Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.249
      1 /*	$NetBSD: tcp_input.c,v 1.249 2006/10/12 01:32:38 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Charles M. Hannum.
     81  * This code is derived from software contributed to The NetBSD Foundation
     82  * by Rui Paulo.
     83  *
     84  * Redistribution and use in source and binary forms, with or without
     85  * modification, are permitted provided that the following conditions
     86  * are met:
     87  * 1. Redistributions of source code must retain the above copyright
     88  *    notice, this list of conditions and the following disclaimer.
     89  * 2. Redistributions in binary form must reproduce the above copyright
     90  *    notice, this list of conditions and the following disclaimer in the
     91  *    documentation and/or other materials provided with the distribution.
     92  * 3. All advertising materials mentioning features or use of this software
     93  *    must display the following acknowledgement:
     94  *	This product includes software developed by the NetBSD
     95  *	Foundation, Inc. and its contributors.
     96  * 4. Neither the name of The NetBSD Foundation nor the names of its
     97  *    contributors may be used to endorse or promote products derived
     98  *    from this software without specific prior written permission.
     99  *
    100  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
    101  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
    102  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    103  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    104  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    105  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    106  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    107  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    108  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    109  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    110  * POSSIBILITY OF SUCH DAMAGE.
    111  */
    112 
    113 /*
    114  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    115  *	The Regents of the University of California.  All rights reserved.
    116  *
    117  * Redistribution and use in source and binary forms, with or without
    118  * modification, are permitted provided that the following conditions
    119  * are met:
    120  * 1. Redistributions of source code must retain the above copyright
    121  *    notice, this list of conditions and the following disclaimer.
    122  * 2. Redistributions in binary form must reproduce the above copyright
    123  *    notice, this list of conditions and the following disclaimer in the
    124  *    documentation and/or other materials provided with the distribution.
    125  * 3. Neither the name of the University nor the names of its contributors
    126  *    may be used to endorse or promote products derived from this software
    127  *    without specific prior written permission.
    128  *
    129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    139  * SUCH DAMAGE.
    140  *
    141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    142  */
    143 
    144 /*
    145  *	TODO list for SYN cache stuff:
    146  *
    147  *	Find room for a "state" field, which is needed to keep a
    148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    149  *	that this is fairly important for very high-volume web and
    150  *	mail servers, which use a large number of short-lived
    151  *	connections.
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.249 2006/10/12 01:32:38 christos Exp $");
    156 
    157 #include "opt_inet.h"
    158 #include "opt_ipsec.h"
    159 #include "opt_inet_csum.h"
    160 #include "opt_tcp_debug.h"
    161 
    162 #include <sys/param.h>
    163 #include <sys/systm.h>
    164 #include <sys/malloc.h>
    165 #include <sys/mbuf.h>
    166 #include <sys/protosw.h>
    167 #include <sys/socket.h>
    168 #include <sys/socketvar.h>
    169 #include <sys/errno.h>
    170 #include <sys/syslog.h>
    171 #include <sys/pool.h>
    172 #include <sys/domain.h>
    173 #include <sys/kernel.h>
    174 #ifdef TCP_SIGNATURE
    175 #include <sys/md5.h>
    176 #endif
    177 
    178 #include <net/if.h>
    179 #include <net/route.h>
    180 #include <net/if_types.h>
    181 
    182 #include <netinet/in.h>
    183 #include <netinet/in_systm.h>
    184 #include <netinet/ip.h>
    185 #include <netinet/in_pcb.h>
    186 #include <netinet/in_var.h>
    187 #include <netinet/ip_var.h>
    188 #include <netinet/in_offload.h>
    189 
    190 #ifdef INET6
    191 #ifndef INET
    192 #include <netinet/in.h>
    193 #endif
    194 #include <netinet/ip6.h>
    195 #include <netinet6/ip6_var.h>
    196 #include <netinet6/in6_pcb.h>
    197 #include <netinet6/ip6_var.h>
    198 #include <netinet6/in6_var.h>
    199 #include <netinet/icmp6.h>
    200 #include <netinet6/nd6.h>
    201 #ifdef TCP_SIGNATURE
    202 #include <netinet6/scope6_var.h>
    203 #endif
    204 #endif
    205 
    206 #ifndef INET6
    207 /* always need ip6.h for IP6_EXTHDR_GET */
    208 #include <netinet/ip6.h>
    209 #endif
    210 
    211 #include <netinet/tcp.h>
    212 #include <netinet/tcp_fsm.h>
    213 #include <netinet/tcp_seq.h>
    214 #include <netinet/tcp_timer.h>
    215 #include <netinet/tcp_var.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #include <machine/stdarg.h>
    221 
    222 #ifdef IPSEC
    223 #include <netinet6/ipsec.h>
    224 #include <netkey/key.h>
    225 #endif /*IPSEC*/
    226 #ifdef INET6
    227 #include "faith.h"
    228 #if defined(NFAITH) && NFAITH > 0
    229 #include <net/if_faith.h>
    230 #endif
    231 #endif	/* IPSEC */
    232 
    233 #ifdef FAST_IPSEC
    234 #include <netipsec/ipsec.h>
    235 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
    236 #include <netipsec/key.h>
    237 #ifdef INET6
    238 #include <netipsec/ipsec6.h>
    239 #endif
    240 #endif	/* FAST_IPSEC*/
    241 
    242 int	tcprexmtthresh = 3;
    243 int	tcp_log_refused;
    244 
    245 static int tcp_rst_ppslim_count = 0;
    246 static struct timeval tcp_rst_ppslim_last;
    247 static int tcp_ackdrop_ppslim_count = 0;
    248 static struct timeval tcp_ackdrop_ppslim_last;
    249 
    250 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    251 
    252 /* for modulo comparisons of timestamps */
    253 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    254 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    255 
    256 /*
    257  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    258  */
    259 #ifdef INET6
    260 #define ND6_HINT(tp) \
    261 do { \
    262 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
    263 	    tp->t_in6pcb->in6p_route.ro_rt) { \
    264 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    265 	} \
    266 } while (/*CONSTCOND*/ 0)
    267 #else
    268 #define ND6_HINT(tp)
    269 #endif
    270 
    271 /*
    272  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    273  * we have already delayed an ACK (must send an ACK every two segments).
    274  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    275  * option is enabled.
    276  */
    277 #define	TCP_SETUP_ACK(tp, th) \
    278 do { \
    279 	if ((tp)->t_flags & TF_DELACK || \
    280 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    281 		tp->t_flags |= TF_ACKNOW; \
    282 	else \
    283 		TCP_SET_DELACK(tp); \
    284 } while (/*CONSTCOND*/ 0)
    285 
    286 #define ICMP_CHECK(tp, th, acked) \
    287 do { \
    288 	/* \
    289 	 * If we had a pending ICMP message that \
    290 	 * refers to data that have just been  \
    291 	 * acknowledged, disregard the recorded ICMP \
    292 	 * message. \
    293 	 */ \
    294 	if (((tp)->t_flags & TF_PMTUD_PEND) && \
    295 	    SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
    296 		(tp)->t_flags &= ~TF_PMTUD_PEND; \
    297 \
    298 	/* \
    299 	 * Keep track of the largest chunk of data \
    300 	 * acknowledged since last PMTU update \
    301 	 */ \
    302 	if ((tp)->t_pmtud_mss_acked < (acked)) \
    303 		(tp)->t_pmtud_mss_acked = (acked); \
    304 } while (/*CONSTCOND*/ 0)
    305 
    306 /*
    307  * Convert TCP protocol fields to host order for easier processing.
    308  */
    309 #define	TCP_FIELDS_TO_HOST(th)						\
    310 do {									\
    311 	NTOHL((th)->th_seq);						\
    312 	NTOHL((th)->th_ack);						\
    313 	NTOHS((th)->th_win);						\
    314 	NTOHS((th)->th_urp);						\
    315 } while (/*CONSTCOND*/ 0)
    316 
    317 /*
    318  * ... and reverse the above.
    319  */
    320 #define	TCP_FIELDS_TO_NET(th)						\
    321 do {									\
    322 	HTONL((th)->th_seq);						\
    323 	HTONL((th)->th_ack);						\
    324 	HTONS((th)->th_win);						\
    325 	HTONS((th)->th_urp);						\
    326 } while (/*CONSTCOND*/ 0)
    327 
    328 #ifdef TCP_CSUM_COUNTERS
    329 #include <sys/device.h>
    330 
    331 #if defined(INET)
    332 extern struct evcnt tcp_hwcsum_ok;
    333 extern struct evcnt tcp_hwcsum_bad;
    334 extern struct evcnt tcp_hwcsum_data;
    335 extern struct evcnt tcp_swcsum;
    336 #endif /* defined(INET) */
    337 #if defined(INET6)
    338 extern struct evcnt tcp6_hwcsum_ok;
    339 extern struct evcnt tcp6_hwcsum_bad;
    340 extern struct evcnt tcp6_hwcsum_data;
    341 extern struct evcnt tcp6_swcsum;
    342 #endif /* defined(INET6) */
    343 
    344 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    345 
    346 #else
    347 
    348 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    349 
    350 #endif /* TCP_CSUM_COUNTERS */
    351 
    352 #ifdef TCP_REASS_COUNTERS
    353 #include <sys/device.h>
    354 
    355 extern struct evcnt tcp_reass_;
    356 extern struct evcnt tcp_reass_empty;
    357 extern struct evcnt tcp_reass_iteration[8];
    358 extern struct evcnt tcp_reass_prependfirst;
    359 extern struct evcnt tcp_reass_prepend;
    360 extern struct evcnt tcp_reass_insert;
    361 extern struct evcnt tcp_reass_inserttail;
    362 extern struct evcnt tcp_reass_append;
    363 extern struct evcnt tcp_reass_appendtail;
    364 extern struct evcnt tcp_reass_overlaptail;
    365 extern struct evcnt tcp_reass_overlapfront;
    366 extern struct evcnt tcp_reass_segdup;
    367 extern struct evcnt tcp_reass_fragdup;
    368 
    369 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    370 
    371 #else
    372 
    373 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    374 
    375 #endif /* TCP_REASS_COUNTERS */
    376 
    377 #ifdef INET
    378 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    379 #endif
    380 #ifdef INET6
    381 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    382 #endif
    383 
    384 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    385 
    386 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
    387 
    388 struct ipqent *
    389 tcpipqent_alloc()
    390 {
    391 	struct ipqent *ipqe;
    392 	int s;
    393 
    394 	s = splvm();
    395 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    396 	splx(s);
    397 
    398 	return ipqe;
    399 }
    400 
    401 void
    402 tcpipqent_free(struct ipqent *ipqe)
    403 {
    404 	int s;
    405 
    406 	s = splvm();
    407 	pool_put(&tcpipqent_pool, ipqe);
    408 	splx(s);
    409 }
    410 
    411 int
    412 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
    413 {
    414 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    415 	struct socket *so = NULL;
    416 	int pkt_flags;
    417 	tcp_seq pkt_seq;
    418 	unsigned pkt_len;
    419 	u_long rcvpartdupbyte = 0;
    420 	u_long rcvoobyte;
    421 #ifdef TCP_REASS_COUNTERS
    422 	u_int count = 0;
    423 #endif
    424 
    425 	if (tp->t_inpcb)
    426 		so = tp->t_inpcb->inp_socket;
    427 #ifdef INET6
    428 	else if (tp->t_in6pcb)
    429 		so = tp->t_in6pcb->in6p_socket;
    430 #endif
    431 
    432 	TCP_REASS_LOCK_CHECK(tp);
    433 
    434 	/*
    435 	 * Call with th==0 after become established to
    436 	 * force pre-ESTABLISHED data up to user socket.
    437 	 */
    438 	if (th == 0)
    439 		goto present;
    440 
    441 	rcvoobyte = *tlen;
    442 	/*
    443 	 * Copy these to local variables because the tcpiphdr
    444 	 * gets munged while we are collapsing mbufs.
    445 	 */
    446 	pkt_seq = th->th_seq;
    447 	pkt_len = *tlen;
    448 	pkt_flags = th->th_flags;
    449 
    450 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    451 
    452 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    453 		/*
    454 		 * When we miss a packet, the vast majority of time we get
    455 		 * packets that follow it in order.  So optimize for that.
    456 		 */
    457 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    458 			p->ipqe_len += pkt_len;
    459 			p->ipqe_flags |= pkt_flags;
    460 			m_cat(p->ipre_mlast, m);
    461 			TRAVERSE(p->ipre_mlast);
    462 			m = NULL;
    463 			tiqe = p;
    464 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    465 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    466 			goto skip_replacement;
    467 		}
    468 		/*
    469 		 * While we're here, if the pkt is completely beyond
    470 		 * anything we have, just insert it at the tail.
    471 		 */
    472 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    473 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    474 			goto insert_it;
    475 		}
    476 	}
    477 
    478 	q = TAILQ_FIRST(&tp->segq);
    479 
    480 	if (q != NULL) {
    481 		/*
    482 		 * If this segment immediately precedes the first out-of-order
    483 		 * block, simply slap the segment in front of it and (mostly)
    484 		 * skip the complicated logic.
    485 		 */
    486 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    487 			q->ipqe_seq = pkt_seq;
    488 			q->ipqe_len += pkt_len;
    489 			q->ipqe_flags |= pkt_flags;
    490 			m_cat(m, q->ipqe_m);
    491 			q->ipqe_m = m;
    492 			q->ipre_mlast = m; /* last mbuf may have changed */
    493 			TRAVERSE(q->ipre_mlast);
    494 			tiqe = q;
    495 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    496 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    497 			goto skip_replacement;
    498 		}
    499 	} else {
    500 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    501 	}
    502 
    503 	/*
    504 	 * Find a segment which begins after this one does.
    505 	 */
    506 	for (p = NULL; q != NULL; q = nq) {
    507 		nq = TAILQ_NEXT(q, ipqe_q);
    508 #ifdef TCP_REASS_COUNTERS
    509 		count++;
    510 #endif
    511 		/*
    512 		 * If the received segment is just right after this
    513 		 * fragment, merge the two together and then check
    514 		 * for further overlaps.
    515 		 */
    516 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    517 #ifdef TCPREASS_DEBUG
    518 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    519 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    520 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    521 #endif
    522 			pkt_len += q->ipqe_len;
    523 			pkt_flags |= q->ipqe_flags;
    524 			pkt_seq = q->ipqe_seq;
    525 			m_cat(q->ipre_mlast, m);
    526 			TRAVERSE(q->ipre_mlast);
    527 			m = q->ipqe_m;
    528 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    529 			goto free_ipqe;
    530 		}
    531 		/*
    532 		 * If the received segment is completely past this
    533 		 * fragment, we need to go the next fragment.
    534 		 */
    535 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    536 			p = q;
    537 			continue;
    538 		}
    539 		/*
    540 		 * If the fragment is past the received segment,
    541 		 * it (or any following) can't be concatenated.
    542 		 */
    543 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    544 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    545 			break;
    546 		}
    547 
    548 		/*
    549 		 * We've received all the data in this segment before.
    550 		 * mark it as a duplicate and return.
    551 		 */
    552 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    553 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    554 			tcpstat.tcps_rcvduppack++;
    555 			tcpstat.tcps_rcvdupbyte += pkt_len;
    556 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    557 			m_freem(m);
    558 			if (tiqe != NULL) {
    559 				tcpipqent_free(tiqe);
    560 			}
    561 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    562 			return (0);
    563 		}
    564 		/*
    565 		 * Received segment completely overlaps this fragment
    566 		 * so we drop the fragment (this keeps the temporal
    567 		 * ordering of segments correct).
    568 		 */
    569 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    570 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    571 			rcvpartdupbyte += q->ipqe_len;
    572 			m_freem(q->ipqe_m);
    573 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    574 			goto free_ipqe;
    575 		}
    576 		/*
    577 		 * RX'ed segment extends past the end of the
    578 		 * fragment.  Drop the overlapping bytes.  Then
    579 		 * merge the fragment and segment then treat as
    580 		 * a longer received packet.
    581 		 */
    582 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    583 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    584 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    585 #ifdef TCPREASS_DEBUG
    586 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    587 			       tp, overlap,
    588 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    589 #endif
    590 			m_adj(m, overlap);
    591 			rcvpartdupbyte += overlap;
    592 			m_cat(q->ipre_mlast, m);
    593 			TRAVERSE(q->ipre_mlast);
    594 			m = q->ipqe_m;
    595 			pkt_seq = q->ipqe_seq;
    596 			pkt_len += q->ipqe_len - overlap;
    597 			rcvoobyte -= overlap;
    598 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    599 			goto free_ipqe;
    600 		}
    601 		/*
    602 		 * RX'ed segment extends past the front of the
    603 		 * fragment.  Drop the overlapping bytes on the
    604 		 * received packet.  The packet will then be
    605 		 * contatentated with this fragment a bit later.
    606 		 */
    607 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    608 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    609 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    610 #ifdef TCPREASS_DEBUG
    611 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    612 			       tp, overlap,
    613 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    614 #endif
    615 			m_adj(m, -overlap);
    616 			pkt_len -= overlap;
    617 			rcvpartdupbyte += overlap;
    618 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    619 			rcvoobyte -= overlap;
    620 		}
    621 		/*
    622 		 * If the received segment immediates precedes this
    623 		 * fragment then tack the fragment onto this segment
    624 		 * and reinsert the data.
    625 		 */
    626 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    627 #ifdef TCPREASS_DEBUG
    628 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    629 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    630 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    631 #endif
    632 			pkt_len += q->ipqe_len;
    633 			pkt_flags |= q->ipqe_flags;
    634 			m_cat(m, q->ipqe_m);
    635 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    636 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    637 			tp->t_segqlen--;
    638 			KASSERT(tp->t_segqlen >= 0);
    639 			KASSERT(tp->t_segqlen != 0 ||
    640 			    (TAILQ_EMPTY(&tp->segq) &&
    641 			    TAILQ_EMPTY(&tp->timeq)));
    642 			if (tiqe == NULL) {
    643 				tiqe = q;
    644 			} else {
    645 				tcpipqent_free(q);
    646 			}
    647 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    648 			break;
    649 		}
    650 		/*
    651 		 * If the fragment is before the segment, remember it.
