Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.250
      1 /*	$NetBSD: tcp_input.c,v 1.250 2006/10/12 11:46:30 rpaulo Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Charles M. Hannum.
     81  * This code is derived from software contributed to The NetBSD Foundation
     82  * by Rui Paulo.
     83  *
     84  * Redistribution and use in source and binary forms, with or without
     85  * modification, are permitted provided that the following conditions
     86  * are met:
     87  * 1. Redistributions of source code must retain the above copyright
     88  *    notice, this list of conditions and the following disclaimer.
     89  * 2. Redistributions in binary form must reproduce the above copyright
     90  *    notice, this list of conditions and the following disclaimer in the
     91  *    documentation and/or other materials provided with the distribution.
     92  * 3. All advertising materials mentioning features or use of this software
     93  *    must display the following acknowledgement:
     94  *	This product includes software developed by the NetBSD
     95  *	Foundation, Inc. and its contributors.
     96  * 4. Neither the name of The NetBSD Foundation nor the names of its
     97  *    contributors may be used to endorse or promote products derived
     98  *    from this software without specific prior written permission.
     99  *
    100  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
    101  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
    102  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    103  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    104  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    105  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    106  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    107  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    108  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    109  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    110  * POSSIBILITY OF SUCH DAMAGE.
    111  */
    112 
    113 /*
    114  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    115  *	The Regents of the University of California.  All rights reserved.
    116  *
    117  * Redistribution and use in source and binary forms, with or without
    118  * modification, are permitted provided that the following conditions
    119  * are met:
    120  * 1. Redistributions of source code must retain the above copyright
    121  *    notice, this list of conditions and the following disclaimer.
    122  * 2. Redistributions in binary form must reproduce the above copyright
    123  *    notice, this list of conditions and the following disclaimer in the
    124  *    documentation and/or other materials provided with the distribution.
    125  * 3. Neither the name of the University nor the names of its contributors
    126  *    may be used to endorse or promote products derived from this software
    127  *    without specific prior written permission.
    128  *
    129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    139  * SUCH DAMAGE.
    140  *
    141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    142  */
    143 
    144 /*
    145  *	TODO list for SYN cache stuff:
    146  *
    147  *	Find room for a "state" field, which is needed to keep a
    148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    149  *	that this is fairly important for very high-volume web and
    150  *	mail servers, which use a large number of short-lived
    151  *	connections.
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.250 2006/10/12 11:46:30 rpaulo Exp $");
    156 
    157 #include "opt_inet.h"
    158 #include "opt_ipsec.h"
    159 #include "opt_inet_csum.h"
    160 #include "opt_tcp_debug.h"
    161 
    162 #include <sys/param.h>
    163 #include <sys/systm.h>
    164 #include <sys/malloc.h>
    165 #include <sys/mbuf.h>
    166 #include <sys/protosw.h>
    167 #include <sys/socket.h>
    168 #include <sys/socketvar.h>
    169 #include <sys/errno.h>
    170 #include <sys/syslog.h>
    171 #include <sys/pool.h>
    172 #include <sys/domain.h>
    173 #include <sys/kernel.h>
    174 #ifdef TCP_SIGNATURE
    175 #include <sys/md5.h>
    176 #endif
    177 
    178 #include <net/if.h>
    179 #include <net/route.h>
    180 #include <net/if_types.h>
    181 
    182 #include <netinet/in.h>
    183 #include <netinet/in_systm.h>
    184 #include <netinet/ip.h>
    185 #include <netinet/in_pcb.h>
    186 #include <netinet/in_var.h>
    187 #include <netinet/ip_var.h>
    188 #include <netinet/in_offload.h>
    189 
    190 #ifdef INET6
    191 #ifndef INET
    192 #include <netinet/in.h>
    193 #endif
    194 #include <netinet/ip6.h>
    195 #include <netinet6/ip6_var.h>
    196 #include <netinet6/in6_pcb.h>
    197 #include <netinet6/ip6_var.h>
    198 #include <netinet6/in6_var.h>
    199 #include <netinet/icmp6.h>
    200 #include <netinet6/nd6.h>
    201 #ifdef TCP_SIGNATURE
    202 #include <netinet6/scope6_var.h>
    203 #endif
    204 #endif
    205 
    206 #ifndef INET6
    207 /* always need ip6.h for IP6_EXTHDR_GET */
    208 #include <netinet/ip6.h>
    209 #endif
    210 
    211 #include <netinet/tcp.h>
    212 #include <netinet/tcp_fsm.h>
    213 #include <netinet/tcp_seq.h>
    214 #include <netinet/tcp_timer.h>
    215 #include <netinet/tcp_var.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #include <machine/stdarg.h>
    221 
    222 #ifdef IPSEC
    223 #include <netinet6/ipsec.h>
    224 #include <netkey/key.h>
    225 #endif /*IPSEC*/
    226 #ifdef INET6
    227 #include "faith.h"
    228 #if defined(NFAITH) && NFAITH > 0
    229 #include <net/if_faith.h>
    230 #endif
    231 #endif	/* IPSEC */
    232 
    233 #ifdef FAST_IPSEC
    234 #include <netipsec/ipsec.h>
    235 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
    236 #include <netipsec/key.h>
    237 #ifdef INET6
    238 #include <netipsec/ipsec6.h>
    239 #endif
    240 #endif	/* FAST_IPSEC*/
    241 
    242 int	tcprexmtthresh = 3;
    243 int	tcp_log_refused;
    244 
    245 static int tcp_rst_ppslim_count = 0;
    246 static struct timeval tcp_rst_ppslim_last;
    247 static int tcp_ackdrop_ppslim_count = 0;
    248 static struct timeval tcp_ackdrop_ppslim_last;
    249 
    250 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    251 
    252 /* for modulo comparisons of timestamps */
    253 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    254 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    255 
    256 /*
    257  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    258  */
    259 #ifdef INET6
    260 #define ND6_HINT(tp) \
    261 do { \
    262 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
    263 	    tp->t_in6pcb->in6p_route.ro_rt) { \
    264 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    265 	} \
    266 } while (/*CONSTCOND*/ 0)
    267 #else
    268 #define ND6_HINT(tp)
    269 #endif
    270 
    271 /*
    272  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    273  * we have already delayed an ACK (must send an ACK every two segments).
    274  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    275  * option is enabled.
    276  */
    277 #define	TCP_SETUP_ACK(tp, th) \
    278 do { \
    279 	if ((tp)->t_flags & TF_DELACK || \
    280 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    281 		tp->t_flags |= TF_ACKNOW; \
    282 	else \
    283 		TCP_SET_DELACK(tp); \
    284 } while (/*CONSTCOND*/ 0)
    285 
    286 #define ICMP_CHECK(tp, th, acked) \
    287 do { \
    288 	/* \
    289 	 * If we had a pending ICMP message that \
    290 	 * refers to data that have just been  \
    291 	 * acknowledged, disregard the recorded ICMP \
    292 	 * message. \
    293 	 */ \
    294 	if (((tp)->t_flags & TF_PMTUD_PEND) && \
    295 	    SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
    296 		(tp)->t_flags &= ~TF_PMTUD_PEND; \
    297 \
    298 	/* \
    299 	 * Keep track of the largest chunk of data \
    300 	 * acknowledged since last PMTU update \
    301 	 */ \
    302 	if ((tp)->t_pmtud_mss_acked < (acked)) \
    303 		(tp)->t_pmtud_mss_acked = (acked); \
    304 } while (/*CONSTCOND*/ 0)
    305 
    306 /*
    307  * Convert TCP protocol fields to host order for easier processing.
    308  */
    309 #define	TCP_FIELDS_TO_HOST(th)						\
    310 do {									\
    311 	NTOHL((th)->th_seq);						\
    312 	NTOHL((th)->th_ack);						\
    313 	NTOHS((th)->th_win);						\
    314 	NTOHS((th)->th_urp);						\
    315 } while (/*CONSTCOND*/ 0)
    316 
    317 /*
    318  * ... and reverse the above.
    319  */
    320 #define	TCP_FIELDS_TO_NET(th)						\
    321 do {									\
    322 	HTONL((th)->th_seq);						\
    323 	HTONL((th)->th_ack);						\
    324 	HTONS((th)->th_win);						\
    325 	HTONS((th)->th_urp);						\
    326 } while (/*CONSTCOND*/ 0)
    327 
    328 #ifdef TCP_CSUM_COUNTERS
    329 #include <sys/device.h>
    330 
    331 #if defined(INET)
    332 extern struct evcnt tcp_hwcsum_ok;
    333 extern struct evcnt tcp_hwcsum_bad;
    334 extern struct evcnt tcp_hwcsum_data;
    335 extern struct evcnt tcp_swcsum;
    336 #endif /* defined(INET) */
    337 #if defined(INET6)
    338 extern struct evcnt tcp6_hwcsum_ok;
    339 extern struct evcnt tcp6_hwcsum_bad;
    340 extern struct evcnt tcp6_hwcsum_data;
    341 extern struct evcnt tcp6_swcsum;
    342 #endif /* defined(INET6) */
    343 
    344 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    345 
    346 #else
    347 
    348 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    349 
    350 #endif /* TCP_CSUM_COUNTERS */
    351 
    352 #ifdef TCP_REASS_COUNTERS
    353 #include <sys/device.h>
    354 
    355 extern struct evcnt tcp_reass_;
    356 extern struct evcnt tcp_reass_empty;
    357 extern struct evcnt tcp_reass_iteration[8];
    358 extern struct evcnt tcp_reass_prependfirst;
    359 extern struct evcnt tcp_reass_prepend;
    360 extern struct evcnt tcp_reass_insert;
    361 extern struct evcnt tcp_reass_inserttail;
    362 extern struct evcnt tcp_reass_append;
    363 extern struct evcnt tcp_reass_appendtail;
    364 extern struct evcnt tcp_reass_overlaptail;
    365 extern struct evcnt tcp_reass_overlapfront;
    366 extern struct evcnt tcp_reass_segdup;
    367 extern struct evcnt tcp_reass_fragdup;
    368 
    369 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    370 
    371 #else
    372 
    373 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    374 
    375 #endif /* TCP_REASS_COUNTERS */
    376 
    377 #ifdef INET
    378 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    379 #endif
    380 #ifdef INET6
    381 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    382 #endif
    383 
    384 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    385 
    386 POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl", NULL);
    387 
    388 struct ipqent *
    389 tcpipqent_alloc()
    390 {
    391 	struct ipqent *ipqe;
    392 	int s;
    393 
    394 	s = splvm();
    395 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    396 	splx(s);
    397 
    398 	return ipqe;
    399 }
    400 
    401 void
    402 tcpipqent_free(struct ipqent *ipqe)
    403 {
    404 	int s;
    405 
    406 	s = splvm();
    407 	pool_put(&tcpipqent_pool, ipqe);
    408 	splx(s);
    409 }
    410 
    411 int
    412 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
    413 {
    414 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    415 	struct socket *so = NULL;
    416 	int pkt_flags;
    417 	tcp_seq pkt_seq;
    418 	unsigned pkt_len;
    419 	u_long rcvpartdupbyte = 0;
    420 	u_long rcvoobyte;
    421 #ifdef TCP_REASS_COUNTERS
    422 	u_int count = 0;
    423 #endif
    424 
    425 	if (tp->t_inpcb)
    426 		so = tp->t_inpcb->inp_socket;
    427 #ifdef INET6
    428 	else if (tp->t_in6pcb)
    429 		so = tp->t_in6pcb->in6p_socket;
    430 #endif
    431 
    432 	TCP_REASS_LOCK_CHECK(tp);
    433 
    434 	/*
    435 	 * Call with th==0 after become established to
    436 	 * force pre-ESTABLISHED data up to user socket.
    437 	 */
    438 	if (th == 0)
    439 		goto present;
    440 
    441 	rcvoobyte = *tlen;
    442 	/*
    443 	 * Copy these to local variables because the tcpiphdr
    444 	 * gets munged while we are collapsing mbufs.
    445 	 */
    446 	pkt_seq = th->th_seq;
    447 	pkt_len = *tlen;
    448 	pkt_flags = th->th_flags;
    449 
    450 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    451 
    452 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    453 		/*
    454 		 * When we miss a packet, the vast majority of time we get
    455 		 * packets that follow it in order.  So optimize for that.
    456 		 */
    457 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    458 			p->ipqe_len += pkt_len;
    459 			p->ipqe_flags |= pkt_flags;
    460 			m_cat(p->ipre_mlast, m);
    461 			TRAVERSE(p->ipre_mlast);
    462 			m = NULL;
    463 			tiqe = p;
    464 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    465 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    466 			goto skip_replacement;
    467 		}
    468 		/*
    469 		 * While we're here, if the pkt is completely beyond
    470 		 * anything we have, just insert it at the tail.
    471 		 */
    472 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    473 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    474 			goto insert_it;
    475 		}
    476 	}
    477 
    478 	q = TAILQ_FIRST(&tp->segq);
    479 
    480 	if (q != NULL) {
    481 		/*
    482 		 * If this segment immediately precedes the first out-of-order
    483 		 * block, simply slap the segment in front of it and (mostly)
    484 		 * skip the complicated logic.
