Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.238
      1 /*	$NetBSD: tcp_input.c,v 1.238 2006/02/02 05:52:23 riz Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Charles M. Hannum.
     81  *
     82  * Redistribution and use in source and binary forms, with or without
     83  * modification, are permitted provided that the following conditions
     84  * are met:
     85  * 1. Redistributions of source code must retain the above copyright
     86  *    notice, this list of conditions and the following disclaimer.
     87  * 2. Redistributions in binary form must reproduce the above copyright
     88  *    notice, this list of conditions and the following disclaimer in the
     89  *    documentation and/or other materials provided with the distribution.
     90  * 3. All advertising materials mentioning features or use of this software
     91  *    must display the following acknowledgement:
     92  *	This product includes software developed by the NetBSD
     93  *	Foundation, Inc. and its contributors.
     94  * 4. Neither the name of The NetBSD Foundation nor the names of its
     95  *    contributors may be used to endorse or promote products derived
     96  *    from this software without specific prior written permission.
     97  *
     98  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     99  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
    100  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    101  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    102  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    103  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    104  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    105  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    106  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    107  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    108  * POSSIBILITY OF SUCH DAMAGE.
    109  */
    110 
    111 /*
    112  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    113  *	The Regents of the University of California.  All rights reserved.
    114  *
    115  * Redistribution and use in source and binary forms, with or without
    116  * modification, are permitted provided that the following conditions
    117  * are met:
    118  * 1. Redistributions of source code must retain the above copyright
    119  *    notice, this list of conditions and the following disclaimer.
    120  * 2. Redistributions in binary form must reproduce the above copyright
    121  *    notice, this list of conditions and the following disclaimer in the
    122  *    documentation and/or other materials provided with the distribution.
    123  * 3. Neither the name of the University nor the names of its contributors
    124  *    may be used to endorse or promote products derived from this software
    125  *    without specific prior written permission.
    126  *
    127  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    128  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    129  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    130  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    131  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    132  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    133  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    134  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    135  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    136  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    137  * SUCH DAMAGE.
    138  *
    139  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    140  */
    141 
    142 /*
    143  *	TODO list for SYN cache stuff:
    144  *
    145  *	Find room for a "state" field, which is needed to keep a
    146  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    147  *	that this is fairly important for very high-volume web and
    148  *	mail servers, which use a large number of short-lived
    149  *	connections.
    150  */
    151 
    152 #include <sys/cdefs.h>
    153 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.238 2006/02/02 05:52:23 riz Exp $");
    154 
    155 #include "opt_inet.h"
    156 #include "opt_ipsec.h"
    157 #include "opt_inet_csum.h"
    158 #include "opt_tcp_debug.h"
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 
    176 #include <net/if.h>
    177 #include <net/route.h>
    178 #include <net/if_types.h>
    179 
    180 #include <netinet/in.h>
    181 #include <netinet/in_systm.h>
    182 #include <netinet/ip.h>
    183 #include <netinet/in_pcb.h>
    184 #include <netinet/in_var.h>
    185 #include <netinet/ip_var.h>
    186 #include <netinet/in_offload.h>
    187 
    188 #ifdef INET6
    189 #ifndef INET
    190 #include <netinet/in.h>
    191 #endif
    192 #include <netinet/ip6.h>
    193 #include <netinet6/ip6_var.h>
    194 #include <netinet6/in6_pcb.h>
    195 #include <netinet6/ip6_var.h>
    196 #include <netinet6/in6_var.h>
    197 #include <netinet/icmp6.h>
    198 #include <netinet6/nd6.h>
    199 #ifdef TCP_SIGNATURE
    200 #include <netinet6/scope6_var.h>
    201 #endif
    202 #endif
    203 
    204 #ifndef INET6
    205 /* always need ip6.h for IP6_EXTHDR_GET */
    206 #include <netinet/ip6.h>
    207 #endif
    208 
    209 #include <netinet/tcp.h>
    210 #include <netinet/tcp_fsm.h>
    211 #include <netinet/tcp_seq.h>
    212 #include <netinet/tcp_timer.h>
    213 #include <netinet/tcp_var.h>
    214 #include <netinet/tcpip.h>
    215 #include <netinet/tcp_debug.h>
    216 
    217 #include <machine/stdarg.h>
    218 
    219 #ifdef IPSEC
    220 #include <netinet6/ipsec.h>
    221 #include <netkey/key.h>
    222 #endif /*IPSEC*/
    223 #ifdef INET6
    224 #include "faith.h"
    225 #if defined(NFAITH) && NFAITH > 0
    226 #include <net/if_faith.h>
    227 #endif
    228 #endif	/* IPSEC */
    229 
    230 #ifdef FAST_IPSEC
    231 #include <netipsec/ipsec.h>
    232 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
    233 #include <netipsec/key.h>
    234 #ifdef INET6
    235 #include <netipsec/ipsec6.h>
    236 #endif
    237 #endif	/* FAST_IPSEC*/
    238 
    239 int	tcprexmtthresh = 3;
    240 int	tcp_log_refused;
    241 
    242 static int tcp_rst_ppslim_count = 0;
    243 static struct timeval tcp_rst_ppslim_last;
    244 static int tcp_ackdrop_ppslim_count = 0;
    245 static struct timeval tcp_ackdrop_ppslim_last;
    246 
    247 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    248 
    249 /* for modulo comparisons of timestamps */
    250 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    251 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    252 
    253 /*
    254  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    255  */
    256 #ifdef INET6
    257 #define ND6_HINT(tp) \
    258 do { \
    259 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
    260 	    tp->t_in6pcb->in6p_route.ro_rt) { \
    261 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    262 	} \
    263 } while (/*CONSTCOND*/ 0)
    264 #else
    265 #define ND6_HINT(tp)
    266 #endif
    267 
    268 /*
    269  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    270  * we have already delayed an ACK (must send an ACK every two segments).
    271  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    272  * option is enabled.
    273  */
    274 #define	TCP_SETUP_ACK(tp, th) \
    275 do { \
    276 	if ((tp)->t_flags & TF_DELACK || \
    277 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    278 		tp->t_flags |= TF_ACKNOW; \
    279 	else \
    280 		TCP_SET_DELACK(tp); \
    281 } while (/*CONSTCOND*/ 0)
    282 
    283 #define ICMP_CHECK(tp, th, acked) \
    284 do { \
    285 	/* \
    286 	 * If we had a pending ICMP message that \
    287 	 * refers to data that have just been  \
    288 	 * acknowledged, disregard the recorded ICMP \
    289 	 * message. \
    290 	 */ \
    291 	if (((tp)->t_flags & TF_PMTUD_PEND) && \
    292 	    SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
    293 		(tp)->t_flags &= ~TF_PMTUD_PEND; \
    294 \
    295 	/* \
    296 	 * Keep track of the largest chunk of data \
    297 	 * acknowledged since last PMTU update \
    298 	 */ \
    299 	if ((tp)->t_pmtud_mss_acked < (acked)) \
    300 		(tp)->t_pmtud_mss_acked = (acked); \
    301 } while (/*CONSTCOND*/ 0)
    302 
    303 /*
    304  * Convert TCP protocol fields to host order for easier processing.
    305  */
    306 #define	TCP_FIELDS_TO_HOST(th)						\
    307 do {									\
    308 	NTOHL((th)->th_seq);						\
    309 	NTOHL((th)->th_ack);						\
    310 	NTOHS((th)->th_win);						\
    311 	NTOHS((th)->th_urp);						\
    312 } while (/*CONSTCOND*/ 0)
    313 
    314 /*
    315  * ... and reverse the above.
    316  */
    317 #define	TCP_FIELDS_TO_NET(th)						\
    318 do {									\
    319 	HTONL((th)->th_seq);						\
    320 	HTONL((th)->th_ack);						\
    321 	HTONS((th)->th_win);						\
    322 	HTONS((th)->th_urp);						\
    323 } while (/*CONSTCOND*/ 0)
    324 
    325 #ifdef TCP_CSUM_COUNTERS
    326 #include <sys/device.h>
    327 
    328 #if defined(INET)
    329 extern struct evcnt tcp_hwcsum_ok;
    330 extern struct evcnt tcp_hwcsum_bad;
    331 extern struct evcnt tcp_hwcsum_data;
    332 extern struct evcnt tcp_swcsum;
    333 #endif /* defined(INET) */
    334 #if defined(INET6)
    335 extern struct evcnt tcp6_hwcsum_ok;
    336 extern struct evcnt tcp6_hwcsum_bad;
    337 extern struct evcnt tcp6_hwcsum_data;
    338 extern struct evcnt tcp6_swcsum;
    339 #endif /* defined(INET6) */
    340 
    341 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    342 
    343 #else
    344 
    345 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    346 
    347 #endif /* TCP_CSUM_COUNTERS */
    348 
    349 #ifdef TCP_REASS_COUNTERS
    350 #include <sys/device.h>
    351 
    352 extern struct evcnt tcp_reass_;
    353 extern struct evcnt tcp_reass_empty;
    354 extern struct evcnt tcp_reass_iteration[8];
    355 extern struct evcnt tcp_reass_prependfirst;
    356 extern struct evcnt tcp_reass_prepend;
    357 extern struct evcnt tcp_reass_insert;
    358 extern struct evcnt tcp_reass_inserttail;
    359 extern struct evcnt tcp_reass_append;
    360 extern struct evcnt tcp_reass_appendtail;
    361 extern struct evcnt tcp_reass_overlaptail;
    362 extern struct evcnt tcp_reass_overlapfront;
    363 extern struct evcnt tcp_reass_segdup;
    364 extern struct evcnt tcp_reass_fragdup;
    365 
    366 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    367 
    368 #else
    369 
    370 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    371 
    372 #endif /* TCP_REASS_COUNTERS */
    373 
    374 #ifdef INET
    375 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    376 #endif
    377 #ifdef INET6
    378 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    379 #endif
    380 
    381 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    382 
    383 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
    384 
    385 struct ipqent *
    386 tcpipqent_alloc()
    387 {
    388 	struct ipqent *ipqe;
    389 	int s;
    390 
    391 	s = splvm();
    392 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    393 	splx(s);
    394 
    395 	return ipqe;
    396 }
    397 
    398 void
    399 tcpipqent_free(struct ipqent *ipqe)
    400 {
    401 	int s;
    402 
    403 	s = splvm();
    404 	pool_put(&tcpipqent_pool, ipqe);
    405 	splx(s);
    406 }
    407 
    408 int
    409 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
    410 {
    411 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    412 	struct socket *so = NULL;
    413 	int pkt_flags;
    414 	tcp_seq pkt_seq;
    415 	unsigned pkt_len;
    416 	u_long rcvpartdupbyte = 0;
    417 	u_long rcvoobyte;
    418 #ifdef TCP_REASS_COUNTERS
    419 	u_int count = 0;
    420 #endif
    421 
    422 	if (tp->t_inpcb)
    423 		so = tp->t_inpcb->inp_socket;
    424 #ifdef INET6
    425 	else if (tp->t_in6pcb)
    426 		so = tp->t_in6pcb->in6p_socket;
    427 #endif
    428 
    429 	TCP_REASS_LOCK_CHECK(tp);
    430 
    431 	/*
    432 	 * Call with th==0 after become established to
    433 	 * force pre-ESTABLISHED data up to user socket.
    434 	 */
    435 	if (th == 0)
    436 		goto present;
    437 
    438 	rcvoobyte = *tlen;
    439 	/*
    440 	 * Copy these to local variables because the tcpiphdr
    441 	 * gets munged while we are collapsing mbufs.
    442 	 */
    443 	pkt_seq = th->th_seq;
    444 	pkt_len = *tlen;
    445 	pkt_flags = th->th_flags;
    446 
    447 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    448 
    449 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    450 		/*
    451 		 * When we miss a packet, the vast majority of time we get
    452 		 * packets that follow it in order.  So optimize for that.
    453 		 */
    454 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    455 			p->ipqe_len += pkt_len;
    456 			p->ipqe_flags |= pkt_flags;
    457 			m_cat(p->ipre_mlast, m);
    458 			TRAVERSE(p->ipre_mlast);
    459 			m = NULL;
    460 			tiqe = p;
    461 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    462 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    463 			goto skip_replacement;
    464 		}
    465 		/*
    466 		 * While we're here, if the pkt is completely beyond
    467 		 * anything we have, just insert it at the tail.
    468 		 */
    469 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    470 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    471 			goto insert_it;
    472 		}
    473 	}
    474 
    475 	q = TAILQ_FIRST(&tp->segq);
    476 
    477 	if (q != NULL) {
    478 		/*
    479 		 * If this segment immediately precedes the first out-of-order
    480 		 * block, simply slap the segment in front of it and (mostly)
    481 		 * skip the complicated logic.
    482 		 */
    483 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    484 			q->ipqe_seq = pkt_seq;
    485 			q->ipqe_len += pkt_len;
    486 			q->ipqe_flags |= pkt_flags;
    487 			m_cat(m, q->ipqe_m);
    488 			q->ipqe_m = m;
    489 			q->ipre_mlast = m; /* last mbuf may have changed */
    490 			TRAVERSE(q->ipre_mlast);
    491 			tiqe = q;
    492 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    493 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    494 			goto skip_replacement;
    495 		}
    496 	} else {
    497 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    498 	}
    499 
    500 	/*
    501 	 * Find a segment which begins after this one does.
    502 	 */
    503 	for (p = NULL; q != NULL; q = nq) {
    504 		nq = TAILQ_NEXT(q, ipqe_q);
    505 #ifdef TCP_REASS_COUNTERS
    506 		count++;
    507 #endif
    508 		/*
    509 		 * If the received segment is just right after this
    510 		 * fragment, merge the two together and then check
    511 		 * for further overlaps.
    512 		 */
    513 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    514 #ifdef TCPREASS_DEBUG
    515 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    516 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    517 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    518 #endif
    519 			pkt_len += q->ipqe_len;
    520 			pkt_flags |= q->ipqe_flags;
    521 			pkt_seq = q->ipqe_seq;
    522 			m_cat(q->ipre_mlast, m);
    523 			TRAVERSE(q->ipre_mlast);
    524 			m = q->ipqe_m;
    525 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    526 			goto free_ipqe;
    527 		}
    528 		/*
    529 		 * If the received segment is completely past this
    530 		 * fragment, we need to go the next fragment.
    531 		 */
    532 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    533 			p = q;
    534 			continue;
    535 		}
    536 		/*
    537 		 * If the fragment is past the received segment,
    538 		 * it (or any following) can't be concatenated.
    539 		 */
    540 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    541 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    542 			break;
    543 		}
    544 
    545 		/*
    546 		 * We've received all the data in this segment before.
    547 		 * mark it as a duplicate and return.
    548 		 */
    549 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    550 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    551 			tcpstat.tcps_rcvduppack++;
    552 			tcpstat.tcps_rcvdupbyte += pkt_len;
    553 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    554 			m_freem(m);
    555 			if (tiqe != NULL) {
    556 				tcpipqent_free(tiqe);
    557 			}
    558 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    559 			return (0);
    560 		}
    561 		/*
    562 		 * Received segment completely overlaps this fragment
    563 		 * so we drop the fragment (this keeps the temporal
    564 		 * ordering of segments correct).
    565 		 */
    566 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    567 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    568 			rcvpartdupbyte += q->ipqe_len;
    569 			m_freem(q->ipqe_m);
    570 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    571 			goto free_ipqe;
    572 		}
    573 		/*
    574 		 * RX'ed segment extends past the end of the
    575 		 * fragment.  Drop the overlapping bytes.  Then
    576 		 * merge the fragment and segment then treat as
    577 		 * a longer received packet.
    578 		 */
    579 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    580 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    581 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    582 #ifdef TCPREASS_DEBUG
    583 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    584 			       tp, overlap,
    585 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    586 #endif
    587 			m_adj(m, overlap);
    588 			rcvpartdupbyte += overlap;
    589 			m_cat(q->ipre_mlast, m);
    590 			TRAVERSE(q->ipre_mlast);
    591 			m = q->ipqe_m;
    592 			pkt_seq = q->ipqe_seq;
    593 			pkt_len += q->ipqe_len - overlap;
    594 			rcvoobyte -= overlap;
    595 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    596 			goto free_ipqe;
    597 		}
    598 		/*
    599 		 * RX'ed segment extends past the front of the
    600 		 * fragment.  Drop the overlapping bytes on the
    601 		 * received packet.  The packet will then be
    602 		 * contatentated with this fragment a bit later.
    603 		 */
    604 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    605 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    606 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    607 #ifdef TCPREASS_DEBUG
    608 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    609 			       tp, overlap,
    610 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    611 #endif
    612 			m_adj(m, -overlap);
    613 			pkt_len -= overlap;
    614 			rcvpartdupbyte += overlap;
    615 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    616 			rcvoobyte -= overlap;
    617 		}
    618 		/*
    619 		 * If the received segment immediates precedes this
    620 		 * fragment then tack the fragment onto this segment
    621 		 * and reinsert the data.
    622 		 */
    623 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    624 #ifdef TCPREASS_DEBUG
    625 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    626 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    627 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    628 #endif
    629 			pkt_len += q->ipqe_len;
    630 			pkt_flags |= q->ipqe_flags;
    631 			m_cat(m, q->ipqe_m);
    632 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    633 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    634 			tp->t_segqlen--;
    635 			KASSERT(tp->t_segqlen >= 0);
    636 			KASSERT(tp->t_segqlen != 0 ||
    637 			    (TAILQ_EMPTY(&tp->segq) &&
    638 			    TAILQ_EMPTY(&tp->timeq)));
    639 			if (tiqe == NULL) {
    640 				tiqe = q;
    641 			} else {
    642 				tcpipqent_free(q);
    643 			}
    644 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    645 			break;
    646 		}
    647 		/*
    648 		 * If the fragment is before the segment, remember it.
    649 		 * When this loop is terminated, p will contain the
    650 		 * pointer to fragment that is right before the received
    651 		 * segment.
    652 		 */
    653 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    654 			p = q;
    655 
    656 		continue;
    657 
    658 		/*
    659 		 * This is a common operation.  It also will allow
    660 		 * to save doing a malloc/free in most instances.
