log(LOG_INFO,
807 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
808 dst, ntohs(th->th_dport),
809 src, ntohs(th->th_sport));
810 }
811 #endif
812
813 /*
814 * Checksum extended TCP header and data.
815 */
816 int
817 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
818 int off, int tlen)
819 {
820
821 /*
822 * XXX it's better to record and check if this mbuf is
823 * already checked.
824 */
825
826 switch (af) {
827 #ifdef INET
828 case AF_INET:
829 switch (m->m_pkthdr.csum_flags &
830 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
831 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
832 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
833 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
834 goto badcsum;
835
836 case M_CSUM_TCPv4|M_CSUM_DATA: {
837 u_int32_t hw_csum = m->m_pkthdr.csum_data;
838
839 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
840 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
841 const struct ip *ip =
842 mtod(m, const struct ip *);
843
844 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
845 ip->ip_dst.s_addr,
846 htons(hw_csum + tlen + off + IPPROTO_TCP));
847 }
848 if ((hw_csum ^ 0xffff) != 0)
849 goto badcsum;
850 break;
851 }
852
853 case M_CSUM_TCPv4:
854 /* Checksum was okay. */
855 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
856 break;
857
858 default:
859 /*
860 * Must compute it ourselves. Maybe skip checksum
861 * on loopback interfaces.
862 */
863 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
864 IFF_LOOPBACK) ||
865 tcp_do_loopback_cksum)) {
866 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
867 if (in4_cksum(m, IPPROTO_TCP, toff,
868 tlen + off) != 0)
869 goto badcsum;
870 }
871 break;
872 }
873 break;
874 #endif /* INET4 */
875
876 #ifdef INET6
877 case AF_INET6:
878 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
879 tcp_do_loopback_cksum)) {
880 if (in6_cksum(m, IPPROTO_TCP, toff, tlen + off) != 0)
881 goto badcsum;
882 }
883 break;
884 #endif /* INET6 */
885 }
886
887 return 0;
888
889 badcsum:
890 tcpstat.tcps_rcvbadsum++;
891 return -1;
892 }
893
894 /*
895 * TCP input routine, follows pages 65-76 of the
896 * protocol specification dated September, 1981 very closely.
897 */
898 void
899 tcp_input(struct mbuf *m, ...)
900 {
901 struct tcphdr *th;
902 struct ip *ip;
903 struct inpcb *inp;
904 #ifdef INET6
905 struct ip6_hdr *ip6;
906 struct in6pcb *in6p;
907 #endif
908 u_int8_t *optp = NULL;
909 int optlen = 0;
910 int len, tlen, toff, hdroptlen = 0;
911 struct tcpcb *tp = 0;
912 int tiflags;
913 struct socket *so = NULL;
914 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
915 #ifdef TCP_DEBUG
916 short ostate = 0;
917 #endif
918 int iss = 0;
919 u_long tiwin;
920 struct tcp_opt_info opti;
921 int off, iphlen;
922 va_list ap;
923 int af; /* af on the wire */
924 struct mbuf *tcp_saveti = NULL;
925 uint32_t ts_rtt;
926
927 MCLAIM(m, &tcp_rx_mowner);
928 va_start(ap, m);
929 toff = va_arg(ap, int);
930 (void)va_arg(ap, int); /* ignore value, advance ap */
931 va_end(ap);
932
933 tcpstat.tcps_rcvtotal++;
934
935 bzero(&opti, sizeof(opti));
936 opti.ts_present = 0;
937 opti.maxseg = 0;
938
939 /*
940 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
941 *
942 * TCP is, by definition, unicast, so we reject all
943 * multicast outright.
944 *
945 * Note, there are additional src/dst address checks in
946 * the AF-specific code below.
947 */
948 if (m->m_flags & (M_BCAST|M_MCAST)) {
949 /* XXX stat */
950 goto drop;
951 }
952 #ifdef INET6
953 if (m->m_flags & M_ANYCAST6) {
954 /* XXX stat */
955 goto drop;
956 }
957 #endif
958
959 /*
960 * Get IP and TCP header.
961 * Note: IP leaves IP header in first mbuf.
962 */
963 ip = mtod(m, struct ip *);
964 #ifdef INET6
965 ip6 = NULL;
966 #endif
967 switch (ip->ip_v) {
968 #ifdef INET
969 case 4:
970 af = AF_INET;
971 iphlen = sizeof(struct ip);
972 ip = mtod(m, struct ip *);
973 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
974 sizeof(struct tcphdr));
975 if (th == NULL) {
976 tcpstat.tcps_rcvshort++;
977 return;
978 }
979 /* We do the checksum after PCB lookup... */
980 len = ntohs(ip->ip_len);
981 tlen = len - toff;
982 break;
983 #endif
984 #ifdef INET6
985 case 6:
986 ip = NULL;
987 iphlen = sizeof(struct ip6_hdr);
988 af = AF_INET6;
989 ip6 = mtod(m, struct ip6_hdr *);
990 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
991 sizeof(struct tcphdr));
992 if (th == NULL) {
993 tcpstat.tcps_rcvshort++;
994 return;
995 }
996
997 /* Be proactive about malicious use of IPv4 mapped address */
998 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
999 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1000 /* XXX stat */
1001 goto drop;
1002 }
1003
1004 /*
1005 * Be proactive about unspecified IPv6 address in source.
1006 * As we use all-zero to indicate unbounded/unconnected pcb,
1007 * unspecified IPv6 address can be used to confuse us.
1008 *
1009 * Note that packets with unspecified IPv6 destination is
1010 * already dropped in ip6_input.
1011 */
1012 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1013 /* XXX stat */
1014 goto drop;
1015 }
1016
1017 /*
1018 * Make sure destination address is not multicast.
1019 * Source address checked in ip6_input().
1020 */
1021 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1022 /* XXX stat */
1023 goto drop;
1024 }
1025
1026 /* We do the checksum after PCB lookup... */
1027 len = m->m_pkthdr.len;
1028 tlen = len - toff;
1029 break;
1030 #endif
1031 default:
1032 m_freem(m);
1033 return;
1034 }
1035
1036 KASSERT(TCP_HDR_ALIGNED_P(th));
1037
1038 /*
1039 * Check that TCP offset makes sense,
1040 * pull out TCP options and adjust length. XXX
1041 */
1042 off = th->th_off << 2;
1043 if (off < sizeof (struct tcphdr) || off > tlen) {
1044 tcpstat.tcps_rcvbadoff++;
1045 goto drop;
1046 }
1047 tlen -= off;
1048
1049 /*
1050 * tcp_input() has been modified to use tlen to mean the TCP data
1051 * length throughout the function. Other functions can use
1052 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1053 * rja
1054 */
1055
1056 if (off > sizeof (struct tcphdr)) {
1057 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1058 if (th == NULL) {
1059 tcpstat.tcps_rcvshort++;
1060 return;
1061 }
1062 /*
1063 * NOTE: ip/ip6 will not be affected by m_pulldown()
1064 * (as they're before toff) and we don't need to update those.
1065 */
1066 KASSERT(TCP_HDR_ALIGNED_P(th));
1067 optlen = off - sizeof (struct tcphdr);
1068 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1069 /*
1070 * Do quick retrieval of timestamp options ("options
1071 * prediction?"). If timestamp is the only option and it's
1072 * formatted as recommended in RFC 1323 appendix A, we
1073 * quickly get the values now and not bother calling
1074 * tcp_dooptions(), etc.
1075 */
1076 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1077 (optlen > TCPOLEN_TSTAMP_APPA &&
1078 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1079 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1080 (th->th_flags & TH_SYN) == 0) {
1081 opti.ts_present = 1;
1082 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1083 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1084 optp = NULL; /* we've parsed the options */
1085 }
1086 }
1087 tiflags = th->th_flags;
1088
1089 /*
1090 * Locate pcb for segment.
1091 */
1092 findpcb:
1093 inp = NULL;
1094 #ifdef INET6
1095 in6p = NULL;
1096 #endif
1097 switch (af) {
1098 #ifdef INET
1099 case AF_INET:
1100 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1101 ip->ip_dst, th->th_dport);
1102 if (inp == 0) {
1103 ++tcpstat.tcps_pcbhashmiss;
1104 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1105 }
1106 #ifdef INET6
1107 if (inp == 0) {
1108 struct in6_addr s, d;
1109
1110 /* mapped addr case */
1111 bzero(&s, sizeof(s));
1112 s.s6_addr16[5] = htons(0xffff);
1113 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1114 bzero(&d, sizeof(d));
1115 d.s6_addr16[5] = htons(0xffff);
1116 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1117 in6p = in6_pcblookup_connect(&tcbtable, &s,
1118 th->th_sport, &d, th->th_dport, 0);
1119 if (in6p == 0) {
1120 ++tcpstat.tcps_pcbhashmiss;
1121 in6p = in6_pcblookup_bind(&tcbtable, &d,
1122 th->th_dport, 0);
1123 }
1124 }
1125 #endif
1126 #ifndef INET6
1127 if (inp == 0)
1128 #else
1129 if (inp == 0 && in6p == 0)
1130 #endif
1131 {
1132 ++tcpstat.tcps_noport;
1133 if (tcp_log_refused &&
1134 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1135 tcp4_log_refused(ip, th);
1136 }
1137 TCP_FIELDS_TO_HOST(th);
1138 goto dropwithreset_ratelim;
1139 }
1140 #if defined(IPSEC) || defined(FAST_IPSEC)
1141 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1142 ipsec4_in_reject(m, inp)) {
1143 ipsecstat.in_polvio++;
1144 goto drop;
1145 }
1146 #ifdef INET6
1147 else if (in6p &&
1148 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1149 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1150 ipsecstat.in_polvio++;
1151 goto drop;
1152 }
1153 #endif
1154 #endif /*IPSEC*/
1155 break;
1156 #endif /*INET*/
1157 #ifdef INET6
1158 case AF_INET6:
1159 {
1160 int faith;
1161
1162 #if defined(NFAITH) && NFAITH > 0
1163 faith = faithprefix(&ip6->ip6_dst);
1164 #else
1165 faith = 0;
1166 #endif
1167 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1168 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1169 if (in6p == NULL) {
1170 ++tcpstat.tcps_pcbhashmiss;
1171 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1172 th->th_dport, faith);
1173 }
1174 if (in6p == NULL) {
1175 ++tcpstat.tcps_noport;
1176 if (tcp_log_refused &&
1177 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1178 tcp6_log_refused(ip6, th);
1179 }
1180 TCP_FIELDS_TO_HOST(th);
1181 goto dropwithreset_ratelim;
1182 }
1183 #if defined(IPSEC) || defined(FAST_IPSEC)
1184 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1185 ipsec6_in_reject(m, in6p)) {
1186 ipsec6stat.in_polvio++;
1187 goto drop;
1188 }
1189 #endif /*IPSEC*/
1190 break;
1191 }
1192 #endif
1193 }
1194
1195 /*
1196 * If the state is CLOSED (i.e., TCB does not exist) then
1197 * all data in the incoming segment is discarded.
1198 * If the TCB exists but is in CLOSED state, it is embryonic,
1199 * but should either do a listen or a connect soon.
1200 */
1201 tp = NULL;
1202 so = NULL;
1203 if (inp) {
1204 tp = intotcpcb(inp);
1205 so = inp->inp_socket;
1206 }
1207 #ifdef INET6
1208 else if (in6p) {
1209 tp = in6totcpcb(in6p);
1210 so = in6p->in6p_socket;
1211 }
1212 #endif
1213 if (tp == 0) {
1214 TCP_FIELDS_TO_HOST(th);
1215 goto dropwithreset_ratelim;
1216 }
1217 if (tp->t_state == TCPS_CLOSED)
1218 goto drop;
1219
1220 /*
1221 * Checksum extended TCP header and data.
1222 */
1223 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1224 goto badcsum;
1225
1226 TCP_FIELDS_TO_HOST(th);
1227
1228 /* Unscale the window into a 32-bit value. */
1229 if ((tiflags & TH_SYN) == 0)
1230 tiwin = th->th_win << tp->snd_scale;
1231 else
1232 tiwin = th->th_win;
1233
1234 #ifdef INET6
1235 /* save packet options if user wanted */
1236 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1237 if (in6p->in6p_options) {
1238 m_freem(in6p->in6p_options);
1239 in6p->in6p_options = 0;
1240 }
1241 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1242 }
1243 #endif
1244
1245 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1246 union syn_cache_sa src;
1247 union syn_cache_sa dst;
1248
1249 bzero(&src, sizeof(src));
1250 bzero(&dst, sizeof(dst));
1251 switch (af) {
1252 #ifdef INET
1253 case AF_INET:
1254 src.sin.sin_len = sizeof(struct sockaddr_in);
1255 src.sin.sin_family = AF_INET;
1256 src.sin.sin_addr = ip->ip_src;
1257 src.sin.sin_port = th->th_sport;
1258
1259 dst.sin.sin_len = sizeof(struct sockaddr_in);
1260 dst.sin.sin_family = AF_INET;
1261 dst.sin.sin_addr = ip->ip_dst;
1262 dst.sin.sin_port = th->th_dport;
1263 break;
1264 #endif
1265 #ifdef INET6
1266 case AF_INET6:
1267 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1268 src.sin6.sin6_family = AF_INET6;
1269 src.sin6.sin6_addr = ip6->ip6_src;
1270 src.sin6.sin6_port = th->th_sport;
1271
1272 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1273 dst.sin6.sin6_family = AF_INET6;
1274 dst.sin6.sin6_addr = ip6->ip6_dst;
1275 dst.sin6.sin6_port = th->th_dport;
1276 break;
1277 #endif /* INET6 */
1278 default:
1279 goto badsyn; /*sanity*/
1280 }
1281
1282 if (so->so_options & SO_DEBUG) {
1283 #ifdef TCP_DEBUG
1284 ostate = tp->t_state;
1285 #endif
1286
1287 tcp_saveti = NULL;
1288 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1289 goto nosave;
1290
1291 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1292 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1293 if (!tcp_saveti)
1294 goto nosave;
1295 } else {
1296 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1297 if (!tcp_saveti)
1298 goto nosave;
1299 MCLAIM(m, &tcp_mowner);
1300 tcp_saveti->m_len = iphlen;
1301 m_copydata(m, 0, iphlen,
1302 mtod(tcp_saveti, caddr_t));
1303 }
1304
1305 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1306 m_freem(tcp_saveti);
1307 tcp_saveti = NULL;
1308 } else {
1309 tcp_saveti->m_len += sizeof(struct tcphdr);
1310 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1311 sizeof(struct tcphdr));
1312 }
1313 nosave:;
1314 }
1315 if (so->so_options & SO_ACCEPTCONN) {
1316 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1317 if (tiflags & TH_RST) {
1318 syn_cache_reset(&src.sa, &dst.sa, th);
1319 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1320 (TH_ACK|TH_SYN)) {
1321 /*
1322 * Received a SYN,ACK. This should
1323 * never happen while we are in
1324 * LISTEN. Send an RST.