    485 		 */
    486 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    487 			q->ipqe_seq = pkt_seq;
    488 			q->ipqe_len += pkt_len;
    489 			q->ipqe_flags |= pkt_flags;
    490 			m_cat(m, q->ipqe_m);
    491 			q->ipqe_m = m;
    492 			q->ipre_mlast = m; /* last mbuf may have changed */
    493 			TRAVERSE(q->ipre_mlast);
    494 			tiqe = q;
    495 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    496 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    497 			goto skip_replacement;
    498 		}
    499 	} else {
    500 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    501 	}
    502 
    503 	/*
    504 	 * Find a segment which begins after this one does.
    505 	 */
    506 	for (p = NULL; q != NULL; q = nq) {
    507 		nq = TAILQ_NEXT(q, ipqe_q);
    508 #ifdef TCP_REASS_COUNTERS
    509 		count++;
    510 #endif
    511 		/*
    512 		 * If the received segment is just right after this
    513 		 * fragment, merge the two together and then check
    514 		 * for further overlaps.
    515 		 */
    516 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    517 #ifdef TCPREASS_DEBUG
    518 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    519 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    520 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    521 #endif
    522 			pkt_len += q->ipqe_len;
    523 			pkt_flags |= q->ipqe_flags;
    524 			pkt_seq = q->ipqe_seq;
    525 			m_cat(q->ipre_mlast, m);
    526 			TRAVERSE(q->ipre_mlast);
    527 			m = q->ipqe_m;
    528 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    529 			goto free_ipqe;
    530 		}
    531 		/*
    532 		 * If the received segment is completely past this
    533 		 * fragment, we need to go the next fragment.
    534 		 */
    535 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    536 			p = q;
    537 			continue;
    538 		}
    539 		/*
    540 		 * If the fragment is past the received segment,
    541 		 * it (or any following) can't be concatenated.
    542 		 */
    543 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    544 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    545 			break;
    546 		}
    547 
    548 		/*
    549 		 * We've received all the data in this segment before.
    550 		 * mark it as a duplicate and return.
    551 		 */
    552 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    553 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    554 			tcpstat.tcps_rcvduppack++;
    555 			tcpstat.tcps_rcvdupbyte += pkt_len;
    556 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    557 			m_freem(m);
    558 			if (tiqe != NULL) {
    559 				tcpipqent_free(tiqe);
    560 			}
    561 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    562 			return (0);
    563 		}
    564 		/*
    565 		 * Received segment completely overlaps this fragment
    566 		 * so we drop the fragment (this keeps the temporal
    567 		 * ordering of segments correct).
    568 		 */
    569 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    570 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    571 			rcvpartdupbyte += q->ipqe_len;
    572 			m_freem(q->ipqe_m);
    573 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    574 			goto free_ipqe;
    575 		}
    576 		/*
    577 		 * RX'ed segment extends past the end of the
    578 		 * fragment.  Drop the overlapping bytes.  Then
    579 		 * merge the fragment and segment then treat as
    580 		 * a longer received packet.
    581 		 */
    582 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    583 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    584 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    585 #ifdef TCPREASS_DEBUG
    586 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    587 			       tp, overlap,
    588 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    589 #endif
    590 			m_adj(m, overlap);
    591 			rcvpartdupbyte += overlap;
    592 			m_cat(q->ipre_mlast, m);
    593 			TRAVERSE(q->ipre_mlast);
    594 			m = q->ipqe_m;
    595 			pkt_seq = q->ipqe_seq;
    596 			pkt_len += q->ipqe_len - overlap;
    597 			rcvoobyte -= overlap;
    598 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    599 			goto free_ipqe;
    600 		}
    601 		/*
    602 		 * RX'ed segment extends past the front of the
    603 		 * fragment.  Drop the overlapping bytes on the
    604 		 * received packet.  The packet will then be
    605 		 * contatentated with this fragment a bit later.
    606 		 */
    607 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    608 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    609 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    610 #ifdef TCPREASS_DEBUG
    611 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    612 			       tp, overlap,
    613 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    614 #endif
    615 			m_adj(m, -overlap);
    616 			pkt_len -= overlap;
    617 			rcvpartdupbyte += overlap;
    618 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    619 			rcvoobyte -= overlap;
    620 		}
    621 		/*
    622 		 * If the received segment immediates precedes this
    623 		 * fragment then tack the fragment onto this segment
    624 		 * and reinsert the data.
    625 		 */
    626 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    627 #ifdef TCPREASS_DEBUG
    628 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    629 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    630 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    631 #endif
    632 			pkt_len += q->ipqe_len;
    633 			pkt_flags |= q->ipqe_flags;
    634 			m_cat(m, q->ipqe_m);
    635 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    636 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    637 			tp->t_segqlen--;
    638 			KASSERT(tp->t_segqlen >= 0);
    639 			KASSERT(tp->t_segqlen != 0 ||
    640 			    (TAILQ_EMPTY(&tp->segq) &&
    641 			    TAILQ_EMPTY(&tp->timeq)));
    642 			if (tiqe == NULL) {
    643 				tiqe = q;
    644 			} else {
    645 				tcpipqent_free(q);
    646 			}
    647 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    648 			break;
    649 		}
    650 		/*
    651 		 * If the fragment is before the segment, remember it.
    652 		 * When this loop is terminated, p will contain the
    653 		 * pointer to fragment that is right before the received
    654 		 * segment.
    655 		 */
    656 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    657 			p = q;
    658 
    659 		continue;
    660 
    661 		/*
    662 		 * This is a common operation.  It also will allow
    663 		 * to save doing a malloc/free in most instances.
    664 		 */
    665 	  free_ipqe:
    666 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    667 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    668 		tp->t_segqlen--;
    669 		KASSERT(tp->t_segqlen >= 0);
    670 		KASSERT(tp->t_segqlen != 0 ||
    671 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    672 		if (tiqe == NULL) {
    673 			tiqe = q;
    674 		} else {
    675 			tcpipqent_free(q);
    676 		}
    677 	}
    678 
    679 #ifdef TCP_REASS_COUNTERS
    680 	if (count > 7)
    681 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    682 	else if (count > 0)
    683 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    684 #endif
    685 
    686     insert_it:
    687 
    688 	/*
    689 	 * Allocate a new queue entry since the received segment did not
    690 	 * collapse onto any other out-of-order block; thus we are allocating
    691 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    692 	 * we would be reusing it.
    693 	 * XXX If we can't, just drop the packet.  XXX
    694 	 */
    695 	if (tiqe == NULL) {
    696 		tiqe = tcpipqent_alloc();
    697 		if (tiqe == NULL) {
    698 			tcpstat.tcps_rcvmemdrop++;
    699 			m_freem(m);
    700 			return (0);
    701 		}
    702 	}
    703 
    704 	/*
    705 	 * Update the counters.
    706 	 */
    707 	tcpstat.tcps_rcvoopack++;
    708 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    709 	if (rcvpartdupbyte) {
    710 	    tcpstat.tcps_rcvpartduppack++;
    711 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    712 	}
    713 
    714 	/*
    715 	 * Insert the new fragment queue entry into both queues.
    716 	 */
    717 	tiqe->ipqe_m = m;
    718 	tiqe->ipre_mlast = m;
    719 	tiqe->ipqe_seq = pkt_seq;
    720 	tiqe->ipqe_len = pkt_len;
    721 	tiqe->ipqe_flags = pkt_flags;
    722 	if (p == NULL) {
    723 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    724 #ifdef TCPREASS_DEBUG
    725 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    726 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    727 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    728 #endif
    729 	} else {
    730 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    731 #ifdef TCPREASS_DEBUG
    732 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    733 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    734 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    735 #endif
    736 	}
    737 	tp->t_segqlen++;
    738 
    739 skip_replacement:
    740 
    741 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    742 
    743 present:
    744 	/*
    745 	 * Present data to user, advancing rcv_nxt through
    746 	 * completed sequence space.
    747 	 */
    748 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    749 		return (0);
    750 	q = TAILQ_FIRST(&tp->segq);
    751 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    752 		return (0);
    753 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    754 		return (0);
    755 
    756 	tp->rcv_nxt += q->ipqe_len;
    757 	pkt_flags = q->ipqe_flags & TH_FIN;
    758 	ND6_HINT(tp);
    759 
    760 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    761 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    762 	tp->t_segqlen--;
    763 	KASSERT(tp->t_segqlen >= 0);
    764 	KASSERT(tp->t_segqlen != 0 ||
    765 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    766 	if (so->so_state & SS_CANTRCVMORE)
    767 		m_freem(q->ipqe_m);
    768 	else
    769 		sbappendstream(&so->so_rcv, q->ipqe_m);
    770 	tcpipqent_free(q);
    771 	sorwakeup(so);
    772 	return (pkt_flags);
    773 }
    774 
    775 #ifdef INET6
    776 int
    777 tcp6_input(struct mbuf **mp, int *offp, int proto)
    778 {
    779 	struct mbuf *m = *mp;
    780 
    781 	/*
    782 	 * draft-itojun-ipv6-tcp-to-anycast
    783 	 * better place to put this in?
    784 	 */
    785 	if (m->m_flags & M_ANYCAST6) {
    786 		struct ip6_hdr *ip6;
    787 		if (m->m_len < sizeof(struct ip6_hdr)) {
    788 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    789 				tcpstat.tcps_rcvshort++;
    790 				return IPPROTO_DONE;
    791 			}
    792 		}
    793 		ip6 = mtod(m, struct ip6_hdr *);
    794 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    795 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    796 		return IPPROTO_DONE;
    797 	}
    798 
    799 	tcp_input(m, *offp, proto);
    800 	return IPPROTO_DONE;
    801 }
    802 #endif
    803 
    804 #ifdef INET
    805 static void
    806 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    807 {
    808 	char src[4*sizeof "123"];
    809 	char dst[4*sizeof "123"];
    810 
    811 	if (ip) {
    812 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    813 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    814 	}
    815 	else {
    816 		strlcpy(src, "(unknown)", sizeof(src));
    817 		strlcpy(dst, "(unknown)", sizeof(dst));
    818 	}
    819 	log(LOG_INFO,
    820 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    821 	    dst, ntohs(th->th_dport),
    822 	    src, ntohs(th->th_sport));
    823 }
    824 #endif
    825 
    826 #ifdef INET6
    827 static void
    828 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    829 {
    830 	char src[INET6_ADDRSTRLEN];
    831 	char dst[INET6_ADDRSTRLEN];
    832 
    833 	if (ip6) {
    834 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    835 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    836 	}
    837 	else {
    838 		strlcpy(src, "(unknown v6)", sizeof(src));
    839 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    840 	}
    841 	log(LOG_INFO,
    842 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    843 	    dst, ntohs(th->th_dport),
    844 	    src, ntohs(th->th_sport));
    845 }
    846 #endif
    847 
    848 /*
    849  * Checksum extended TCP header and data.
    850  */
    851 int
    852 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th __unused,
    853     int toff, int off, int tlen)
    854 {
    855 
    856 	/*
    857 	 * XXX it's better to record and check if this mbuf is
    858 	 * already checked.
    859 	 */
    860 
    861 	switch (af) {
    862 #ifdef INET
    863 	case AF_INET:
    864 		switch (m->m_pkthdr.csum_flags &
    865 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    866 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    867 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    868 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    869 			goto badcsum;
    870 
    871 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    872 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    873 
    874 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    875 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    876 				const struct ip *ip =
    877 				    mtod(m, const struct ip *);
    878 
    879 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    880 				    ip->ip_dst.s_addr,
    881 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    882 			}
    883 			if ((hw_csum ^ 0xffff) != 0)
    884 				goto badcsum;
    885 			break;
    886 		}
    887 
    888 		case M_CSUM_TCPv4:
    889 			/* Checksum was okay. */
    890 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    891 			break;
    892 
    893 		default:
    894 			/*
    895 			 * Must compute it ourselves.  Maybe skip checksum
    896 			 * on loopback interfaces.
    897 			 */
    898 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    899 					     IFF_LOOPBACK) ||
    900 					   tcp_do_loopback_cksum)) {
    901 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    902 				if (in4_cksum(m, IPPROTO_TCP, toff,
    903 					      tlen + off) != 0)
    904 					goto badcsum;
    905 			}
    906 			break;
    907 		}
    908 		break;
    909 #endif /* INET4 */
    910 
    911 #ifdef INET6
    912 	case AF_INET6:
    913 		switch (m->m_pkthdr.csum_flags &
    914 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    915 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    916 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    917 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    918 			goto badcsum;
    919 
    920 #if 0 /* notyet */
    921 		case M_CSUM_TCPv6|M_CSUM_DATA:
    922 #endif
    923 
    924 		case M_CSUM_TCPv6:
    925 			/* Checksum was okay. */
    926 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    927 			break;
    928 
    929 		default:
    930 			/*
    931 			 * Must compute it ourselves.  Maybe skip checksum
    932 			 * on loopback interfaces.
    933 			 */
    934 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    935 			    tcp_do_loopback_cksum)) {
    936 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    937 				if (in6_cksum(m, IPPROTO_TCP, toff,
    938 				    tlen + off) != 0)
    939 					goto badcsum;
    940 			}
    941 		}
    942 		break;
    943 #endif /* INET6 */
    944 	}
    945 
    946 	return 0;
    947 
    948 badcsum:
    949 	tcpstat.tcps_rcvbadsum++;
    950 	return -1;
    951 }
    952 
    953 /*
    954  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
    955  */
    956 void
    957 tcp_input(struct mbuf *m, ...)