    661 		 */
    662 	  free_ipqe:
    663 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    664 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    665 		tp->t_segqlen--;
    666 		KASSERT(tp->t_segqlen >= 0);
    667 		KASSERT(tp->t_segqlen != 0 ||
    668 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    669 		if (tiqe == NULL) {
    670 			tiqe = q;
    671 		} else {
    672 			tcpipqent_free(q);
    673 		}
    674 	}
    675 
    676 #ifdef TCP_REASS_COUNTERS
    677 	if (count > 7)
    678 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    679 	else if (count > 0)
    680 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    681 #endif
    682 
    683     insert_it:
    684 
    685 	/*
    686 	 * Allocate a new queue entry since the received segment did not
    687 	 * collapse onto any other out-of-order block; thus we are allocating
    688 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    689 	 * we would be reusing it.
    690 	 * XXX If we can't, just drop the packet.  XXX
    691 	 */
    692 	if (tiqe == NULL) {
    693 		tiqe = tcpipqent_alloc();
    694 		if (tiqe == NULL) {
    695 			tcpstat.tcps_rcvmemdrop++;
    696 			m_freem(m);
    697 			return (0);
    698 		}
    699 	}
    700 
    701 	/*
    702 	 * Update the counters.
    703 	 */
    704 	tcpstat.tcps_rcvoopack++;
    705 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    706 	if (rcvpartdupbyte) {
    707 	    tcpstat.tcps_rcvpartduppack++;
    708 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    709 	}
    710 
    711 	/*
    712 	 * Insert the new fragment queue entry into both queues.
    713 	 */
    714 	tiqe->ipqe_m = m;
    715 	tiqe->ipre_mlast = m;
    716 	tiqe->ipqe_seq = pkt_seq;
    717 	tiqe->ipqe_len = pkt_len;
    718 	tiqe->ipqe_flags = pkt_flags;
    719 	if (p == NULL) {
    720 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    721 #ifdef TCPREASS_DEBUG
    722 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    723 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    724 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    725 #endif
    726 	} else {
    727 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    728 #ifdef TCPREASS_DEBUG
    729 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    730 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    731 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    732 #endif
    733 	}
    734 	tp->t_segqlen++;
    735 
    736 skip_replacement:
    737 
    738 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    739 
    740 present:
    741 	/*
    742 	 * Present data to user, advancing rcv_nxt through
    743 	 * completed sequence space.
    744 	 */
    745 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    746 		return (0);
    747 	q = TAILQ_FIRST(&tp->segq);
    748 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    749 		return (0);
    750 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    751 		return (0);
    752 
    753 	tp->rcv_nxt += q->ipqe_len;
    754 	pkt_flags = q->ipqe_flags & TH_FIN;
    755 	ND6_HINT(tp);
    756 
    757 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    758 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    759 	tp->t_segqlen--;
    760 	KASSERT(tp->t_segqlen >= 0);
    761 	KASSERT(tp->t_segqlen != 0 ||
    762 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    763 	if (so->so_state & SS_CANTRCVMORE)
    764 		m_freem(q->ipqe_m);
    765 	else
    766 		sbappendstream(&so->so_rcv, q->ipqe_m);
    767 	tcpipqent_free(q);
    768 	sorwakeup(so);
    769 	return (pkt_flags);
    770 }
    771 
    772 #ifdef INET6
    773 int
    774 tcp6_input(struct mbuf **mp, int *offp, int proto)
    775 {
    776 	struct mbuf *m = *mp;
    777 
    778 	/*
    779 	 * draft-itojun-ipv6-tcp-to-anycast
    780 	 * better place to put this in?
    781 	 */
    782 	if (m->m_flags & M_ANYCAST6) {
    783 		struct ip6_hdr *ip6;
    784 		if (m->m_len < sizeof(struct ip6_hdr)) {
    785 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    786 				tcpstat.tcps_rcvshort++;
    787 				return IPPROTO_DONE;
    788 			}
    789 		}
    790 		ip6 = mtod(m, struct ip6_hdr *);
    791 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    792 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    793 		return IPPROTO_DONE;
    794 	}
    795 
    796 	tcp_input(m, *offp, proto);
    797 	return IPPROTO_DONE;
    798 }
    799 #endif
    800 
    801 #ifdef INET
    802 static void
    803 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    804 {
    805 	char src[4*sizeof "123"];
    806 	char dst[4*sizeof "123"];
    807 
    808 	if (ip) {
    809 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    810 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    811 	}
    812 	else {
    813 		strlcpy(src, "(unknown)", sizeof(src));
    814 		strlcpy(dst, "(unknown)", sizeof(dst));
    815 	}
    816 	log(LOG_INFO,
    817 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    818 	    dst, ntohs(th->th_dport),
    819 	    src, ntohs(th->th_sport));
    820 }
    821 #endif
    822 
    823 #ifdef INET6
    824 static void
    825 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    826 {
    827 	char src[INET6_ADDRSTRLEN];
    828 	char dst[INET6_ADDRSTRLEN];
    829 
    830 	if (ip6) {
    831 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    832 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    833 	}
    834 	else {
    835 		strlcpy(src, "(unknown v6)", sizeof(src));
    836 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    837 	}
    838 	log(LOG_INFO,
    839 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    840 	    dst, ntohs(th->th_dport),
    841 	    src, ntohs(th->th_sport));
    842 }
    843 #endif
    844 
    845 /*
    846  * Checksum extended TCP header and data.
    847  */
    848 int
    849 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th, int toff,
    850     int off, int tlen)
    851 {
    852 
    853 	/*
    854 	 * XXX it's better to record and check if this mbuf is
    855 	 * already checked.
    856 	 */
    857 
    858 	switch (af) {
    859 #ifdef INET
    860 	case AF_INET:
    861 		switch (m->m_pkthdr.csum_flags &
    862 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    863 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    864 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    865 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    866 			goto badcsum;
    867 
    868 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    869 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    870 
    871 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    872 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    873 				const struct ip *ip =
    874 				    mtod(m, const struct ip *);
    875 
    876 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    877 				    ip->ip_dst.s_addr,
    878 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    879 			}
    880 			if ((hw_csum ^ 0xffff) != 0)
    881 				goto badcsum;
    882 			break;
    883 		}
    884 
    885 		case M_CSUM_TCPv4:
    886 			/* Checksum was okay. */
    887 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    888 			break;
    889 
    890 		default:
    891 			/*
    892 			 * Must compute it ourselves.  Maybe skip checksum
    893 			 * on loopback interfaces.
    894 			 */
    895 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    896 					     IFF_LOOPBACK) ||
    897 					   tcp_do_loopback_cksum)) {
    898 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    899 				if (in4_cksum(m, IPPROTO_TCP, toff,
    900 					      tlen + off) != 0)
    901 					goto badcsum;
    902 			}
    903 			break;
    904 		}
    905 		break;
    906 #endif /* INET4 */
    907 
    908 #ifdef INET6
    909 	case AF_INET6:
    910 		switch (m->m_pkthdr.csum_flags &
    911 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    912 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    913 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    914 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    915 			goto badcsum;
    916 
    917 #if 0 /* notyet */
    918 		case M_CSUM_TCPv6|M_CSUM_DATA:
    919 #endif
    920 
    921 		case M_CSUM_TCPv6:
    922 			/* Checksum was okay. */
    923 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    924 			break;
    925 
    926 		default:
    927 			/*
    928 			 * Must compute it ourselves.  Maybe skip checksum
    929 			 * on loopback interfaces.
    930 			 */
    931 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    932 			    tcp_do_loopback_cksum)) {
    933 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    934 				if (in6_cksum(m, IPPROTO_TCP, toff,
    935 				    tlen + off) != 0)
    936 					goto badcsum;
    937 			}
    938 		}
    939 		break;
    940 #endif /* INET6 */
    941 	}
    942 
    943 	return 0;
    944 
    945 badcsum:
    946 	tcpstat.tcps_rcvbadsum++;
    947 	return -1;
    948 }
    949 
    950 /*
    951  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
    952  */
    953 void
    954 tcp_input(struct mbuf *m, ...)
    955 {
    956 	struct tcphdr *th;
    957 	struct ip *ip;
    958 	struct inpcb *inp;
    959 #ifdef INET6
    960 	struct ip6_hdr *ip6;
    961 	struct in6pcb *in6p;
    962 #endif
    963 	u_int8_t *optp = NULL;
    964 	int optlen = 0;
    965 	int len, tlen, toff, hdroptlen = 0;
    966 	struct tcpcb *tp = 0;
    967 	int tiflags;
    968 	struct socket *so = NULL;
    969 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
    970 #ifdef TCP_DEBUG
    971 	short ostate = 0;
    972 #endif
    973 	int iss = 0;
    974 	u_long tiwin;
    975 	struct tcp_opt_info opti;
    976 	int off, iphlen;
    977 	va_list ap;
    978 	int af;		/* af on the wire */
    979 	struct mbuf *tcp_saveti = NULL;
    980 	uint32_t ts_rtt;
    981 
    982 	MCLAIM(m, &tcp_rx_mowner);
    983 	va_start(ap, m);
    984 	toff = va_arg(ap, int);
    985 	(void)va_arg(ap, int);		/* ignore value, advance ap */
    986 	va_end(ap);
    987 
    988 	tcpstat.tcps_rcvtotal++;
    989 
    990 	bzero(&opti, sizeof(opti));
    991 	opti.ts_present = 0;
    992 	opti.maxseg = 0;
    993 
    994 	/*
    995 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    996 	 *
    997 	 * TCP is, by definition, unicast, so we reject all
    998 	 * multicast outright.
    999 	 *
   1000 	 * Note, there are additional src/dst address checks in
   1001 	 * the AF-specific code below.
   1002 	 */
   1003 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1004 		/* XXX stat */
   1005 		goto drop;
   1006 	}
   1007 #ifdef INET6
   1008 	if (m->m_flags & M_ANYCAST6) {
   1009 		/* XXX stat */
   1010 		goto drop;
   1011 	}
   1012 #endif
   1013 
   1014 	/*
   1015 	 * Get IP and TCP header.
   1016 	 * Note: IP leaves IP header in first mbuf.
   1017 	 */
   1018 	ip = mtod(m, struct ip *);
   1019 #ifdef INET6
   1020 	ip6 = NULL;
   1021 #endif
   1022 	switch (ip->ip_v) {
   1023 #ifdef INET
   1024 	case 4:
   1025 		af = AF_INET;
   1026 		iphlen = sizeof(struct ip);
   1027 		ip = mtod(m, struct ip *);
   1028 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1029 			sizeof(struct tcphdr));
   1030 		if (th == NULL) {
   1031 			tcpstat.tcps_rcvshort++;
   1032 			return;
   1033 		}
   1034 		/* We do the checksum after PCB lookup... */
   1035 		len = ntohs(ip->ip_len);
   1036 		tlen = len - toff;
   1037 		break;
   1038 #endif
   1039 #ifdef INET6
   1040 	case 6:
   1041 		ip = NULL;
   1042 		iphlen = sizeof(struct ip6_hdr);
   1043 		af = AF_INET6;
   1044 		ip6 = mtod(m, struct ip6_hdr *);
   1045 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1046 			sizeof(struct tcphdr));
   1047 		if (th == NULL) {
   1048 			tcpstat.tcps_rcvshort++;
   1049 			return;
   1050 		}
   1051 
   1052 		/* Be proactive about malicious use of IPv4 mapped address */
   1053 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1054 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1055 			/* XXX stat */
   1056 			goto drop;
   1057 		}
   1058 
   1059 		/*
   1060 		 * Be proactive about unspecified IPv6 address in source.
   1061 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1062 		 * unspecified IPv6 address can be used to confuse us.
   1063 		 *
   1064 		 * Note that packets with unspecified IPv6 destination is
   1065 		 * already dropped in ip6_input.
   1066 		 */
   1067 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1068 			/* XXX stat */
   1069 			goto drop;
   1070 		}
   1071 
   1072 		/*
   1073 		 * Make sure destination address is not multicast.
   1074 		 * Source address checked in ip6_input().
   1075 		 */
   1076 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1077 			/* XXX stat */
   1078 			goto drop;
   1079 		}
   1080 
   1081 		/* We do the checksum after PCB lookup... */
   1082 		len = m->m_pkthdr.len;
   1083 		tlen = len - toff;
   1084 		break;
   1085 #endif
   1086 	default:
   1087 		m_freem(m);
   1088 		return;
   1089 	}
   1090 
   1091 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1092 
   1093 	/*
   1094 	 * Check that TCP offset makes sense,
   1095 	 * pull out TCP options and adjust length.		XXX
   1096 	 */
   1097 	off = th->th_off << 2;
   1098 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1099 		tcpstat.tcps_rcvbadoff++;
   1100 		goto drop;
   1101 	}
   1102 	tlen -= off;
   1103 
   1104 	/*
   1105 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1106 	 * length throughout the function.  Other functions can use
   1107 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1108 	 * rja
   1109 	 */
   1110 
   1111 	if (off > sizeof (struct tcphdr)) {
   1112 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1113 		if (th == NULL) {
   1114 			tcpstat.tcps_rcvshort++;
   1115 			return;
   1116 		}
   1117 		/*
   1118 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1119 		 * (as they're before toff) and we don't need to update those.
   1120 		 */
   1121 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1122 		optlen = off - sizeof (struct tcphdr);
   1123 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1124 		/*
   1125 		 * Do quick retrieval of timestamp options ("options
   1126 		 * prediction?").  If timestamp is the only option and it's
   1127 		 * formatted as recommended in RFC 1323 appendix A, we
   1128 		 * quickly get the values now and not bother calling
   1129 		 * tcp_dooptions(), etc.
   1130 		 */
   1131 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1132 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1133 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1134 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1135 		     (th->th_flags & TH_SYN) == 0) {
   1136 			opti.ts_present = 1;
   1137 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1138 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1139 			optp = NULL;	/* we've parsed the options */
   1140 		}
   1141 	}
   1142 	tiflags = th->th_flags;
   1143 
   1144 	/*
   1145 	 * Locate pcb for segment.
   1146 	 */
   1147 findpcb:
   1148 	inp = NULL;
   1149 #ifdef INET6
   1150 	in6p = NULL;
   1151 #endif
   1152 	switch (af) {
   1153 #ifdef INET
   1154 	case AF_INET:
   1155 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1156 		    ip->ip_dst, th->th_dport);
   1157 		if (inp == 0) {
   1158 			++tcpstat.tcps_pcbhashmiss;
   1159 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1160 		}
   1161 #ifdef INET6
   1162 		if (inp == 0) {
   1163 			struct in6_addr s, d;
   1164 
   1165 			/* mapped addr case */
   1166 			bzero(&s, sizeof(s));
   1167 			s.s6_addr16[5] = htons(0xffff);
   1168 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1169 			bzero(&d, sizeof(d));
   1170 			d.s6_addr16[5] = htons(0xffff);
   1171 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1172 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1173 			    th->th_sport, &d, th->th_dport, 0);
   1174 			if (in6p == 0) {
   1175 				++tcpstat.tcps_pcbhashmiss;
   1176 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1177 				    th->th_dport, 0);
   1178 			}
   1179 		}
   1180 #endif
   1181 #ifndef INET6
   1182 		if (inp == 0)
   1183 #else
   1184 		if (inp == 0 && in6p == 0)
   1185 #endif
   1186 		{
   1187 			++tcpstat.tcps_noport;
   1188 			if (tcp_log_refused &&
   1189 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1190 				tcp4_log_refused(ip, th);
   1191 			}
   1192 			TCP_FIELDS_TO_HOST(th);
   1193 			goto dropwithreset_ratelim;
   1194 		}
   1195 #if defined(IPSEC) || defined(FAST_IPSEC)
   1196 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1197 		    ipsec4_in_reject(m, inp)) {
   1198 			ipsecstat.in_polvio++;
   1199 			goto drop;
   1200 		}
   1201 #ifdef INET6
   1202 		else if (in6p &&
   1203 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1204 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
   1205 			ipsecstat.in_polvio++;
   1206 			goto drop;
   1207 		}
   1208 #endif
   1209 #endif /*IPSEC*/
   1210 		break;
   1211 #endif /*INET*/
   1212 #ifdef INET6
   1213 	case AF_INET6:
   1214 	    {
   1215 		int faith;
   1216 
   1217 #if defined(NFAITH) && NFAITH > 0
   1218 		faith = faithprefix(&ip6->ip6_dst);
   1219 #else
   1220 		faith = 0;
   1221 #endif
   1222 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1223 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
   1224 		if (in6p == NULL) {
   1225 			++tcpstat.tcps_pcbhashmiss;
   1226 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1227 				th->th_dport, faith);
   1228 		}
   1229 		if (in6p == NULL) {
   1230 			++tcpstat.tcps_noport;
   1231 			if (tcp_log_refused &&
   1232 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1233 				tcp6_log_refused(ip6, th);
   1234 			}
   1235 			TCP_FIELDS_TO_HOST(th);
   1236 			goto dropwithreset_ratelim;
   1237 		}
   1238 #if defined(IPSEC) || defined(FAST_IPSEC)
   1239 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1240 		    ipsec6_in_reject(m, in6p)) {
   1241 			ipsec6stat.in_polvio++;
   1242 			goto drop;
   1243 		}
   1244 #endif /*IPSEC*/
   1245 		break;
   1246 	    }
   1247 #endif
   1248 	}
   1249 
   1250 	/*
   1251 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1252 	 * all data in the incoming segment is discarded.
   1253 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1254 	 * but should either do a listen or a connect soon.
   1255 	 */
   1256 	tp = NULL;
   1257 	so = NULL;
   1258 	if (inp) {
   1259 		tp = intotcpcb(inp);
   1260 		so = inp->inp_socket;
   1261 	}
   1262 #ifdef INET6
   1263 	else if (in6p) {
   1264 		tp = in6totcpcb(in6p);
   1265 		so = in6p->in6p_socket;
   1266 	}
   1267 #endif
   1268 	if (tp == 0) {
   1269 		TCP_FIELDS_TO_HOST(th);
   1270 		goto dropwithreset_ratelim;
   1271 	}
   1272 	if (tp->t_state == TCPS_CLOSED)
   1273 		goto drop;
   1274 
   1275 	/*
   1276 	 * Checksum extended TCP header and data.
