tcp_input.c revision 1.23 1 /* $NetBSD: tcp_input.c,v 1.23 1996/02/13 23:43:44 christos Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
36 */
37
38 #ifndef TUBA_INCLUDE
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/errno.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/tcp.h>
57 #include <netinet/tcp_fsm.h>
58 #include <netinet/tcp_seq.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/tcpip.h>
62 #include <netinet/tcp_debug.h>
63
64 #include <machine/stdarg.h>
65
66 int tcprexmtthresh = 3;
67 struct tcpiphdr tcp_saveti;
68
69 extern u_long sb_max;
70
71 #endif /* TUBA_INCLUDE */
72 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
73
74 /* for modulo comparisons of timestamps */
75 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
76 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
77
78
79 /*
80 * Insert segment ti into reassembly queue of tcp with
81 * control block tp. Return TH_FIN if reassembly now includes
82 * a segment with FIN. The macro form does the common case inline
83 * (segment is the next to be received on an established connection,
84 * and the queue is empty), avoiding linkage into and removal
85 * from the queue and repetition of various conversions.
86 * Set DELACK for segments received in order, but ack immediately
87 * when segments are out of order (so fast retransmit can work).
88 */
89 #define TCP_REASS(tp, ti, m, so, flags) { \
90 if ((ti)->ti_seq == (tp)->rcv_nxt && \
91 (tp)->segq.lh_first == NULL && \
92 (tp)->t_state == TCPS_ESTABLISHED) { \
93 if ((ti)->ti_flags & TH_PUSH) \
94 tp->t_flags |= TF_ACKNOW; \
95 else \
96 tp->t_flags |= TF_DELACK; \
97 (tp)->rcv_nxt += (ti)->ti_len; \
98 flags = (ti)->ti_flags & TH_FIN; \
99 tcpstat.tcps_rcvpack++;\
100 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
101 sbappend(&(so)->so_rcv, (m)); \
102 sorwakeup(so); \
103 } else { \
104 (flags) = tcp_reass((tp), (ti), (m)); \
105 tp->t_flags |= TF_ACKNOW; \
106 } \
107 }
108 #ifndef TUBA_INCLUDE
109
110 int
111 tcp_reass(tp, ti, m)
112 register struct tcpcb *tp;
113 register struct tcpiphdr *ti;
114 struct mbuf *m;
115 {
116 register struct ipqent *p, *q, *nq, *tiqe;
117 struct socket *so = tp->t_inpcb->inp_socket;
118 int flags;
119
120 /*
121 * Call with ti==0 after become established to
122 * force pre-ESTABLISHED data up to user socket.
123 */
124 if (ti == 0)
125 goto present;
126
127 /*
128 * Allocate a new queue entry, before we throw away any data.
129 * If we can't, just drop the packet. XXX
130 */
131 MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
132 if (tiqe == NULL) {
133 tcpstat.tcps_rcvmemdrop++;
134 m_freem(m);
135 return (0);
136 }
137
138 /*
139 * Find a segment which begins after this one does.
140 */
141 for (p = NULL, q = tp->segq.lh_first; q != NULL;
142 p = q, q = q->ipqe_q.le_next)
143 if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
144 break;
145
146 /*
147 * If there is a preceding segment, it may provide some of
148 * our data already. If so, drop the data from the incoming
149 * segment. If it provides all of our data, drop us.
150 */
151 if (p != NULL) {
152 register struct tcpiphdr *phdr = p->ipqe_tcp;
153 register int i;
154
155 /* conversion to int (in i) handles seq wraparound */
156 i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
157 if (i > 0) {
158 if (i >= ti->ti_len) {
159 tcpstat.tcps_rcvduppack++;
160 tcpstat.tcps_rcvdupbyte += ti->ti_len;
161 m_freem(m);
162 FREE(tiqe, M_IPQ);
163 return (0);
164 }
165 m_adj(m, i);
166 ti->ti_len -= i;
167 ti->ti_seq += i;
168 }
169 }
170 tcpstat.tcps_rcvoopack++;
171 tcpstat.tcps_rcvoobyte += ti->ti_len;
172
173 /*
174 * While we overlap succeeding segments trim them or,
175 * if they are completely covered, dequeue them.
176 */
177 for (; q != NULL; q = nq) {
178 register struct tcpiphdr *qhdr = q->ipqe_tcp;
179 register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
180
181 if (i <= 0)
182 break;
183 if (i < qhdr->ti_len) {
184 qhdr->ti_seq += i;
185 qhdr->ti_len -= i;
186 m_adj(q->ipqe_m, i);
187 break;
188 }
189 nq = q->ipqe_q.le_next;
190 m_freem(q->ipqe_m);
191 LIST_REMOVE(q, ipqe_q);
192 FREE(q, M_IPQ);
193 }
194
195 /* Insert the new fragment queue entry into place. */
196 tiqe->ipqe_m = m;
197 tiqe->ipqe_tcp = ti;
198 if (p == NULL) {
199 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
200 } else {
201 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
202 }
203
204 present:
205 /*
206 * Present data to user, advancing rcv_nxt through
207 * completed sequence space.
208 */
209 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
210 return (0);
211 q = tp->segq.lh_first;
212 if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
213 return (0);
214 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
215 return (0);
216 do {
217 tp->rcv_nxt += q->ipqe_tcp->ti_len;
218 flags = q->ipqe_tcp->ti_flags & TH_FIN;
219
220 nq = q->ipqe_q.le_next;
221 LIST_REMOVE(q, ipqe_q);
222 if (so->so_state & SS_CANTRCVMORE)
223 m_freem(q->ipqe_m);
224 else
225 sbappend(&so->so_rcv, q->ipqe_m);
226 FREE(q, M_IPQ);
227 q = nq;
228 } while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
229 sorwakeup(so);
230 return (flags);
231 }
232
233 /*
234 * TCP input routine, follows pages 65-76 of the
235 * protocol specification dated September, 1981 very closely.
236 */
237 void
238 #if __STDC__
239 tcp_input(struct mbuf *m, ...)
240 #else
241 tcp_input(m, va_alist)
242 register struct mbuf *m;
243 #endif
244 {
245 register struct tcpiphdr *ti;
246 register struct inpcb *inp;
247 caddr_t optp = NULL;
248 int optlen = 0;
249 int len, tlen, off;
250 register struct tcpcb *tp = 0;
251 register int tiflags;
252 struct socket *so = NULL;
253 int todrop, acked, ourfinisacked, needoutput = 0;
254 short ostate = 0;
255 struct in_addr laddr;
256 int dropsocket = 0;
257 int iss = 0;
258 u_long tiwin;
259 u_int32_t ts_val, ts_ecr;
260 int ts_present = 0;
261 int iphlen;
262 va_list ap;
263
264 va_start(ap, m);
265 iphlen = va_arg(ap, int);
266 va_end(ap);
267
268 tcpstat.tcps_rcvtotal++;
269 /*
270 * Get IP and TCP header together in first mbuf.
