tcp_input.c revision 1.238 1 /* $NetBSD: tcp_input.c,v 1.238 2006/02/02 05:52:23 riz Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 *
82 * Redistribution and use in source and binary forms, with or without
83 * modification, are permitted provided that the following conditions
84 * are met:
85 * 1. Redistributions of source code must retain the above copyright
86 * notice, this list of conditions and the following disclaimer.
87 * 2. Redistributions in binary form must reproduce the above copyright
88 * notice, this list of conditions and the following disclaimer in the
89 * documentation and/or other materials provided with the distribution.
90 * 3. All advertising materials mentioning features or use of this software
91 * must display the following acknowledgement:
92 * This product includes software developed by the NetBSD
93 * Foundation, Inc. and its contributors.
94 * 4. Neither the name of The NetBSD Foundation nor the names of its
95 * contributors may be used to endorse or promote products derived
96 * from this software without specific prior written permission.
97 *
98 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
99 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
100 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
101 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
102 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
103 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
104 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
105 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
106 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
107 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
108 * POSSIBILITY OF SUCH DAMAGE.
109 */
110
111 /*
112 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
113 * The Regents of the University of California. All rights reserved.
114 *
115 * Redistribution and use in source and binary forms, with or without
116 * modification, are permitted provided that the following conditions
117 * are met:
118 * 1. Redistributions of source code must retain the above copyright
119 * notice, this list of conditions and the following disclaimer.
120 * 2. Redistributions in binary form must reproduce the above copyright
121 * notice, this list of conditions and the following disclaimer in the
122 * documentation and/or other materials provided with the distribution.
123 * 3. Neither the name of the University nor the names of its contributors
124 * may be used to endorse or promote products derived from this software
125 * without specific prior written permission.
126 *
127 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
128 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
129 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
130 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
131 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
132 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
133 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
134 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
135 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
136 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
137 * SUCH DAMAGE.
138 *
139 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
140 */
141
142 /*
143 * TODO list for SYN cache stuff:
144 *
145 * Find room for a "state" field, which is needed to keep a
146 * compressed state for TIME_WAIT TCBs. It's been noted already
147 * that this is fairly important for very high-volume web and
148 * mail servers, which use a large number of short-lived
149 * connections.
150 */
151
152 #include <sys/cdefs.h>
153 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.238 2006/02/02 05:52:23 riz Exp $");
154
155 #include "opt_inet.h"
156 #include "opt_ipsec.h"
157 #include "opt_inet_csum.h"
158 #include "opt_tcp_debug.h"
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175
176 #include <net/if.h>
177 #include <net/route.h>
178 #include <net/if_types.h>
179
180 #include <netinet/in.h>
181 #include <netinet/in_systm.h>
182 #include <netinet/ip.h>
183 #include <netinet/in_pcb.h>
184 #include <netinet/in_var.h>
185 #include <netinet/ip_var.h>
186 #include <netinet/in_offload.h>
187
188 #ifdef INET6
189 #ifndef INET
190 #include <netinet/in.h>
191 #endif
192 #include <netinet/ip6.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_pcb.h>
195 #include <netinet6/ip6_var.h>
196 #include <netinet6/in6_var.h>
197 #include <netinet/icmp6.h>
198 #include <netinet6/nd6.h>
199 #ifdef TCP_SIGNATURE
200 #include <netinet6/scope6_var.h>
201 #endif
202 #endif
203
204 #ifndef INET6
205 /* always need ip6.h for IP6_EXTHDR_GET */
206 #include <netinet/ip6.h>
207 #endif
208
209 #include <netinet/tcp.h>
210 #include <netinet/tcp_fsm.h>
211 #include <netinet/tcp_seq.h>
212 #include <netinet/tcp_timer.h>
213 #include <netinet/tcp_var.h>
214 #include <netinet/tcpip.h>
215 #include <netinet/tcp_debug.h>
216
217 #include <machine/stdarg.h>
218
219 #ifdef IPSEC
220 #include <netinet6/ipsec.h>
221 #include <netkey/key.h>
222 #endif /*IPSEC*/
223 #ifdef INET6
224 #include "faith.h"
225 #if defined(NFAITH) && NFAITH > 0
226 #include <net/if_faith.h>
227 #endif
228 #endif /* IPSEC */
229
230 #ifdef FAST_IPSEC
231 #include <netipsec/ipsec.h>
232 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif /* FAST_IPSEC*/
238
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
241
242 static int tcp_rst_ppslim_count = 0;
243 static struct timeval tcp_rst_ppslim_last;
244 static int tcp_ackdrop_ppslim_count = 0;
245 static struct timeval tcp_ackdrop_ppslim_last;
246
247 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
248
249 /* for modulo comparisons of timestamps */
250 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
251 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
252
253 /*
254 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
255 */
256 #ifdef INET6
257 #define ND6_HINT(tp) \
258 do { \
259 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
260 tp->t_in6pcb->in6p_route.ro_rt) { \
261 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
262 } \
263 } while (/*CONSTCOND*/ 0)
264 #else
265 #define ND6_HINT(tp)
266 #endif
267
268 /*
269 * Macro to compute ACK transmission behavior. Delay the ACK unless
270 * we have already delayed an ACK (must send an ACK every two segments).
271 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
272 * option is enabled.
273 */
274 #define TCP_SETUP_ACK(tp, th) \
275 do { \
276 if ((tp)->t_flags & TF_DELACK || \
277 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
278 tp->t_flags |= TF_ACKNOW; \
279 else \
280 TCP_SET_DELACK(tp); \
281 } while (/*CONSTCOND*/ 0)
282
283 #define ICMP_CHECK(tp, th, acked) \
284 do { \
285 /* \
286 * If we had a pending ICMP message that \
287 * refers to data that have just been \
288 * acknowledged, disregard the recorded ICMP \
289 * message. \
290 */ \
291 if (((tp)->t_flags & TF_PMTUD_PEND) && \
292 SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
293 (tp)->t_flags &= ~TF_PMTUD_PEND; \
294 \
295 /* \
296 * Keep track of the largest chunk of data \
297 * acknowledged since last PMTU update \
298 */ \
299 if ((tp)->t_pmtud_mss_acked < (acked)) \
300 (tp)->t_pmtud_mss_acked = (acked); \
301 } while (/*CONSTCOND*/ 0)
302
303 /*
304 * Convert TCP protocol fields to host order for easier processing.
305 */
306 #define TCP_FIELDS_TO_HOST(th) \
307 do { \
308 NTOHL((th)->th_seq); \
309 NTOHL((th)->th_ack); \
310 NTOHS((th)->th_win); \
311 NTOHS((th)->th_urp); \
312 } while (/*CONSTCOND*/ 0)
313
314 /*
315 * ... and reverse the above.
316 */
317 #define TCP_FIELDS_TO_NET(th) \
318 do { \
319 HTONL((th)->th_seq); \
320 HTONL((th)->th_ack); \
321 HTONS((th)->th_win); \
322 HTONS((th)->th_urp); \
323 } while (/*CONSTCOND*/ 0)
324
325 #ifdef TCP_CSUM_COUNTERS
326 #include <sys/device.h>
327
328 #if defined(INET)
329 extern struct evcnt tcp_hwcsum_ok;
330 extern struct evcnt tcp_hwcsum_bad;
331 extern struct evcnt tcp_hwcsum_data;
332 extern struct evcnt tcp_swcsum;
333 #endif /* defined(INET) */
334 #if defined(INET6)
335 extern struct evcnt tcp6_hwcsum_ok;
336 extern struct evcnt tcp6_hwcsum_bad;
337 extern struct evcnt tcp6_hwcsum_data;
338 extern struct evcnt tcp6_swcsum;
339 #endif /* defined(INET6) */
340
341 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
342
343 #else
344
345 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
346
347 #endif /* TCP_CSUM_COUNTERS */
348
349 #ifdef TCP_REASS_COUNTERS
350 #include <sys/device.h>
351
352 extern struct evcnt tcp_reass_;
353 extern struct evcnt tcp_reass_empty;
354 extern struct evcnt tcp_reass_iteration[8];
355 extern struct evcnt tcp_reass_prependfirst;
356 extern struct evcnt tcp_reass_prepend;
357 extern struct evcnt tcp_reass_insert;
358 extern struct evcnt tcp_reass_inserttail;
359 extern struct evcnt tcp_reass_append;
360 extern struct evcnt tcp_reass_appendtail;
361 extern struct evcnt tcp_reass_overlaptail;
362 extern struct evcnt tcp_reass_overlapfront;
363 extern struct evcnt tcp_reass_segdup;
364 extern struct evcnt tcp_reass_fragdup;
365
366 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
367
368 #else
369
370 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
371
372 #endif /* TCP_REASS_COUNTERS */
373
374 #ifdef INET
375 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
376 #endif
377 #ifdef INET6
378 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
379 #endif
380
381 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
382
383 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
384
385 struct ipqent *
386 tcpipqent_alloc()
387 {
388 struct ipqent *ipqe;
389 int s;
390
391 s = splvm();
392 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
393 splx(s);
394
395 return ipqe;
396 }
397
398 void
399 tcpipqent_free(struct ipqent *ipqe)
400 {
401 int s;
402
403 s = splvm();
404 pool_put(&tcpipqent_pool, ipqe);
405 splx(s);
406 }
407
408 int
409 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
410 {
411 struct ipqent *p, *q, *nq, *tiqe = NULL;
412 struct socket *so = NULL;
413 int pkt_flags;
414 tcp_seq pkt_seq;
415 unsigned pkt_len;
416 u_long rcvpartdupbyte = 0;
417 u_long rcvoobyte;
418 #ifdef TCP_REASS_COUNTERS
419 u_int count = 0;
420 #endif
421
422 if (tp->t_inpcb)
423 so = tp->t_inpcb->inp_socket;
424 #ifdef INET6
425 else if (tp->t_in6pcb)
426 so = tp->t_in6pcb->in6p_socket;
427 #endif
428
429 TCP_REASS_LOCK_CHECK(tp);
430
431 /*
432 * Call with th==0 after become established to
433 * force pre-ESTABLISHED data up to user socket.
434 */
435 if (th == 0)
436 goto present;
437
438 rcvoobyte = *tlen;
439 /*
440 * Copy these to local variables because the tcpiphdr
441 * gets munged while we are collapsing mbufs.
442 */
443 pkt_seq = th->th_seq;
444 pkt_len = *tlen;
445 pkt_flags = th->th_flags;
446
447 TCP_REASS_COUNTER_INCR(&tcp_reass_);
448
449 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
450 /*
451 * When we miss a packet, the vast majority of time we get
452 * packets that follow it in order. So optimize for that.
453 */
454 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
455 p->ipqe_len += pkt_len;
456 p->ipqe_flags |= pkt_flags;
457 m_cat(p->ipre_mlast, m);
458 TRAVERSE(p->ipre_mlast);
459 m = NULL;
460 tiqe = p;
461 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
462 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
463 goto skip_replacement;
464 }
465 /*
466 * While we're here, if the pkt is completely beyond
467 * anything we have, just insert it at the tail.
468 */
469 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
470 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
471 goto insert_it;
472 }
473 }
474
475 q = TAILQ_FIRST(&tp->segq);
476
477 if (q != NULL) {
478 /*
479 * If this segment immediately precedes the first out-of-order
480 * block, simply slap the segment in front of it and (mostly)
481 * skip the complicated logic.
482 */
483 if (pkt_seq + pkt_len == q->ipqe_seq) {
484 q->ipqe_seq = pkt_seq;
485 q->ipqe_len += pkt_len;
486 q->ipqe_flags |= pkt_flags;
487 m_cat(m, q->ipqe_m);
488 q->ipqe_m = m;
489 q->ipre_mlast = m; /* last mbuf may have changed */
490 TRAVERSE(q->ipre_mlast);
491 tiqe = q;
492 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
493 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
494 goto skip_replacement;
495 }
496 } else {
497 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
498 }
499
500 /*
501 * Find a segment which begins after this one does.
502 */
503 for (p = NULL; q != NULL; q = nq) {
504 nq = TAILQ_NEXT(q, ipqe_q);
505 #ifdef TCP_REASS_COUNTERS
506 count++;
507 #endif
508 /*
509 * If the received segment is just right after this
510 * fragment, merge the two together and then check
511 * for further overlaps.
512 */
513 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
514 #ifdef TCPREASS_DEBUG
515 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
516 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
517 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
518 #endif
519 pkt_len += q->ipqe_len;
520 pkt_flags |= q->ipqe_flags;
521 pkt_seq = q->ipqe_seq;
522 m_cat(q->ipre_mlast, m);
523 TRAVERSE(q->ipre_mlast);
524 m = q->ipqe_m;
525 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
526 goto free_ipqe;
527 }
528 /*
529 * If the received segment is completely past this
530 * fragment, we need to go the next fragment.
531 */
532 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
533 p = q;
534 continue;
535 }
536 /*
537 * If the fragment is past the received segment,
538 * it (or any following) can't be concatenated.
539 */
540 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
541 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
542 break;
543 }
544
545 /*
546 * We've received all the data in this segment before.
547 * mark it as a duplicate and return.
548 */
549 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
550 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
551 tcpstat.tcps_rcvduppack++;
552 tcpstat.tcps_rcvdupbyte += pkt_len;
553 tcp_new_dsack(tp, pkt_seq, pkt_len);
554 m_freem(m);
555 if (tiqe != NULL) {
556 tcpipqent_free(tiqe);
557 }
558 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
559 return (0);
560 }
561 /*
562 * Received segment completely overlaps this fragment
563 * so we drop the fragment (this keeps the temporal
564 * ordering of segments correct).
565 */
566 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
567 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
568 rcvpartdupbyte += q->ipqe_len;
569 m_freem(q->ipqe_m);
570 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
571 goto free_ipqe;
572 }
573 /*
574 * RX'ed segment extends past the end of the
575 * fragment. Drop the overlapping bytes. Then
576 * merge the fragment and segment then treat as
577 * a longer received packet.
578 */
579 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
580 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
581 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
582 #ifdef TCPREASS_DEBUG
583 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
584 tp, overlap,
585 pkt_seq, pkt_seq + pkt_len, pkt_len);
586 #endif
587 m_adj(m, overlap);
588 rcvpartdupbyte += overlap;
589 m_cat(q->ipre_mlast, m);
590 TRAVERSE(q->ipre_mlast);
591 m = q->ipqe_m;
592 pkt_seq = q->ipqe_seq;
593 pkt_len += q->ipqe_len - overlap;
594 rcvoobyte -= overlap;
595 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
596 goto free_ipqe;
597 }
598 /*
599 * RX'ed segment extends past the front of the
600 * fragment. Drop the overlapping bytes on the
601 * received packet. The packet will then be
602 * contatentated with this fragment a bit later.
603 */
604 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
605 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
606 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
607 #ifdef TCPREASS_DEBUG
608 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
609 tp, overlap,
610 pkt_seq, pkt_seq + pkt_len, pkt_len);
611 #endif
612 m_adj(m, -overlap);
613 pkt_len -= overlap;
614 rcvpartdupbyte += overlap;
615 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
616 rcvoobyte -= overlap;
617 }
618 /*
619 * If the received segment immediates precedes this
620 * fragment then tack the fragment onto this segment
621 * and reinsert the data.
622 */
623 if (q->ipqe_seq == pkt_seq + pkt_len) {
624 #ifdef TCPREASS_DEBUG
625 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
626 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
627 pkt_seq, pkt_seq + pkt_len, pkt_len);
628 #endif
629 pkt_len += q->ipqe_len;
630 pkt_flags |= q->ipqe_flags;
631 m_cat(m, q->ipqe_m);
632 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
633 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
634 tp->t_segqlen--;
635 KASSERT(tp->t_segqlen >= 0);
636 KASSERT(tp->t_segqlen != 0 ||
637 (TAILQ_EMPTY(&tp->segq) &&
638 TAILQ_EMPTY(&tp->timeq)));
639 if (tiqe == NULL) {
640 tiqe = q;
641 } else {
642 tcpipqent_free(q);
643 }
644 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
645 break;
646 }
647 /*
648 * If the fragment is before the segment, remember it.
649 * When this loop is terminated, p will contain the
650 * pointer to fragment that is right before the received
651 * segment.
652 */
653 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
654 p = q;
655
656 continue;
657
658 /*
659 * This is a common operation. It also will allow
660 * to save doing a malloc/free in most instances.