   1277 	 */
   1278 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1279 		goto badcsum;
   1280 
   1281 	TCP_FIELDS_TO_HOST(th);
   1282 
   1283 	/* Unscale the window into a 32-bit value. */
   1284 	if ((tiflags & TH_SYN) == 0)
   1285 		tiwin = th->th_win << tp->snd_scale;
   1286 	else
   1287 		tiwin = th->th_win;
   1288 
   1289 #ifdef INET6
   1290 	/* save packet options if user wanted */
   1291 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1292 		if (in6p->in6p_options) {
   1293 			m_freem(in6p->in6p_options);
   1294 			in6p->in6p_options = 0;
   1295 		}
   1296 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1297 	}
   1298 #endif
   1299 
   1300 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1301 		union syn_cache_sa src;
   1302 		union syn_cache_sa dst;
   1303 
   1304 		bzero(&src, sizeof(src));
   1305 		bzero(&dst, sizeof(dst));
   1306 		switch (af) {
   1307 #ifdef INET
   1308 		case AF_INET:
   1309 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1310 			src.sin.sin_family = AF_INET;
   1311 			src.sin.sin_addr = ip->ip_src;
   1312 			src.sin.sin_port = th->th_sport;
   1313 
   1314 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1315 			dst.sin.sin_family = AF_INET;
   1316 			dst.sin.sin_addr = ip->ip_dst;
   1317 			dst.sin.sin_port = th->th_dport;
   1318 			break;
   1319 #endif
   1320 #ifdef INET6
   1321 		case AF_INET6:
   1322 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1323 			src.sin6.sin6_family = AF_INET6;
   1324 			src.sin6.sin6_addr = ip6->ip6_src;
   1325 			src.sin6.sin6_port = th->th_sport;
   1326 
   1327 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1328 			dst.sin6.sin6_family = AF_INET6;
   1329 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1330 			dst.sin6.sin6_port = th->th_dport;
   1331 			break;
   1332 #endif /* INET6 */
   1333 		default:
   1334 			goto badsyn;	/*sanity*/
   1335 		}
   1336 
   1337 		if (so->so_options & SO_DEBUG) {
   1338 #ifdef TCP_DEBUG
   1339 			ostate = tp->t_state;
   1340 #endif
   1341 
   1342 			tcp_saveti = NULL;
   1343 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1344 				goto nosave;
   1345 
   1346 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1347 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1348 				if (!tcp_saveti)
   1349 					goto nosave;
   1350 			} else {
   1351 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1352 				if (!tcp_saveti)
   1353 					goto nosave;
   1354 				MCLAIM(m, &tcp_mowner);
   1355 				tcp_saveti->m_len = iphlen;
   1356 				m_copydata(m, 0, iphlen,
   1357 				    mtod(tcp_saveti, caddr_t));
   1358 			}
   1359 
   1360 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1361 				m_freem(tcp_saveti);
   1362 				tcp_saveti = NULL;
   1363 			} else {
   1364 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1365 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1366 				    sizeof(struct tcphdr));
   1367 			}
   1368 	nosave:;
   1369 		}
   1370 		if (so->so_options & SO_ACCEPTCONN) {
   1371 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1372 				if (tiflags & TH_RST) {
   1373 					syn_cache_reset(&src.sa, &dst.sa, th);
   1374 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1375 				    (TH_ACK|TH_SYN)) {
   1376 					/*
   1377 					 * Received a SYN,ACK.  This should
   1378 					 * never happen while we are in
   1379 					 * LISTEN.  Send an RST.
   1380 					 */
   1381 					goto badsyn;
   1382 				} else if (tiflags & TH_ACK) {
   1383 					so = syn_cache_get(&src.sa, &dst.sa,
   1384 						th, toff, tlen, so, m);
   1385 					if (so == NULL) {
   1386 						/*
   1387 						 * We don't have a SYN for
   1388 						 * this ACK; send an RST.
   1389 						 */
   1390 						goto badsyn;
   1391 					} else if (so ==
   1392 					    (struct socket *)(-1)) {
   1393 						/*
   1394 						 * We were unable to create
   1395 						 * the connection.  If the
   1396 						 * 3-way handshake was
   1397 						 * completed, and RST has
   1398 						 * been sent to the peer.
   1399 						 * Since the mbuf might be
   1400 						 * in use for the reply,
   1401 						 * do not free it.
   1402 						 */
   1403 						m = NULL;
   1404 					} else {
   1405 						/*
   1406 						 * We have created a
   1407 						 * full-blown connection.
   1408 						 */
   1409 						tp = NULL;
   1410 						inp = NULL;
   1411 #ifdef INET6
   1412 						in6p = NULL;
   1413 #endif
   1414 						switch (so->so_proto->pr_domain->dom_family) {
   1415 #ifdef INET
   1416 						case AF_INET:
   1417 							inp = sotoinpcb(so);
   1418 							tp = intotcpcb(inp);
   1419 							break;
   1420 #endif
   1421 #ifdef INET6
   1422 						case AF_INET6:
   1423 							in6p = sotoin6pcb(so);
   1424 							tp = in6totcpcb(in6p);
   1425 							break;
   1426 #endif
   1427 						}
   1428 						if (tp == NULL)
   1429 							goto badsyn;	/*XXX*/
   1430 						tiwin <<= tp->snd_scale;
   1431 						goto after_listen;
   1432 					}
   1433 				} else {
   1434 					/*
   1435 					 * None of RST, SYN or ACK was set.
   1436 					 * This is an invalid packet for a
   1437 					 * TCB in LISTEN state.  Send a RST.
   1438 					 */
   1439 					goto badsyn;
   1440 				}
   1441 			} else {
   1442 				/*
   1443 				 * Received a SYN.
   1444 				 */
   1445 
   1446 #ifdef INET6
   1447 				/*
   1448 				 * If deprecated address is forbidden, we do
   1449 				 * not accept SYN to deprecated interface
   1450 				 * address to prevent any new inbound
   1451 				 * connection from getting established.
   1452 				 * When we do not accept SYN, we send a TCP
   1453 				 * RST, with deprecated source address (instead
   1454 				 * of dropping it).  We compromise it as it is
   1455 				 * much better for peer to send a RST, and
   1456 				 * RST will be the final packet for the
   1457 				 * exchange.
   1458 				 *
   1459 				 * If we do not forbid deprecated addresses, we
   1460 				 * accept the SYN packet.  RFC2462 does not
   1461 				 * suggest dropping SYN in this case.
   1462 				 * If we decipher RFC2462 5.5.4, it says like
   1463 				 * this:
   1464 				 * 1. use of deprecated addr with existing
   1465 				 *    communication is okay - "SHOULD continue
   1466 				 *    to be used"
   1467 				 * 2. use of it with new communication:
   1468 				 *   (2a) "SHOULD NOT be used if alternate
   1469 				 *        address with sufficient scope is
   1470 				 *        available"
   1471 				 *   (2b) nothing mentioned otherwise.
   1472 				 * Here we fall into (2b) case as we have no
   1473 				 * choice in our source address selection - we
   1474 				 * must obey the peer.
   1475 				 *
   1476 				 * The wording in RFC2462 is confusing, and
   1477 				 * there are multiple description text for
   1478 				 * deprecated address handling - worse, they
   1479 				 * are not exactly the same.  I believe 5.5.4
   1480 				 * is the best one, so we follow 5.5.4.
   1481 				 */
   1482 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1483 					struct in6_ifaddr *ia6;
   1484 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1485 					    &ip6->ip6_dst)) &&
   1486 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1487 						tp = NULL;
   1488 						goto dropwithreset;
   1489 					}
   1490 				}
   1491 #endif
   1492 
   1493 #ifdef IPSEC
   1494 				switch (af) {
   1495 #ifdef INET
   1496 				case AF_INET:
   1497 					if (ipsec4_in_reject_so(m, so)) {
   1498 						ipsecstat.in_polvio++;
   1499 						tp = NULL;
   1500 						goto dropwithreset;
   1501 					}
   1502 					break;
   1503 #endif
   1504 #ifdef INET6
   1505 				case AF_INET6:
   1506 					if (ipsec6_in_reject_so(m, so)) {
   1507 						ipsec6stat.in_polvio++;
   1508 						tp = NULL;
   1509 						goto dropwithreset;
   1510 					}
   1511 					break;
   1512 #endif
   1513 				}
   1514 #endif
   1515 
   1516 				/*
   1517 				 * LISTEN socket received a SYN
   1518 				 * from itself?  This can't possibly
   1519 				 * be valid; drop the packet.
   1520 				 */
   1521 				if (th->th_sport == th->th_dport) {
   1522 					int i;
   1523 
   1524 					switch (af) {
   1525 #ifdef INET
   1526 					case AF_INET:
   1527 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1528 						break;
   1529 #endif
   1530 #ifdef INET6
   1531 					case AF_INET6:
   1532 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1533 						break;
   1534 #endif
   1535 					default:
   1536 						i = 1;
   1537 					}
   1538 					if (i) {
   1539 						tcpstat.tcps_badsyn++;
   1540 						goto drop;
   1541 					}
   1542 				}
   1543 
   1544 				/*
   1545 				 * SYN looks ok; create compressed TCP
   1546 				 * state for it.
   1547 				 */
   1548 				if (so->so_qlen <= so->so_qlimit &&
   1549 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1550 						so, m, optp, optlen, &opti))
   1551 					m = NULL;
   1552 			}
   1553 			goto drop;
   1554 		}
   1555 	}
   1556 
   1557 after_listen:
   1558 #ifdef DIAGNOSTIC
   1559 	/*
   1560 	 * Should not happen now that all embryonic connections
   1561 	 * are handled with compressed state.
   1562 	 */
   1563 	if (tp->t_state == TCPS_LISTEN)
   1564 		panic("tcp_input: TCPS_LISTEN");
   1565 #endif
   1566 
   1567 	/*
   1568 	 * Segment received on connection.
   1569 	 * Reset idle time and keep-alive timer.
   1570 	 */
   1571 	tp->t_rcvtime = tcp_now;
   1572 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1573 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1574 
   1575 	/*
   1576 	 * Process options.
   1577 	 */
   1578 #ifdef TCP_SIGNATURE
   1579 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1580 #else
   1581 	if (optp)
   1582 #endif
   1583 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1584 			goto drop;
   1585 
   1586 	if (TCP_SACK_ENABLED(tp)) {
   1587 		tcp_del_sackholes(tp, th);
   1588 	}
   1589 
   1590 	if (opti.ts_present && opti.ts_ecr) {
   1591 		/*
   1592 		 * Calculate the RTT from the returned time stamp and the
   1593 		 * connection's time base.  If the time stamp is later than
   1594 		 * the current time, or is extremely old, fall back to non-1323
   1595 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
   1596 		 * at the same time.
   1597 		 */
   1598 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1599 		if (ts_rtt > TCP_PAWS_IDLE)
   1600 			ts_rtt = 0;
   1601 	} else {
   1602 		ts_rtt = 0;
   1603 	}
   1604 
   1605 	/*
   1606 	 * Header prediction: check for the two common cases
   1607 	 * of a uni-directional data xfer.  If the packet has
   1608 	 * no control flags, is in-sequence, the window didn't
   1609 	 * change and we're not retransmitting, it's a
   1610 	 * candidate.  If the length is zero and the ack moved
   1611 	 * forward, we're the sender side of the xfer.  Just
   1612 	 * free the data acked & wake any higher level process
   1613 	 * that was blocked waiting for space.  If the length
   1614 	 * is non-zero and the ack didn't move, we're the
   1615 	 * receiver side.  If we're getting packets in-order
   1616 	 * (the reassembly queue is empty), add the data to
   1617 	 * the socket buffer and note that we need a delayed ack.
   1618 	 */
   1619 	if (tp->t_state == TCPS_ESTABLISHED &&
   1620 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
   1621 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1622 	    th->th_seq == tp->rcv_nxt &&
   1623 	    tiwin && tiwin == tp->snd_wnd &&
   1624 	    tp->snd_nxt == tp->snd_max) {
   1625 
   1626 		/*
   1627 		 * If last ACK falls within this segment's sequence numbers,
   1628 		 *  record the timestamp.
   1629 		 * NOTE:
   1630 		 * 1) That the test incorporates suggestions from the latest
   1631 		 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1632 		 * 2) That updating only on newer timestamps interferes with
   1633 		 *    our earlier PAWS tests, so this check should be solely
   1634 		 *    predicated on the sequence space of this segment.
   1635 		 * 3) That we modify the segment boundary check to be
   1636 		 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   1637 		 *    instead of RFC1323's
   1638 		 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   1639 		 *    This modified check allows us to overcome RFC1323's
   1640 		 *    limitations as described in Stevens TCP/IP Illustrated
   1641 		 *    Vol. 2 p.869. In such cases, we can still calculate the
   1642 		 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   1643 		 */
   1644 		if (opti.ts_present &&
   1645 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1646 		    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   1647 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1648 			tp->ts_recent_age = tcp_now;
   1649 			tp->ts_recent = opti.ts_val;
   1650 		}
   1651 
   1652 		if (tlen == 0) {
   1653 			/* Ack prediction. */
   1654 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1655 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1656 			    tp->snd_cwnd >= tp->snd_wnd &&
   1657 			    tp->t_partialacks < 0) {
   1658 				/*
   1659 				 * this is a pure ack for outstanding data.
   1660 				 */
   1661 				++tcpstat.tcps_predack;
   1662 				if (ts_rtt)
   1663 					tcp_xmit_timer(tp, ts_rtt);
   1664 				else if (tp->t_rtttime &&
   1665 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1666 					tcp_xmit_timer(tp,
   1667 					  tcp_now - tp->t_rtttime);
   1668 				acked = th->th_ack - tp->snd_una;
   1669 				tcpstat.tcps_rcvackpack++;
   1670 				tcpstat.tcps_rcvackbyte += acked;
   1671 				ND6_HINT(tp);
   1672 
   1673 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1674 					tp->t_lastm = NULL;
   1675 				sbdrop(&so->so_snd, acked);
   1676 				tp->t_lastoff -= acked;
   1677 
   1678 				ICMP_CHECK(tp, th, acked);
   1679 
   1680 				tp->snd_una = th->th_ack;
   1681 				tp->snd_fack = tp->snd_una;
   1682 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1683 					tp->snd_high = tp->snd_una;
   1684 				m_freem(m);
   1685 
   1686 				/*
   1687 				 * If all outstanding data are acked, stop
   1688 				 * retransmit timer, otherwise restart timer
   1689 				 * using current (possibly backed-off) value.
   1690 				 * If process is waiting for space,
   1691 				 * wakeup/selwakeup/signal.  If data
   1692 				 * are ready to send, let tcp_output
   1693 				 * decide between more output or persist.
   1694 				 */
   1695 				if (tp->snd_una == tp->snd_max)
   1696 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1697 				else if (TCP_TIMER_ISARMED(tp,
   1698 				    TCPT_PERSIST) == 0)
   1699 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1700 					    tp->t_rxtcur);
   1701 
   1702 				sowwakeup(so);
   1703 				if (so->so_snd.sb_cc)
   1704 					(void) tcp_output(tp);
   1705 				if (tcp_saveti)
   1706 					m_freem(tcp_saveti);
   1707 				return;
   1708 			}
   1709 		} else if (th->th_ack == tp->snd_una &&
   1710 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1711 		    tlen <= sbspace(&so->so_rcv)) {
   1712 			/*
   1713 			 * this is a pure, in-sequence data packet
   1714 			 * with nothing on the reassembly queue and
   1715 			 * we have enough buffer space to take it.
   1716 			 */
   1717 			++tcpstat.tcps_preddat;
   1718 			tp->rcv_nxt += tlen;
   1719 			tcpstat.tcps_rcvpack++;
   1720 			tcpstat.tcps_rcvbyte += tlen;
   1721 			ND6_HINT(tp);
   1722 			/*
   1723 			 * Drop TCP, IP headers and TCP options then add data
   1724 			 * to socket buffer.
   1725 			 */
   1726 			if (so->so_state & SS_CANTRCVMORE)
   1727 				m_freem(m);
   1728 			else {
   1729 				m_adj(m, toff + off);
   1730 				sbappendstream(&so->so_rcv, m);
   1731 			}
   1732 			sorwakeup(so);
   1733 			TCP_SETUP_ACK(tp, th);
   1734 			if (tp->t_flags & TF_ACKNOW)
   1735 				(void) tcp_output(tp);
   1736 			if (tcp_saveti)
   1737 				m_freem(tcp_saveti);
   1738 			return;
   1739 		}
   1740 	}
   1741 
   1742 	/*
   1743 	 * Compute mbuf offset to TCP data segment.
   1744 	 */
   1745 	hdroptlen = toff + off;
   1746 
   1747 	/*
   1748 	 * Calculate amount of space in receive window,
   1749 	 * and then do TCP input processing.
   1750 	 * Receive window is amount of space in rcv queue,
   1751 	 * but not less than advertised window.
   1752 	 */
   1753 	{ int win;
   1754 
   1755 	win = sbspace(&so->so_rcv);
   1756 	if (win < 0)
   1757 		win = 0;
   1758 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1759 	}
   1760 
   1761 	switch (tp->t_state) {
   1762 	case TCPS_LISTEN:
   1763 		/*
   1764 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1765 		 */
   1766 		if (m->m_flags & (M_BCAST|M_MCAST))
   1767 			goto drop;
   1768 		switch (af) {
   1769 #ifdef INET6
   1770 		case AF_INET6:
   1771 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1772 				goto drop;
   1773 			break;
   1774 #endif /* INET6 */
   1775 		case AF_INET:
   1776 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1777 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1778 				goto drop;
   1779 			break;
   1780 		}
   1781 		break;
   1782 
   1783 	/*
   1784 	 * If the state is SYN_SENT:
   1785 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1786 	 *	if seg contains a RST, then drop the connection.
   1787 	 *	if seg does not contain SYN, then drop it.