    652 		 * When this loop is terminated, p will contain the
    653 		 * pointer to fragment that is right before the received
    654 		 * segment.
    655 		 */
    656 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    657 			p = q;
    658 
    659 		continue;
    660 
    661 		/*
    662 		 * This is a common operation.  It also will allow
    663 		 * to save doing a malloc/free in most instances.
    664 		 */
    665 	  free_ipqe:
    666 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    667 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    668 		tp->t_segqlen--;
    669 		KASSERT(tp->t_segqlen >= 0);
    670 		KASSERT(tp->t_segqlen != 0 ||
    671 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    672 		if (tiqe == NULL) {
    673 			tiqe = q;
    674 		} else {
    675 			tcpipqent_free(q);
    676 		}
    677 	}
    678 
    679 #ifdef TCP_REASS_COUNTERS
    680 	if (count > 7)
    681 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    682 	else if (count > 0)
    683 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    684 #endif
    685 
    686     insert_it:
    687 
    688 	/*
    689 	 * Allocate a new queue entry since the received segment did not
    690 	 * collapse onto any other out-of-order block; thus we are allocating
    691 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    692 	 * we would be reusing it.
    693 	 * XXX If we can't, just drop the packet.  XXX
    694 	 */
    695 	if (tiqe == NULL) {
    696 		tiqe = tcpipqent_alloc();
    697 		if (tiqe == NULL) {
    698 			tcpstat.tcps_rcvmemdrop++;
    699 			m_freem(m);
    700 			return (0);
    701 		}
    702 	}
    703 
    704 	/*
    705 	 * Update the counters.
    706 	 */
    707 	tcpstat.tcps_rcvoopack++;
    708 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    709 	if (rcvpartdupbyte) {
    710 	    tcpstat.tcps_rcvpartduppack++;
    711 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    712 	}
    713 
    714 	/*
    715 	 * Insert the new fragment queue entry into both queues.
    716 	 */
    717 	tiqe->ipqe_m = m;
    718 	tiqe->ipre_mlast = m;
    719 	tiqe->ipqe_seq = pkt_seq;
    720 	tiqe->ipqe_len = pkt_len;
    721 	tiqe->ipqe_flags = pkt_flags;
    722 	if (p == NULL) {
    723 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    724 #ifdef TCPREASS_DEBUG
    725 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    726 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    727 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    728 #endif
    729 	} else {
    730 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    731 #ifdef TCPREASS_DEBUG
    732 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    733 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    734 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    735 #endif
    736 	}
    737 	tp->t_segqlen++;
    738 
    739 skip_replacement:
    740 
    741 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    742 
    743 present:
    744 	/*
    745 	 * Present data to user, advancing rcv_nxt through
    746 	 * completed sequence space.
    747 	 */
    748 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    749 		return (0);
    750 	q = TAILQ_FIRST(&tp->segq);
    751 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    752 		return (0);
    753 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    754 		return (0);
    755 
    756 	tp->rcv_nxt += q->ipqe_len;
    757 	pkt_flags = q->ipqe_flags & TH_FIN;
    758 	ND6_HINT(tp);
    759 
    760 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    761 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    762 	tp->t_segqlen--;
    763 	KASSERT(tp->t_segqlen >= 0);
    764 	KASSERT(tp->t_segqlen != 0 ||
    765 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    766 	if (so->so_state & SS_CANTRCVMORE)
    767 		m_freem(q->ipqe_m);
    768 	else
    769 		sbappendstream(&so->so_rcv, q->ipqe_m);
    770 	tcpipqent_free(q);
    771 	sorwakeup(so);
    772 	return (pkt_flags);
    773 }
    774 
    775 #ifdef INET6
    776 int
    777 tcp6_input(struct mbuf **mp, int *offp, int proto)
    778 {
    779 	struct mbuf *m = *mp;
    780 
    781 	/*
    782 	 * draft-itojun-ipv6-tcp-to-anycast
    783 	 * better place to put this in?
    784 	 */
    785 	if (m->m_flags & M_ANYCAST6) {
    786 		struct ip6_hdr *ip6;
    787 		if (m->m_len < sizeof(struct ip6_hdr)) {
    788 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    789 				tcpstat.tcps_rcvshort++;
    790 				return IPPROTO_DONE;
    791 			}
    792 		}
    793 		ip6 = mtod(m, struct ip6_hdr *);
    794 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    795 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    796 		return IPPROTO_DONE;
    797 	}
    798 
    799 	tcp_input(m, *offp, proto);
    800 	return IPPROTO_DONE;
    801 }
    802 #endif
    803 
    804 #ifdef INET
    805 static void
    806 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    807 {
    808 	char src[4*sizeof "123"];
    809 	char dst[4*sizeof "123"];
    810 
    811 	if (ip) {
    812 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    813 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    814 	}
    815 	else {
    816 		strlcpy(src, "(unknown)", sizeof(src));
    817 		strlcpy(dst, "(unknown)", sizeof(dst));
    818 	}
    819 	log(LOG_INFO,
    820 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    821 	    dst, ntohs(th->th_dport),
    822 	    src, ntohs(th->th_sport));
    823 }
    824 #endif
    825 
    826 #ifdef INET6
    827 static void
    828 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    829 {
    830 	char src[INET6_ADDRSTRLEN];
    831 	char dst[INET6_ADDRSTRLEN];
    832 
    833 	if (ip6) {
    834 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    835 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    836 	}
    837 	else {
    838 		strlcpy(src, "(unknown v6)", sizeof(src));
    839 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    840 	}
    841 	log(LOG_INFO,
    842 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    843 	    dst, ntohs(th->th_dport),
    844 	    src, ntohs(th->th_sport));
    845 }
    846 #endif
    847 
    848 /*
    849  * Checksum extended TCP header and data.
    850  */
    851 int
    852 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th __unused,
    853     int toff, int off, int tlen)
    854 {
    855 
    856 	/*
    857 	 * XXX it's better to record and check if this mbuf is
    858 	 * already checked.
    859 	 */
    860 
    861 	switch (af) {
    862 #ifdef INET
    863 	case AF_INET:
    864 		switch (m->m_pkthdr.csum_flags &
    865 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    866 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    867 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    868 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    869 			goto badcsum;
    870 
    871 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    872 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    873 
    874 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    875 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    876 				const struct ip *ip =
    877 				    mtod(m, const struct ip *);
    878 
    879 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    880 				    ip->ip_dst.s_addr,
    881 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    882 			}
    883 			if ((hw_csum ^ 0xffff) != 0)
    884 				goto badcsum;
    885 			break;
    886 		}
    887 
    888 		case M_CSUM_TCPv4:
    889 			/* Checksum was okay. */
    890 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    891 			break;
    892 
    893 		default:
    894 			/*
    895 			 * Must compute it ourselves.  Maybe skip checksum
    896 			 * on loopback interfaces.
    897 			 */
    898 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    899 					     IFF_LOOPBACK) ||
    900 					   tcp_do_loopback_cksum)) {
    901 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    902 				if (in4_cksum(m, IPPROTO_TCP, toff,
    903 					      tlen + off) != 0)
    904 					goto badcsum;
    905 			}
    906 			break;
    907 		}
    908 		break;
    909 #endif /* INET4 */
    910 
    911 #ifdef INET6
    912 	case AF_INET6:
    913 		switch (m->m_pkthdr.csum_flags &
    914 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    915 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    916 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    917 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    918 			goto badcsum;
    919 
    920 #if 0 /* notyet */
    921 		case M_CSUM_TCPv6|M_CSUM_DATA:
    922 #endif
    923 
    924 		case M_CSUM_TCPv6:
    925 			/* Checksum was okay. */
    926 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    927 			break;
    928 
    929 		default:
    930 			/*
    931 			 * Must compute it ourselves.  Maybe skip checksum
    932 			 * on loopback interfaces.
    933 			 */
    934 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    935 			    tcp_do_loopback_cksum)) {
    936 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    937 				if (in6_cksum(m, IPPROTO_TCP, toff,
    938 				    tlen + off) != 0)
    939 					goto badcsum;
    940 			}
    941 		}
    942 		break;
    943 #endif /* INET6 */
    944 	}
    945 
    946 	return 0;
    947 
    948 badcsum:
    949 	tcpstat.tcps_rcvbadsum++;
    950 	return -1;
    951 }
    952 
    953 /*
    954  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
    955  */
    956 void
    957 tcp_input(struct mbuf *m, ...)
    958 {
    959 	struct tcphdr *th;
    960 	struct ip *ip;
    961 	struct inpcb *inp;
    962 #ifdef INET6
    963 	struct ip6_hdr *ip6;
    964 	struct in6pcb *in6p;
    965 #endif
    966 	u_int8_t *optp = NULL;
    967 	int optlen = 0;
    968 	int len, tlen, toff, hdroptlen = 0;
    969 	struct tcpcb *tp = 0;
    970 	int tiflags;
    971 	struct socket *so = NULL;
    972 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
    973 #ifdef TCP_DEBUG
    974 	short ostate = 0;
    975 #endif
    976 	u_long tiwin;
    977 	struct tcp_opt_info opti;
    978 	int off, iphlen;
    979 	va_list ap;
    980 	int af;		/* af on the wire */
    981 	struct mbuf *tcp_saveti = NULL;
    982 	uint32_t ts_rtt;
    983 	uint8_t iptos;
    984 
    985 	MCLAIM(m, &tcp_rx_mowner);
    986 	va_start(ap, m);
    987 	toff = va_arg(ap, int);
    988 	(void)va_arg(ap, int);		/* ignore value, advance ap */
    989 	va_end(ap);
    990 
    991 	tcpstat.tcps_rcvtotal++;
    992 
    993 	bzero(&opti, sizeof(opti));
    994 	opti.ts_present = 0;
    995 	opti.maxseg = 0;
    996 
    997 	/*
    998 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    999 	 *
   1000 	 * TCP is, by definition, unicast, so we reject all
   1001 	 * multicast outright.
   1002 	 *
   1003 	 * Note, there are additional src/dst address checks in
   1004 	 * the AF-specific code below.
   1005 	 */
   1006 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1007 		/* XXX stat */
   1008 		goto drop;
   1009 	}
   1010 #ifdef INET6
   1011 	if (m->m_flags & M_ANYCAST6) {
   1012 		/* XXX stat */
   1013 		goto drop;
   1014 	}
   1015 #endif
   1016 
   1017 	/*
   1018 	 * Get IP and TCP header.
   1019 	 * Note: IP leaves IP header in first mbuf.
   1020 	 */
   1021 	ip = mtod(m, struct ip *);
   1022 #ifdef INET6
   1023 	ip6 = NULL;
   1024 #endif
   1025 	switch (ip->ip_v) {
   1026 #ifdef INET
   1027 	case 4:
   1028 		af = AF_INET;
   1029 		iphlen = sizeof(struct ip);
   1030 		ip = mtod(m, struct ip *);
   1031 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1032 			sizeof(struct tcphdr));
   1033 		if (th == NULL) {
   1034 			tcpstat.tcps_rcvshort++;
   1035 			return;
   1036 		}
   1037 		/* We do the checksum after PCB lookup... */
   1038 		len = ntohs(ip->ip_len);
   1039 		tlen = len - toff;
   1040 		iptos = ip->ip_tos;
   1041 		break;
   1042 #endif
   1043 #ifdef INET6
   1044 	case 6:
   1045 		ip = NULL;
   1046 		iphlen = sizeof(struct ip6_hdr);
   1047 		af = AF_INET6;
   1048 		ip6 = mtod(m, struct ip6_hdr *);
   1049 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1050 			sizeof(struct tcphdr));
   1051 		if (th == NULL) {
   1052 			tcpstat.tcps_rcvshort++;
   1053 			return;
   1054 		}
   1055 
   1056 		/* Be proactive about malicious use of IPv4 mapped address */
   1057 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1058 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1059 			/* XXX stat */
   1060 			goto drop;
   1061 		}
   1062 
   1063 		/*
   1064 		 * Be proactive about unspecified IPv6 address in source.
   1065 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1066 		 * unspecified IPv6 address can be used to confuse us.
   1067 		 *
   1068 		 * Note that packets with unspecified IPv6 destination is
   1069 		 * already dropped in ip6_input.
   1070 		 */
   1071 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1072 			/* XXX stat */
   1073 			goto drop;
   1074 		}
   1075 
   1076 		/*
   1077 		 * Make sure destination address is not multicast.
   1078 		 * Source address checked in ip6_input().
   1079 		 */
   1080 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1081 			/* XXX stat */
   1082 			goto drop;
   1083 		}
   1084 
   1085 		/* We do the checksum after PCB lookup... */
   1086 		len = m->m_pkthdr.len;
   1087 		tlen = len - toff;
   1088 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1089 		break;
   1090 #endif
   1091 	default:
   1092 		m_freem(m);
   1093 		return;
   1094 	}
   1095 
   1096 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1097 
   1098 	/*
   1099 	 * Check that TCP offset makes sense,
   1100 	 * pull out TCP options and adjust length.		XXX
   1101 	 */
   1102 	off = th->th_off << 2;
   1103 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1104 		tcpstat.tcps_rcvbadoff++;
   1105 		goto drop;
   1106 	}
   1107 	tlen -= off;
   1108 
   1109 	/*
   1110 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1111 	 * length throughout the function.  Other functions can use
   1112 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1113 	 * rja
   1114 	 */
   1115 
   1116 	if (off > sizeof (struct tcphdr)) {
   1117 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1118 		if (th == NULL) {
   1119 			tcpstat.tcps_rcvshort++;
   1120 			return;
   1121 		}
   1122 		/*
   1123 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1124 		 * (as they're before toff) and we don't need to update those.
   1125 		 */
   1126 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1127 		optlen = off - sizeof (struct tcphdr);
   1128 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1129 		/*
   1130 		 * Do quick retrieval of timestamp options ("options
   1131 		 * prediction?").  If timestamp is the only option and it's
   1132 		 * formatted as recommended in RFC 1323 appendix A, we
   1133 		 * quickly get the values now and not bother calling
   1134 		 * tcp_dooptions(), etc.
   1135 		 */
   1136 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1137 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1138 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1139 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1140 		     (th->th_flags & TH_SYN) == 0) {
   1141 			opti.ts_present = 1;
   1142 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1143 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1144 			optp = NULL;	/* we've parsed the options */
   1145 		}
   1146 	}
   1147 	tiflags = th->th_flags;
   1148 
   1149 	/*
   1150 	 * Locate pcb for segment.
   1151 	 */
   1152 findpcb:
   1153 	inp = NULL;
   1154 #ifdef INET6
   1155 	in6p = NULL;
   1156 #endif
   1157 	switch (af) {
   1158 #ifdef INET
   1159 	case AF_INET:
   1160 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1161 		    ip->ip_dst, th->th_dport);
   1162 		if (inp == 0) {
   1163 			++tcpstat.tcps_pcbhashmiss;
   1164 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1165 		}
   1166 #ifdef INET6
   1167 		if (inp == 0) {
   1168 			struct in6_addr s, d;
   1169 
   1170 			/* mapped addr case */
   1171 			bzero(&s, sizeof(s));
   1172 			s.s6_addr16[5] = htons(0xffff);
   1173 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1174 			bzero(&d, sizeof(d));
   1175 			d.s6_addr16[5] = htons(0xffff);
   1176 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1177 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1178 			    th->th_sport, &d, th->th_dport, 0);
   1179 			if (in6p == 0) {
   1180 				++tcpstat.tcps_pcbhashmiss;
   1181 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1182 				    th->th_dport, 0);
   1183 			}
   1184 		}
   1185 #endif
   1186 #ifndef INET6
   1187 		if (inp == 0)
   1188 #else
   1189 		if (inp == 0 && in6p == 0)
   1190 #endif
   1191 		{
   1192 			++tcpstat.tcps_noport;
   1193 			if (tcp_log_refused &&
   1194 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1195 				tcp4_log_refused(ip, th);
   1196 			}
   1197 			TCP_FIELDS_TO_HOST(th);
   1198 			goto dropwithreset_ratelim;
   1199 		}
   1200 #if defined(IPSEC) || defined(FAST_IPSEC)
   1201 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1202 		    ipsec4_in_reject(m, inp)) {
   1203 			ipsecstat.in_polvio++;
   1204 			goto drop;
   1205 		}
   1206 #ifdef INET6
   1207 		else if (in6p &&
   1208 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1209 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
   1210 			ipsecstat.in_polvio++;
   1211 			goto drop;
   1212 		}
   1213 #endif
   1214 #endif /*IPSEC*/
   1215 		break;
   1216 #endif /*INET*/
   1217 #ifdef INET6
   1218 	case AF_INET6:
   1219 	    {
   1220 		int faith;
   1221 
   1222 #if defined(NFAITH) && NFAITH > 0
   1223 		faith = faithprefix(&ip6->ip6_dst);
   1224 #else
   1225 		faith = 0;
   1226 #endif
   1227 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1228 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
   1229 		if (in6p == NULL) {
   1230 			++tcpstat.tcps_pcbhashmiss;
   1231 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1232 				th->th_dport, faith);
   1233 		}
   1234 		if (in6p == NULL) {
   1235 			++tcpstat.tcps_noport;
   1236 			if (tcp_log_refused &&
   1237 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1238 				tcp6_log_refused(ip6, th);
   1239 			}
   1240 			TCP_FIELDS_TO_HOST(th);
   1241 			goto dropwithreset_ratelim;
   1242 		}
   1243 #if defined(IPSEC) || defined(FAST_IPSEC)
   1244 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1245 		    ipsec6_in_reject(m, in6p)) {
   1246 			ipsec6stat.in_polvio++;
   1247 			goto drop;
   1248 		}
   1249 #endif /*IPSEC*/
   1250 		break;
   1251 	    }
   1252 #endif
   1253 	}
   1254 
   1255 	/*
   1256 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1257 	 * all data in the incoming segment is discarded.