661 */
662 free_ipqe:
663 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
664 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
665 tp->t_segqlen--;
666 KASSERT(tp->t_segqlen >= 0);
667 KASSERT(tp->t_segqlen != 0 ||
668 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
669 if (tiqe == NULL) {
670 tiqe = q;
671 } else {
672 tcpipqent_free(q);
673 }
674 }
675
676 #ifdef TCP_REASS_COUNTERS
677 if (count > 7)
678 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
679 else if (count > 0)
680 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
681 #endif
682
683 insert_it:
684
685 /*
686 * Allocate a new queue entry since the received segment did not
687 * collapse onto any other out-of-order block; thus we are allocating
688 * a new block. If it had collapsed, tiqe would not be NULL and
689 * we would be reusing it.
690 * XXX If we can't, just drop the packet. XXX
691 */
692 if (tiqe == NULL) {
693 tiqe = tcpipqent_alloc();
694 if (tiqe == NULL) {
695 tcpstat.tcps_rcvmemdrop++;
696 m_freem(m);
697 return (0);
698 }
699 }
700
701 /*
702 * Update the counters.
703 */
704 tcpstat.tcps_rcvoopack++;
705 tcpstat.tcps_rcvoobyte += rcvoobyte;
706 if (rcvpartdupbyte) {
707 tcpstat.tcps_rcvpartduppack++;
708 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
709 }
710
711 /*
712 * Insert the new fragment queue entry into both queues.
713 */
714 tiqe->ipqe_m = m;
715 tiqe->ipre_mlast = m;
716 tiqe->ipqe_seq = pkt_seq;
717 tiqe->ipqe_len = pkt_len;
718 tiqe->ipqe_flags = pkt_flags;
719 if (p == NULL) {
720 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
721 #ifdef TCPREASS_DEBUG
722 if (tiqe->ipqe_seq != tp->rcv_nxt)
723 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
724 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
725 #endif
726 } else {
727 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
728 #ifdef TCPREASS_DEBUG
729 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
730 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
731 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
732 #endif
733 }
734 tp->t_segqlen++;
735
736 skip_replacement:
737
738 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
739
740 present:
741 /*
742 * Present data to user, advancing rcv_nxt through
743 * completed sequence space.
744 */
745 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
746 return (0);
747 q = TAILQ_FIRST(&tp->segq);
748 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
749 return (0);
750 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
751 return (0);
752
753 tp->rcv_nxt += q->ipqe_len;
754 pkt_flags = q->ipqe_flags & TH_FIN;
755 ND6_HINT(tp);
756
757 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
758 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
759 tp->t_segqlen--;
760 KASSERT(tp->t_segqlen >= 0);
761 KASSERT(tp->t_segqlen != 0 ||
762 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
763 if (so->so_state & SS_CANTRCVMORE)
764 m_freem(q->ipqe_m);
765 else
766 sbappendstream(&so->so_rcv, q->ipqe_m);
767 tcpipqent_free(q);
768 sorwakeup(so);
769 return (pkt_flags);
770 }
771
772 #ifdef INET6
773 int
774 tcp6_input(struct mbuf **mp, int *offp, int proto)
775 {
776 struct mbuf *m = *mp;
777
778 /*
779 * draft-itojun-ipv6-tcp-to-anycast
780 * better place to put this in?
781 */
782 if (m->m_flags & M_ANYCAST6) {
783 struct ip6_hdr *ip6;
784 if (m->m_len < sizeof(struct ip6_hdr)) {
785 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
786 tcpstat.tcps_rcvshort++;
787 return IPPROTO_DONE;
788 }
789 }
790 ip6 = mtod(m, struct ip6_hdr *);
791 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
792 (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
793 return IPPROTO_DONE;
794 }
795
796 tcp_input(m, *offp, proto);
797 return IPPROTO_DONE;
798 }
799 #endif
800
801 #ifdef INET
802 static void
803 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
804 {
805 char src[4*sizeof "123"];
806 char dst[4*sizeof "123"];
807
808 if (ip) {
809 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
810 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
811 }
812 else {
813 strlcpy(src, "(unknown)", sizeof(src));
814 strlcpy(dst, "(unknown)", sizeof(dst));
815 }
816 log(LOG_INFO,
817 "Connection attempt to TCP %s:%d from %s:%d\n",
818 dst, ntohs(th->th_dport),
819 src, ntohs(th->th_sport));
820 }
821 #endif
822
823 #ifdef INET6
824 static void
825 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
826 {
827 char src[INET6_ADDRSTRLEN];
828 char dst[INET6_ADDRSTRLEN];
829
830 if (ip6) {
831 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
832 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
833 }
834 else {
835 strlcpy(src, "(unknown v6)", sizeof(src));
836 strlcpy(dst, "(unknown v6)", sizeof(dst));
837 }
838 log(LOG_INFO,
839 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
840 dst, ntohs(th->th_dport),
841 src, ntohs(th->th_sport));
842 }
843 #endif
844
845 /*
846 * Checksum extended TCP header and data.
847 */
848 int
849 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
850 int off, int tlen)
851 {
852
853 /*
854 * XXX it's better to record and check if this mbuf is
855 * already checked.
856 */
857
858 switch (af) {
859 #ifdef INET
860 case AF_INET:
861 switch (m->m_pkthdr.csum_flags &
862 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
863 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
864 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
865 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
866 goto badcsum;
867
868 case M_CSUM_TCPv4|M_CSUM_DATA: {
869 u_int32_t hw_csum = m->m_pkthdr.csum_data;
870
871 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
872 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
873 const struct ip *ip =
874 mtod(m, const struct ip *);
875
876 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
877 ip->ip_dst.s_addr,
878 htons(hw_csum + tlen + off + IPPROTO_TCP));
879 }
880 if ((hw_csum ^ 0xffff) != 0)
881 goto badcsum;
882 break;
883 }
884
885 case M_CSUM_TCPv4:
886 /* Checksum was okay. */
887 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
888 break;
889
890 default:
891 /*
892 * Must compute it ourselves. Maybe skip checksum
893 * on loopback interfaces.
894 */
895 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
896 IFF_LOOPBACK) ||
897 tcp_do_loopback_cksum)) {
898 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
899 if (in4_cksum(m, IPPROTO_TCP, toff,
900 tlen + off) != 0)
901 goto badcsum;
902 }
903 break;
904 }
905 break;
906 #endif /* INET4 */
907
908 #ifdef INET6
909 case AF_INET6:
910 switch (m->m_pkthdr.csum_flags &
911 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
912 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
913 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
914 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
915 goto badcsum;
916
917 #if 0 /* notyet */
918 case M_CSUM_TCPv6|M_CSUM_DATA:
919 #endif
920
921 case M_CSUM_TCPv6:
922 /* Checksum was okay. */
923 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
924 break;
925
926 default:
927 /*
928 * Must compute it ourselves. Maybe skip checksum
929 * on loopback interfaces.
930 */
931 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
932 tcp_do_loopback_cksum)) {
933 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
934 if (in6_cksum(m, IPPROTO_TCP, toff,
935 tlen + off) != 0)
936 goto badcsum;
937 }
938 }
939 break;
940 #endif /* INET6 */
941 }
942
943 return 0;
944
945 badcsum:
946 tcpstat.tcps_rcvbadsum++;
947 return -1;
948 }
949
950 /*
951 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
952 */
953 void
954 tcp_input(struct mbuf *m, ...)
955 {
956 struct tcphdr *th;
957 struct ip *ip;
958 struct inpcb *inp;
959 #ifdef INET6
960 struct ip6_hdr *ip6;
961 struct in6pcb *in6p;
962 #endif
963 u_int8_t *optp = NULL;
964 int optlen = 0;
965 int len, tlen, toff, hdroptlen = 0;
966 struct tcpcb *tp = 0;
967 int tiflags;
968 struct socket *so = NULL;
969 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
970 #ifdef TCP_DEBUG
971 short ostate = 0;
972 #endif
973 int iss = 0;
974 u_long tiwin;
975 struct tcp_opt_info opti;
976 int off, iphlen;
977 va_list ap;
978 int af; /* af on the wire */
979 struct mbuf *tcp_saveti = NULL;
980 uint32_t ts_rtt;
981
982 MCLAIM(m, &tcp_rx_mowner);
983 va_start(ap, m);
984 toff = va_arg(ap, int);
985 (void)va_arg(ap, int); /* ignore value, advance ap */
986 va_end(ap);
987
988 tcpstat.tcps_rcvtotal++;
989
990 bzero(&opti, sizeof(opti));
991 opti.ts_present = 0;
992 opti.maxseg = 0;
993
994 /*
995 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
996 *
997 * TCP is, by definition, unicast, so we reject all
998 * multicast outright.
999 *
1000 * Note, there are additional src/dst address checks in
1001 * the AF-specific code below.
1002 */
1003 if (m->m_flags & (M_BCAST|M_MCAST)) {
1004 /* XXX stat */
1005 goto drop;
1006 }
1007 #ifdef INET6
1008 if (m->m_flags & M_ANYCAST6) {
1009 /* XXX stat */
1010 goto drop;
1011 }
1012 #endif
1013
1014 /*
1015 * Get IP and TCP header.
1016 * Note: IP leaves IP header in first mbuf.
1017 */
1018 ip = mtod(m, struct ip *);
1019 #ifdef INET6
1020 ip6 = NULL;
1021 #endif
1022 switch (ip->ip_v) {
1023 #ifdef INET
1024 case 4:
1025 af = AF_INET;
1026 iphlen = sizeof(struct ip);
1027 ip = mtod(m, struct ip *);
1028 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1029 sizeof(struct tcphdr));
1030 if (th == NULL) {
1031 tcpstat.tcps_rcvshort++;
1032 return;
1033 }
1034 /* We do the checksum after PCB lookup... */
1035 len = ntohs(ip->ip_len);
1036 tlen = len - toff;
1037 break;
1038 #endif
1039 #ifdef INET6
1040 case 6:
1041 ip = NULL;
1042 iphlen = sizeof(struct ip6_hdr);
1043 af = AF_INET6;
1044 ip6 = mtod(m, struct ip6_hdr *);
1045 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1046 sizeof(struct tcphdr));
1047 if (th == NULL) {
1048 tcpstat.tcps_rcvshort++;
1049 return;
1050 }
1051
1052 /* Be proactive about malicious use of IPv4 mapped address */
1053 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1054 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1055 /* XXX stat */
1056 goto drop;
1057 }
1058
1059 /*
1060 * Be proactive about unspecified IPv6 address in source.
1061 * As we use all-zero to indicate unbounded/unconnected pcb,
1062 * unspecified IPv6 address can be used to confuse us.
1063 *
1064 * Note that packets with unspecified IPv6 destination is
1065 * already dropped in ip6_input.
1066 */
1067 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1068 /* XXX stat */
1069 goto drop;
1070 }
1071
1072 /*
1073 * Make sure destination address is not multicast.
1074 * Source address checked in ip6_input().
1075 */
1076 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1077 /* XXX stat */
1078 goto drop;
1079 }
1080
1081 /* We do the checksum after PCB lookup... */
1082 len = m->m_pkthdr.len;
1083 tlen = len - toff;
1084 break;
1085 #endif
1086 default:
1087 m_freem(m);
1088 return;
1089 }
1090
1091 KASSERT(TCP_HDR_ALIGNED_P(th));
1092
1093 /*
1094 * Check that TCP offset makes sense,
1095 * pull out TCP options and adjust length. XXX
1096 */
1097 off = th->th_off << 2;
1098 if (off < sizeof (struct tcphdr) || off > tlen) {
1099 tcpstat.tcps_rcvbadoff++;
1100 goto drop;
1101 }
1102 tlen -= off;
1103
1104 /*
1105 * tcp_input() has been modified to use tlen to mean the TCP data
1106 * length throughout the function. Other functions can use
1107 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1108 * rja
1109 */
1110
1111 if (off > sizeof (struct tcphdr)) {
1112 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1113 if (th == NULL) {
1114 tcpstat.tcps_rcvshort++;
1115 return;
1116 }
1117 /*
1118 * NOTE: ip/ip6 will not be affected by m_pulldown()
1119 * (as they're before toff) and we don't need to update those.
1120 */
1121 KASSERT(TCP_HDR_ALIGNED_P(th));
1122 optlen = off - sizeof (struct tcphdr);
1123 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1124 /*
1125 * Do quick retrieval of timestamp options ("options
1126 * prediction?"). If timestamp is the only option and it's
1127 * formatted as recommended in RFC 1323 appendix A, we
1128 * quickly get the values now and not bother calling
1129 * tcp_dooptions(), etc.
1130 */
1131 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1132 (optlen > TCPOLEN_TSTAMP_APPA &&
1133 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1134 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1135 (th->th_flags & TH_SYN) == 0) {
1136 opti.ts_present = 1;
1137 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1138 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1139 optp = NULL; /* we've parsed the options */
1140 }
1141 }
1142 tiflags = th->th_flags;
1143
1144 /*
1145 * Locate pcb for segment.
1146 */
1147 findpcb:
1148 inp = NULL;
1149 #ifdef INET6
1150 in6p = NULL;
1151 #endif
1152 switch (af) {
1153 #ifdef INET
1154 case AF_INET:
1155 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1156 ip->ip_dst, th->th_dport);
1157 if (inp == 0) {
1158 ++tcpstat.tcps_pcbhashmiss;
1159 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1160 }
1161 #ifdef INET6
1162 if (inp == 0) {
1163 struct in6_addr s, d;
1164
1165 /* mapped addr case */
1166 bzero(&s, sizeof(s));
1167 s.s6_addr16[5] = htons(0xffff);
1168 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1169 bzero(&d, sizeof(d));
1170 d.s6_addr16[5] = htons(0xffff);
1171 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1172 in6p = in6_pcblookup_connect(&tcbtable, &s,
1173 th->th_sport, &d, th->th_dport, 0);
1174 if (in6p == 0) {
1175 ++tcpstat.tcps_pcbhashmiss;
1176 in6p = in6_pcblookup_bind(&tcbtable, &d,
1177 th->th_dport, 0);
1178 }
1179 }
1180 #endif
1181 #ifndef INET6
1182 if (inp == 0)
1183 #else
1184 if (inp == 0 && in6p == 0)
1185 #endif
1186 {
1187 ++tcpstat.tcps_noport;
1188 if (tcp_log_refused &&
1189 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1190 tcp4_log_refused(ip, th);
1191 }
1192 TCP_FIELDS_TO_HOST(th);
1193 goto dropwithreset_ratelim;
1194 }
1195 #if defined(IPSEC) || defined(FAST_IPSEC)
1196 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1197 ipsec4_in_reject(m, inp)) {
1198 ipsecstat.in_polvio++;
1199 goto drop;
1200 }
1201 #ifdef INET6
1202 else if (in6p &&
1203 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1204 ipsec4_in_reject_so(m, in6p->in6p_socket)) {
1205 ipsecstat.in_polvio++;
1206 goto drop;
1207 }
1208 #endif
1209 #endif /*IPSEC*/
1210 break;
1211 #endif /*INET*/
1212 #ifdef INET6
1213 case AF_INET6:
1214 {
1215 int faith;
1216
1217 #if defined(NFAITH) && NFAITH > 0
1218 faith = faithprefix(&ip6->ip6_dst);
1219 #else
1220 faith = 0;
1221 #endif
1222 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1223 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1224 if (in6p == NULL) {
1225 ++tcpstat.tcps_pcbhashmiss;
1226 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1227 th->th_dport, faith);
1228 }
1229 if (in6p == NULL) {
1230 ++tcpstat.tcps_noport;
1231 if (tcp_log_refused &&
1232 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1233 tcp6_log_refused(ip6, th);
1234 }
1235 TCP_FIELDS_TO_HOST(th);
1236 goto dropwithreset_ratelim;
1237 }
1238 #if defined(IPSEC) || defined(FAST_IPSEC)
1239 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1240 ipsec6_in_reject(m, in6p)) {
1241 ipsec6stat.in_polvio++;
1242 goto drop;
1243 }
1244 #endif /*IPSEC*/
1245 break;
1246 }
1247 #endif
1248 }
1249
1250 /*
1251 * If the state is CLOSED (i.e., TCB does not exist) then
1252 * all data in the incoming segment is discarded.
1253 * If the TCB exists but is in CLOSED state, it is embryonic,
1254 * but should either do a listen or a connect soon.
1255 */
1256 tp = NULL;
1257 so = NULL;
1258 if (inp) {
1259 tp = intotcpcb(inp);
1260 so = inp->inp_socket;
1261 }
1262 #ifdef INET6
1263 else if (in6p) {
1264 tp = in6totcpcb(in6p);
1265 so = in6p->in6p_socket;
1266 }
1267 #endif
1268 if (tp == 0) {
1269 TCP_FIELDS_TO_HOST(th);
1270 goto dropwithreset_ratelim;
1271 }
1272 if (tp->t_state == TCPS_CLOSED)
1273 goto drop;
1274
1275 /*
1276 * Checksum extended TCP header and data.