   1788 	 * Otherwise this is an acceptable SYN segment
   1789 	 *	initialize tp->rcv_nxt and tp->irs
   1790 	 *	if seg contains ack then advance tp->snd_una
   1791 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1792 	 *	arrange for segment to be acked (eventually)
   1793 	 *	continue processing rest of data/controls, beginning with URG
   1794 	 */
   1795 	case TCPS_SYN_SENT:
   1796 		if ((tiflags & TH_ACK) &&
   1797 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1798 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1799 			goto dropwithreset;
   1800 		if (tiflags & TH_RST) {
   1801 			if (tiflags & TH_ACK)
   1802 				tp = tcp_drop(tp, ECONNREFUSED);
   1803 			goto drop;
   1804 		}
   1805 		if ((tiflags & TH_SYN) == 0)
   1806 			goto drop;
   1807 		if (tiflags & TH_ACK) {
   1808 			tp->snd_una = th->th_ack;
   1809 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1810 				tp->snd_nxt = tp->snd_una;
   1811 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   1812 				tp->snd_high = tp->snd_una;
   1813 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1814 		}
   1815 		tp->irs = th->th_seq;
   1816 		tcp_rcvseqinit(tp);
   1817 		tp->t_flags |= TF_ACKNOW;
   1818 		tcp_mss_from_peer(tp, opti.maxseg);
   1819 
   1820 		/*
   1821 		 * Initialize the initial congestion window.  If we
   1822 		 * had to retransmit the SYN, we must initialize cwnd
   1823 		 * to 1 segment (i.e. the Loss Window).
   1824 		 */
   1825 		if (tp->t_flags & TF_SYN_REXMT)
   1826 			tp->snd_cwnd = tp->t_peermss;
   1827 		else {
   1828 			int ss = tcp_init_win;
   1829 #ifdef INET
   1830 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1831 				ss = tcp_init_win_local;
   1832 #endif
   1833 #ifdef INET6
   1834 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1835 				ss = tcp_init_win_local;
   1836 #endif
   1837 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1838 		}
   1839 
   1840 		tcp_rmx_rtt(tp);
   1841 		if (tiflags & TH_ACK) {
   1842 			tcpstat.tcps_connects++;
   1843 			soisconnected(so);
   1844 			tcp_established(tp);
   1845 			/* Do window scaling on this connection? */
   1846 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1847 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1848 				tp->snd_scale = tp->requested_s_scale;
   1849 				tp->rcv_scale = tp->request_r_scale;
   1850 			}
   1851 			TCP_REASS_LOCK(tp);
   1852 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1853 			TCP_REASS_UNLOCK(tp);
   1854 			/*
   1855 			 * if we didn't have to retransmit the SYN,
   1856 			 * use its rtt as our initial srtt & rtt var.
   1857 			 */
   1858 			if (tp->t_rtttime)
   1859 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1860 		} else
   1861 			tp->t_state = TCPS_SYN_RECEIVED;
   1862 
   1863 		/*
   1864 		 * Advance th->th_seq to correspond to first data byte.
   1865 		 * If data, trim to stay within window,
   1866 		 * dropping FIN if necessary.
   1867 		 */
   1868 		th->th_seq++;
   1869 		if (tlen > tp->rcv_wnd) {
   1870 			todrop = tlen - tp->rcv_wnd;
   1871 			m_adj(m, -todrop);
   1872 			tlen = tp->rcv_wnd;
   1873 			tiflags &= ~TH_FIN;
   1874 			tcpstat.tcps_rcvpackafterwin++;
   1875 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1876 		}
   1877 		tp->snd_wl1 = th->th_seq - 1;
   1878 		tp->rcv_up = th->th_seq;
   1879 		goto step6;
   1880 
   1881 	/*
   1882 	 * If the state is SYN_RECEIVED:
   1883 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1884 	 *	and generate an RST.  See page 36, rfc793
   1885 	 */
   1886 	case TCPS_SYN_RECEIVED:
   1887 		if ((tiflags & TH_ACK) &&
   1888 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1889 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1890 			goto dropwithreset;
   1891 		break;
   1892 	}
   1893 
   1894 	/*
   1895 	 * States other than LISTEN or SYN_SENT.
   1896 	 * First check timestamp, if present.
   1897 	 * Then check that at least some bytes of segment are within
   1898 	 * receive window.  If segment begins before rcv_nxt,
   1899 	 * drop leading data (and SYN); if nothing left, just ack.
   1900 	 *
   1901 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1902 	 * and it's less than ts_recent, drop it.
   1903 	 */
   1904 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1905 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1906 
   1907 		/* Check to see if ts_recent is over 24 days old.  */
   1908 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   1909 			/*
   1910 			 * Invalidate ts_recent.  If this segment updates
   1911 			 * ts_recent, the age will be reset later and ts_recent
   1912 			 * will get a valid value.  If it does not, setting
   1913 			 * ts_recent to zero will at least satisfy the
   1914 			 * requirement that zero be placed in the timestamp
   1915 			 * echo reply when ts_recent isn't valid.  The
   1916 			 * age isn't reset until we get a valid ts_recent
   1917 			 * because we don't want out-of-order segments to be
   1918 			 * dropped when ts_recent is old.
   1919 			 */
   1920 			tp->ts_recent = 0;
   1921 		} else {
   1922 			tcpstat.tcps_rcvduppack++;
   1923 			tcpstat.tcps_rcvdupbyte += tlen;
   1924 			tcpstat.tcps_pawsdrop++;
   1925 			tcp_new_dsack(tp, th->th_seq, tlen);
   1926 			goto dropafterack;
   1927 		}
   1928 	}
   1929 
   1930 	todrop = tp->rcv_nxt - th->th_seq;
   1931 	dupseg = FALSE;
   1932 	if (todrop > 0) {
   1933 		if (tiflags & TH_SYN) {
   1934 			tiflags &= ~TH_SYN;
   1935 			th->th_seq++;
   1936 			if (th->th_urp > 1)
   1937 				th->th_urp--;
   1938 			else {
   1939 				tiflags &= ~TH_URG;
   1940 				th->th_urp = 0;
   1941 			}
   1942 			todrop--;
   1943 		}
   1944 		if (todrop > tlen ||
   1945 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1946 			/*
   1947 			 * Any valid FIN or RST must be to the left of the
   1948 			 * window.  At this point the FIN or RST must be a
   1949 			 * duplicate or out of sequence; drop it.
   1950 			 */
   1951 			if (tiflags & TH_RST)
   1952 				goto drop;
   1953 			tiflags &= ~(TH_FIN|TH_RST);
   1954 			/*
   1955 			 * Send an ACK to resynchronize and drop any data.
   1956 			 * But keep on processing for RST or ACK.
   1957 			 */
   1958 			tp->t_flags |= TF_ACKNOW;
   1959 			todrop = tlen;
   1960 			dupseg = TRUE;
   1961 			tcpstat.tcps_rcvdupbyte += todrop;
   1962 			tcpstat.tcps_rcvduppack++;
   1963 		} else if ((tiflags & TH_RST) &&
   1964 			   th->th_seq != tp->last_ack_sent) {
   1965 			/*
   1966 			 * Test for reset before adjusting the sequence
   1967 			 * number for overlapping data.
   1968 			 */
   1969 			goto dropafterack_ratelim;
   1970 		} else {
   1971 			tcpstat.tcps_rcvpartduppack++;
   1972 			tcpstat.tcps_rcvpartdupbyte += todrop;
   1973 		}
   1974 		tcp_new_dsack(tp, th->th_seq, todrop);
   1975 		hdroptlen += todrop;	/*drop from head afterwards*/
   1976 		th->th_seq += todrop;
   1977 		tlen -= todrop;
   1978 		if (th->th_urp > todrop)
   1979 			th->th_urp -= todrop;
   1980 		else {
   1981 			tiflags &= ~TH_URG;
   1982 			th->th_urp = 0;
   1983 		}
   1984 	}
   1985 
   1986 	/*
   1987 	 * If new data are received on a connection after the
   1988 	 * user processes are gone, then RST the other end.
   1989 	 */
   1990 	if ((so->so_state & SS_NOFDREF) &&
   1991 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   1992 		tp = tcp_close(tp);
   1993 		tcpstat.tcps_rcvafterclose++;
   1994 		goto dropwithreset;
   1995 	}
   1996 
   1997 	/*
   1998 	 * If segment ends after window, drop trailing data
   1999 	 * (and PUSH and FIN); if nothing left, just ACK.
   2000 	 */
   2001 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2002 	if (todrop > 0) {
   2003 		tcpstat.tcps_rcvpackafterwin++;
   2004 		if (todrop >= tlen) {
   2005 			/*
   2006 			 * The segment actually starts after the window.
   2007 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2008 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2009 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2010 			 */
   2011 			tcpstat.tcps_rcvbyteafterwin += tlen;
   2012 			/*
   2013 			 * If a new connection request is received
   2014 			 * while in TIME_WAIT, drop the old connection
   2015 			 * and start over if the sequence numbers
   2016 			 * are above the previous ones.
   2017 			 *
   2018 			 * NOTE: We will checksum the packet again, and
   2019 			 * so we need to put the header fields back into
   2020 			 * network order!
   2021 			 * XXX This kind of sucks, but we don't expect
   2022 			 * XXX this to happen very often, so maybe it
   2023 			 * XXX doesn't matter so much.
   2024 			 */
   2025 			if (tiflags & TH_SYN &&
   2026 			    tp->t_state == TCPS_TIME_WAIT &&
   2027 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2028 				iss = tcp_new_iss(tp, tp->snd_nxt);
   2029 				tp = tcp_close(tp);
   2030 				TCP_FIELDS_TO_NET(th);
   2031 				goto findpcb;
   2032 			}
   2033 			/*
   2034 			 * If window is closed can only take segments at
   2035 			 * window edge, and have to drop data and PUSH from
   2036 			 * incoming segments.  Continue processing, but
   2037 			 * remember to ack.  Otherwise, drop segment
   2038 			 * and (if not RST) ack.
   2039 			 */
   2040 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2041 				tp->t_flags |= TF_ACKNOW;
   2042 				tcpstat.tcps_rcvwinprobe++;
   2043 			} else
   2044 				goto dropafterack;
   2045 		} else
   2046 			tcpstat.tcps_rcvbyteafterwin += todrop;
   2047 		m_adj(m, -todrop);
   2048 		tlen -= todrop;
   2049 		tiflags &= ~(TH_PUSH|TH_FIN);
   2050 	}
   2051 
   2052 	/*
   2053 	 * If last ACK falls within this segment's sequence numbers,
   2054 	 * and the timestamp is newer, record it.
   2055 	 */
   2056 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   2057 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2058 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   2059 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2060 		tp->ts_recent_age = tcp_now;
   2061 		tp->ts_recent = opti.ts_val;
   2062 	}
   2063 
   2064 	/*
   2065 	 * If the RST bit is set examine the state:
   2066 	 *    SYN_RECEIVED STATE:
   2067 	 *	If passive open, return to LISTEN state.
   2068 	 *	If active open, inform user that connection was refused.
   2069 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2070 	 *	Inform user that connection was reset, and close tcb.
   2071 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2072 	 *	Close the tcb.
   2073 	 */
   2074 	if (tiflags & TH_RST) {
   2075 		if (th->th_seq != tp->last_ack_sent)
   2076 			goto dropafterack_ratelim;
   2077 
   2078 		switch (tp->t_state) {
   2079 		case TCPS_SYN_RECEIVED:
   2080 			so->so_error = ECONNREFUSED;
   2081 			goto close;
   2082 
   2083 		case TCPS_ESTABLISHED:
   2084 		case TCPS_FIN_WAIT_1:
   2085 		case TCPS_FIN_WAIT_2:
   2086 		case TCPS_CLOSE_WAIT:
   2087 			so->so_error = ECONNRESET;
   2088 		close:
   2089 			tp->t_state = TCPS_CLOSED;
   2090 			tcpstat.tcps_drops++;
   2091 			tp = tcp_close(tp);
   2092 			goto drop;
   2093 
   2094 		case TCPS_CLOSING:
   2095 		case TCPS_LAST_ACK:
   2096 		case TCPS_TIME_WAIT:
   2097 			tp = tcp_close(tp);
   2098 			goto drop;
   2099 		}
   2100 	}
   2101 
   2102 	/*
   2103 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2104 	 * we must be in a synchronized state.  RFC791 states (under RST
   2105 	 * generation) that any unacceptable segment (an out-of-order SYN
   2106 	 * qualifies) received in a synchronized state must elicit only an
   2107 	 * empty acknowledgment segment ... and the connection remains in
   2108 	 * the same state.
   2109 	 */
   2110 	if (tiflags & TH_SYN) {
   2111 		if (tp->rcv_nxt == th->th_seq) {
   2112 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2113 			    TH_ACK);
   2114 			if (tcp_saveti)
   2115 				m_freem(tcp_saveti);
   2116 			return;
   2117 		}
   2118 
   2119 		goto dropafterack_ratelim;
   2120 	}
   2121 
   2122 	/*
   2123 	 * If the ACK bit is off we drop the segment and return.
   2124 	 */
   2125 	if ((tiflags & TH_ACK) == 0) {
   2126 		if (tp->t_flags & TF_ACKNOW)
   2127 			goto dropafterack;
   2128 		else
   2129 			goto drop;
   2130 	}
   2131 
   2132 	/*
   2133 	 * Ack processing.
   2134 	 */
   2135 	switch (tp->t_state) {
   2136 
   2137 	/*
   2138 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2139 	 * ESTABLISHED state and continue processing, otherwise
   2140 	 * send an RST.
   2141 	 */
   2142 	case TCPS_SYN_RECEIVED:
   2143 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2144 		    SEQ_GT(th->th_ack, tp->snd_max))
   2145 			goto dropwithreset;
   2146 		tcpstat.tcps_connects++;
   2147 		soisconnected(so);
   2148 		tcp_established(tp);
   2149 		/* Do window scaling? */
   2150 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2151 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2152 			tp->snd_scale = tp->requested_s_scale;
   2153 			tp->rcv_scale = tp->request_r_scale;
   2154 		}
   2155 		TCP_REASS_LOCK(tp);
   2156 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2157 		TCP_REASS_UNLOCK(tp);
   2158 		tp->snd_wl1 = th->th_seq - 1;
   2159 		/* fall into ... */
   2160 
   2161 	/*
   2162 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2163 	 * ACKs.  If the ack is in the range
   2164 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2165 	 * then advance tp->snd_una to th->th_ack and drop
   2166 	 * data from the retransmission queue.  If this ACK reflects
   2167 	 * more up to date window information we update our window information.
   2168 	 */
   2169 	case TCPS_ESTABLISHED:
   2170 	case TCPS_FIN_WAIT_1:
   2171 	case TCPS_FIN_WAIT_2:
   2172 	case TCPS_CLOSE_WAIT:
   2173 	case TCPS_CLOSING:
   2174 	case TCPS_LAST_ACK:
   2175 	case TCPS_TIME_WAIT:
   2176 
   2177 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2178 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2179 				tcpstat.tcps_rcvdupack++;
   2180 				/*
   2181 				 * If we have outstanding data (other than
   2182 				 * a window probe), this is a completely
   2183 				 * duplicate ack (ie, window info didn't
   2184 				 * change), the ack is the biggest we've
   2185 				 * seen and we've seen exactly our rexmt
   2186 				 * threshhold of them, assume a packet
   2187 				 * has been dropped and retransmit it.
   2188 				 * Kludge snd_nxt & the congestion
   2189 				 * window so we send only this one
   2190 				 * packet.
   2191 				 *
   2192 				 * We know we're losing at the current
   2193 				 * window size so do congestion avoidance
   2194 				 * (set ssthresh to half the current window
   2195 				 * and pull our congestion window back to
   2196 				 * the new ssthresh).
   2197 				 *
   2198 				 * Dup acks mean that packets have left the
   2199 				 * network (they're now cached at the receiver)
   2200 				 * so bump cwnd by the amount in the receiver
   2201 				 * to keep a constant cwnd packets in the
   2202 				 * network.
   2203 				 *
   2204 				 * If we are using TCP/SACK, then enter
   2205 				 * Fast Recovery if the receiver SACKs
   2206 				 * data that is tcprexmtthresh * MSS
   2207 				 * bytes past the last ACKed segment,
   2208 				 * irrespective of the number of DupAcks.
   2209 				 */
   2210 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2211 				    th->th_ack != tp->snd_una)
   2212 					tp->t_dupacks = 0;
   2213 				else if (tp->t_partialacks < 0 &&
   2214 					 (++tp->t_dupacks == tcprexmtthresh ||
   2215 					 TCP_FACK_FASTRECOV(tp))) {
   2216 					tcp_seq onxt;
   2217 					u_int win;
   2218 
   2219 					if (tcp_do_newreno &&
   2220 					    SEQ_LT(th->th_ack, tp->snd_high)) {
   2221 						/*
   2222 						 * False fast retransmit after
   2223 						 * timeout.  Do not enter fast
   2224 						 * recovery.
   2225 						 */
   2226 						tp->t_dupacks = 0;
   2227 						break;
   2228 					}
   2229 
   2230 					onxt = tp->snd_nxt;
   2231 					win = min(tp->snd_wnd, tp->snd_cwnd) /
   2232 					    2 /	tp->t_segsz;
   2233 					if (win < 2)
   2234 						win = 2;
   2235 					tp->snd_ssthresh = win * tp->t_segsz;
   2236 					tp->snd_recover = tp->snd_max;
   2237 					tp->t_partialacks = 0;
   2238 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2239 					tp->t_rtttime = 0;
   2240 					if (TCP_SACK_ENABLED(tp)) {
   2241 						tp->t_dupacks = tcprexmtthresh;
   2242 						tp->sack_newdata = tp->snd_nxt;
   2243 						tp->snd_cwnd = tp->t_segsz;
   2244 						(void) tcp_output(tp);
   2245 						goto drop;
   2246 					}
   2247 					tp->snd_nxt = th->th_ack;
   2248 					tp->snd_cwnd = tp->t_segsz;
   2249 					(void) tcp_output(tp);
   2250 					tp->snd_cwnd = tp->snd_ssthresh +
   2251 					       tp->t_segsz * tp->t_dupacks;
   2252 					if (SEQ_GT(onxt, tp->snd_nxt))
   2253 						tp->snd_nxt = onxt;
   2254 					goto drop;
   2255 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2256 					tp->snd_cwnd += tp->t_segsz;
   2257 					(void) tcp_output(tp);
   2258 					goto drop;
   2259 				}
   2260 			} else {
   2261 				/*
   2262 				 * If the ack appears to be very old, only
   2263 				 * allow data that is in-sequence.  This
   2264 				 * makes it somewhat more difficult to insert
   2265 				 * forged data by guessing sequence numbers.