1325 */
1326 goto badsyn;
1327 } else if (tiflags & TH_ACK) {
1328 so = syn_cache_get(&src.sa, &dst.sa,
1329 th, toff, tlen, so, m);
1330 if (so == NULL) {
1331 /*
1332 * We don't have a SYN for
1333 * this ACK; send an RST.
1334 */
1335 goto badsyn;
1336 } else if (so ==
1337 (struct socket *)(-1)) {
1338 /*
1339 * We were unable to create
1340 * the connection. If the
1341 * 3-way handshake was
1342 * completed, and RST has
1343 * been sent to the peer.
1344 * Since the mbuf might be
1345 * in use for the reply,
1346 * do not free it.
1347 */
1348 m = NULL;
1349 } else {
1350 /*
1351 * We have created a
1352 * full-blown connection.
1353 */
1354 tp = NULL;
1355 inp = NULL;
1356 #ifdef INET6
1357 in6p = NULL;
1358 #endif
1359 switch (so->so_proto->pr_domain->dom_family) {
1360 #ifdef INET
1361 case AF_INET:
1362 inp = sotoinpcb(so);
1363 tp = intotcpcb(inp);
1364 break;
1365 #endif
1366 #ifdef INET6
1367 case AF_INET6:
1368 in6p = sotoin6pcb(so);
1369 tp = in6totcpcb(in6p);
1370 break;
1371 #endif
1372 }
1373 if (tp == NULL)
1374 goto badsyn; /*XXX*/
1375 tiwin <<= tp->snd_scale;
1376 goto after_listen;
1377 }
1378 } else {
1379 /*
1380 * None of RST, SYN or ACK was set.
1381 * This is an invalid packet for a
1382 * TCB in LISTEN state. Send a RST.
1383 */
1384 goto badsyn;
1385 }
1386 } else {
1387 /*
1388 * Received a SYN.
1389 */
1390
1391 #ifdef INET6
1392 /*
1393 * If deprecated address is forbidden, we do
1394 * not accept SYN to deprecated interface
1395 * address to prevent any new inbound
1396 * connection from getting established.
1397 * When we do not accept SYN, we send a TCP
1398 * RST, with deprecated source address (instead
1399 * of dropping it). We compromise it as it is
1400 * much better for peer to send a RST, and
1401 * RST will be the final packet for the
1402 * exchange.
1403 *
1404 * If we do not forbid deprecated addresses, we
1405 * accept the SYN packet. RFC2462 does not
1406 * suggest dropping SYN in this case.
1407 * If we decipher RFC2462 5.5.4, it says like
1408 * this:
1409 * 1. use of deprecated addr with existing
1410 * communication is okay - "SHOULD continue
1411 * to be used"
1412 * 2. use of it with new communication:
1413 * (2a) "SHOULD NOT be used if alternate
1414 * address with sufficient scope is
1415 * available"
1416 * (2b) nothing mentioned otherwise.
1417 * Here we fall into (2b) case as we have no
1418 * choice in our source address selection - we
1419 * must obey the peer.
1420 *
1421 * The wording in RFC2462 is confusing, and
1422 * there are multiple description text for
1423 * deprecated address handling - worse, they
1424 * are not exactly the same. I believe 5.5.4
1425 * is the best one, so we follow 5.5.4.
1426 */
1427 if (af == AF_INET6 && !ip6_use_deprecated) {
1428 struct in6_ifaddr *ia6;
1429 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1430 &ip6->ip6_dst)) &&
1431 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1432 tp = NULL;
1433 goto dropwithreset;
1434 }
1435 }
1436 #endif
1437
1438 #ifdef IPSEC
1439 switch (af) {
1440 #ifdef INET
1441 case AF_INET:
1442 if (ipsec4_in_reject_so(m, so)) {
1443 ipsecstat.in_polvio++;
1444 tp = NULL;
1445 goto dropwithreset;
1446 }
1447 break;
1448 #endif
1449 #ifdef INET6
1450 case AF_INET6:
1451 if (ipsec6_in_reject_so(m, so)) {
1452 ipsec6stat.in_polvio++;
1453 tp = NULL;
1454 goto dropwithreset;
1455 }
1456 break;
1457 #endif
1458 }
1459 #endif
1460
1461 /*
1462 * LISTEN socket received a SYN
1463 * from itself? This can't possibly
1464 * be valid; drop the packet.
1465 */
1466 if (th->th_sport == th->th_dport) {
1467 int i;
1468
1469 switch (af) {
1470 #ifdef INET
1471 case AF_INET:
1472 i = in_hosteq(ip->ip_src, ip->ip_dst);
1473 break;
1474 #endif
1475 #ifdef INET6
1476 case AF_INET6:
1477 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1478 break;
1479 #endif
1480 default:
1481 i = 1;
1482 }
1483 if (i) {
1484 tcpstat.tcps_badsyn++;
1485 goto drop;
1486 }
1487 }
1488
1489 /*
1490 * SYN looks ok; create compressed TCP
1491 * state for it.
1492 */
1493 if (so->so_qlen <= so->so_qlimit &&
1494 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1495 so, m, optp, optlen, &opti))
1496 m = NULL;
1497 }
1498 goto drop;
1499 }
1500 }
1501
1502 after_listen:
1503 #ifdef DIAGNOSTIC
1504 /*
1505 * Should not happen now that all embryonic connections
1506 * are handled with compressed state.
1507 */
1508 if (tp->t_state == TCPS_LISTEN)
1509 panic("tcp_input: TCPS_LISTEN");
1510 #endif
1511
1512 /*
1513 * Segment received on connection.
1514 * Reset idle time and keep-alive timer.
1515 */
1516 tp->t_rcvtime = tcp_now;
1517 if (TCPS_HAVEESTABLISHED(tp->t_state))
1518 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1519
1520 /*
1521 * Process options.
1522 */
1523 #ifdef TCP_SIGNATURE
1524 if (optp || (tp->t_flags & TF_SIGNATURE))
1525 #else
1526 if (optp)
1527 #endif
1528 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1529 goto drop;
1530
1531 if (TCP_SACK_ENABLED(tp)) {
1532 tcp_del_sackholes(tp, th);
1533 }
1534
1535 if (opti.ts_present && opti.ts_ecr) {
1536 /*
1537 * Calculate the RTT from the returned time stamp and the
1538 * connection's time base. If the time stamp is later than
1539 * the current time, or is extremely old, fall back to non-1323
1540 * RTT calculation. Since ts_ecr is unsigned, we can test both
1541 * at the same time.
1542 */
1543 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1544 if (ts_rtt > TCP_PAWS_IDLE)
1545 ts_rtt = 0;
1546 } else {
1547 ts_rtt = 0;
1548 }
1549
1550 /*
1551 * Header prediction: check for the two common cases
1552 * of a uni-directional data xfer. If the packet has
1553 * no control flags, is in-sequence, the window didn't
1554 * change and we're not retransmitting, it's a
1555 * candidate. If the length is zero and the ack moved
1556 * forward, we're the sender side of the xfer. Just
1557 * free the data acked & wake any higher level process
1558 * that was blocked waiting for space. If the length
1559 * is non-zero and the ack didn't move, we're the
1560 * receiver side. If we're getting packets in-order
1561 * (the reassembly queue is empty), add the data to
1562 * the socket buffer and note that we need a delayed ack.
1563 */
1564 if (tp->t_state == TCPS_ESTABLISHED &&
1565 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1566 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1567 th->th_seq == tp->rcv_nxt &&
1568 tiwin && tiwin == tp->snd_wnd &&
1569 tp->snd_nxt == tp->snd_max) {
1570
1571 /*
1572 * If last ACK falls within this segment's sequence numbers,
1573 * record the timestamp.
1574 */
1575 if (opti.ts_present &&
1576 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1577 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen)) {
1578 tp->ts_recent_age = tcp_now;
1579 tp->ts_recent = opti.ts_val;
1580 }
1581
1582 if (tlen == 0) {
1583 /* Ack prediction. */
1584 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1585 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1586 tp->snd_cwnd >= tp->snd_wnd &&
1587 tp->t_partialacks < 0) {
1588 /*
1589 * this is a pure ack for outstanding data.
1590 */
1591 ++tcpstat.tcps_predack;
1592 if (ts_rtt)
1593 tcp_xmit_timer(tp, ts_rtt);
1594 else if (tp->t_rtttime &&
1595 SEQ_GT(th->th_ack, tp->t_rtseq))
1596 tcp_xmit_timer(tp,
1597 tcp_now - tp->t_rtttime);
1598 acked = th->th_ack - tp->snd_una;
1599 tcpstat.tcps_rcvackpack++;
1600 tcpstat.tcps_rcvackbyte += acked;
1601 ND6_HINT(tp);
1602
1603 if (acked > (tp->t_lastoff - tp->t_inoff))
1604 tp->t_lastm = NULL;
1605 sbdrop(&so->so_snd, acked);
1606 tp->t_lastoff -= acked;
1607
1608 tp->snd_una = th->th_ack;
1609 tp->snd_fack = tp->snd_una;
1610 if (SEQ_LT(tp->snd_high, tp->snd_una))
1611 tp->snd_high = tp->snd_una;
1612 m_freem(m);
1613
1614 /*
1615 * If all outstanding data are acked, stop
1616 * retransmit timer, otherwise restart timer
1617 * using current (possibly backed-off) value.
1618 * If process is waiting for space,
1619 * wakeup/selwakeup/signal. If data
1620 * are ready to send, let tcp_output
1621 * decide between more output or persist.
1622 */
1623 if (tp->snd_una == tp->snd_max)
1624 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1625 else if (TCP_TIMER_ISARMED(tp,
1626 TCPT_PERSIST) == 0)
1627 TCP_TIMER_ARM(tp, TCPT_REXMT,
1628 tp->t_rxtcur);
1629
1630 sowwakeup(so);
1631 if (so->so_snd.sb_cc)
1632 (void) tcp_output(tp);
1633 if (tcp_saveti)
1634 m_freem(tcp_saveti);
1635 return;
1636 }
1637 } else if (th->th_ack == tp->snd_una &&
1638 TAILQ_FIRST(&tp->segq) == NULL &&
1639 tlen <= sbspace(&so->so_rcv)) {
1640 /*
1641 * this is a pure, in-sequence data packet
1642 * with nothing on the reassembly queue and
1643 * we have enough buffer space to take it.
1644 */
1645 ++tcpstat.tcps_preddat;
1646 tp->rcv_nxt += tlen;
1647 tcpstat.tcps_rcvpack++;
1648 tcpstat.tcps_rcvbyte += tlen;
1649 ND6_HINT(tp);
1650 /*
1651 * Drop TCP, IP headers and TCP options then add data
1652 * to socket buffer.
1653 */
1654 if (so->so_state & SS_CANTRCVMORE)
1655 m_freem(m);
1656 else {
1657 m_adj(m, toff + off);
1658 sbappendstream(&so->so_rcv, m);
1659 }
1660 sorwakeup(so);
1661 TCP_SETUP_ACK(tp, th);
1662 if (tp->t_flags & TF_ACKNOW)
1663 (void) tcp_output(tp);
1664 if (tcp_saveti)
1665 m_freem(tcp_saveti);
1666 return;
1667 }
1668 }
1669
1670 /*
1671 * Compute mbuf offset to TCP data segment.
1672 */
1673 hdroptlen = toff + off;
1674
1675 /*
1676 * Calculate amount of space in receive window,
1677 * and then do TCP input processing.
1678 * Receive window is amount of space in rcv queue,
1679 * but not less than advertised window.
1680 */
1681 { int win;
1682
1683 win = sbspace(&so->so_rcv);
1684 if (win < 0)
1685 win = 0;
1686 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1687 }
1688
1689 switch (tp->t_state) {
1690 case TCPS_LISTEN:
1691 /*
1692 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1693 */
1694 if (m->m_flags & (M_BCAST|M_MCAST))
1695 goto drop;
1696 switch (af) {
1697 #ifdef INET6
1698 case AF_INET6:
1699 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1700 goto drop;
1701 break;
1702 #endif /* INET6 */
1703 case AF_INET:
1704 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1705 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1706 goto drop;
1707 break;
1708 }
1709 break;
1710
1711 /*
1712 * If the state is SYN_SENT:
1713 * if seg contains an ACK, but not for our SYN, drop the input.
1714 * if seg contains a RST, then drop the connection.
1715 * if seg does not contain SYN, then drop it.