271 * Note: IP leaves IP header in first mbuf.
272 */
273 ti = mtod(m, struct tcpiphdr *);
274 if (iphlen > sizeof (struct ip))
275 ip_stripoptions(m, (struct mbuf *)0);
276 if (m->m_len < sizeof (struct tcpiphdr)) {
277 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
278 tcpstat.tcps_rcvshort++;
279 return;
280 }
281 ti = mtod(m, struct tcpiphdr *);
282 }
283
284 /*
285 * Checksum extended TCP header and data.
286 */
287 tlen = ((struct ip *)ti)->ip_len;
288 len = sizeof (struct ip) + tlen;
289 bzero(ti->ti_x1, sizeof ti->ti_x1);
290 ti->ti_len = (u_int16_t)tlen;
291 HTONS(ti->ti_len);
292 if ((ti->ti_sum = in_cksum(m, len)) != 0) {
293 tcpstat.tcps_rcvbadsum++;
294 goto drop;
295 }
296 #endif /* TUBA_INCLUDE */
297
298 /*
299 * Check that TCP offset makes sense,
300 * pull out TCP options and adjust length. XXX
301 */
302 off = ti->ti_off << 2;
303 if (off < sizeof (struct tcphdr) || off > tlen) {
304 tcpstat.tcps_rcvbadoff++;
305 goto drop;
306 }
307 tlen -= off;
308 ti->ti_len = tlen;
309 if (off > sizeof (struct tcphdr)) {
310 if (m->m_len < sizeof(struct ip) + off) {
311 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
312 tcpstat.tcps_rcvshort++;
313 return;
314 }
315 ti = mtod(m, struct tcpiphdr *);
316 }
317 optlen = off - sizeof (struct tcphdr);
318 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
319 /*
320 * Do quick retrieval of timestamp options ("options
321 * prediction?"). If timestamp is the only option and it's
322 * formatted as recommended in RFC 1323 appendix A, we
323 * quickly get the values now and not bother calling
324 * tcp_dooptions(), etc.
325 */
326 if ((optlen == TCPOLEN_TSTAMP_APPA ||
327 (optlen > TCPOLEN_TSTAMP_APPA &&
328 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
329 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
330 (ti->ti_flags & TH_SYN) == 0) {
331 ts_present = 1;
332 ts_val = ntohl(*(u_int32_t *)(optp + 4));
333 ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
334 optp = NULL; /* we've parsed the options */
335 }
336 }
337 tiflags = ti->ti_flags;
338
339 /*
340 * Convert TCP protocol specific fields to host format.
341 */
342 NTOHL(ti->ti_seq);
343 NTOHL(ti->ti_ack);
344 NTOHS(ti->ti_win);
345 NTOHS(ti->ti_urp);
346
347 /*
348 * Locate pcb for segment.
349 */
350 findpcb:
351 inp = in_pcbhashlookup(&tcbtable, ti->ti_src, ti->ti_sport,
352 ti->ti_dst, ti->ti_dport);
353 if (inp == 0) {
354 ++tcpstat.tcps_pcbhashmiss;
355 inp = in_pcblookup(&tcbtable, ti->ti_src, ti->ti_sport,
356 ti->ti_dst, ti->ti_dport, INPLOOKUP_WILDCARD);
357 /*
358 * If the state is CLOSED (i.e., TCB does not exist) then
359 * all data in the incoming segment is discarded.
360 * If the TCB exists but is in CLOSED state, it is embryonic,
361 * but should either do a listen or a connect soon.
362 */
363 if (inp == 0) {
364 ++tcpstat.tcps_noport;
365 goto dropwithreset;
366 }
367 }
368
369 tp = intotcpcb(inp);
370 if (tp == 0)
371 goto dropwithreset;
372 if (tp->t_state == TCPS_CLOSED)
373 goto drop;
374
375 /* Unscale the window into a 32-bit value. */
376 if ((tiflags & TH_SYN) == 0)
377 tiwin = ti->ti_win << tp->snd_scale;
378 else
379 tiwin = ti->ti_win;
380
381 so = inp->inp_socket;
382 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
383 if (so->so_options & SO_DEBUG) {
384 ostate = tp->t_state;
385 tcp_saveti = *ti;
386 }
387 if (so->so_options & SO_ACCEPTCONN) {
388 so = sonewconn(so, 0);
389 if (so == 0)
390 goto drop;
391 /*
392 * This is ugly, but ....
393 *
394 * Mark socket as temporary until we're
395 * committed to keeping it. The code at
396 * ``drop'' and ``dropwithreset'' check the
397 * flag dropsocket to see if the temporary
398 * socket created here should be discarded.
399 * We mark the socket as discardable until
400 * we're committed to it below in TCPS_LISTEN.
401 */
402 dropsocket++;
403 inp = (struct inpcb *)so->so_pcb;
404 inp->inp_laddr = ti->ti_dst;
405 inp->inp_lport = ti->ti_dport;
406 in_pcbrehash(inp);
407 #if BSD>=43
408 inp->inp_options = ip_srcroute();
409 #endif
410 tp = intotcpcb(inp);
411 tp->t_state = TCPS_LISTEN;
412
413 /* Compute proper scaling value from buffer space
414 */
415 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
416 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
417 tp->request_r_scale++;
418 }
419 }
420
421 /*
422 * Segment received on connection.
423 * Reset idle time and keep-alive timer.
424 */
425 tp->t_idle = 0;
426 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
427
428 /*
429 * Process options if not in LISTEN state,
430 * else do it below (after getting remote address).
431 */
432 if (optp && tp->t_state != TCPS_LISTEN)
433 tcp_dooptions(tp, optp, optlen, ti,
434 &ts_present, &ts_val, &ts_ecr);
435
436 /*
437 * Header prediction: check for the two common cases
438 * of a uni-directional data xfer. If the packet has
439 * no control flags, is in-sequence, the window didn't
440 * change and we're not retransmitting, it's a
441 * candidate. If the length is zero and the ack moved
442 * forward, we're the sender side of the xfer. Just
443 * free the data acked & wake any higher level process
444 * that was blocked waiting for space. If the length
445 * is non-zero and the ack didn't move, we're the
446 * receiver side. If we're getting packets in-order
447 * (the reassembly queue is empty), add the data to
448 * the socket buffer and note that we need a delayed ack.
449 */
450 if (tp->t_state == TCPS_ESTABLISHED &&
451 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
452 (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
453 ti->ti_seq == tp->rcv_nxt &&
454 tiwin && tiwin == tp->snd_wnd &&
455 tp->snd_nxt == tp->snd_max) {
456
457 /*
458 * If last ACK falls within this segment's sequence numbers,
459 * record the timestamp.