1277 */
1278 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1279 goto badcsum;
1280
1281 TCP_FIELDS_TO_HOST(th);
1282
1283 /* Unscale the window into a 32-bit value. */
1284 if ((tiflags & TH_SYN) == 0)
1285 tiwin = th->th_win << tp->snd_scale;
1286 else
1287 tiwin = th->th_win;
1288
1289 #ifdef INET6
1290 /* save packet options if user wanted */
1291 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1292 if (in6p->in6p_options) {
1293 m_freem(in6p->in6p_options);
1294 in6p->in6p_options = 0;
1295 }
1296 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1297 }
1298 #endif
1299
1300 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1301 union syn_cache_sa src;
1302 union syn_cache_sa dst;
1303
1304 bzero(&src, sizeof(src));
1305 bzero(&dst, sizeof(dst));
1306 switch (af) {
1307 #ifdef INET
1308 case AF_INET:
1309 src.sin.sin_len = sizeof(struct sockaddr_in);
1310 src.sin.sin_family = AF_INET;
1311 src.sin.sin_addr = ip->ip_src;
1312 src.sin.sin_port = th->th_sport;
1313
1314 dst.sin.sin_len = sizeof(struct sockaddr_in);
1315 dst.sin.sin_family = AF_INET;
1316 dst.sin.sin_addr = ip->ip_dst;
1317 dst.sin.sin_port = th->th_dport;
1318 break;
1319 #endif
1320 #ifdef INET6
1321 case AF_INET6:
1322 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1323 src.sin6.sin6_family = AF_INET6;
1324 src.sin6.sin6_addr = ip6->ip6_src;
1325 src.sin6.sin6_port = th->th_sport;
1326
1327 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1328 dst.sin6.sin6_family = AF_INET6;
1329 dst.sin6.sin6_addr = ip6->ip6_dst;
1330 dst.sin6.sin6_port = th->th_dport;
1331 break;
1332 #endif /* INET6 */
1333 default:
1334 goto badsyn; /*sanity*/
1335 }
1336
1337 if (so->so_options & SO_DEBUG) {
1338 #ifdef TCP_DEBUG
1339 ostate = tp->t_state;
1340 #endif
1341
1342 tcp_saveti = NULL;
1343 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1344 goto nosave;
1345
1346 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1347 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1348 if (!tcp_saveti)
1349 goto nosave;
1350 } else {
1351 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1352 if (!tcp_saveti)
1353 goto nosave;
1354 MCLAIM(m, &tcp_mowner);
1355 tcp_saveti->m_len = iphlen;
1356 m_copydata(m, 0, iphlen,
1357 mtod(tcp_saveti, caddr_t));
1358 }
1359
1360 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1361 m_freem(tcp_saveti);
1362 tcp_saveti = NULL;
1363 } else {
1364 tcp_saveti->m_len += sizeof(struct tcphdr);
1365 bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
1366 sizeof(struct tcphdr));
1367 }
1368 nosave:;
1369 }
1370 if (so->so_options & SO_ACCEPTCONN) {
1371 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1372 if (tiflags & TH_RST) {
1373 syn_cache_reset(&src.sa, &dst.sa, th);
1374 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1375 (TH_ACK|TH_SYN)) {
1376 /*
1377 * Received a SYN,ACK. This should
1378 * never happen while we are in
1379 * LISTEN. Send an RST.
1380 */
1381 goto badsyn;
1382 } else if (tiflags & TH_ACK) {
1383 so = syn_cache_get(&src.sa, &dst.sa,
1384 th, toff, tlen, so, m);
1385 if (so == NULL) {
1386 /*
1387 * We don't have a SYN for
1388 * this ACK; send an RST.
1389 */
1390 goto badsyn;
1391 } else if (so ==
1392 (struct socket *)(-1)) {
1393 /*
1394 * We were unable to create
1395 * the connection. If the
1396 * 3-way handshake was
1397 * completed, and RST has
1398 * been sent to the peer.
1399 * Since the mbuf might be
1400 * in use for the reply,
1401 * do not free it.
1402 */
1403 m = NULL;
1404 } else {
1405 /*
1406 * We have created a
1407 * full-blown connection.
1408 */
1409 tp = NULL;
1410 inp = NULL;
1411 #ifdef INET6
1412 in6p = NULL;
1413 #endif
1414 switch (so->so_proto->pr_domain->dom_family) {
1415 #ifdef INET
1416 case AF_INET:
1417 inp = sotoinpcb(so);
1418 tp = intotcpcb(inp);
1419 break;
1420 #endif
1421 #ifdef INET6
1422 case AF_INET6:
1423 in6p = sotoin6pcb(so);
1424 tp = in6totcpcb(in6p);
1425 break;
1426 #endif
1427 }
1428 if (tp == NULL)
1429 goto badsyn; /*XXX*/
1430 tiwin <<= tp->snd_scale;
1431 goto after_listen;
1432 }
1433 } else {
1434 /*
1435 * None of RST, SYN or ACK was set.
1436 * This is an invalid packet for a
1437 * TCB in LISTEN state. Send a RST.
1438 */
1439 goto badsyn;
1440 }
1441 } else {
1442 /*
1443 * Received a SYN.
1444 */
1445
1446 #ifdef INET6
1447 /*
1448 * If deprecated address is forbidden, we do
1449 * not accept SYN to deprecated interface
1450 * address to prevent any new inbound
1451 * connection from getting established.
1452 * When we do not accept SYN, we send a TCP
1453 * RST, with deprecated source address (instead
1454 * of dropping it). We compromise it as it is
1455 * much better for peer to send a RST, and
1456 * RST will be the final packet for the
1457 * exchange.
1458 *
1459 * If we do not forbid deprecated addresses, we
1460 * accept the SYN packet. RFC2462 does not
1461 * suggest dropping SYN in this case.
1462 * If we decipher RFC2462 5.5.4, it says like
1463 * this:
1464 * 1. use of deprecated addr with existing
1465 * communication is okay - "SHOULD continue
1466 * to be used"
1467 * 2. use of it with new communication:
1468 * (2a) "SHOULD NOT be used if alternate
1469 * address with sufficient scope is
1470 * available"
1471 * (2b) nothing mentioned otherwise.
1472 * Here we fall into (2b) case as we have no
1473 * choice in our source address selection - we
1474 * must obey the peer.
1475 *
1476 * The wording in RFC2462 is confusing, and
1477 * there are multiple description text for
1478 * deprecated address handling - worse, they
1479 * are not exactly the same. I believe 5.5.4
1480 * is the best one, so we follow 5.5.4.
1481 */
1482 if (af == AF_INET6 && !ip6_use_deprecated) {
1483 struct in6_ifaddr *ia6;
1484 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1485 &ip6->ip6_dst)) &&
1486 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1487 tp = NULL;
1488 goto dropwithreset;
1489 }
1490 }
1491 #endif
1492
1493 #ifdef IPSEC
1494 switch (af) {
1495 #ifdef INET
1496 case AF_INET:
1497 if (ipsec4_in_reject_so(m, so)) {
1498 ipsecstat.in_polvio++;
1499 tp = NULL;
1500 goto dropwithreset;
1501 }
1502 break;
1503 #endif
1504 #ifdef INET6
1505 case AF_INET6:
1506 if (ipsec6_in_reject_so(m, so)) {
1507 ipsec6stat.in_polvio++;
1508 tp = NULL;
1509 goto dropwithreset;
1510 }
1511 break;
1512 #endif
1513 }
1514 #endif
1515
1516 /*
1517 * LISTEN socket received a SYN
1518 * from itself? This can't possibly
1519 * be valid; drop the packet.
1520 */
1521 if (th->th_sport == th->th_dport) {
1522 int i;
1523
1524 switch (af) {
1525 #ifdef INET
1526 case AF_INET:
1527 i = in_hosteq(ip->ip_src, ip->ip_dst);
1528 break;
1529 #endif
1530 #ifdef INET6
1531 case AF_INET6:
1532 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1533 break;
1534 #endif
1535 default:
1536 i = 1;
1537 }
1538 if (i) {
1539 tcpstat.tcps_badsyn++;
1540 goto drop;
1541 }
1542 }
1543
1544 /*
1545 * SYN looks ok; create compressed TCP
1546 * state for it.
1547 */
1548 if (so->so_qlen <= so->so_qlimit &&
1549 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1550 so, m, optp, optlen, &opti))
1551 m = NULL;
1552 }
1553 goto drop;
1554 }
1555 }
1556
1557 after_listen:
1558 #ifdef DIAGNOSTIC
1559 /*
1560 * Should not happen now that all embryonic connections
1561 * are handled with compressed state.
1562 */
1563 if (tp->t_state == TCPS_LISTEN)
1564 panic("tcp_input: TCPS_LISTEN");
1565 #endif
1566
1567 /*
1568 * Segment received on connection.
1569 * Reset idle time and keep-alive timer.
1570 */
1571 tp->t_rcvtime = tcp_now;
1572 if (TCPS_HAVEESTABLISHED(tp->t_state))
1573 TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
1574
1575 /*
1576 * Process options.
1577 */
1578 #ifdef TCP_SIGNATURE
1579 if (optp || (tp->t_flags & TF_SIGNATURE))
1580 #else
1581 if (optp)
1582 #endif
1583 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1584 goto drop;
1585
1586 if (TCP_SACK_ENABLED(tp)) {
1587 tcp_del_sackholes(tp, th);
1588 }
1589
1590 if (opti.ts_present && opti.ts_ecr) {
1591 /*
1592 * Calculate the RTT from the returned time stamp and the
1593 * connection's time base. If the time stamp is later than
1594 * the current time, or is extremely old, fall back to non-1323
1595 * RTT calculation. Since ts_ecr is unsigned, we can test both
1596 * at the same time.
1597 */
1598 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1599 if (ts_rtt > TCP_PAWS_IDLE)
1600 ts_rtt = 0;
1601 } else {
1602 ts_rtt = 0;
1603 }
1604
1605 /*
1606 * Header prediction: check for the two common cases
1607 * of a uni-directional data xfer. If the packet has
1608 * no control flags, is in-sequence, the window didn't
1609 * change and we're not retransmitting, it's a
1610 * candidate. If the length is zero and the ack moved
1611 * forward, we're the sender side of the xfer. Just
1612 * free the data acked & wake any higher level process
1613 * that was blocked waiting for space. If the length
1614 * is non-zero and the ack didn't move, we're the
1615 * receiver side. If we're getting packets in-order
1616 * (the reassembly queue is empty), add the data to
1617 * the socket buffer and note that we need a delayed ack.
1618 */
1619 if (tp->t_state == TCPS_ESTABLISHED &&
1620 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
1621 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1622 th->th_seq == tp->rcv_nxt &&
1623 tiwin && tiwin == tp->snd_wnd &&
1624 tp->snd_nxt == tp->snd_max) {
1625
1626 /*
1627 * If last ACK falls within this segment's sequence numbers,
1628 * record the timestamp.
1629 * NOTE:
1630 * 1) That the test incorporates suggestions from the latest
1631 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1632 * 2) That updating only on newer timestamps interferes with
1633 * our earlier PAWS tests, so this check should be solely
1634 * predicated on the sequence space of this segment.
1635 * 3) That we modify the segment boundary check to be
1636 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
1637 * instead of RFC1323's
1638 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
1639 * This modified check allows us to overcome RFC1323's
1640 * limitations as described in Stevens TCP/IP Illustrated
1641 * Vol. 2 p.869. In such cases, we can still calculate the
1642 * RTT correctly when RCV.NXT == Last.ACK.Sent.
1643 */
1644 if (opti.ts_present &&
1645 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1646 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1647 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1648 tp->ts_recent_age = tcp_now;
1649 tp->ts_recent = opti.ts_val;
1650 }
1651
1652 if (tlen == 0) {
1653 /* Ack prediction. */
1654 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1655 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1656 tp->snd_cwnd >= tp->snd_wnd &&
1657 tp->t_partialacks < 0) {
1658 /*
1659 * this is a pure ack for outstanding data.
1660 */
1661 ++tcpstat.tcps_predack;
1662 if (ts_rtt)
1663 tcp_xmit_timer(tp, ts_rtt);
1664 else if (tp->t_rtttime &&
1665 SEQ_GT(th->th_ack, tp->t_rtseq))
1666 tcp_xmit_timer(tp,
1667 tcp_now - tp->t_rtttime);
1668 acked = th->th_ack - tp->snd_una;
1669 tcpstat.tcps_rcvackpack++;
1670 tcpstat.tcps_rcvackbyte += acked;
1671 ND6_HINT(tp);
1672
1673 if (acked > (tp->t_lastoff - tp->t_inoff))
1674 tp->t_lastm = NULL;
1675 sbdrop(&so->so_snd, acked);
1676 tp->t_lastoff -= acked;
1677
1678 ICMP_CHECK(tp, th, acked);
1679
1680 tp->snd_una = th->th_ack;
1681 tp->snd_fack = tp->snd_una;
1682 if (SEQ_LT(tp->snd_high, tp->snd_una))
1683 tp->snd_high = tp->snd_una;
1684 m_freem(m);
1685
1686 /*
1687 * If all outstanding data are acked, stop
1688 * retransmit timer, otherwise restart timer
1689 * using current (possibly backed-off) value.
1690 * If process is waiting for space,
1691 * wakeup/selwakeup/signal. If data
1692 * are ready to send, let tcp_output
1693 * decide between more output or persist.
1694 */
1695 if (tp->snd_una == tp->snd_max)
1696 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1697 else if (TCP_TIMER_ISARMED(tp,
1698 TCPT_PERSIST) == 0)
1699 TCP_TIMER_ARM(tp, TCPT_REXMT,
1700 tp->t_rxtcur);
1701
1702 sowwakeup(so);
1703 if (so->so_snd.sb_cc)
1704 (void) tcp_output(tp);
1705 if (tcp_saveti)
1706 m_freem(tcp_saveti);
1707 return;
1708 }
1709 } else if (th->th_ack == tp->snd_una &&
1710 TAILQ_FIRST(&tp->segq) == NULL &&
1711 tlen <= sbspace(&so->so_rcv)) {
1712 /*
1713 * this is a pure, in-sequence data packet
1714 * with nothing on the reassembly queue and
1715 * we have enough buffer space to take it.
1716 */
1717 ++tcpstat.tcps_preddat;
1718 tp->rcv_nxt += tlen;
1719 tcpstat.tcps_rcvpack++;
1720 tcpstat.tcps_rcvbyte += tlen;
1721 ND6_HINT(tp);
1722 /*
1723 * Drop TCP, IP headers and TCP options then add data
1724 * to socket buffer.
1725 */
1726 if (so->so_state & SS_CANTRCVMORE)
1727 m_freem(m);
1728 else {
1729 m_adj(m, toff + off);
1730 sbappendstream(&so->so_rcv, m);
1731 }
1732 sorwakeup(so);
1733 TCP_SETUP_ACK(tp, th);
1734 if (tp->t_flags & TF_ACKNOW)
1735 (void) tcp_output(tp);
1736 if (tcp_saveti)
1737 m_freem(tcp_saveti);
1738 return;
1739 }
1740 }
1741
1742 /*
1743 * Compute mbuf offset to TCP data segment.
1744 */
1745 hdroptlen = toff + off;
1746
1747 /*
1748 * Calculate amount of space in receive window,
1749 * and then do TCP input processing.
1750 * Receive window is amount of space in rcv queue,
1751 * but not less than advertised window.
1752 */
1753 { int win;
1754
1755 win = sbspace(&so->so_rcv);
1756 if (win < 0)
1757 win = 0;
1758 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1759 }
1760
1761 switch (tp->t_state) {
1762 case TCPS_LISTEN:
1763 /*
1764 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1765 */
1766 if (m->m_flags & (M_BCAST|M_MCAST))
1767 goto drop;
1768 switch (af) {
1769 #ifdef INET6
1770 case AF_INET6:
1771 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1772 goto drop;
1773 break;
1774 #endif /* INET6 */
1775 case AF_INET:
1776 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1777 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1778 goto drop;
1779 break;
1780 }
1781 break;
1782
1783 /*
1784 * If the state is SYN_SENT:
1785 * if seg contains an ACK, but not for our SYN, drop the input.
1786 * if seg contains a RST, then drop the connection.
1787 * if seg does not contain SYN, then drop it.