1716 * Otherwise this is an acceptable SYN segment
1717 * initialize tp->rcv_nxt and tp->irs
1718 * if seg contains ack then advance tp->snd_una
1719 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1720 * arrange for segment to be acked (eventually)
1721 * continue processing rest of data/controls, beginning with URG
1722 */
1723 case TCPS_SYN_SENT:
1724 if ((tiflags & TH_ACK) &&
1725 (SEQ_LEQ(th->th_ack, tp->iss) ||
1726 SEQ_GT(th->th_ack, tp->snd_max)))
1727 goto dropwithreset;
1728 if (tiflags & TH_RST) {
1729 if (tiflags & TH_ACK)
1730 tp = tcp_drop(tp, ECONNREFUSED);
1731 goto drop;
1732 }
1733 if ((tiflags & TH_SYN) == 0)
1734 goto drop;
1735 if (tiflags & TH_ACK) {
1736 tp->snd_una = th->th_ack;
1737 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1738 tp->snd_nxt = tp->snd_una;
1739 if (SEQ_LT(tp->snd_high, tp->snd_una))
1740 tp->snd_high = tp->snd_una;
1741 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1742 }
1743 tp->irs = th->th_seq;
1744 tcp_rcvseqinit(tp);
1745 tp->t_flags |= TF_ACKNOW;
1746 tcp_mss_from_peer(tp, opti.maxseg);
1747
1748 /*
1749 * Initialize the initial congestion window. If we
1750 * had to retransmit the SYN, we must initialize cwnd
1751 * to 1 segment (i.e. the Loss Window).
1752 */
1753 if (tp->t_flags & TF_SYN_REXMT)
1754 tp->snd_cwnd = tp->t_peermss;
1755 else {
1756 int ss = tcp_init_win;
1757 #ifdef INET
1758 if (inp != NULL && in_localaddr(inp->inp_faddr))
1759 ss = tcp_init_win_local;
1760 #endif
1761 #ifdef INET6
1762 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1763 ss = tcp_init_win_local;
1764 #endif
1765 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1766 }
1767
1768 tcp_rmx_rtt(tp);
1769 if (tiflags & TH_ACK) {
1770 tcpstat.tcps_connects++;
1771 soisconnected(so);
1772 tcp_established(tp);
1773 /* Do window scaling on this connection? */
1774 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1775 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1776 tp->snd_scale = tp->requested_s_scale;
1777 tp->rcv_scale = tp->request_r_scale;
1778 }
1779 TCP_REASS_LOCK(tp);
1780 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1781 TCP_REASS_UNLOCK(tp);
1782 /*
1783 * if we didn't have to retransmit the SYN,
1784 * use its rtt as our initial srtt & rtt var.
1785 */
1786 if (tp->t_rtttime)
1787 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1788 } else
1789 tp->t_state = TCPS_SYN_RECEIVED;
1790
1791 /*
1792 * Advance th->th_seq to correspond to first data byte.
1793 * If data, trim to stay within window,
1794 * dropping FIN if necessary.
1795 */
1796 th->th_seq++;
1797 if (tlen > tp->rcv_wnd) {
1798 todrop = tlen - tp->rcv_wnd;
1799 m_adj(m, -todrop);
1800 tlen = tp->rcv_wnd;
1801 tiflags &= ~TH_FIN;
1802 tcpstat.tcps_rcvpackafterwin++;
1803 tcpstat.tcps_rcvbyteafterwin += todrop;
1804 }
1805 tp->snd_wl1 = th->th_seq - 1;
1806 tp->rcv_up = th->th_seq;
1807 goto step6;
1808
1809 /*
1810 * If the state is SYN_RECEIVED:
1811 * If seg contains an ACK, but not for our SYN, drop the input
1812 * and generate an RST. See page 36, rfc793
1813 */
1814 case TCPS_SYN_RECEIVED:
1815 if ((tiflags & TH_ACK) &&
1816 (SEQ_LEQ(th->th_ack, tp->iss) ||
1817 SEQ_GT(th->th_ack, tp->snd_max)))
1818 goto dropwithreset;
1819 break;
1820 }
1821
1822 /*
1823 * States other than LISTEN or SYN_SENT.
1824 * First check timestamp, if present.
1825 * Then check that at least some bytes of segment are within
1826 * receive window. If segment begins before rcv_nxt,
1827 * drop leading data (and SYN); if nothing left, just ack.
1828 *
1829 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1830 * and it's less than ts_recent, drop it.
1831 */
1832 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1833 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1834
1835 /* Check to see if ts_recent is over 24 days old. */
1836 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1837 /*
1838 * Invalidate ts_recent. If this segment updates
1839 * ts_recent, the age will be reset later and ts_recent
1840 * will get a valid value. If it does not, setting
1841 * ts_recent to zero will at least satisfy the
1842 * requirement that zero be placed in the timestamp
1843 * echo reply when ts_recent isn't valid. The
1844 * age isn't reset until we get a valid ts_recent
1845 * because we don't want out-of-order segments to be
1846 * dropped when ts_recent is old.
1847 */
1848 tp->ts_recent = 0;
1849 } else {
1850 tcpstat.tcps_rcvduppack++;
1851 tcpstat.tcps_rcvdupbyte += tlen;
1852 tcpstat.tcps_pawsdrop++;
1853 tcp_new_dsack(tp, th->th_seq, tlen);
1854 goto dropafterack;
1855 }
1856 }
1857
1858 todrop = tp->rcv_nxt - th->th_seq;
1859 dupseg = FALSE;
1860 if (todrop > 0) {
1861 if (tiflags & TH_SYN) {
1862 tiflags &= ~TH_SYN;
1863 th->th_seq++;
1864 if (th->th_urp > 1)
1865 th->th_urp--;
1866 else {
1867 tiflags &= ~TH_URG;
1868 th->th_urp = 0;
1869 }
1870 todrop--;
1871 }
1872 if (todrop > tlen ||
1873 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1874 /*
1875 * Any valid FIN or RST must be to the left of the
1876 * window. At this point the FIN or RST must be a
1877 * duplicate or out of sequence; drop it.
1878 */
1879 if (tiflags & TH_RST)
1880 goto drop;
1881 tiflags &= ~(TH_FIN|TH_RST);
1882 /*
1883 * Send an ACK to resynchronize and drop any data.
1884 * But keep on processing for RST or ACK.
1885 */
1886 tp->t_flags |= TF_ACKNOW;
1887 todrop = tlen;
1888 dupseg = TRUE;
1889 tcpstat.tcps_rcvdupbyte += todrop;
1890 tcpstat.tcps_rcvduppack++;
1891 } else if ((tiflags & TH_RST) &&
1892 th->th_seq != tp->last_ack_sent) {
1893 /*
1894 * Test for reset before adjusting the sequence
1895 * number for overlapping data.
1896 */
1897 goto dropafterack_ratelim;
1898 } else {
1899 tcpstat.tcps_rcvpartduppack++;
1900 tcpstat.tcps_rcvpartdupbyte += todrop;
1901 }
1902 tcp_new_dsack(tp, th->th_seq, todrop);
1903 hdroptlen += todrop; /*drop from head afterwards*/
1904 th->th_seq += todrop;
1905 tlen -= todrop;
1906 if (th->th_urp > todrop)
1907 th->th_urp -= todrop;
1908 else {
1909 tiflags &= ~TH_URG;
1910 th->th_urp = 0;
1911 }
1912 }
1913
1914 /*
1915 * If new data are received on a connection after the
1916 * user processes are gone, then RST the other end.
1917 */
1918 if ((so->so_state & SS_NOFDREF) &&
1919 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1920 tp = tcp_close(tp);
1921 tcpstat.tcps_rcvafterclose++;
1922 goto dropwithreset;
1923 }
1924
1925 /*
1926 * If segment ends after window, drop trailing data
1927 * (and PUSH and FIN); if nothing left, just ACK.
1928 */
1929 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
1930 if (todrop > 0) {
1931 tcpstat.tcps_rcvpackafterwin++;
1932 if (todrop >= tlen) {
1933 /*
1934 * The segment actually starts after the window.
1935 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
1936 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
1937 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
1938 */
1939 tcpstat.tcps_rcvbyteafterwin += tlen;
1940 /*
1941 * If a new connection request is received
1942 * while in TIME_WAIT, drop the old connection
1943 * and start over if the sequence numbers
1944 * are above the previous ones.
1945 *
1946 * NOTE: We will checksum the packet again, and
1947 * so we need to put the header fields back into
1948 * network order!
1949 * XXX This kind of sucks, but we don't expect
1950 * XXX this to happen very often, so maybe it
1951 * XXX doesn't matter so much.
1952 */
1953 if (tiflags & TH_SYN &&
1954 tp->t_state == TCPS_TIME_WAIT &&
1955 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
1956 iss = tcp_new_iss(tp, tp->snd_nxt);
1957 tp = tcp_close(tp);
1958 TCP_FIELDS_TO_NET(th);
1959 goto findpcb;
1960 }
1961 /*
1962 * If window is closed can only take segments at
1963 * window edge, and have to drop data and PUSH from
1964 * incoming segments. Continue processing, but
1965 * remember to ack. Otherwise, drop segment
1966 * and (if not RST) ack.
1967 */
1968 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
1969 tp->t_flags |= TF_ACKNOW;
1970 tcpstat.tcps_rcvwinprobe++;
1971 } else
1972 goto dropafterack;
1973 } else
1974 tcpstat.tcps_rcvbyteafterwin += todrop;
1975 m_adj(m, -todrop);
1976 tlen -= todrop;
1977 tiflags &= ~(TH_PUSH|TH_FIN);
1978 }
1979
1980 /*
1981 * If last ACK falls within this segment's sequence numbers,
1982 * and the timestamp is newer, record it.
1983 */
1984 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
1985 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1986 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
1987 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1988 tp->ts_recent_age = tcp_now;
1989 tp->ts_recent = opti.ts_val;
1990 }
1991
1992 /*
1993 * If the RST bit is set examine the state:
1994 * SYN_RECEIVED STATE:
1995 * If passive open, return to LISTEN state.
1996 * If active open, inform user that connection was refused.
1997 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
1998 * Inform user that connection was reset, and close tcb.
1999 * CLOSING, LAST_ACK, TIME_WAIT STATES
2000 * Close the tcb.
2001 */
2002 if (tiflags & TH_RST) {
2003 if (th->th_seq != tp->last_ack_sent)
2004 goto dropafterack_ratelim;
2005
2006 switch (tp->t_state) {
2007 case TCPS_SYN_RECEIVED:
2008 so->so_error = ECONNREFUSED;
2009 goto close;
2010
2011 case TCPS_ESTABLISHED:
2012 case TCPS_FIN_WAIT_1:
2013 case TCPS_FIN_WAIT_2:
2014 case TCPS_CLOSE_WAIT:
2015 so->so_error = ECONNRESET;
2016 close:
2017 tp->t_state = TCPS_CLOSED;
2018 tcpstat.tcps_drops++;
2019 tp = tcp_close(tp);
2020 goto drop;
2021
2022 case TCPS_CLOSING:
2023 case TCPS_LAST_ACK:
2024 case TCPS_TIME_WAIT:
2025 tp = tcp_close(tp);
2026 goto drop;
2027 }
2028 }
2029
2030 /*
2031 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2032 * we must be in a synchronized state. RFC791 states (under RST
2033 * generation) that any unacceptable segment (an out-of-order SYN
2034 * qualifies) received in a synchronized state must elicit only an
2035 * empty acknowledgment segment ... and the connection remains in
2036 * the same state.
2037 */
2038 if (tiflags & TH_SYN) {
2039 if (tp->rcv_nxt == th->th_seq) {
2040 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2041 TH_ACK);
2042 if (tcp_saveti)
2043 m_freem(tcp_saveti);
2044 return;
2045 }
2046
2047 goto dropafterack_ratelim;
2048 }
2049
2050 /*
2051 * If the ACK bit is off we drop the segment and return.
2052 */
2053 if ((tiflags & TH_ACK) == 0) {
2054 if (tp->t_flags & TF_ACKNOW)
2055 goto dropafterack;
2056 else
2057 goto drop;
2058 }
2059
2060 /*
2061 * Ack processing.
2062 */
2063 switch (tp->t_state) {
2064
2065 /*
2066 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2067 * ESTABLISHED state and continue processing, otherwise
2068 * send an RST.
2069 */
2070 case TCPS_SYN_RECEIVED:
2071 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2072 SEQ_GT(th->th_ack, tp->snd_max))
2073 goto dropwithreset;
2074 tcpstat.tcps_connects++;
2075 soisconnected(so);
2076 tcp_established(tp);
2077 /* Do window scaling? */
2078 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2079 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2080 tp->snd_scale = tp->requested_s_scale;
2081 tp->rcv_scale = tp->request_r_scale;
2082 }
2083 TCP_REASS_LOCK(tp);
2084 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2085 TCP_REASS_UNLOCK(tp);
2086 tp->snd_wl1 = th->th_seq - 1;
2087 /* fall into ... */
2088
2089 /*
2090 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2091 * ACKs. If the ack is in the range
2092 * tp->snd_una < th->th_ack <= tp->snd_max
2093 * then advance tp->snd_una to th->th_ack and drop
2094 * data from the retransmission queue. If this ACK reflects
2095 * more up to date window information we update our window information.
2096 */
2097 case TCPS_ESTABLISHED:
2098 case TCPS_FIN_WAIT_1:
2099 case TCPS_FIN_WAIT_2:
2100 case TCPS_CLOSE_WAIT:
2101 case TCPS_CLOSING:
2102 case TCPS_LAST_ACK:
2103 case TCPS_TIME_WAIT:
2104
2105 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2106 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2107 tcpstat.tcps_rcvdupack++;
2108 /*
2109 * If we have outstanding data (other than
2110 * a window probe), this is a completely
2111 * duplicate ack (ie, window info didn't
2112 * change), the ack is the biggest we've
2113 * seen and we've seen exactly our rexmt
2114 * threshhold of them, assume a packet
2115 * has been dropped and retransmit it.