460 */
461 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
462 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
463 tp->ts_recent_age = tcp_now;
464 tp->ts_recent = ts_val;
465 }
466
467 if (ti->ti_len == 0) {
468 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
469 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
470 tp->snd_cwnd >= tp->snd_wnd &&
471 tp->t_dupacks < tcprexmtthresh) {
472 /*
473 * this is a pure ack for outstanding data.
474 */
475 ++tcpstat.tcps_predack;
476 if (ts_present)
477 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
478 else if (tp->t_rtt &&
479 SEQ_GT(ti->ti_ack, tp->t_rtseq))
480 tcp_xmit_timer(tp, tp->t_rtt);
481 acked = ti->ti_ack - tp->snd_una;
482 tcpstat.tcps_rcvackpack++;
483 tcpstat.tcps_rcvackbyte += acked;
484 sbdrop(&so->so_snd, acked);
485 tp->snd_una = ti->ti_ack;
486 m_freem(m);
487
488 /*
489 * If all outstanding data are acked, stop
490 * retransmit timer, otherwise restart timer
491 * using current (possibly backed-off) value.
492 * If process is waiting for space,
493 * wakeup/selwakeup/signal. If data
494 * are ready to send, let tcp_output
495 * decide between more output or persist.
496 */
497 if (tp->snd_una == tp->snd_max)
498 tp->t_timer[TCPT_REXMT] = 0;
499 else if (tp->t_timer[TCPT_PERSIST] == 0)
500 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
501
502 if (sb_notify(&so->so_snd))
503 sowwakeup(so);
504 if (so->so_snd.sb_cc)
505 (void) tcp_output(tp);
506 return;
507 }
508 } else if (ti->ti_ack == tp->snd_una &&
509 tp->segq.lh_first == NULL &&
510 ti->ti_len <= sbspace(&so->so_rcv)) {
511 /*
512 * this is a pure, in-sequence data packet
513 * with nothing on the reassembly queue and
514 * we have enough buffer space to take it.
515 */
516 ++tcpstat.tcps_preddat;
517 tp->rcv_nxt += ti->ti_len;
518 tcpstat.tcps_rcvpack++;
519 tcpstat.tcps_rcvbyte += ti->ti_len;
520 /*
521 * Drop TCP, IP headers and TCP options then add data
522 * to socket buffer.
523 */
524 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
525 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
526 sbappend(&so->so_rcv, m);
527 sorwakeup(so);
528 if (ti->ti_flags & TH_PUSH)
529 tp->t_flags |= TF_ACKNOW;
530 else
531 tp->t_flags |= TF_DELACK;
532 return;
533 }
534 }
535
536 /*
537 * Drop TCP, IP headers and TCP options.
538 */
539 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
540 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
541
542 /*
543 * Calculate amount of space in receive window,
544 * and then do TCP input processing.
545 * Receive window is amount of space in rcv queue,
546 * but not less than advertised window.
547 */
548 { int win;
549
550 win = sbspace(&so->so_rcv);
551 if (win < 0)
552 win = 0;
553 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
554 }
555
556 switch (tp->t_state) {
557
558 /*
559 * If the state is LISTEN then ignore segment if it contains an RST.
560 * If the segment contains an ACK then it is bad and send a RST.
561 * If it does not contain a SYN then it is not interesting; drop it.
562 * Don't bother responding if the destination was a broadcast.
563 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
564 * tp->iss, and send a segment:
565 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
566 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
567 * Fill in remote peer address fields if not previously specified.
568 * Enter SYN_RECEIVED state, and process any other fields of this
569 * segment in this state.
570 */
571 case TCPS_LISTEN: {
572 struct mbuf *am;
573 register struct sockaddr_in *sin;
574
575 if (tiflags & TH_RST)
576 goto drop;
577 if (tiflags & TH_ACK)
578 goto dropwithreset;
579 if ((tiflags & TH_SYN) == 0)
580 goto drop;
581 /*
582 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
583 * in_broadcast() should never return true on a received
584 * packet with M_BCAST not set.
585 */
586 if (m->m_flags & (M_BCAST|M_MCAST) ||
587 IN_MULTICAST(ti->ti_dst.s_addr))
588 goto drop;
589 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
590 if (am == NULL)
591 goto drop;
592 am->m_len = sizeof (struct sockaddr_in);
593 sin = mtod(am, struct sockaddr_in *);
594 sin->sin_family = AF_INET;
595 sin->sin_len = sizeof(*sin);
596 sin->sin_addr = ti->ti_src;
597 sin->sin_port = ti->ti_sport;
598 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
599 laddr = inp->inp_laddr;
600 if (inp->inp_laddr.s_addr == INADDR_ANY)
601 inp->inp_laddr = ti->ti_dst;
602 if (in_pcbconnect(inp, am)) {
603 inp->inp_laddr = laddr;
604 (void) m_free(am);
605 goto drop;
606 }
607 (void) m_free(am);
608 tp->t_template = tcp_template(tp);
609 if (tp->t_template == 0) {
610 tp = tcp_drop(tp, ENOBUFS);
611 dropsocket = 0; /* socket is already gone */
612 goto drop;
613 }
614 if (optp)
615 tcp_dooptions(tp, optp, optlen, ti,
616 &ts_present, &ts_val, &ts_ecr);
617 if (iss)
618 tp->iss = iss;
619 else
620 tp->iss = tcp_iss;
621 tcp_iss += TCP_ISSINCR/2;
622 tp->irs = ti->ti_seq;
623 tcp_sendseqinit(tp);
624 tcp_rcvseqinit(tp);
625 tp->t_flags |= TF_ACKNOW;
626 tp->t_state = TCPS_SYN_RECEIVED;
627 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
628 dropsocket = 0; /* committed to socket */
629 tcpstat.tcps_accepts++;
630 goto trimthenstep6;
631 }
632
633 /*
634 * If the state is SYN_SENT:
635 * if seg contains an ACK, but not for our SYN, drop the input.
636 * if seg contains a RST, then drop the connection.
637 * if seg does not contain SYN, then drop it.