   1258 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1259 	 * but should either do a listen or a connect soon.
   1260 	 */
   1261 	tp = NULL;
   1262 	so = NULL;
   1263 	if (inp) {
   1264 		tp = intotcpcb(inp);
   1265 		so = inp->inp_socket;
   1266 	}
   1267 #ifdef INET6
   1268 	else if (in6p) {
   1269 		tp = in6totcpcb(in6p);
   1270 		so = in6p->in6p_socket;
   1271 	}
   1272 #endif
   1273 	if (tp == 0) {
   1274 		TCP_FIELDS_TO_HOST(th);
   1275 		goto dropwithreset_ratelim;
   1276 	}
   1277 	if (tp->t_state == TCPS_CLOSED)
   1278 		goto drop;
   1279 
   1280 	/*
   1281 	 * Checksum extended TCP header and data.
   1282 	 */
   1283 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1284 		goto badcsum;
   1285 
   1286 	TCP_FIELDS_TO_HOST(th);
   1287 
   1288 	/* Unscale the window into a 32-bit value. */
   1289 	if ((tiflags & TH_SYN) == 0)
   1290 		tiwin = th->th_win << tp->snd_scale;
   1291 	else
   1292 		tiwin = th->th_win;
   1293 
   1294 #ifdef INET6
   1295 	/* save packet options if user wanted */
   1296 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1297 		if (in6p->in6p_options) {
   1298 			m_freem(in6p->in6p_options);
   1299 			in6p->in6p_options = 0;
   1300 		}
   1301 		KASSERT(ip6 != NULL);
   1302 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1303 	}
   1304 #endif
   1305 
   1306 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1307 		union syn_cache_sa src;
   1308 		union syn_cache_sa dst;
   1309 
   1310 		bzero(&src, sizeof(src));
   1311 		bzero(&dst, sizeof(dst));
   1312 		switch (af) {
   1313 #ifdef INET
   1314 		case AF_INET:
   1315 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1316 			src.sin.sin_family = AF_INET;
   1317 			src.sin.sin_addr = ip->ip_src;
   1318 			src.sin.sin_port = th->th_sport;
   1319 
   1320 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1321 			dst.sin.sin_family = AF_INET;
   1322 			dst.sin.sin_addr = ip->ip_dst;
   1323 			dst.sin.sin_port = th->th_dport;
   1324 			break;
   1325 #endif
   1326 #ifdef INET6
   1327 		case AF_INET6:
   1328 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1329 			src.sin6.sin6_family = AF_INET6;
   1330 			src.sin6.sin6_addr = ip6->ip6_src;
   1331 			src.sin6.sin6_port = th->th_sport;
   1332 
   1333 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1334 			dst.sin6.sin6_family = AF_INET6;
   1335 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1336 			dst.sin6.sin6_port = th->th_dport;
   1337 			break;
   1338 #endif /* INET6 */
   1339 		default:
   1340 			goto badsyn;	/*sanity*/
   1341 		}
   1342 
   1343 		if (so->so_options & SO_DEBUG) {
   1344 #ifdef TCP_DEBUG
   1345 			ostate = tp->t_state;
   1346 #endif
   1347 
   1348 			tcp_saveti = NULL;
   1349 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1350 				goto nosave;
   1351 
   1352 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1353 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1354 				if (!tcp_saveti)
   1355 					goto nosave;
   1356 			} else {
   1357 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1358 				if (!tcp_saveti)
   1359 					goto nosave;
   1360 				MCLAIM(m, &tcp_mowner);
   1361 				tcp_saveti->m_len = iphlen;
   1362 				m_copydata(m, 0, iphlen,
   1363 				    mtod(tcp_saveti, caddr_t));
   1364 			}
   1365 
   1366 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1367 				m_freem(tcp_saveti);
   1368 				tcp_saveti = NULL;
   1369 			} else {
   1370 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1371 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1372 				    sizeof(struct tcphdr));
   1373 			}
   1374 	nosave:;
   1375 		}
   1376 		if (so->so_options & SO_ACCEPTCONN) {
   1377 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1378 				if (tiflags & TH_RST) {
   1379 					syn_cache_reset(&src.sa, &dst.sa, th);
   1380 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1381 				    (TH_ACK|TH_SYN)) {
   1382 					/*
   1383 					 * Received a SYN,ACK.  This should
   1384 					 * never happen while we are in
   1385 					 * LISTEN.  Send an RST.
   1386 					 */
   1387 					goto badsyn;
   1388 				} else if (tiflags & TH_ACK) {
   1389 					so = syn_cache_get(&src.sa, &dst.sa,
   1390 						th, toff, tlen, so, m);
   1391 					if (so == NULL) {
   1392 						/*
   1393 						 * We don't have a SYN for
   1394 						 * this ACK; send an RST.
   1395 						 */
   1396 						goto badsyn;
   1397 					} else if (so ==
   1398 					    (struct socket *)(-1)) {
   1399 						/*
   1400 						 * We were unable to create
   1401 						 * the connection.  If the
   1402 						 * 3-way handshake was
   1403 						 * completed, and RST has
   1404 						 * been sent to the peer.
   1405 						 * Since the mbuf might be
   1406 						 * in use for the reply,
   1407 						 * do not free it.
   1408 						 */
   1409 						m = NULL;
   1410 					} else {
   1411 						/*
   1412 						 * We have created a
   1413 						 * full-blown connection.
   1414 						 */
   1415 						tp = NULL;
   1416 						inp = NULL;
   1417 #ifdef INET6
   1418 						in6p = NULL;
   1419 #endif
   1420 						switch (so->so_proto->pr_domain->dom_family) {
   1421 #ifdef INET
   1422 						case AF_INET:
   1423 							inp = sotoinpcb(so);
   1424 							tp = intotcpcb(inp);
   1425 							break;
   1426 #endif
   1427 #ifdef INET6
   1428 						case AF_INET6:
   1429 							in6p = sotoin6pcb(so);
   1430 							tp = in6totcpcb(in6p);
   1431 							break;
   1432 #endif
   1433 						}
   1434 						if (tp == NULL)
   1435 							goto badsyn;	/*XXX*/
   1436 						tiwin <<= tp->snd_scale;
   1437 						goto after_listen;
   1438 					}
   1439 				} else {
   1440 					/*
   1441 					 * None of RST, SYN or ACK was set.
   1442 					 * This is an invalid packet for a
   1443 					 * TCB in LISTEN state.  Send a RST.
   1444 					 */
   1445 					goto badsyn;
   1446 				}
   1447 			} else {
   1448 				/*
   1449 				 * Received a SYN.
   1450 				 */
   1451 
   1452 #ifdef INET6
   1453 				/*
   1454 				 * If deprecated address is forbidden, we do
   1455 				 * not accept SYN to deprecated interface
   1456 				 * address to prevent any new inbound
   1457 				 * connection from getting established.
   1458 				 * When we do not accept SYN, we send a TCP
   1459 				 * RST, with deprecated source address (instead
   1460 				 * of dropping it).  We compromise it as it is
   1461 				 * much better for peer to send a RST, and
   1462 				 * RST will be the final packet for the
   1463 				 * exchange.
   1464 				 *
   1465 				 * If we do not forbid deprecated addresses, we
   1466 				 * accept the SYN packet.  RFC2462 does not
   1467 				 * suggest dropping SYN in this case.
   1468 				 * If we decipher RFC2462 5.5.4, it says like
   1469 				 * this:
   1470 				 * 1. use of deprecated addr with existing
   1471 				 *    communication is okay - "SHOULD continue
   1472 				 *    to be used"
   1473 				 * 2. use of it with new communication:
   1474 				 *   (2a) "SHOULD NOT be used if alternate
   1475 				 *        address with sufficient scope is
   1476 				 *        available"
   1477 				 *   (2b) nothing mentioned otherwise.
   1478 				 * Here we fall into (2b) case as we have no
   1479 				 * choice in our source address selection - we
   1480 				 * must obey the peer.
   1481 				 *
   1482 				 * The wording in RFC2462 is confusing, and
   1483 				 * there are multiple description text for
   1484 				 * deprecated address handling - worse, they
   1485 				 * are not exactly the same.  I believe 5.5.4
   1486 				 * is the best one, so we follow 5.5.4.
   1487 				 */
   1488 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1489 					struct in6_ifaddr *ia6;
   1490 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1491 					    &ip6->ip6_dst)) &&
   1492 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1493 						tp = NULL;
   1494 						goto dropwithreset;
   1495 					}
   1496 				}
   1497 #endif
   1498 
   1499 #ifdef IPSEC
   1500 				switch (af) {
   1501 #ifdef INET
   1502 				case AF_INET:
   1503 					if (ipsec4_in_reject_so(m, so)) {
   1504 						ipsecstat.in_polvio++;
   1505 						tp = NULL;
   1506 						goto dropwithreset;
   1507 					}
   1508 					break;
   1509 #endif
   1510 #ifdef INET6
   1511 				case AF_INET6:
   1512 					if (ipsec6_in_reject_so(m, so)) {
   1513 						ipsec6stat.in_polvio++;
   1514 						tp = NULL;
   1515 						goto dropwithreset;
   1516 					}
   1517 					break;
   1518 #endif
   1519 				}
   1520 #endif
   1521 
   1522 				/*
   1523 				 * LISTEN socket received a SYN
   1524 				 * from itself?  This can't possibly
   1525 				 * be valid; drop the packet.
   1526 				 */
   1527 				if (th->th_sport == th->th_dport) {
   1528 					int i;
   1529 
   1530 					switch (af) {
   1531 #ifdef INET
   1532 					case AF_INET:
   1533 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1534 						break;
   1535 #endif
   1536 #ifdef INET6
   1537 					case AF_INET6:
   1538 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1539 						break;
   1540 #endif
   1541 					default:
   1542 						i = 1;
   1543 					}
   1544 					if (i) {
   1545 						tcpstat.tcps_badsyn++;
   1546 						goto drop;
   1547 					}
   1548 				}
   1549 
   1550 				/*
   1551 				 * SYN looks ok; create compressed TCP
   1552 				 * state for it.
   1553 				 */
   1554 				if (so->so_qlen <= so->so_qlimit &&
   1555 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1556 						so, m, optp, optlen, &opti))
   1557 					m = NULL;
   1558 			}
   1559 			goto drop;
   1560 		}
   1561 	}
   1562 
   1563 after_listen:
   1564 #ifdef DIAGNOSTIC
   1565 	/*
   1566 	 * Should not happen now that all embryonic connections
   1567 	 * are handled with compressed state.
   1568 	 */
   1569 	if (tp->t_state == TCPS_LISTEN)
   1570 		panic("tcp_input: TCPS_LISTEN");
   1571 #endif
   1572 
   1573 	/*
   1574 	 * Segment received on connection.
   1575 	 * Reset idle time and keep-alive timer.
   1576 	 */
   1577 	tp->t_rcvtime = tcp_now;
   1578 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1579 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1580 
   1581 	/*
   1582 	 * Process options.
   1583 	 */
   1584 #ifdef TCP_SIGNATURE
   1585 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1586 #else
   1587 	if (optp)
   1588 #endif
   1589 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1590 			goto drop;
   1591 
   1592 	if (TCP_SACK_ENABLED(tp)) {
   1593 		tcp_del_sackholes(tp, th);
   1594 	}
   1595 
   1596 	if (TCP_ECN_ALLOWED(tp)) {
   1597 		switch (iptos & IPTOS_ECN_MASK) {
   1598 		case IPTOS_ECN_CE:
   1599 			tp->t_flags |= TF_ECN_SND_ECE;
   1600 			tcpstat.tcps_ecn_ce++;
   1601 			break;
   1602 		case IPTOS_ECN_ECT0:
   1603 			tcpstat.tcps_ecn_ect++;
   1604 			break;
   1605 		case IPTOS_ECN_ECT1:
   1606 			/* XXX: ignore for now -- rpaulo */
   1607 			break;
   1608 		}
   1609 
   1610 		if (tiflags & TH_CWR)
   1611 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1612 
   1613 		/*
   1614 		 * Congestion experienced.
   1615 		 * Ignore if we are already trying to recover.
   1616 		 */
   1617 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1618 			tcp_reno_congestion_exp(tp);
   1619 	}
   1620 
   1621 	if (opti.ts_present && opti.ts_ecr) {
   1622 		/*
   1623 		 * Calculate the RTT from the returned time stamp and the
   1624 		 * connection's time base.  If the time stamp is later than
   1625 		 * the current time, or is extremely old, fall back to non-1323
   1626 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
   1627 		 * at the same time.
   1628 		 */
   1629 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1630 		if (ts_rtt > TCP_PAWS_IDLE)
   1631 			ts_rtt = 0;
   1632 	} else {
   1633 		ts_rtt = 0;
   1634 	}
   1635 
   1636 	/*
   1637 	 * Header prediction: check for the two common cases
   1638 	 * of a uni-directional data xfer.  If the packet has
   1639 	 * no control flags, is in-sequence, the window didn't
   1640 	 * change and we're not retransmitting, it's a
   1641 	 * candidate.  If the length is zero and the ack moved
   1642 	 * forward, we're the sender side of the xfer.  Just
   1643 	 * free the data acked & wake any higher level process
   1644 	 * that was blocked waiting for space.  If the length
   1645 	 * is non-zero and the ack didn't move, we're the
   1646 	 * receiver side.  If we're getting packets in-order
   1647 	 * (the reassembly queue is empty), add the data to
   1648 	 * the socket buffer and note that we need a delayed ack.
   1649 	 */
   1650 	if (tp->t_state == TCPS_ESTABLISHED &&
   1651 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1652 	        == TH_ACK &&
   1653 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1654 	    th->th_seq == tp->rcv_nxt &&
   1655 	    tiwin && tiwin == tp->snd_wnd &&
   1656 	    tp->snd_nxt == tp->snd_max) {
   1657 
   1658 		/*
   1659 		 * If last ACK falls within this segment's sequence numbers,
   1660 		 *  record the timestamp.
   1661 		 * NOTE:
   1662 		 * 1) That the test incorporates suggestions from the latest
   1663 		 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1664 		 * 2) That updating only on newer timestamps interferes with
   1665 		 *    our earlier PAWS tests, so this check should be solely
   1666 		 *    predicated on the sequence space of this segment.
   1667 		 * 3) That we modify the segment boundary check to be
   1668 		 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   1669 		 *    instead of RFC1323's
   1670 		 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   1671 		 *    This modified check allows us to overcome RFC1323's
   1672 		 *    limitations as described in Stevens TCP/IP Illustrated
   1673 		 *    Vol. 2 p.869. In such cases, we can still calculate the
   1674 		 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   1675 		 */
   1676 		if (opti.ts_present &&
   1677 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1678 		    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   1679 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1680 			tp->ts_recent_age = tcp_now;
   1681 			tp->ts_recent = opti.ts_val;
   1682 		}
   1683 
   1684 		if (tlen == 0) {
   1685 			/* Ack prediction. */
   1686 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1687 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1688 			    tp->snd_cwnd >= tp->snd_wnd &&
   1689 			    tp->t_partialacks < 0) {
   1690 				/*
   1691 				 * this is a pure ack for outstanding data.
   1692 				 */
   1693 				++tcpstat.tcps_predack;
   1694 				if (ts_rtt)
   1695 					tcp_xmit_timer(tp, ts_rtt);
   1696 				else if (tp->t_rtttime &&
   1697 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1698 					tcp_xmit_timer(tp,
   1699 					  tcp_now - tp->t_rtttime);
   1700 				acked = th->th_ack - tp->snd_una;
   1701 				tcpstat.tcps_rcvackpack++;
   1702 				tcpstat.tcps_rcvackbyte += acked;
   1703 				ND6_HINT(tp);
   1704 
   1705 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1706 					tp->t_lastm = NULL;
   1707 				sbdrop(&so->so_snd, acked);
   1708 				tp->t_lastoff -= acked;
   1709 
   1710 				ICMP_CHECK(tp, th, acked);
   1711 
   1712 				tp->snd_una = th->th_ack;
   1713 				tp->snd_fack = tp->snd_una;
   1714 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1715 					tp->snd_high = tp->snd_una;
   1716 				m_freem(m);
   1717 
   1718 				/*
   1719 				 * If all outstanding data are acked, stop
   1720 				 * retransmit timer, otherwise restart timer
   1721 				 * using current (possibly backed-off) value.
   1722 				 * If process is waiting for space,
   1723 				 * wakeup/selwakeup/signal.  If data
   1724 				 * are ready to send, let tcp_output
   1725 				 * decide between more output or persist.
   1726 				 */
   1727 				if (tp->snd_una == tp->snd_max)
   1728 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1729 				else if (TCP_TIMER_ISARMED(tp,
   1730 				    TCPT_PERSIST) == 0)
   1731 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1732 					    tp->t_rxtcur);
   1733 
   1734 				sowwakeup(so);
   1735 				if (so->so_snd.sb_cc)
   1736 					(void) tcp_output(tp);
   1737 				if (tcp_saveti)
   1738 					m_freem(tcp_saveti);
   1739 				return;
   1740 			}
   1741 		} else if (th->th_ack == tp->snd_una &&
   1742 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1743 		    tlen <= sbspace(&so->so_rcv)) {
   1744 			/*
   1745 			 * this is a pure, in-sequence data packet
   1746 			 * with nothing on the reassembly queue and
   1747 			 * we have enough buffer space to take it.
   1748 			 */
   1749 			++tcpstat.tcps_preddat;
   1750 			tp->rcv_nxt += tlen;
   1751 			tcpstat.tcps_rcvpack++;
   1752 			tcpstat.tcps_rcvbyte += tlen;
   1753 			ND6_HINT(tp);
   1754 			/*
   1755 			 * Drop TCP, IP headers and TCP options then add data
   1756 			 * to socket buffer.