    958 {
    959 	struct tcphdr *th;
    960 	struct ip *ip;
    961 	struct inpcb *inp;
    962 #ifdef INET6
    963 	struct ip6_hdr *ip6;
    964 	struct in6pcb *in6p;
    965 #endif
    966 	u_int8_t *optp = NULL;
    967 	int optlen = 0;
    968 	int len, tlen, toff, hdroptlen = 0;
    969 	struct tcpcb *tp = 0;
    970 	int tiflags;
    971 	struct socket *so = NULL;
    972 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
    973 #ifdef TCP_DEBUG
    974 	short ostate = 0;
    975 #endif
    976 	u_long tiwin;
    977 	struct tcp_opt_info opti;
    978 	int off, iphlen;
    979 	va_list ap;
    980 	int af;		/* af on the wire */
    981 	struct mbuf *tcp_saveti = NULL;
    982 	uint32_t ts_rtt;
    983 	uint8_t iptos;
    984 
    985 	MCLAIM(m, &tcp_rx_mowner);
    986 	va_start(ap, m);
    987 	toff = va_arg(ap, int);
    988 	(void)va_arg(ap, int);		/* ignore value, advance ap */
    989 	va_end(ap);
    990 
    991 	tcpstat.tcps_rcvtotal++;
    992 
    993 	bzero(&opti, sizeof(opti));
    994 	opti.ts_present = 0;
    995 	opti.maxseg = 0;
    996 
    997 	/*
    998 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
    999 	 *
   1000 	 * TCP is, by definition, unicast, so we reject all
   1001 	 * multicast outright.
   1002 	 *
   1003 	 * Note, there are additional src/dst address checks in
   1004 	 * the AF-specific code below.
   1005 	 */
   1006 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1007 		/* XXX stat */
   1008 		goto drop;
   1009 	}
   1010 #ifdef INET6
   1011 	if (m->m_flags & M_ANYCAST6) {
   1012 		/* XXX stat */
   1013 		goto drop;
   1014 	}
   1015 #endif
   1016 
   1017 	/*
   1018 	 * Get IP and TCP header.
   1019 	 * Note: IP leaves IP header in first mbuf.
   1020 	 */
   1021 	ip = mtod(m, struct ip *);
   1022 #ifdef INET6
   1023 	ip6 = NULL;
   1024 #endif
   1025 	switch (ip->ip_v) {
   1026 #ifdef INET
   1027 	case 4:
   1028 		af = AF_INET;
   1029 		iphlen = sizeof(struct ip);
   1030 		ip = mtod(m, struct ip *);
   1031 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1032 			sizeof(struct tcphdr));
   1033 		if (th == NULL) {
   1034 			tcpstat.tcps_rcvshort++;
   1035 			return;
   1036 		}
   1037 		/* We do the checksum after PCB lookup... */
   1038 		len = ntohs(ip->ip_len);
   1039 		tlen = len - toff;
   1040 		iptos = ip->ip_tos;
   1041 		break;
   1042 #endif
   1043 #ifdef INET6
   1044 	case 6:
   1045 		ip = NULL;
   1046 		iphlen = sizeof(struct ip6_hdr);
   1047 		af = AF_INET6;
   1048 		ip6 = mtod(m, struct ip6_hdr *);
   1049 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1050 			sizeof(struct tcphdr));
   1051 		if (th == NULL) {
   1052 			tcpstat.tcps_rcvshort++;
   1053 			return;
   1054 		}
   1055 
   1056 		/* Be proactive about malicious use of IPv4 mapped address */
   1057 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1058 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1059 			/* XXX stat */
   1060 			goto drop;
   1061 		}
   1062 
   1063 		/*
   1064 		 * Be proactive about unspecified IPv6 address in source.
   1065 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1066 		 * unspecified IPv6 address can be used to confuse us.
   1067 		 *
   1068 		 * Note that packets with unspecified IPv6 destination is
   1069 		 * already dropped in ip6_input.
   1070 		 */
   1071 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1072 			/* XXX stat */
   1073 			goto drop;
   1074 		}
   1075 
   1076 		/*
   1077 		 * Make sure destination address is not multicast.
   1078 		 * Source address checked in ip6_input().
   1079 		 */
   1080 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1081 			/* XXX stat */
   1082 			goto drop;
   1083 		}
   1084 
   1085 		/* We do the checksum after PCB lookup... */
   1086 		len = m->m_pkthdr.len;
   1087 		tlen = len - toff;
   1088 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1089 		break;
   1090 #endif
   1091 	default:
   1092 		m_freem(m);
   1093 		return;
   1094 	}
   1095 
   1096 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1097 
   1098 	/*
   1099 	 * Check that TCP offset makes sense,
   1100 	 * pull out TCP options and adjust length.		XXX
   1101 	 */
   1102 	off = th->th_off << 2;
   1103 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1104 		tcpstat.tcps_rcvbadoff++;
   1105 		goto drop;
   1106 	}
   1107 	tlen -= off;
   1108 
   1109 	/*
   1110 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1111 	 * length throughout the function.  Other functions can use
   1112 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1113 	 * rja
   1114 	 */
   1115 
   1116 	if (off > sizeof (struct tcphdr)) {
   1117 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1118 		if (th == NULL) {
   1119 			tcpstat.tcps_rcvshort++;
   1120 			return;
   1121 		}
   1122 		/*
   1123 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1124 		 * (as they're before toff) and we don't need to update those.
   1125 		 */
   1126 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1127 		optlen = off - sizeof (struct tcphdr);
   1128 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1129 		/*
   1130 		 * Do quick retrieval of timestamp options ("options
   1131 		 * prediction?").  If timestamp is the only option and it's
   1132 		 * formatted as recommended in RFC 1323 appendix A, we
   1133 		 * quickly get the values now and not bother calling
   1134 		 * tcp_dooptions(), etc.
   1135 		 */
   1136 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1137 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1138 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1139 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1140 		     (th->th_flags & TH_SYN) == 0) {
   1141 			opti.ts_present = 1;
   1142 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1143 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1144 			optp = NULL;	/* we've parsed the options */
   1145 		}
   1146 	}
   1147 	tiflags = th->th_flags;
   1148 
   1149 	/*
   1150 	 * Locate pcb for segment.
   1151 	 */
   1152 findpcb:
   1153 	inp = NULL;
   1154 #ifdef INET6
   1155 	in6p = NULL;
   1156 #endif
   1157 	switch (af) {
   1158 #ifdef INET
   1159 	case AF_INET:
   1160 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1161 		    ip->ip_dst, th->th_dport);
   1162 		if (inp == 0) {
   1163 			++tcpstat.tcps_pcbhashmiss;
   1164 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1165 		}
   1166 #ifdef INET6
   1167 		if (inp == 0) {
   1168 			struct in6_addr s, d;
   1169 
   1170 			/* mapped addr case */
   1171 			bzero(&s, sizeof(s));
   1172 			s.s6_addr16[5] = htons(0xffff);
   1173 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1174 			bzero(&d, sizeof(d));
   1175 			d.s6_addr16[5] = htons(0xffff);
   1176 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1177 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1178 			    th->th_sport, &d, th->th_dport, 0);
   1179 			if (in6p == 0) {
   1180 				++tcpstat.tcps_pcbhashmiss;
   1181 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1182 				    th->th_dport, 0);
   1183 			}
   1184 		}
   1185 #endif
   1186 #ifndef INET6
   1187 		if (inp == 0)
   1188 #else
   1189 		if (inp == 0 && in6p == 0)
   1190 #endif
   1191 		{
   1192 			++tcpstat.tcps_noport;
   1193 			if (tcp_log_refused &&
   1194 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1195 				tcp4_log_refused(ip, th);
   1196 			}
   1197 			TCP_FIELDS_TO_HOST(th);
   1198 			goto dropwithreset_ratelim;
   1199 		}
   1200 #if defined(IPSEC) || defined(FAST_IPSEC)
   1201 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1202 		    ipsec4_in_reject(m, inp)) {
   1203 			ipsecstat.in_polvio++;
   1204 			goto drop;
   1205 		}
   1206 #ifdef INET6
   1207 		else if (in6p &&
   1208 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1209 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
   1210 			ipsecstat.in_polvio++;
   1211 			goto drop;
   1212 		}
   1213 #endif
   1214 #endif /*IPSEC*/
   1215 		break;
   1216 #endif /*INET*/
   1217 #ifdef INET6
   1218 	case AF_INET6:
   1219 	    {
   1220 		int faith;
   1221 
   1222 #if defined(NFAITH) && NFAITH > 0
   1223 		faith = faithprefix(&ip6->ip6_dst);
   1224 #else
   1225 		faith = 0;
   1226 #endif
   1227 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1228 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
   1229 		if (in6p == NULL) {
   1230 			++tcpstat.tcps_pcbhashmiss;
   1231 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1232 				th->th_dport, faith);
   1233 		}
   1234 		if (in6p == NULL) {
   1235 			++tcpstat.tcps_noport;
   1236 			if (tcp_log_refused &&
   1237 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1238 				tcp6_log_refused(ip6, th);
   1239 			}
   1240 			TCP_FIELDS_TO_HOST(th);
   1241 			goto dropwithreset_ratelim;
   1242 		}
   1243 #if defined(IPSEC) || defined(FAST_IPSEC)
   1244 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1245 		    ipsec6_in_reject(m, in6p)) {
   1246 			ipsec6stat.in_polvio++;
   1247 			goto drop;
   1248 		}
   1249 #endif /*IPSEC*/
   1250 		break;
   1251 	    }
   1252 #endif
   1253 	}
   1254 
   1255 	/*
   1256 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1257 	 * all data in the incoming segment is discarded.
   1258 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1259 	 * but should either do a listen or a connect soon.
   1260 	 */
   1261 	tp = NULL;
   1262 	so = NULL;
   1263 	if (inp) {
   1264 		tp = intotcpcb(inp);
   1265 		so = inp->inp_socket;
   1266 	}
   1267 #ifdef INET6
   1268 	else if (in6p) {
   1269 		tp = in6totcpcb(in6p);
   1270 		so = in6p->in6p_socket;
   1271 	}
   1272 #endif
   1273 	if (tp == 0) {
   1274 		TCP_FIELDS_TO_HOST(th);
   1275 		goto dropwithreset_ratelim;
   1276 	}
   1277 	if (tp->t_state == TCPS_CLOSED)
   1278 		goto drop;
   1279 
   1280 	/*
   1281 	 * Checksum extended TCP header and data.
   1282 	 */
   1283 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1284 		goto badcsum;
   1285 
   1286 	TCP_FIELDS_TO_HOST(th);
   1287 
   1288 	/* Unscale the window into a 32-bit value. */
   1289 	if ((tiflags & TH_SYN) == 0)
   1290 		tiwin = th->th_win << tp->snd_scale;
   1291 	else
   1292 		tiwin = th->th_win;
   1293 
   1294 #ifdef INET6
   1295 	/* save packet options if user wanted */
   1296 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1297 		if (in6p->in6p_options) {
   1298 			m_freem(in6p->in6p_options);
   1299 			in6p->in6p_options = 0;
   1300 		}
   1301 		KASSERT(ip6 != NULL);
   1302 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1303 	}
   1304 #endif
   1305 
   1306 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1307 		union syn_cache_sa src;
   1308 		union syn_cache_sa dst;
   1309 
   1310 		bzero(&src, sizeof(src));
   1311 		bzero(&dst, sizeof(dst));
   1312 		switch (af) {
   1313 #ifdef INET
   1314 		case AF_INET:
   1315 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1316 			src.sin.sin_family = AF_INET;
   1317 			src.sin.sin_addr = ip->ip_src;
   1318 			src.sin.sin_port = th->th_sport;
   1319 
   1320 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1321 			dst.sin.sin_family = AF_INET;
   1322 			dst.sin.sin_addr = ip->ip_dst;
   1323 			dst.sin.sin_port = th->th_dport;
   1324 			break;
   1325 #endif
   1326 #ifdef INET6
   1327 		case AF_INET6:
   1328 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1329 			src.sin6.sin6_family = AF_INET6;
   1330 			src.sin6.sin6_addr = ip6->ip6_src;
   1331 			src.sin6.sin6_port = th->th_sport;
   1332 
   1333 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1334 			dst.sin6.sin6_family = AF_INET6;
   1335 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1336 			dst.sin6.sin6_port = th->th_dport;
   1337 			break;
   1338 #endif /* INET6 */
   1339 		default:
   1340 			goto badsyn;	/*sanity*/
   1341 		}
   1342 
   1343 		if (so->so_options & SO_DEBUG) {
   1344 #ifdef TCP_DEBUG
   1345 			ostate = tp->t_state;
   1346 #endif
   1347 
   1348 			tcp_saveti = NULL;
   1349 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1350 				goto nosave;
   1351 
   1352 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1353 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1354 				if (!tcp_saveti)
   1355 					goto nosave;
   1356 			} else {
   1357 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1358 				if (!tcp_saveti)
   1359 					goto nosave;
   1360 				MCLAIM(m, &tcp_mowner);
   1361 				tcp_saveti->m_len = iphlen;
   1362 				m_copydata(m, 0, iphlen,
   1363 				    mtod(tcp_saveti, caddr_t));
   1364 			}
   1365 
   1366 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1367 				m_freem(tcp_saveti);
   1368 				tcp_saveti = NULL;
   1369 			} else {
   1370 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1371 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1372 				    sizeof(struct tcphdr));
   1373 			}
   1374 	nosave:;
   1375 		}
   1376 		if (so->so_options & SO_ACCEPTCONN) {
   1377 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1378 				if (tiflags & TH_RST) {
   1379 					syn_cache_reset(&src.sa, &dst.sa, th);
   1380 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1381 				    (TH_ACK|TH_SYN)) {
   1382 					/*
   1383 					 * Received a SYN,ACK.  This should
   1384 					 * never happen while we are in
   1385 					 * LISTEN.  Send an RST.