638 * Otherwise this is an acceptable SYN segment
639 * initialize tp->rcv_nxt and tp->irs
640 * if seg contains ack then advance tp->snd_una
641 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
642 * arrange for segment to be acked (eventually)
643 * continue processing rest of data/controls, beginning with URG
644 */
645 case TCPS_SYN_SENT:
646 if ((tiflags & TH_ACK) &&
647 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
648 SEQ_GT(ti->ti_ack, tp->snd_max)))
649 goto dropwithreset;
650 if (tiflags & TH_RST) {
651 if (tiflags & TH_ACK)
652 tp = tcp_drop(tp, ECONNREFUSED);
653 goto drop;
654 }
655 if ((tiflags & TH_SYN) == 0)
656 goto drop;
657 if (tiflags & TH_ACK) {
658 tp->snd_una = ti->ti_ack;
659 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
660 tp->snd_nxt = tp->snd_una;
661 }
662 tp->t_timer[TCPT_REXMT] = 0;
663 tp->irs = ti->ti_seq;
664 tcp_rcvseqinit(tp);
665 tp->t_flags |= TF_ACKNOW;
666 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
667 tcpstat.tcps_connects++;
668 soisconnected(so);
669 tp->t_state = TCPS_ESTABLISHED;
670 /* Do window scaling on this connection? */
671 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
672 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
673 tp->snd_scale = tp->requested_s_scale;
674 tp->rcv_scale = tp->request_r_scale;
675 }
676 (void) tcp_reass(tp, (struct tcpiphdr *)0,
677 (struct mbuf *)0);
678 /*
679 * if we didn't have to retransmit the SYN,
680 * use its rtt as our initial srtt & rtt var.
681 */
682 if (tp->t_rtt)
683 tcp_xmit_timer(tp, tp->t_rtt);
684 } else
685 tp->t_state = TCPS_SYN_RECEIVED;
686
687 trimthenstep6:
688 /*
689 * Advance ti->ti_seq to correspond to first data byte.
690 * If data, trim to stay within window,
691 * dropping FIN if necessary.
692 */
693 ti->ti_seq++;
694 if (ti->ti_len > tp->rcv_wnd) {
695 todrop = ti->ti_len - tp->rcv_wnd;
696 m_adj(m, -todrop);
697 ti->ti_len = tp->rcv_wnd;
698 tiflags &= ~TH_FIN;
699 tcpstat.tcps_rcvpackafterwin++;
700 tcpstat.tcps_rcvbyteafterwin += todrop;
701 }
702 tp->snd_wl1 = ti->ti_seq - 1;
703 tp->rcv_up = ti->ti_seq;
704 goto step6;
705 }
706
707 /*
708 * States other than LISTEN or SYN_SENT.
709 * First check timestamp, if present.
710 * Then check that at least some bytes of segment are within
711 * receive window. If segment begins before rcv_nxt,
712 * drop leading data (and SYN); if nothing left, just ack.
713 *
714 * RFC 1323 PAWS: If we have a timestamp reply on this segment
715 * and it's less than ts_recent, drop it.
716 */
717 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
718 TSTMP_LT(ts_val, tp->ts_recent)) {
719
720 /* Check to see if ts_recent is over 24 days old. */
721 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
722 /*
723 * Invalidate ts_recent. If this segment updates
724 * ts_recent, the age will be reset later and ts_recent
725 * will get a valid value. If it does not, setting
726 * ts_recent to zero will at least satisfy the
727 * requirement that zero be placed in the timestamp
728 * echo reply when ts_recent isn't valid. The
729 * age isn't reset until we get a valid ts_recent
730 * because we don't want out-of-order segments to be
731 * dropped when ts_recent is old.
732 */
733 tp->ts_recent = 0;
734 } else {
735 tcpstat.tcps_rcvduppack++;
736 tcpstat.tcps_rcvdupbyte += ti->ti_len;
737 tcpstat.tcps_pawsdrop++;
738 goto dropafterack;
739 }
740 }
741
742 todrop = tp->rcv_nxt - ti->ti_seq;
743 if (todrop > 0) {
744 if (tiflags & TH_SYN) {
745 tiflags &= ~TH_SYN;
746 ti->ti_seq++;
747 if (ti->ti_urp > 1)
748 ti->ti_urp--;
749 else
750 tiflags &= ~TH_URG;
751 todrop--;
752 }
753 if (todrop >= ti->ti_len) {
754 /*
755 * Any valid FIN must be to the left of the
756 * window. At this point, FIN must be a
757 * duplicate or out-of-sequence, so drop it.
758 */
759 tiflags &= ~TH_FIN;
760 /*
761 * Send ACK to resynchronize, and drop any data,
762 * but keep on processing for RST or ACK.
763 */
764 tp->t_flags |= TF_ACKNOW;
765 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
766 tcpstat.tcps_rcvduppack++;
767 } else {
768 tcpstat.tcps_rcvpartduppack++;
769 tcpstat.tcps_rcvpartdupbyte += todrop;
770 }
771 m_adj(m, todrop);
772 ti->ti_seq += todrop;
773 ti->ti_len -= todrop;
774 if (ti->ti_urp > todrop)
775 ti->ti_urp -= todrop;
776 else {
777 tiflags &= ~TH_URG;
778 ti->ti_urp = 0;
779 }
780 }
781
782 /*
783 * If new data are received on a connection after the
784 * user processes are gone, then RST the other end.
785 */
786 if ((so->so_state & SS_NOFDREF) &&
787 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
788 tp = tcp_close(tp);
789 tcpstat.tcps_rcvafterclose++;
790 goto dropwithreset;
791 }
792
793 /*
794 * If segment ends after window, drop trailing data
795 * (and PUSH and FIN); if nothing left, just ACK.
796 */
797 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
798 if (todrop > 0) {
799 tcpstat.tcps_rcvpackafterwin++;
800 if (todrop >= ti->ti_len) {
801 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
802 /*
803 * If a new connection request is received
804 * while in TIME_WAIT, drop the old connection
805 * and start over if the sequence numbers
806 * are above the previous ones.
807 */
808 if (tiflags & TH_SYN &&
809 tp->t_state == TCPS_TIME_WAIT &&
810 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
811 iss = tp->rcv_nxt + TCP_ISSINCR;
812 tp = tcp_close(tp);
813 goto findpcb;
814 }
815 /*
816 * If window is closed can only take segments at
817 * window edge, and have to drop data and PUSH from
818 * incoming segments. Continue processing, but
819 * remember to ack. Otherwise, drop segment
820 * and ack.
821 */
822 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
823 tp->t_flags |= TF_ACKNOW;
824 tcpstat.tcps_rcvwinprobe++;
825 } else
826 goto dropafterack;
827 } else
828 tcpstat.tcps_rcvbyteafterwin += todrop;
829 m_adj(m, -todrop);
830 ti->ti_len -= todrop;
831 tiflags &= ~(TH_PUSH|TH_FIN);
832 }
833
834 /*
835 * If last ACK falls within this segment's sequence numbers,
836 * record its timestamp.
837 */
838 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
839 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
840 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
841 tp->ts_recent_age = tcp_now;
842 tp->ts_recent = ts_val;
843 }
844
845 /*
846 * If the RST bit is set examine the state:
847 * SYN_RECEIVED STATE:
848 * If passive open, return to LISTEN state.
849 * If active open, inform user that connection was refused.
850 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
851 * Inform user that connection was reset, and close tcb.
852 * CLOSING, LAST_ACK, TIME_WAIT STATES
853 * Close the tcb.