   2266 				 * Sent an ack to try to update the send
   2267 				 * sequence number on the other side.
   2268 				 */
   2269 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2270 				    SEQ_LT(th->th_ack,
   2271 				    tp->snd_una - tp->max_sndwnd))
   2272 					goto dropafterack;
   2273 			}
   2274 			break;
   2275 		}
   2276 		/*
   2277 		 * If the congestion window was inflated to account
   2278 		 * for the other side's cached packets, retract it.
   2279 		 */
   2280 		if (TCP_SACK_ENABLED(tp))
   2281 			tcp_sack_newack(tp, th);
   2282 		else if (tcp_do_newreno)
   2283 			tcp_newreno_newack(tp, th);
   2284 		else
   2285 			tcp_reno_newack(tp, th);
   2286 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2287 			tcpstat.tcps_rcvacktoomuch++;
   2288 			goto dropafterack;
   2289 		}
   2290 		acked = th->th_ack - tp->snd_una;
   2291 		tcpstat.tcps_rcvackpack++;
   2292 		tcpstat.tcps_rcvackbyte += acked;
   2293 
   2294 		/*
   2295 		 * If we have a timestamp reply, update smoothed
   2296 		 * round trip time.  If no timestamp is present but
   2297 		 * transmit timer is running and timed sequence
   2298 		 * number was acked, update smoothed round trip time.
   2299 		 * Since we now have an rtt measurement, cancel the
   2300 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2301 		 * Recompute the initial retransmit timer.
   2302 		 */
   2303 		if (ts_rtt)
   2304 			tcp_xmit_timer(tp, ts_rtt);
   2305 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2306 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2307 
   2308 		/*
   2309 		 * If all outstanding data is acked, stop retransmit
   2310 		 * timer and remember to restart (more output or persist).
   2311 		 * If there is more data to be acked, restart retransmit
   2312 		 * timer, using current (possibly backed-off) value.
   2313 		 */
   2314 		if (th->th_ack == tp->snd_max) {
   2315 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2316 			needoutput = 1;
   2317 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2318 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2319 		/*
   2320 		 * When new data is acked, open the congestion window.
   2321 		 * If the window gives us less than ssthresh packets
   2322 		 * in flight, open exponentially (segsz per packet).
   2323 		 * Otherwise open linearly: segsz per window
   2324 		 * (segsz^2 / cwnd per packet).
   2325 		 *
   2326 		 * If we are still in fast recovery (meaning we are using
   2327 		 * NewReno and we have only received partial acks), do not
   2328 		 * inflate the window yet.
   2329 		 */
   2330 		if (tp->t_partialacks < 0) {
   2331 			u_int cw = tp->snd_cwnd;
   2332 			u_int incr = tp->t_segsz;
   2333 
   2334 			if (cw >= tp->snd_ssthresh)
   2335 				incr = incr * incr / cw;
   2336 			tp->snd_cwnd = min(cw + incr,
   2337 			    TCP_MAXWIN << tp->snd_scale);
   2338 		}
   2339 		ND6_HINT(tp);
   2340 		if (acked > so->so_snd.sb_cc) {
   2341 			tp->snd_wnd -= so->so_snd.sb_cc;
   2342 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2343 			ourfinisacked = 1;
   2344 		} else {
   2345 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2346 				tp->t_lastm = NULL;
   2347 			sbdrop(&so->so_snd, acked);
   2348 			tp->t_lastoff -= acked;
   2349 			tp->snd_wnd -= acked;
   2350 			ourfinisacked = 0;
   2351 		}
   2352 		sowwakeup(so);
   2353 
   2354 		ICMP_CHECK(tp, th, acked);
   2355 
   2356 		tp->snd_una = th->th_ack;
   2357 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2358 			tp->snd_fack = tp->snd_una;
   2359 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2360 			tp->snd_nxt = tp->snd_una;
   2361 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2362 			tp->snd_high = tp->snd_una;
   2363 
   2364 		switch (tp->t_state) {
   2365 
   2366 		/*
   2367 		 * In FIN_WAIT_1 STATE in addition to the processing
   2368 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2369 		 * then enter FIN_WAIT_2.
   2370 		 */
   2371 		case TCPS_FIN_WAIT_1:
   2372 			if (ourfinisacked) {
   2373 				/*
   2374 				 * If we can't receive any more
   2375 				 * data, then closing user can proceed.
   2376 				 * Starting the timer is contrary to the
   2377 				 * specification, but if we don't get a FIN
   2378 				 * we'll hang forever.
   2379 				 */
   2380 				if (so->so_state & SS_CANTRCVMORE) {
   2381 					soisdisconnected(so);
   2382 					if (tcp_maxidle > 0)
   2383 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2384 						    tcp_maxidle);
   2385 				}
   2386 				tp->t_state = TCPS_FIN_WAIT_2;
   2387 			}
   2388 			break;
   2389 
   2390 	 	/*
   2391 		 * In CLOSING STATE in addition to the processing for
   2392 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2393 		 * then enter the TIME-WAIT state, otherwise ignore
   2394 		 * the segment.
   2395 		 */
   2396 		case TCPS_CLOSING:
   2397 			if (ourfinisacked) {
   2398 				tp->t_state = TCPS_TIME_WAIT;
   2399 				tcp_canceltimers(tp);
   2400 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2401 				soisdisconnected(so);
   2402 			}
   2403 			break;
   2404 
   2405 		/*
   2406 		 * In LAST_ACK, we may still be waiting for data to drain
   2407 		 * and/or to be acked, as well as for the ack of our FIN.
   2408 		 * If our FIN is now acknowledged, delete the TCB,
   2409 		 * enter the closed state and return.
   2410 		 */
   2411 		case TCPS_LAST_ACK:
   2412 			if (ourfinisacked) {
   2413 				tp = tcp_close(tp);
   2414 				goto drop;
   2415 			}
   2416 			break;
   2417 
   2418 		/*
   2419 		 * In TIME_WAIT state the only thing that should arrive
   2420 		 * is a retransmission of the remote FIN.  Acknowledge
   2421 		 * it and restart the finack timer.
   2422 		 */
   2423 		case TCPS_TIME_WAIT:
   2424 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2425 			goto dropafterack;
   2426 		}
   2427 	}
   2428 
   2429 step6:
   2430 	/*
   2431 	 * Update window information.
   2432 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2433 	 */
   2434 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2435 	    (tp->snd_wl1 == th->th_seq && SEQ_LT(tp->snd_wl2, th->th_ack)) ||
   2436 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))) {
   2437 		/* keep track of pure window updates */
   2438 		if (tlen == 0 &&
   2439 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2440 			tcpstat.tcps_rcvwinupd++;
   2441 		tp->snd_wnd = tiwin;
   2442 		tp->snd_wl1 = th->th_seq;
   2443 		tp->snd_wl2 = th->th_ack;
   2444 		if (tp->snd_wnd > tp->max_sndwnd)
   2445 			tp->max_sndwnd = tp->snd_wnd;
   2446 		needoutput = 1;
   2447 	}
   2448 
   2449 	/*
   2450 	 * Process segments with URG.
   2451 	 */
   2452 	if ((tiflags & TH_URG) && th->th_urp &&
   2453 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2454 		/*
   2455 		 * This is a kludge, but if we receive and accept
   2456 		 * random urgent pointers, we'll crash in
   2457 		 * soreceive.  It's hard to imagine someone
   2458 		 * actually wanting to send this much urgent data.
   2459 		 */
   2460 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2461 			th->th_urp = 0;			/* XXX */
   2462 			tiflags &= ~TH_URG;		/* XXX */
   2463 			goto dodata;			/* XXX */
   2464 		}
   2465 		/*
   2466 		 * If this segment advances the known urgent pointer,
   2467 		 * then mark the data stream.  This should not happen
   2468 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2469 		 * a FIN has been received from the remote side.
   2470 		 * In these states we ignore the URG.
   2471 		 *
   2472 		 * According to RFC961 (Assigned Protocols),
   2473 		 * the urgent pointer points to the last octet
   2474 		 * of urgent data.  We continue, however,
   2475 		 * to consider it to indicate the first octet
   2476 		 * of data past the urgent section as the original
   2477 		 * spec states (in one of two places).
   2478 		 */
   2479 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2480 			tp->rcv_up = th->th_seq + th->th_urp;
   2481 			so->so_oobmark = so->so_rcv.sb_cc +
   2482 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2483 			if (so->so_oobmark == 0)
   2484 				so->so_state |= SS_RCVATMARK;
   2485 			sohasoutofband(so);
   2486 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2487 		}
   2488 		/*
   2489 		 * Remove out of band data so doesn't get presented to user.
   2490 		 * This can happen independent of advancing the URG pointer,
   2491 		 * but if two URG's are pending at once, some out-of-band
   2492 		 * data may creep in... ick.
   2493 		 */
   2494 		if (th->th_urp <= (u_int16_t) tlen
   2495 #ifdef SO_OOBINLINE
   2496 		     && (so->so_options & SO_OOBINLINE) == 0
   2497 #endif
   2498 		     )
   2499 			tcp_pulloutofband(so, th, m, hdroptlen);
   2500 	} else
   2501 		/*
   2502 		 * If no out of band data is expected,
   2503 		 * pull receive urgent pointer along
   2504 		 * with the receive window.
   2505 		 */
   2506 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2507 			tp->rcv_up = tp->rcv_nxt;
   2508 dodata:							/* XXX */
   2509 
   2510 	/*
   2511 	 * Process the segment text, merging it into the TCP sequencing queue,
   2512 	 * and arranging for acknowledgement of receipt if necessary.
   2513 	 * This process logically involves adjusting tp->rcv_wnd as data
   2514 	 * is presented to the user (this happens in tcp_usrreq.c,
   2515 	 * case PRU_RCVD).  If a FIN has already been received on this
   2516 	 * connection then we just ignore the text.
   2517 	 */
   2518 	if ((tlen || (tiflags & TH_FIN)) &&
   2519 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2520 		/*
   2521 		 * Insert segment ti into reassembly queue of tcp with
   2522 		 * control block tp.  Return TH_FIN if reassembly now includes
   2523 		 * a segment with FIN.  The macro form does the common case
   2524 		 * inline (segment is the next to be received on an
   2525 		 * established connection, and the queue is empty),
   2526 		 * avoiding linkage into and removal from the queue and
   2527 		 * repetition of various conversions.
   2528 		 * Set DELACK for segments received in order, but ack
   2529 		 * immediately when segments are out of order
   2530 		 * (so fast retransmit can work).
   2531 		 */
   2532 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2533 		TCP_REASS_LOCK(tp);
   2534 		if (th->th_seq == tp->rcv_nxt &&
   2535 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2536 		    tp->t_state == TCPS_ESTABLISHED) {
   2537 			TCP_SETUP_ACK(tp, th);
   2538 			tp->rcv_nxt += tlen;
   2539 			tiflags = th->th_flags & TH_FIN;
   2540 			tcpstat.tcps_rcvpack++;
   2541 			tcpstat.tcps_rcvbyte += tlen;
   2542 			ND6_HINT(tp);
   2543 			if (so->so_state & SS_CANTRCVMORE)
   2544 				m_freem(m);
   2545 			else {
   2546 				m_adj(m, hdroptlen);
   2547 				sbappendstream(&(so)->so_rcv, m);
   2548 			}
   2549 			sorwakeup(so);
   2550 		} else {
   2551 			m_adj(m, hdroptlen);
   2552 			tiflags = tcp_reass(tp, th, m, &tlen);
   2553 			tp->t_flags |= TF_ACKNOW;
   2554 		}
   2555 		TCP_REASS_UNLOCK(tp);
   2556 
   2557 		/*
   2558 		 * Note the amount of data that peer has sent into
   2559 		 * our window, in order to estimate the sender's
   2560 		 * buffer size.
   2561 		 */
   2562 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2563 	} else {
   2564 		m_freem(m);
   2565 		m = NULL;
   2566 		tiflags &= ~TH_FIN;
   2567 	}
   2568 
   2569 	/*
   2570 	 * If FIN is received ACK the FIN and let the user know
   2571 	 * that the connection is closing.  Ignore a FIN received before
   2572 	 * the connection is fully established.
   2573 	 */
   2574 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2575 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2576 			socantrcvmore(so);
   2577 			tp->t_flags |= TF_ACKNOW;
   2578 			tp->rcv_nxt++;
   2579 		}
   2580 		switch (tp->t_state) {
   2581 
   2582 	 	/*
   2583 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2584 		 */
   2585 		case TCPS_ESTABLISHED:
   2586 			tp->t_state = TCPS_CLOSE_WAIT;
   2587 			break;
   2588 
   2589 	 	/*
   2590 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2591 		 * enter the CLOSING state.
   2592 		 */
   2593 		case TCPS_FIN_WAIT_1:
   2594 			tp->t_state = TCPS_CLOSING;
   2595 			break;
   2596 
   2597 	 	/*
   2598 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2599 		 * starting the time-wait timer, turning off the other
   2600 		 * standard timers.
   2601 		 */
   2602 		case TCPS_FIN_WAIT_2:
   2603 			tp->t_state = TCPS_TIME_WAIT;
   2604 			tcp_canceltimers(tp);
   2605 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2606 			soisdisconnected(so);
   2607 			break;
   2608 
   2609 		/*
   2610 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2611 		 */
   2612 		case TCPS_TIME_WAIT:
   2613 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2614 			break;
   2615 		}
   2616 	}
   2617 #ifdef TCP_DEBUG
   2618 	if (so->so_options & SO_DEBUG)
   2619 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2620 #endif
   2621 
   2622 	/*
   2623 	 * Return any desired output.
   2624 	 */
   2625 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2626 		(void) tcp_output(tp);
   2627 	}
   2628 	if (tcp_saveti)
   2629 		m_freem(tcp_saveti);
   2630 	return;
   2631 
   2632 badsyn:
   2633 	/*
   2634 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2635 	 */
   2636 	tcpstat.tcps_badsyn++;
   2637 	tp = NULL;
   2638 	goto dropwithreset;
   2639 
   2640 dropafterack:
   2641 	/*
   2642 	 * Generate an ACK dropping incoming segment if it occupies
   2643 	 * sequence space, where the ACK reflects our state.
   2644 	 */
   2645 	if (tiflags & TH_RST)
   2646 		goto drop;
   2647 	goto dropafterack2;
   2648 
   2649 dropafterack_ratelim:
   2650 	/*
   2651 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2652 	 */
   2653 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2654 	    tcp_ackdrop_ppslim) == 0) {
   2655 		/* XXX stat */
   2656 		goto drop;
   2657 	}
   2658 	/* ...fall into dropafterack2... */
   2659 
   2660 dropafterack2:
   2661 	m_freem(m);
   2662 	tp->t_flags |= TF_ACKNOW;
   2663 	(void) tcp_output(tp);
   2664 	if (tcp_saveti)
   2665 		m_freem(tcp_saveti);
   2666 	return;
   2667 
   2668 dropwithreset_ratelim:
   2669 	/*
   2670 	 * We may want to rate-limit RSTs in certain situations,
   2671 	 * particularly if we are sending an RST in response to
   2672 	 * an attempt to connect to or otherwise communicate with
   2673 	 * a port for which we have no socket.
   2674 	 */
   2675 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2676 	    tcp_rst_ppslim) == 0) {
   2677 		/* XXX stat */
   2678 		goto drop;
   2679 	}
   2680 	/* ...fall into dropwithreset... */
   2681 
   2682 dropwithreset:
   2683 	/*
   2684 	 * Generate a RST, dropping incoming segment.
   2685 	 * Make ACK acceptable to originator of segment.
   2686 	 */
   2687 	if (tiflags & TH_RST)
   2688 		goto drop;
   2689 
   2690 	switch (af) {
   2691 #ifdef INET6
   2692 	case AF_INET6:
   2693 		/* For following calls to tcp_respond */
   2694 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2695 			goto drop;
   2696 		break;
   2697 #endif /* INET6 */
   2698 	case AF_INET:
   2699 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2700 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2701 			goto drop;
   2702 	}
   2703 
   2704 	if (tiflags & TH_ACK)
   2705 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2706 	else {
   2707 		if (tiflags & TH_SYN)
   2708 			tlen++;
   2709 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2710 		    TH_RST|TH_ACK);
   2711 	}
   2712 	if (tcp_saveti)
   2713 		m_freem(tcp_saveti);
   2714 	return;
   2715 
   2716 badcsum:
   2717 drop:
   2718 	/*
   2719 	 * Drop space held by incoming segment and return.
   2720 	 */
   2721 	if (tp) {
   2722 		if (tp->t_inpcb)
   2723 			so = tp->t_inpcb->inp_socket;
   2724 #ifdef INET6
   2725 		else if (tp->t_in6pcb)
   2726 			so = tp->t_in6pcb->in6p_socket;
   2727 #endif
   2728 		else
   2729 			so = NULL;
   2730 #ifdef TCP_DEBUG
   2731 		if (so && (so->so_options & SO_DEBUG) != 0)
   2732 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2733 #endif
   2734 	}
   2735 	if (tcp_saveti)
   2736 		m_freem(tcp_saveti);
   2737 	m_freem(m);
   2738 	return;
   2739 }
   2740 
   2741 #ifdef TCP_SIGNATURE
   2742 int
   2743 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
   2744 {
   2745 
   2746 	MD5Update(fstate, (u_char *)data, len);
   2747 	return (0);
   2748 }
   2749 
   2750 struct secasvar *
   2751 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   2752 {
   2753 	struct secasvar *sav;
   2754 #ifdef FAST_IPSEC
   2755 	union sockaddr_union dst;
   2756 #endif
   2757 	struct ip *ip;
   2758 	struct ip6_hdr *ip6;
   2759 
   2760 	ip = mtod(m, struct ip *);
   2761 	switch (ip->ip_v) {
   2762 	case 4:
   2763 		ip = mtod(m, struct ip *);
   2764 		ip6 = NULL;
   2765 		break;
   2766 	case 6:
   2767 		ip = NULL;
   2768 		ip6 = mtod(m, struct ip6_hdr *);
   2769 		break;
   2770 	default:
   2771 		return (NULL);
   2772 	}
   2773 
   2774 #ifdef FAST_IPSEC
   2775 	/* Extract the destination from the IP header in the mbuf. */
   2776 	bzero(&dst, sizeof(union sockaddr_union));
   2777 	dst.sa.sa_len = sizeof(struct sockaddr_in);
   2778 	dst.sa.sa_family = AF_INET;
   2779 	dst.sin.sin_addr = ip->ip_dst;
   2780 
   2781 	/*
   2782 	 * Look up an SADB entry which matches the address of the peer.