1788 * Otherwise this is an acceptable SYN segment
1789 * initialize tp->rcv_nxt and tp->irs
1790 * if seg contains ack then advance tp->snd_una
1791 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1792 * arrange for segment to be acked (eventually)
1793 * continue processing rest of data/controls, beginning with URG
1794 */
1795 case TCPS_SYN_SENT:
1796 if ((tiflags & TH_ACK) &&
1797 (SEQ_LEQ(th->th_ack, tp->iss) ||
1798 SEQ_GT(th->th_ack, tp->snd_max)))
1799 goto dropwithreset;
1800 if (tiflags & TH_RST) {
1801 if (tiflags & TH_ACK)
1802 tp = tcp_drop(tp, ECONNREFUSED);
1803 goto drop;
1804 }
1805 if ((tiflags & TH_SYN) == 0)
1806 goto drop;
1807 if (tiflags & TH_ACK) {
1808 tp->snd_una = th->th_ack;
1809 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1810 tp->snd_nxt = tp->snd_una;
1811 if (SEQ_LT(tp->snd_high, tp->snd_una))
1812 tp->snd_high = tp->snd_una;
1813 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1814 }
1815 tp->irs = th->th_seq;
1816 tcp_rcvseqinit(tp);
1817 tp->t_flags |= TF_ACKNOW;
1818 tcp_mss_from_peer(tp, opti.maxseg);
1819
1820 /*
1821 * Initialize the initial congestion window. If we
1822 * had to retransmit the SYN, we must initialize cwnd
1823 * to 1 segment (i.e. the Loss Window).
1824 */
1825 if (tp->t_flags & TF_SYN_REXMT)
1826 tp->snd_cwnd = tp->t_peermss;
1827 else {
1828 int ss = tcp_init_win;
1829 #ifdef INET
1830 if (inp != NULL && in_localaddr(inp->inp_faddr))
1831 ss = tcp_init_win_local;
1832 #endif
1833 #ifdef INET6
1834 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1835 ss = tcp_init_win_local;
1836 #endif
1837 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1838 }
1839
1840 tcp_rmx_rtt(tp);
1841 if (tiflags & TH_ACK) {
1842 tcpstat.tcps_connects++;
1843 soisconnected(so);
1844 tcp_established(tp);
1845 /* Do window scaling on this connection? */
1846 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1847 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1848 tp->snd_scale = tp->requested_s_scale;
1849 tp->rcv_scale = tp->request_r_scale;
1850 }
1851 TCP_REASS_LOCK(tp);
1852 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1853 TCP_REASS_UNLOCK(tp);
1854 /*
1855 * if we didn't have to retransmit the SYN,
1856 * use its rtt as our initial srtt & rtt var.
1857 */
1858 if (tp->t_rtttime)
1859 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1860 } else
1861 tp->t_state = TCPS_SYN_RECEIVED;
1862
1863 /*
1864 * Advance th->th_seq to correspond to first data byte.
1865 * If data, trim to stay within window,
1866 * dropping FIN if necessary.
1867 */
1868 th->th_seq++;
1869 if (tlen > tp->rcv_wnd) {
1870 todrop = tlen - tp->rcv_wnd;
1871 m_adj(m, -todrop);
1872 tlen = tp->rcv_wnd;
1873 tiflags &= ~TH_FIN;
1874 tcpstat.tcps_rcvpackafterwin++;
1875 tcpstat.tcps_rcvbyteafterwin += todrop;
1876 }
1877 tp->snd_wl1 = th->th_seq - 1;
1878 tp->rcv_up = th->th_seq;
1879 goto step6;
1880
1881 /*
1882 * If the state is SYN_RECEIVED:
1883 * If seg contains an ACK, but not for our SYN, drop the input
1884 * and generate an RST. See page 36, rfc793
1885 */
1886 case TCPS_SYN_RECEIVED:
1887 if ((tiflags & TH_ACK) &&
1888 (SEQ_LEQ(th->th_ack, tp->iss) ||
1889 SEQ_GT(th->th_ack, tp->snd_max)))
1890 goto dropwithreset;
1891 break;
1892 }
1893
1894 /*
1895 * States other than LISTEN or SYN_SENT.
1896 * First check timestamp, if present.
1897 * Then check that at least some bytes of segment are within
1898 * receive window. If segment begins before rcv_nxt,
1899 * drop leading data (and SYN); if nothing left, just ack.
1900 *
1901 * RFC 1323 PAWS: If we have a timestamp reply on this segment
1902 * and it's less than ts_recent, drop it.
1903 */
1904 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
1905 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
1906
1907 /* Check to see if ts_recent is over 24 days old. */
1908 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
1909 /*
1910 * Invalidate ts_recent. If this segment updates
1911 * ts_recent, the age will be reset later and ts_recent
1912 * will get a valid value. If it does not, setting
1913 * ts_recent to zero will at least satisfy the
1914 * requirement that zero be placed in the timestamp
1915 * echo reply when ts_recent isn't valid. The
1916 * age isn't reset until we get a valid ts_recent
1917 * because we don't want out-of-order segments to be
1918 * dropped when ts_recent is old.
1919 */
1920 tp->ts_recent = 0;
1921 } else {
1922 tcpstat.tcps_rcvduppack++;
1923 tcpstat.tcps_rcvdupbyte += tlen;
1924 tcpstat.tcps_pawsdrop++;
1925 tcp_new_dsack(tp, th->th_seq, tlen);
1926 goto dropafterack;
1927 }
1928 }
1929
1930 todrop = tp->rcv_nxt - th->th_seq;
1931 dupseg = FALSE;
1932 if (todrop > 0) {
1933 if (tiflags & TH_SYN) {
1934 tiflags &= ~TH_SYN;
1935 th->th_seq++;
1936 if (th->th_urp > 1)
1937 th->th_urp--;
1938 else {
1939 tiflags &= ~TH_URG;
1940 th->th_urp = 0;
1941 }
1942 todrop--;
1943 }
1944 if (todrop > tlen ||
1945 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1946 /*
1947 * Any valid FIN or RST must be to the left of the
1948 * window. At this point the FIN or RST must be a
1949 * duplicate or out of sequence; drop it.
1950 */
1951 if (tiflags & TH_RST)
1952 goto drop;
1953 tiflags &= ~(TH_FIN|TH_RST);
1954 /*
1955 * Send an ACK to resynchronize and drop any data.
1956 * But keep on processing for RST or ACK.
1957 */
1958 tp->t_flags |= TF_ACKNOW;
1959 todrop = tlen;
1960 dupseg = TRUE;
1961 tcpstat.tcps_rcvdupbyte += todrop;
1962 tcpstat.tcps_rcvduppack++;
1963 } else if ((tiflags & TH_RST) &&
1964 th->th_seq != tp->last_ack_sent) {
1965 /*
1966 * Test for reset before adjusting the sequence
1967 * number for overlapping data.
1968 */
1969 goto dropafterack_ratelim;
1970 } else {
1971 tcpstat.tcps_rcvpartduppack++;
1972 tcpstat.tcps_rcvpartdupbyte += todrop;
1973 }
1974 tcp_new_dsack(tp, th->th_seq, todrop);
1975 hdroptlen += todrop; /*drop from head afterwards*/
1976 th->th_seq += todrop;
1977 tlen -= todrop;
1978 if (th->th_urp > todrop)
1979 th->th_urp -= todrop;
1980 else {
1981 tiflags &= ~TH_URG;
1982 th->th_urp = 0;
1983 }
1984 }
1985
1986 /*
1987 * If new data are received on a connection after the
1988 * user processes are gone, then RST the other end.
1989 */
1990 if ((so->so_state & SS_NOFDREF) &&
1991 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
1992 tp = tcp_close(tp);
1993 tcpstat.tcps_rcvafterclose++;
1994 goto dropwithreset;
1995 }
1996
1997 /*
1998 * If segment ends after window, drop trailing data
1999 * (and PUSH and FIN); if nothing left, just ACK.
2000 */
2001 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2002 if (todrop > 0) {
2003 tcpstat.tcps_rcvpackafterwin++;
2004 if (todrop >= tlen) {
2005 /*
2006 * The segment actually starts after the window.
2007 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2008 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2009 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2010 */
2011 tcpstat.tcps_rcvbyteafterwin += tlen;
2012 /*
2013 * If a new connection request is received
2014 * while in TIME_WAIT, drop the old connection
2015 * and start over if the sequence numbers
2016 * are above the previous ones.
2017 *
2018 * NOTE: We will checksum the packet again, and
2019 * so we need to put the header fields back into
2020 * network order!
2021 * XXX This kind of sucks, but we don't expect
2022 * XXX this to happen very often, so maybe it
2023 * XXX doesn't matter so much.
2024 */
2025 if (tiflags & TH_SYN &&
2026 tp->t_state == TCPS_TIME_WAIT &&
2027 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2028 iss = tcp_new_iss(tp, tp->snd_nxt);
2029 tp = tcp_close(tp);
2030 TCP_FIELDS_TO_NET(th);
2031 goto findpcb;
2032 }
2033 /*
2034 * If window is closed can only take segments at
2035 * window edge, and have to drop data and PUSH from
2036 * incoming segments. Continue processing, but
2037 * remember to ack. Otherwise, drop segment
2038 * and (if not RST) ack.
2039 */
2040 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2041 tp->t_flags |= TF_ACKNOW;
2042 tcpstat.tcps_rcvwinprobe++;
2043 } else
2044 goto dropafterack;
2045 } else
2046 tcpstat.tcps_rcvbyteafterwin += todrop;
2047 m_adj(m, -todrop);
2048 tlen -= todrop;
2049 tiflags &= ~(TH_PUSH|TH_FIN);
2050 }
2051
2052 /*
2053 * If last ACK falls within this segment's sequence numbers,
2054 * and the timestamp is newer, record it.
2055 */
2056 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
2057 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2058 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
2059 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2060 tp->ts_recent_age = tcp_now;
2061 tp->ts_recent = opti.ts_val;
2062 }
2063
2064 /*
2065 * If the RST bit is set examine the state:
2066 * SYN_RECEIVED STATE:
2067 * If passive open, return to LISTEN state.
2068 * If active open, inform user that connection was refused.
2069 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2070 * Inform user that connection was reset, and close tcb.
2071 * CLOSING, LAST_ACK, TIME_WAIT STATES
2072 * Close the tcb.
2073 */
2074 if (tiflags & TH_RST) {
2075 if (th->th_seq != tp->last_ack_sent)
2076 goto dropafterack_ratelim;
2077
2078 switch (tp->t_state) {
2079 case TCPS_SYN_RECEIVED:
2080 so->so_error = ECONNREFUSED;
2081 goto close;
2082
2083 case TCPS_ESTABLISHED:
2084 case TCPS_FIN_WAIT_1:
2085 case TCPS_FIN_WAIT_2:
2086 case TCPS_CLOSE_WAIT:
2087 so->so_error = ECONNRESET;
2088 close:
2089 tp->t_state = TCPS_CLOSED;
2090 tcpstat.tcps_drops++;
2091 tp = tcp_close(tp);
2092 goto drop;
2093
2094 case TCPS_CLOSING:
2095 case TCPS_LAST_ACK:
2096 case TCPS_TIME_WAIT:
2097 tp = tcp_close(tp);
2098 goto drop;
2099 }
2100 }
2101
2102 /*
2103 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2104 * we must be in a synchronized state. RFC791 states (under RST
2105 * generation) that any unacceptable segment (an out-of-order SYN
2106 * qualifies) received in a synchronized state must elicit only an
2107 * empty acknowledgment segment ... and the connection remains in
2108 * the same state.
2109 */
2110 if (tiflags & TH_SYN) {
2111 if (tp->rcv_nxt == th->th_seq) {
2112 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2113 TH_ACK);
2114 if (tcp_saveti)
2115 m_freem(tcp_saveti);
2116 return;
2117 }
2118
2119 goto dropafterack_ratelim;
2120 }
2121
2122 /*
2123 * If the ACK bit is off we drop the segment and return.
2124 */
2125 if ((tiflags & TH_ACK) == 0) {
2126 if (tp->t_flags & TF_ACKNOW)
2127 goto dropafterack;
2128 else
2129 goto drop;
2130 }
2131
2132 /*
2133 * Ack processing.
2134 */
2135 switch (tp->t_state) {
2136
2137 /*
2138 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2139 * ESTABLISHED state and continue processing, otherwise
2140 * send an RST.
2141 */
2142 case TCPS_SYN_RECEIVED:
2143 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2144 SEQ_GT(th->th_ack, tp->snd_max))
2145 goto dropwithreset;
2146 tcpstat.tcps_connects++;
2147 soisconnected(so);
2148 tcp_established(tp);
2149 /* Do window scaling? */
2150 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2151 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2152 tp->snd_scale = tp->requested_s_scale;
2153 tp->rcv_scale = tp->request_r_scale;
2154 }
2155 TCP_REASS_LOCK(tp);
2156 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2157 TCP_REASS_UNLOCK(tp);
2158 tp->snd_wl1 = th->th_seq - 1;
2159 /* fall into ... */
2160
2161 /*
2162 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2163 * ACKs. If the ack is in the range
2164 * tp->snd_una < th->th_ack <= tp->snd_max
2165 * then advance tp->snd_una to th->th_ack and drop
2166 * data from the retransmission queue. If this ACK reflects
2167 * more up to date window information we update our window information.
2168 */
2169 case TCPS_ESTABLISHED:
2170 case TCPS_FIN_WAIT_1:
2171 case TCPS_FIN_WAIT_2:
2172 case TCPS_CLOSE_WAIT:
2173 case TCPS_CLOSING:
2174 case TCPS_LAST_ACK:
2175 case TCPS_TIME_WAIT:
2176
2177 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2178 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2179 tcpstat.tcps_rcvdupack++;
2180 /*
2181 * If we have outstanding data (other than
2182 * a window probe), this is a completely
2183 * duplicate ack (ie, window info didn't
2184 * change), the ack is the biggest we've
2185 * seen and we've seen exactly our rexmt
2186 * threshhold of them, assume a packet
2187 * has been dropped and retransmit it.
2188 * Kludge snd_nxt & the congestion
2189 * window so we send only this one
2190 * packet.
2191 *
2192 * We know we're losing at the current
2193 * window size so do congestion avoidance
2194 * (set ssthresh to half the current window
2195 * and pull our congestion window back to
2196 * the new ssthresh).
2197 *
2198 * Dup acks mean that packets have left the
2199 * network (they're now cached at the receiver)
2200 * so bump cwnd by the amount in the receiver
2201 * to keep a constant cwnd packets in the
2202 * network.
2203 *
2204 * If we are using TCP/SACK, then enter
2205 * Fast Recovery if the receiver SACKs
2206 * data that is tcprexmtthresh * MSS
2207 * bytes past the last ACKed segment,
2208 * irrespective of the number of DupAcks.
2209 */
2210 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2211 th->th_ack != tp->snd_una)
2212 tp->t_dupacks = 0;
2213 else if (tp->t_partialacks < 0 &&
2214 (++tp->t_dupacks == tcprexmtthresh ||
2215 TCP_FACK_FASTRECOV(tp))) {
2216 tcp_seq onxt;
2217 u_int win;
2218
2219 if (tcp_do_newreno &&
2220 SEQ_LT(th->th_ack, tp->snd_high)) {
2221 /*
2222 * False fast retransmit after
2223 * timeout. Do not enter fast
2224 * recovery.
2225 */
2226 tp->t_dupacks = 0;
2227 break;
2228 }
2229
2230 onxt = tp->snd_nxt;
2231 win = min(tp->snd_wnd, tp->snd_cwnd) /
2232 2 / tp->t_segsz;
2233 if (win < 2)
2234 win = 2;
2235 tp->snd_ssthresh = win * tp->t_segsz;
2236 tp->snd_recover = tp->snd_max;
2237 tp->t_partialacks = 0;
2238 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2239 tp->t_rtttime = 0;
2240 if (TCP_SACK_ENABLED(tp)) {
2241 tp->t_dupacks = tcprexmtthresh;
2242 tp->sack_newdata = tp->snd_nxt;
2243 tp->snd_cwnd = tp->t_segsz;
2244 (void) tcp_output(tp);
2245 goto drop;
2246 }
2247 tp->snd_nxt = th->th_ack;
2248 tp->snd_cwnd = tp->t_segsz;
2249 (void) tcp_output(tp);
2250 tp->snd_cwnd = tp->snd_ssthresh +
2251 tp->t_segsz * tp->t_dupacks;
2252 if (SEQ_GT(onxt, tp->snd_nxt))
2253 tp->snd_nxt = onxt;
2254 goto drop;
2255 } else if (tp->t_dupacks > tcprexmtthresh) {
2256 tp->snd_cwnd += tp->t_segsz;
2257 (void) tcp_output(tp);
2258 goto drop;
2259 }
2260 } else {
2261 /*
2262 * If the ack appears to be very old, only
2263 * allow data that is in-sequence. This
2264 * makes it somewhat more difficult to insert
2265 * forged data by guessing sequence numbers.