2116 * Kludge snd_nxt & the congestion
2117 * window so we send only this one
2118 * packet.
2119 *
2120 * We know we're losing at the current
2121 * window size so do congestion avoidance
2122 * (set ssthresh to half the current window
2123 * and pull our congestion window back to
2124 * the new ssthresh).
2125 *
2126 * Dup acks mean that packets have left the
2127 * network (they're now cached at the receiver)
2128 * so bump cwnd by the amount in the receiver
2129 * to keep a constant cwnd packets in the
2130 * network.
2131 *
2132 * If we are using TCP/SACK, then enter
2133 * Fast Recovery if the receiver SACKs
2134 * data that is tcprexmtthresh * MSS
2135 * bytes past the last ACKed segment,
2136 * irrespective of the number of DupAcks.
2137 */
2138 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2139 th->th_ack != tp->snd_una)
2140 tp->t_dupacks = 0;
2141 else if (tp->t_partialacks < 0 &&
2142 (++tp->t_dupacks == tcprexmtthresh ||
2143 TCP_FACK_FASTRECOV(tp))) {
2144 tcp_seq onxt;
2145 u_int win;
2146
2147 if (tcp_do_newreno &&
2148 SEQ_LT(th->th_ack, tp->snd_high)) {
2149 /*
2150 * False fast retransmit after
2151 * timeout. Do not enter fast
2152 * recovery.
2153 */
2154 tp->t_dupacks = 0;
2155 break;
2156 }
2157
2158 onxt = tp->snd_nxt;
2159 win = min(tp->snd_wnd, tp->snd_cwnd) /
2160 2 / tp->t_segsz;
2161 if (win < 2)
2162 win = 2;
2163 tp->snd_ssthresh = win * tp->t_segsz;
2164 tp->snd_recover = tp->snd_max;
2165 tp->t_partialacks = 0;
2166 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2167 tp->t_rtttime = 0;
2168 if (TCP_SACK_ENABLED(tp)) {
2169 tp->t_dupacks = tcprexmtthresh;
2170 tp->sack_newdata = tp->snd_nxt;
2171 tp->snd_cwnd = tp->t_segsz;
2172 (void) tcp_output(tp);
2173 goto drop;
2174 }
2175 tp->snd_nxt = th->th_ack;
2176 tp->snd_cwnd = tp->t_segsz;
2177 (void) tcp_output(tp);
2178 tp->snd_cwnd = tp->snd_ssthresh +
2179 tp->t_segsz * tp->t_dupacks;
2180 if (SEQ_GT(onxt, tp->snd_nxt))
2181 tp->snd_nxt = onxt;
2182 goto drop;
2183 } else if (tp->t_dupacks > tcprexmtthresh) {
2184 tp->snd_cwnd += tp->t_segsz;
2185 (void) tcp_output(tp);
2186 goto drop;
2187 }
2188 } else {
2189 /*
2190 * If the ack appears to be very old, only
2191 * allow data that is in-sequence. This
2192 * makes it somewhat more difficult to insert
2193 * forged data by guessing sequence numbers.
2194 * Sent an ack to try to update the send
2195 * sequence number on the other side.
2196 */
2197 if (tlen && th->th_seq != tp->rcv_nxt &&
2198 SEQ_LT(th->th_ack,
2199 tp->snd_una - tp->max_sndwnd))
2200 goto dropafterack;
2201 }
2202 break;
2203 }
2204 /*
2205 * If the congestion window was inflated to account
2206 * for the other side's cached packets, retract it.
2207 */
2208 if (TCP_SACK_ENABLED(tp))
2209 tcp_sack_newack(tp, th);
2210 else if (tcp_do_newreno)
2211 tcp_newreno_newack(tp, th);
2212 else
2213 tcp_reno_newack(tp, th);
2214 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2215 tcpstat.tcps_rcvacktoomuch++;
2216 goto dropafterack;
2217 }
2218 acked = th->th_ack - tp->snd_una;
2219 tcpstat.tcps_rcvackpack++;
2220 tcpstat.tcps_rcvackbyte += acked;
2221
2222 /*
2223 * If we have a timestamp reply, update smoothed
2224 * round trip time. If no timestamp is present but
2225 * transmit timer is running and timed sequence
2226 * number was acked, update smoothed round trip time.
2227 * Since we now have an rtt measurement, cancel the
2228 * timer backoff (cf., Phil Karn's retransmit alg.).
2229 * Recompute the initial retransmit timer.
2230 */
2231 if (ts_rtt)
2232 tcp_xmit_timer(tp, ts_rtt);
2233 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2234 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2235
2236 /*
2237 * If all outstanding data is acked, stop retransmit
2238 * timer and remember to restart (more output or persist).
2239 * If there is more data to be acked, restart retransmit
2240 * timer, using current (possibly backed-off) value.
2241 */
2242 if (th->th_ack == tp->snd_max) {
2243 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2244 needoutput = 1;
2245 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2246 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2247 /*
2248 * When new data is acked, open the congestion window.
2249 * If the window gives us less than ssthresh packets
2250 * in flight, open exponentially (segsz per packet).
2251 * Otherwise open linearly: segsz per window
2252 * (segsz^2 / cwnd per packet).
2253 *
2254 * If we are still in fast recovery (meaning we are using
2255 * NewReno and we have only received partial acks), do not
2256 * inflate the window yet.
2257 */
2258 if (tp->t_partialacks < 0) {
2259 u_int cw = tp->snd_cwnd;
2260 u_int incr = tp->t_segsz;
2261
2262 if (cw >= tp->snd_ssthresh)
2263 incr = incr * incr / cw;
2264 tp->snd_cwnd = min(cw + incr,
2265 TCP_MAXWIN << tp->snd_scale);
2266 }
2267 ND6_HINT(tp);
2268 if (acked > so->so_snd.sb_cc) {
2269 tp->snd_wnd -= so->so_snd.sb_cc;
2270 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2271 ourfinisacked = 1;
2272 } else {
2273 if (acked > (tp->t_lastoff - tp->t_inoff))
2274 tp->t_lastm = NULL;
2275 sbdrop(&so->so_snd, acked);
2276 tp->t_lastoff -= acked;
2277 tp->snd_wnd -= acked;
2278 ourfinisacked = 0;
2279 }
2280 sowwakeup(so);
2281 tp->snd_una = th->th_ack;
2282 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2283 tp->snd_fack = tp->snd_una;
2284 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2285 tp->snd_nxt = tp->snd_una;
2286 if (SEQ_LT(tp->snd_high, tp->snd_una))
2287 tp->snd_high = tp->snd_una;
2288
2289 switch (tp->t_state) {
2290
2291 /*
2292 * In FIN_WAIT_1 STATE in addition to the processing
2293 * for the ESTABLISHED state if our FIN is now acknowledged
2294 * then enter FIN_WAIT_2.
2295 */
2296 case TCPS_FIN_WAIT_1:
2297 if (ourfinisacked) {
2298 /*
2299 * If we can't receive any more
2300 * data, then closing user can proceed.
2301 * Starting the timer is contrary to the
2302 * specification, but if we don't get a FIN
2303 * we'll hang forever.
2304 */
2305 if (so->so_state & SS_CANTRCVMORE) {
2306 soisdisconnected(so);
2307 if (tcp_maxidle > 0)
2308 TCP_TIMER_ARM(tp, TCPT_2MSL,
2309 tcp_maxidle);
2310 }
2311 tp->t_state = TCPS_FIN_WAIT_2;
2312 }
2313 break;
2314
2315 /*
2316 * In CLOSING STATE in addition to the processing for
2317 * the ESTABLISHED state if the ACK acknowledges our FIN
2318 * then enter the TIME-WAIT state, otherwise ignore
2319 * the segment.
2320 */
2321 case TCPS_CLOSING:
2322 if (ourfinisacked) {
2323 tp->t_state = TCPS_TIME_WAIT;
2324 tcp_canceltimers(tp);
2325 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2326 soisdisconnected(so);
2327 }
2328 break;
2329
2330 /*
2331 * In LAST_ACK, we may still be waiting for data to drain
2332 * and/or to be acked, as well as for the ack of our FIN.
2333 * If our FIN is now acknowledged, delete the TCB,
2334 * enter the closed state and return.
2335 */
2336 case TCPS_LAST_ACK:
2337 if (ourfinisacked) {
2338 tp = tcp_close(tp);
2339 goto drop;
2340 }
2341 break;
2342
2343 /*
2344 * In TIME_WAIT state the only thing that should arrive
2345 * is a retransmission of the remote FIN. Acknowledge
2346 * it and restart the finack timer.
2347 */
2348 case TCPS_TIME_WAIT:
2349 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2350 goto dropafterack;
2351 }
2352 }
2353
2354 step6:
2355 /*
2356 * Update window information.
2357 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2358 */
2359 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2360 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2361 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2362 /* keep track of pure window updates */
2363 if (tlen == 0 &&
2364 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2365 tcpstat.tcps_rcvwinupd++;
2366 tp->snd_wnd = tiwin;
2367 tp->snd_wl1 = th->th_seq;
2368 tp->snd_wl2 = th->th_ack;
2369 if (tp->snd_wnd > tp->max_sndwnd)
2370 tp->max_sndwnd = tp->snd_wnd;
2371 needoutput = 1;
2372 }
2373
2374 /*
2375 * Process segments with URG.
2376 */
2377 if ((tiflags & TH_URG) && th->th_urp &&
2378 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2379 /*
2380 * This is a kludge, but if we receive and accept
2381 * random urgent pointers, we'll crash in
2382 * soreceive. It's hard to imagine someone
2383 * actually wanting to send this much urgent data.
2384 */
2385 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2386 th->th_urp = 0; /* XXX */
2387 tiflags &= ~TH_URG; /* XXX */
2388 goto dodata; /* XXX */
2389 }
2390 /*
2391 * If this segment advances the known urgent pointer,
2392 * then mark the data stream. This should not happen
2393 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2394 * a FIN has been received from the remote side.
2395 * In these states we ignore the URG.
2396 *
2397 * According to RFC961 (Assigned Protocols),
2398 * the urgent pointer points to the last octet
2399 * of urgent data. We continue, however,
2400 * to consider it to indicate the first octet
2401 * of data past the urgent section as the original
2402 * spec states (in one of two places).
2403 */
2404 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2405 tp->rcv_up = th->th_seq + th->th_urp;
2406 so->so_oobmark = so->so_rcv.sb_cc +
2407 (tp->rcv_up - tp->rcv_nxt) - 1;
2408 if (so->so_oobmark == 0)
2409 so->so_state |= SS_RCVATMARK;
2410 sohasoutofband(so);
2411 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2412 }
2413 /*
2414 * Remove out of band data so doesn't get presented to user.
2415 * This can happen independent of advancing the URG pointer,
2416 * but if two URG's are pending at once, some out-of-band
2417 * data may creep in... ick.
2418 */
2419 if (th->th_urp <= (u_int16_t) tlen
2420 #ifdef SO_OOBINLINE
2421 && (so->so_options & SO_OOBINLINE) == 0
2422 #endif
2423 )
2424 tcp_pulloutofband(so, th, m, hdroptlen);
2425 } else
2426 /*
2427 * If no out of band data is expected,
2428 * pull receive urgent pointer along
2429 * with the receive window.
2430 */
2431 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2432 tp->rcv_up = tp->rcv_nxt;
2433 dodata: /* XXX */
2434
2435 /*
2436 * Process the segment text, merging it into the TCP sequencing queue,
2437 * and arranging for acknowledgement of receipt if necessary.
2438 * This process logically involves adjusting tp->rcv_wnd as data
2439 * is presented to the user (this happens in tcp_usrreq.c,
2440 * case PRU_RCVD). If a FIN has already been received on this
2441 * connection then we just ignore the text.
2442 */
2443 if ((tlen || (tiflags & TH_FIN)) &&
2444 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2445 /*
2446 * Insert segment ti into reassembly queue of tcp with
2447 * control block tp. Return TH_FIN if reassembly now includes
2448 * a segment with FIN. The macro form does the common case
2449 * inline (segment is the next to be received on an
2450 * established connection, and the queue is empty),
2451 * avoiding linkage into and removal from the queue and
2452 * repetition of various conversions.
2453 * Set DELACK for segments received in order, but ack
2454 * immediately when segments are out of order
2455 * (so fast retransmit can work).
2456 */
2457 /* NOTE: this was TCP_REASS() macro, but used only once */
2458 TCP_REASS_LOCK(tp);
2459 if (th->th_seq == tp->rcv_nxt &&
2460 TAILQ_FIRST(&tp->segq) == NULL &&
2461 tp->t_state == TCPS_ESTABLISHED) {
2462 TCP_SETUP_ACK(tp, th);
2463 tp->rcv_nxt += tlen;
2464 tiflags = th->th_flags & TH_FIN;
2465 tcpstat.tcps_rcvpack++;
2466 tcpstat.tcps_rcvbyte += tlen;
2467 ND6_HINT(tp);
2468 if (so->so_state & SS_CANTRCVMORE)
2469 m_freem(m);
2470 else {
2471 m_adj(m, hdroptlen);
2472 sbappendstream(&(so)->so_rcv, m);
2473 }
2474 sorwakeup(so);
2475 } else {
2476 m_adj(m, hdroptlen);
2477 tiflags = tcp_reass(tp, th, m, &tlen);
2478 tp->t_flags |= TF_ACKNOW;
2479 }
2480 TCP_REASS_UNLOCK(tp);
2481
2482 /*
2483 * Note the amount of data that peer has sent into
2484 * our window, in order to estimate the sender's
2485 * buffer size.