   1757 			 */
   1758 			if (so->so_state & SS_CANTRCVMORE)
   1759 				m_freem(m);
   1760 			else {
   1761 				m_adj(m, toff + off);
   1762 				sbappendstream(&so->so_rcv, m);
   1763 			}
   1764 			sorwakeup(so);
   1765 			TCP_SETUP_ACK(tp, th);
   1766 			if (tp->t_flags & TF_ACKNOW)
   1767 				(void) tcp_output(tp);
   1768 			if (tcp_saveti)
   1769 				m_freem(tcp_saveti);
   1770 			return;
   1771 		}
   1772 	}
   1773 
   1774 	/*
   1775 	 * Compute mbuf offset to TCP data segment.
   1776 	 */
   1777 	hdroptlen = toff + off;
   1778 
   1779 	/*
   1780 	 * Calculate amount of space in receive window,
   1781 	 * and then do TCP input processing.
   1782 	 * Receive window is amount of space in rcv queue,
   1783 	 * but not less than advertised window.
   1784 	 */
   1785 	{ int win;
   1786 
   1787 	win = sbspace(&so->so_rcv);
   1788 	if (win < 0)
   1789 		win = 0;
   1790 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1791 	}
   1792 
   1793 	switch (tp->t_state) {
   1794 	case TCPS_LISTEN:
   1795 		/*
   1796 		 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1797 		 */
   1798 		if (m->m_flags & (M_BCAST|M_MCAST))
   1799 			goto drop;
   1800 		switch (af) {
   1801 #ifdef INET6
   1802 		case AF_INET6:
   1803 			if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1804 				goto drop;
   1805 			break;
   1806 #endif /* INET6 */
   1807 		case AF_INET:
   1808 			if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1809 			    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1810 				goto drop;
   1811 			break;
   1812 		}
   1813 		break;
   1814 
   1815 	/*
   1816 	 * If the state is SYN_SENT:
   1817 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1818 	 *	if seg contains a RST, then drop the connection.
   1819 	 *	if seg does not contain SYN, then drop it.
   1820 	 * Otherwise this is an acceptable SYN segment
   1821 	 *	initialize tp->rcv_nxt and tp->irs
   1822 	 *	if seg contains ack then advance tp->snd_una
   1823 	 *	if seg contains a ECE and ECN support is enabled, the stream
   1824 	 *	    is ECN capable.
   1825 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1826 	 *	arrange for segment to be acked (eventually)
   1827 	 *	continue processing rest of data/controls, beginning with URG
   1828 	 */
   1829 	case TCPS_SYN_SENT:
   1830 		if ((tiflags & TH_ACK) &&
   1831 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1832 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1833 			goto dropwithreset;
   1834 		if (tiflags & TH_RST) {
   1835 			if (tiflags & TH_ACK)
   1836 				tp = tcp_drop(tp, ECONNREFUSED);
   1837 			goto drop;
   1838 		}
   1839 		if ((tiflags & TH_SYN) == 0)
   1840 			goto drop;
   1841 		if (tiflags & TH_ACK) {
   1842 			tp->snd_una = th->th_ack;
   1843 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1844 				tp->snd_nxt = tp->snd_una;
   1845 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   1846 				tp->snd_high = tp->snd_una;
   1847 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1848 
   1849 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   1850 				tp->t_flags |= TF_ECN_PERMIT;
   1851 				tcpstat.tcps_ecn_shs++;
   1852 			}
   1853 
   1854 		}
   1855 		tp->irs = th->th_seq;
   1856 		tcp_rcvseqinit(tp);
   1857 		tp->t_flags |= TF_ACKNOW;
   1858 		tcp_mss_from_peer(tp, opti.maxseg);
   1859 
   1860 		/*
   1861 		 * Initialize the initial congestion window.  If we
   1862 		 * had to retransmit the SYN, we must initialize cwnd
   1863 		 * to 1 segment (i.e. the Loss Window).
   1864 		 */
   1865 		if (tp->t_flags & TF_SYN_REXMT)
   1866 			tp->snd_cwnd = tp->t_peermss;
   1867 		else {
   1868 			int ss = tcp_init_win;
   1869 #ifdef INET
   1870 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1871 				ss = tcp_init_win_local;
   1872 #endif
   1873 #ifdef INET6
   1874 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1875 				ss = tcp_init_win_local;
   1876 #endif
   1877 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1878 		}
   1879 
   1880 		tcp_rmx_rtt(tp);
   1881 		if (tiflags & TH_ACK) {
   1882 			tcpstat.tcps_connects++;
   1883 			soisconnected(so);
   1884 			tcp_established(tp);
   1885 			/* Do window scaling on this connection? */
   1886 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1887 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1888 				tp->snd_scale = tp->requested_s_scale;
   1889 				tp->rcv_scale = tp->request_r_scale;
   1890 			}
   1891 			TCP_REASS_LOCK(tp);
   1892 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1893 			TCP_REASS_UNLOCK(tp);
   1894 			/*
   1895 			 * if we didn't have to retransmit the SYN,
   1896 			 * use its rtt as our initial srtt & rtt var.
   1897 			 */
   1898 			if (tp->t_rtttime)
   1899 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1900 		} else
   1901 			tp->t_state = TCPS_SYN_RECEIVED;
   1902 
   1903 		/*
   1904 		 * Advance th->th_seq to correspond to first data byte.
   1905 		 * If data, trim to stay within window,
   1906 		 * dropping FIN if necessary.
   1907 		 */
   1908 		th->th_seq++;
   1909 		if (tlen > tp->rcv_wnd) {
   1910 			todrop = tlen - tp->rcv_wnd;
   1911 			m_adj(m, -todrop);
   1912 			tlen = tp->rcv_wnd;
   1913 			tiflags &= ~TH_FIN;
   1914 			tcpstat.tcps_rcvpackafterwin++;
   1915 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1916 		}
   1917 		tp->snd_wl1 = th->th_seq - 1;
   1918 		tp->rcv_up = th->th_seq;
   1919 		goto step6;
   1920 
   1921 	/*
   1922 	 * If the state is SYN_RECEIVED:
   1923 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1924 	 *	and generate an RST.  See page 36, rfc793
   1925 	 */
   1926 	case TCPS_SYN_RECEIVED:
   1927 		if ((tiflags & TH_ACK) &&
   1928 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1929 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1930 			goto dropwithreset;
   1931 		break;
   1932 	}
   1933 
   1934 	/*
   1935 	 * States other than LISTEN or SYN_SENT.
   1936 	 * First check timestamp, if present.
   1937 	 * Then check that at least some bytes of segment are within
   1938 	 * receive window.  If segment begins before rcv_nxt,
   1939 	 * drop leading data (and SYN); if nothing left, just ack.
   1940 	 *
   1941 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1942 	 * and it's less than ts_recent, drop it.
   1943 	 */
   1944 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1945 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1946 
   1947 		/* Check to see if ts_recent is over 24 days old.  */
   1948 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   1949 			/*
   1950 			 * Invalidate ts_recent.  If this segment updates
   1951 			 * ts_recent, the age will be reset later and ts_recent
   1952 			 * will get a valid value.  If it does not, setting
   1953 			 * ts_recent to zero will at least satisfy the
   1954 			 * requirement that zero be placed in the timestamp
   1955 			 * echo reply when ts_recent isn't valid.  The
   1956 			 * age isn't reset until we get a valid ts_recent
   1957 			 * because we don't want out-of-order segments to be
   1958 			 * dropped when ts_recent is old.
   1959 			 */
   1960 			tp->ts_recent = 0;
   1961 		} else {
   1962 			tcpstat.tcps_rcvduppack++;
   1963 			tcpstat.tcps_rcvdupbyte += tlen;
   1964 			tcpstat.tcps_pawsdrop++;
   1965 			tcp_new_dsack(tp, th->th_seq, tlen);
   1966 			goto dropafterack;
   1967 		}
   1968 	}
   1969 
   1970 	todrop = tp->rcv_nxt - th->th_seq;
   1971 	dupseg = FALSE;
   1972 	if (todrop > 0) {
   1973 		if (tiflags & TH_SYN) {
   1974 			tiflags &= ~TH_SYN;
   1975 			th->th_seq++;
   1976 			if (th->th_urp > 1)
   1977 				th->th_urp--;
   1978 			else {
   1979 				tiflags &= ~TH_URG;
   1980 				th->th_urp = 0;
   1981 			}
   1982 			todrop--;
   1983 		}
   1984 		if (todrop > tlen ||
   1985 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1986 			/*
   1987 			 * Any valid FIN or RST must be to the left of the
   1988 			 * window.  At this point the FIN or RST must be a
   1989 			 * duplicate or out of sequence; drop it.
   1990 			 */
   1991 			if (tiflags & TH_RST)
   1992 				goto drop;
   1993 			tiflags &= ~(TH_FIN|TH_RST);
   1994 			/*
   1995 			 * Send an ACK to resynchronize and drop any data.
   1996 			 * But keep on processing for RST or ACK.
   1997 			 */
   1998 			tp->t_flags |= TF_ACKNOW;
   1999 			todrop = tlen;
   2000 			dupseg = TRUE;
   2001 			tcpstat.tcps_rcvdupbyte += todrop;
   2002 			tcpstat.tcps_rcvduppack++;
   2003 		} else if ((tiflags & TH_RST) &&
   2004 			   th->th_seq != tp->last_ack_sent) {
   2005 			/*
   2006 			 * Test for reset before adjusting the sequence
   2007 			 * number for overlapping data.
   2008 			 */
   2009 			goto dropafterack_ratelim;
   2010 		} else {
   2011 			tcpstat.tcps_rcvpartduppack++;
   2012 			tcpstat.tcps_rcvpartdupbyte += todrop;
   2013 		}
   2014 		tcp_new_dsack(tp, th->th_seq, todrop);
   2015 		hdroptlen += todrop;	/*drop from head afterwards*/
   2016 		th->th_seq += todrop;
   2017 		tlen -= todrop;
   2018 		if (th->th_urp > todrop)
   2019 			th->th_urp -= todrop;
   2020 		else {
   2021 			tiflags &= ~TH_URG;
   2022 			th->th_urp = 0;
   2023 		}
   2024 	}
   2025 
   2026 	/*
   2027 	 * If new data are received on a connection after the
   2028 	 * user processes are gone, then RST the other end.
   2029 	 */
   2030 	if ((so->so_state & SS_NOFDREF) &&
   2031 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2032 		tp = tcp_close(tp);
   2033 		tcpstat.tcps_rcvafterclose++;
   2034 		goto dropwithreset;
   2035 	}
   2036 
   2037 	/*
   2038 	 * If segment ends after window, drop trailing data
   2039 	 * (and PUSH and FIN); if nothing left, just ACK.
   2040 	 */
   2041 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2042 	if (todrop > 0) {
   2043 		tcpstat.tcps_rcvpackafterwin++;
   2044 		if (todrop >= tlen) {
   2045 			/*
   2046 			 * The segment actually starts after the window.
   2047 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2048 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2049 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2050 			 */
   2051 			tcpstat.tcps_rcvbyteafterwin += tlen;
   2052 			/*
   2053 			 * If a new connection request is received
   2054 			 * while in TIME_WAIT, drop the old connection
   2055 			 * and start over if the sequence numbers
   2056 			 * are above the previous ones.
   2057 			 *
   2058 			 * NOTE: We will checksum the packet again, and
   2059 			 * so we need to put the header fields back into
   2060 			 * network order!
   2061 			 * XXX This kind of sucks, but we don't expect
   2062 			 * XXX this to happen very often, so maybe it
   2063 			 * XXX doesn't matter so much.
   2064 			 */
   2065 			if (tiflags & TH_SYN &&
   2066 			    tp->t_state == TCPS_TIME_WAIT &&
   2067 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2068 				tp = tcp_close(tp);
   2069 				TCP_FIELDS_TO_NET(th);
   2070 				goto findpcb;
   2071 			}
   2072 			/*
   2073 			 * If window is closed can only take segments at
   2074 			 * window edge, and have to drop data and PUSH from
   2075 			 * incoming segments.  Continue processing, but
   2076 			 * remember to ack.  Otherwise, drop segment
   2077 			 * and (if not RST) ack.
   2078 			 */
   2079 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2080 				tp->t_flags |= TF_ACKNOW;
   2081 				tcpstat.tcps_rcvwinprobe++;
   2082 			} else
   2083 				goto dropafterack;
   2084 		} else
   2085 			tcpstat.tcps_rcvbyteafterwin += todrop;
   2086 		m_adj(m, -todrop);
   2087 		tlen -= todrop;
   2088 		tiflags &= ~(TH_PUSH|TH_FIN);
   2089 	}
   2090 
   2091 	/*
   2092 	 * If last ACK falls within this segment's sequence numbers,
   2093 	 * and the timestamp is newer, record it.
   2094 	 */
   2095 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   2096 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2097 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   2098 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2099 		tp->ts_recent_age = tcp_now;
   2100 		tp->ts_recent = opti.ts_val;
   2101 	}
   2102 
   2103 	/*
   2104 	 * If the RST bit is set examine the state:
   2105 	 *    SYN_RECEIVED STATE:
   2106 	 *	If passive open, return to LISTEN state.
   2107 	 *	If active open, inform user that connection was refused.
   2108 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2109 	 *	Inform user that connection was reset, and close tcb.
   2110 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2111 	 *	Close the tcb.
   2112 	 */
   2113 	if (tiflags & TH_RST) {
   2114 		if (th->th_seq != tp->last_ack_sent)
   2115 			goto dropafterack_ratelim;
   2116 
   2117 		switch (tp->t_state) {
   2118 		case TCPS_SYN_RECEIVED:
   2119 			so->so_error = ECONNREFUSED;
   2120 			goto close;
   2121 
   2122 		case TCPS_ESTABLISHED:
   2123 		case TCPS_FIN_WAIT_1:
   2124 		case TCPS_FIN_WAIT_2:
   2125 		case TCPS_CLOSE_WAIT:
   2126 			so->so_error = ECONNRESET;
   2127 		close:
   2128 			tp->t_state = TCPS_CLOSED;
   2129 			tcpstat.tcps_drops++;
   2130 			tp = tcp_close(tp);
   2131 			goto drop;
   2132 
   2133 		case TCPS_CLOSING:
   2134 		case TCPS_LAST_ACK:
   2135 		case TCPS_TIME_WAIT:
   2136 			tp = tcp_close(tp);
   2137 			goto drop;
   2138 		}
   2139 	}
   2140 
   2141 	/*
   2142 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2143 	 * we must be in a synchronized state.  RFC791 states (under RST
   2144 	 * generation) that any unacceptable segment (an out-of-order SYN
   2145 	 * qualifies) received in a synchronized state must elicit only an
   2146 	 * empty acknowledgment segment ... and the connection remains in
   2147 	 * the same state.
   2148 	 */
   2149 	if (tiflags & TH_SYN) {
   2150 		if (tp->rcv_nxt == th->th_seq) {
   2151 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2152 			    TH_ACK);
   2153 			if (tcp_saveti)
   2154 				m_freem(tcp_saveti);
   2155 			return;
   2156 		}
   2157 
   2158 		goto dropafterack_ratelim;
   2159 	}
   2160 
   2161 	/*
   2162 	 * If the ACK bit is off we drop the segment and return.
   2163 	 */
   2164 	if ((tiflags & TH_ACK) == 0) {
   2165 		if (tp->t_flags & TF_ACKNOW)
   2166 			goto dropafterack;
   2167 		else
   2168 			goto drop;
   2169 	}
   2170 
   2171 	/*
   2172 	 * Ack processing.
   2173 	 */
   2174 	switch (tp->t_state) {
   2175 
   2176 	/*
   2177 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2178 	 * ESTABLISHED state and continue processing, otherwise
   2179 	 * send an RST.
   2180 	 */
   2181 	case TCPS_SYN_RECEIVED:
   2182 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2183 		    SEQ_GT(th->th_ack, tp->snd_max))
   2184 			goto dropwithreset;
   2185 		tcpstat.tcps_connects++;
   2186 		soisconnected(so);
   2187 		tcp_established(tp);
   2188 		/* Do window scaling? */
   2189 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2190 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2191 			tp->snd_scale = tp->requested_s_scale;
   2192 			tp->rcv_scale = tp->request_r_scale;
   2193 		}
   2194 		TCP_REASS_LOCK(tp);
   2195 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2196 		TCP_REASS_UNLOCK(tp);
   2197 		tp->snd_wl1 = th->th_seq - 1;
   2198 		/* fall into ... */
   2199 
   2200 	/*
   2201 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2202 	 * ACKs.  If the ack is in the range
   2203 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2204 	 * then advance tp->snd_una to th->th_ack and drop
   2205 	 * data from the retransmission queue.  If this ACK reflects
   2206 	 * more up to date window information we update our window information.
   2207 	 */
   2208 	case TCPS_ESTABLISHED:
   2209 	case TCPS_FIN_WAIT_1:
   2210 	case TCPS_FIN_WAIT_2:
   2211 	case TCPS_CLOSE_WAIT:
   2212 	case TCPS_CLOSING:
   2213 	case TCPS_LAST_ACK:
   2214 	case TCPS_TIME_WAIT:
   2215 
   2216 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2217 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2218 				tcpstat.tcps_rcvdupack++;
   2219 				/*
   2220 				 * If we have outstanding data (other than
   2221 				 * a window probe), this is a completely
   2222 				 * duplicate ack (ie, window info didn't
   2223 				 * change), the ack is the biggest we've
   2224 				 * seen and we've seen exactly our rexmt
   2225 				 * threshhold of them, assume a packet
   2226 				 * has been dropped and retransmit it.
   2227 				 * Kludge snd_nxt & the congestion
   2228 				 * window so we send only this one
   2229 				 * packet.
   2230 				 *
   2231 				 * We know we're losing at the current
   2232 				 * window size so do congestion avoidance
   2233 				 * (set ssthresh to half the current window
   2234 				 * and pull our congestion window back to
   2235 				 * the new ssthresh).