854 */
855 if (tiflags&TH_RST) switch (tp->t_state) {
856
857 case TCPS_SYN_RECEIVED:
858 so->so_error = ECONNREFUSED;
859 goto close;
860
861 case TCPS_ESTABLISHED:
862 case TCPS_FIN_WAIT_1:
863 case TCPS_FIN_WAIT_2:
864 case TCPS_CLOSE_WAIT:
865 so->so_error = ECONNRESET;
866 close:
867 tp->t_state = TCPS_CLOSED;
868 tcpstat.tcps_drops++;
869 tp = tcp_close(tp);
870 goto drop;
871
872 case TCPS_CLOSING:
873 case TCPS_LAST_ACK:
874 case TCPS_TIME_WAIT:
875 tp = tcp_close(tp);
876 goto drop;
877 }
878
879 /*
880 * If a SYN is in the window, then this is an
881 * error and we send an RST and drop the connection.
882 */
883 if (tiflags & TH_SYN) {
884 tp = tcp_drop(tp, ECONNRESET);
885 goto dropwithreset;
886 }
887
888 /*
889 * If the ACK bit is off we drop the segment and return.
890 */
891 if ((tiflags & TH_ACK) == 0)
892 goto drop;
893
894 /*
895 * Ack processing.
896 */
897 switch (tp->t_state) {
898
899 /*
900 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
901 * ESTABLISHED state and continue processing, otherwise
902 * send an RST.
903 */
904 case TCPS_SYN_RECEIVED:
905 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
906 SEQ_GT(ti->ti_ack, tp->snd_max))
907 goto dropwithreset;
908 tcpstat.tcps_connects++;
909 soisconnected(so);
910 tp->t_state = TCPS_ESTABLISHED;
911 /* Do window scaling? */
912 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
913 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
914 tp->snd_scale = tp->requested_s_scale;
915 tp->rcv_scale = tp->request_r_scale;
916 }
917 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
918 tp->snd_wl1 = ti->ti_seq - 1;
919 /* fall into ... */
920
921 /*
922 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
923 * ACKs. If the ack is in the range
924 * tp->snd_una < ti->ti_ack <= tp->snd_max
925 * then advance tp->snd_una to ti->ti_ack and drop
926 * data from the retransmission queue. If this ACK reflects
927 * more up to date window information we update our window information.
928 */
929 case TCPS_ESTABLISHED:
930 case TCPS_FIN_WAIT_1:
931 case TCPS_FIN_WAIT_2:
932 case TCPS_CLOSE_WAIT:
933 case TCPS_CLOSING:
934 case TCPS_LAST_ACK:
935 case TCPS_TIME_WAIT:
936
937 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
938 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
939 tcpstat.tcps_rcvdupack++;
940 /*
941 * If we have outstanding data (other than
942 * a window probe), this is a completely
943 * duplicate ack (ie, window info didn't
944 * change), the ack is the biggest we've
945 * seen and we've seen exactly our rexmt
946 * threshhold of them, assume a packet
947 * has been dropped and retransmit it.
948 * Kludge snd_nxt & the congestion
949 * window so we send only this one
950 * packet.
951 *
952 * We know we're losing at the current
953 * window size so do congestion avoidance
954 * (set ssthresh to half the current window
955 * and pull our congestion window back to
956 * the new ssthresh).
957 *
958 * Dup acks mean that packets have left the
959 * network (they're now cached at the receiver)
960 * so bump cwnd by the amount in the receiver
961 * to keep a constant cwnd packets in the
962 * network.
963 */
964 if (tp->t_timer[TCPT_REXMT] == 0 ||
965 ti->ti_ack != tp->snd_una)
966 tp->t_dupacks = 0;
967 else if (++tp->t_dupacks == tcprexmtthresh) {
968 tcp_seq onxt = tp->snd_nxt;
969 u_int win =
970 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
971 tp->t_maxseg;
972
973 if (win < 2)
974 win = 2;
975 tp->snd_ssthresh = win * tp->t_maxseg;
976 tp->t_timer[TCPT_REXMT] = 0;
977 tp->t_rtt = 0;
978 tp->snd_nxt = ti->ti_ack;
979 tp->snd_cwnd = tp->t_maxseg;
980 (void) tcp_output(tp);
981 tp->snd_cwnd = tp->snd_ssthresh +
982 tp->t_maxseg * tp->t_dupacks;
983 if (SEQ_GT(onxt, tp->snd_nxt))
984 tp->snd_nxt = onxt;
985 goto drop;
986 } else if (tp->t_dupacks > tcprexmtthresh) {
987 tp->snd_cwnd += tp->t_maxseg;
988 (void) tcp_output(tp);
989 goto drop;
990 }
991 } else
992 tp->t_dupacks = 0;
993 break;
994 }
995 /*
996 * If the congestion window was inflated to account
997 * for the other side's cached packets, retract it.
998 */
999 if (tp->t_dupacks >= tcprexmtthresh &&
1000 tp->snd_cwnd > tp->snd_ssthresh)
1001 tp->snd_cwnd = tp->snd_ssthresh;
1002 tp->t_dupacks = 0;
1003 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1004 tcpstat.tcps_rcvacktoomuch++;
1005 goto dropafterack;
1006 }
1007 acked = ti->ti_ack - tp->snd_una;
1008 tcpstat.tcps_rcvackpack++;
1009 tcpstat.tcps_rcvackbyte += acked;
1010
1011 /*
1012 * If we have a timestamp reply, update smoothed
1013 * round trip time. If no timestamp is present but
1014 * transmit timer is running and timed sequence
1015 * number was acked, update smoothed round trip time.
1016 * Since we now have an rtt measurement, cancel the
1017 * timer backoff (cf., Phil Karn's retransmit alg.).
1018 * Recompute the initial retransmit timer.
1019 */
1020 if (ts_present)
1021 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1022 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1023 tcp_xmit_timer(tp,tp->t_rtt);
1024
1025 /*
1026 * If all outstanding data is acked, stop retransmit
1027 * timer and remember to restart (more output or persist).
1028 * If there is more data to be acked, restart retransmit
1029 * timer, using current (possibly backed-off) value.
1030 */
1031 if (ti->ti_ack == tp->snd_max) {
1032 tp->t_timer[TCPT_REXMT] = 0;
1033 needoutput = 1;
1034 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1035 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1036 /*
1037 * When new data is acked, open the congestion window.
1038 * If the window gives us less than ssthresh packets
1039 * in flight, open exponentially (maxseg per packet).
1040 * Otherwise open linearly: maxseg per window
1041 * (maxseg^2 / cwnd per packet), plus a constant
1042 * fraction of a packet (maxseg/8) to help larger windows
1043 * open quickly enough.