2486 */
2487 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2488 } else {
2489 m_freem(m);
2490 m = NULL;
2491 tiflags &= ~TH_FIN;
2492 }
2493
2494 /*
2495 * If FIN is received ACK the FIN and let the user know
2496 * that the connection is closing. Ignore a FIN received before
2497 * the connection is fully established.
2498 */
2499 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2500 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2501 socantrcvmore(so);
2502 tp->t_flags |= TF_ACKNOW;
2503 tp->rcv_nxt++;
2504 }
2505 switch (tp->t_state) {
2506
2507 /*
2508 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2509 */
2510 case TCPS_ESTABLISHED:
2511 tp->t_state = TCPS_CLOSE_WAIT;
2512 break;
2513
2514 /*
2515 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2516 * enter the CLOSING state.
2517 */
2518 case TCPS_FIN_WAIT_1:
2519 tp->t_state = TCPS_CLOSING;
2520 break;
2521
2522 /*
2523 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2524 * starting the time-wait timer, turning off the other
2525 * standard timers.
2526 */
2527 case TCPS_FIN_WAIT_2:
2528 tp->t_state = TCPS_TIME_WAIT;
2529 tcp_canceltimers(tp);
2530 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2531 soisdisconnected(so);
2532 break;
2533
2534 /*
2535 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2536 */
2537 case TCPS_TIME_WAIT:
2538 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2539 break;
2540 }
2541 }
2542 #ifdef TCP_DEBUG
2543 if (so->so_options & SO_DEBUG)
2544 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2545 #endif
2546
2547 /*
2548 * Return any desired output.
2549 */
2550 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2551 (void) tcp_output(tp);
2552 }
2553 if (tcp_saveti)
2554 m_freem(tcp_saveti);
2555 return;
2556
2557 badsyn:
2558 /*
2559 * Received a bad SYN. Increment counters and dropwithreset.
2560 */
2561 tcpstat.tcps_badsyn++;
2562 tp = NULL;
2563 goto dropwithreset;
2564
2565 dropafterack:
2566 /*
2567 * Generate an ACK dropping incoming segment if it occupies
2568 * sequence space, where the ACK reflects our state.
2569 */
2570 if (tiflags & TH_RST)
2571 goto drop;
2572 goto dropafterack2;
2573
2574 dropafterack_ratelim:
2575 /*
2576 * We may want to rate-limit ACKs against SYN/RST attack.
2577 */
2578 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2579 tcp_ackdrop_ppslim) == 0) {
2580 /* XXX stat */
2581 goto drop;
2582 }
2583 /* ...fall into dropafterack2... */
2584
2585 dropafterack2:
2586 m_freem(m);
2587 tp->t_flags |= TF_ACKNOW;
2588 (void) tcp_output(tp);
2589 if (tcp_saveti)
2590 m_freem(tcp_saveti);
2591 return;
2592
2593 dropwithreset_ratelim:
2594 /*
2595 * We may want to rate-limit RSTs in certain situations,
2596 * particularly if we are sending an RST in response to
2597 * an attempt to connect to or otherwise communicate with
2598 * a port for which we have no socket.
2599 */
2600 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2601 tcp_rst_ppslim) == 0) {
2602 /* XXX stat */
2603 goto drop;
2604 }
2605 /* ...fall into dropwithreset... */
2606
2607 dropwithreset:
2608 /*
2609 * Generate a RST, dropping incoming segment.
2610 * Make ACK acceptable to originator of segment.
2611 */
2612 if (tiflags & TH_RST)
2613 goto drop;
2614
2615 switch (af) {
2616 #ifdef INET6
2617 case AF_INET6:
2618 /* For following calls to tcp_respond */
2619 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2620 goto drop;
2621 break;
2622 #endif /* INET6 */
2623 case AF_INET:
2624 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2625 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2626 goto drop;
2627 }
2628
2629 if (tiflags & TH_ACK)
2630 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2631 else {
2632 if (tiflags & TH_SYN)
2633 tlen++;
2634 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2635 TH_RST|TH_ACK);
2636 }
2637 if (tcp_saveti)
2638 m_freem(tcp_saveti);
2639 return;
2640
2641 badcsum:
2642 drop:
2643 /*
2644 * Drop space held by incoming segment and return.
2645 */
2646 if (tp) {
2647 if (tp->t_inpcb)
2648 so = tp->t_inpcb->inp_socket;
2649 #ifdef INET6
2650 else if (tp->t_in6pcb)
2651 so = tp->t_in6pcb->in6p_socket;
2652 #endif
2653 else
2654 so = NULL;
2655 #ifdef TCP_DEBUG
2656 if (so && (so->so_options & SO_DEBUG) != 0)
2657 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2658 #endif
2659 }
2660 if (tcp_saveti)
2661 m_freem(tcp_saveti);
2662 m_freem(m);
2663 return;
2664 }
2665
2666 #ifdef TCP_SIGNATURE
2667 int
2668 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2669 {
2670
2671 MD5Update(fstate, (u_char *)data, len);
2672 return (0);
2673 }
2674
2675 struct secasvar *
2676 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2677 {
2678 struct secasvar *sav;
2679 #ifdef FAST_IPSEC
2680 union sockaddr_union dst;
2681 #endif
2682 struct ip *ip;
2683 struct ip6_hdr *ip6;
2684
2685 ip = mtod(m, struct ip *);
2686 switch (ip->ip_v) {
2687 case 4:
2688 ip = mtod(m, struct ip *);
2689 ip6 = NULL;
2690 break;
2691 case 6:
2692 ip = NULL;
2693 ip6 = mtod(m, struct ip6_hdr *);
2694 break;
2695 default:
2696 return (NULL);
2697 }
2698
2699 #ifdef FAST_IPSEC
2700 /* Extract the destination from the IP header in the mbuf. */
2701 bzero(&dst, sizeof(union sockaddr_union));
2702 dst.sa.sa_len = sizeof(struct sockaddr_in);
2703 dst.sa.sa_family = AF_INET;
2704 dst.sin.sin_addr = ip->ip_dst;
2705
2706 /*
2707 * Look up an SADB entry which matches the address of the peer.
2708 */
2709 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2710 #else
2711 if (ip)
2712 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2713 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2714 htonl(TCP_SIG_SPI), 0, 0);
2715 else
2716 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2717 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2718 htonl(TCP_SIG_SPI), 0, 0);
2719 #endif
2720
2721 return (sav); /* freesav must be performed by caller */
2722 }
2723
2724 int
2725 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2726 struct secasvar *sav, char *sig)
2727 {
2728 MD5_CTX ctx;
2729 struct ip *ip;
2730 struct ipovly *ipovly;
2731 struct ip6_hdr *ip6;
2732 struct ippseudo ippseudo;
2733 struct ip6_hdr_pseudo ip6pseudo;
2734 struct tcphdr th0;
2735 int l, tcphdrlen;
2736
2737 if (sav == NULL)
2738 return (-1);
2739
2740 tcphdrlen = th->th_off * 4;
2741
2742 switch (mtod(m, struct ip *)->ip_v) {
2743 case 4:
2744 ip = mtod(m, struct ip *);
2745 ip6 = NULL;
2746 break;
2747 case 6:
2748 ip = NULL;
2749 ip6 = mtod(m, struct ip6_hdr *);
2750 break;
2751 default:
2752 return (-1);
2753 }
2754
2755 MD5Init(&ctx);
2756
2757 if (ip) {
2758 memset(&ippseudo, 0, sizeof(ippseudo));
2759 ipovly = (struct ipovly *)ip;
2760 ippseudo.ippseudo_src = ipovly->ih_src;
2761 ippseudo.ippseudo_dst = ipovly->ih_dst;
2762 ippseudo.ippseudo_pad = 0;
2763 ippseudo.ippseudo_p = IPPROTO_TCP;
2764 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2765 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2766 } else {
2767 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2768 ip6pseudo.ip6ph_src = ip6->ip6_src;
2769 in6_clearscope(&ip6pseudo.ip6ph_src);
2770 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2771 in6_clearscope(&ip6pseudo.ip6ph_dst);
2772 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2773 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2774 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2775 }
2776
2777 th0 = *th;
2778 th0.th_sum = 0;
2779 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2780
2781 l = m->m_pkthdr.len - thoff - tcphdrlen;
2782 if (l > 0)
2783 m_apply(m, thoff + tcphdrlen,
2784 m->m_pkthdr.len - thoff - tcphdrlen,
2785 tcp_signature_apply, &ctx);
2786
2787 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2788 MD5Final(sig, &ctx);
2789
2790 return (0);
2791 }
2792 #endif
2793
2794 int
2795 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2796 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2797 {
2798 u_int16_t mss;
2799 int opt, optlen = 0;
2800 #ifdef TCP_SIGNATURE
2801 caddr_t sigp = NULL;
2802 char sigbuf[TCP_SIGLEN];
2803 struct secasvar *sav = NULL;
2804 #endif
2805
2806 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2807 opt = cp[0];
2808 if (opt == TCPOPT_EOL)
2809 break;
2810 if (opt == TCPOPT_NOP)
2811 optlen = 1;
2812 else {
2813 if (cnt < 2)
2814 break;
2815 optlen = cp[1];
2816 if (optlen < 2 || optlen > cnt)
2817 break;
2818 }
2819 switch (opt) {
2820
2821 default:
2822 continue;
2823
2824 case TCPOPT_MAXSEG:
2825 if (optlen != TCPOLEN_MAXSEG)
2826 continue;
2827 if (!(th->th_flags & TH_SYN))
2828 continue;
2829 bcopy(cp + 2, &mss, sizeof(mss));
2830 oi->maxseg = ntohs(mss);
2831 break;
2832
2833 case TCPOPT_WINDOW:
2834 if (optlen != TCPOLEN_WINDOW)
2835 continue;
2836 if (!(th->th_flags & TH_SYN))
2837 continue;
2838 tp->t_flags |= TF_RCVD_SCALE;
2839 tp->requested_s_scale = cp[2];
2840 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2841 #if 0 /*XXX*/
2842 char *p;
2843
2844 if (ip)
2845 p = ntohl(ip->ip_src);
2846 #ifdef INET6
2847 else if (ip6)
2848 p = ip6_sprintf(&ip6->ip6_src);
2849 #endif
2850 else
2851 p = "(unknown)";
2852 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2853 "assuming %d\n",
2854 tp->requested_s_scale, p,
2855 TCP_MAX_WINSHIFT);
2856 #else
2857 log(LOG_ERR, "TCP: invalid wscale %d, "
2858 "assuming %d\n",
2859 tp->requested_s_scale,
2860 TCP_MAX_WINSHIFT);
2861 #endif
2862 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2863 }
2864 break;
2865
2866 case TCPOPT_TIMESTAMP:
2867 if (optlen != TCPOLEN_TIMESTAMP)
2868 continue;
2869 oi->ts_present = 1;
2870 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2871 NTOHL(oi->ts_val);
2872 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2873 NTOHL(oi->ts_ecr);
2874
2875 /*
2876 * A timestamp received in a SYN makes
2877 * it ok to send timestamp requests and replies.
2878 */
2879 if (th->th_flags & TH_SYN) {
2880 tp->t_flags |= TF_RCVD_TSTMP;
2881 tp->ts_recent = oi->ts_val;
2882 tp->ts_recent_age = tcp_now;
2883 }
2884 break;
2885 case TCPOPT_SACK_PERMITTED:
2886 if (optlen != TCPOLEN_SACK_PERMITTED)
2887 continue;
2888 if (!(th->th_flags & TH_SYN))
2889 continue;
2890 if (tcp_do_sack) {
2891 tp->t_flags |= TF_SACK_PERMIT;
2892 tp->t_flags |= TF_WILL_SACK;
2893 }
2894 break;
2895
2896 case TCPOPT_SACK:
2897 tcp_sack_option(tp, th, cp, optlen);
2898 break;
2899 #ifdef TCP_SIGNATURE
2900 case TCPOPT_SIGNATURE:
2901 if (optlen != TCPOLEN_SIGNATURE)
2902 continue;
2903 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2904 return (-1);
2905
2906 sigp = sigbuf;
2907 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2908 memset(cp + 2, 0, TCP_SIGLEN);
2909 tp->t_flags |= TF_SIGNATURE;
2910 break;
2911 #endif
2912 }
2913 }
2914
2915 #ifdef TCP_SIGNATURE
2916 if (tp->t_flags & TF_SIGNATURE) {
2917
2918 sav = tcp_signature_getsav(m, th);
2919
2920 if (sav == NULL && tp->t_state == TCPS_LISTEN)
2921 return (-1);
2922 }
2923
2924 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
2925 if (sav == NULL)
2926 return (-1);
2927 #ifdef FAST_IPSEC
2928 KEY_FREESAV(&sav);
2929 #else
2930 key_freesav(sav);
2931 #endif
2932 return (-1);
2933 }
2934
2935 if (sigp) {
2936 char sig[TCP_SIGLEN];
2937
2938 TCP_FIELDS_TO_NET(th);
2939 if (tcp_signature(m, th, toff, sav, sig) < 0) {
2940 TCP_FIELDS_TO_HOST(th);
2941 if (sav == NULL)
2942 return (-1);
2943 #ifdef FAST_IPSEC
2944 KEY_FREESAV(&sav);
2945 #else
2946 key_freesav(sav);
2947 #endif
2948 return (-1);
2949 }
2950 TCP_FIELDS_TO_HOST(th);
2951
2952 if (bcmp(sig, sigp, TCP_SIGLEN)) {
2953 tcpstat.tcps_badsig++;
2954 if (sav == NULL)
2955 return (-1);
2956 #ifdef FAST_IPSEC
2957 KEY_FREESAV(&sav);
2958 #else
2959 key_freesav(sav);
2960 #endif
2961 return (-1);
2962 } else
2963 tcpstat.tcps_goodsig++;
2964
2965 key_sa_recordxfer(sav, m);
2966 #ifdef FAST_IPSEC
2967 KEY_FREESAV(&sav);
2968 #else
2969 key_freesav(sav);
2970 #endif
2971 }
2972 #endif
2973
2974 return (0);
2975 }
2976
2977 /*
2978 * Pull out of band byte out of a segment so
2979 * it doesn't appear in the user's data queue.