   2236 				 *
   2237 				 * Dup acks mean that packets have left the
   2238 				 * network (they're now cached at the receiver)
   2239 				 * so bump cwnd by the amount in the receiver
   2240 				 * to keep a constant cwnd packets in the
   2241 				 * network.
   2242 				 *
   2243 				 * When using TCP ECN, notify the peer that
   2244 				 * we reduced the cwnd.
   2245 				 *
   2246 				 * If we are using TCP/SACK, then enter
   2247 				 * Fast Recovery if the receiver SACKs
   2248 				 * data that is tcprexmtthresh * MSS
   2249 				 * bytes past the last ACKed segment,
   2250 				 * irrespective of the number of DupAcks.
   2251 				 */
   2252 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2253 				    th->th_ack != tp->snd_una)
   2254 					tp->t_dupacks = 0;
   2255 				else if (tp->t_partialacks < 0 &&
   2256 					 (++tp->t_dupacks == tcprexmtthresh ||
   2257 					 TCP_FACK_FASTRECOV(tp))) {
   2258 					/*
   2259 					 * Do the fast retransmit, and adjust
   2260 					 * congestion control paramenters.
   2261 					 */
   2262 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2263 						/* False fast retransmit */
   2264 						break;
   2265 					} else
   2266 						goto drop;
   2267 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2268 					tp->snd_cwnd += tp->t_segsz;
   2269 					(void) tcp_output(tp);
   2270 					goto drop;
   2271 				}
   2272 			} else {
   2273 				/*
   2274 				 * If the ack appears to be very old, only
   2275 				 * allow data that is in-sequence.  This
   2276 				 * makes it somewhat more difficult to insert
   2277 				 * forged data by guessing sequence numbers.
   2278 				 * Sent an ack to try to update the send
   2279 				 * sequence number on the other side.
   2280 				 */
   2281 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2282 				    SEQ_LT(th->th_ack,
   2283 				    tp->snd_una - tp->max_sndwnd))
   2284 					goto dropafterack;
   2285 			}
   2286 			break;
   2287 		}
   2288 		/*
   2289 		 * If the congestion window was inflated to account
   2290 		 * for the other side's cached packets, retract it.
   2291 		 */
   2292 		/* XXX: make SACK have his own congestion control
   2293 		 * struct -- rpaulo */
   2294 		if (TCP_SACK_ENABLED(tp))
   2295 			tcp_sack_newack(tp, th);
   2296 		else
   2297 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2298 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2299 			tcpstat.tcps_rcvacktoomuch++;
   2300 			goto dropafterack;
   2301 		}
   2302 		acked = th->th_ack - tp->snd_una;
   2303 		tcpstat.tcps_rcvackpack++;
   2304 		tcpstat.tcps_rcvackbyte += acked;
   2305 
   2306 		/*
   2307 		 * If we have a timestamp reply, update smoothed
   2308 		 * round trip time.  If no timestamp is present but
   2309 		 * transmit timer is running and timed sequence
   2310 		 * number was acked, update smoothed round trip time.
   2311 		 * Since we now have an rtt measurement, cancel the
   2312 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2313 		 * Recompute the initial retransmit timer.
   2314 		 */
   2315 		if (ts_rtt)
   2316 			tcp_xmit_timer(tp, ts_rtt);
   2317 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2318 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2319 
   2320 		/*
   2321 		 * If all outstanding data is acked, stop retransmit
   2322 		 * timer and remember to restart (more output or persist).
   2323 		 * If there is more data to be acked, restart retransmit
   2324 		 * timer, using current (possibly backed-off) value.
   2325 		 */
   2326 		if (th->th_ack == tp->snd_max) {
   2327 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2328 			needoutput = 1;
   2329 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2330 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2331 
   2332 		/*
   2333 		 * New data has been acked, adjust the congestion window.
   2334 		 */
   2335 		tp->t_congctl->newack(tp, th);
   2336 
   2337 		ND6_HINT(tp);
   2338 		if (acked > so->so_snd.sb_cc) {
   2339 			tp->snd_wnd -= so->so_snd.sb_cc;
   2340 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2341 			ourfinisacked = 1;
   2342 		} else {
   2343 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2344 				tp->t_lastm = NULL;
   2345 			sbdrop(&so->so_snd, acked);
   2346 			tp->t_lastoff -= acked;
   2347 			tp->snd_wnd -= acked;
   2348 			ourfinisacked = 0;
   2349 		}
   2350 		sowwakeup(so);
   2351 
   2352 		ICMP_CHECK(tp, th, acked);
   2353 
   2354 		tp->snd_una = th->th_ack;
   2355 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2356 			tp->snd_fack = tp->snd_una;
   2357 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2358 			tp->snd_nxt = tp->snd_una;
   2359 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2360 			tp->snd_high = tp->snd_una;
   2361 
   2362 		switch (tp->t_state) {
   2363 
   2364 		/*
   2365 		 * In FIN_WAIT_1 STATE in addition to the processing
   2366 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2367 		 * then enter FIN_WAIT_2.
   2368 		 */
   2369 		case TCPS_FIN_WAIT_1:
   2370 			if (ourfinisacked) {
   2371 				/*
   2372 				 * If we can't receive any more
   2373 				 * data, then closing user can proceed.
   2374 				 * Starting the timer is contrary to the
   2375 				 * specification, but if we don't get a FIN
   2376 				 * we'll hang forever.
   2377 				 */
   2378 				if (so->so_state & SS_CANTRCVMORE) {
   2379 					soisdisconnected(so);
   2380 					if (tcp_maxidle > 0)
   2381 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2382 						    tcp_maxidle);
   2383 				}
   2384 				tp->t_state = TCPS_FIN_WAIT_2;
   2385 			}
   2386 			break;
   2387 
   2388 	 	/*
   2389 		 * In CLOSING STATE in addition to the processing for
   2390 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2391 		 * then enter the TIME-WAIT state, otherwise ignore
   2392 		 * the segment.
   2393 		 */
   2394 		case TCPS_CLOSING:
   2395 			if (ourfinisacked) {
   2396 				tp->t_state = TCPS_TIME_WAIT;
   2397 				tcp_canceltimers(tp);
   2398 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2399 				soisdisconnected(so);
   2400 			}
   2401 			break;
   2402 
   2403 		/*
   2404 		 * In LAST_ACK, we may still be waiting for data to drain
   2405 		 * and/or to be acked, as well as for the ack of our FIN.
   2406 		 * If our FIN is now acknowledged, delete the TCB,
   2407 		 * enter the closed state and return.
   2408 		 */
   2409 		case TCPS_LAST_ACK:
   2410 			if (ourfinisacked) {
   2411 				tp = tcp_close(tp);
   2412 				goto drop;
   2413 			}
   2414 			break;
   2415 
   2416 		/*
   2417 		 * In TIME_WAIT state the only thing that should arrive
   2418 		 * is a retransmission of the remote FIN.  Acknowledge
   2419 		 * it and restart the finack timer.
   2420 		 */
   2421 		case TCPS_TIME_WAIT:
   2422 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2423 			goto dropafterack;
   2424 		}
   2425 	}
   2426 
   2427 step6:
   2428 	/*
   2429 	 * Update window information.
   2430 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2431 	 */
   2432 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2433 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2434 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2435 		/* keep track of pure window updates */
   2436 		if (tlen == 0 &&
   2437 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2438 			tcpstat.tcps_rcvwinupd++;
   2439 		tp->snd_wnd = tiwin;
   2440 		tp->snd_wl1 = th->th_seq;
   2441 		tp->snd_wl2 = th->th_ack;
   2442 		if (tp->snd_wnd > tp->max_sndwnd)
   2443 			tp->max_sndwnd = tp->snd_wnd;
   2444 		needoutput = 1;
   2445 	}
   2446 
   2447 	/*
   2448 	 * Process segments with URG.
   2449 	 */
   2450 	if ((tiflags & TH_URG) && th->th_urp &&
   2451 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2452 		/*
   2453 		 * This is a kludge, but if we receive and accept
   2454 		 * random urgent pointers, we'll crash in
   2455 		 * soreceive.  It's hard to imagine someone
   2456 		 * actually wanting to send this much urgent data.
   2457 		 */
   2458 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2459 			th->th_urp = 0;			/* XXX */
   2460 			tiflags &= ~TH_URG;		/* XXX */
   2461 			goto dodata;			/* XXX */
   2462 		}
   2463 		/*
   2464 		 * If this segment advances the known urgent pointer,
   2465 		 * then mark the data stream.  This should not happen
   2466 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2467 		 * a FIN has been received from the remote side.
   2468 		 * In these states we ignore the URG.
   2469 		 *
   2470 		 * According to RFC961 (Assigned Protocols),
   2471 		 * the urgent pointer points to the last octet
   2472 		 * of urgent data.  We continue, however,
   2473 		 * to consider it to indicate the first octet
   2474 		 * of data past the urgent section as the original
   2475 		 * spec states (in one of two places).
   2476 		 */
   2477 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2478 			tp->rcv_up = th->th_seq + th->th_urp;
   2479 			so->so_oobmark = so->so_rcv.sb_cc +
   2480 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2481 			if (so->so_oobmark == 0)
   2482 				so->so_state |= SS_RCVATMARK;
   2483 			sohasoutofband(so);
   2484 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2485 		}
   2486 		/*
   2487 		 * Remove out of band data so doesn't get presented to user.
   2488 		 * This can happen independent of advancing the URG pointer,
   2489 		 * but if two URG's are pending at once, some out-of-band
   2490 		 * data may creep in... ick.
   2491 		 */
   2492 		if (th->th_urp <= (u_int16_t) tlen
   2493 #ifdef SO_OOBINLINE
   2494 		     && (so->so_options & SO_OOBINLINE) == 0
   2495 #endif
   2496 		     )
   2497 			tcp_pulloutofband(so, th, m, hdroptlen);
   2498 	} else
   2499 		/*
   2500 		 * If no out of band data is expected,
   2501 		 * pull receive urgent pointer along
   2502 		 * with the receive window.
   2503 		 */
   2504 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2505 			tp->rcv_up = tp->rcv_nxt;
   2506 dodata:							/* XXX */
   2507 
   2508 	/*
   2509 	 * Process the segment text, merging it into the TCP sequencing queue,
   2510 	 * and arranging for acknowledgement of receipt if necessary.
   2511 	 * This process logically involves adjusting tp->rcv_wnd as data
   2512 	 * is presented to the user (this happens in tcp_usrreq.c,
   2513 	 * case PRU_RCVD).  If a FIN has already been received on this
   2514 	 * connection then we just ignore the text.
   2515 	 */
   2516 	if ((tlen || (tiflags & TH_FIN)) &&
   2517 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2518 		/*
   2519 		 * Insert segment ti into reassembly queue of tcp with
   2520 		 * control block tp.  Return TH_FIN if reassembly now includes
   2521 		 * a segment with FIN.  The macro form does the common case
   2522 		 * inline (segment is the next to be received on an
   2523 		 * established connection, and the queue is empty),
   2524 		 * avoiding linkage into and removal from the queue and
   2525 		 * repetition of various conversions.
   2526 		 * Set DELACK for segments received in order, but ack
   2527 		 * immediately when segments are out of order
   2528 		 * (so fast retransmit can work).
   2529 		 */
   2530 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2531 		TCP_REASS_LOCK(tp);
   2532 		if (th->th_seq == tp->rcv_nxt &&
   2533 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2534 		    tp->t_state == TCPS_ESTABLISHED) {
   2535 			TCP_SETUP_ACK(tp, th);
   2536 			tp->rcv_nxt += tlen;
   2537 			tiflags = th->th_flags & TH_FIN;
   2538 			tcpstat.tcps_rcvpack++;
   2539 			tcpstat.tcps_rcvbyte += tlen;
   2540 			ND6_HINT(tp);
   2541 			if (so->so_state & SS_CANTRCVMORE)
   2542 				m_freem(m);
   2543 			else {
   2544 				m_adj(m, hdroptlen);
   2545 				sbappendstream(&(so)->so_rcv, m);
   2546 			}
   2547 			sorwakeup(so);
   2548 		} else {
   2549 			m_adj(m, hdroptlen);
   2550 			tiflags = tcp_reass(tp, th, m, &tlen);
   2551 			tp->t_flags |= TF_ACKNOW;
   2552 		}
   2553 		TCP_REASS_UNLOCK(tp);
   2554 
   2555 		/*
   2556 		 * Note the amount of data that peer has sent into
   2557 		 * our window, in order to estimate the sender's
   2558 		 * buffer size.
   2559 		 */
   2560 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2561 	} else {
   2562 		m_freem(m);
   2563 		m = NULL;
   2564 		tiflags &= ~TH_FIN;
   2565 	}
   2566 
   2567 	/*
   2568 	 * If FIN is received ACK the FIN and let the user know
   2569 	 * that the connection is closing.  Ignore a FIN received before
   2570 	 * the connection is fully established.
   2571 	 */
   2572 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2573 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2574 			socantrcvmore(so);
   2575 			tp->t_flags |= TF_ACKNOW;
   2576 			tp->rcv_nxt++;
   2577 		}
   2578 		switch (tp->t_state) {
   2579 
   2580 	 	/*
   2581 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2582 		 */
   2583 		case TCPS_ESTABLISHED:
   2584 			tp->t_state = TCPS_CLOSE_WAIT;
   2585 			break;
   2586 
   2587 	 	/*
   2588 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2589 		 * enter the CLOSING state.
   2590 		 */
   2591 		case TCPS_FIN_WAIT_1:
   2592 			tp->t_state = TCPS_CLOSING;
   2593 			break;
   2594 
   2595 	 	/*
   2596 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2597 		 * starting the time-wait timer, turning off the other
   2598 		 * standard timers.
   2599 		 */
   2600 		case TCPS_FIN_WAIT_2:
   2601 			tp->t_state = TCPS_TIME_WAIT;
   2602 			tcp_canceltimers(tp);
   2603 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2604 			soisdisconnected(so);
   2605 			break;
   2606 
   2607 		/*
   2608 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2609 		 */
   2610 		case TCPS_TIME_WAIT:
   2611 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2612 			break;
   2613 		}
   2614 	}
   2615 #ifdef TCP_DEBUG
   2616 	if (so->so_options & SO_DEBUG)
   2617 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2618 #endif
   2619 
   2620 	/*
   2621 	 * Return any desired output.
   2622 	 */
   2623 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2624 		(void) tcp_output(tp);
   2625 	}
   2626 	if (tcp_saveti)
   2627 		m_freem(tcp_saveti);
   2628 	return;
   2629 
   2630 badsyn:
   2631 	/*
   2632 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2633 	 */
   2634 	tcpstat.tcps_badsyn++;
   2635 	tp = NULL;
   2636 	goto dropwithreset;
   2637 
   2638 dropafterack:
   2639 	/*
   2640 	 * Generate an ACK dropping incoming segment if it occupies
   2641 	 * sequence space, where the ACK reflects our state.
   2642 	 */
   2643 	if (tiflags & TH_RST)
   2644 		goto drop;
   2645 	goto dropafterack2;
   2646 
   2647 dropafterack_ratelim:
   2648 	/*
   2649 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2650 	 */
   2651 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2652 	    tcp_ackdrop_ppslim) == 0) {
   2653 		/* XXX stat */
   2654 		goto drop;
   2655 	}
   2656 	/* ...fall into dropafterack2... */
   2657 
   2658 dropafterack2:
   2659 	m_freem(m);
   2660 	tp->t_flags |= TF_ACKNOW;
   2661 	(void) tcp_output(tp);
   2662 	if (tcp_saveti)
   2663 		m_freem(tcp_saveti);
   2664 	return;
   2665 
   2666 dropwithreset_ratelim:
   2667 	/*
   2668 	 * We may want to rate-limit RSTs in certain situations,
   2669 	 * particularly if we are sending an RST in response to
   2670 	 * an attempt to connect to or otherwise communicate with
   2671 	 * a port for which we have no socket.
   2672 	 */
   2673 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2674 	    tcp_rst_ppslim) == 0) {
   2675 		/* XXX stat */
   2676 		goto drop;
   2677 	}
   2678 	/* ...fall into dropwithreset... */
   2679 
   2680 dropwithreset:
   2681 	/*
   2682 	 * Generate a RST, dropping incoming segment.
   2683 	 * Make ACK acceptable to originator of segment.
   2684 	 */
   2685 	if (tiflags & TH_RST)
   2686 		goto drop;
   2687 
   2688 	switch (af) {
   2689 #ifdef INET6
   2690 	case AF_INET6:
   2691 		/* For following calls to tcp_respond */
   2692 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2693 			goto drop;
   2694 		break;
   2695 #endif /* INET6 */
   2696 	case AF_INET:
   2697 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2698 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2699 			goto drop;
   2700 	}
   2701 
   2702 	if (tiflags & TH_ACK)
   2703 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2704 	else {
   2705 		if (tiflags & TH_SYN)
   2706 			tlen++;
   2707 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2708 		    TH_RST|TH_ACK);
   2709 	}
   2710 	if (tcp_saveti)
   2711 		m_freem(tcp_saveti);
   2712 	return;
   2713 
   2714 badcsum:
   2715 drop:
   2716 	/*
   2717 	 * Drop space held by incoming segment and return.