   1386 					 */
   1387 					goto badsyn;
   1388 				} else if (tiflags & TH_ACK) {
   1389 					so = syn_cache_get(&src.sa, &dst.sa,
   1390 						th, toff, tlen, so, m);
   1391 					if (so == NULL) {
   1392 						/*
   1393 						 * We don't have a SYN for
   1394 						 * this ACK; send an RST.
   1395 						 */
   1396 						goto badsyn;
   1397 					} else if (so ==
   1398 					    (struct socket *)(-1)) {
   1399 						/*
   1400 						 * We were unable to create
   1401 						 * the connection.  If the
   1402 						 * 3-way handshake was
   1403 						 * completed, and RST has
   1404 						 * been sent to the peer.
   1405 						 * Since the mbuf might be
   1406 						 * in use for the reply,
   1407 						 * do not free it.
   1408 						 */
   1409 						m = NULL;
   1410 					} else {
   1411 						/*
   1412 						 * We have created a
   1413 						 * full-blown connection.
   1414 						 */
   1415 						tp = NULL;
   1416 						inp = NULL;
   1417 #ifdef INET6
   1418 						in6p = NULL;
   1419 #endif
   1420 						switch (so->so_proto->pr_domain->dom_family) {
   1421 #ifdef INET
   1422 						case AF_INET:
   1423 							inp = sotoinpcb(so);
   1424 							tp = intotcpcb(inp);
   1425 							break;
   1426 #endif
   1427 #ifdef INET6
   1428 						case AF_INET6:
   1429 							in6p = sotoin6pcb(so);
   1430 							tp = in6totcpcb(in6p);
   1431 							break;
   1432 #endif
   1433 						}
   1434 						if (tp == NULL)
   1435 							goto badsyn;	/*XXX*/
   1436 						tiwin <<= tp->snd_scale;
   1437 						goto after_listen;
   1438 					}
   1439 				} else {
   1440 					/*
   1441 					 * None of RST, SYN or ACK was set.
   1442 					 * This is an invalid packet for a
   1443 					 * TCB in LISTEN state.  Send a RST.
   1444 					 */
   1445 					goto badsyn;
   1446 				}
   1447 			} else {
   1448 				/*
   1449 				 * Received a SYN.
   1450 				 *
   1451 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1452 				 */
   1453 				if (m->m_flags & (M_BCAST|M_MCAST))
   1454 					goto drop;
   1455 
   1456 				switch (af) {
   1457 #ifdef INET6
   1458 				case AF_INET6:
   1459 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1460 						goto drop;
   1461 					break;
   1462 #endif /* INET6 */
   1463 				case AF_INET:
   1464 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1465 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1466 						goto drop;
   1467 				break;
   1468 				}
   1469 
   1470 #ifdef INET6
   1471 				/*
   1472 				 * If deprecated address is forbidden, we do
   1473 				 * not accept SYN to deprecated interface
   1474 				 * address to prevent any new inbound
   1475 				 * connection from getting established.
   1476 				 * When we do not accept SYN, we send a TCP
   1477 				 * RST, with deprecated source address (instead
   1478 				 * of dropping it).  We compromise it as it is
   1479 				 * much better for peer to send a RST, and
   1480 				 * RST will be the final packet for the
   1481 				 * exchange.
   1482 				 *
   1483 				 * If we do not forbid deprecated addresses, we
   1484 				 * accept the SYN packet.  RFC2462 does not
   1485 				 * suggest dropping SYN in this case.
   1486 				 * If we decipher RFC2462 5.5.4, it says like
   1487 				 * this:
   1488 				 * 1. use of deprecated addr with existing
   1489 				 *    communication is okay - "SHOULD continue
   1490 				 *    to be used"
   1491 				 * 2. use of it with new communication:
   1492 				 *   (2a) "SHOULD NOT be used if alternate
   1493 				 *        address with sufficient scope is
   1494 				 *        available"
   1495 				 *   (2b) nothing mentioned otherwise.
   1496 				 * Here we fall into (2b) case as we have no
   1497 				 * choice in our source address selection - we
   1498 				 * must obey the peer.
   1499 				 *
   1500 				 * The wording in RFC2462 is confusing, and
   1501 				 * there are multiple description text for
   1502 				 * deprecated address handling - worse, they
   1503 				 * are not exactly the same.  I believe 5.5.4
   1504 				 * is the best one, so we follow 5.5.4.
   1505 				 */
   1506 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1507 					struct in6_ifaddr *ia6;
   1508 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1509 					    &ip6->ip6_dst)) &&
   1510 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1511 						tp = NULL;
   1512 						goto dropwithreset;
   1513 					}
   1514 				}
   1515 #endif
   1516 
   1517 #ifdef IPSEC
   1518 				switch (af) {
   1519 #ifdef INET
   1520 				case AF_INET:
   1521 					if (ipsec4_in_reject_so(m, so)) {
   1522 						ipsecstat.in_polvio++;
   1523 						tp = NULL;
   1524 						goto dropwithreset;
   1525 					}
   1526 					break;
   1527 #endif
   1528 #ifdef INET6
   1529 				case AF_INET6:
   1530 					if (ipsec6_in_reject_so(m, so)) {
   1531 						ipsec6stat.in_polvio++;
   1532 						tp = NULL;
   1533 						goto dropwithreset;
   1534 					}
   1535 					break;
   1536 #endif
   1537 				}
   1538 #endif
   1539 
   1540 				/*
   1541 				 * LISTEN socket received a SYN
   1542 				 * from itself?  This can't possibly
   1543 				 * be valid; drop the packet.
   1544 				 */
   1545 				if (th->th_sport == th->th_dport) {
   1546 					int i;
   1547 
   1548 					switch (af) {
   1549 #ifdef INET
   1550 					case AF_INET:
   1551 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1552 						break;
   1553 #endif
   1554 #ifdef INET6
   1555 					case AF_INET6:
   1556 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1557 						break;
   1558 #endif
   1559 					default:
   1560 						i = 1;
   1561 					}
   1562 					if (i) {
   1563 						tcpstat.tcps_badsyn++;
   1564 						goto drop;
   1565 					}
   1566 				}
   1567 
   1568 				/*
   1569 				 * SYN looks ok; create compressed TCP
   1570 				 * state for it.
   1571 				 */
   1572 				if (so->so_qlen <= so->so_qlimit &&
   1573 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1574 						so, m, optp, optlen, &opti))
   1575 					m = NULL;
   1576 			}
   1577 			goto drop;
   1578 		}
   1579 	}
   1580 
   1581 after_listen:
   1582 #ifdef DIAGNOSTIC
   1583 	/*
   1584 	 * Should not happen now that all embryonic connections
   1585 	 * are handled with compressed state.
   1586 	 */
   1587 	if (tp->t_state == TCPS_LISTEN)
   1588 		panic("tcp_input: TCPS_LISTEN");
   1589 #endif
   1590 
   1591 	/*
   1592 	 * Segment received on connection.
   1593 	 * Reset idle time and keep-alive timer.
   1594 	 */
   1595 	tp->t_rcvtime = tcp_now;
   1596 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1597 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1598 
   1599 	/*
   1600 	 * Process options.
   1601 	 */
   1602 #ifdef TCP_SIGNATURE
   1603 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1604 #else
   1605 	if (optp)
   1606 #endif
   1607 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1608 			goto drop;
   1609 
   1610 	if (TCP_SACK_ENABLED(tp)) {
   1611 		tcp_del_sackholes(tp, th);
   1612 	}
   1613 
   1614 	if (TCP_ECN_ALLOWED(tp)) {
   1615 		switch (iptos & IPTOS_ECN_MASK) {
   1616 		case IPTOS_ECN_CE:
   1617 			tp->t_flags |= TF_ECN_SND_ECE;
   1618 			tcpstat.tcps_ecn_ce++;
   1619 			break;
   1620 		case IPTOS_ECN_ECT0:
   1621 			tcpstat.tcps_ecn_ect++;
   1622 			break;
   1623 		case IPTOS_ECN_ECT1:
   1624 			/* XXX: ignore for now -- rpaulo */
   1625 			break;
   1626 		}
   1627 
   1628 		if (tiflags & TH_CWR)
   1629 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1630 
   1631 		/*
   1632 		 * Congestion experienced.
   1633 		 * Ignore if we are already trying to recover.
   1634 		 */
   1635 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1636 			tcp_reno_congestion_exp(tp);
   1637 	}
   1638 
   1639 	if (opti.ts_present && opti.ts_ecr) {
   1640 		/*
   1641 		 * Calculate the RTT from the returned time stamp and the
   1642 		 * connection's time base.  If the time stamp is later than
   1643 		 * the current time, or is extremely old, fall back to non-1323
   1644 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
   1645 		 * at the same time.
   1646 		 */
   1647 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1648 		if (ts_rtt > TCP_PAWS_IDLE)
   1649 			ts_rtt = 0;
   1650 	} else {
   1651 		ts_rtt = 0;
   1652 	}
   1653 
   1654 	/*
   1655 	 * Header prediction: check for the two common cases
   1656 	 * of a uni-directional data xfer.  If the packet has
   1657 	 * no control flags, is in-sequence, the window didn't
   1658 	 * change and we're not retransmitting, it's a
   1659 	 * candidate.  If the length is zero and the ack moved
   1660 	 * forward, we're the sender side of the xfer.  Just
   1661 	 * free the data acked & wake any higher level process
   1662 	 * that was blocked waiting for space.  If the length
   1663 	 * is non-zero and the ack didn't move, we're the
   1664 	 * receiver side.  If we're getting packets in-order
   1665 	 * (the reassembly queue is empty), add the data to
   1666 	 * the socket buffer and note that we need a delayed ack.
   1667 	 */
   1668 	if (tp->t_state == TCPS_ESTABLISHED &&
   1669 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1670 	        == TH_ACK &&
   1671 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1672 	    th->th_seq == tp->rcv_nxt &&
   1673 	    tiwin && tiwin == tp->snd_wnd &&
   1674 	    tp->snd_nxt == tp->snd_max) {
   1675 
   1676 		/*
   1677 		 * If last ACK falls within this segment's sequence numbers,
   1678 		 *  record the timestamp.
   1679 		 * NOTE:
   1680 		 * 1) That the test incorporates suggestions from the latest
   1681 		 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1682 		 * 2) That updating only on newer timestamps interferes with
   1683 		 *    our earlier PAWS tests, so this check should be solely
   1684 		 *    predicated on the sequence space of this segment.
   1685 		 * 3) That we modify the segment boundary check to be
   1686 		 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   1687 		 *    instead of RFC1323's
   1688 		 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   1689 		 *    This modified check allows us to overcome RFC1323's
   1690 		 *    limitations as described in Stevens TCP/IP Illustrated
   1691 		 *    Vol. 2 p.869. In such cases, we can still calculate the
   1692 		 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   1693 		 */
   1694 		if (opti.ts_present &&
   1695 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1696 		    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   1697 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1698 			tp->ts_recent_age = tcp_now;
   1699 			tp->ts_recent = opti.ts_val;
   1700 		}
   1701 
   1702 		if (tlen == 0) {
   1703 			/* Ack prediction. */
   1704 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1705 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1706 			    tp->snd_cwnd >= tp->snd_wnd &&
   1707 			    tp->t_partialacks < 0) {
   1708 				/*
   1709 				 * this is a pure ack for outstanding data.
   1710 				 */
   1711 				++tcpstat.tcps_predack;
   1712 				if (ts_rtt)
   1713 					tcp_xmit_timer(tp, ts_rtt);
   1714 				else if (tp->t_rtttime &&
   1715 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1716 					tcp_xmit_timer(tp,
   1717 					  tcp_now - tp->t_rtttime);
   1718 				acked = th->th_ack - tp->snd_una;
   1719 				tcpstat.tcps_rcvackpack++;
   1720 				tcpstat.tcps_rcvackbyte += acked;
   1721 				ND6_HINT(tp);
   1722 
   1723 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1724 					tp->t_lastm = NULL;
   1725 				sbdrop(&so->so_snd, acked);
   1726 				tp->t_lastoff -= acked;
   1727 
   1728 				ICMP_CHECK(tp, th, acked);
   1729 
   1730 				tp->snd_una = th->th_ack;
   1731 				tp->snd_fack = tp->snd_una;
   1732 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1733 					tp->snd_high = tp->snd_una;
   1734 				m_freem(m);
   1735 
   1736 				/*
   1737 				 * If all outstanding data are acked, stop
   1738 				 * retransmit timer, otherwise restart timer
   1739 				 * using current (possibly backed-off) value.
   1740 				 * If process is waiting for space,
   1741 				 * wakeup/selwakeup/signal.  If data
   1742 				 * are ready to send, let tcp_output
   1743 				 * decide between more output or persist.