2980 * It is still reflected in the segment length for
2981 * sequencing purposes.
2982 */
2983 void
2984 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
2985 struct mbuf *m, int off)
2986 {
2987 int cnt = off + th->th_urp - 1;
2988
2989 while (cnt >= 0) {
2990 if (m->m_len > cnt) {
2991 char *cp = mtod(m, caddr_t) + cnt;
2992 struct tcpcb *tp = sototcpcb(so);
2993
2994 tp->t_iobc = *cp;
2995 tp->t_oobflags |= TCPOOB_HAVEDATA;
2996 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
2997 m->m_len--;
2998 return;
2999 }
3000 cnt -= m->m_len;
3001 m = m->m_next;
3002 if (m == 0)
3003 break;
3004 }
3005 panic("tcp_pulloutofband");
3006 }
3007
3008 /*
3009 * Collect new round-trip time estimate
3010 * and update averages and current timeout.
3011 */
3012 void
3013 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3014 {
3015 int32_t delta;
3016
3017 tcpstat.tcps_rttupdated++;
3018 if (tp->t_srtt != 0) {
3019 /*
3020 * srtt is stored as fixed point with 3 bits after the
3021 * binary point (i.e., scaled by 8). The following magic
3022 * is equivalent to the smoothing algorithm in rfc793 with
3023 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3024 * point). Adjust rtt to origin 0.
3025 */
3026 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3027 if ((tp->t_srtt += delta) <= 0)
3028 tp->t_srtt = 1 << 2;
3029 /*
3030 * We accumulate a smoothed rtt variance (actually, a
3031 * smoothed mean difference), then set the retransmit
3032 * timer to smoothed rtt + 4 times the smoothed variance.
3033 * rttvar is stored as fixed point with 2 bits after the
3034 * binary point (scaled by 4). The following is
3035 * equivalent to rfc793 smoothing with an alpha of .75
3036 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3037 * rfc793's wired-in beta.
3038 */
3039 if (delta < 0)
3040 delta = -delta;
3041 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3042 if ((tp->t_rttvar += delta) <= 0)
3043 tp->t_rttvar = 1 << 2;
3044 } else {
3045 /*
3046 * No rtt measurement yet - use the unsmoothed rtt.
3047 * Set the variance to half the rtt (so our first
3048 * retransmit happens at 3*rtt).
3049 */
3050 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3051 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3052 }
3053 tp->t_rtttime = 0;
3054 tp->t_rxtshift = 0;
3055
3056 /*
3057 * the retransmit should happen at rtt + 4 * rttvar.
3058 * Because of the way we do the smoothing, srtt and rttvar
3059 * will each average +1/2 tick of bias. When we compute
3060 * the retransmit timer, we want 1/2 tick of rounding and
3061 * 1 extra tick because of +-1/2 tick uncertainty in the
3062 * firing of the timer. The bias will give us exactly the
3063 * 1.5 tick we need. But, because the bias is
3064 * statistical, we have to test that we don't drop below
3065 * the minimum feasible timer (which is 2 ticks).
3066 */
3067 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3068 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3069
3070 /*
3071 * We received an ack for a packet that wasn't retransmitted;
3072 * it is probably safe to discard any error indications we've
3073 * received recently. This isn't quite right, but close enough
3074 * for now (a route might have failed after we sent a segment,
3075 * and the return path might not be symmetrical).
3076 */
3077 tp->t_softerror = 0;
3078 }
3079
3080 void
3081 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
3082 {
3083 if (tp->t_partialacks < 0) {
3084 /*
3085 * We were not in fast recovery. Reset the duplicate ack
3086 * counter.
3087 */
3088 tp->t_dupacks = 0;
3089 } else {
3090 /*
3091 * Clamp the congestion window to the crossover point and
3092 * exit fast recovery.
3093 */
3094 if (tp->snd_cwnd > tp->snd_ssthresh)
3095 tp->snd_cwnd = tp->snd_ssthresh;
3096 tp->t_partialacks = -1;
3097 tp->t_dupacks = 0;
3098 }
3099 }
3100
3101 /*
3102 * Implement the NewReno response to a new ack, checking for partial acks in
3103 * fast recovery.
3104 */
3105 void
3106 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
3107 {
3108 if (tp->t_partialacks < 0) {
3109 /*
3110 * We were not in fast recovery. Reset the duplicate ack
3111 * counter.
3112 */
3113 tp->t_dupacks = 0;
3114 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3115 /*
3116 * This is a partial ack. Retransmit the first unacknowledged
3117 * segment and deflate the congestion window by the amount of
3118 * acknowledged data. Do not exit fast recovery.
3119 */
3120 tcp_seq onxt = tp->snd_nxt;
3121 u_long ocwnd = tp->snd_cwnd;
3122
3123 /*
3124 * snd_una has not yet been updated and the socket's send
3125 * buffer has not yet drained off the ACK'd data, so we
3126 * have to leave snd_una as it was to get the correct data
3127 * offset in tcp_output().
3128 */
3129 if (++tp->t_partialacks == 1)
3130 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3131 tp->t_rtttime = 0;
3132 tp->snd_nxt = th->th_ack;
3133 /*
3134 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3135 * is not yet updated when we're called.
3136 */
3137 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3138 (void) tcp_output(tp);
3139 tp->snd_cwnd = ocwnd;
3140 if (SEQ_GT(onxt, tp->snd_nxt))
3141 tp->snd_nxt = onxt;
3142 /*
3143 * Partial window deflation. Relies on fact that tp->snd_una
3144 * not updated yet.
3145 */
3146 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3147 } else {
3148 /*
3149 * Complete ack. Inflate the congestion window to ssthresh
3150 * and exit fast recovery.
3151 *
3152 * Window inflation should have left us with approx.
3153 * snd_ssthresh outstanding data. But in case we
3154 * would be inclined to send a burst, better to do
3155 * it via the slow start mechanism.
3156 */
3157 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3158 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3159 + tp->t_segsz;
3160 else
3161 tp->snd_cwnd = tp->snd_ssthresh;
3162 tp->t_partialacks = -1;
3163 tp->t_dupacks = 0;
3164 }
3165 }
3166
3167
3168 /*
3169 * TCP compressed state engine. Currently used to hold compressed
3170 * state for SYN_RECEIVED.
3171 */
3172
3173 u_long syn_cache_count;
3174 u_int32_t syn_hash1, syn_hash2;
3175
3176 #define SYN_HASH(sa, sp, dp) \
3177 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3178 ((u_int32_t)(sp)))^syn_hash2)))
3179 #ifndef INET6
3180 #define SYN_HASHALL(hash, src, dst) \
3181 do { \
3182 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3183 ((const struct sockaddr_in *)(src))->sin_port, \
3184 ((const struct sockaddr_in *)(dst))->sin_port); \
3185 } while (/*CONSTCOND*/ 0)
3186 #else
3187 #define SYN_HASH6(sa, sp, dp) \
3188 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3189 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3190 & 0x7fffffff)
3191
3192 #define SYN_HASHALL(hash, src, dst) \
3193 do { \
3194 switch ((src)->sa_family) { \
3195 case AF_INET: \
3196 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3197 ((const struct sockaddr_in *)(src))->sin_port, \
3198 ((const struct sockaddr_in *)(dst))->sin_port); \
3199 break; \
3200 case AF_INET6: \
3201 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3202 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3203 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3204 break; \
3205 default: \
3206 hash = 0; \
3207 } \
3208 } while (/*CONSTCOND*/0)
3209 #endif /* INET6 */
3210
3211 #define SYN_CACHE_RM(sc) \
3212 do { \
3213 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3214 (sc), sc_bucketq); \
3215 (sc)->sc_tp = NULL; \
3216 LIST_REMOVE((sc), sc_tpq); \
3217 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3218 callout_stop(&(sc)->sc_timer); \
3219 syn_cache_count--; \
3220 } while (/*CONSTCOND*/0)
3221
3222 #define SYN_CACHE_PUT(sc) \
3223 do { \
3224 if ((sc)->sc_ipopts) \
3225 (void) m_free((sc)->sc_ipopts); \
3226 if ((sc)->sc_route4.ro_rt != NULL) \
3227 RTFREE((sc)->sc_route4.ro_rt); \
3228 if (callout_invoking(&(sc)->sc_timer)) \
3229 (sc)->sc_flags |= SCF_DEAD; \
3230 else \
3231 pool_put(&syn_cache_pool, (sc)); \
3232 } while (/*CONSTCOND*/0)
3233
3234 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3235
3236 /*
3237 * We don't estimate RTT with SYNs, so each packet starts with the default
3238 * RTT and each timer step has a fixed timeout value.
3239 */
3240 #define SYN_CACHE_TIMER_ARM(sc) \
3241 do { \
3242 TCPT_RANGESET((sc)->sc_rxtcur, \
3243 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3244 TCPTV_REXMTMAX); \
3245 callout_reset(&(sc)->sc_timer, \
3246 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3247 } while (/*CONSTCOND*/0)
3248
3249 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3250
3251 void
3252 syn_cache_init(void)
3253 {
3254 int i;
3255
3256 /* Initialize the hash buckets. */
3257 for (i = 0; i < tcp_syn_cache_size; i++)
3258 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3259 }
3260
3261 void
3262 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3263 {
3264 struct syn_cache_head *scp;
3265 struct syn_cache *sc2;
3266 int s;
3267
3268 /*
3269 * If there are no entries in the hash table, reinitialize
3270 * the hash secrets.
3271 */
3272 if (syn_cache_count == 0) {
3273 syn_hash1 = arc4random();
3274 syn_hash2 = arc4random();
3275 }
3276
3277 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3278 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3279 scp = &tcp_syn_cache[sc->sc_bucketidx];
3280
3281 /*
3282 * Make sure that we don't overflow the per-bucket
3283 * limit or the total cache size limit.
3284 */
3285 s = splsoftnet();
3286 if (scp->sch_length >= tcp_syn_bucket_limit) {
3287 tcpstat.tcps_sc_bucketoverflow++;
3288 /*
3289 * The bucket is full. Toss the oldest element in the
3290 * bucket. This will be the first entry in the bucket.
3291 */
3292 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3293 #ifdef DIAGNOSTIC
3294 /*
3295 * This should never happen; we should always find an
3296 * entry in our bucket.
3297 */
3298 if (sc2 == NULL)
3299 panic("syn_cache_insert: bucketoverflow: impossible");
3300 #endif
3301 SYN_CACHE_RM(sc2);
3302 SYN_CACHE_PUT(sc2);
3303 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3304 struct syn_cache_head *scp2, *sce;
3305
3306 tcpstat.tcps_sc_overflowed++;
3307 /*
3308 * The cache is full. Toss the oldest entry in the
3309 * first non-empty bucket we can find.
3310 *
3311 * XXX We would really like to toss the oldest
3312 * entry in the cache, but we hope that this
3313 * condition doesn't happen very often.
3314 */
3315 scp2 = scp;
3316 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3317 sce = &tcp_syn_cache[tcp_syn_cache_size];
3318 for (++scp2; scp2 != scp; scp2++) {
3319 if (scp2 >= sce)
3320 scp2 = &tcp_syn_cache[0];
3321 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3322 break;
3323 }
3324 #ifdef DIAGNOSTIC
3325 /*
3326 * This should never happen; we should always find a
3327 * non-empty bucket.
3328 */
3329 if (scp2 == scp)
3330 panic("syn_cache_insert: cacheoverflow: "
3331 "impossible");
3332 #endif
3333 }
3334 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3335 SYN_CACHE_RM(sc2);
3336 SYN_CACHE_PUT(sc2);
3337 }
3338
3339 /*
3340 * Initialize the entry's timer.
3341 */
3342 sc->sc_rxttot = 0;
3343 sc->sc_rxtshift = 0;
3344 SYN_CACHE_TIMER_ARM(sc);
3345
3346 /* Link it from tcpcb entry */
3347 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3348
3349 /* Put it into the bucket. */
3350 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3351 scp->sch_length++;
3352 syn_cache_count++;
3353
3354 tcpstat.tcps_sc_added++;
3355 splx(s);
3356 }
3357
3358 /*
3359 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3360 * If we have retransmitted an entry the maximum number of times, expire
3361 * that entry.
3362 */
3363 void
3364 syn_cache_timer(void *arg)
3365 {
3366 struct syn_cache *sc = arg;
3367 int s;
3368
3369 s = splsoftnet();
3370 callout_ack(&sc->sc_timer);
3371
3372 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3373 tcpstat.tcps_sc_delayed_free++;
3374 pool_put(&syn_cache_pool, sc);
3375 splx(s);
3376 return;
3377 }
3378
3379 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3380 /* Drop it -- too many retransmissions. */
3381 goto dropit;
3382 }
3383
3384 /*
3385 * Compute the total amount of time this entry has
3386 * been on a queue. If this entry has been on longer
3387 * than the keep alive timer would allow, expire it.