   2718 	 */
   2719 	if (tp) {
   2720 		if (tp->t_inpcb)
   2721 			so = tp->t_inpcb->inp_socket;
   2722 #ifdef INET6
   2723 		else if (tp->t_in6pcb)
   2724 			so = tp->t_in6pcb->in6p_socket;
   2725 #endif
   2726 		else
   2727 			so = NULL;
   2728 #ifdef TCP_DEBUG
   2729 		if (so && (so->so_options & SO_DEBUG) != 0)
   2730 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2731 #endif
   2732 	}
   2733 	if (tcp_saveti)
   2734 		m_freem(tcp_saveti);
   2735 	m_freem(m);
   2736 	return;
   2737 }
   2738 
   2739 #ifdef TCP_SIGNATURE
   2740 int
   2741 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
   2742 {
   2743 
   2744 	MD5Update(fstate, (u_char *)data, len);
   2745 	return (0);
   2746 }
   2747 
   2748 struct secasvar *
   2749 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   2750 {
   2751 	struct secasvar *sav;
   2752 #ifdef FAST_IPSEC
   2753 	union sockaddr_union dst;
   2754 #endif
   2755 	struct ip *ip;
   2756 	struct ip6_hdr *ip6;
   2757 
   2758 	ip = mtod(m, struct ip *);
   2759 	switch (ip->ip_v) {
   2760 	case 4:
   2761 		ip = mtod(m, struct ip *);
   2762 		ip6 = NULL;
   2763 		break;
   2764 	case 6:
   2765 		ip = NULL;
   2766 		ip6 = mtod(m, struct ip6_hdr *);
   2767 		break;
   2768 	default:
   2769 		return (NULL);
   2770 	}
   2771 
   2772 #ifdef FAST_IPSEC
   2773 	/* Extract the destination from the IP header in the mbuf. */
   2774 	bzero(&dst, sizeof(union sockaddr_union));
   2775 	dst.sa.sa_len = sizeof(struct sockaddr_in);
   2776 	dst.sa.sa_family = AF_INET;
   2777 	dst.sin.sin_addr = ip->ip_dst;
   2778 
   2779 	/*
   2780 	 * Look up an SADB entry which matches the address of the peer.
   2781 	 */
   2782 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   2783 #else
   2784 	if (ip)
   2785 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
   2786 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
   2787 		    htonl(TCP_SIG_SPI), 0, 0);
   2788 	else
   2789 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
   2790 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
   2791 		    htonl(TCP_SIG_SPI), 0, 0);
   2792 #endif
   2793 
   2794 	return (sav);	/* freesav must be performed by caller */
   2795 }
   2796 
   2797 int
   2798 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   2799     struct secasvar *sav, char *sig)
   2800 {
   2801 	MD5_CTX ctx;
   2802 	struct ip *ip;
   2803 	struct ipovly *ipovly;
   2804 	struct ip6_hdr *ip6;
   2805 	struct ippseudo ippseudo;
   2806 	struct ip6_hdr_pseudo ip6pseudo;
   2807 	struct tcphdr th0;
   2808 	int l, tcphdrlen;
   2809 
   2810 	if (sav == NULL)
   2811 		return (-1);
   2812 
   2813 	tcphdrlen = th->th_off * 4;
   2814 
   2815 	switch (mtod(m, struct ip *)->ip_v) {
   2816 	case 4:
   2817 		ip = mtod(m, struct ip *);
   2818 		ip6 = NULL;
   2819 		break;
   2820 	case 6:
   2821 		ip = NULL;
   2822 		ip6 = mtod(m, struct ip6_hdr *);
   2823 		break;
   2824 	default:
   2825 		return (-1);
   2826 	}
   2827 
   2828 	MD5Init(&ctx);
   2829 
   2830 	if (ip) {
   2831 		memset(&ippseudo, 0, sizeof(ippseudo));
   2832 		ipovly = (struct ipovly *)ip;
   2833 		ippseudo.ippseudo_src = ipovly->ih_src;
   2834 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   2835 		ippseudo.ippseudo_pad = 0;
   2836 		ippseudo.ippseudo_p = IPPROTO_TCP;
   2837 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   2838 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   2839 	} else {
   2840 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   2841 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   2842 		in6_clearscope(&ip6pseudo.ip6ph_src);
   2843 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   2844 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   2845 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   2846 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   2847 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   2848 	}
   2849 
   2850 	th0 = *th;
   2851 	th0.th_sum = 0;
   2852 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   2853 
   2854 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   2855 	if (l > 0)
   2856 		m_apply(m, thoff + tcphdrlen,
   2857 		    m->m_pkthdr.len - thoff - tcphdrlen,
   2858 		    tcp_signature_apply, &ctx);
   2859 
   2860 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   2861 	MD5Final(sig, &ctx);
   2862 
   2863 	return (0);
   2864 }
   2865 #endif
   2866 
   2867 int
   2868 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
   2869     struct mbuf *m __unused, int toff __unused, struct tcp_opt_info *oi)
   2870 {
   2871 	u_int16_t mss;
   2872 	int opt, optlen = 0;
   2873 #ifdef TCP_SIGNATURE
   2874 	caddr_t sigp = NULL;
   2875 	char sigbuf[TCP_SIGLEN];
   2876 	struct secasvar *sav = NULL;
   2877 #endif
   2878 
   2879 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   2880 		opt = cp[0];
   2881 		if (opt == TCPOPT_EOL)
   2882 			break;
   2883 		if (opt == TCPOPT_NOP)
   2884 			optlen = 1;
   2885 		else {
   2886 			if (cnt < 2)
   2887 				break;
   2888 			optlen = cp[1];
   2889 			if (optlen < 2 || optlen > cnt)
   2890 				break;
   2891 		}
   2892 		switch (opt) {
   2893 
   2894 		default:
   2895 			continue;
   2896 
   2897 		case TCPOPT_MAXSEG:
   2898 			if (optlen != TCPOLEN_MAXSEG)
   2899 				continue;
   2900 			if (!(th->th_flags & TH_SYN))
   2901 				continue;
   2902 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2903 				continue;
   2904 			bcopy(cp + 2, &mss, sizeof(mss));
   2905 			oi->maxseg = ntohs(mss);
   2906 			break;
   2907 
   2908 		case TCPOPT_WINDOW:
   2909 			if (optlen != TCPOLEN_WINDOW)
   2910 				continue;
   2911 			if (!(th->th_flags & TH_SYN))
   2912 				continue;
   2913 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2914 				continue;
   2915 			tp->t_flags |= TF_RCVD_SCALE;
   2916 			tp->requested_s_scale = cp[2];
   2917 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2918 #if 0	/*XXX*/
   2919 				char *p;
   2920 
   2921 				if (ip)
   2922 					p = ntohl(ip->ip_src);
   2923 #ifdef INET6
   2924 				else if (ip6)
   2925 					p = ip6_sprintf(&ip6->ip6_src);
   2926 #endif
   2927 				else
   2928 					p = "(unknown)";
   2929 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2930 				    "assuming %d\n",
   2931 				    tp->requested_s_scale, p,
   2932 				    TCP_MAX_WINSHIFT);
   2933 #else
   2934 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2935 				    "assuming %d\n",
   2936 				    tp->requested_s_scale,
   2937 				    TCP_MAX_WINSHIFT);
   2938 #endif
   2939 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2940 			}
   2941 			break;
   2942 
   2943 		case TCPOPT_TIMESTAMP:
   2944 			if (optlen != TCPOLEN_TIMESTAMP)
   2945 				continue;
   2946 			oi->ts_present = 1;
   2947 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2948 			NTOHL(oi->ts_val);
   2949 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2950 			NTOHL(oi->ts_ecr);
   2951 
   2952 			if (!(th->th_flags & TH_SYN))
   2953 				continue;
   2954 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2955 				continue;
   2956 			/*
   2957 			 * A timestamp received in a SYN makes
   2958 			 * it ok to send timestamp requests and replies.
   2959 			 */
   2960 			tp->t_flags |= TF_RCVD_TSTMP;
   2961 			tp->ts_recent = oi->ts_val;
   2962 			tp->ts_recent_age = tcp_now;
   2963                         break;
   2964 
   2965 		case TCPOPT_SACK_PERMITTED:
   2966 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2967 				continue;
   2968 			if (!(th->th_flags & TH_SYN))
   2969 				continue;
   2970 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2971 				continue;
   2972 			if (tcp_do_sack) {
   2973 				tp->t_flags |= TF_SACK_PERMIT;
   2974 				tp->t_flags |= TF_WILL_SACK;
   2975 			}
   2976 			break;
   2977 
   2978 		case TCPOPT_SACK:
   2979 			tcp_sack_option(tp, th, cp, optlen);
   2980 			break;
   2981 #ifdef TCP_SIGNATURE
   2982 		case TCPOPT_SIGNATURE:
   2983 			if (optlen != TCPOLEN_SIGNATURE)
   2984 				continue;
   2985 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
   2986 				return (-1);
   2987 
   2988 			sigp = sigbuf;
   2989 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   2990 			memset(cp + 2, 0, TCP_SIGLEN);
   2991 			tp->t_flags |= TF_SIGNATURE;
   2992 			break;
   2993 #endif
   2994 		}
   2995 	}
   2996 
   2997 #ifdef TCP_SIGNATURE
   2998 	if (tp->t_flags & TF_SIGNATURE) {
   2999 
   3000 		sav = tcp_signature_getsav(m, th);
   3001 
   3002 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3003 			return (-1);
   3004 	}
   3005 
   3006 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   3007 		if (sav == NULL)
   3008 			return (-1);
   3009 #ifdef FAST_IPSEC
   3010 		KEY_FREESAV(&sav);
   3011 #else
   3012 		key_freesav(sav);
   3013 #endif
   3014 		return (-1);
   3015 	}
   3016 
   3017 	if (sigp) {
   3018 		char sig[TCP_SIGLEN];
   3019 
   3020 		TCP_FIELDS_TO_NET(th);
   3021 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3022 			TCP_FIELDS_TO_HOST(th);
   3023 			if (sav == NULL)
   3024 				return (-1);
   3025 #ifdef FAST_IPSEC
   3026 			KEY_FREESAV(&sav);
   3027 #else
   3028 			key_freesav(sav);
   3029 #endif
   3030 			return (-1);
   3031 		}
   3032 		TCP_FIELDS_TO_HOST(th);
   3033 
   3034 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
   3035 			tcpstat.tcps_badsig++;
   3036 			if (sav == NULL)
   3037 				return (-1);
   3038 #ifdef FAST_IPSEC
   3039 			KEY_FREESAV(&sav);
   3040 #else
   3041 			key_freesav(sav);
   3042 #endif
   3043 			return (-1);
   3044 		} else
   3045 			tcpstat.tcps_goodsig++;
   3046 
   3047 		key_sa_recordxfer(sav, m);
   3048 #ifdef FAST_IPSEC
   3049 		KEY_FREESAV(&sav);
   3050 #else
   3051 		key_freesav(sav);
   3052 #endif
   3053 	}
   3054 #endif
   3055 
   3056 	return (0);
   3057 }
   3058 
   3059 /*
   3060  * Pull out of band byte out of a segment so
   3061  * it doesn't appear in the user's data queue.
   3062  * It is still reflected in the segment length for
   3063  * sequencing purposes.
   3064  */
   3065 void
   3066 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3067     struct mbuf *m, int off)
   3068 {
   3069 	int cnt = off + th->th_urp - 1;
   3070 
   3071 	while (cnt >= 0) {
   3072 		if (m->m_len > cnt) {
   3073 			char *cp = mtod(m, caddr_t) + cnt;
   3074 			struct tcpcb *tp = sototcpcb(so);
   3075 
   3076 			tp->t_iobc = *cp;
   3077 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3078 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3079 			m->m_len--;
   3080 			return;
   3081 		}
   3082 		cnt -= m->m_len;
   3083 		m = m->m_next;
   3084 		if (m == 0)
   3085 			break;
   3086 	}
   3087 	panic("tcp_pulloutofband");
   3088 }
   3089 
   3090 /*
   3091  * Collect new round-trip time estimate
   3092  * and update averages and current timeout.
   3093  */
   3094 void
   3095 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3096 {
   3097 	int32_t delta;
   3098 
   3099 	tcpstat.tcps_rttupdated++;
   3100 	if (tp->t_srtt != 0) {
   3101 		/*
   3102 		 * srtt is stored as fixed point with 3 bits after the
   3103 		 * binary point (i.e., scaled by 8).  The following magic
   3104 		 * is equivalent to the smoothing algorithm in rfc793 with
   3105 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   3106 		 * point).  Adjust rtt to origin 0.
   3107 		 */
   3108 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3109 		if ((tp->t_srtt += delta) <= 0)
   3110 			tp->t_srtt = 1 << 2;
   3111 		/*
   3112 		 * We accumulate a smoothed rtt variance (actually, a
   3113 		 * smoothed mean difference), then set the retransmit
   3114 		 * timer to smoothed rtt + 4 times the smoothed variance.
   3115 		 * rttvar is stored as fixed point with 2 bits after the
   3116 		 * binary point (scaled by 4).  The following is
   3117 		 * equivalent to rfc793 smoothing with an alpha of .75
   3118 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   3119 		 * rfc793's wired-in beta.
   3120 		 */
   3121 		if (delta < 0)
   3122 			delta = -delta;
   3123 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3124 		if ((tp->t_rttvar += delta) <= 0)
   3125 			tp->t_rttvar = 1 << 2;
   3126 	} else {
   3127 		/*
   3128 		 * No rtt measurement yet - use the unsmoothed rtt.
   3129 		 * Set the variance to half the rtt (so our first
   3130 		 * retransmit happens at 3*rtt).
   3131 		 */
   3132 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3133 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3134 	}
   3135 	tp->t_rtttime = 0;
   3136 	tp->t_rxtshift = 0;
   3137 
   3138 	/*
   3139 	 * the retransmit should happen at rtt + 4 * rttvar.
   3140 	 * Because of the way we do the smoothing, srtt and rttvar
   3141 	 * will each average +1/2 tick of bias.  When we compute
   3142 	 * the retransmit timer, we want 1/2 tick of rounding and
   3143 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3144 	 * firing of the timer.  The bias will give us exactly the
   3145 	 * 1.5 tick we need.  But, because the bias is
   3146 	 * statistical, we have to test that we don't drop below
   3147 	 * the minimum feasible timer (which is 2 ticks).
   3148 	 */
   3149 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3150 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3151 
   3152 	/*
   3153 	 * We received an ack for a packet that wasn't retransmitted;
   3154 	 * it is probably safe to discard any error indications we've
   3155 	 * received recently.  This isn't quite right, but close enough
   3156 	 * for now (a route might have failed after we sent a segment,
   3157 	 * and the return path might not be symmetrical).
   3158 	 */
   3159 	tp->t_softerror = 0;
   3160 }
   3161 
   3162 
   3163 /*
   3164  * TCP compressed state engine.  Currently used to hold compressed
   3165  * state for SYN_RECEIVED.
   3166  */
   3167 
   3168 u_long	syn_cache_count;
   3169 u_int32_t syn_hash1, syn_hash2;
   3170 
   3171 #define SYN_HASH(sa, sp, dp) \
   3172 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3173 				     ((u_int32_t)(sp)))^syn_hash2)))
   3174 #ifndef INET6
   3175 #define	SYN_HASHALL(hash, src, dst) \
   3176 do {									\
   3177 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3178 		((const struct sockaddr_in *)(src))->sin_port,		\
   3179 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3180 } while (/*CONSTCOND*/ 0)
   3181 #else
   3182 #define SYN_HASH6(sa, sp, dp) \
   3183 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3184 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3185 	 & 0x7fffffff)
   3186 
   3187 #define SYN_HASHALL(hash, src, dst) \
   3188 do {									\
   3189 	switch ((src)->sa_family) {					\
   3190 	case AF_INET:							\
   3191 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3192 			((const struct sockaddr_in *)(src))->sin_port,	\
   3193 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3194 		break;							\
   3195 	case AF_INET6:							\
   3196 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3197 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3198 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3199 		break;							\
   3200 	default:							\
   3201 		hash = 0;						\
   3202 	}								\
   3203 } while (/*CONSTCOND*/0)
   3204 #endif /* INET6 */
   3205 
   3206 #define	SYN_CACHE_RM(sc)						\
   3207 do {									\
   3208 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   3209 	    (sc), sc_bucketq);						\
   3210 	(sc)->sc_tp = NULL;						\
   3211 	LIST_REMOVE((sc), sc_tpq);					\
   3212 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   3213 	callout_stop(&(sc)->sc_timer);					\
   3214 	syn_cache_count--;						\
   3215 } while (/*CONSTCOND*/0)
   3216 
   3217 #define	SYN_CACHE_PUT(sc)						\
   3218 do {									\
   3219 	if ((sc)->sc_ipopts)						\
   3220 		(void) m_free((sc)->sc_ipopts);				\
   3221 	if ((sc)->sc_route4.ro_rt != NULL)				\
   3222 		RTFREE((sc)->sc_route4.ro_rt);				\
   3223 	if (callout_invoking(&(sc)->sc_timer))				\
   3224 		(sc)->sc_flags |= SCF_DEAD;				\
   3225 	else								\
   3226 		pool_put(&syn_cache_pool, (sc));			\
   3227 } while (/*CONSTCOND*/0)
   3228 
   3229 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
   3230 
   3231 /*
   3232  * We don't estimate RTT with SYNs, so each packet starts with the default
   3233  * RTT and each timer step has a fixed timeout value.
   3234  */
   3235 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3236 do {									\
   3237 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3238 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3239 	    TCPTV_REXMTMAX);						\
   3240 	callout_reset(&(sc)->sc_timer,					\
   3241 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3242 } while (/*CONSTCOND*/0)
   3243 
   3244 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3245 
   3246 void
   3247 syn_cache_init(void)
   3248 {
   3249 	int i;
   3250 
   3251 	/* Initialize the hash buckets. */
   3252 	for (i = 0; i < tcp_syn_cache_size; i++)
   3253 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3254 }
   3255 
   3256 void
   3257 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3258 {
   3259 	struct syn_cache_head *scp;
   3260 	struct syn_cache *sc2;
   3261 	int s;
   3262 
   3263 	/*
   3264 	 * If there are no entries in the hash table, reinitialize
   3265 	 * the hash secrets.
   3266 	 */
   3267 	if (syn_cache_count == 0) {
   3268 		syn_hash1 = arc4random();
   3269 		syn_hash2 = arc4random();
   3270 	}
   3271 
   3272 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3273 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3274 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3275 
   3276 	/*
   3277 	 * Make sure that we don't overflow the per-bucket
   3278 	 * limit or the total cache size limit.