2266 * Sent an ack to try to update the send
2267 * sequence number on the other side.
2268 */
2269 if (tlen && th->th_seq != tp->rcv_nxt &&
2270 SEQ_LT(th->th_ack,
2271 tp->snd_una - tp->max_sndwnd))
2272 goto dropafterack;
2273 }
2274 break;
2275 }
2276 /*
2277 * If the congestion window was inflated to account
2278 * for the other side's cached packets, retract it.
2279 */
2280 if (TCP_SACK_ENABLED(tp))
2281 tcp_sack_newack(tp, th);
2282 else if (tcp_do_newreno)
2283 tcp_newreno_newack(tp, th);
2284 else
2285 tcp_reno_newack(tp, th);
2286 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2287 tcpstat.tcps_rcvacktoomuch++;
2288 goto dropafterack;
2289 }
2290 acked = th->th_ack - tp->snd_una;
2291 tcpstat.tcps_rcvackpack++;
2292 tcpstat.tcps_rcvackbyte += acked;
2293
2294 /*
2295 * If we have a timestamp reply, update smoothed
2296 * round trip time. If no timestamp is present but
2297 * transmit timer is running and timed sequence
2298 * number was acked, update smoothed round trip time.
2299 * Since we now have an rtt measurement, cancel the
2300 * timer backoff (cf., Phil Karn's retransmit alg.).
2301 * Recompute the initial retransmit timer.
2302 */
2303 if (ts_rtt)
2304 tcp_xmit_timer(tp, ts_rtt);
2305 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2306 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2307
2308 /*
2309 * If all outstanding data is acked, stop retransmit
2310 * timer and remember to restart (more output or persist).
2311 * If there is more data to be acked, restart retransmit
2312 * timer, using current (possibly backed-off) value.
2313 */
2314 if (th->th_ack == tp->snd_max) {
2315 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2316 needoutput = 1;
2317 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2318 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2319 /*
2320 * When new data is acked, open the congestion window.
2321 * If the window gives us less than ssthresh packets
2322 * in flight, open exponentially (segsz per packet).
2323 * Otherwise open linearly: segsz per window
2324 * (segsz^2 / cwnd per packet).
2325 *
2326 * If we are still in fast recovery (meaning we are using
2327 * NewReno and we have only received partial acks), do not
2328 * inflate the window yet.
2329 */
2330 if (tp->t_partialacks < 0) {
2331 u_int cw = tp->snd_cwnd;
2332 u_int incr = tp->t_segsz;
2333
2334 if (cw >= tp->snd_ssthresh)
2335 incr = incr * incr / cw;
2336 tp->snd_cwnd = min(cw + incr,
2337 TCP_MAXWIN << tp->snd_scale);
2338 }
2339 ND6_HINT(tp);
2340 if (acked > so->so_snd.sb_cc) {
2341 tp->snd_wnd -= so->so_snd.sb_cc;
2342 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2343 ourfinisacked = 1;
2344 } else {
2345 if (acked > (tp->t_lastoff - tp->t_inoff))
2346 tp->t_lastm = NULL;
2347 sbdrop(&so->so_snd, acked);
2348 tp->t_lastoff -= acked;
2349 tp->snd_wnd -= acked;
2350 ourfinisacked = 0;
2351 }
2352 sowwakeup(so);
2353
2354 ICMP_CHECK(tp, th, acked);
2355
2356 tp->snd_una = th->th_ack;
2357 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2358 tp->snd_fack = tp->snd_una;
2359 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2360 tp->snd_nxt = tp->snd_una;
2361 if (SEQ_LT(tp->snd_high, tp->snd_una))
2362 tp->snd_high = tp->snd_una;
2363
2364 switch (tp->t_state) {
2365
2366 /*
2367 * In FIN_WAIT_1 STATE in addition to the processing
2368 * for the ESTABLISHED state if our FIN is now acknowledged
2369 * then enter FIN_WAIT_2.
2370 */
2371 case TCPS_FIN_WAIT_1:
2372 if (ourfinisacked) {
2373 /*
2374 * If we can't receive any more
2375 * data, then closing user can proceed.
2376 * Starting the timer is contrary to the
2377 * specification, but if we don't get a FIN
2378 * we'll hang forever.
2379 */
2380 if (so->so_state & SS_CANTRCVMORE) {
2381 soisdisconnected(so);
2382 if (tcp_maxidle > 0)
2383 TCP_TIMER_ARM(tp, TCPT_2MSL,
2384 tcp_maxidle);
2385 }
2386 tp->t_state = TCPS_FIN_WAIT_2;
2387 }
2388 break;
2389
2390 /*
2391 * In CLOSING STATE in addition to the processing for
2392 * the ESTABLISHED state if the ACK acknowledges our FIN
2393 * then enter the TIME-WAIT state, otherwise ignore
2394 * the segment.
2395 */
2396 case TCPS_CLOSING:
2397 if (ourfinisacked) {
2398 tp->t_state = TCPS_TIME_WAIT;
2399 tcp_canceltimers(tp);
2400 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2401 soisdisconnected(so);
2402 }
2403 break;
2404
2405 /*
2406 * In LAST_ACK, we may still be waiting for data to drain
2407 * and/or to be acked, as well as for the ack of our FIN.
2408 * If our FIN is now acknowledged, delete the TCB,
2409 * enter the closed state and return.
2410 */
2411 case TCPS_LAST_ACK:
2412 if (ourfinisacked) {
2413 tp = tcp_close(tp);
2414 goto drop;
2415 }
2416 break;
2417
2418 /*
2419 * In TIME_WAIT state the only thing that should arrive
2420 * is a retransmission of the remote FIN. Acknowledge
2421 * it and restart the finack timer.
2422 */
2423 case TCPS_TIME_WAIT:
2424 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2425 goto dropafterack;
2426 }
2427 }
2428
2429 step6:
2430 /*
2431 * Update window information.
2432 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2433 */
2434 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2435 (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
2436 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
2437 /* keep track of pure window updates */
2438 if (tlen == 0 &&
2439 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2440 tcpstat.tcps_rcvwinupd++;
2441 tp->snd_wnd = tiwin;
2442 tp->snd_wl1 = th->th_seq;
2443 tp->snd_wl2 = th->th_ack;
2444 if (tp->snd_wnd > tp->max_sndwnd)
2445 tp->max_sndwnd = tp->snd_wnd;
2446 needoutput = 1;
2447 }
2448
2449 /*
2450 * Process segments with URG.
2451 */
2452 if ((tiflags & TH_URG) && th->th_urp &&
2453 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2454 /*
2455 * This is a kludge, but if we receive and accept
2456 * random urgent pointers, we'll crash in
2457 * soreceive. It's hard to imagine someone
2458 * actually wanting to send this much urgent data.
2459 */
2460 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2461 th->th_urp = 0; /* XXX */
2462 tiflags &= ~TH_URG; /* XXX */
2463 goto dodata; /* XXX */
2464 }
2465 /*
2466 * If this segment advances the known urgent pointer,
2467 * then mark the data stream. This should not happen
2468 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2469 * a FIN has been received from the remote side.
2470 * In these states we ignore the URG.
2471 *
2472 * According to RFC961 (Assigned Protocols),
2473 * the urgent pointer points to the last octet
2474 * of urgent data. We continue, however,
2475 * to consider it to indicate the first octet
2476 * of data past the urgent section as the original
2477 * spec states (in one of two places).
2478 */
2479 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2480 tp->rcv_up = th->th_seq + th->th_urp;
2481 so->so_oobmark = so->so_rcv.sb_cc +
2482 (tp->rcv_up - tp->rcv_nxt) - 1;
2483 if (so->so_oobmark == 0)
2484 so->so_state |= SS_RCVATMARK;
2485 sohasoutofband(so);
2486 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2487 }
2488 /*
2489 * Remove out of band data so doesn't get presented to user.
2490 * This can happen independent of advancing the URG pointer,
2491 * but if two URG's are pending at once, some out-of-band
2492 * data may creep in... ick.
2493 */
2494 if (th->th_urp <= (u_int16_t) tlen
2495 #ifdef SO_OOBINLINE
2496 && (so->so_options & SO_OOBINLINE) == 0
2497 #endif
2498 )
2499 tcp_pulloutofband(so, th, m, hdroptlen);
2500 } else
2501 /*
2502 * If no out of band data is expected,
2503 * pull receive urgent pointer along
2504 * with the receive window.
2505 */
2506 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2507 tp->rcv_up = tp->rcv_nxt;
2508 dodata: /* XXX */
2509
2510 /*
2511 * Process the segment text, merging it into the TCP sequencing queue,
2512 * and arranging for acknowledgement of receipt if necessary.
2513 * This process logically involves adjusting tp->rcv_wnd as data
2514 * is presented to the user (this happens in tcp_usrreq.c,
2515 * case PRU_RCVD). If a FIN has already been received on this
2516 * connection then we just ignore the text.
2517 */
2518 if ((tlen || (tiflags & TH_FIN)) &&
2519 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2520 /*
2521 * Insert segment ti into reassembly queue of tcp with
2522 * control block tp. Return TH_FIN if reassembly now includes
2523 * a segment with FIN. The macro form does the common case
2524 * inline (segment is the next to be received on an
2525 * established connection, and the queue is empty),
2526 * avoiding linkage into and removal from the queue and
2527 * repetition of various conversions.
2528 * Set DELACK for segments received in order, but ack
2529 * immediately when segments are out of order
2530 * (so fast retransmit can work).
2531 */
2532 /* NOTE: this was TCP_REASS() macro, but used only once */
2533 TCP_REASS_LOCK(tp);
2534 if (th->th_seq == tp->rcv_nxt &&
2535 TAILQ_FIRST(&tp->segq) == NULL &&
2536 tp->t_state == TCPS_ESTABLISHED) {
2537 TCP_SETUP_ACK(tp, th);
2538 tp->rcv_nxt += tlen;
2539 tiflags = th->th_flags & TH_FIN;
2540 tcpstat.tcps_rcvpack++;
2541 tcpstat.tcps_rcvbyte += tlen;
2542 ND6_HINT(tp);
2543 if (so->so_state & SS_CANTRCVMORE)
2544 m_freem(m);
2545 else {
2546 m_adj(m, hdroptlen);
2547 sbappendstream(&(so)->so_rcv, m);
2548 }
2549 sorwakeup(so);
2550 } else {
2551 m_adj(m, hdroptlen);
2552 tiflags = tcp_reass(tp, th, m, &tlen);
2553 tp->t_flags |= TF_ACKNOW;
2554 }
2555 TCP_REASS_UNLOCK(tp);
2556
2557 /*
2558 * Note the amount of data that peer has sent into
2559 * our window, in order to estimate the sender's
2560 * buffer size.
2561 */
2562 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2563 } else {
2564 m_freem(m);
2565 m = NULL;
2566 tiflags &= ~TH_FIN;
2567 }
2568
2569 /*
2570 * If FIN is received ACK the FIN and let the user know
2571 * that the connection is closing. Ignore a FIN received before
2572 * the connection is fully established.
2573 */
2574 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2575 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2576 socantrcvmore(so);
2577 tp->t_flags |= TF_ACKNOW;
2578 tp->rcv_nxt++;
2579 }
2580 switch (tp->t_state) {
2581
2582 /*
2583 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2584 */
2585 case TCPS_ESTABLISHED:
2586 tp->t_state = TCPS_CLOSE_WAIT;
2587 break;
2588
2589 /*
2590 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2591 * enter the CLOSING state.
2592 */
2593 case TCPS_FIN_WAIT_1:
2594 tp->t_state = TCPS_CLOSING;
2595 break;
2596
2597 /*
2598 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2599 * starting the time-wait timer, turning off the other
2600 * standard timers.
2601 */
2602 case TCPS_FIN_WAIT_2:
2603 tp->t_state = TCPS_TIME_WAIT;
2604 tcp_canceltimers(tp);
2605 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2606 soisdisconnected(so);
2607 break;
2608
2609 /*
2610 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2611 */
2612 case TCPS_TIME_WAIT:
2613 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2614 break;
2615 }
2616 }
2617 #ifdef TCP_DEBUG
2618 if (so->so_options & SO_DEBUG)
2619 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2620 #endif
2621
2622 /*
2623 * Return any desired output.
2624 */
2625 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2626 (void) tcp_output(tp);
2627 }
2628 if (tcp_saveti)
2629 m_freem(tcp_saveti);
2630 return;
2631
2632 badsyn:
2633 /*
2634 * Received a bad SYN. Increment counters and dropwithreset.
2635 */
2636 tcpstat.tcps_badsyn++;
2637 tp = NULL;
2638 goto dropwithreset;
2639
2640 dropafterack:
2641 /*
2642 * Generate an ACK dropping incoming segment if it occupies
2643 * sequence space, where the ACK reflects our state.
2644 */
2645 if (tiflags & TH_RST)
2646 goto drop;
2647 goto dropafterack2;
2648
2649 dropafterack_ratelim:
2650 /*
2651 * We may want to rate-limit ACKs against SYN/RST attack.
2652 */
2653 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2654 tcp_ackdrop_ppslim) == 0) {
2655 /* XXX stat */
2656 goto drop;
2657 }
2658 /* ...fall into dropafterack2... */
2659
2660 dropafterack2:
2661 m_freem(m);
2662 tp->t_flags |= TF_ACKNOW;
2663 (void) tcp_output(tp);
2664 if (tcp_saveti)
2665 m_freem(tcp_saveti);
2666 return;
2667
2668 dropwithreset_ratelim:
2669 /*
2670 * We may want to rate-limit RSTs in certain situations,
2671 * particularly if we are sending an RST in response to
2672 * an attempt to connect to or otherwise communicate with
2673 * a port for which we have no socket.
2674 */
2675 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2676 tcp_rst_ppslim) == 0) {
2677 /* XXX stat */
2678 goto drop;
2679 }
2680 /* ...fall into dropwithreset... */
2681
2682 dropwithreset:
2683 /*
2684 * Generate a RST, dropping incoming segment.
2685 * Make ACK acceptable to originator of segment.
2686 */
2687 if (tiflags & TH_RST)
2688 goto drop;
2689
2690 switch (af) {
2691 #ifdef INET6
2692 case AF_INET6:
2693 /* For following calls to tcp_respond */
2694 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2695 goto drop;
2696 break;
2697 #endif /* INET6 */
2698 case AF_INET:
2699 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2700 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2701 goto drop;
2702 }
2703
2704 if (tiflags & TH_ACK)
2705 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2706 else {
2707 if (tiflags & TH_SYN)
2708 tlen++;
2709 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2710 TH_RST|TH_ACK);
2711 }
2712 if (tcp_saveti)
2713 m_freem(tcp_saveti);
2714 return;
2715
2716 badcsum:
2717 drop:
2718 /*
2719 * Drop space held by incoming segment and return.
2720 */
2721 if (tp) {
2722 if (tp->t_inpcb)
2723 so = tp->t_inpcb->inp_socket;
2724 #ifdef INET6
2725 else if (tp->t_in6pcb)
2726 so = tp->t_in6pcb->in6p_socket;
2727 #endif
2728 else
2729 so = NULL;
2730 #ifdef TCP_DEBUG
2731 if (so && (so->so_options & SO_DEBUG) != 0)
2732 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2733 #endif
2734 }
2735 if (tcp_saveti)
2736 m_freem(tcp_saveti);
2737 m_freem(m);
2738 return;
2739 }
2740
2741 #ifdef TCP_SIGNATURE
2742 int
2743 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
2744 {
2745
2746 MD5Update(fstate, (u_char *)data, len);
2747 return (0);
2748 }
2749
2750 struct secasvar *
2751 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2752 {
2753 struct secasvar *sav;
2754 #ifdef FAST_IPSEC
2755 union sockaddr_union dst;
2756 #endif
2757 struct ip *ip;
2758 struct ip6_hdr *ip6;
2759
2760 ip = mtod(m, struct ip *);
2761 switch (ip->ip_v) {
2762 case 4:
2763 ip = mtod(m, struct ip *);
2764 ip6 = NULL;
2765 break;
2766 case 6:
2767 ip = NULL;
2768 ip6 = mtod(m, struct ip6_hdr *);
2769 break;
2770 default:
2771 return (NULL);
2772 }
2773
2774 #ifdef FAST_IPSEC
2775 /* Extract the destination from the IP header in the mbuf. */
2776 bzero(&dst, sizeof(union sockaddr_union));
2777 dst.sa.sa_len = sizeof(struct sockaddr_in);
2778 dst.sa.sa_family = AF_INET;
2779 dst.sin.sin_addr = ip->ip_dst;
2780
2781 /*
2782 * Look up an SADB entry which matches the address of the peer.