1044 */
1045 {
1046 register u_int cw = tp->snd_cwnd;
1047 register u_int incr = tp->t_maxseg;
1048
1049 if (cw > tp->snd_ssthresh)
1050 incr = incr * incr / cw;
1051 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1052 }
1053 if (acked > so->so_snd.sb_cc) {
1054 tp->snd_wnd -= so->so_snd.sb_cc;
1055 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1056 ourfinisacked = 1;
1057 } else {
1058 sbdrop(&so->so_snd, acked);
1059 tp->snd_wnd -= acked;
1060 ourfinisacked = 0;
1061 }
1062 if (sb_notify(&so->so_snd))
1063 sowwakeup(so);
1064 tp->snd_una = ti->ti_ack;
1065 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1066 tp->snd_nxt = tp->snd_una;
1067
1068 switch (tp->t_state) {
1069
1070 /*
1071 * In FIN_WAIT_1 STATE in addition to the processing
1072 * for the ESTABLISHED state if our FIN is now acknowledged
1073 * then enter FIN_WAIT_2.
1074 */
1075 case TCPS_FIN_WAIT_1:
1076 if (ourfinisacked) {
1077 /*
1078 * If we can't receive any more
1079 * data, then closing user can proceed.
1080 * Starting the timer is contrary to the
1081 * specification, but if we don't get a FIN
1082 * we'll hang forever.
1083 */
1084 if (so->so_state & SS_CANTRCVMORE) {
1085 soisdisconnected(so);
1086 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1087 }
1088 tp->t_state = TCPS_FIN_WAIT_2;
1089 }
1090 break;
1091
1092 /*
1093 * In CLOSING STATE in addition to the processing for
1094 * the ESTABLISHED state if the ACK acknowledges our FIN
1095 * then enter the TIME-WAIT state, otherwise ignore
1096 * the segment.
1097 */
1098 case TCPS_CLOSING:
1099 if (ourfinisacked) {
1100 tp->t_state = TCPS_TIME_WAIT;
1101 tcp_canceltimers(tp);
1102 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1103 soisdisconnected(so);
1104 }
1105 break;
1106
1107 /*
1108 * In LAST_ACK, we may still be waiting for data to drain
1109 * and/or to be acked, as well as for the ack of our FIN.
1110 * If our FIN is now acknowledged, delete the TCB,
1111 * enter the closed state and return.
1112 */
1113 case TCPS_LAST_ACK:
1114 if (ourfinisacked) {
1115 tp = tcp_close(tp);
1116 goto drop;
1117 }
1118 break;
1119
1120 /*
1121 * In TIME_WAIT state the only thing that should arrive
1122 * is a retransmission of the remote FIN. Acknowledge
1123 * it and restart the finack timer.
1124 */
1125 case TCPS_TIME_WAIT:
1126 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1127 goto dropafterack;
1128 }
1129 }
1130
1131 step6:
1132 /*
1133 * Update window information.
1134 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1135 */
1136 if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1137 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1138 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1139 /* keep track of pure window updates */
1140 if (ti->ti_len == 0 &&
1141 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1142 tcpstat.tcps_rcvwinupd++;
1143 tp->snd_wnd = tiwin;
1144 tp->snd_wl1 = ti->ti_seq;
1145 tp->snd_wl2 = ti->ti_ack;
1146 if (tp->snd_wnd > tp->max_sndwnd)
1147 tp->max_sndwnd = tp->snd_wnd;
1148 needoutput = 1;
1149 }
1150
1151 /*
1152 * Process segments with URG.
1153 */
1154 if ((tiflags & TH_URG) && ti->ti_urp &&
1155 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1156 /*
1157 * This is a kludge, but if we receive and accept
1158 * random urgent pointers, we'll crash in
1159 * soreceive. It's hard to imagine someone
1160 * actually wanting to send this much urgent data.
1161 */
1162 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1163 ti->ti_urp = 0; /* XXX */
1164 tiflags &= ~TH_URG; /* XXX */
1165 goto dodata; /* XXX */
1166 }
1167 /*
1168 * If this segment advances the known urgent pointer,
1169 * then mark the data stream. This should not happen
1170 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1171 * a FIN has been received from the remote side.
1172 * In these states we ignore the URG.
1173 *
1174 * According to RFC961 (Assigned Protocols),
1175 * the urgent pointer points to the last octet
1176 * of urgent data. We continue, however,
1177 * to consider it to indicate the first octet
1178 * of data past the urgent section as the original
1179 * spec states (in one of two places).
1180 */
1181 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1182 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1183 so->so_oobmark = so->so_rcv.sb_cc +
1184 (tp->rcv_up - tp->rcv_nxt) - 1;
1185 if (so->so_oobmark == 0)
1186 so->so_state |= SS_RCVATMARK;
1187 sohasoutofband(so);
1188 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1189 }
1190 /*
1191 * Remove out of band data so doesn't get presented to user.
1192 * This can happen independent of advancing the URG pointer,
1193 * but if two URG's are pending at once, some out-of-band
1194 * data may creep in... ick.
1195 */
1196 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1197 #ifdef SO_OOBINLINE
1198 && (so->so_options & SO_OOBINLINE) == 0
1199 #endif
1200 )
1201 tcp_pulloutofband(so, ti, m);
1202 } else
1203 /*
1204 * If no out of band data is expected,
1205 * pull receive urgent pointer along
1206 * with the receive window.
1207 */
1208 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1209 tp->rcv_up = tp->rcv_nxt;
1210 dodata: /* XXX */
1211
1212 /*
1213 * Process the segment text, merging it into the TCP sequencing queue,
1214 * and arranging for acknowledgment of receipt if necessary.
1215 * This process logically involves adjusting tp->rcv_wnd as data
1216 * is presented to the user (this happens in tcp_usrreq.c,
1217 * case PRU_RCVD). If a FIN has already been received on this
1218 * connection then we just ignore the text.
1219 */
1220 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1221 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1222 TCP_REASS(tp, ti, m, so, tiflags);
1223 /*
1224 * Note the amount of data that peer has sent into
1225 * our window, in order to estimate the sender's
1226 * buffer size.
1227 */
1228 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1229 } else {
1230 m_freem(m);
1231 tiflags &= ~TH_FIN;
1232 }
1233
1234 /*
1235 * If FIN is received ACK the FIN and let the user know
1236 * that the connection is closing. Ignore a FIN received before
1237 * the connection is fully established.
1238 */
1239 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1240 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1241 socantrcvmore(so);
1242 tp->t_flags |= TF_ACKNOW;
1243 tp->rcv_nxt++;
1244 }
1245 switch (tp->t_state) {
1246
1247 /*
1248 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1249 */
1250 case TCPS_ESTABLISHED:
1251 tp->t_state = TCPS_CLOSE_WAIT;
1252 break;
1253
1254 /*
1255 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1256 * enter the CLOSING state.