   3279 	 */
   3280 	s = splsoftnet();
   3281 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3282 		tcpstat.tcps_sc_bucketoverflow++;
   3283 		/*
   3284 		 * The bucket is full.  Toss the oldest element in the
   3285 		 * bucket.  This will be the first entry in the bucket.
   3286 		 */
   3287 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3288 #ifdef DIAGNOSTIC
   3289 		/*
   3290 		 * This should never happen; we should always find an
   3291 		 * entry in our bucket.
   3292 		 */
   3293 		if (sc2 == NULL)
   3294 			panic("syn_cache_insert: bucketoverflow: impossible");
   3295 #endif
   3296 		SYN_CACHE_RM(sc2);
   3297 		SYN_CACHE_PUT(sc2);	/* calls pool_put but see spl above */
   3298 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3299 		struct syn_cache_head *scp2, *sce;
   3300 
   3301 		tcpstat.tcps_sc_overflowed++;
   3302 		/*
   3303 		 * The cache is full.  Toss the oldest entry in the
   3304 		 * first non-empty bucket we can find.
   3305 		 *
   3306 		 * XXX We would really like to toss the oldest
   3307 		 * entry in the cache, but we hope that this
   3308 		 * condition doesn't happen very often.
   3309 		 */
   3310 		scp2 = scp;
   3311 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3312 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3313 			for (++scp2; scp2 != scp; scp2++) {
   3314 				if (scp2 >= sce)
   3315 					scp2 = &tcp_syn_cache[0];
   3316 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3317 					break;
   3318 			}
   3319 #ifdef DIAGNOSTIC
   3320 			/*
   3321 			 * This should never happen; we should always find a
   3322 			 * non-empty bucket.
   3323 			 */
   3324 			if (scp2 == scp)
   3325 				panic("syn_cache_insert: cacheoverflow: "
   3326 				    "impossible");
   3327 #endif
   3328 		}
   3329 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3330 		SYN_CACHE_RM(sc2);
   3331 		SYN_CACHE_PUT(sc2);	/* calls pool_put but see spl above */
   3332 	}
   3333 
   3334 	/*
   3335 	 * Initialize the entry's timer.
   3336 	 */
   3337 	sc->sc_rxttot = 0;
   3338 	sc->sc_rxtshift = 0;
   3339 	SYN_CACHE_TIMER_ARM(sc);
   3340 
   3341 	/* Link it from tcpcb entry */
   3342 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3343 
   3344 	/* Put it into the bucket. */
   3345 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3346 	scp->sch_length++;
   3347 	syn_cache_count++;
   3348 
   3349 	tcpstat.tcps_sc_added++;
   3350 	splx(s);
   3351 }
   3352 
   3353 /*
   3354  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3355  * If we have retransmitted an entry the maximum number of times, expire
   3356  * that entry.
   3357  */
   3358 void
   3359 syn_cache_timer(void *arg)
   3360 {
   3361 	struct syn_cache *sc = arg;
   3362 	int s;
   3363 
   3364 	s = splsoftnet();
   3365 	callout_ack(&sc->sc_timer);
   3366 
   3367 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3368 		tcpstat.tcps_sc_delayed_free++;
   3369 		pool_put(&syn_cache_pool, sc);
   3370 		splx(s);
   3371 		return;
   3372 	}
   3373 
   3374 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3375 		/* Drop it -- too many retransmissions. */
   3376 		goto dropit;
   3377 	}
   3378 
   3379 	/*
   3380 	 * Compute the total amount of time this entry has
   3381 	 * been on a queue.  If this entry has been on longer
   3382 	 * than the keep alive timer would allow, expire it.
   3383 	 */
   3384 	sc->sc_rxttot += sc->sc_rxtcur;
   3385 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   3386 		goto dropit;
   3387 
   3388 	tcpstat.tcps_sc_retransmitted++;
   3389 	(void) syn_cache_respond(sc, NULL);
   3390 
   3391 	/* Advance the timer back-off. */
   3392 	sc->sc_rxtshift++;
   3393 	SYN_CACHE_TIMER_ARM(sc);
   3394 
   3395 	splx(s);
   3396 	return;
   3397 
   3398  dropit:
   3399 	tcpstat.tcps_sc_timed_out++;
   3400 	SYN_CACHE_RM(sc);
   3401 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3402 	splx(s);
   3403 }
   3404 
   3405 /*
   3406  * Remove syn cache created by the specified tcb entry,
   3407  * because this does not make sense to keep them
   3408  * (if there's no tcb entry, syn cache entry will never be used)
   3409  */
   3410 void
   3411 syn_cache_cleanup(struct tcpcb *tp)
   3412 {
   3413 	struct syn_cache *sc, *nsc;
   3414 	int s;
   3415 
   3416 	s = splsoftnet();
   3417 
   3418 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3419 		nsc = LIST_NEXT(sc, sc_tpq);
   3420 
   3421 #ifdef DIAGNOSTIC
   3422 		if (sc->sc_tp != tp)
   3423 			panic("invalid sc_tp in syn_cache_cleanup");
   3424 #endif
   3425 		SYN_CACHE_RM(sc);
   3426 		SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3427 	}
   3428 	/* just for safety */
   3429 	LIST_INIT(&tp->t_sc);
   3430 
   3431 	splx(s);
   3432 }
   3433 
   3434 /*
   3435  * Find an entry in the syn cache.
   3436  */
   3437 struct syn_cache *
   3438 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3439     struct syn_cache_head **headp)
   3440 {
   3441 	struct syn_cache *sc;
   3442 	struct syn_cache_head *scp;
   3443 	u_int32_t hash;
   3444 	int s;
   3445 
   3446 	SYN_HASHALL(hash, src, dst);
   3447 
   3448 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3449 	*headp = scp;
   3450 	s = splsoftnet();
   3451 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3452 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3453 		if (sc->sc_hash != hash)
   3454 			continue;
   3455 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3456 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3457 			splx(s);
   3458 			return (sc);
   3459 		}
   3460 	}
   3461 	splx(s);
   3462 	return (NULL);
   3463 }
   3464 
   3465 /*
   3466  * This function gets called when we receive an ACK for a
   3467  * socket in the LISTEN state.  We look up the connection
   3468  * in the syn cache, and if its there, we pull it out of
   3469  * the cache and turn it into a full-blown connection in
   3470  * the SYN-RECEIVED state.
   3471  *
   3472  * The return values may not be immediately obvious, and their effects
   3473  * can be subtle, so here they are:
   3474  *
   3475  *	NULL	SYN was not found in cache; caller should drop the
   3476  *		packet and send an RST.
   3477  *
   3478  *	-1	We were unable to create the new connection, and are
   3479  *		aborting it.  An ACK,RST is being sent to the peer
   3480  *		(unless we got screwey sequence numbners; see below),
   3481  *		because the 3-way handshake has been completed.  Caller
   3482  *		should not free the mbuf, since we may be using it.  If
   3483  *		we are not, we will free it.
   3484  *
   3485  *	Otherwise, the return value is a pointer to the new socket
   3486  *	associated with the connection.
   3487  */
   3488 struct socket *
   3489 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3490     struct tcphdr *th, unsigned int hlen __unused, unsigned int tlen __unused,
   3491     struct socket *so, struct mbuf *m)
   3492 {
   3493 	struct syn_cache *sc;
   3494 	struct syn_cache_head *scp;
   3495 	struct inpcb *inp = NULL;
   3496 #ifdef INET6
   3497 	struct in6pcb *in6p = NULL;
   3498 #endif
   3499 	struct tcpcb *tp = 0;
   3500 	struct mbuf *am;
   3501 	int s;
   3502 	struct socket *oso;
   3503 
   3504 	s = splsoftnet();
   3505 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3506 		splx(s);
   3507 		return (NULL);
   3508 	}
   3509 
   3510 	/*
   3511 	 * Verify the sequence and ack numbers.  Try getting the correct
   3512 	 * response again.
   3513 	 */
   3514 	if ((th->th_ack != sc->sc_iss + 1) ||
   3515 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3516 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3517 		(void) syn_cache_respond(sc, m);
   3518 		splx(s);
   3519 		return ((struct socket *)(-1));
   3520 	}
   3521 
   3522 	/* Remove this cache entry */
   3523 	SYN_CACHE_RM(sc);
   3524 	splx(s);
   3525 
   3526 	/*
   3527 	 * Ok, create the full blown connection, and set things up
   3528 	 * as they would have been set up if we had created the
   3529 	 * connection when the SYN arrived.  If we can't create
   3530 	 * the connection, abort it.
   3531 	 */
   3532 	/*
   3533 	 * inp still has the OLD in_pcb stuff, set the
   3534 	 * v6-related flags on the new guy, too.   This is
   3535 	 * done particularly for the case where an AF_INET6
   3536 	 * socket is bound only to a port, and a v4 connection
   3537 	 * comes in on that port.
   3538 	 * we also copy the flowinfo from the original pcb
   3539 	 * to the new one.
   3540 	 */
   3541 	oso = so;
   3542 	so = sonewconn(so, SS_ISCONNECTED);
   3543 	if (so == NULL)
   3544 		goto resetandabort;
   3545 
   3546 	switch (so->so_proto->pr_domain->dom_family) {
   3547 #ifdef INET
   3548 	case AF_INET:
   3549 		inp = sotoinpcb(so);
   3550 		break;
   3551 #endif
   3552 #ifdef INET6
   3553 	case AF_INET6:
   3554 		in6p = sotoin6pcb(so);
   3555 		break;
   3556 #endif
   3557 	}
   3558 	switch (src->sa_family) {
   3559 #ifdef INET
   3560 	case AF_INET:
   3561 		if (inp) {
   3562 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3563 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3564 			inp->inp_options = ip_srcroute();
   3565 			in_pcbstate(inp, INP_BOUND);
   3566 			if (inp->inp_options == NULL) {
   3567 				inp->inp_options = sc->sc_ipopts;
   3568 				sc->sc_ipopts = NULL;
   3569 			}
   3570 		}
   3571 #ifdef INET6
   3572 		else if (in6p) {
   3573 			/* IPv4 packet to AF_INET6 socket */
   3574 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3575 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3576 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3577 				&in6p->in6p_laddr.s6_addr32[3],
   3578 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3579 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3580 			in6totcpcb(in6p)->t_family = AF_INET;
   3581 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3582 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3583 			else
   3584 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3585 			in6_pcbstate(in6p, IN6P_BOUND);
   3586 		}
   3587 #endif
   3588 		break;
   3589 #endif
   3590 #ifdef INET6
   3591 	case AF_INET6:
   3592 		if (in6p) {
   3593 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3594 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3595 			in6_pcbstate(in6p, IN6P_BOUND);
   3596 		}
   3597 		break;
   3598 #endif
   3599 	}
   3600 #ifdef INET6
   3601 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3602 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3603 		/* inherit socket options from the listening socket */
   3604 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3605 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3606 			m_freem(in6p->in6p_options);
   3607 			in6p->in6p_options = 0;
   3608 		}
   3609 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3610 			mtod(m, struct ip6_hdr *), m);
   3611 	}
   3612 #endif
   3613 
   3614 #if defined(IPSEC) || defined(FAST_IPSEC)
   3615 	/*
   3616 	 * we make a copy of policy, instead of sharing the policy,
   3617 	 * for better behavior in terms of SA lookup and dead SA removal.
   3618 	 */
   3619 	if (inp) {
   3620 		/* copy old policy into new socket's */
   3621 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3622 			printf("tcp_input: could not copy policy\n");
   3623 	}
   3624 #ifdef INET6
   3625 	else if (in6p) {
   3626 		/* copy old policy into new socket's */
   3627 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3628 		    in6p->in6p_sp))
   3629 			printf("tcp_input: could not copy policy\n");
   3630 	}
   3631 #endif
   3632 #endif
   3633 
   3634 	/*
   3635 	 * Give the new socket our cached route reference.
   3636 	 */
   3637 	if (inp)
   3638 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3639 #ifdef INET6
   3640 	else
   3641 		in6p->in6p_route = sc->sc_route6;
   3642 #endif
   3643 	sc->sc_route4.ro_rt = NULL;
   3644 
   3645 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3646 	if (am == NULL)
   3647 		goto resetandabort;
   3648 	MCLAIM(am, &tcp_mowner);
   3649 	am->m_len = src->sa_len;
   3650 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3651 	if (inp) {
   3652 		if (in_pcbconnect(inp, am, NULL)) {
   3653 			(void) m_free(am);
   3654 			goto resetandabort;
   3655 		}
   3656 	}
   3657 #ifdef INET6
   3658 	else if (in6p) {
   3659 		if (src->sa_family == AF_INET) {
   3660 			/* IPv4 packet to AF_INET6 socket */
   3661 			struct sockaddr_in6 *sin6;
   3662 			sin6 = mtod(am, struct sockaddr_in6 *);
   3663 			am->m_len = sizeof(*sin6);
   3664 			bzero(sin6, sizeof(*sin6));
   3665 			sin6->sin6_family = AF_INET6;
   3666 			sin6->sin6_len = sizeof(*sin6);
   3667 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3668 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3669 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3670 				&sin6->sin6_addr.s6_addr32[3],
   3671 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3672 		}
   3673 		if (in6_pcbconnect(in6p, am, NULL)) {
   3674 			(void) m_free(am);
   3675 			goto resetandabort;
   3676 		}
   3677 	}
   3678 #endif
   3679 	else {
   3680 		(void) m_free(am);
   3681 		goto resetandabort;
   3682 	}
   3683 	(void) m_free(am);
   3684 
   3685 	if (inp)
   3686 		tp = intotcpcb(inp);
   3687 #ifdef INET6
   3688 	else if (in6p)
   3689 		tp = in6totcpcb(in6p);
   3690 #endif
   3691 	else
   3692 		tp = NULL;
   3693 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3694 	if (sc->sc_request_r_scale != 15) {
   3695 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3696 		tp->request_r_scale = sc->sc_request_r_scale;
   3697 		tp->snd_scale = sc->sc_requested_s_scale;
   3698 		tp->rcv_scale = sc->sc_request_r_scale;
   3699 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3700 	}
   3701 	if (sc->sc_flags & SCF_TIMESTAMP)
   3702 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3703 	tp->ts_timebase = sc->sc_timebase;
   3704 
   3705 	tp->t_template = tcp_template(tp);
   3706 	if (tp->t_template == 0) {
   3707 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3708 		so = NULL;
   3709 		m_freem(m);
   3710 		goto abort;
   3711 	}
   3712 
   3713 	tp->iss = sc->sc_iss;
   3714 	tp->irs = sc->sc_irs;
   3715 	tcp_sendseqinit(tp);
   3716 	tcp_rcvseqinit(tp);
   3717 	tp->t_state = TCPS_SYN_RECEIVED;
   3718 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3719 	tcpstat.tcps_accepts++;
   3720 
   3721 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3722 		tp->t_flags |= TF_WILL_SACK;
   3723 
   3724 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   3725 		tp->t_flags |= TF_ECN_PERMIT;
   3726 
   3727 #ifdef TCP_SIGNATURE
   3728 	if (sc->sc_flags & SCF_SIGNATURE)
   3729 		tp->t_flags |= TF_SIGNATURE;
   3730 #endif
   3731 
   3732 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3733 	tp->t_ourmss = sc->sc_ourmaxseg;
   3734 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3735 
   3736 	/*
   3737 	 * Initialize the initial congestion window.  If we
   3738 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3739 	 * to 1 segment (i.e. the Loss Window).
   3740 	 */
   3741 	if (sc->sc_rxtshift)
   3742 		tp->snd_cwnd = tp->t_peermss;
   3743 	else {
   3744 		int ss = tcp_init_win;
   3745 #ifdef INET
   3746 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3747 			ss = tcp_init_win_local;
   3748 #endif
   3749 #ifdef INET6
   3750 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3751 			ss = tcp_init_win_local;
   3752 #endif
   3753 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3754 	}
   3755 
   3756 	tcp_rmx_rtt(tp);
   3757 	tp->snd_wl1 = sc->sc_irs;
   3758 	tp->rcv_up = sc->sc_irs + 1;
   3759 
   3760 	/*
   3761 	 * This is what whould have happened in tcp_output() when
   3762 	 * the SYN,ACK was sent.
   3763 	 */
   3764 	tp->snd_up = tp->snd_una;
   3765 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3766 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3767 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3768 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3769 	tp->last_ack_sent = tp->rcv_nxt;
   3770 	tp->t_partialacks = -1;
   3771 	tp->t_dupacks = 0;
   3772 
   3773 	tcpstat.tcps_sc_completed++;
   3774 	s = splsoftnet();
   3775 	SYN_CACHE_PUT(sc);
   3776 	splx(s);
   3777 	return (so);
   3778 
   3779 resetandabort:
   3780 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3781 abort:
   3782 	if (so != NULL)
   3783 		(void) soabort(so);
   3784 	s = splsoftnet();
   3785 	SYN_CACHE_PUT(sc);
   3786 	splx(s);
   3787 	tcpstat.tcps_sc_aborted++;
   3788 	return ((struct socket *)(-1));
   3789 }
   3790 
   3791 /*
   3792  * This function is called when we get a RST for a
   3793  * non-existent connection, so that we can see if the
   3794  * connection is in the syn cache.  If it is, zap it.