   1744 				 */
   1745 				if (tp->snd_una == tp->snd_max)
   1746 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1747 				else if (TCP_TIMER_ISARMED(tp,
   1748 				    TCPT_PERSIST) == 0)
   1749 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1750 					    tp->t_rxtcur);
   1751 
   1752 				sowwakeup(so);
   1753 				if (so->so_snd.sb_cc)
   1754 					(void) tcp_output(tp);
   1755 				if (tcp_saveti)
   1756 					m_freem(tcp_saveti);
   1757 				return;
   1758 			}
   1759 		} else if (th->th_ack == tp->snd_una &&
   1760 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1761 		    tlen <= sbspace(&so->so_rcv)) {
   1762 			/*
   1763 			 * this is a pure, in-sequence data packet
   1764 			 * with nothing on the reassembly queue and
   1765 			 * we have enough buffer space to take it.
   1766 			 */
   1767 			++tcpstat.tcps_preddat;
   1768 			tp->rcv_nxt += tlen;
   1769 			tcpstat.tcps_rcvpack++;
   1770 			tcpstat.tcps_rcvbyte += tlen;
   1771 			ND6_HINT(tp);
   1772 			/*
   1773 			 * Drop TCP, IP headers and TCP options then add data
   1774 			 * to socket buffer.
   1775 			 */
   1776 			if (so->so_state & SS_CANTRCVMORE)
   1777 				m_freem(m);
   1778 			else {
   1779 				m_adj(m, toff + off);
   1780 				sbappendstream(&so->so_rcv, m);
   1781 			}
   1782 			sorwakeup(so);
   1783 			TCP_SETUP_ACK(tp, th);
   1784 			if (tp->t_flags & TF_ACKNOW)
   1785 				(void) tcp_output(tp);
   1786 			if (tcp_saveti)
   1787 				m_freem(tcp_saveti);
   1788 			return;
   1789 		}
   1790 	}
   1791 
   1792 	/*
   1793 	 * Compute mbuf offset to TCP data segment.
   1794 	 */
   1795 	hdroptlen = toff + off;
   1796 
   1797 	/*
   1798 	 * Calculate amount of space in receive window,
   1799 	 * and then do TCP input processing.
   1800 	 * Receive window is amount of space in rcv queue,
   1801 	 * but not less than advertised window.
   1802 	 */
   1803 	{ int win;
   1804 
   1805 	win = sbspace(&so->so_rcv);
   1806 	if (win < 0)
   1807 		win = 0;
   1808 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1809 	}
   1810 
   1811 	switch (tp->t_state) {
   1812 	/*
   1813 	 * If the state is SYN_SENT:
   1814 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1815 	 *	if seg contains a RST, then drop the connection.
   1816 	 *	if seg does not contain SYN, then drop it.
   1817 	 * Otherwise this is an acceptable SYN segment
   1818 	 *	initialize tp->rcv_nxt and tp->irs
   1819 	 *	if seg contains ack then advance tp->snd_una
   1820 	 *	if seg contains a ECE and ECN support is enabled, the stream
   1821 	 *	    is ECN capable.
   1822 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1823 	 *	arrange for segment to be acked (eventually)
   1824 	 *	continue processing rest of data/controls, beginning with URG
   1825 	 */
   1826 	case TCPS_SYN_SENT:
   1827 		if ((tiflags & TH_ACK) &&
   1828 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1829 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1830 			goto dropwithreset;
   1831 		if (tiflags & TH_RST) {
   1832 			if (tiflags & TH_ACK)
   1833 				tp = tcp_drop(tp, ECONNREFUSED);
   1834 			goto drop;
   1835 		}
   1836 		if ((tiflags & TH_SYN) == 0)
   1837 			goto drop;
   1838 		if (tiflags & TH_ACK) {
   1839 			tp->snd_una = th->th_ack;
   1840 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1841 				tp->snd_nxt = tp->snd_una;
   1842 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   1843 				tp->snd_high = tp->snd_una;
   1844 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1845 
   1846 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   1847 				tp->t_flags |= TF_ECN_PERMIT;
   1848 				tcpstat.tcps_ecn_shs++;
   1849 			}
   1850 
   1851 		}
   1852 		tp->irs = th->th_seq;
   1853 		tcp_rcvseqinit(tp);
   1854 		tp->t_flags |= TF_ACKNOW;
   1855 		tcp_mss_from_peer(tp, opti.maxseg);
   1856 
   1857 		/*
   1858 		 * Initialize the initial congestion window.  If we
   1859 		 * had to retransmit the SYN, we must initialize cwnd
   1860 		 * to 1 segment (i.e. the Loss Window).
   1861 		 */
   1862 		if (tp->t_flags & TF_SYN_REXMT)
   1863 			tp->snd_cwnd = tp->t_peermss;
   1864 		else {
   1865 			int ss = tcp_init_win;
   1866 #ifdef INET
   1867 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1868 				ss = tcp_init_win_local;
   1869 #endif
   1870 #ifdef INET6
   1871 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1872 				ss = tcp_init_win_local;
   1873 #endif
   1874 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1875 		}
   1876 
   1877 		tcp_rmx_rtt(tp);
   1878 		if (tiflags & TH_ACK) {
   1879 			tcpstat.tcps_connects++;
   1880 			soisconnected(so);
   1881 			tcp_established(tp);
   1882 			/* Do window scaling on this connection? */
   1883 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1884 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1885 				tp->snd_scale = tp->requested_s_scale;
   1886 				tp->rcv_scale = tp->request_r_scale;
   1887 			}
   1888 			TCP_REASS_LOCK(tp);
   1889 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1890 			TCP_REASS_UNLOCK(tp);
   1891 			/*
   1892 			 * if we didn't have to retransmit the SYN,
   1893 			 * use its rtt as our initial srtt & rtt var.
   1894 			 */
   1895 			if (tp->t_rtttime)
   1896 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1897 		} else
   1898 			tp->t_state = TCPS_SYN_RECEIVED;
   1899 
   1900 		/*
   1901 		 * Advance th->th_seq to correspond to first data byte.
   1902 		 * If data, trim to stay within window,
   1903 		 * dropping FIN if necessary.
   1904 		 */
   1905 		th->th_seq++;
   1906 		if (tlen > tp->rcv_wnd) {
   1907 			todrop = tlen - tp->rcv_wnd;
   1908 			m_adj(m, -todrop);
   1909 			tlen = tp->rcv_wnd;
   1910 			tiflags &= ~TH_FIN;
   1911 			tcpstat.tcps_rcvpackafterwin++;
   1912 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1913 		}
   1914 		tp->snd_wl1 = th->th_seq - 1;
   1915 		tp->rcv_up = th->th_seq;
   1916 		goto step6;
   1917 
   1918 	/*
   1919 	 * If the state is SYN_RECEIVED:
   1920 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1921 	 *	and generate an RST.  See page 36, rfc793
   1922 	 */
   1923 	case TCPS_SYN_RECEIVED:
   1924 		if ((tiflags & TH_ACK) &&
   1925 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1926 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1927 			goto dropwithreset;
   1928 		break;
   1929 	}
   1930 
   1931 	/*
   1932 	 * States other than LISTEN or SYN_SENT.
   1933 	 * First check timestamp, if present.
   1934 	 * Then check that at least some bytes of segment are within
   1935 	 * receive window.  If segment begins before rcv_nxt,
   1936 	 * drop leading data (and SYN); if nothing left, just ack.
   1937 	 *
   1938 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1939 	 * and it's less than ts_recent, drop it.
   1940 	 */
   1941 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1942 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1943 
   1944 		/* Check to see if ts_recent is over 24 days old.  */
   1945 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   1946 			/*
   1947 			 * Invalidate ts_recent.  If this segment updates
   1948 			 * ts_recent, the age will be reset later and ts_recent
   1949 			 * will get a valid value.  If it does not, setting
   1950 			 * ts_recent to zero will at least satisfy the
   1951 			 * requirement that zero be placed in the timestamp
   1952 			 * echo reply when ts_recent isn't valid.  The
   1953 			 * age isn't reset until we get a valid ts_recent
   1954 			 * because we don't want out-of-order segments to be
   1955 			 * dropped when ts_recent is old.
   1956 			 */
   1957 			tp->ts_recent = 0;
   1958 		} else {
   1959 			tcpstat.tcps_rcvduppack++;
   1960 			tcpstat.tcps_rcvdupbyte += tlen;
   1961 			tcpstat.tcps_pawsdrop++;
   1962 			tcp_new_dsack(tp, th->th_seq, tlen);
   1963 			goto dropafterack;
   1964 		}
   1965 	}
   1966 
   1967 	todrop = tp->rcv_nxt - th->th_seq;
   1968 	dupseg = FALSE;
   1969 	if (todrop > 0) {
   1970 		if (tiflags & TH_SYN) {
   1971 			tiflags &= ~TH_SYN;
   1972 			th->th_seq++;
   1973 			if (th->th_urp > 1)
   1974 				th->th_urp--;
   1975 			else {
   1976 				tiflags &= ~TH_URG;
   1977 				th->th_urp = 0;
   1978 			}
   1979 			todrop--;
   1980 		}
   1981 		if (todrop > tlen ||
   1982 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1983 			/*
   1984 			 * Any valid FIN or RST must be to the left of the
   1985 			 * window.  At this point the FIN or RST must be a
   1986 			 * duplicate or out of sequence; drop it.
   1987 			 */
   1988 			if (tiflags & TH_RST)
   1989 				goto drop;
   1990 			tiflags &= ~(TH_FIN|TH_RST);
   1991 			/*
   1992 			 * Send an ACK to resynchronize and drop any data.
   1993 			 * But keep on processing for RST or ACK.
   1994 			 */
   1995 			tp->t_flags |= TF_ACKNOW;
   1996 			todrop = tlen;
   1997 			dupseg = TRUE;
   1998 			tcpstat.tcps_rcvdupbyte += todrop;
   1999 			tcpstat.tcps_rcvduppack++;
   2000 		} else if ((tiflags & TH_RST) &&
   2001 			   th->th_seq != tp->last_ack_sent) {
   2002 			/*
   2003 			 * Test for reset before adjusting the sequence
   2004 			 * number for overlapping data.
   2005 			 */
   2006 			goto dropafterack_ratelim;
   2007 		} else {
   2008 			tcpstat.tcps_rcvpartduppack++;
   2009 			tcpstat.tcps_rcvpartdupbyte += todrop;
   2010 		}
   2011 		tcp_new_dsack(tp, th->th_seq, todrop);
   2012 		hdroptlen += todrop;	/*drop from head afterwards*/
   2013 		th->th_seq += todrop;
   2014 		tlen -= todrop;
   2015 		if (th->th_urp > todrop)
   2016 			th->th_urp -= todrop;
   2017 		else {
   2018 			tiflags &= ~TH_URG;
   2019 			th->th_urp = 0;
   2020 		}
   2021 	}
   2022 
   2023 	/*
   2024 	 * If new data are received on a connection after the
   2025 	 * user processes are gone, then RST the other end.
   2026 	 */
   2027 	if ((so->so_state & SS_NOFDREF) &&
   2028 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2029 		tp = tcp_close(tp);
   2030 		tcpstat.tcps_rcvafterclose++;
   2031 		goto dropwithreset;
   2032 	}
   2033 
   2034 	/*
   2035 	 * If segment ends after window, drop trailing data
   2036 	 * (and PUSH and FIN); if nothing left, just ACK.
   2037 	 */
   2038 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2039 	if (todrop > 0) {
   2040 		tcpstat.tcps_rcvpackafterwin++;
   2041 		if (todrop >= tlen) {
   2042 			/*
   2043 			 * The segment actually starts after the window.
   2044 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2045 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2046 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2047 			 */
   2048 			tcpstat.tcps_rcvbyteafterwin += tlen;
   2049 			/*
   2050 			 * If a new connection request is received
   2051 			 * while in TIME_WAIT, drop the old connection
   2052 			 * and start over if the sequence numbers
   2053 			 * are above the previous ones.
   2054 			 *
   2055 			 * NOTE: We will checksum the packet again, and
   2056 			 * so we need to put the header fields back into
   2057 			 * network order!
   2058 			 * XXX This kind of sucks, but we don't expect
   2059 			 * XXX this to happen very often, so maybe it
   2060 			 * XXX doesn't matter so much.
   2061 			 */
   2062 			if (tiflags & TH_SYN &&
   2063 			    tp->t_state == TCPS_TIME_WAIT &&
   2064 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2065 				tp = tcp_close(tp);
   2066 				TCP_FIELDS_TO_NET(th);
   2067 				goto findpcb;
   2068 			}
   2069 			/*
   2070 			 * If window is closed can only take segments at
   2071 			 * window edge, and have to drop data and PUSH from
   2072 			 * incoming segments.  Continue processing, but
   2073 			 * remember to ack.  Otherwise, drop segment
   2074 			 * and (if not RST) ack.
   2075 			 */
   2076 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2077 				tp->t_flags |= TF_ACKNOW;
   2078 				tcpstat.tcps_rcvwinprobe++;
   2079 			} else
   2080 				goto dropafterack;
   2081 		} else
   2082 			tcpstat.tcps_rcvbyteafterwin += todrop;
   2083 		m_adj(m, -todrop);
   2084 		tlen -= todrop;
   2085 		tiflags &= ~(TH_PUSH|TH_FIN);
   2086 	}
   2087 
   2088 	/*
   2089 	 * If last ACK falls within this segment's sequence numbers,
   2090 	 * and the timestamp is newer, record it.