   2783 	 */
   2784 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   2785 #else
   2786 	if (ip)
   2787 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
   2788 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
   2789 		    htonl(TCP_SIG_SPI), 0, 0);
   2790 	else
   2791 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
   2792 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
   2793 		    htonl(TCP_SIG_SPI), 0, 0);
   2794 #endif
   2795 
   2796 	return (sav);	/* freesav must be performed by caller */
   2797 }
   2798 
   2799 int
   2800 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   2801     struct secasvar *sav, char *sig)
   2802 {
   2803 	MD5_CTX ctx;
   2804 	struct ip *ip;
   2805 	struct ipovly *ipovly;
   2806 	struct ip6_hdr *ip6;
   2807 	struct ippseudo ippseudo;
   2808 	struct ip6_hdr_pseudo ip6pseudo;
   2809 	struct tcphdr th0;
   2810 	int l, tcphdrlen;
   2811 
   2812 	if (sav == NULL)
   2813 		return (-1);
   2814 
   2815 	tcphdrlen = th->th_off * 4;
   2816 
   2817 	switch (mtod(m, struct ip *)->ip_v) {
   2818 	case 4:
   2819 		ip = mtod(m, struct ip *);
   2820 		ip6 = NULL;
   2821 		break;
   2822 	case 6:
   2823 		ip = NULL;
   2824 		ip6 = mtod(m, struct ip6_hdr *);
   2825 		break;
   2826 	default:
   2827 		return (-1);
   2828 	}
   2829 
   2830 	MD5Init(&ctx);
   2831 
   2832 	if (ip) {
   2833 		memset(&ippseudo, 0, sizeof(ippseudo));
   2834 		ipovly = (struct ipovly *)ip;
   2835 		ippseudo.ippseudo_src = ipovly->ih_src;
   2836 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   2837 		ippseudo.ippseudo_pad = 0;
   2838 		ippseudo.ippseudo_p = IPPROTO_TCP;
   2839 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   2840 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   2841 	} else {
   2842 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   2843 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   2844 		in6_clearscope(&ip6pseudo.ip6ph_src);
   2845 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   2846 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   2847 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   2848 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   2849 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   2850 	}
   2851 
   2852 	th0 = *th;
   2853 	th0.th_sum = 0;
   2854 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   2855 
   2856 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   2857 	if (l > 0)
   2858 		m_apply(m, thoff + tcphdrlen,
   2859 		    m->m_pkthdr.len - thoff - tcphdrlen,
   2860 		    tcp_signature_apply, &ctx);
   2861 
   2862 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   2863 	MD5Final(sig, &ctx);
   2864 
   2865 	return (0);
   2866 }
   2867 #endif
   2868 
   2869 int
   2870 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
   2871     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   2872 {
   2873 	u_int16_t mss;
   2874 	int opt, optlen = 0;
   2875 #ifdef TCP_SIGNATURE
   2876 	caddr_t sigp = NULL;
   2877 	char sigbuf[TCP_SIGLEN];
   2878 	struct secasvar *sav = NULL;
   2879 #endif
   2880 
   2881 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   2882 		opt = cp[0];
   2883 		if (opt == TCPOPT_EOL)
   2884 			break;
   2885 		if (opt == TCPOPT_NOP)
   2886 			optlen = 1;
   2887 		else {
   2888 			if (cnt < 2)
   2889 				break;
   2890 			optlen = cp[1];
   2891 			if (optlen < 2 || optlen > cnt)
   2892 				break;
   2893 		}
   2894 		switch (opt) {
   2895 
   2896 		default:
   2897 			continue;
   2898 
   2899 		case TCPOPT_MAXSEG:
   2900 			if (optlen != TCPOLEN_MAXSEG)
   2901 				continue;
   2902 			if (!(th->th_flags & TH_SYN))
   2903 				continue;
   2904 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2905 				continue;
   2906 			bcopy(cp + 2, &mss, sizeof(mss));
   2907 			oi->maxseg = ntohs(mss);
   2908 			break;
   2909 
   2910 		case TCPOPT_WINDOW:
   2911 			if (optlen != TCPOLEN_WINDOW)
   2912 				continue;
   2913 			if (!(th->th_flags & TH_SYN))
   2914 				continue;
   2915 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2916 				continue;
   2917 			tp->t_flags |= TF_RCVD_SCALE;
   2918 			tp->requested_s_scale = cp[2];
   2919 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2920 #if 0	/*XXX*/
   2921 				char *p;
   2922 
   2923 				if (ip)
   2924 					p = ntohl(ip->ip_src);
   2925 #ifdef INET6
   2926 				else if (ip6)
   2927 					p = ip6_sprintf(&ip6->ip6_src);
   2928 #endif
   2929 				else
   2930 					p = "(unknown)";
   2931 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2932 				    "assuming %d\n",
   2933 				    tp->requested_s_scale, p,
   2934 				    TCP_MAX_WINSHIFT);
   2935 #else
   2936 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2937 				    "assuming %d\n",
   2938 				    tp->requested_s_scale,
   2939 				    TCP_MAX_WINSHIFT);
   2940 #endif
   2941 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2942 			}
   2943 			break;
   2944 
   2945 		case TCPOPT_TIMESTAMP:
   2946 			if (optlen != TCPOLEN_TIMESTAMP)
   2947 				continue;
   2948 			oi->ts_present = 1;
   2949 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2950 			NTOHL(oi->ts_val);
   2951 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2952 			NTOHL(oi->ts_ecr);
   2953 
   2954 			if (!(th->th_flags & TH_SYN))
   2955 				continue;
   2956 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2957 				continue;
   2958 			/*
   2959 			 * A timestamp received in a SYN makes
   2960 			 * it ok to send timestamp requests and replies.
   2961 			 */
   2962 			tp->t_flags |= TF_RCVD_TSTMP;
   2963 			tp->ts_recent = oi->ts_val;
   2964 			tp->ts_recent_age = tcp_now;
   2965                         break;
   2966 
   2967 		case TCPOPT_SACK_PERMITTED:
   2968 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2969 				continue;
   2970 			if (!(th->th_flags & TH_SYN))
   2971 				continue;
   2972 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2973 				continue;
   2974 			if (tcp_do_sack) {
   2975 				tp->t_flags |= TF_SACK_PERMIT;
   2976 				tp->t_flags |= TF_WILL_SACK;
   2977 			}
   2978 			break;
   2979 
   2980 		case TCPOPT_SACK:
   2981 			tcp_sack_option(tp, th, cp, optlen);
   2982 			break;
   2983 #ifdef TCP_SIGNATURE
   2984 		case TCPOPT_SIGNATURE:
   2985 			if (optlen != TCPOLEN_SIGNATURE)
   2986 				continue;
   2987 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
   2988 				return (-1);
   2989 
   2990 			sigp = sigbuf;
   2991 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   2992 			memset(cp + 2, 0, TCP_SIGLEN);
   2993 			tp->t_flags |= TF_SIGNATURE;
   2994 			break;
   2995 #endif
   2996 		}
   2997 	}
   2998 
   2999 #ifdef TCP_SIGNATURE
   3000 	if (tp->t_flags & TF_SIGNATURE) {
   3001 
   3002 		sav = tcp_signature_getsav(m, th);
   3003 
   3004 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3005 			return (-1);
   3006 	}
   3007 
   3008 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   3009 		if (sav == NULL)
   3010 			return (-1);
   3011 #ifdef FAST_IPSEC
   3012 		KEY_FREESAV(&sav);
   3013 #else
   3014 		key_freesav(sav);
   3015 #endif
   3016 		return (-1);
   3017 	}
   3018 
   3019 	if (sigp) {
   3020 		char sig[TCP_SIGLEN];
   3021 
   3022 		TCP_FIELDS_TO_NET(th);
   3023 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3024 			TCP_FIELDS_TO_HOST(th);
   3025 			if (sav == NULL)
   3026 				return (-1);
   3027 #ifdef FAST_IPSEC
   3028 			KEY_FREESAV(&sav);
   3029 #else
   3030 			key_freesav(sav);
   3031 #endif
   3032 			return (-1);
   3033 		}
   3034 		TCP_FIELDS_TO_HOST(th);
   3035 
   3036 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
   3037 			tcpstat.tcps_badsig++;
   3038 			if (sav == NULL)
   3039 				return (-1);
   3040 #ifdef FAST_IPSEC
   3041 			KEY_FREESAV(&sav);
   3042 #else
   3043 			key_freesav(sav);
   3044 #endif
   3045 			return (-1);
   3046 		} else
   3047 			tcpstat.tcps_goodsig++;
   3048 
   3049 		key_sa_recordxfer(sav, m);
   3050 #ifdef FAST_IPSEC
   3051 		KEY_FREESAV(&sav);
   3052 #else
   3053 		key_freesav(sav);
   3054 #endif
   3055 	}
   3056 #endif
   3057 
   3058 	return (0);
   3059 }
   3060 
   3061 /*
   3062  * Pull out of band byte out of a segment so
   3063  * it doesn't appear in the user's data queue.
   3064  * It is still reflected in the segment length for
   3065  * sequencing purposes.
   3066  */
   3067 void
   3068 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3069     struct mbuf *m, int off)
   3070 {
   3071 	int cnt = off + th->th_urp - 1;
   3072 
   3073 	while (cnt >= 0) {
   3074 		if (m->m_len > cnt) {
   3075 			char *cp = mtod(m, caddr_t) + cnt;
   3076 			struct tcpcb *tp = sototcpcb(so);
   3077 
   3078 			tp->t_iobc = *cp;
   3079 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3080 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3081 			m->m_len--;
   3082 			return;
   3083 		}
   3084 		cnt -= m->m_len;
   3085 		m = m->m_next;
   3086 		if (m == 0)
   3087 			break;
   3088 	}
   3089 	panic("tcp_pulloutofband");
   3090 }
   3091 
   3092 /*
   3093  * Collect new round-trip time estimate
   3094  * and update averages and current timeout.
   3095  */
   3096 void
   3097 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3098 {
   3099 	int32_t delta;
   3100 
   3101 	tcpstat.tcps_rttupdated++;
   3102 	if (tp->t_srtt != 0) {
   3103 		/*
   3104 		 * srtt is stored as fixed point with 3 bits after the
   3105 		 * binary point (i.e., scaled by 8).  The following magic
   3106 		 * is equivalent to the smoothing algorithm in rfc793 with
   3107 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   3108 		 * point).  Adjust rtt to origin 0.
   3109 		 */
   3110 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3111 		if ((tp->t_srtt += delta) <= 0)
   3112 			tp->t_srtt = 1 << 2;
   3113 		/*
   3114 		 * We accumulate a smoothed rtt variance (actually, a
   3115 		 * smoothed mean difference), then set the retransmit
   3116 		 * timer to smoothed rtt + 4 times the smoothed variance.
   3117 		 * rttvar is stored as fixed point with 2 bits after the
   3118 		 * binary point (scaled by 4).  The following is
   3119 		 * equivalent to rfc793 smoothing with an alpha of .75
   3120 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   3121 		 * rfc793's wired-in beta.
   3122 		 */
   3123 		if (delta < 0)
   3124 			delta = -delta;
   3125 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3126 		if ((tp->t_rttvar += delta) <= 0)
   3127 			tp->t_rttvar = 1 << 2;
   3128 	} else {
   3129 		/*
   3130 		 * No rtt measurement yet - use the unsmoothed rtt.
   3131 		 * Set the variance to half the rtt (so our first
   3132 		 * retransmit happens at 3*rtt).
   3133 		 */
   3134 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3135 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3136 	}
   3137 	tp->t_rtttime = 0;
   3138 	tp->t_rxtshift = 0;
   3139 
   3140 	/*
   3141 	 * the retransmit should happen at rtt + 4 * rttvar.
   3142 	 * Because of the way we do the smoothing, srtt and rttvar
   3143 	 * will each average +1/2 tick of bias.  When we compute
   3144 	 * the retransmit timer, we want 1/2 tick of rounding and
   3145 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3146 	 * firing of the timer.  The bias will give us exactly the
   3147 	 * 1.5 tick we need.  But, because the bias is
   3148 	 * statistical, we have to test that we don't drop below
   3149 	 * the minimum feasible timer (which is 2 ticks).
   3150 	 */
   3151 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3152 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3153 
   3154 	/*
   3155 	 * We received an ack for a packet that wasn't retransmitted;
   3156 	 * it is probably safe to discard any error indications we've
   3157 	 * received recently.  This isn't quite right, but close enough
   3158 	 * for now (a route might have failed after we sent a segment,
   3159 	 * and the return path might not be symmetrical).
   3160 	 */
   3161 	tp->t_softerror = 0;
   3162 }
   3163 
   3164 void
   3165 tcp_reno_newack(struct tcpcb *tp, struct tcphdr *th)
   3166 {
   3167 	if (tp->t_partialacks < 0) {
   3168 		/*
   3169 		 * We were not in fast recovery.  Reset the duplicate ack
   3170 		 * counter.
   3171 		 */
   3172 		tp->t_dupacks = 0;
   3173 	} else {
   3174 		/*
   3175 		 * Clamp the congestion window to the crossover point and
   3176 		 * exit fast recovery.
   3177 		 */
   3178 		if (tp->snd_cwnd > tp->snd_ssthresh)
   3179 			tp->snd_cwnd = tp->snd_ssthresh;
   3180 		tp->t_partialacks = -1;
   3181 		tp->t_dupacks = 0;
   3182 	}
   3183 }
   3184 
   3185 /*
   3186  * Implement the NewReno response to a new ack, checking for partial acks in
   3187  * fast recovery.
   3188  */
   3189 void
   3190 tcp_newreno_newack(struct tcpcb *tp, struct tcphdr *th)
   3191 {
   3192 	if (tp->t_partialacks < 0) {
   3193 		/*
   3194 		 * We were not in fast recovery.  Reset the duplicate ack
   3195 		 * counter.
   3196 		 */
   3197 		tp->t_dupacks = 0;
   3198 	} else if (SEQ_LT(th->th_ack, tp->snd_recover)) {
   3199 		/*
   3200 		 * This is a partial ack.  Retransmit the first unacknowledged
   3201 		 * segment and deflate the congestion window by the amount of
   3202 		 * acknowledged data.  Do not exit fast recovery.
   3203 		 */
   3204 		tcp_seq onxt = tp->snd_nxt;
   3205 		u_long ocwnd = tp->snd_cwnd;
   3206 
   3207 		/*
   3208 		 * snd_una has not yet been updated and the socket's send
   3209 		 * buffer has not yet drained off the ACK'd data, so we
   3210 		 * have to leave snd_una as it was to get the correct data
   3211 		 * offset in tcp_output().
   3212 		 */
   3213 		if (++tp->t_partialacks == 1)
   3214 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   3215 		tp->t_rtttime = 0;
   3216 		tp->snd_nxt = th->th_ack;
   3217 		/*
   3218 		 * Set snd_cwnd to one segment beyond ACK'd offset.  snd_una
   3219 		 * is not yet updated when we're called.
   3220 		 */
   3221 		tp->snd_cwnd = tp->t_segsz + (th->th_ack - tp->snd_una);
   3222 		(void) tcp_output(tp);
   3223 		tp->snd_cwnd = ocwnd;
   3224 		if (SEQ_GT(onxt, tp->snd_nxt))
   3225 			tp->snd_nxt = onxt;
   3226 		/*
   3227 		 * Partial window deflation.  Relies on fact that tp->snd_una
   3228 		 * not updated yet.
   3229 		 */
   3230 		tp->snd_cwnd -= (th->th_ack - tp->snd_una - tp->t_segsz);
   3231 	} else {
   3232 		/*
   3233 		 * Complete ack.  Inflate the congestion window to ssthresh
   3234 		 * and exit fast recovery.
   3235 		 *
   3236 		 * Window inflation should have left us with approx.
   3237 		 * snd_ssthresh outstanding data.  But in case we
   3238 		 * would be inclined to send a burst, better to do
   3239 		 * it via the slow start mechanism.
   3240 		 */
   3241 		if (SEQ_SUB(tp->snd_max, th->th_ack) < tp->snd_ssthresh)
   3242 			tp->snd_cwnd = SEQ_SUB(tp->snd_max, th->th_ack)
   3243 			    + tp->t_segsz;
   3244 		else
   3245 			tp->snd_cwnd = tp->snd_ssthresh;
   3246 		tp->t_partialacks = -1;
   3247 		tp->t_dupacks = 0;
   3248 	}
   3249 }
   3250 
   3251 
   3252 /*
   3253  * TCP compressed state engine.  Currently used to hold compressed
   3254  * state for SYN_RECEIVED.