   3795  */
   3796 
   3797 void
   3798 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   3799 {
   3800 	struct syn_cache *sc;
   3801 	struct syn_cache_head *scp;
   3802 	int s = splsoftnet();
   3803 
   3804 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3805 		splx(s);
   3806 		return;
   3807 	}
   3808 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3809 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3810 		splx(s);
   3811 		return;
   3812 	}
   3813 	SYN_CACHE_RM(sc);
   3814 	tcpstat.tcps_sc_reset++;
   3815 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3816 	splx(s);
   3817 }
   3818 
   3819 void
   3820 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   3821     struct tcphdr *th)
   3822 {
   3823 	struct syn_cache *sc;
   3824 	struct syn_cache_head *scp;
   3825 	int s;
   3826 
   3827 	s = splsoftnet();
   3828 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3829 		splx(s);
   3830 		return;
   3831 	}
   3832 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3833 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3834 		splx(s);
   3835 		return;
   3836 	}
   3837 
   3838 	/*
   3839 	 * If we've retransmitted 3 times and this is our second error,
   3840 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3841 	 * This prevents us from incorrectly nuking an entry during a
   3842 	 * spurious network outage.
   3843 	 *
   3844 	 * See tcp_notify().
   3845 	 */
   3846 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3847 		sc->sc_flags |= SCF_UNREACH;
   3848 		splx(s);
   3849 		return;
   3850 	}
   3851 
   3852 	SYN_CACHE_RM(sc);
   3853 	tcpstat.tcps_sc_unreach++;
   3854 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3855 	splx(s);
   3856 }
   3857 
   3858 /*
   3859  * Given a LISTEN socket and an inbound SYN request, add
   3860  * this to the syn cache, and send back a segment:
   3861  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3862  * to the source.
   3863  *
   3864  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3865  * Doing so would require that we hold onto the data and deliver it
   3866  * to the application.  However, if we are the target of a SYN-flood
   3867  * DoS attack, an attacker could send data which would eventually
   3868  * consume all available buffer space if it were ACKed.  By not ACKing
   3869  * the data, we avoid this DoS scenario.
   3870  */
   3871 
   3872 int
   3873 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   3874     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   3875     int optlen, struct tcp_opt_info *oi)
   3876 {
   3877 	struct tcpcb tb, *tp;
   3878 	long win;
   3879 	struct syn_cache *sc;
   3880 	struct syn_cache_head *scp;
   3881 	struct mbuf *ipopts;
   3882 	struct tcp_opt_info opti;
   3883 	int s;
   3884 
   3885 	tp = sototcpcb(so);
   3886 
   3887 	bzero(&opti, sizeof(opti));
   3888 
   3889 	/*
   3890 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3891 	 *
   3892 	 * Note this check is performed in tcp_input() very early on.
   3893 	 */
   3894 
   3895 	/*
   3896 	 * Initialize some local state.
   3897 	 */
   3898 	win = sbspace(&so->so_rcv);
   3899 	if (win > TCP_MAXWIN)
   3900 		win = TCP_MAXWIN;
   3901 
   3902 	switch (src->sa_family) {
   3903 #ifdef INET
   3904 	case AF_INET:
   3905 		/*
   3906 		 * Remember the IP options, if any.
   3907 		 */
   3908 		ipopts = ip_srcroute();
   3909 		break;
   3910 #endif
   3911 	default:
   3912 		ipopts = NULL;
   3913 	}
   3914 
   3915 #ifdef TCP_SIGNATURE
   3916 	if (optp || (tp->t_flags & TF_SIGNATURE))
   3917 #else
   3918 	if (optp)
   3919 #endif
   3920 	{
   3921 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3922 #ifdef TCP_SIGNATURE
   3923 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   3924 #endif
   3925 		tb.t_state = TCPS_LISTEN;
   3926 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   3927 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   3928 			return (0);
   3929 	} else
   3930 		tb.t_flags = 0;
   3931 
   3932 	/*
   3933 	 * See if we already have an entry for this connection.
   3934 	 * If we do, resend the SYN,ACK.  We do not count this
   3935 	 * as a retransmission (XXX though maybe we should).
   3936 	 */
   3937 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3938 		tcpstat.tcps_sc_dupesyn++;
   3939 		if (ipopts) {
   3940 			/*
   3941 			 * If we were remembering a previous source route,
   3942 			 * forget it and use the new one we've been given.
   3943 			 */
   3944 			if (sc->sc_ipopts)
   3945 				(void) m_free(sc->sc_ipopts);
   3946 			sc->sc_ipopts = ipopts;
   3947 		}
   3948 		sc->sc_timestamp = tb.ts_recent;
   3949 		if (syn_cache_respond(sc, m) == 0) {
   3950 			tcpstat.tcps_sndacks++;
   3951 			tcpstat.tcps_sndtotal++;
   3952 		}
   3953 		return (1);
   3954 	}
   3955 
   3956 	s = splsoftnet();
   3957 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3958 	splx(s);
   3959 	if (sc == NULL) {
   3960 		if (ipopts)
   3961 			(void) m_free(ipopts);
   3962 		return (0);
   3963 	}
   3964 
   3965 	/*
   3966 	 * Fill in the cache, and put the necessary IP and TCP
   3967 	 * options into the reply.
   3968 	 */
   3969 	bzero(sc, sizeof(struct syn_cache));
   3970 	callout_init(&sc->sc_timer);
   3971 	bcopy(src, &sc->sc_src, src->sa_len);
   3972 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3973 	sc->sc_flags = 0;
   3974 	sc->sc_ipopts = ipopts;
   3975 	sc->sc_irs = th->th_seq;
   3976 	switch (src->sa_family) {
   3977 #ifdef INET
   3978 	case AF_INET:
   3979 	    {
   3980 		struct sockaddr_in *srcin = (void *) src;
   3981 		struct sockaddr_in *dstin = (void *) dst;
   3982 
   3983 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3984 		    &srcin->sin_addr, dstin->sin_port,
   3985 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3986 		break;
   3987 	    }
   3988 #endif /* INET */
   3989 #ifdef INET6
   3990 	case AF_INET6:
   3991 	    {
   3992 		struct sockaddr_in6 *srcin6 = (void *) src;
   3993 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3994 
   3995 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3996 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3997 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3998 		break;
   3999 	    }
   4000 #endif /* INET6 */
   4001 	}
   4002 	sc->sc_peermaxseg = oi->maxseg;
   4003 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4004 						m->m_pkthdr.rcvif : NULL,
   4005 						sc->sc_src.sa.sa_family);
   4006 	sc->sc_win = win;
   4007 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   4008 	sc->sc_timestamp = tb.ts_recent;
   4009 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4010 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4011 		sc->sc_flags |= SCF_TIMESTAMP;
   4012 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4013 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4014 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4015 		sc->sc_request_r_scale = 0;
   4016 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4017 		    TCP_MAXWIN << sc->sc_request_r_scale <
   4018 		    so->so_rcv.sb_hiwat)
   4019 			sc->sc_request_r_scale++;
   4020 	} else {
   4021 		sc->sc_requested_s_scale = 15;
   4022 		sc->sc_request_r_scale = 15;
   4023 	}
   4024 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4025 		sc->sc_flags |= SCF_SACK_PERMIT;
   4026 
   4027 	/*
   4028 	 * ECN setup packet recieved.
   4029 	 */
   4030 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4031 		sc->sc_flags |= SCF_ECN_PERMIT;
   4032 
   4033 #ifdef TCP_SIGNATURE
   4034 	if (tb.t_flags & TF_SIGNATURE)
   4035 		sc->sc_flags |= SCF_SIGNATURE;
   4036 #endif
   4037 	sc->sc_tp = tp;
   4038 	if (syn_cache_respond(sc, m) == 0) {
   4039 		syn_cache_insert(sc, tp);
   4040 		tcpstat.tcps_sndacks++;
   4041 		tcpstat.tcps_sndtotal++;
   4042 	} else {
   4043 		s = splsoftnet();
   4044 		SYN_CACHE_PUT(sc);
   4045 		splx(s);
   4046 		tcpstat.tcps_sc_dropped++;
   4047 	}
   4048 	return (1);
   4049 }
   4050 
   4051 int
   4052 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4053 {
   4054 	struct route *ro;
   4055 	u_int8_t *optp;
   4056 	int optlen, error;
   4057 	u_int16_t tlen;
   4058 	struct ip *ip = NULL;
   4059 #ifdef INET6
   4060 	struct ip6_hdr *ip6 = NULL;
   4061 #endif
   4062 	struct tcpcb *tp = NULL;
   4063 	struct tcphdr *th;
   4064 	u_int hlen;
   4065 	struct socket *so;
   4066 
   4067 	switch (sc->sc_src.sa.sa_family) {
   4068 	case AF_INET:
   4069 		hlen = sizeof(struct ip);
   4070 		ro = &sc->sc_route4;
   4071 		break;
   4072 #ifdef INET6
   4073 	case AF_INET6:
   4074 		hlen = sizeof(struct ip6_hdr);
   4075 		ro = (struct route *)&sc->sc_route6;
   4076 		break;
   4077 #endif
   4078 	default:
   4079 		if (m)
   4080 			m_freem(m);
   4081 		return (EAFNOSUPPORT);
   4082 	}
   4083 
   4084 	/* Compute the size of the TCP options. */
   4085 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4086 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4087 #ifdef TCP_SIGNATURE
   4088 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4089 #endif
   4090 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4091 
   4092 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4093 
   4094 	/*
   4095 	 * Create the IP+TCP header from scratch.
   4096 	 */
   4097 	if (m)
   4098 		m_freem(m);
   4099 #ifdef DIAGNOSTIC
   4100 	if (max_linkhdr + tlen > MCLBYTES)
   4101 		return (ENOBUFS);
   4102 #endif
   4103 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4104 	if (m && tlen > MHLEN) {
   4105 		MCLGET(m, M_DONTWAIT);
   4106 		if ((m->m_flags & M_EXT) == 0) {
   4107 			m_freem(m);
   4108 			m = NULL;
   4109 		}
   4110 	}
   4111 	if (m == NULL)
   4112 		return (ENOBUFS);
   4113 	MCLAIM(m, &tcp_tx_mowner);
   4114 
   4115 	/* Fixup the mbuf. */
   4116 	m->m_data += max_linkhdr;
   4117 	m->m_len = m->m_pkthdr.len = tlen;
   4118 	if (sc->sc_tp) {
   4119 		tp = sc->sc_tp;
   4120 		if (tp->t_inpcb)
   4121 			so = tp->t_inpcb->inp_socket;
   4122 #ifdef INET6
   4123 		else if (tp->t_in6pcb)
   4124 			so = tp->t_in6pcb->in6p_socket;
   4125 #endif
   4126 		else
   4127 			so = NULL;
   4128 	} else
   4129 		so = NULL;
   4130 	m->m_pkthdr.rcvif = NULL;
   4131 	memset(mtod(m, u_char *), 0, tlen);
   4132 
   4133 	switch (sc->sc_src.sa.sa_family) {
   4134 	case AF_INET:
   4135 		ip = mtod(m, struct ip *);
   4136 		ip->ip_v = 4;
   4137 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4138 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4139 		ip->ip_p = IPPROTO_TCP;
   4140 		th = (struct tcphdr *)(ip + 1);
   4141 		th->th_dport = sc->sc_src.sin.sin_port;
   4142 		th->th_sport = sc->sc_dst.sin.sin_port;
   4143 		break;
   4144 #ifdef INET6
   4145 	case AF_INET6:
   4146 		ip6 = mtod(m, struct ip6_hdr *);
   4147 		ip6->ip6_vfc = IPV6_VERSION;
   4148 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4149 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4150 		ip6->ip6_nxt = IPPROTO_TCP;
   4151 		/* ip6_plen will be updated in ip6_output() */
   4152 		th = (struct tcphdr *)(ip6 + 1);
   4153 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4154 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4155 		break;
   4156 #endif
   4157 	default:
   4158 		th = NULL;
   4159 	}
   4160 
   4161 	th->th_seq = htonl(sc->sc_iss);
   4162 	th->th_ack = htonl(sc->sc_irs + 1);
   4163 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4164 	th->th_flags = TH_SYN|TH_ACK;
   4165 	th->th_win = htons(sc->sc_win);
   4166 	/* th_sum already 0 */
   4167 	/* th_urp already 0 */
   4168 
   4169 	/* Tack on the TCP options. */
   4170 	optp = (u_int8_t *)(th + 1);
   4171 	*optp++ = TCPOPT_MAXSEG;
   4172 	*optp++ = 4;
   4173 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4174 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4175 
   4176 	if (sc->sc_request_r_scale != 15) {
   4177 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4178 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4179 		    sc->sc_request_r_scale);
   4180 		optp += 4;
   4181 	}
   4182 
   4183 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4184 		u_int32_t *lp = (u_int32_t *)(optp);
   4185 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4186 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4187 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4188 		*lp   = htonl(sc->sc_timestamp);
   4189 		optp += TCPOLEN_TSTAMP_APPA;
   4190 	}
   4191 
   4192 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4193 		u_int8_t *p = optp;
   4194 
   4195 		/* Let the peer know that we will SACK. */
   4196 		p[0] = TCPOPT_SACK_PERMITTED;
   4197 		p[1] = 2;
   4198 		p[2] = TCPOPT_NOP;
   4199 		p[3] = TCPOPT_NOP;
   4200 		optp += 4;
   4201 	}
   4202 
   4203 	/*
   4204 	 * Send ECN SYN-ACK setup packet.
   4205 	 * Routes can be asymetric, so, even if we receive a packet
   4206 	 * with ECE and CWR set, we must not assume no one will block
   4207 	 * the ECE packet we are about to send.
   4208 	 */
   4209 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4210 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4211 		th->th_flags |= TH_ECE;
   4212 		tcpstat.tcps_ecn_shs++;
   4213 
   4214 		/*
   4215 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4216 		 *
   4217 		 * "[...] a TCP node MAY respond to an ECN-setup
   4218 		 * SYN packet by setting ECT in the responding
   4219 		 * ECN-setup SYN/ACK packet, indicating to routers
   4220 		 * that the SYN/ACK packet is ECN-Capable.
   4221 		 * This allows a congested router along the path
   4222 		 * to mark the packet instead of dropping the
   4223 		 * packet as an indication of congestion."
   4224 		 *
   4225 		 * "[...] There can be a great benefit in setting
   4226 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4227 		 * Congestion is  most likely to occur in
   4228 		 * the server-to-client direction.  As a result,
   4229 		 * setting an ECN-capable codepoint in SYN/ACK
   4230 		 * packets can reduce the occurence of three-second
   4231 		 * retransmit timeouts resulting from the drop
   4232 		 * of SYN/ACK packets."
   4233 		 *
   4234 		 * Page 4 and 6, January 2006.
   4235 		 */
   4236 
   4237 		switch (sc->sc_src.sa.sa_family) {
   4238 #ifdef INET
   4239 		case AF_INET:
   4240 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4241 			break;
   4242 #endif
   4243 #ifdef INET6
   4244 		case AF_INET6:
   4245 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4246 			break;
   4247 #endif
   4248 		}
   4249 		tcpstat.tcps_ecn_ect++;
   4250 	}
   4251 
   4252 #ifdef TCP_SIGNATURE
   4253 	if (sc->sc_flags & SCF_SIGNATURE) {
   4254 		struct secasvar *sav;
   4255 		u_int8_t *sigp;
   4256 
   4257 		sav = tcp_signature_getsav(m, th);
   4258 
   4259 		if (sav == NULL) {
   4260 			if (m)
   4261 				m_freem(m);
   4262 			return (EPERM);
   4263 		}
   4264 
   4265 		*optp++ = TCPOPT_SIGNATURE;
   4266 		*optp++ = TCPOLEN_SIGNATURE;
   4267 		sigp = optp;
   4268 		bzero(optp, TCP_SIGLEN);
   4269 		optp += TCP_SIGLEN;
   4270 		*optp++ = TCPOPT_NOP;
   4271 		*optp++ = TCPOPT_EOL;
   4272 
   4273 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4274 
   4275 		key_sa_recordxfer(sav, m);
   4276 #ifdef FAST_IPSEC
   4277 		KEY_FREESAV(&sav);
   4278 #else
   4279 		key_freesav(sav);
   4280 #endif
   4281 	}
   4282 #endif
   4283 
   4284 	/* Compute the packet's checksum. */
   4285 	switch (sc->sc_src.sa.sa_family) {
   4286 	case AF_INET:
   4287 		ip->ip_len = htons(tlen - hlen);
   4288 		th->th_sum = 0;
   4289 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4290 		break;
   4291 #ifdef INET6
   4292 	case AF_INET6:
   4293 		ip6->ip6_plen = htons(tlen - hlen);
   4294 		th->th_sum = 0;
   4295 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4296 		break;
   4297 #endif
   4298 	}
   4299 
   4300 	/*
   4301 	 * Fill in some straggling IP bits.  Note the stack expects
   4302 	 * ip_len to be in host order, for convenience.
   4303 	 */
   4304 	switch (sc->sc_src.sa.sa_family) {
   4305 #ifdef INET
   4306 	case AF_INET:
   4307 		ip->ip_len = htons(tlen);
   4308 		ip->ip_ttl = ip_defttl;
   4309 		/* XXX tos? */
   4310 		break;
   4311 #endif
   4312 #ifdef INET6
   4313 	case AF_INET6:
   4314 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4315 		ip6->ip6_vfc |= IPV6_VERSION;
   4316 		ip6->ip6_plen = htons(tlen - hlen);
   4317 		/* ip6_hlim will be initialized afterwards */
   4318 		/* XXX flowlabel? */
   4319 		break;
   4320 #endif
   4321 	}
   4322 
   4323 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4324 	tp = sc->sc_tp;
   4325 
   4326 	switch (sc->sc_src.sa.sa_family) {
   4327 #ifdef INET
   4328 	case AF_INET:
   4329 		error = ip_output(m, sc->sc_ipopts, ro,
   4330 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4331 		    (struct ip_moptions *)NULL, so);
   4332 		break;
   4333 #endif
   4334 #ifdef INET6
   4335 	case AF_INET6:
   4336 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4337 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   4338 
   4339 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
   4340 			(struct ip6_moptions *)0, so, NULL);
   4341 		break;
   4342 #endif
   4343 	default:
   4344 		error = EAFNOSUPPORT;
   4345 		break;
   4346 	}
   4347 	return (error);
   4348 }
   4349