   2091 	 */
   2092 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   2093 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2094 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   2095 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2096 		tp->ts_recent_age = tcp_now;
   2097 		tp->ts_recent = opti.ts_val;
   2098 	}
   2099 
   2100 	/*
   2101 	 * If the RST bit is set examine the state:
   2102 	 *    SYN_RECEIVED STATE:
   2103 	 *	If passive open, return to LISTEN state.
   2104 	 *	If active open, inform user that connection was refused.
   2105 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2106 	 *	Inform user that connection was reset, and close tcb.
   2107 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2108 	 *	Close the tcb.
   2109 	 */
   2110 	if (tiflags & TH_RST) {
   2111 		if (th->th_seq != tp->last_ack_sent)
   2112 			goto dropafterack_ratelim;
   2113 
   2114 		switch (tp->t_state) {
   2115 		case TCPS_SYN_RECEIVED:
   2116 			so->so_error = ECONNREFUSED;
   2117 			goto close;
   2118 
   2119 		case TCPS_ESTABLISHED:
   2120 		case TCPS_FIN_WAIT_1:
   2121 		case TCPS_FIN_WAIT_2:
   2122 		case TCPS_CLOSE_WAIT:
   2123 			so->so_error = ECONNRESET;
   2124 		close:
   2125 			tp->t_state = TCPS_CLOSED;
   2126 			tcpstat.tcps_drops++;
   2127 			tp = tcp_close(tp);
   2128 			goto drop;
   2129 
   2130 		case TCPS_CLOSING:
   2131 		case TCPS_LAST_ACK:
   2132 		case TCPS_TIME_WAIT:
   2133 			tp = tcp_close(tp);
   2134 			goto drop;
   2135 		}
   2136 	}
   2137 
   2138 	/*
   2139 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2140 	 * we must be in a synchronized state.  RFC791 states (under RST
   2141 	 * generation) that any unacceptable segment (an out-of-order SYN
   2142 	 * qualifies) received in a synchronized state must elicit only an
   2143 	 * empty acknowledgment segment ... and the connection remains in
   2144 	 * the same state.
   2145 	 */
   2146 	if (tiflags & TH_SYN) {
   2147 		if (tp->rcv_nxt == th->th_seq) {
   2148 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2149 			    TH_ACK);
   2150 			if (tcp_saveti)
   2151 				m_freem(tcp_saveti);
   2152 			return;
   2153 		}
   2154 
   2155 		goto dropafterack_ratelim;
   2156 	}
   2157 
   2158 	/*
   2159 	 * If the ACK bit is off we drop the segment and return.
   2160 	 */
   2161 	if ((tiflags & TH_ACK) == 0) {
   2162 		if (tp->t_flags & TF_ACKNOW)
   2163 			goto dropafterack;
   2164 		else
   2165 			goto drop;
   2166 	}
   2167 
   2168 	/*
   2169 	 * Ack processing.
   2170 	 */
   2171 	switch (tp->t_state) {
   2172 
   2173 	/*
   2174 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2175 	 * ESTABLISHED state and continue processing, otherwise
   2176 	 * send an RST.
   2177 	 */
   2178 	case TCPS_SYN_RECEIVED:
   2179 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2180 		    SEQ_GT(th->th_ack, tp->snd_max))
   2181 			goto dropwithreset;
   2182 		tcpstat.tcps_connects++;
   2183 		soisconnected(so);
   2184 		tcp_established(tp);
   2185 		/* Do window scaling? */
   2186 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2187 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2188 			tp->snd_scale = tp->requested_s_scale;
   2189 			tp->rcv_scale = tp->request_r_scale;
   2190 		}
   2191 		TCP_REASS_LOCK(tp);
   2192 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2193 		TCP_REASS_UNLOCK(tp);
   2194 		tp->snd_wl1 = th->th_seq - 1;
   2195 		/* fall into ... */
   2196 
   2197 	/*
   2198 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2199 	 * ACKs.  If the ack is in the range
   2200 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2201 	 * then advance tp->snd_una to th->th_ack and drop
   2202 	 * data from the retransmission queue.  If this ACK reflects
   2203 	 * more up to date window information we update our window information.
   2204 	 */
   2205 	case TCPS_ESTABLISHED:
   2206 	case TCPS_FIN_WAIT_1:
   2207 	case TCPS_FIN_WAIT_2:
   2208 	case TCPS_CLOSE_WAIT:
   2209 	case TCPS_CLOSING:
   2210 	case TCPS_LAST_ACK:
   2211 	case TCPS_TIME_WAIT:
   2212 
   2213 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2214 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2215 				tcpstat.tcps_rcvdupack++;
   2216 				/*
   2217 				 * If we have outstanding data (other than
   2218 				 * a window probe), this is a completely
   2219 				 * duplicate ack (ie, window info didn't
   2220 				 * change), the ack is the biggest we've
   2221 				 * seen and we've seen exactly our rexmt
   2222 				 * threshhold of them, assume a packet
   2223 				 * has been dropped and retransmit it.
   2224 				 * Kludge snd_nxt & the congestion
   2225 				 * window so we send only this one
   2226 				 * packet.
   2227 				 *
   2228 				 * We know we're losing at the current
   2229 				 * window size so do congestion avoidance
   2230 				 * (set ssthresh to half the current window
   2231 				 * and pull our congestion window back to
   2232 				 * the new ssthresh).
   2233 				 *
   2234 				 * Dup acks mean that packets have left the
   2235 				 * network (they're now cached at the receiver)
   2236 				 * so bump cwnd by the amount in the receiver
   2237 				 * to keep a constant cwnd packets in the
   2238 				 * network.
   2239 				 *
   2240 				 * When using TCP ECN, notify the peer that
   2241 				 * we reduced the cwnd.
   2242 				 *
   2243 				 * If we are using TCP/SACK, then enter
   2244 				 * Fast Recovery if the receiver SACKs
   2245 				 * data that is tcprexmtthresh * MSS
   2246 				 * bytes past the last ACKed segment,
   2247 				 * irrespective of the number of DupAcks.
   2248 				 */
   2249 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2250 				    th->th_ack != tp->snd_una)
   2251 					tp->t_dupacks = 0;
   2252 				else if (tp->t_partialacks < 0 &&
   2253 					 (++tp->t_dupacks == tcprexmtthresh ||
   2254 					 TCP_FACK_FASTRECOV(tp))) {
   2255 					/*
   2256 					 * Do the fast retransmit, and adjust
   2257 					 * congestion control paramenters.
   2258 					 */
   2259 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2260 						/* False fast retransmit */
   2261 						break;
   2262 					} else
   2263 						goto drop;
   2264 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2265 					tp->snd_cwnd += tp->t_segsz;
   2266 					(void) tcp_output(tp);
   2267 					goto drop;
   2268 				}
   2269 			} else {
   2270 				/*
   2271 				 * If the ack appears to be very old, only
   2272 				 * allow data that is in-sequence.  This
   2273 				 * makes it somewhat more difficult to insert
   2274 				 * forged data by guessing sequence numbers.
   2275 				 * Sent an ack to try to update the send
   2276 				 * sequence number on the other side.
   2277 				 */
   2278 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2279 				    SEQ_LT(th->th_ack,
   2280 				    tp->snd_una - tp->max_sndwnd))
   2281 					goto dropafterack;
   2282 			}
   2283 			break;
   2284 		}
   2285 		/*
   2286 		 * If the congestion window was inflated to account
   2287 		 * for the other side's cached packets, retract it.
   2288 		 */
   2289 		/* XXX: make SACK have his own congestion control
   2290 		 * struct -- rpaulo */
   2291 		if (TCP_SACK_ENABLED(tp))
   2292 			tcp_sack_newack(tp, th);
   2293 		else
   2294 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2295 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2296 			tcpstat.tcps_rcvacktoomuch++;
   2297 			goto dropafterack;
   2298 		}
   2299 		acked = th->th_ack - tp->snd_una;
   2300 		tcpstat.tcps_rcvackpack++;
   2301 		tcpstat.tcps_rcvackbyte += acked;
   2302 
   2303 		/*
   2304 		 * If we have a timestamp reply, update smoothed
   2305 		 * round trip time.  If no timestamp is present but
   2306 		 * transmit timer is running and timed sequence
   2307 		 * number was acked, update smoothed round trip time.
   2308 		 * Since we now have an rtt measurement, cancel the
   2309 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2310 		 * Recompute the initial retransmit timer.
   2311 		 */
   2312 		if (ts_rtt)
   2313 			tcp_xmit_timer(tp, ts_rtt);
   2314 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2315 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2316 
   2317 		/*
   2318 		 * If all outstanding data is acked, stop retransmit
   2319 		 * timer and remember to restart (more output or persist).
   2320 		 * If there is more data to be acked, restart retransmit
   2321 		 * timer, using current (possibly backed-off) value.
   2322 		 */
   2323 		if (th->th_ack == tp->snd_max) {
   2324 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2325 			needoutput = 1;
   2326 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2327 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2328 
   2329 		/*
   2330 		 * New data has been acked, adjust the congestion window.
   2331 		 */
   2332 		tp->t_congctl->newack(tp, th);
   2333 
   2334 		ND6_HINT(tp);
   2335 		if (acked > so->so_snd.sb_cc) {
   2336 			tp->snd_wnd -= so->so_snd.sb_cc;
   2337 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2338 			ourfinisacked = 1;
   2339 		} else {
   2340 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2341 				tp->t_lastm = NULL;
   2342 			sbdrop(&so->so_snd, acked);
   2343 			tp->t_lastoff -= acked;
   2344 			tp->snd_wnd -= acked;
   2345 			ourfinisacked = 0;
   2346 		}
   2347 		sowwakeup(so);
   2348 
   2349 		ICMP_CHECK(tp, th, acked);
   2350 
   2351 		tp->snd_una = th->th_ack;
   2352 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2353 			tp->snd_fack = tp->snd_una;
   2354 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2355 			tp->snd_nxt = tp->snd_una;
   2356 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2357 			tp->snd_high = tp->snd_una;
   2358 
   2359 		switch (tp->t_state) {
   2360 
   2361 		/*
   2362 		 * In FIN_WAIT_1 STATE in addition to the processing
   2363 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2364 		 * then enter FIN_WAIT_2.
   2365 		 */
   2366 		case TCPS_FIN_WAIT_1:
   2367 			if (ourfinisacked) {
   2368 				/*
   2369 				 * If we can't receive any more
   2370 				 * data, then closing user can proceed.
   2371 				 * Starting the timer is contrary to the
   2372 				 * specification, but if we don't get a FIN
   2373 				 * we'll hang forever.
   2374 				 */
   2375 				if (so->so_state & SS_CANTRCVMORE) {
   2376 					soisdisconnected(so);
   2377 					if (tcp_maxidle > 0)
   2378 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2379 						    tcp_maxidle);
   2380 				}
   2381 				tp->t_state = TCPS_FIN_WAIT_2;
   2382 			}
   2383 			break;
   2384 
   2385 	 	/*
   2386 		 * In CLOSING STATE in addition to the processing for
   2387 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2388 		 * then enter the TIME-WAIT state, otherwise ignore
   2389 		 * the segment.
   2390 		 */
   2391 		case TCPS_CLOSING:
   2392 			if (ourfinisacked) {
   2393 				tp->t_state = TCPS_TIME_WAIT;
   2394 				tcp_canceltimers(tp);
   2395 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2396 				soisdisconnected(so);
   2397 			}
   2398 			break;
   2399 
   2400 		/*
   2401 		 * In LAST_ACK, we may still be waiting for data to drain
   2402 		 * and/or to be acked, as well as for the ack of our FIN.
   2403 		 * If our FIN is now acknowledged, delete the TCB,
   2404 		 * enter the closed state and return.
   2405 		 */
   2406 		case TCPS_LAST_ACK:
   2407 			if (ourfinisacked) {
   2408 				tp = tcp_close(tp);
   2409 				goto drop;
   2410 			}
   2411 			break;
   2412 
   2413 		/*
   2414 		 * In TIME_WAIT state the only thing that should arrive
   2415 		 * is a retransmission of the remote FIN.  Acknowledge
   2416 		 * it and restart the finack timer.
   2417 		 */
   2418 		case TCPS_TIME_WAIT:
   2419 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2420 			goto dropafterack;
   2421 		}
   2422 	}
   2423 
   2424 step6:
   2425 	/*
   2426 	 * Update window information.
   2427 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2428 	 */
   2429 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2430 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2431 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2432 		/* keep track of pure window updates */
   2433 		if (tlen == 0 &&
   2434 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2435 			tcpstat.tcps_rcvwinupd++;
   2436 		tp->snd_wnd = tiwin;
   2437 		tp->snd_wl1 = th->th_seq;
   2438 		tp->snd_wl2 = th->th_ack;
   2439 		if (tp->snd_wnd > tp->max_sndwnd)
   2440 			tp->max_sndwnd = tp->snd_wnd;
   2441 		needoutput = 1;
   2442 	}
   2443 
   2444 	/*
   2445 	 * Process segments with URG.
   2446 	 */
   2447 	if ((tiflags & TH_URG) && th->th_urp &&
   2448 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2449 		/*
   2450 		 * This is a kludge, but if we receive and accept
   2451 		 * random urgent pointers, we'll crash in
   2452 		 * soreceive.  It's hard to imagine someone
   2453 		 * actually wanting to send this much urgent data.