2783 */
2784 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2785 #else
2786 if (ip)
2787 sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
2788 (caddr_t)&ip->ip_dst, IPPROTO_TCP,
2789 htonl(TCP_SIG_SPI), 0, 0);
2790 else
2791 sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
2792 (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
2793 htonl(TCP_SIG_SPI), 0, 0);
2794 #endif
2795
2796 return (sav); /* freesav must be performed by caller */
2797 }
2798
2799 int
2800 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2801 struct secasvar *sav, char *sig)
2802 {
2803 MD5_CTX ctx;
2804 struct ip *ip;
2805 struct ipovly *ipovly;
2806 struct ip6_hdr *ip6;
2807 struct ippseudo ippseudo;
2808 struct ip6_hdr_pseudo ip6pseudo;
2809 struct tcphdr th0;
2810 int l, tcphdrlen;
2811
2812 if (sav == NULL)
2813 return (-1);
2814
2815 tcphdrlen = th->th_off * 4;
2816
2817 switch (mtod(m, struct ip *)->ip_v) {
2818 case 4:
2819 ip = mtod(m, struct ip *);
2820 ip6 = NULL;
2821 break;
2822 case 6:
2823 ip = NULL;
2824 ip6 = mtod(m, struct ip6_hdr *);
2825 break;
2826 default:
2827 return (-1);
2828 }
2829
2830 MD5Init(&ctx);
2831
2832 if (ip) {
2833 memset(&ippseudo, 0, sizeof(ippseudo));
2834 ipovly = (struct ipovly *)ip;
2835 ippseudo.ippseudo_src = ipovly->ih_src;
2836 ippseudo.ippseudo_dst = ipovly->ih_dst;
2837 ippseudo.ippseudo_pad = 0;
2838 ippseudo.ippseudo_p = IPPROTO_TCP;
2839 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2840 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2841 } else {
2842 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2843 ip6pseudo.ip6ph_src = ip6->ip6_src;
2844 in6_clearscope(&ip6pseudo.ip6ph_src);
2845 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2846 in6_clearscope(&ip6pseudo.ip6ph_dst);
2847 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2848 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2849 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2850 }
2851
2852 th0 = *th;
2853 th0.th_sum = 0;
2854 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2855
2856 l = m->m_pkthdr.len - thoff - tcphdrlen;
2857 if (l > 0)
2858 m_apply(m, thoff + tcphdrlen,
2859 m->m_pkthdr.len - thoff - tcphdrlen,
2860 tcp_signature_apply, &ctx);
2861
2862 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2863 MD5Final(sig, &ctx);
2864
2865 return (0);
2866 }
2867 #endif
2868
2869 int
2870 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
2871 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2872 {
2873 u_int16_t mss;
2874 int opt, optlen = 0;
2875 #ifdef TCP_SIGNATURE
2876 caddr_t sigp = NULL;
2877 char sigbuf[TCP_SIGLEN];
2878 struct secasvar *sav = NULL;
2879 #endif
2880
2881 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2882 opt = cp[0];
2883 if (opt == TCPOPT_EOL)
2884 break;
2885 if (opt == TCPOPT_NOP)
2886 optlen = 1;
2887 else {
2888 if (cnt < 2)
2889 break;
2890 optlen = cp[1];
2891 if (optlen < 2 || optlen > cnt)
2892 break;
2893 }
2894 switch (opt) {
2895
2896 default:
2897 continue;
2898
2899 case TCPOPT_MAXSEG:
2900 if (optlen != TCPOLEN_MAXSEG)
2901 continue;
2902 if (!(th->th_flags & TH_SYN))
2903 continue;
2904 if (TCPS_HAVERCVDSYN(tp->t_state))
2905 continue;
2906 bcopy(cp + 2, &mss, sizeof(mss));
2907 oi->maxseg = ntohs(mss);
2908 break;
2909
2910 case TCPOPT_WINDOW:
2911 if (optlen != TCPOLEN_WINDOW)
2912 continue;
2913 if (!(th->th_flags & TH_SYN))
2914 continue;
2915 if (TCPS_HAVERCVDSYN(tp->t_state))
2916 continue;
2917 tp->t_flags |= TF_RCVD_SCALE;
2918 tp->requested_s_scale = cp[2];
2919 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2920 #if 0 /*XXX*/
2921 char *p;
2922
2923 if (ip)
2924 p = ntohl(ip->ip_src);
2925 #ifdef INET6
2926 else if (ip6)
2927 p = ip6_sprintf(&ip6->ip6_src);
2928 #endif
2929 else
2930 p = "(unknown)";
2931 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2932 "assuming %d\n",
2933 tp->requested_s_scale, p,
2934 TCP_MAX_WINSHIFT);
2935 #else
2936 log(LOG_ERR, "TCP: invalid wscale %d, "
2937 "assuming %d\n",
2938 tp->requested_s_scale,
2939 TCP_MAX_WINSHIFT);
2940 #endif
2941 tp->requested_s_scale = TCP_MAX_WINSHIFT;
2942 }
2943 break;
2944
2945 case TCPOPT_TIMESTAMP:
2946 if (optlen != TCPOLEN_TIMESTAMP)
2947 continue;
2948 oi->ts_present = 1;
2949 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
2950 NTOHL(oi->ts_val);
2951 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
2952 NTOHL(oi->ts_ecr);
2953
2954 if (!(th->th_flags & TH_SYN))
2955 continue;
2956 if (TCPS_HAVERCVDSYN(tp->t_state))
2957 continue;
2958 /*
2959 * A timestamp received in a SYN makes
2960 * it ok to send timestamp requests and replies.
2961 */
2962 tp->t_flags |= TF_RCVD_TSTMP;
2963 tp->ts_recent = oi->ts_val;
2964 tp->ts_recent_age = tcp_now;
2965 break;
2966
2967 case TCPOPT_SACK_PERMITTED:
2968 if (optlen != TCPOLEN_SACK_PERMITTED)
2969 continue;
2970 if (!(th->th_flags & TH_SYN))
2971 continue;
2972 if (TCPS_HAVERCVDSYN(tp->t_state))
2973 continue;
2974 if (tcp_do_sack) {
2975 tp->t_flags |= TF_SACK_PERMIT;
2976 tp->t_flags |= TF_WILL_SACK;
2977 }
2978 break;
2979
2980 case TCPOPT_SACK:
2981 tcp_sack_option(tp, th, cp, optlen);
2982 break;
2983 #ifdef TCP_SIGNATURE
2984 case TCPOPT_SIGNATURE:
2985 if (optlen != TCPOLEN_SIGNATURE)
2986 continue;
2987 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
2988 return (-1);
2989
2990 sigp = sigbuf;
2991 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
2992 memset(cp + 2, 0, TCP_SIGLEN);
2993 tp->t_flags |= TF_SIGNATURE;
2994 break;
2995 #endif
2996 }
2997 }
2998
2999 #ifdef TCP_SIGNATURE
3000 if (tp->t_flags & TF_SIGNATURE) {
3001
3002 sav = tcp_signature_getsav(m, th);
3003
3004 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3005 return (-1);
3006 }
3007
3008 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3009 if (sav == NULL)
3010 return (-1);
3011 #ifdef FAST_IPSEC
3012 KEY_FREESAV(&sav);
3013 #else
3014 key_freesav(sav);
3015 #endif
3016 return (-1);
3017 }
3018
3019 if (sigp) {
3020 char sig[TCP_SIGLEN];
3021
3022 TCP_FIELDS_TO_NET(th);
3023 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3024 TCP_FIELDS_TO_HOST(th);
3025 if (sav == NULL)
3026 return (-1);
3027 #ifdef FAST_IPSEC
3028 KEY_FREESAV(&sav);
3029 #else
3030 key_freesav(sav);
3031 #endif
3032 return (-1);
3033 }
3034 TCP_FIELDS_TO_HOST(th);
3035
3036 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3037 tcpstat.tcps_badsig++;
3038 if (sav == NULL)
3039 return (-1);
3040 #ifdef FAST_IPSEC
3041 KEY_FREESAV(&sav);
3042 #else
3043 key_freesav(sav);
3044 #endif
3045 return (-1);
3046 } else
3047 tcpstat.tcps_goodsig++;
3048
3049 key_sa_recordxfer(sav, m);
3050 #ifdef FAST_IPSEC
3051 KEY_FREESAV(&sav);
3052 #else
3053 key_freesav(sav);
3054 #endif
3055 }
3056 #endif
3057
3058 return (0);
3059 }
3060
3061 /*
3062 * Pull out of band byte out of a segment so
3063 * it doesn't appear in the user's data queue.
3064 * It is still reflected in the segment length for
3065 * sequencing purposes.
3066 */
3067 void
3068 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3069 struct mbuf *m, int off)
3070 {
3071 int cnt = off + th->th_urp - 1;
3072
3073 while (cnt >= 0) {
3074 if (m->m_len > cnt) {
3075 char *cp = mtod(m, caddr_t) + cnt;
3076 struct tcpcb *tp = sototcpcb(so);
3077
3078 tp->t_iobc = *cp;
3079 tp->t_oobflags |= TCPOOB_HAVEDATA;
3080 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3081 m->m_len--;
3082 return;
3083 }
3084 cnt -= m->m_len;
3085 m = m->m_next;
3086 if (m == 0)
3087 break;
3088 }
3089 panic("tcp_pulloutofband");
3090 }
3091
3092 /*
3093 * Collect new round-trip time estimate
3094 * and update averages and current timeout.
3095 */
3096 void
3097 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3098 {
3099 int32_t delta;
3100
3101 tcpstat.tcps_rttupdated++;
3102 if (tp->t_srtt != 0) {
3103 /*
3104 * srtt is stored as fixed point with 3 bits after the
3105 * binary point (i.e., scaled by 8). The following magic
3106 * is equivalent to the smoothing algorithm in rfc793 with
3107 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3108 * point). Adjust rtt to origin 0.
3109 */
3110 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3111 if ((tp->t_srtt += delta) <= 0)
3112 tp->t_srtt = 1 << 2;
3113 /*
3114 * We accumulate a smoothed rtt variance (actually, a
3115 * smoothed mean difference), then set the retransmit
3116 * timer to smoothed rtt + 4 times the smoothed variance.
3117 * rttvar is stored as fixed point with 2 bits after the
3118 * binary point (scaled by 4). The following is
3119 * equivalent to rfc793 smoothing with an alpha of .75
3120 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3121 * rfc793's wired-in beta.
3122 */
3123 if (delta < 0)
3124 delta = -delta;
3125 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3126 if ((tp->t_rttvar += delta) <= 0)
3127 tp->t_rttvar = 1 << 2;
3128 } else {
3129 /*
3130 * No rtt measurement yet - use the unsmoothed rtt.
3131 * Set the variance to half the rtt (so our first
3132 * retransmit happens at 3*rtt).
3133 */
3134 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3135 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3136 }
3137 tp->t_rtttime = 0;
3138 tp->t_rxtshift = 0;
3139
3140 /*
3141 * the retransmit should happen at rtt + 4 * rttvar.
3142 * Because of the way we do the smoothing, srtt and rttvar
3143 * will each average +1/2 tick of bias. When we compute
3144 * the retransmit timer, we want 1/2 tick of rounding and
3145 * 1 extra tick because of +-1/2 tick uncertainty in the
3146 * firing of the timer. The bias will give us exactly the
3147 * 1.5 tick we need. But, because the bias is
3148 * statistical, we have to test that we don't drop below
3149 * the minimum feasible timer (which is 2 ticks).
3150 */
3151 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3152 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3153
3154 /*
3155 * We received an ack for a packet that wasn't retransmitted;
3156 * it is probably safe to discard any error indications we've
3157 * received recently. This isn't quite right, but close enough
3158 * for now (a route might have failed after we sent a segment,
3159 * and the return path might not be symmetrical).
3160 */
3161 tp->t_softerror = 0;
3162 }
3163
3164 void
3165 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
3166 {
3167 if (tp->t_partialacks < 0) {
3168 /*
3169 * We were not in fast recovery. Reset the duplicate ack
3170 * counter.
3171 */
3172 tp->t_dupacks = 0;
3173 } else {
3174 /*
3175 * Clamp the congestion window to the crossover point and
3176 * exit fast recovery.
3177 */
3178 if (tp->snd_cwnd > tp->snd_ssthresh)
3179 tp->snd_cwnd = tp->snd_ssthresh;
3180 tp->t_partialacks = -1;
3181 tp->t_dupacks = 0;
3182 }
3183 }
3184
3185 /*
3186 * Implement the NewReno response to a new ack, checking for partial acks in
3187 * fast recovery.
3188 */
3189 void
3190 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
3191 {
3192 if (tp->t_partialacks < 0) {
3193 /*
3194 * We were not in fast recovery. Reset the duplicate ack
3195 * counter.
3196 */
3197 tp->t_dupacks = 0;
3198 } else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
3199 /*
3200 * This is a partial ack. Retransmit the first unacknowledged
3201 * segment and deflate the congestion window by the amount of
3202 * acknowledged data. Do not exit fast recovery.
3203 */
3204 tcp_seq onxt = tp->snd_nxt;
3205 u_long ocwnd = tp->snd_cwnd;
3206
3207 /*
3208 * snd_una has not yet been updated and the socket's send
3209 * buffer has not yet drained off the ACK'd data, so we
3210 * have to leave snd_una as it was to get the correct data
3211 * offset in tcp_output().
3212 */
3213 if (++tp->t_partialacks == 1)
3214 TCP_TIMER_DISARM(tp, TCPT_REXMT);
3215 tp->t_rtttime = 0;
3216 tp->snd_nxt = th->th_ack;
3217 /*
3218 * Set snd_cwnd to one segment beyond ACK'd offset. snd_una
3219 * is not yet updated when we're called.
3220 */
3221 tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
3222 (void) tcp_output(tp);
3223 tp->snd_cwnd = ocwnd;
3224 if (SEQ_GT(onxt, tp->snd_nxt))
3225 tp->snd_nxt = onxt;
3226 /*
3227 * Partial window deflation. Relies on fact that tp->snd_una
3228 * not updated yet.
3229 */
3230 tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
3231 } else {
3232 /*
3233 * Complete ack. Inflate the congestion window to ssthresh
3234 * and exit fast recovery.
3235 *
3236 * Window inflation should have left us with approx.
3237 * snd_ssthresh outstanding data. But in case we
3238 * would be inclined to send a burst, better to do
3239 * it via the slow start mechanism.
3240 */
3241 if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
3242 tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
3243 + tp->t_segsz;
3244 else
3245 tp->snd_cwnd = tp->snd_ssthresh;
3246 tp->t_partialacks = -1;
3247 tp->t_dupacks = 0;
3248 }
3249 }
3250
3251
3252 /*
3253 * TCP compressed state engine. Currently used to hold compressed
3254 * state for SYN_RECEIVED.
3255 */
3256
3257 u_long syn_cache_count;
3258 u_int32_t syn_hash1, syn_hash2;
3259
3260 #define SYN_HASH(sa, sp, dp) \
3261 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3262 ((u_int32_t)(sp)))^syn_hash2)))
3263 #ifndef INET6
3264 #define SYN_HASHALL(hash, src, dst) \
3265 do { \
3266 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3267 ((const struct sockaddr_in *)(src))->sin_port, \
3268 ((const struct sockaddr_in *)(dst))->sin_port); \
3269 } while (/*CONSTCOND*/ 0)
3270 #else
3271 #define SYN_HASH6(sa, sp, dp) \
3272 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3273 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3274 & 0x7fffffff)
3275
3276 #define SYN_HASHALL(hash, src, dst) \
3277 do { \
3278 switch ((src)->sa_family) { \
3279 case AF_INET: \
3280 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3281 ((const struct sockaddr_in *)(src))->sin_port, \
3282 ((const struct sockaddr_in *)(dst))->sin_port); \
3283 break; \
3284 case AF_INET6: \
3285 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3286 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3287 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3288 break; \
3289 default: \
3290 hash = 0; \
3291 } \
3292 } while (/*CONSTCOND*/0)
3293 #endif /* INET6 */
3294
3295 #define SYN_CACHE_RM(sc) \
3296 do { \
3297 TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket, \
3298 (sc), sc_bucketq); \
3299 (sc)->sc_tp = NULL; \
3300 LIST_REMOVE((sc), sc_tpq); \
3301 tcp_syn_cache[(sc)->sc_bucketidx].sch_length--; \
3302 callout_stop(&(sc)->sc_timer); \
3303 syn_cache_count--; \
3304 } while (/*CONSTCOND*/0)
3305
3306 #define SYN_CACHE_PUT(sc) \
3307 do { \
3308 if ((sc)->sc_ipopts) \
3309 (void) m_free((sc)->sc_ipopts); \
3310 if ((sc)->sc_route4.ro_rt != NULL) \
3311 RTFREE((sc)->sc_route4.ro_rt); \
3312 if (callout_invoking(&(sc)->sc_timer)) \
3313 (sc)->sc_flags |= SCF_DEAD; \
3314 else \
3315 pool_put(&syn_cache_pool, (sc)); \
3316 } while (/*CONSTCOND*/0)
3317
3318 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
3319
3320 /*
3321 * We don't estimate RTT with SYNs, so each packet starts with the default
3322 * RTT and each timer step has a fixed timeout value.