   3255  */
   3256 
   3257 u_long	syn_cache_count;
   3258 u_int32_t syn_hash1, syn_hash2;
   3259 
   3260 #define SYN_HASH(sa, sp, dp) \
   3261 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3262 				     ((u_int32_t)(sp)))^syn_hash2)))
   3263 #ifndef INET6
   3264 #define	SYN_HASHALL(hash, src, dst) \
   3265 do {									\
   3266 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3267 		((const struct sockaddr_in *)(src))->sin_port,		\
   3268 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3269 } while (/*CONSTCOND*/ 0)
   3270 #else
   3271 #define SYN_HASH6(sa, sp, dp) \
   3272 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3273 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3274 	 & 0x7fffffff)
   3275 
   3276 #define SYN_HASHALL(hash, src, dst) \
   3277 do {									\
   3278 	switch ((src)->sa_family) {					\
   3279 	case AF_INET:							\
   3280 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3281 			((const struct sockaddr_in *)(src))->sin_port,	\
   3282 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3283 		break;							\
   3284 	case AF_INET6:							\
   3285 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3286 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3287 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3288 		break;							\
   3289 	default:							\
   3290 		hash = 0;						\
   3291 	}								\
   3292 } while (/*CONSTCOND*/0)
   3293 #endif /* INET6 */
   3294 
   3295 #define	SYN_CACHE_RM(sc)						\
   3296 do {									\
   3297 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   3298 	    (sc), sc_bucketq);						\
   3299 	(sc)->sc_tp = NULL;						\
   3300 	LIST_REMOVE((sc), sc_tpq);					\
   3301 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   3302 	callout_stop(&(sc)->sc_timer);					\
   3303 	syn_cache_count--;						\
   3304 } while (/*CONSTCOND*/0)
   3305 
   3306 #define	SYN_CACHE_PUT(sc)						\
   3307 do {									\
   3308 	if ((sc)->sc_ipopts)						\
   3309 		(void) m_free((sc)->sc_ipopts);				\
   3310 	if ((sc)->sc_route4.ro_rt != NULL)				\
   3311 		RTFREE((sc)->sc_route4.ro_rt);				\
   3312 	if (callout_invoking(&(sc)->sc_timer))				\
   3313 		(sc)->sc_flags |= SCF_DEAD;				\
   3314 	else								\
   3315 		pool_put(&syn_cache_pool, (sc));			\
   3316 } while (/*CONSTCOND*/0)
   3317 
   3318 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
   3319 
   3320 /*
   3321  * We don't estimate RTT with SYNs, so each packet starts with the default
   3322  * RTT and each timer step has a fixed timeout value.
   3323  */
   3324 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3325 do {									\
   3326 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3327 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3328 	    TCPTV_REXMTMAX);						\
   3329 	callout_reset(&(sc)->sc_timer,					\
   3330 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3331 } while (/*CONSTCOND*/0)
   3332 
   3333 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3334 
   3335 void
   3336 syn_cache_init(void)
   3337 {
   3338 	int i;
   3339 
   3340 	/* Initialize the hash buckets. */
   3341 	for (i = 0; i < tcp_syn_cache_size; i++)
   3342 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3343 }
   3344 
   3345 void
   3346 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3347 {
   3348 	struct syn_cache_head *scp;
   3349 	struct syn_cache *sc2;
   3350 	int s;
   3351 
   3352 	/*
   3353 	 * If there are no entries in the hash table, reinitialize
   3354 	 * the hash secrets.
   3355 	 */
   3356 	if (syn_cache_count == 0) {
   3357 		syn_hash1 = arc4random();
   3358 		syn_hash2 = arc4random();
   3359 	}
   3360 
   3361 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3362 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3363 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3364 
   3365 	/*
   3366 	 * Make sure that we don't overflow the per-bucket
   3367 	 * limit or the total cache size limit.
   3368 	 */
   3369 	s = splsoftnet();
   3370 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3371 		tcpstat.tcps_sc_bucketoverflow++;
   3372 		/*
   3373 		 * The bucket is full.  Toss the oldest element in the
   3374 		 * bucket.  This will be the first entry in the bucket.
   3375 		 */
   3376 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3377 #ifdef DIAGNOSTIC
   3378 		/*
   3379 		 * This should never happen; we should always find an
   3380 		 * entry in our bucket.
   3381 		 */
   3382 		if (sc2 == NULL)
   3383 			panic("syn_cache_insert: bucketoverflow: impossible");
   3384 #endif
   3385 		SYN_CACHE_RM(sc2);
   3386 		SYN_CACHE_PUT(sc2);
   3387 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3388 		struct syn_cache_head *scp2, *sce;
   3389 
   3390 		tcpstat.tcps_sc_overflowed++;
   3391 		/*
   3392 		 * The cache is full.  Toss the oldest entry in the
   3393 		 * first non-empty bucket we can find.
   3394 		 *
   3395 		 * XXX We would really like to toss the oldest
   3396 		 * entry in the cache, but we hope that this
   3397 		 * condition doesn't happen very often.
   3398 		 */
   3399 		scp2 = scp;
   3400 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3401 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3402 			for (++scp2; scp2 != scp; scp2++) {
   3403 				if (scp2 >= sce)
   3404 					scp2 = &tcp_syn_cache[0];
   3405 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3406 					break;
   3407 			}
   3408 #ifdef DIAGNOSTIC
   3409 			/*
   3410 			 * This should never happen; we should always find a
   3411 			 * non-empty bucket.
   3412 			 */
   3413 			if (scp2 == scp)
   3414 				panic("syn_cache_insert: cacheoverflow: "
   3415 				    "impossible");
   3416 #endif
   3417 		}
   3418 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3419 		SYN_CACHE_RM(sc2);
   3420 		SYN_CACHE_PUT(sc2);
   3421 	}
   3422 
   3423 	/*
   3424 	 * Initialize the entry's timer.
   3425 	 */
   3426 	sc->sc_rxttot = 0;
   3427 	sc->sc_rxtshift = 0;
   3428 	SYN_CACHE_TIMER_ARM(sc);
   3429 
   3430 	/* Link it from tcpcb entry */
   3431 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3432 
   3433 	/* Put it into the bucket. */
   3434 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3435 	scp->sch_length++;
   3436 	syn_cache_count++;
   3437 
   3438 	tcpstat.tcps_sc_added++;
   3439 	splx(s);
   3440 }
   3441 
   3442 /*
   3443  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3444  * If we have retransmitted an entry the maximum number of times, expire
   3445  * that entry.
   3446  */
   3447 void
   3448 syn_cache_timer(void *arg)
   3449 {
   3450 	struct syn_cache *sc = arg;
   3451 	int s;
   3452 
   3453 	s = splsoftnet();
   3454 	callout_ack(&sc->sc_timer);
   3455 
   3456 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3457 		tcpstat.tcps_sc_delayed_free++;
   3458 		pool_put(&syn_cache_pool, sc);
   3459 		splx(s);
   3460 		return;
   3461 	}
   3462 
   3463 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3464 		/* Drop it -- too many retransmissions. */
   3465 		goto dropit;
   3466 	}
   3467 
   3468 	/*
   3469 	 * Compute the total amount of time this entry has
   3470 	 * been on a queue.  If this entry has been on longer
   3471 	 * than the keep alive timer would allow, expire it.
   3472 	 */
   3473 	sc->sc_rxttot += sc->sc_rxtcur;
   3474 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   3475 		goto dropit;
   3476 
   3477 	tcpstat.tcps_sc_retransmitted++;
   3478 	(void) syn_cache_respond(sc, NULL);
   3479 
   3480 	/* Advance the timer back-off. */
   3481 	sc->sc_rxtshift++;
   3482 	SYN_CACHE_TIMER_ARM(sc);
   3483 
   3484 	splx(s);
   3485 	return;
   3486 
   3487  dropit:
   3488 	tcpstat.tcps_sc_timed_out++;
   3489 	SYN_CACHE_RM(sc);
   3490 	SYN_CACHE_PUT(sc);
   3491 	splx(s);
   3492 }
   3493 
   3494 /*
   3495  * Remove syn cache created by the specified tcb entry,
   3496  * because this does not make sense to keep them
   3497  * (if there's no tcb entry, syn cache entry will never be used)
   3498  */
   3499 void
   3500 syn_cache_cleanup(struct tcpcb *tp)
   3501 {
   3502 	struct syn_cache *sc, *nsc;
   3503 	int s;
   3504 
   3505 	s = splsoftnet();
   3506 
   3507 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3508 		nsc = LIST_NEXT(sc, sc_tpq);
   3509 
   3510 #ifdef DIAGNOSTIC
   3511 		if (sc->sc_tp != tp)
   3512 			panic("invalid sc_tp in syn_cache_cleanup");
   3513 #endif
   3514 		SYN_CACHE_RM(sc);
   3515 		SYN_CACHE_PUT(sc);
   3516 	}
   3517 	/* just for safety */
   3518 	LIST_INIT(&tp->t_sc);
   3519 
   3520 	splx(s);
   3521 }
   3522 
   3523 /*
   3524  * Find an entry in the syn cache.
   3525  */
   3526 struct syn_cache *
   3527 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3528     struct syn_cache_head **headp)
   3529 {
   3530 	struct syn_cache *sc;
   3531 	struct syn_cache_head *scp;
   3532 	u_int32_t hash;
   3533 	int s;
   3534 
   3535 	SYN_HASHALL(hash, src, dst);
   3536 
   3537 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3538 	*headp = scp;
   3539 	s = splsoftnet();
   3540 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3541 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3542 		if (sc->sc_hash != hash)
   3543 			continue;
   3544 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3545 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3546 			splx(s);
   3547 			return (sc);
   3548 		}
   3549 	}
   3550 	splx(s);
   3551 	return (NULL);
   3552 }
   3553 
   3554 /*
   3555  * This function gets called when we receive an ACK for a
   3556  * socket in the LISTEN state.  We look up the connection
   3557  * in the syn cache, and if its there, we pull it out of
   3558  * the cache and turn it into a full-blown connection in
   3559  * the SYN-RECEIVED state.
   3560  *
   3561  * The return values may not be immediately obvious, and their effects
   3562  * can be subtle, so here they are:
   3563  *
   3564  *	NULL	SYN was not found in cache; caller should drop the
   3565  *		packet and send an RST.
   3566  *
   3567  *	-1	We were unable to create the new connection, and are
   3568  *		aborting it.  An ACK,RST is being sent to the peer
   3569  *		(unless we got screwey sequence numbners; see below),
   3570  *		because the 3-way handshake has been completed.  Caller
   3571  *		should not free the mbuf, since we may be using it.  If
   3572  *		we are not, we will free it.
   3573  *
   3574  *	Otherwise, the return value is a pointer to the new socket
   3575  *	associated with the connection.
   3576  */
   3577 struct socket *
   3578 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3579     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3580     struct socket *so, struct mbuf *m)
   3581 {
   3582 	struct syn_cache *sc;
   3583 	struct syn_cache_head *scp;
   3584 	struct inpcb *inp = NULL;
   3585 #ifdef INET6
   3586 	struct in6pcb *in6p = NULL;
   3587 #endif
   3588 	struct tcpcb *tp = 0;
   3589 	struct mbuf *am;
   3590 	int s;
   3591 	struct socket *oso;
   3592 
   3593 	s = splsoftnet();
   3594 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3595 		splx(s);
   3596 		return (NULL);
   3597 	}
   3598 
   3599 	/*
   3600 	 * Verify the sequence and ack numbers.  Try getting the correct
   3601 	 * response again.
   3602 	 */
   3603 	if ((th->th_ack != sc->sc_iss + 1) ||
   3604 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3605 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3606 		(void) syn_cache_respond(sc, m);
   3607 		splx(s);
   3608 		return ((struct socket *)(-1));
   3609 	}
   3610 
   3611 	/* Remove this cache entry */
   3612 	SYN_CACHE_RM(sc);
   3613 	splx(s);
   3614 
   3615 	/*
   3616 	 * Ok, create the full blown connection, and set things up
   3617 	 * as they would have been set up if we had created the
   3618 	 * connection when the SYN arrived.  If we can't create
   3619 	 * the connection, abort it.
   3620 	 */
   3621 	/*
   3622 	 * inp still has the OLD in_pcb stuff, set the
   3623 	 * v6-related flags on the new guy, too.   This is
   3624 	 * done particularly for the case where an AF_INET6
   3625 	 * socket is bound only to a port, and a v4 connection
   3626 	 * comes in on that port.
   3627 	 * we also copy the flowinfo from the original pcb
   3628 	 * to the new one.
   3629 	 */
   3630 	oso = so;
   3631 	so = sonewconn(so, SS_ISCONNECTED);
   3632 	if (so == NULL)
   3633 		goto resetandabort;
   3634 
   3635 	switch (so->so_proto->pr_domain->dom_family) {
   3636 #ifdef INET
   3637 	case AF_INET:
   3638 		inp = sotoinpcb(so);
   3639 		break;
   3640 #endif
   3641 #ifdef INET6
   3642 	case AF_INET6:
   3643 		in6p = sotoin6pcb(so);
   3644 		break;
   3645 #endif
   3646 	}
   3647 	switch (src->sa_family) {
   3648 #ifdef INET
   3649 	case AF_INET:
   3650 		if (inp) {
   3651 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3652 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3653 			inp->inp_options = ip_srcroute();
   3654 			in_pcbstate(inp, INP_BOUND);
   3655 			if (inp->inp_options == NULL) {
   3656 				inp->inp_options = sc->sc_ipopts;
   3657 				sc->sc_ipopts = NULL;
   3658 			}
   3659 		}
   3660 #ifdef INET6
   3661 		else if (in6p) {
   3662 			/* IPv4 packet to AF_INET6 socket */
   3663 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3664 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3665 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3666 				&in6p->in6p_laddr.s6_addr32[3],
   3667 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3668 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3669 			in6totcpcb(in6p)->t_family = AF_INET;
   3670 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3671 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3672 			else
   3673 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3674 			in6_pcbstate(in6p, IN6P_BOUND);
   3675 		}
   3676 #endif
   3677 		break;
   3678 #endif
   3679 #ifdef INET6
   3680 	case AF_INET6:
   3681 		if (in6p) {
   3682 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3683 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3684 			in6_pcbstate(in6p, IN6P_BOUND);
   3685 		}
   3686 		break;
   3687 #endif
   3688 	}
   3689 #ifdef INET6
   3690 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3691 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3692 		/* inherit socket options from the listening socket */
   3693 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3694 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3695 			m_freem(in6p->in6p_options);
   3696 			in6p->in6p_options = 0;
   3697 		}
   3698 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3699 			mtod(m, struct ip6_hdr *), m);
   3700 	}
   3701 #endif
   3702 
   3703 #if defined(IPSEC) || defined(FAST_IPSEC)
   3704 	/*
   3705 	 * we make a copy of policy, instead of sharing the policy,
   3706 	 * for better behavior in terms of SA lookup and dead SA removal.
   3707 	 */
   3708 	if (inp) {
   3709 		/* copy old policy into new socket's */
   3710 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3711 			printf("tcp_input: could not copy policy\n");
   3712 	}
   3713 #ifdef INET6
   3714 	else if (in6p) {
   3715 		/* copy old policy into new socket's */
   3716 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3717 		    in6p->in6p_sp))
   3718 			printf("tcp_input: could not copy policy\n");
   3719 	}
   3720 #endif
   3721 #endif
   3722 
   3723 	/*
   3724 	 * Give the new socket our cached route reference.
   3725 	 */
   3726 	if (inp)
   3727 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3728 #ifdef INET6
   3729 	else
   3730 		in6p->in6p_route = sc->sc_route6;
   3731 #endif
   3732 	sc->sc_route4.ro_rt = NULL;
   3733 
   3734 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3735 	if (am == NULL)
   3736 		goto resetandabort;
   3737 	MCLAIM(am, &tcp_mowner);
   3738 	am->m_len = src->sa_len;
   3739 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3740 	if (inp) {
   3741 		if (in_pcbconnect(inp, am, NULL)) {
   3742 			(void) m_free(am);
   3743 			goto resetandabort;
   3744 		}
   3745 	}
   3746 #ifdef INET6
   3747 	else if (in6p) {
   3748 		if (src->sa_family == AF_INET) {
   3749 			/* IPv4 packet to AF_INET6 socket */
   3750 			struct sockaddr_in6 *sin6;
   3751 			sin6 = mtod(am, struct sockaddr_in6 *);
   3752 			am->m_len = sizeof(*sin6);
   3753 			bzero(sin6, sizeof(*sin6));
   3754 			sin6->sin6_family = AF_INET6;
   3755 			sin6->sin6_len = sizeof(*sin6);
   3756 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3757 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3758 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3759 				&sin6->sin6_addr.s6_addr32[3],
   3760 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3761 		}
   3762 		if (in6_pcbconnect(in6p, am, NULL)) {
   3763 			(void) m_free(am);
   3764 			goto resetandabort;
   3765 		}
   3766 	}
   3767 #endif
   3768 	else {
   3769 		(void) m_free(am);
   3770 		goto resetandabort;
   3771 	}
   3772 	(void) m_free(am);
   3773 
   3774 	if (inp)
   3775 		tp = intotcpcb(inp);
   3776 #ifdef INET6
   3777 	else if (in6p)
   3778 		tp = in6totcpcb(in6p);
   3779 #endif
   3780 	else
   3781 		tp = NULL;
   3782 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3783 	if (sc->sc_request_r_scale != 15) {
   3784 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3785 		tp->request_r_scale = sc->sc_request_r_scale;
   3786 		tp->snd_scale = sc->sc_requested_s_scale;
   3787 		tp->rcv_scale = sc->sc_request_r_scale;
   3788 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3789 	}
   3790 	if (sc->sc_flags & SCF_TIMESTAMP)
   3791 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3792 	tp->ts_timebase = sc->sc_timebase;
   3793 
   3794 	tp->t_template = tcp_template(tp);
   3795 	if (tp->t_template == 0) {
   3796 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3797 		so = NULL;
   3798 		m_freem(m);
   3799 		goto abort;
   3800 	}
   3801 
   3802 	tp->iss = sc->sc_iss;
   3803 	tp->irs = sc->sc_irs;
   3804 	tcp_sendseqinit(tp);
   3805 	tcp_rcvseqinit(tp);
   3806 	tp->t_state = TCPS_SYN_RECEIVED;
   3807 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3808 	tcpstat.tcps_accepts++;
   3809 
   3810 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3811 		tp->t_flags |= TF_WILL_SACK;
   3812 
   3813 #ifdef TCP_SIGNATURE
   3814 	if (sc->sc_flags & SCF_SIGNATURE)
   3815 		tp->t_flags |= TF_SIGNATURE;
   3816 #endif
   3817 
   3818 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3819 	tp->t_ourmss = sc->sc_ourmaxseg;
   3820 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3821 
   3822 	/*
   3823 	 * Initialize the initial congestion window.  If we
   3824 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3825 	 * to 1 segment (i.e. the Loss Window).