   2454 		 */
   2455 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2456 			th->th_urp = 0;			/* XXX */
   2457 			tiflags &= ~TH_URG;		/* XXX */
   2458 			goto dodata;			/* XXX */
   2459 		}
   2460 		/*
   2461 		 * If this segment advances the known urgent pointer,
   2462 		 * then mark the data stream.  This should not happen
   2463 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2464 		 * a FIN has been received from the remote side.
   2465 		 * In these states we ignore the URG.
   2466 		 *
   2467 		 * According to RFC961 (Assigned Protocols),
   2468 		 * the urgent pointer points to the last octet
   2469 		 * of urgent data.  We continue, however,
   2470 		 * to consider it to indicate the first octet
   2471 		 * of data past the urgent section as the original
   2472 		 * spec states (in one of two places).
   2473 		 */
   2474 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2475 			tp->rcv_up = th->th_seq + th->th_urp;
   2476 			so->so_oobmark = so->so_rcv.sb_cc +
   2477 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2478 			if (so->so_oobmark == 0)
   2479 				so->so_state |= SS_RCVATMARK;
   2480 			sohasoutofband(so);
   2481 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2482 		}
   2483 		/*
   2484 		 * Remove out of band data so doesn't get presented to user.
   2485 		 * This can happen independent of advancing the URG pointer,
   2486 		 * but if two URG's are pending at once, some out-of-band
   2487 		 * data may creep in... ick.
   2488 		 */
   2489 		if (th->th_urp <= (u_int16_t) tlen
   2490 #ifdef SO_OOBINLINE
   2491 		     && (so->so_options & SO_OOBINLINE) == 0
   2492 #endif
   2493 		     )
   2494 			tcp_pulloutofband(so, th, m, hdroptlen);
   2495 	} else
   2496 		/*
   2497 		 * If no out of band data is expected,
   2498 		 * pull receive urgent pointer along
   2499 		 * with the receive window.
   2500 		 */
   2501 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2502 			tp->rcv_up = tp->rcv_nxt;
   2503 dodata:							/* XXX */
   2504 
   2505 	/*
   2506 	 * Process the segment text, merging it into the TCP sequencing queue,
   2507 	 * and arranging for acknowledgement of receipt if necessary.
   2508 	 * This process logically involves adjusting tp->rcv_wnd as data
   2509 	 * is presented to the user (this happens in tcp_usrreq.c,
   2510 	 * case PRU_RCVD).  If a FIN has already been received on this
   2511 	 * connection then we just ignore the text.
   2512 	 */
   2513 	if ((tlen || (tiflags & TH_FIN)) &&
   2514 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2515 		/*
   2516 		 * Insert segment ti into reassembly queue of tcp with
   2517 		 * control block tp.  Return TH_FIN if reassembly now includes
   2518 		 * a segment with FIN.  The macro form does the common case
   2519 		 * inline (segment is the next to be received on an
   2520 		 * established connection, and the queue is empty),
   2521 		 * avoiding linkage into and removal from the queue and
   2522 		 * repetition of various conversions.
   2523 		 * Set DELACK for segments received in order, but ack
   2524 		 * immediately when segments are out of order
   2525 		 * (so fast retransmit can work).
   2526 		 */
   2527 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2528 		TCP_REASS_LOCK(tp);
   2529 		if (th->th_seq == tp->rcv_nxt &&
   2530 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2531 		    tp->t_state == TCPS_ESTABLISHED) {
   2532 			TCP_SETUP_ACK(tp, th);
   2533 			tp->rcv_nxt += tlen;
   2534 			tiflags = th->th_flags & TH_FIN;
   2535 			tcpstat.tcps_rcvpack++;
   2536 			tcpstat.tcps_rcvbyte += tlen;
   2537 			ND6_HINT(tp);
   2538 			if (so->so_state & SS_CANTRCVMORE)
   2539 				m_freem(m);
   2540 			else {
   2541 				m_adj(m, hdroptlen);
   2542 				sbappendstream(&(so)->so_rcv, m);
   2543 			}
   2544 			sorwakeup(so);
   2545 		} else {
   2546 			m_adj(m, hdroptlen);
   2547 			tiflags = tcp_reass(tp, th, m, &tlen);
   2548 			tp->t_flags |= TF_ACKNOW;
   2549 		}
   2550 		TCP_REASS_UNLOCK(tp);
   2551 
   2552 		/*
   2553 		 * Note the amount of data that peer has sent into
   2554 		 * our window, in order to estimate the sender's
   2555 		 * buffer size.
   2556 		 */
   2557 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2558 	} else {
   2559 		m_freem(m);
   2560 		m = NULL;
   2561 		tiflags &= ~TH_FIN;
   2562 	}
   2563 
   2564 	/*
   2565 	 * If FIN is received ACK the FIN and let the user know
   2566 	 * that the connection is closing.  Ignore a FIN received before
   2567 	 * the connection is fully established.
   2568 	 */
   2569 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2570 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2571 			socantrcvmore(so);
   2572 			tp->t_flags |= TF_ACKNOW;
   2573 			tp->rcv_nxt++;
   2574 		}
   2575 		switch (tp->t_state) {
   2576 
   2577 	 	/*
   2578 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2579 		 */
   2580 		case TCPS_ESTABLISHED:
   2581 			tp->t_state = TCPS_CLOSE_WAIT;
   2582 			break;
   2583 
   2584 	 	/*
   2585 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2586 		 * enter the CLOSING state.
   2587 		 */
   2588 		case TCPS_FIN_WAIT_1:
   2589 			tp->t_state = TCPS_CLOSING;
   2590 			break;
   2591 
   2592 	 	/*
   2593 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2594 		 * starting the time-wait timer, turning off the other
   2595 		 * standard timers.
   2596 		 */
   2597 		case TCPS_FIN_WAIT_2:
   2598 			tp->t_state = TCPS_TIME_WAIT;
   2599 			tcp_canceltimers(tp);
   2600 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2601 			soisdisconnected(so);
   2602 			break;
   2603 
   2604 		/*
   2605 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2606 		 */
   2607 		case TCPS_TIME_WAIT:
   2608 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2609 			break;
   2610 		}
   2611 	}
   2612 #ifdef TCP_DEBUG
   2613 	if (so->so_options & SO_DEBUG)
   2614 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2615 #endif
   2616 
   2617 	/*
   2618 	 * Return any desired output.
   2619 	 */
   2620 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2621 		(void) tcp_output(tp);
   2622 	}
   2623 	if (tcp_saveti)
   2624 		m_freem(tcp_saveti);
   2625 	return;
   2626 
   2627 badsyn:
   2628 	/*
   2629 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2630 	 */
   2631 	tcpstat.tcps_badsyn++;
   2632 	tp = NULL;
   2633 	goto dropwithreset;
   2634 
   2635 dropafterack:
   2636 	/*
   2637 	 * Generate an ACK dropping incoming segment if it occupies
   2638 	 * sequence space, where the ACK reflects our state.
   2639 	 */
   2640 	if (tiflags & TH_RST)
   2641 		goto drop;
   2642 	goto dropafterack2;
   2643 
   2644 dropafterack_ratelim:
   2645 	/*
   2646 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2647 	 */
   2648 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2649 	    tcp_ackdrop_ppslim) == 0) {
   2650 		/* XXX stat */
   2651 		goto drop;
   2652 	}
   2653 	/* ...fall into dropafterack2... */
   2654 
   2655 dropafterack2:
   2656 	m_freem(m);
   2657 	tp->t_flags |= TF_ACKNOW;
   2658 	(void) tcp_output(tp);
   2659 	if (tcp_saveti)
   2660 		m_freem(tcp_saveti);
   2661 	return;
   2662 
   2663 dropwithreset_ratelim:
   2664 	/*
   2665 	 * We may want to rate-limit RSTs in certain situations,
   2666 	 * particularly if we are sending an RST in response to
   2667 	 * an attempt to connect to or otherwise communicate with
   2668 	 * a port for which we have no socket.
   2669 	 */
   2670 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2671 	    tcp_rst_ppslim) == 0) {
   2672 		/* XXX stat */
   2673 		goto drop;
   2674 	}
   2675 	/* ...fall into dropwithreset... */
   2676 
   2677 dropwithreset:
   2678 	/*
   2679 	 * Generate a RST, dropping incoming segment.
   2680 	 * Make ACK acceptable to originator of segment.
   2681 	 */
   2682 	if (tiflags & TH_RST)
   2683 		goto drop;
   2684 
   2685 	switch (af) {
   2686 #ifdef INET6
   2687 	case AF_INET6:
   2688 		/* For following calls to tcp_respond */
   2689 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2690 			goto drop;
   2691 		break;
   2692 #endif /* INET6 */
   2693 	case AF_INET:
   2694 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2695 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2696 			goto drop;
   2697 	}
   2698 
   2699 	if (tiflags & TH_ACK)
   2700 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2701 	else {
   2702 		if (tiflags & TH_SYN)
   2703 			tlen++;
   2704 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2705 		    TH_RST|TH_ACK);
   2706 	}
   2707 	if (tcp_saveti)
   2708 		m_freem(tcp_saveti);
   2709 	return;
   2710 
   2711 badcsum:
   2712 drop:
   2713 	/*
   2714 	 * Drop space held by incoming segment and return.
   2715 	 */
   2716 	if (tp) {
   2717 		if (tp->t_inpcb)
   2718 			so = tp->t_inpcb->inp_socket;
   2719 #ifdef INET6
   2720 		else if (tp->t_in6pcb)
   2721 			so = tp->t_in6pcb->in6p_socket;
   2722 #endif
   2723 		else
   2724 			so = NULL;
   2725 #ifdef TCP_DEBUG
   2726 		if (so && (so->so_options & SO_DEBUG) != 0)
   2727 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2728 #endif
   2729 	}
   2730 	if (tcp_saveti)
   2731 		m_freem(tcp_saveti);
   2732 	m_freem(m);
   2733 	return;
   2734 }
   2735 
   2736 #ifdef TCP_SIGNATURE
   2737 int
   2738 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
   2739 {
   2740 
   2741 	MD5Update(fstate, (u_char *)data, len);
   2742 	return (0);
   2743 }
   2744 
   2745 struct secasvar *
   2746 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   2747 {
   2748 	struct secasvar *sav;
   2749 #ifdef FAST_IPSEC
   2750 	union sockaddr_union dst;
   2751 #endif
   2752 	struct ip *ip;
   2753 	struct ip6_hdr *ip6;
   2754 
   2755 	ip = mtod(m, struct ip *);
   2756 	switch (ip->ip_v) {
   2757 	case 4:
   2758 		ip = mtod(m, struct ip *);
   2759 		ip6 = NULL;
   2760 		break;
   2761 	case 6:
   2762 		ip = NULL;
   2763 		ip6 = mtod(m, struct ip6_hdr *);
   2764 		break;
   2765 	default:
   2766 		return (NULL);
   2767 	}
   2768 
   2769 #ifdef FAST_IPSEC
   2770 	/* Extract the destination from the IP header in the mbuf. */
   2771 	bzero(&dst, sizeof(union sockaddr_union));
   2772 	dst.sa.sa_len = sizeof(struct sockaddr_in);
   2773 	dst.sa.sa_family = AF_INET;
   2774 	dst.sin.sin_addr = ip->ip_dst;
   2775 
   2776 	/*
   2777 	 * Look up an SADB entry which matches the address of the peer.