3323 */
3324 #define SYN_CACHE_TIMER_ARM(sc) \
3325 do { \
3326 TCPT_RANGESET((sc)->sc_rxtcur, \
3327 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3328 TCPTV_REXMTMAX); \
3329 callout_reset(&(sc)->sc_timer, \
3330 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3331 } while (/*CONSTCOND*/0)
3332
3333 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3334
3335 void
3336 syn_cache_init(void)
3337 {
3338 int i;
3339
3340 /* Initialize the hash buckets. */
3341 for (i = 0; i < tcp_syn_cache_size; i++)
3342 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3343 }
3344
3345 void
3346 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3347 {
3348 struct syn_cache_head *scp;
3349 struct syn_cache *sc2;
3350 int s;
3351
3352 /*
3353 * If there are no entries in the hash table, reinitialize
3354 * the hash secrets.
3355 */
3356 if (syn_cache_count == 0) {
3357 syn_hash1 = arc4random();
3358 syn_hash2 = arc4random();
3359 }
3360
3361 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3362 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3363 scp = &tcp_syn_cache[sc->sc_bucketidx];
3364
3365 /*
3366 * Make sure that we don't overflow the per-bucket
3367 * limit or the total cache size limit.
3368 */
3369 s = splsoftnet();
3370 if (scp->sch_length >= tcp_syn_bucket_limit) {
3371 tcpstat.tcps_sc_bucketoverflow++;
3372 /*
3373 * The bucket is full. Toss the oldest element in the
3374 * bucket. This will be the first entry in the bucket.
3375 */
3376 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3377 #ifdef DIAGNOSTIC
3378 /*
3379 * This should never happen; we should always find an
3380 * entry in our bucket.
3381 */
3382 if (sc2 == NULL)
3383 panic("syn_cache_insert: bucketoverflow: impossible");
3384 #endif
3385 SYN_CACHE_RM(sc2);
3386 SYN_CACHE_PUT(sc2);
3387 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3388 struct syn_cache_head *scp2, *sce;
3389
3390 tcpstat.tcps_sc_overflowed++;
3391 /*
3392 * The cache is full. Toss the oldest entry in the
3393 * first non-empty bucket we can find.
3394 *
3395 * XXX We would really like to toss the oldest
3396 * entry in the cache, but we hope that this
3397 * condition doesn't happen very often.
3398 */
3399 scp2 = scp;
3400 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3401 sce = &tcp_syn_cache[tcp_syn_cache_size];
3402 for (++scp2; scp2 != scp; scp2++) {
3403 if (scp2 >= sce)
3404 scp2 = &tcp_syn_cache[0];
3405 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3406 break;
3407 }
3408 #ifdef DIAGNOSTIC
3409 /*
3410 * This should never happen; we should always find a
3411 * non-empty bucket.
3412 */
3413 if (scp2 == scp)
3414 panic("syn_cache_insert: cacheoverflow: "
3415 "impossible");
3416 #endif
3417 }
3418 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3419 SYN_CACHE_RM(sc2);
3420 SYN_CACHE_PUT(sc2);
3421 }
3422
3423 /*
3424 * Initialize the entry's timer.
3425 */
3426 sc->sc_rxttot = 0;
3427 sc->sc_rxtshift = 0;
3428 SYN_CACHE_TIMER_ARM(sc);
3429
3430 /* Link it from tcpcb entry */
3431 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3432
3433 /* Put it into the bucket. */
3434 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3435 scp->sch_length++;
3436 syn_cache_count++;
3437
3438 tcpstat.tcps_sc_added++;
3439 splx(s);
3440 }
3441
3442 /*
3443 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3444 * If we have retransmitted an entry the maximum number of times, expire
3445 * that entry.
3446 */
3447 void
3448 syn_cache_timer(void *arg)
3449 {
3450 struct syn_cache *sc = arg;
3451 int s;
3452
3453 s = splsoftnet();
3454 callout_ack(&sc->sc_timer);
3455
3456 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3457 tcpstat.tcps_sc_delayed_free++;
3458 pool_put(&syn_cache_pool, sc);
3459 splx(s);
3460 return;
3461 }
3462
3463 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3464 /* Drop it -- too many retransmissions. */
3465 goto dropit;
3466 }
3467
3468 /*
3469 * Compute the total amount of time this entry has
3470 * been on a queue. If this entry has been on longer
3471 * than the keep alive timer would allow, expire it.
3472 */
3473 sc->sc_rxttot += sc->sc_rxtcur;
3474 if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
3475 goto dropit;
3476
3477 tcpstat.tcps_sc_retransmitted++;
3478 (void) syn_cache_respond(sc, NULL);
3479
3480 /* Advance the timer back-off. */
3481 sc->sc_rxtshift++;
3482 SYN_CACHE_TIMER_ARM(sc);
3483
3484 splx(s);
3485 return;
3486
3487 dropit:
3488 tcpstat.tcps_sc_timed_out++;
3489 SYN_CACHE_RM(sc);
3490 SYN_CACHE_PUT(sc);
3491 splx(s);
3492 }
3493
3494 /*
3495 * Remove syn cache created by the specified tcb entry,
3496 * because this does not make sense to keep them
3497 * (if there's no tcb entry, syn cache entry will never be used)
3498 */
3499 void
3500 syn_cache_cleanup(struct tcpcb *tp)
3501 {
3502 struct syn_cache *sc, *nsc;
3503 int s;
3504
3505 s = splsoftnet();
3506
3507 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3508 nsc = LIST_NEXT(sc, sc_tpq);
3509
3510 #ifdef DIAGNOSTIC
3511 if (sc->sc_tp != tp)
3512 panic("invalid sc_tp in syn_cache_cleanup");
3513 #endif
3514 SYN_CACHE_RM(sc);
3515 SYN_CACHE_PUT(sc);
3516 }
3517 /* just for safety */
3518 LIST_INIT(&tp->t_sc);
3519
3520 splx(s);
3521 }
3522
3523 /*
3524 * Find an entry in the syn cache.
3525 */
3526 struct syn_cache *
3527 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3528 struct syn_cache_head **headp)
3529 {
3530 struct syn_cache *sc;
3531 struct syn_cache_head *scp;
3532 u_int32_t hash;
3533 int s;
3534
3535 SYN_HASHALL(hash, src, dst);
3536
3537 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3538 *headp = scp;
3539 s = splsoftnet();
3540 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3541 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3542 if (sc->sc_hash != hash)
3543 continue;
3544 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3545 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3546 splx(s);
3547 return (sc);
3548 }
3549 }
3550 splx(s);
3551 return (NULL);
3552 }
3553
3554 /*
3555 * This function gets called when we receive an ACK for a
3556 * socket in the LISTEN state. We look up the connection
3557 * in the syn cache, and if its there, we pull it out of
3558 * the cache and turn it into a full-blown connection in
3559 * the SYN-RECEIVED state.
3560 *
3561 * The return values may not be immediately obvious, and their effects
3562 * can be subtle, so here they are:
3563 *
3564 * NULL SYN was not found in cache; caller should drop the
3565 * packet and send an RST.
3566 *
3567 * -1 We were unable to create the new connection, and are
3568 * aborting it. An ACK,RST is being sent to the peer
3569 * (unless we got screwey sequence numbners; see below),
3570 * because the 3-way handshake has been completed. Caller
3571 * should not free the mbuf, since we may be using it. If
3572 * we are not, we will free it.
3573 *
3574 * Otherwise, the return value is a pointer to the new socket
3575 * associated with the connection.
3576 */
3577 struct socket *
3578 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3579 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3580 struct socket *so, struct mbuf *m)
3581 {
3582 struct syn_cache *sc;
3583 struct syn_cache_head *scp;
3584 struct inpcb *inp = NULL;
3585 #ifdef INET6
3586 struct in6pcb *in6p = NULL;
3587 #endif
3588 struct tcpcb *tp = 0;
3589 struct mbuf *am;
3590 int s;
3591 struct socket *oso;
3592
3593 s = splsoftnet();
3594 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3595 splx(s);
3596 return (NULL);
3597 }
3598
3599 /*
3600 * Verify the sequence and ack numbers. Try getting the correct
3601 * response again.
3602 */
3603 if ((th->th_ack != sc->sc_iss + 1) ||
3604 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3605 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3606 (void) syn_cache_respond(sc, m);
3607 splx(s);
3608 return ((struct socket *)(-1));
3609 }
3610
3611 /* Remove this cache entry */
3612 SYN_CACHE_RM(sc);
3613 splx(s);
3614
3615 /*
3616 * Ok, create the full blown connection, and set things up
3617 * as they would have been set up if we had created the
3618 * connection when the SYN arrived. If we can't create
3619 * the connection, abort it.
3620 */
3621 /*
3622 * inp still has the OLD in_pcb stuff, set the
3623 * v6-related flags on the new guy, too. This is
3624 * done particularly for the case where an AF_INET6
3625 * socket is bound only to a port, and a v4 connection
3626 * comes in on that port.
3627 * we also copy the flowinfo from the original pcb
3628 * to the new one.
3629 */
3630 oso = so;
3631 so = sonewconn(so, SS_ISCONNECTED);
3632 if (so == NULL)
3633 goto resetandabort;
3634
3635 switch (so->so_proto->pr_domain->dom_family) {
3636 #ifdef INET
3637 case AF_INET:
3638 inp = sotoinpcb(so);
3639 break;
3640 #endif
3641 #ifdef INET6
3642 case AF_INET6:
3643 in6p = sotoin6pcb(so);
3644 break;
3645 #endif
3646 }
3647 switch (src->sa_family) {
3648 #ifdef INET
3649 case AF_INET:
3650 if (inp) {
3651 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3652 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3653 inp->inp_options = ip_srcroute();
3654 in_pcbstate(inp, INP_BOUND);
3655 if (inp->inp_options == NULL) {
3656 inp->inp_options = sc->sc_ipopts;
3657 sc->sc_ipopts = NULL;
3658 }
3659 }
3660 #ifdef INET6
3661 else if (in6p) {
3662 /* IPv4 packet to AF_INET6 socket */
3663 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3664 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3665 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3666 &in6p->in6p_laddr.s6_addr32[3],
3667 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3668 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3669 in6totcpcb(in6p)->t_family = AF_INET;
3670 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3671 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3672 else
3673 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3674 in6_pcbstate(in6p, IN6P_BOUND);
3675 }
3676 #endif
3677 break;
3678 #endif
3679 #ifdef INET6
3680 case AF_INET6:
3681 if (in6p) {
3682 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3683 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3684 in6_pcbstate(in6p, IN6P_BOUND);
3685 }
3686 break;
3687 #endif
3688 }
3689 #ifdef INET6
3690 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3691 struct in6pcb *oin6p = sotoin6pcb(oso);
3692 /* inherit socket options from the listening socket */
3693 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3694 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3695 m_freem(in6p->in6p_options);
3696 in6p->in6p_options = 0;
3697 }
3698 ip6_savecontrol(in6p, &in6p->in6p_options,
3699 mtod(m, struct ip6_hdr *), m);
3700 }
3701 #endif
3702
3703 #if defined(IPSEC) || defined(FAST_IPSEC)
3704 /*
3705 * we make a copy of policy, instead of sharing the policy,
3706 * for better behavior in terms of SA lookup and dead SA removal.
3707 */
3708 if (inp) {
3709 /* copy old policy into new socket's */
3710 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3711 printf("tcp_input: could not copy policy\n");
3712 }
3713 #ifdef INET6
3714 else if (in6p) {
3715 /* copy old policy into new socket's */
3716 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3717 in6p->in6p_sp))
3718 printf("tcp_input: could not copy policy\n");
3719 }
3720 #endif
3721 #endif
3722
3723 /*
3724 * Give the new socket our cached route reference.
3725 */
3726 if (inp)
3727 inp->inp_route = sc->sc_route4; /* struct assignment */
3728 #ifdef INET6
3729 else
3730 in6p->in6p_route = sc->sc_route6;
3731 #endif
3732 sc->sc_route4.ro_rt = NULL;
3733
3734 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3735 if (am == NULL)
3736 goto resetandabort;
3737 MCLAIM(am, &tcp_mowner);
3738 am->m_len = src->sa_len;
3739 bcopy(src, mtod(am, caddr_t), src->sa_len);
3740 if (inp) {
3741 if (in_pcbconnect(inp, am, NULL)) {
3742 (void) m_free(am);
3743 goto resetandabort;
3744 }
3745 }
3746 #ifdef INET6
3747 else if (in6p) {
3748 if (src->sa_family == AF_INET) {
3749 /* IPv4 packet to AF_INET6 socket */
3750 struct sockaddr_in6 *sin6;
3751 sin6 = mtod(am, struct sockaddr_in6 *);
3752 am->m_len = sizeof(*sin6);
3753 bzero(sin6, sizeof(*sin6));
3754 sin6->sin6_family = AF_INET6;
3755 sin6->sin6_len = sizeof(*sin6);
3756 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3757 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3758 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3759 &sin6->sin6_addr.s6_addr32[3],
3760 sizeof(sin6->sin6_addr.s6_addr32[3]));
3761 }
3762 if (in6_pcbconnect(in6p, am, NULL)) {
3763 (void) m_free(am);
3764 goto resetandabort;
3765 }
3766 }
3767 #endif
3768 else {
3769 (void) m_free(am);
3770 goto resetandabort;
3771 }
3772 (void) m_free(am);
3773
3774 if (inp)
3775 tp = intotcpcb(inp);
3776 #ifdef INET6
3777 else if (in6p)
3778 tp = in6totcpcb(in6p);
3779 #endif
3780 else
3781 tp = NULL;
3782 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3783 if (sc->sc_request_r_scale != 15) {
3784 tp->requested_s_scale = sc->sc_requested_s_scale;
3785 tp->request_r_scale = sc->sc_request_r_scale;
3786 tp->snd_scale = sc->sc_requested_s_scale;
3787 tp->rcv_scale = sc->sc_request_r_scale;
3788 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3789 }
3790 if (sc->sc_flags & SCF_TIMESTAMP)
3791 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3792 tp->ts_timebase = sc->sc_timebase;
3793
3794 tp->t_template = tcp_template(tp);
3795 if (tp->t_template == 0) {
3796 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3797 so = NULL;
3798 m_freem(m);
3799 goto abort;
3800 }
3801
3802 tp->iss = sc->sc_iss;
3803 tp->irs = sc->sc_irs;
3804 tcp_sendseqinit(tp);
3805 tcp_rcvseqinit(tp);
3806 tp->t_state = TCPS_SYN_RECEIVED;
3807 TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
3808 tcpstat.tcps_accepts++;
3809
3810 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3811 tp->t_flags |= TF_WILL_SACK;
3812
3813 #ifdef TCP_SIGNATURE
3814 if (sc->sc_flags & SCF_SIGNATURE)
3815 tp->t_flags |= TF_SIGNATURE;
3816 #endif
3817
3818 /* Initialize tp->t_ourmss before we deal with the peer's! */
3819 tp->t_ourmss = sc->sc_ourmaxseg;
3820 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3821
3822 /*
3823 * Initialize the initial congestion window. If we
3824 * had to retransmit the SYN,ACK, we must initialize cwnd
3825 * to 1 segment (i.e. the Loss Window).
3826 */
3827 if (sc->sc_rxtshift)
3828 tp->snd_cwnd = tp->t_peermss;
3829 else {
3830 int ss = tcp_init_win;
3831 #ifdef INET
3832 if (inp != NULL && in_localaddr(inp->inp_faddr))
3833 ss = tcp_init_win_local;
3834 #endif
3835 #ifdef INET6
3836 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3837 ss = tcp_init_win_local;
3838 #endif
3839 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3840 }
3841
3842 tcp_rmx_rtt(tp);
3843 tp->snd_wl1 = sc->sc_irs;
3844 tp->rcv_up = sc->sc_irs + 1;
3845
3846 /*
3847 * This is what whould have happened in tcp_output() when
3848 * the SYN,ACK was sent.