   3826 	 */
   3827 	if (sc->sc_rxtshift)
   3828 		tp->snd_cwnd = tp->t_peermss;
   3829 	else {
   3830 		int ss = tcp_init_win;
   3831 #ifdef INET
   3832 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3833 			ss = tcp_init_win_local;
   3834 #endif
   3835 #ifdef INET6
   3836 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3837 			ss = tcp_init_win_local;
   3838 #endif
   3839 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3840 	}
   3841 
   3842 	tcp_rmx_rtt(tp);
   3843 	tp->snd_wl1 = sc->sc_irs;
   3844 	tp->rcv_up = sc->sc_irs + 1;
   3845 
   3846 	/*
   3847 	 * This is what whould have happened in tcp_output() when
   3848 	 * the SYN,ACK was sent.
   3849 	 */
   3850 	tp->snd_up = tp->snd_una;
   3851 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3852 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3853 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3854 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3855 	tp->last_ack_sent = tp->rcv_nxt;
   3856 	tp->t_partialacks = -1;
   3857 	tp->t_dupacks = 0;
   3858 
   3859 	tcpstat.tcps_sc_completed++;
   3860 	SYN_CACHE_PUT(sc);
   3861 	return (so);
   3862 
   3863 resetandabort:
   3864 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3865 abort:
   3866 	if (so != NULL)
   3867 		(void) soabort(so);
   3868 	SYN_CACHE_PUT(sc);
   3869 	tcpstat.tcps_sc_aborted++;
   3870 	return ((struct socket *)(-1));
   3871 }
   3872 
   3873 /*
   3874  * This function is called when we get a RST for a
   3875  * non-existent connection, so that we can see if the
   3876  * connection is in the syn cache.  If it is, zap it.
   3877  */
   3878 
   3879 void
   3880 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   3881 {
   3882 	struct syn_cache *sc;
   3883 	struct syn_cache_head *scp;
   3884 	int s = splsoftnet();
   3885 
   3886 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3887 		splx(s);
   3888 		return;
   3889 	}
   3890 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3891 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3892 		splx(s);
   3893 		return;
   3894 	}
   3895 	SYN_CACHE_RM(sc);
   3896 	splx(s);
   3897 	tcpstat.tcps_sc_reset++;
   3898 	SYN_CACHE_PUT(sc);
   3899 }
   3900 
   3901 void
   3902 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   3903     struct tcphdr *th)
   3904 {
   3905 	struct syn_cache *sc;
   3906 	struct syn_cache_head *scp;
   3907 	int s;
   3908 
   3909 	s = splsoftnet();
   3910 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3911 		splx(s);
   3912 		return;
   3913 	}
   3914 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3915 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3916 		splx(s);
   3917 		return;
   3918 	}
   3919 
   3920 	/*
   3921 	 * If we've retransmitted 3 times and this is our second error,
   3922 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3923 	 * This prevents us from incorrectly nuking an entry during a
   3924 	 * spurious network outage.
   3925 	 *
   3926 	 * See tcp_notify().
   3927 	 */
   3928 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3929 		sc->sc_flags |= SCF_UNREACH;
   3930 		splx(s);
   3931 		return;
   3932 	}
   3933 
   3934 	SYN_CACHE_RM(sc);
   3935 	splx(s);
   3936 	tcpstat.tcps_sc_unreach++;
   3937 	SYN_CACHE_PUT(sc);
   3938 }
   3939 
   3940 /*
   3941  * Given a LISTEN socket and an inbound SYN request, add
   3942  * this to the syn cache, and send back a segment:
   3943  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3944  * to the source.
   3945  *
   3946  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3947  * Doing so would require that we hold onto the data and deliver it
   3948  * to the application.  However, if we are the target of a SYN-flood
   3949  * DoS attack, an attacker could send data which would eventually
   3950  * consume all available buffer space if it were ACKed.  By not ACKing
   3951  * the data, we avoid this DoS scenario.
   3952  */
   3953 
   3954 int
   3955 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   3956     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   3957     int optlen, struct tcp_opt_info *oi)
   3958 {
   3959 	struct tcpcb tb, *tp;
   3960 	long win;
   3961 	struct syn_cache *sc;
   3962 	struct syn_cache_head *scp;
   3963 	struct mbuf *ipopts;
   3964 	struct tcp_opt_info opti;
   3965 
   3966 	tp = sototcpcb(so);
   3967 
   3968 	bzero(&opti, sizeof(opti));
   3969 
   3970 	/*
   3971 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3972 	 *
   3973 	 * Note this check is performed in tcp_input() very early on.
   3974 	 */
   3975 
   3976 	/*
   3977 	 * Initialize some local state.
   3978 	 */
   3979 	win = sbspace(&so->so_rcv);
   3980 	if (win > TCP_MAXWIN)
   3981 		win = TCP_MAXWIN;
   3982 
   3983 	switch (src->sa_family) {
   3984 #ifdef INET
   3985 	case AF_INET:
   3986 		/*
   3987 		 * Remember the IP options, if any.
   3988 		 */
   3989 		ipopts = ip_srcroute();
   3990 		break;
   3991 #endif
   3992 	default:
   3993 		ipopts = NULL;
   3994 	}
   3995 
   3996 #ifdef TCP_SIGNATURE
   3997 	if (optp || (tp->t_flags & TF_SIGNATURE))
   3998 #else
   3999 	if (optp)
   4000 #endif
   4001 	{
   4002 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4003 #ifdef TCP_SIGNATURE
   4004 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4005 #endif
   4006 		tb.t_state = TCPS_LISTEN;
   4007 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4008 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4009 			return (0);
   4010 	} else
   4011 		tb.t_flags = 0;
   4012 
   4013 	/*
   4014 	 * See if we already have an entry for this connection.
   4015 	 * If we do, resend the SYN,ACK.  We do not count this
   4016 	 * as a retransmission (XXX though maybe we should).
   4017 	 */
   4018 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4019 		tcpstat.tcps_sc_dupesyn++;
   4020 		if (ipopts) {
   4021 			/*
   4022 			 * If we were remembering a previous source route,
   4023 			 * forget it and use the new one we've been given.
   4024 			 */
   4025 			if (sc->sc_ipopts)
   4026 				(void) m_free(sc->sc_ipopts);
   4027 			sc->sc_ipopts = ipopts;
   4028 		}
   4029 		sc->sc_timestamp = tb.ts_recent;
   4030 		if (syn_cache_respond(sc, m) == 0) {
   4031 			tcpstat.tcps_sndacks++;
   4032 			tcpstat.tcps_sndtotal++;
   4033 		}
   4034 		return (1);
   4035 	}
   4036 
   4037 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4038 	if (sc == NULL) {
   4039 		if (ipopts)
   4040 			(void) m_free(ipopts);
   4041 		return (0);
   4042 	}
   4043 
   4044 	/*
   4045 	 * Fill in the cache, and put the necessary IP and TCP
   4046 	 * options into the reply.
   4047 	 */
   4048 	bzero(sc, sizeof(struct syn_cache));
   4049 	callout_init(&sc->sc_timer);
   4050 	bcopy(src, &sc->sc_src, src->sa_len);
   4051 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4052 	sc->sc_flags = 0;
   4053 	sc->sc_ipopts = ipopts;
   4054 	sc->sc_irs = th->th_seq;
   4055 	switch (src->sa_family) {
   4056 #ifdef INET
   4057 	case AF_INET:
   4058 	    {
   4059 		struct sockaddr_in *srcin = (void *) src;
   4060 		struct sockaddr_in *dstin = (void *) dst;
   4061 
   4062 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4063 		    &srcin->sin_addr, dstin->sin_port,
   4064 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4065 		break;
   4066 	    }
   4067 #endif /* INET */
   4068 #ifdef INET6
   4069 	case AF_INET6:
   4070 	    {
   4071 		struct sockaddr_in6 *srcin6 = (void *) src;
   4072 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4073 
   4074 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4075 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4076 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4077 		break;
   4078 	    }
   4079 #endif /* INET6 */
   4080 	}
   4081 	sc->sc_peermaxseg = oi->maxseg;
   4082 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4083 						m->m_pkthdr.rcvif : NULL,
   4084 						sc->sc_src.sa.sa_family);
   4085 	sc->sc_win = win;
   4086 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   4087 	sc->sc_timestamp = tb.ts_recent;
   4088 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4089 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4090 		sc->sc_flags |= SCF_TIMESTAMP;
   4091 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4092 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4093 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4094 		sc->sc_request_r_scale = 0;
   4095 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4096 		    TCP_MAXWIN << sc->sc_request_r_scale <
   4097 		    so->so_rcv.sb_hiwat)
   4098 			sc->sc_request_r_scale++;
   4099 	} else {
   4100 		sc->sc_requested_s_scale = 15;
   4101 		sc->sc_request_r_scale = 15;
   4102 	}
   4103 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4104 		sc->sc_flags |= SCF_SACK_PERMIT;
   4105 #ifdef TCP_SIGNATURE
   4106 	if (tb.t_flags & TF_SIGNATURE)
   4107 		sc->sc_flags |= SCF_SIGNATURE;
   4108 #endif
   4109 	sc->sc_tp = tp;
   4110 	if (syn_cache_respond(sc, m) == 0) {
   4111 		syn_cache_insert(sc, tp);
   4112 		tcpstat.tcps_sndacks++;
   4113 		tcpstat.tcps_sndtotal++;
   4114 	} else {
   4115 		SYN_CACHE_PUT(sc);
   4116 		tcpstat.tcps_sc_dropped++;
   4117 	}
   4118 	return (1);
   4119 }
   4120 
   4121 int
   4122 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4123 {
   4124 	struct route *ro;
   4125 	u_int8_t *optp;
   4126 	int optlen, error;
   4127 	u_int16_t tlen;
   4128 	struct ip *ip = NULL;
   4129 #ifdef INET6
   4130 	struct ip6_hdr *ip6 = NULL;
   4131 #endif
   4132 	struct tcpcb *tp;
   4133 	struct tcphdr *th;
   4134 	u_int hlen;
   4135 	struct socket *so;
   4136 
   4137 	switch (sc->sc_src.sa.sa_family) {
   4138 	case AF_INET:
   4139 		hlen = sizeof(struct ip);
   4140 		ro = &sc->sc_route4;
   4141 		break;
   4142 #ifdef INET6
   4143 	case AF_INET6:
   4144 		hlen = sizeof(struct ip6_hdr);
   4145 		ro = (struct route *)&sc->sc_route6;
   4146 		break;
   4147 #endif
   4148 	default:
   4149 		if (m)
   4150 			m_freem(m);
   4151 		return (EAFNOSUPPORT);
   4152 	}
   4153 
   4154 	/* Compute the size of the TCP options. */
   4155 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4156 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4157 #ifdef TCP_SIGNATURE
   4158 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4159 #endif
   4160 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4161 
   4162 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4163 
   4164 	/*
   4165 	 * Create the IP+TCP header from scratch.
   4166 	 */
   4167 	if (m)
   4168 		m_freem(m);
   4169 #ifdef DIAGNOSTIC
   4170 	if (max_linkhdr + tlen > MCLBYTES)
   4171 		return (ENOBUFS);
   4172 #endif
   4173 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4174 	if (m && tlen > MHLEN) {
   4175 		MCLGET(m, M_DONTWAIT);
   4176 		if ((m->m_flags & M_EXT) == 0) {
   4177 			m_freem(m);
   4178 			m = NULL;
   4179 		}
   4180 	}
   4181 	if (m == NULL)
   4182 		return (ENOBUFS);
   4183 	MCLAIM(m, &tcp_tx_mowner);
   4184 
   4185 	/* Fixup the mbuf. */
   4186 	m->m_data += max_linkhdr;
   4187 	m->m_len = m->m_pkthdr.len = tlen;
   4188 	if (sc->sc_tp) {
   4189 		tp = sc->sc_tp;
   4190 		if (tp->t_inpcb)
   4191 			so = tp->t_inpcb->inp_socket;
   4192 #ifdef INET6
   4193 		else if (tp->t_in6pcb)
   4194 			so = tp->t_in6pcb->in6p_socket;
   4195 #endif
   4196 		else
   4197 			so = NULL;
   4198 	} else
   4199 		so = NULL;
   4200 	m->m_pkthdr.rcvif = NULL;
   4201 	memset(mtod(m, u_char *), 0, tlen);
   4202 
   4203 	switch (sc->sc_src.sa.sa_family) {
   4204 	case AF_INET:
   4205 		ip = mtod(m, struct ip *);
   4206 		ip->ip_v = 4;
   4207 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4208 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4209 		ip->ip_p = IPPROTO_TCP;
   4210 		th = (struct tcphdr *)(ip + 1);
   4211 		th->th_dport = sc->sc_src.sin.sin_port;
   4212 		th->th_sport = sc->sc_dst.sin.sin_port;
   4213 		break;
   4214 #ifdef INET6
   4215 	case AF_INET6:
   4216 		ip6 = mtod(m, struct ip6_hdr *);
   4217 		ip6->ip6_vfc = IPV6_VERSION;
   4218 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4219 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4220 		ip6->ip6_nxt = IPPROTO_TCP;
   4221 		/* ip6_plen will be updated in ip6_output() */
   4222 		th = (struct tcphdr *)(ip6 + 1);
   4223 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4224 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4225 		break;
   4226 #endif
   4227 	default:
   4228 		th = NULL;
   4229 	}
   4230 
   4231 	th->th_seq = htonl(sc->sc_iss);
   4232 	th->th_ack = htonl(sc->sc_irs + 1);
   4233 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4234 	th->th_flags = TH_SYN|TH_ACK;
   4235 	th->th_win = htons(sc->sc_win);
   4236 	/* th_sum already 0 */
   4237 	/* th_urp already 0 */
   4238 
   4239 	/* Tack on the TCP options. */
   4240 	optp = (u_int8_t *)(th + 1);
   4241 	*optp++ = TCPOPT_MAXSEG;
   4242 	*optp++ = 4;
   4243 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4244 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4245 
   4246 	if (sc->sc_request_r_scale != 15) {
   4247 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4248 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4249 		    sc->sc_request_r_scale);
   4250 		optp += 4;
   4251 	}
   4252 
   4253 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4254 		u_int32_t *lp = (u_int32_t *)(optp);
   4255 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4256 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4257 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4258 		*lp   = htonl(sc->sc_timestamp);
   4259 		optp += TCPOLEN_TSTAMP_APPA;
   4260 	}
   4261 
   4262 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4263 		u_int8_t *p = optp;
   4264 
   4265 		/* Let the peer know that we will SACK. */
   4266 		p[0] = TCPOPT_SACK_PERMITTED;
   4267 		p[1] = 2;
   4268 		p[2] = TCPOPT_NOP;
   4269 		p[3] = TCPOPT_NOP;
   4270 		optp += 4;
   4271 	}
   4272 
   4273 #ifdef TCP_SIGNATURE
   4274 	if (sc->sc_flags & SCF_SIGNATURE) {
   4275 		struct secasvar *sav;
   4276 		u_int8_t *sigp;
   4277 
   4278 		sav = tcp_signature_getsav(m, th);
   4279 
   4280 		if (sav == NULL) {
   4281 			if (m)
   4282 				m_freem(m);
   4283 			return (EPERM);
   4284 		}
   4285 
   4286 		*optp++ = TCPOPT_SIGNATURE;
   4287 		*optp++ = TCPOLEN_SIGNATURE;
   4288 		sigp = optp;
   4289 		bzero(optp, TCP_SIGLEN);
   4290 		optp += TCP_SIGLEN;
   4291 		*optp++ = TCPOPT_NOP;
   4292 		*optp++ = TCPOPT_EOL;
   4293 
   4294 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4295 
   4296 		key_sa_recordxfer(sav, m);
   4297 #ifdef FAST_IPSEC
   4298 		KEY_FREESAV(&sav);
   4299 #else
   4300 		key_freesav(sav);
   4301 #endif
   4302 	}
   4303 #endif
   4304 
   4305 	/* Compute the packet's checksum. */
   4306 	switch (sc->sc_src.sa.sa_family) {
   4307 	case AF_INET:
   4308 		ip->ip_len = htons(tlen - hlen);
   4309 		th->th_sum = 0;
   4310 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4311 		break;
   4312 #ifdef INET6
   4313 	case AF_INET6:
   4314 		ip6->ip6_plen = htons(tlen - hlen);
   4315 		th->th_sum = 0;
   4316 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4317 		break;
   4318 #endif
   4319 	}
   4320 
   4321 	/*
   4322 	 * Fill in some straggling IP bits.  Note the stack expects
   4323 	 * ip_len to be in host order, for convenience.
   4324 	 */
   4325 	switch (sc->sc_src.sa.sa_family) {
   4326 #ifdef INET
   4327 	case AF_INET:
   4328 		ip->ip_len = htons(tlen);
   4329 		ip->ip_ttl = ip_defttl;
   4330 		/* XXX tos? */
   4331 		break;
   4332 #endif
   4333 #ifdef INET6
   4334 	case AF_INET6:
   4335 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4336 		ip6->ip6_vfc |= IPV6_VERSION;
   4337 		ip6->ip6_plen = htons(tlen - hlen);
   4338 		/* ip6_hlim will be initialized afterwards */
   4339 		/* XXX flowlabel? */
   4340 		break;
   4341 #endif
   4342 	}
   4343 
   4344 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4345 	tp = sc->sc_tp;
   4346 
   4347 	switch (sc->sc_src.sa.sa_family) {
   4348 #ifdef INET
   4349 	case AF_INET:
   4350 		error = ip_output(m, sc->sc_ipopts, ro,
   4351 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4352 		    (struct ip_moptions *)NULL, so);
   4353 		break;
   4354 #endif
   4355 #ifdef INET6
   4356 	case AF_INET6:
   4357 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4358 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   4359 
   4360 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
   4361 			(struct ip6_moptions *)0, so, NULL);
   4362 		break;
   4363 #endif
   4364 	default:
   4365 		error = EAFNOSUPPORT;
   4366 		break;
   4367 	}
   4368 	return (error);
   4369 }
   4370