1257 */
1258 case TCPS_FIN_WAIT_1:
1259 tp->t_state = TCPS_CLOSING;
1260 break;
1261
1262 /*
1263 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1264 * starting the time-wait timer, turning off the other
1265 * standard timers.
1266 */
1267 case TCPS_FIN_WAIT_2:
1268 tp->t_state = TCPS_TIME_WAIT;
1269 tcp_canceltimers(tp);
1270 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1271 soisdisconnected(so);
1272 break;
1273
1274 /*
1275 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1276 */
1277 case TCPS_TIME_WAIT:
1278 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1279 break;
1280 }
1281 }
1282 if (so->so_options & SO_DEBUG)
1283 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1284
1285 /*
1286 * Return any desired output.
1287 */
1288 if (needoutput || (tp->t_flags & TF_ACKNOW))
1289 (void) tcp_output(tp);
1290 return;
1291
1292 dropafterack:
1293 /*
1294 * Generate an ACK dropping incoming segment if it occupies
1295 * sequence space, where the ACK reflects our state.
1296 */
1297 if (tiflags & TH_RST)
1298 goto drop;
1299 m_freem(m);
1300 tp->t_flags |= TF_ACKNOW;
1301 (void) tcp_output(tp);
1302 return;
1303
1304 dropwithreset:
1305 /*
1306 * Generate a RST, dropping incoming segment.
1307 * Make ACK acceptable to originator of segment.
1308 * Don't bother to respond if destination was broadcast/multicast.
1309 */
1310 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1311 IN_MULTICAST(ti->ti_dst.s_addr))
1312 goto drop;
1313 if (tiflags & TH_ACK)
1314 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1315 else {
1316 if (tiflags & TH_SYN)
1317 ti->ti_len++;
1318 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1319 TH_RST|TH_ACK);
1320 }
1321 /* destroy temporarily created socket */
1322 if (dropsocket)
1323 (void) soabort(so);
1324 return;
1325
1326 drop:
1327 /*
1328 * Drop space held by incoming segment and return.
1329 */
1330 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1331 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1332 m_freem(m);
1333 /* destroy temporarily created socket */
1334 if (dropsocket)
1335 (void) soabort(so);
1336 return;
1337 #ifndef TUBA_INCLUDE
1338 }
1339
1340 void
1341 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
1342 struct tcpcb *tp;
1343 u_char *cp;
1344 int cnt;
1345 struct tcpiphdr *ti;
1346 int *ts_present;
1347 u_int32_t *ts_val, *ts_ecr;
1348 {
1349 u_int16_t mss;
1350 int opt, optlen;
1351
1352 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1353 opt = cp[0];
1354 if (opt == TCPOPT_EOL)
1355 break;
1356 if (opt == TCPOPT_NOP)
1357 optlen = 1;
1358 else {
1359 optlen = cp[1];
1360 if (optlen <= 0)
1361 break;
1362 }
1363 switch (opt) {
1364
1365 default:
1366 continue;
1367
1368 case TCPOPT_MAXSEG:
1369 if (optlen != TCPOLEN_MAXSEG)
1370 continue;
1371 if (!(ti->ti_flags & TH_SYN))
1372 continue;
1373 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1374 NTOHS(mss);
1375 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1376 break;
1377
1378 case TCPOPT_WINDOW:
1379 if (optlen != TCPOLEN_WINDOW)
1380 continue;
1381 if (!(ti->ti_flags & TH_SYN))
1382 continue;
1383 tp->t_flags |= TF_RCVD_SCALE;
1384 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1385 break;
1386
1387 case TCPOPT_TIMESTAMP:
1388 if (optlen != TCPOLEN_TIMESTAMP)
1389 continue;
1390 *ts_present = 1;
1391 bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
1392 NTOHL(*ts_val);
1393 bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
1394 NTOHL(*ts_ecr);
1395
1396 /*
1397 * A timestamp received in a SYN makes
1398 * it ok to send timestamp requests and replies.
1399 */
1400 if (ti->ti_flags & TH_SYN) {
1401 tp->t_flags |= TF_RCVD_TSTMP;
1402 tp->ts_recent = *ts_val;
1403 tp->ts_recent_age = tcp_now;
1404 }
1405 break;
1406 }
1407 }
1408 }
1409
1410 /*
1411 * Pull out of band byte out of a segment so
1412 * it doesn't appear in the user's data queue.
1413 * It is still reflected in the segment length for
1414 * sequencing purposes.
1415 */
1416 void
1417 tcp_pulloutofband(so, ti, m)
1418 struct socket *so;
1419 struct tcpiphdr *ti;
1420 register struct mbuf *m;
1421 {
1422 int cnt = ti->ti_urp - 1;
1423
1424 while (cnt >= 0) {
1425 if (m->m_len > cnt) {
1426 char *cp = mtod(m, caddr_t) + cnt;
1427 struct tcpcb *tp = sototcpcb(so);
1428
1429 tp->t_iobc = *cp;
1430 tp->t_oobflags |= TCPOOB_HAVEDATA;
1431 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1432 m->m_len--;
1433 return;
1434 }
1435 cnt -= m->m_len;
1436 m = m->m_next;
1437 if (m == 0)
1438 break;
1439 }
1440 panic("tcp_pulloutofband");
1441 }
1442
1443 /*
1444 * Collect new round-trip time estimate
1445 * and update averages and current timeout.
1446 */
1447 void
1448 tcp_xmit_timer(tp, rtt)
1449 register struct tcpcb *tp;
1450 short rtt;
1451 {
1452 register short delta;
1453
1454 tcpstat.tcps_rttupdated++;
1455 --rtt;
1456 if (tp->t_srtt != 0) {
1457 /*
1458 * srtt is stored as fixed point with 3 bits after the
1459 * binary point (i.e., scaled by 8). The following magic
1460 * is equivalent to the smoothing algorithm in rfc793 with
1461 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1462 * point). Adjust rtt to origin 0.
1463 */
1464 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1465 if ((tp->t_srtt += delta) <= 0)
1466 tp->t_srtt = 1;
1467 /*
1468 * We accumulate a smoothed rtt variance (actually, a
1469 * smoothed mean difference), then set the retransmit
1470 * timer to smoothed rtt + 4 times the smoothed variance.
1471 * rttvar is stored as fixed point with 2 bits after the
1472 * binary point (scaled by 4). The following is
1473 * equivalent to rfc793 smoothing with an alpha of .75
1474 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1475 * rfc793's wired-in beta.
1476 */
1477 if (delta < 0)
1478 delta = -delta;
1479 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1480 if ((tp->t_rttvar += delta) <= 0)
1481 tp->t_rttvar = 1;
1482 } else {
1483 /*
1484 * No rtt measurement yet - use the unsmoothed rtt.