3388 */
3389 sc->sc_rxttot += sc->sc_rxtcur;
3390 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3391 goto dropit;
3392
3393 tcpstat.tcps_sc_retransmitted++;
3394 (void) syn_cache_respond(sc, NULL);
3395
3396 /* Advance the timer back-off. */
3397 sc->sc_rxtshift++;
3398 SYN_CACHE_TIMER_ARM(sc);
3399
3400 splx(s);
3401 return;
3402
3403 dropit:
3404 tcpstat.tcps_sc_timed_out++;
3405 SYN_CACHE_RM(sc);
3406 SYN_CACHE_PUT(sc);
3407 splx(s);
3408 }
3409
3410 /*
3411 * Remove syn cache created by the specified tcb entry,
3412 * because this does not make sense to keep them
3413 * (if there's no tcb entry, syn cache entry will never be used)
3414 */
3415 void
3416 syn_cache_cleanup(struct tcpcb *tp)
3417 {
3418 struct syn_cache *sc, *nsc;
3419 int s;
3420
3421 s = splsoftnet();
3422
3423 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3424 nsc = LIST_NEXT(sc, sc_tpq);
3425
3426 #ifdef DIAGNOSTIC
3427 if (sc->sc_tp != tp)
3428 panic("invalid sc_tp in syn_cache_cleanup");
3429 #endif
3430 SYN_CACHE_RM(sc);
3431 SYN_CACHE_PUT(sc);
3432 }
3433 /* just for safety */
3434 LIST_INIT(&tp->t_sc);
3435
3436 splx(s);
3437 }
3438
3439 /*
3440 * Find an entry in the syn cache.
3441 */
3442 struct syn_cache *
3443 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3444 struct syn_cache_head **headp)
3445 {
3446 struct syn_cache *sc;
3447 struct syn_cache_head *scp;
3448 u_int32_t hash;
3449 int s;
3450
3451 SYN_HASHALL(hash, src, dst);
3452
3453 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3454 *headp = scp;
3455 s = splsoftnet();
3456 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3457 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3458 if (sc->sc_hash != hash)
3459 continue;
3460 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3461 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3462 splx(s);
3463 return (sc);
3464 }
3465 }
3466 splx(s);
3467 return (NULL);
3468 }
3469
3470 /*
3471 * This function gets called when we receive an ACK for a
3472 * socket in the LISTEN state. We look up the connection
3473 * in the syn cache, and if its there, we pull it out of
3474 * the cache and turn it into a full-blown connection in
3475 * the SYN-RECEIVED state.
3476 *
3477 * The return values may not be immediately obvious, and their effects
3478 * can be subtle, so here they are:
3479 *
3480 * NULL SYN was not found in cache; caller should drop the
3481 * packet and send an RST.
3482 *
3483 * -1 We were unable to create the new connection, and are
3484 * aborting it. An ACK,RST is being sent to the peer
3485 * (unless we got screwey sequence numbners; see below),
3486 * because the 3-way handshake has been completed. Caller
3487 * should not free the mbuf, since we may be using it. If
3488 * we are not, we will free it.
3489 *
3490 * Otherwise, the return value is a pointer to the new socket
3491 * associated with the connection.
3492 */
3493 struct socket *
3494 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3495 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3496 struct socket *so, struct mbuf *m)
3497 {
3498 struct syn_cache *sc;
3499 struct syn_cache_head *scp;
3500 struct inpcb *inp = NULL;
3501 #ifdef INET6
3502 struct in6pcb *in6p = NULL;
3503 #endif
3504 struct tcpcb *tp = 0;
3505 struct mbuf *am;
3506 int s;
3507 struct socket *oso;
3508
3509 s = splsoftnet();
3510 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3511 splx(s);
3512 return (NULL);
3513 }
3514
3515 /*
3516 * Verify the sequence and ack numbers. Try getting the correct
3517 * response again.
3518 */
3519 if ((th->th_ack != sc->sc_iss + 1) ||
3520 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3521 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3522 (void) syn_cache_respond(sc, m);
3523 splx(s);
3524 return ((struct socket *)(-1));
3525 }
3526
3527 /* Remove this cache entry */
3528 SYN_CACHE_RM(sc);
3529 splx(s);
3530
3531 /*
3532 * Ok, create the full blown connection, and set things up
3533 * as they would have been set up if we had created the
3534 * connection when the SYN arrived. If we can't create
3535 * the connection, abort it.
3536 */
3537 /*
3538 * inp still has the OLD in_pcb stuff, set the
3539 * v6-related flags on the new guy, too. This is
3540 * done particularly for the case where an AF_INET6
3541 * socket is bound only to a port, and a v4 connection
3542 * comes in on that port.
3543 * we also copy the flowinfo from the original pcb
3544 * to the new one.
3545 */
3546 oso = so;
3547 so = sonewconn(so, SS_ISCONNECTED);
3548 if (so == NULL)
3549 goto resetandabort;
3550
3551 switch (so->so_proto->pr_domain->dom_family) {
3552 #ifdef INET
3553 case AF_INET:
3554 inp = sotoinpcb(so);
3555 break;
3556 #endif
3557 #ifdef INET6
3558 case AF_INET6:
3559 in6p = sotoin6pcb(so);
3560 break;
3561 #endif
3562 }
3563 switch (src->sa_family) {
3564 #ifdef INET
3565 case AF_INET:
3566 if (inp) {
3567 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3568 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3569 inp->inp_options = ip_srcroute();
3570 in_pcbstate(inp, INP_BOUND);
3571 if (inp->inp_options == NULL) {
3572 inp->inp_options = sc->sc_ipopts;
3573 sc->sc_ipopts = NULL;
3574 }
3575 }
3576 #ifdef INET6
3577 else if (in6p) {
3578 /* IPv4 packet to AF_INET6 socket */
3579 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3580 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3581 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3582 &in6p->in6p_laddr.s6_addr32[3],
3583 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3584 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3585 in6totcpcb(in6p)->t_family = AF_INET;
3586 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3587 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3588 else
3589 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3590 in6_pcbstate(in6p, IN6P_BOUND);
3591 }
3592 #endif
3593 break;
3594 #endif
3595 #ifdef INET6
3596 case AF_INET6:
3597 if (in6p) {
3598 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3599 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3600 in6_pcbstate(in6p, IN6P_BOUND);
3601 }
3602 break;
3603 #endif
3604 }
3605 #ifdef INET6
3606 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3607 struct in6pcb *oin6p = sotoin6pcb(oso);
3608 /* inherit socket options from the listening socket */
3609 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3610 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3611 m_freem(in6p->in6p_options);
3612 in6p->in6p_options = 0;
3613 }
3614 ip6_savecontrol(in6p, &in6p->in6p_options,
3615 mtod(m, struct ip6_hdr *), m);
3616 }
3617 #endif
3618
3619 #if defined(IPSEC) || defined(FAST_IPSEC)
3620 /*
3621 * we make a copy of policy, instead of sharing the policy,
3622 * for better behavior in terms of SA lookup and dead SA removal.
3623 */
3624 if (inp) {
3625 /* copy old policy into new socket's */
3626 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3627 printf("tcp_input: could not copy policy\n");
3628 }
3629 #ifdef INET6
3630 else if (in6p) {
3631 /* copy old policy into new socket's */
3632 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3633 in6p->in6p_sp))
3634 printf("tcp_input: could not copy policy\n");
3635 }
3636 #endif
3637 #endif
3638
3639 /*
3640 * Give the new socket our cached route reference.
3641 */
3642 if (inp)
3643 inp->inp_route = sc->sc_route4; /* struct assignment */
3644 #ifdef INET6
3645 else
3646 in6p->in6p_route = sc->sc_route6;
3647 #endif
3648 sc->sc_route4.ro_rt = NULL;
3649
3650 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3651 if (am == NULL)
3652 goto resetandabort;
3653 MCLAIM(am, &tcp_mowner);
3654 am->m_len = src->sa_len;
3655 bcopy(src, mtod(am, caddr_t), src->sa_len);
3656 if (inp) {
3657 if (in_pcbconnect(inp, am)) {
3658 (void) m_free(am);
3659 goto resetandabort;
3660 }
3661 }
3662 #ifdef INET6
3663 else if (in6p) {
3664 if (src->sa_family == AF_INET) {
3665 /* IPv4 packet to AF_INET6 socket */
3666 struct sockaddr_in6 *sin6;
3667 sin6 = mtod(am, struct sockaddr_in6 *);
3668 am->m_len = sizeof(*sin6);
3669 bzero(sin6, sizeof(*sin6));
3670 sin6->sin6_family = AF_INET6;
3671 sin6->sin6_len = sizeof(*sin6);
3672 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3673 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3674 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3675 &sin6->sin6_addr.s6_addr32[3],
3676 sizeof(sin6->sin6_addr.s6_addr32[3]));
3677 }
3678 if (in6_pcbconnect(in6p, am)) {
3679 (void) m_free(am);
3680 goto resetandabort;
3681 }
3682 }
3683 #endif
3684 else {
3685 (void) m_free(am);
3686 goto resetandabort;
3687 }
3688 (void) m_free(am);
3689
3690 if (inp)
3691 tp = intotcpcb(inp);
3692 #ifdef INET6
3693 else if (in6p)
3694 tp = in6totcpcb(in6p);
3695 #endif
3696 else
3697 tp = NULL;
3698 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3699 if (sc->sc_request_r_scale != 15) {
3700 tp->requested_s_scale = sc->sc_requested_s_scale;
3701 tp->request_r_scale = sc->sc_request_r_scale;
3702 tp->snd_scale = sc->sc_requested_s_scale;
3703 tp->rcv_scale = sc->sc_request_r_scale;
3704 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3705 }
3706 if (sc->sc_flags & SCF_TIMESTAMP)
3707 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3708 tp->ts_timebase = sc->sc_timebase;
3709
3710 tp->t_template = tcp_template(tp);
3711 if (tp->t_template == 0) {
3712 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3713 so = NULL;
3714 m_freem(m);
3715 goto abort;
3716 }
3717
3718 tp->iss = sc->sc_iss;
3719 tp->irs = sc->sc_irs;
3720 tcp_sendseqinit(tp);
3721 tcp_rcvseqinit(tp);
3722 tp->t_state = TCPS_SYN_RECEIVED;
3723 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3724 tcpstat.tcps_accepts++;
3725
3726 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3727 tp->t_flags |= TF_WILL_SACK;
3728
3729 #ifdef TCP_SIGNATURE
3730 if (sc->sc_flags & SCF_SIGNATURE)
3731 tp->t_flags |= TF_SIGNATURE;
3732 #endif
3733
3734 /* Initialize tp->t_ourmss before we deal with the peer's! */
3735 tp->t_ourmss = sc->sc_ourmaxseg;
3736 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3737
3738 /*
3739 * Initialize the initial congestion window. If we
3740 * had to retransmit the SYN,ACK, we must initialize cwnd
3741 * to 1 segment (i.e. the Loss Window).
3742 */
3743 if (sc->sc_rxtshift)
3744 tp->snd_cwnd = tp->t_peermss;
3745 else {
3746 int ss = tcp_init_win;
3747 #ifdef INET
3748 if (inp != NULL && in_localaddr(inp->inp_faddr))
3749 ss = tcp_init_win_local;
3750 #endif
3751 #ifdef INET6
3752 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3753 ss = tcp_init_win_local;
3754 #endif
3755 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3756 }
3757
3758 tcp_rmx_rtt(tp);
3759 tp->snd_wl1 = sc->sc_irs;
3760 tp->rcv_up = sc->sc_irs + 1;
3761
3762 /*
3763 * This is what whould have happened in tcp_output() when
3764 * the SYN,ACK was sent.
3765 */
3766 tp->snd_up = tp->snd_una;
3767 tp->snd_max = tp->snd_nxt = tp->iss+1;
3768 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3769 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3770 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3771 tp->last_ack_sent = tp->rcv_nxt;
3772 tp->t_partialacks = -1;
3773 tp->t_dupacks = 0;
3774
3775 tcpstat.tcps_sc_completed++;
3776 SYN_CACHE_PUT(sc);
3777 return (so);
3778
3779 resetandabort:
3780 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3781 abort:
3782 if (so != NULL)
3783 (void) soabort(so);
3784 SYN_CACHE_PUT(sc);
3785 tcpstat.tcps_sc_aborted++;
3786 return ((struct socket *)(-1));
3787 }
3788
3789 /*
3790 * This function is called when we get a RST for a
3791 * non-existent connection, so that we can see if the
3792 * connection is in the syn cache. If it is, zap it.
3793 */
3794
3795 void
3796 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3797 {
3798 struct syn_cache *sc;
3799 struct syn_cache_head *scp;
3800 int s = splsoftnet();
3801
3802 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3803 splx(s);
3804 return;
3805 }
3806 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3807 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3808 splx(s);
3809 return;
3810 }
3811 SYN_CACHE_RM(sc);
3812 splx(s);
3813 tcpstat.tcps_sc_reset++;
3814 SYN_CACHE_PUT(sc);
3815 }
3816
3817 void
3818 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3819 struct tcphdr *th)
3820 {
3821 struct syn_cache *sc;
3822 struct syn_cache_head *scp;
3823 int s;
3824
3825 s = splsoftnet();
3826 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3827 splx(s);
3828 return;
3829 }
3830 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3831 if (ntohl (th->th_seq) != sc->sc_iss) {
3832 splx(s);
3833 return;
3834 }
3835
3836 /*
3837 * If we've retransmitted 3 times and this is our second error,
3838 * we remove the entry. Otherwise, we allow it to continue on.
3839 * This prevents us from incorrectly nuking an entry during a
3840 * spurious network outage.
3841 *
3842 * See tcp_notify().
3843 */
3844 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3845 sc->sc_flags |= SCF_UNREACH;
3846 splx(s);
3847 return;
3848 }
3849
3850 SYN_CACHE_RM(sc);
3851 splx(s);
3852 tcpstat.tcps_sc_unreach++;
3853 SYN_CACHE_PUT(sc);
3854 }
3855
3856 /*
3857 * Given a LISTEN socket and an inbound SYN request, add
3858 * this to the syn cache, and send back a segment:
3859 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3860 * to the source.
3861 *
3862 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3863 * Doing so would require that we hold onto the data and deliver it
3864 * to the application. However, if we are the target of a SYN-flood
3865 * DoS attack, an attacker could send data which would eventually
3866 * consume all available buffer space if it were ACKed. By not ACKing
3867 * the data, we avoid this DoS scenario.