3849 */
3850 tp->snd_up = tp->snd_una;
3851 tp->snd_max = tp->snd_nxt = tp->iss+1;
3852 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3853 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3854 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3855 tp->last_ack_sent = tp->rcv_nxt;
3856 tp->t_partialacks = -1;
3857 tp->t_dupacks = 0;
3858
3859 tcpstat.tcps_sc_completed++;
3860 SYN_CACHE_PUT(sc);
3861 return (so);
3862
3863 resetandabort:
3864 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3865 abort:
3866 if (so != NULL)
3867 (void) soabort(so);
3868 SYN_CACHE_PUT(sc);
3869 tcpstat.tcps_sc_aborted++;
3870 return ((struct socket *)(-1));
3871 }
3872
3873 /*
3874 * This function is called when we get a RST for a
3875 * non-existent connection, so that we can see if the
3876 * connection is in the syn cache. If it is, zap it.
3877 */
3878
3879 void
3880 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3881 {
3882 struct syn_cache *sc;
3883 struct syn_cache_head *scp;
3884 int s = splsoftnet();
3885
3886 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3887 splx(s);
3888 return;
3889 }
3890 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3891 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3892 splx(s);
3893 return;
3894 }
3895 SYN_CACHE_RM(sc);
3896 splx(s);
3897 tcpstat.tcps_sc_reset++;
3898 SYN_CACHE_PUT(sc);
3899 }
3900
3901 void
3902 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3903 struct tcphdr *th)
3904 {
3905 struct syn_cache *sc;
3906 struct syn_cache_head *scp;
3907 int s;
3908
3909 s = splsoftnet();
3910 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3911 splx(s);
3912 return;
3913 }
3914 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3915 if (ntohl (th->th_seq) != sc->sc_iss) {
3916 splx(s);
3917 return;
3918 }
3919
3920 /*
3921 * If we've retransmitted 3 times and this is our second error,
3922 * we remove the entry. Otherwise, we allow it to continue on.
3923 * This prevents us from incorrectly nuking an entry during a
3924 * spurious network outage.
3925 *
3926 * See tcp_notify().
3927 */
3928 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3929 sc->sc_flags |= SCF_UNREACH;
3930 splx(s);
3931 return;
3932 }
3933
3934 SYN_CACHE_RM(sc);
3935 splx(s);
3936 tcpstat.tcps_sc_unreach++;
3937 SYN_CACHE_PUT(sc);
3938 }
3939
3940 /*
3941 * Given a LISTEN socket and an inbound SYN request, add
3942 * this to the syn cache, and send back a segment:
3943 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3944 * to the source.
3945 *
3946 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3947 * Doing so would require that we hold onto the data and deliver it
3948 * to the application. However, if we are the target of a SYN-flood
3949 * DoS attack, an attacker could send data which would eventually
3950 * consume all available buffer space if it were ACKed. By not ACKing
3951 * the data, we avoid this DoS scenario.
3952 */
3953
3954 int
3955 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3956 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3957 int optlen, struct tcp_opt_info *oi)
3958 {
3959 struct tcpcb tb, *tp;
3960 long win;
3961 struct syn_cache *sc;
3962 struct syn_cache_head *scp;
3963 struct mbuf *ipopts;
3964 struct tcp_opt_info opti;
3965
3966 tp = sototcpcb(so);
3967
3968 bzero(&opti, sizeof(opti));
3969
3970 /*
3971 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3972 *
3973 * Note this check is performed in tcp_input() very early on.
3974 */
3975
3976 /*
3977 * Initialize some local state.
3978 */
3979 win = sbspace(&so->so_rcv);
3980 if (win > TCP_MAXWIN)
3981 win = TCP_MAXWIN;
3982
3983 switch (src->sa_family) {
3984 #ifdef INET
3985 case AF_INET:
3986 /*
3987 * Remember the IP options, if any.
3988 */
3989 ipopts = ip_srcroute();
3990 break;
3991 #endif
3992 default:
3993 ipopts = NULL;
3994 }
3995
3996 #ifdef TCP_SIGNATURE
3997 if (optp || (tp->t_flags & TF_SIGNATURE))
3998 #else
3999 if (optp)
4000 #endif
4001 {
4002 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4003 #ifdef TCP_SIGNATURE
4004 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4005 #endif
4006 tb.t_state = TCPS_LISTEN;
4007 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4008 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4009 return (0);
4010 } else
4011 tb.t_flags = 0;
4012
4013 /*
4014 * See if we already have an entry for this connection.
4015 * If we do, resend the SYN,ACK. We do not count this
4016 * as a retransmission (XXX though maybe we should).
4017 */
4018 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4019 tcpstat.tcps_sc_dupesyn++;
4020 if (ipopts) {
4021 /*
4022 * If we were remembering a previous source route,
4023 * forget it and use the new one we've been given.
4024 */
4025 if (sc->sc_ipopts)
4026 (void) m_free(sc->sc_ipopts);
4027 sc->sc_ipopts = ipopts;
4028 }
4029 sc->sc_timestamp = tb.ts_recent;
4030 if (syn_cache_respond(sc, m) == 0) {
4031 tcpstat.tcps_sndacks++;
4032 tcpstat.tcps_sndtotal++;
4033 }
4034 return (1);
4035 }
4036
4037 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4038 if (sc == NULL) {
4039 if (ipopts)
4040 (void) m_free(ipopts);
4041 return (0);
4042 }
4043
4044 /*
4045 * Fill in the cache, and put the necessary IP and TCP
4046 * options into the reply.
4047 */
4048 bzero(sc, sizeof(struct syn_cache));
4049 callout_init(&sc->sc_timer);
4050 bcopy(src, &sc->sc_src, src->sa_len);
4051 bcopy(dst, &sc->sc_dst, dst->sa_len);
4052 sc->sc_flags = 0;
4053 sc->sc_ipopts = ipopts;
4054 sc->sc_irs = th->th_seq;
4055 switch (src->sa_family) {
4056 #ifdef INET
4057 case AF_INET:
4058 {
4059 struct sockaddr_in *srcin = (void *) src;
4060 struct sockaddr_in *dstin = (void *) dst;
4061
4062 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4063 &srcin->sin_addr, dstin->sin_port,
4064 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4065 break;
4066 }
4067 #endif /* INET */
4068 #ifdef INET6
4069 case AF_INET6:
4070 {
4071 struct sockaddr_in6 *srcin6 = (void *) src;
4072 struct sockaddr_in6 *dstin6 = (void *) dst;
4073
4074 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4075 &srcin6->sin6_addr, dstin6->sin6_port,
4076 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4077 break;
4078 }
4079 #endif /* INET6 */
4080 }
4081 sc->sc_peermaxseg = oi->maxseg;
4082 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4083 m->m_pkthdr.rcvif : NULL,
4084 sc->sc_src.sa.sa_family);
4085 sc->sc_win = win;
4086 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
4087 sc->sc_timestamp = tb.ts_recent;
4088 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4089 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4090 sc->sc_flags |= SCF_TIMESTAMP;
4091 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4092 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4093 sc->sc_requested_s_scale = tb.requested_s_scale;
4094 sc->sc_request_r_scale = 0;
4095 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4096 TCP_MAXWIN << sc->sc_request_r_scale <
4097 so->so_rcv.sb_hiwat)
4098 sc->sc_request_r_scale++;
4099 } else {
4100 sc->sc_requested_s_scale = 15;
4101 sc->sc_request_r_scale = 15;
4102 }
4103 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4104 sc->sc_flags |= SCF_SACK_PERMIT;
4105 #ifdef TCP_SIGNATURE
4106 if (tb.t_flags & TF_SIGNATURE)
4107 sc->sc_flags |= SCF_SIGNATURE;
4108 #endif
4109 sc->sc_tp = tp;
4110 if (syn_cache_respond(sc, m) == 0) {
4111 syn_cache_insert(sc, tp);
4112 tcpstat.tcps_sndacks++;
4113 tcpstat.tcps_sndtotal++;
4114 } else {
4115 SYN_CACHE_PUT(sc);
4116 tcpstat.tcps_sc_dropped++;
4117 }
4118 return (1);
4119 }
4120
4121 int
4122 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4123 {
4124 struct route *ro;
4125 u_int8_t *optp;
4126 int optlen, error;
4127 u_int16_t tlen;
4128 struct ip *ip = NULL;
4129 #ifdef INET6
4130 struct ip6_hdr *ip6 = NULL;
4131 #endif
4132 struct tcpcb *tp;
4133 struct tcphdr *th;
4134 u_int hlen;
4135 struct socket *so;
4136
4137 switch (sc->sc_src.sa.sa_family) {
4138 case AF_INET:
4139 hlen = sizeof(struct ip);
4140 ro = &sc->sc_route4;
4141 break;
4142 #ifdef INET6
4143 case AF_INET6:
4144 hlen = sizeof(struct ip6_hdr);
4145 ro = (struct route *)&sc->sc_route6;
4146 break;
4147 #endif
4148 default:
4149 if (m)
4150 m_freem(m);
4151 return (EAFNOSUPPORT);
4152 }
4153
4154 /* Compute the size of the TCP options. */
4155 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4156 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4157 #ifdef TCP_SIGNATURE
4158 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4159 #endif
4160 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4161
4162 tlen = hlen + sizeof(struct tcphdr) + optlen;
4163
4164 /*
4165 * Create the IP+TCP header from scratch.
4166 */
4167 if (m)
4168 m_freem(m);
4169 #ifdef DIAGNOSTIC
4170 if (max_linkhdr + tlen > MCLBYTES)
4171 return (ENOBUFS);
4172 #endif
4173 MGETHDR(m, M_DONTWAIT, MT_DATA);
4174 if (m && tlen > MHLEN) {
4175 MCLGET(m, M_DONTWAIT);
4176 if ((m->m_flags & M_EXT) == 0) {
4177 m_freem(m);
4178 m = NULL;
4179 }
4180 }
4181 if (m == NULL)
4182 return (ENOBUFS);
4183 MCLAIM(m, &tcp_tx_mowner);
4184
4185 /* Fixup the mbuf. */
4186 m->m_data += max_linkhdr;
4187 m->m_len = m->m_pkthdr.len = tlen;
4188 if (sc->sc_tp) {
4189 tp = sc->sc_tp;
4190 if (tp->t_inpcb)
4191 so = tp->t_inpcb->inp_socket;
4192 #ifdef INET6
4193 else if (tp->t_in6pcb)
4194 so = tp->t_in6pcb->in6p_socket;
4195 #endif
4196 else
4197 so = NULL;
4198 } else
4199 so = NULL;
4200 m->m_pkthdr.rcvif = NULL;
4201 memset(mtod(m, u_char *), 0, tlen);
4202
4203 switch (sc->sc_src.sa.sa_family) {
4204 case AF_INET:
4205 ip = mtod(m, struct ip *);
4206 ip->ip_v = 4;
4207 ip->ip_dst = sc->sc_src.sin.sin_addr;
4208 ip->ip_src = sc->sc_dst.sin.sin_addr;
4209 ip->ip_p = IPPROTO_TCP;
4210 th = (struct tcphdr *)(ip + 1);
4211 th->th_dport = sc->sc_src.sin.sin_port;
4212 th->th_sport = sc->sc_dst.sin.sin_port;
4213 break;
4214 #ifdef INET6
4215 case AF_INET6:
4216 ip6 = mtod(m, struct ip6_hdr *);
4217 ip6->ip6_vfc = IPV6_VERSION;
4218 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4219 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4220 ip6->ip6_nxt = IPPROTO_TCP;
4221 /* ip6_plen will be updated in ip6_output() */
4222 th = (struct tcphdr *)(ip6 + 1);
4223 th->th_dport = sc->sc_src.sin6.sin6_port;
4224 th->th_sport = sc->sc_dst.sin6.sin6_port;
4225 break;
4226 #endif
4227 default:
4228 th = NULL;
4229 }
4230
4231 th->th_seq = htonl(sc->sc_iss);
4232 th->th_ack = htonl(sc->sc_irs + 1);
4233 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4234 th->th_flags = TH_SYN|TH_ACK;
4235 th->th_win = htons(sc->sc_win);
4236 /* th_sum already 0 */
4237 /* th_urp already 0 */
4238
4239 /* Tack on the TCP options. */
4240 optp = (u_int8_t *)(th + 1);
4241 *optp++ = TCPOPT_MAXSEG;
4242 *optp++ = 4;
4243 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4244 *optp++ = sc->sc_ourmaxseg & 0xff;
4245
4246 if (sc->sc_request_r_scale != 15) {
4247 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4248 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4249 sc->sc_request_r_scale);
4250 optp += 4;
4251 }
4252
4253 if (sc->sc_flags & SCF_TIMESTAMP) {
4254 u_int32_t *lp = (u_int32_t *)(optp);
4255 /* Form timestamp option as shown in appendix A of RFC 1323. */
4256 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4257 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4258 *lp = htonl(sc->sc_timestamp);
4259 optp += TCPOLEN_TSTAMP_APPA;
4260 }
4261
4262 if (sc->sc_flags & SCF_SACK_PERMIT) {
4263 u_int8_t *p = optp;
4264
4265 /* Let the peer know that we will SACK. */
4266 p[0] = TCPOPT_SACK_PERMITTED;
4267 p[1] = 2;
4268 p[2] = TCPOPT_NOP;
4269 p[3] = TCPOPT_NOP;
4270 optp += 4;
4271 }
4272
4273 #ifdef TCP_SIGNATURE
4274 if (sc->sc_flags & SCF_SIGNATURE) {
4275 struct secasvar *sav;
4276 u_int8_t *sigp;
4277
4278 sav = tcp_signature_getsav(m, th);
4279
4280 if (sav == NULL) {
4281 if (m)
4282 m_freem(m);
4283 return (EPERM);
4284 }
4285
4286 *optp++ = TCPOPT_SIGNATURE;
4287 *optp++ = TCPOLEN_SIGNATURE;
4288 sigp = optp;
4289 bzero(optp, TCP_SIGLEN);
4290 optp += TCP_SIGLEN;
4291 *optp++ = TCPOPT_NOP;
4292 *optp++ = TCPOPT_EOL;
4293
4294 (void)tcp_signature(m, th, hlen, sav, sigp);
4295
4296 key_sa_recordxfer(sav, m);
4297 #ifdef FAST_IPSEC
4298 KEY_FREESAV(&sav);
4299 #else
4300 key_freesav(sav);
4301 #endif
4302 }
4303 #endif
4304
4305 /* Compute the packet's checksum. */
4306 switch (sc->sc_src.sa.sa_family) {
4307 case AF_INET:
4308 ip->ip_len = htons(tlen - hlen);
4309 th->th_sum = 0;
4310 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4311 break;
4312 #ifdef INET6
4313 case AF_INET6:
4314 ip6->ip6_plen = htons(tlen - hlen);
4315 th->th_sum = 0;
4316 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4317 break;
4318 #endif
4319 }
4320
4321 /*
4322 * Fill in some straggling IP bits. Note the stack expects
4323 * ip_len to be in host order, for convenience.
4324 */
4325 switch (sc->sc_src.sa.sa_family) {
4326 #ifdef INET
4327 case AF_INET:
4328 ip->ip_len = htons(tlen);
4329 ip->ip_ttl = ip_defttl;
4330 /* XXX tos? */
4331 break;
4332 #endif
4333 #ifdef INET6
4334 case AF_INET6:
4335 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4336 ip6->ip6_vfc |= IPV6_VERSION;
4337 ip6->ip6_plen = htons(tlen - hlen);
4338 /* ip6_hlim will be initialized afterwards */
4339 /* XXX flowlabel? */
4340 break;
4341 #endif
4342 }
4343
4344 /* XXX use IPsec policy on listening socket, on SYN ACK */
4345 tp = sc->sc_tp;
4346
4347 switch (sc->sc_src.sa.sa_family) {
4348 #ifdef INET
4349 case AF_INET:
4350 error = ip_output(m, sc->sc_ipopts, ro,
4351 (ip_mtudisc ? IP_MTUDISC : 0),
4352 (struct ip_moptions *)NULL, so);
4353 break;
4354 #endif
4355 #ifdef INET6
4356 case AF_INET6:
4357 ip6->ip6_hlim = in6_selecthlim(NULL,
4358 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4359
4360 error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
4361 (struct ip6_moptions *)0, so, NULL);
4362 break;
4363 #endif
4364 default:
4365 error = EAFNOSUPPORT;
4366 break;
4367 }
4368 return (error);
4369 }
4370