1485 * Set the variance to half the rtt (so our first
1486 * retransmit happens at 3*rtt).
1487 */
1488 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1489 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1490 }
1491 tp->t_rtt = 0;
1492 tp->t_rxtshift = 0;
1493
1494 /*
1495 * the retransmit should happen at rtt + 4 * rttvar.
1496 * Because of the way we do the smoothing, srtt and rttvar
1497 * will each average +1/2 tick of bias. When we compute
1498 * the retransmit timer, we want 1/2 tick of rounding and
1499 * 1 extra tick because of +-1/2 tick uncertainty in the
1500 * firing of the timer. The bias will give us exactly the
1501 * 1.5 tick we need. But, because the bias is
1502 * statistical, we have to test that we don't drop below
1503 * the minimum feasible timer (which is 2 ticks).
1504 */
1505 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1506 rtt + 2, TCPTV_REXMTMAX);
1507
1508 /*
1509 * We received an ack for a packet that wasn't retransmitted;
1510 * it is probably safe to discard any error indications we've
1511 * received recently. This isn't quite right, but close enough
1512 * for now (a route might have failed after we sent a segment,
1513 * and the return path might not be symmetrical).
1514 */
1515 tp->t_softerror = 0;
1516 }
1517
1518 /*
1519 * Determine a reasonable value for maxseg size.
1520 * If the route is known, check route for mtu.
1521 * If none, use an mss that can be handled on the outgoing
1522 * interface without forcing IP to fragment; if bigger than
1523 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1524 * to utilize large mbufs. If no route is found, route has no mtu,
1525 * or the destination isn't local, use a default, hopefully conservative
1526 * size (usually 512 or the default IP max size, but no more than the mtu
1527 * of the interface), as we can't discover anything about intervening
1528 * gateways or networks. We also initialize the congestion/slow start
1529 * window to be a single segment if the destination isn't local.
1530 * While looking at the routing entry, we also initialize other path-dependent
1531 * parameters from pre-set or cached values in the routing entry.
1532 */
1533 int
1534 tcp_mss(tp, offer)
1535 register struct tcpcb *tp;
1536 u_int offer;
1537 {
1538 struct route *ro;
1539 register struct rtentry *rt;
1540 struct ifnet *ifp;
1541 register int rtt, mss;
1542 u_long bufsize;
1543 struct inpcb *inp;
1544 struct socket *so;
1545 extern int tcp_mssdflt;
1546
1547 inp = tp->t_inpcb;
1548 ro = &inp->inp_route;
1549
1550 if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1551 /* No route yet, so try to acquire one */
1552 if (inp->inp_faddr.s_addr != INADDR_ANY) {
1553 ro->ro_dst.sa_family = AF_INET;
1554 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1555 satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
1556 rtalloc(ro);
1557 }
1558 if ((rt = ro->ro_rt) == (struct rtentry *)0)
1559 return (tcp_mssdflt);
1560 }
1561 ifp = rt->rt_ifp;
1562 so = inp->inp_socket;
1563
1564 #ifdef RTV_MTU /* if route characteristics exist ... */
1565 /*
1566 * While we're here, check if there's an initial rtt
1567 * or rttvar. Convert from the route-table units
1568 * to scaled multiples of the slow timeout timer.
1569 */
1570 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1571 /*
1572 * XXX the lock bit for MTU indicates that the value
1573 * is also a minimum value; this is subject to time.
1574 */
1575 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1576 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1577 tp->t_srtt = rtt / (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTT_SCALE));
1578 if (rt->rt_rmx.rmx_rttvar)
1579 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1580 (RTM_RTTUNIT / (PR_SLOWHZ * TCP_RTTVAR_SCALE));
1581 else
1582 /* default variation is +- 1 rtt */
1583 tp->t_rttvar =
1584 tp->t_srtt * TCP_RTTVAR_SCALE / TCP_RTT_SCALE;
1585 TCPT_RANGESET((long) tp->t_rxtcur,
1586 ((tp->t_srtt >> 2) + tp->t_rttvar) >> 1,
1587 tp->t_rttmin, TCPTV_REXMTMAX);
1588 }
1589 /*
1590 * if there's an mtu associated with the route, use it
1591 */
1592 if (rt->rt_rmx.rmx_mtu)
1593 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1594 else
1595 #endif /* RTV_MTU */
1596 {
1597 mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1598 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1599 if (mss > MCLBYTES)
1600 mss &= ~(MCLBYTES-1);
1601 #else
1602 if (mss > MCLBYTES)
1603 mss = mss / MCLBYTES * MCLBYTES;
1604 #endif
1605 if (!in_localaddr(inp->inp_faddr))
1606 mss = min(mss, tcp_mssdflt);
1607 }
1608 /*
1609 * The current mss, t_maxseg, is initialized to the default value.
1610 * If we compute a smaller value, reduce the current mss.
1611 * If we compute a larger value, return it for use in sending
1612 * a max seg size option, but don't store it for use
1613 * unless we received an offer at least that large from peer.
1614 * However, do not accept offers under 32 bytes.
1615 */
1616 if (offer)
1617 mss = min(mss, offer);
1618 mss = max(mss, 32); /* sanity */
1619 if (mss < tp->t_maxseg || offer != 0) {
1620 /*
1621 * If there's a pipesize, change the socket buffer
1622 * to that size. Make the socket buffers an integral
1623 * number of mss units; if the mss is larger than
1624 * the socket buffer, decrease the mss.
1625 */
1626 #ifdef RTV_SPIPE
1627 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1628 #endif
1629 bufsize = so->so_snd.sb_hiwat;
1630 if (bufsize < mss)
1631 mss = bufsize;
1632 else {
1633 bufsize = roundup(bufsize, mss);
1634 if (bufsize > sb_max)
1635 bufsize = sb_max;
1636 (void)sbreserve(&so->so_snd, bufsize);
1637 }
1638 tp->t_maxseg = mss;
1639
1640 #ifdef RTV_RPIPE
1641 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1642 #endif
1643 bufsize = so->so_rcv.sb_hiwat;
1644 if (bufsize > mss) {
1645 bufsize = roundup(bufsize, mss);
1646 if (bufsize > sb_max)
1647 bufsize = sb_max;
1648 (void)sbreserve(&so->so_rcv, bufsize);
1649 }
1650 }
1651 tp->snd_cwnd = mss;
1652
1653 #ifdef RTV_SSTHRESH
1654 if (rt->rt_rmx.rmx_ssthresh) {
1655 /*
1656 * There's some sort of gateway or interface
1657 * buffer limit on the path. Use this to set
1658 * the slow start threshhold, but set the
1659 * threshold to no less than 2*mss.
1660 */
1661 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1662 }
1663 #endif /* RTV_MTU */
1664 return (mss);
1665 }
1666 #endif /* TUBA_INCLUDE */
1667