3868 */
3869
3870 int
3871 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3872 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3873 int optlen, struct tcp_opt_info *oi)
3874 {
3875 struct tcpcb tb, *tp;
3876 long win;
3877 struct syn_cache *sc;
3878 struct syn_cache_head *scp;
3879 struct mbuf *ipopts;
3880 struct tcp_opt_info opti;
3881
3882 tp = sototcpcb(so);
3883
3884 bzero(&opti, sizeof(opti));
3885
3886 /*
3887 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3888 *
3889 * Note this check is performed in tcp_input() very early on.
3890 */
3891
3892 /*
3893 * Initialize some local state.
3894 */
3895 win = sbspace(&so->so_rcv);
3896 if (win > TCP_MAXWIN)
3897 win = TCP_MAXWIN;
3898
3899 switch (src->sa_family) {
3900 #ifdef INET
3901 case AF_INET:
3902 /*
3903 * Remember the IP options, if any.
3904 */
3905 ipopts = ip_srcroute();
3906 break;
3907 #endif
3908 default:
3909 ipopts = NULL;
3910 }
3911
3912 #ifdef TCP_SIGNATURE
3913 if (optp || (tp->t_flags & TF_SIGNATURE))
3914 #else
3915 if (optp)
3916 #endif
3917 {
3918 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3919 #ifdef TCP_SIGNATURE
3920 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3921 #endif
3922 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
3923 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
3924 return (0);
3925 } else
3926 tb.t_flags = 0;
3927
3928 /*
3929 * See if we already have an entry for this connection.
3930 * If we do, resend the SYN,ACK. We do not count this
3931 * as a retransmission (XXX though maybe we should).
3932 */
3933 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
3934 tcpstat.tcps_sc_dupesyn++;
3935 if (ipopts) {
3936 /*
3937 * If we were remembering a previous source route,
3938 * forget it and use the new one we've been given.
3939 */
3940 if (sc->sc_ipopts)
3941 (void) m_free(sc->sc_ipopts);
3942 sc->sc_ipopts = ipopts;
3943 }
3944 sc->sc_timestamp = tb.ts_recent;
3945 if (syn_cache_respond(sc, m) == 0) {
3946 tcpstat.tcps_sndacks++;
3947 tcpstat.tcps_sndtotal++;
3948 }
3949 return (1);
3950 }
3951
3952 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
3953 if (sc == NULL) {
3954 if (ipopts)
3955 (void) m_free(ipopts);
3956 return (0);
3957 }
3958
3959 /*
3960 * Fill in the cache, and put the necessary IP and TCP
3961 * options into the reply.
3962 */
3963 bzero(sc, sizeof(struct syn_cache));
3964 callout_init(&sc->sc_timer);
3965 bcopy(src, &sc->sc_src, src->sa_len);
3966 bcopy(dst, &sc->sc_dst, dst->sa_len);
3967 sc->sc_flags = 0;
3968 sc->sc_ipopts = ipopts;
3969 sc->sc_irs = th->th_seq;
3970 switch (src->sa_family) {
3971 #ifdef INET
3972 case AF_INET:
3973 {
3974 struct sockaddr_in *srcin = (void *) src;
3975 struct sockaddr_in *dstin = (void *) dst;
3976
3977 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
3978 &srcin->sin_addr, dstin->sin_port,
3979 srcin->sin_port, sizeof(dstin->sin_addr), 0);
3980 break;
3981 }
3982 #endif /* INET */
3983 #ifdef INET6
3984 case AF_INET6:
3985 {
3986 struct sockaddr_in6 *srcin6 = (void *) src;
3987 struct sockaddr_in6 *dstin6 = (void *) dst;
3988
3989 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
3990 &srcin6->sin6_addr, dstin6->sin6_port,
3991 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
3992 break;
3993 }
3994 #endif /* INET6 */
3995 }
3996 sc->sc_peermaxseg = oi->maxseg;
3997 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
3998 m->m_pkthdr.rcvif : NULL,
3999 sc->sc_src.sa.sa_family);
4000 sc->sc_win = win;
4001 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
4002 sc->sc_timestamp = tb.ts_recent;
4003 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4004 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4005 sc->sc_flags |= SCF_TIMESTAMP;
4006 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4007 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4008 sc->sc_requested_s_scale = tb.requested_s_scale;
4009 sc->sc_request_r_scale = 0;
4010 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4011 TCP_MAXWIN << sc->sc_request_r_scale <
4012 so->so_rcv.sb_hiwat)
4013 sc->sc_request_r_scale++;
4014 } else {
4015 sc->sc_requested_s_scale = 15;
4016 sc->sc_request_r_scale = 15;
4017 }
4018 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4019 sc->sc_flags |= SCF_SACK_PERMIT;
4020 #ifdef TCP_SIGNATURE
4021 if (tb.t_flags & TF_SIGNATURE)
4022 sc->sc_flags |= SCF_SIGNATURE;
4023 #endif
4024 sc->sc_tp = tp;
4025 if (syn_cache_respond(sc, m) == 0) {
4026 syn_cache_insert(sc, tp);
4027 tcpstat.tcps_sndacks++;
4028 tcpstat.tcps_sndtotal++;
4029 } else {
4030 SYN_CACHE_PUT(sc);
4031 tcpstat.tcps_sc_dropped++;
4032 }
4033 return (1);
4034 }
4035
4036 int
4037 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4038 {
4039 struct route *ro;
4040 u_int8_t *optp;
4041 int optlen, error;
4042 u_int16_t tlen;
4043 struct ip *ip = NULL;
4044 #ifdef INET6
4045 struct ip6_hdr *ip6 = NULL;
4046 #endif
4047 struct tcpcb *tp;
4048 struct tcphdr *th;
4049 u_int hlen;
4050 struct socket *so;
4051
4052 switch (sc->sc_src.sa.sa_family) {
4053 case AF_INET:
4054 hlen = sizeof(struct ip);
4055 ro = &sc->sc_route4;
4056 break;
4057 #ifdef INET6
4058 case AF_INET6:
4059 hlen = sizeof(struct ip6_hdr);
4060 ro = (struct route *)&sc->sc_route6;
4061 break;
4062 #endif
4063 default:
4064 if (m)
4065 m_freem(m);
4066 return (EAFNOSUPPORT);
4067 }
4068
4069 /* Compute the size of the TCP options. */
4070 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4071 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4072 #ifdef TCP_SIGNATURE
4073 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4074 #endif
4075 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4076
4077 tlen = hlen + sizeof(struct tcphdr) + optlen;
4078
4079 /*
4080 * Create the IP+TCP header from scratch.
4081 */
4082 if (m)
4083 m_freem(m);
4084 #ifdef DIAGNOSTIC
4085 if (max_linkhdr + tlen > MCLBYTES)
4086 return (ENOBUFS);
4087 #endif
4088 MGETHDR(m, M_DONTWAIT, MT_DATA);
4089 if (m && tlen > MHLEN) {
4090 MCLGET(m, M_DONTWAIT);
4091 if ((m->m_flags & M_EXT) == 0) {
4092 m_freem(m);
4093 m = NULL;
4094 }
4095 }
4096 if (m == NULL)
4097 return (ENOBUFS);
4098 MCLAIM(m, &tcp_tx_mowner);
4099
4100 /* Fixup the mbuf. */
4101 m->m_data += max_linkhdr;
4102 m->m_len = m->m_pkthdr.len = tlen;
4103 if (sc->sc_tp) {
4104 tp = sc->sc_tp;
4105 if (tp->t_inpcb)
4106 so = tp->t_inpcb->inp_socket;
4107 #ifdef INET6
4108 else if (tp->t_in6pcb)
4109 so = tp->t_in6pcb->in6p_socket;
4110 #endif
4111 else
4112 so = NULL;
4113 } else
4114 so = NULL;
4115 m->m_pkthdr.rcvif = NULL;
4116 memset(mtod(m, u_char *), 0, tlen);
4117
4118 switch (sc->sc_src.sa.sa_family) {
4119 case AF_INET:
4120 ip = mtod(m, struct ip *);
4121 ip->ip_v = 4;
4122 ip->ip_dst = sc->sc_src.sin.sin_addr;
4123 ip->ip_src = sc->sc_dst.sin.sin_addr;
4124 ip->ip_p = IPPROTO_TCP;
4125 th = (struct tcphdr *)(ip + 1);
4126 th->th_dport = sc->sc_src.sin.sin_port;
4127 th->th_sport = sc->sc_dst.sin.sin_port;
4128 break;
4129 #ifdef INET6
4130 case AF_INET6:
4131 ip6 = mtod(m, struct ip6_hdr *);
4132 ip6->ip6_vfc = IPV6_VERSION;
4133 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4134 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4135 ip6->ip6_nxt = IPPROTO_TCP;
4136 /* ip6_plen will be updated in ip6_output() */
4137 th = (struct tcphdr *)(ip6 + 1);
4138 th->th_dport = sc->sc_src.sin6.sin6_port;
4139 th->th_sport = sc->sc_dst.sin6.sin6_port;
4140 break;
4141 #endif
4142 default:
4143 th = NULL;
4144 }
4145
4146 th->th_seq = htonl(sc->sc_iss);
4147 th->th_ack = htonl(sc->sc_irs + 1);
4148 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4149 th->th_flags = TH_SYN|TH_ACK;
4150 th->th_win = htons(sc->sc_win);
4151 /* th_sum already 0 */
4152 /* th_urp already 0 */
4153
4154 /* Tack on the TCP options. */
4155 optp = (u_int8_t *)(th + 1);
4156 *optp++ = TCPOPT_MAXSEG;
4157 *optp++ = 4;
4158 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4159 *optp++ = sc->sc_ourmaxseg & 0xff;
4160
4161 if (sc->sc_request_r_scale != 15) {
4162 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4163 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4164 sc->sc_request_r_scale);
4165 optp += 4;
4166 }
4167
4168 if (sc->sc_flags & SCF_TIMESTAMP) {
4169 u_int32_t *lp = (u_int32_t *)(optp);
4170 /* Form timestamp option as shown in appendix A of RFC 1323. */
4171 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4172 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4173 *lp = htonl(sc->sc_timestamp);
4174 optp += TCPOLEN_TSTAMP_APPA;
4175 }
4176
4177 if (sc->sc_flags & SCF_SACK_PERMIT) {
4178 u_int8_t *p = optp;
4179
4180 /* Let the peer know that we will SACK. */
4181 p[0] = TCPOPT_SACK_PERMITTED;
4182 p[1] = 2;
4183 p[2] = TCPOPT_NOP;
4184 p[3] = TCPOPT_NOP;
4185 optp += 4;
4186 }
4187
4188 #ifdef TCP_SIGNATURE
4189 if (sc->sc_flags & SCF_SIGNATURE) {
4190 struct secasvar *sav;
4191 u_int8_t *sigp;
4192
4193 sav = tcp_signature_getsav(m, th);
4194
4195 if (sav == NULL) {
4196 if (m)
4197 m_freem(m);
4198 return (EPERM);
4199 }
4200
4201 *optp++ = TCPOPT_SIGNATURE;
4202 *optp++ = TCPOLEN_SIGNATURE;
4203 sigp = optp;
4204 bzero(optp, TCP_SIGLEN);
4205 optp += TCP_SIGLEN;
4206 *optp++ = TCPOPT_NOP;
4207 *optp++ = TCPOPT_EOL;
4208
4209 (void)tcp_signature(m, th, hlen, sav, sigp);
4210
4211 key_sa_recordxfer(sav, m);
4212 #ifdef FAST_IPSEC
4213 KEY_FREESAV(&sav);
4214 #else
4215 key_freesav(sav);
4216 #endif
4217 }
4218 #endif
4219
4220 /* Compute the packet's checksum. */
4221 switch (sc->sc_src.sa.sa_family) {
4222 case AF_INET:
4223 ip->ip_len = htons(tlen - hlen);
4224 th->th_sum = 0;
4225 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4226 break;
4227 #ifdef INET6
4228 case AF_INET6:
4229 ip6->ip6_plen = htons(tlen - hlen);
4230 th->th_sum = 0;
4231 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4232 break;
4233 #endif
4234 }
4235
4236 /*
4237 * Fill in some straggling IP bits. Note the stack expects
4238 * ip_len to be in host order, for convenience.
4239 */
4240 switch (sc->sc_src.sa.sa_family) {
4241 #ifdef INET
4242 case AF_INET:
4243 ip->ip_len = htons(tlen);
4244 ip->ip_ttl = ip_defttl;
4245 /* XXX tos? */
4246 break;
4247 #endif
4248 #ifdef INET6
4249 case AF_INET6:
4250 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4251 ip6->ip6_vfc |= IPV6_VERSION;
4252 ip6->ip6_plen = htons(tlen - hlen);
4253 /* ip6_hlim will be initialized afterwards */
4254 /* XXX flowlabel? */
4255 break;
4256 #endif
4257 }
4258
4259 /* XXX use IPsec policy on listening socket, on SYN ACK */
4260 tp = sc->sc_tp;
4261
4262 switch (sc->sc_src.sa.sa_family) {
4263 #ifdef INET
4264 case AF_INET:
4265 error = ip_output(m, sc->sc_ipopts, ro,
4266 (ip_mtudisc ? IP_MTUDISC : 0),
4267 (struct ip_moptions *)NULL, so);
4268 break;
4269 #endif
4270 #ifdef INET6
4271 case AF_INET6:
4272 ip6->ip6_hlim = in6_selecthlim(NULL,
4273 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4274
4275 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4276 (struct ip6_moptions *)0, so, NULL);
4277 break;
4278 #endif
4279 default:
4280 error = EAFNOSUPPORT;
4281 break;
4282 }
4283 return (error);
4284 }
4285