   2778 	 */
   2779 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   2780 #else
   2781 	if (ip)
   2782 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
   2783 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
   2784 		    htonl(TCP_SIG_SPI), 0, 0);
   2785 	else
   2786 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
   2787 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
   2788 		    htonl(TCP_SIG_SPI), 0, 0);
   2789 #endif
   2790 
   2791 	return (sav);	/* freesav must be performed by caller */
   2792 }
   2793 
   2794 int
   2795 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   2796     struct secasvar *sav, char *sig)
   2797 {
   2798 	MD5_CTX ctx;
   2799 	struct ip *ip;
   2800 	struct ipovly *ipovly;
   2801 	struct ip6_hdr *ip6;
   2802 	struct ippseudo ippseudo;
   2803 	struct ip6_hdr_pseudo ip6pseudo;
   2804 	struct tcphdr th0;
   2805 	int l, tcphdrlen;
   2806 
   2807 	if (sav == NULL)
   2808 		return (-1);
   2809 
   2810 	tcphdrlen = th->th_off * 4;
   2811 
   2812 	switch (mtod(m, struct ip *)->ip_v) {
   2813 	case 4:
   2814 		ip = mtod(m, struct ip *);
   2815 		ip6 = NULL;
   2816 		break;
   2817 	case 6:
   2818 		ip = NULL;
   2819 		ip6 = mtod(m, struct ip6_hdr *);
   2820 		break;
   2821 	default:
   2822 		return (-1);
   2823 	}
   2824 
   2825 	MD5Init(&ctx);
   2826 
   2827 	if (ip) {
   2828 		memset(&ippseudo, 0, sizeof(ippseudo));
   2829 		ipovly = (struct ipovly *)ip;
   2830 		ippseudo.ippseudo_src = ipovly->ih_src;
   2831 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   2832 		ippseudo.ippseudo_pad = 0;
   2833 		ippseudo.ippseudo_p = IPPROTO_TCP;
   2834 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   2835 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   2836 	} else {
   2837 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   2838 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   2839 		in6_clearscope(&ip6pseudo.ip6ph_src);
   2840 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   2841 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   2842 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   2843 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   2844 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   2845 	}
   2846 
   2847 	th0 = *th;
   2848 	th0.th_sum = 0;
   2849 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   2850 
   2851 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   2852 	if (l > 0)
   2853 		m_apply(m, thoff + tcphdrlen,
   2854 		    m->m_pkthdr.len - thoff - tcphdrlen,
   2855 		    tcp_signature_apply, &ctx);
   2856 
   2857 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   2858 	MD5Final(sig, &ctx);
   2859 
   2860 	return (0);
   2861 }
   2862 #endif
   2863 
   2864 int
   2865 tcp_dooptions(struct tcpcb *tp, u_char *cp, int cnt, struct tcphdr *th,
   2866     struct mbuf *m __unused, int toff __unused, struct tcp_opt_info *oi)
   2867 {
   2868 	u_int16_t mss;
   2869 	int opt, optlen = 0;
   2870 #ifdef TCP_SIGNATURE
   2871 	caddr_t sigp = NULL;
   2872 	char sigbuf[TCP_SIGLEN];
   2873 	struct secasvar *sav = NULL;
   2874 #endif
   2875 
   2876 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   2877 		opt = cp[0];
   2878 		if (opt == TCPOPT_EOL)
   2879 			break;
   2880 		if (opt == TCPOPT_NOP)
   2881 			optlen = 1;
   2882 		else {
   2883 			if (cnt < 2)
   2884 				break;
   2885 			optlen = cp[1];
   2886 			if (optlen < 2 || optlen > cnt)
   2887 				break;
   2888 		}
   2889 		switch (opt) {
   2890 
   2891 		default:
   2892 			continue;
   2893 
   2894 		case TCPOPT_MAXSEG:
   2895 			if (optlen != TCPOLEN_MAXSEG)
   2896 				continue;
   2897 			if (!(th->th_flags & TH_SYN))
   2898 				continue;
   2899 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2900 				continue;
   2901 			bcopy(cp + 2, &mss, sizeof(mss));
   2902 			oi->maxseg = ntohs(mss);
   2903 			break;
   2904 
   2905 		case TCPOPT_WINDOW:
   2906 			if (optlen != TCPOLEN_WINDOW)
   2907 				continue;
   2908 			if (!(th->th_flags & TH_SYN))
   2909 				continue;
   2910 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2911 				continue;
   2912 			tp->t_flags |= TF_RCVD_SCALE;
   2913 			tp->requested_s_scale = cp[2];
   2914 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2915 #if 0	/*XXX*/
   2916 				char *p;
   2917 
   2918 				if (ip)
   2919 					p = ntohl(ip->ip_src);
   2920 #ifdef INET6
   2921 				else if (ip6)
   2922 					p = ip6_sprintf(&ip6->ip6_src);
   2923 #endif
   2924 				else
   2925 					p = "(unknown)";
   2926 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2927 				    "assuming %d\n",
   2928 				    tp->requested_s_scale, p,
   2929 				    TCP_MAX_WINSHIFT);
   2930 #else
   2931 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2932 				    "assuming %d\n",
   2933 				    tp->requested_s_scale,
   2934 				    TCP_MAX_WINSHIFT);
   2935 #endif
   2936 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2937 			}
   2938 			break;
   2939 
   2940 		case TCPOPT_TIMESTAMP:
   2941 			if (optlen != TCPOLEN_TIMESTAMP)
   2942 				continue;
   2943 			oi->ts_present = 1;
   2944 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2945 			NTOHL(oi->ts_val);
   2946 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2947 			NTOHL(oi->ts_ecr);
   2948 
   2949 			if (!(th->th_flags & TH_SYN))
   2950 				continue;
   2951 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2952 				continue;
   2953 			/*
   2954 			 * A timestamp received in a SYN makes
   2955 			 * it ok to send timestamp requests and replies.
   2956 			 */
   2957 			tp->t_flags |= TF_RCVD_TSTMP;
   2958 			tp->ts_recent = oi->ts_val;
   2959 			tp->ts_recent_age = tcp_now;
   2960                         break;
   2961 
   2962 		case TCPOPT_SACK_PERMITTED:
   2963 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2964 				continue;
   2965 			if (!(th->th_flags & TH_SYN))
   2966 				continue;
   2967 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2968 				continue;
   2969 			if (tcp_do_sack) {
   2970 				tp->t_flags |= TF_SACK_PERMIT;
   2971 				tp->t_flags |= TF_WILL_SACK;
   2972 			}
   2973 			break;
   2974 
   2975 		case TCPOPT_SACK:
   2976 			tcp_sack_option(tp, th, cp, optlen);
   2977 			break;
   2978 #ifdef TCP_SIGNATURE
   2979 		case TCPOPT_SIGNATURE:
   2980 			if (optlen != TCPOLEN_SIGNATURE)
   2981 				continue;
   2982 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
   2983 				return (-1);
   2984 
   2985 			sigp = sigbuf;
   2986 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   2987 			memset(cp + 2, 0, TCP_SIGLEN);
   2988 			tp->t_flags |= TF_SIGNATURE;
   2989 			break;
   2990 #endif
   2991 		}
   2992 	}
   2993 
   2994 #ifdef TCP_SIGNATURE
   2995 	if (tp->t_flags & TF_SIGNATURE) {
   2996 
   2997 		sav = tcp_signature_getsav(m, th);
   2998 
   2999 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3000 			return (-1);
   3001 	}
   3002 
   3003 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   3004 		if (sav == NULL)
   3005 			return (-1);
   3006 #ifdef FAST_IPSEC
   3007 		KEY_FREESAV(&sav);
   3008 #else
   3009 		key_freesav(sav);
   3010 #endif
   3011 		return (-1);
   3012 	}
   3013 
   3014 	if (sigp) {
   3015 		char sig[TCP_SIGLEN];
   3016 
   3017 		TCP_FIELDS_TO_NET(th);
   3018 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3019 			TCP_FIELDS_TO_HOST(th);
   3020 			if (sav == NULL)
   3021 				return (-1);
   3022 #ifdef FAST_IPSEC
   3023 			KEY_FREESAV(&sav);
   3024 #else
   3025 			key_freesav(sav);
   3026 #endif
   3027 			return (-1);
   3028 		}
   3029 		TCP_FIELDS_TO_HOST(th);
   3030 
   3031 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
   3032 			tcpstat.tcps_badsig++;
   3033 			if (sav == NULL)
   3034 				return (-1);
   3035 #ifdef FAST_IPSEC
   3036 			KEY_FREESAV(&sav);
   3037 #else
   3038 			key_freesav(sav);
   3039 #endif
   3040 			return (-1);
   3041 		} else
   3042 			tcpstat.tcps_goodsig++;
   3043 
   3044 		key_sa_recordxfer(sav, m);
   3045 #ifdef FAST_IPSEC
   3046 		KEY_FREESAV(&sav);
   3047 #else
   3048 		key_freesav(sav);
   3049 #endif
   3050 	}
   3051 #endif
   3052 
   3053 	return (0);
   3054 }
   3055 
   3056 /*
   3057  * Pull out of band byte out of a segment so
   3058  * it doesn't appear in the user's data queue.
   3059  * It is still reflected in the segment length for
   3060  * sequencing purposes.
   3061  */
   3062 void
   3063 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3064     struct mbuf *m, int off)
   3065 {
   3066 	int cnt = off + th->th_urp - 1;
   3067 
   3068 	while (cnt >= 0) {
   3069 		if (m->m_len > cnt) {
   3070 			char *cp = mtod(m, caddr_t) + cnt;
   3071 			struct tcpcb *tp = sototcpcb(so);
   3072 
   3073 			tp->t_iobc = *cp;
   3074 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3075 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3076 			m->m_len--;
   3077 			return;
   3078 		}
   3079 		cnt -= m->m_len;
   3080 		m = m->m_next;
   3081 		if (m == 0)
   3082 			break;
   3083 	}
   3084 	panic("tcp_pulloutofband");
   3085 }
   3086 
   3087 /*
   3088  * Collect new round-trip time estimate
   3089  * and update averages and current timeout.
   3090  */
   3091 void
   3092 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3093 {
   3094 	int32_t delta;
   3095 
   3096 	tcpstat.tcps_rttupdated++;
   3097 	if (tp->t_srtt != 0) {
   3098 		/*
   3099 		 * srtt is stored as fixed point with 3 bits after the
   3100 		 * binary point (i.e., scaled by 8).  The following magic
   3101 		 * is equivalent to the smoothing algorithm in rfc793 with
   3102 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   3103 		 * point).  Adjust rtt to origin 0.
   3104 		 */
   3105 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3106 		if ((tp->t_srtt += delta) <= 0)
   3107 			tp->t_srtt = 1 << 2;
   3108 		/*
   3109 		 * We accumulate a smoothed rtt variance (actually, a
   3110 		 * smoothed mean difference), then set the retransmit
   3111 		 * timer to smoothed rtt + 4 times the smoothed variance.
   3112 		 * rttvar is stored as fixed point with 2 bits after the
   3113 		 * binary point (scaled by 4).  The following is
   3114 		 * equivalent to rfc793 smoothing with an alpha of .75
   3115 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   3116 		 * rfc793's wired-in beta.
   3117 		 */
   3118 		if (delta < 0)
   3119 			delta = -delta;
   3120 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3121 		if ((tp->t_rttvar += delta) <= 0)
   3122 			tp->t_rttvar = 1 << 2;
   3123 	} else {
   3124 		/*
   3125 		 * No rtt measurement yet - use the unsmoothed rtt.
   3126 		 * Set the variance to half the rtt (so our first
   3127 		 * retransmit happens at 3*rtt).
   3128 		 */
   3129 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3130 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3131 	}
   3132 	tp->t_rtttime = 0;
   3133 	tp->t_rxtshift = 0;
   3134 
   3135 	/*
   3136 	 * the retransmit should happen at rtt + 4 * rttvar.
   3137 	 * Because of the way we do the smoothing, srtt and rttvar
   3138 	 * will each average +1/2 tick of bias.  When we compute
   3139 	 * the retransmit timer, we want 1/2 tick of rounding and
   3140 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3141 	 * firing of the timer.  The bias will give us exactly the
   3142 	 * 1.5 tick we need.  But, because the bias is
   3143 	 * statistical, we have to test that we don't drop below
   3144 	 * the minimum feasible timer (which is 2 ticks).
   3145 	 */
   3146 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3147 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3148 
   3149 	/*
   3150 	 * We received an ack for a packet that wasn't retransmitted;
   3151 	 * it is probably safe to discard any error indications we've
   3152 	 * received recently.  This isn't quite right, but close enough
   3153 	 * for now (a route might have failed after we sent a segment,
   3154 	 * and the return path might not be symmetrical).
   3155 	 */
   3156 	tp->t_softerror = 0;
   3157 }
   3158 
   3159 
   3160 /*
   3161  * TCP compressed state engine.  Currently used to hold compressed
   3162  * state for SYN_RECEIVED.
   3163  */
   3164 
   3165 u_long	syn_cache_count;
   3166 u_int32_t syn_hash1, syn_hash2;
   3167 
   3168 #define SYN_HASH(sa, sp, dp) \
   3169 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3170 				     ((u_int32_t)(sp)))^syn_hash2)))
   3171 #ifndef INET6
   3172 #define	SYN_HASHALL(hash, src, dst) \
   3173 do {									\
   3174 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3175 		((const struct sockaddr_in *)(src))->sin_port,		\
   3176 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3177 } while (/*CONSTCOND*/ 0)
   3178 #else
   3179 #define SYN_HASH6(sa, sp, dp) \
   3180 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3181 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3182 	 & 0x7fffffff)
   3183 
   3184 #define SYN_HASHALL(hash, src, dst) \
   3185 do {									\
   3186 	switch ((src)->sa_family) {					\
   3187 	case AF_INET:							\
   3188 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3189 			((const struct sockaddr_in *)(src))->sin_port,	\
   3190 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3191 		break;							\
   3192 	case AF_INET6:							\
   3193 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3194 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3195 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3196 		break;							\
   3197 	default:							\
   3198 		hash = 0;						\
   3199 	}								\
   3200 } while (/*CONSTCOND*/0)
   3201 #endif /* INET6 */
   3202 
   3203 #define	SYN_CACHE_RM(sc)						\
   3204 do {									\
   3205 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   3206 	    (sc), sc_bucketq);						\
   3207 	(sc)->sc_tp = NULL;						\
   3208 	LIST_REMOVE((sc), sc_tpq);					\
   3209 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   3210 	callout_stop(&(sc)->sc_timer);					\
   3211 	syn_cache_count--;						\
   3212 } while (/*CONSTCOND*/0)
   3213 
   3214 #define	SYN_CACHE_PUT(sc)						\
   3215 do {									\
   3216 	if ((sc)->sc_ipopts)						\
   3217 		(void) m_free((sc)->sc_ipopts);				\
   3218 	if ((sc)->sc_route4.ro_rt != NULL)				\
   3219 		RTFREE((sc)->sc_route4.ro_rt);				\
   3220 	if (callout_invoking(&(sc)->sc_timer))				\
   3221 		(sc)->sc_flags |= SCF_DEAD;				\
   3222 	else								\
   3223 		pool_put(&syn_cache_pool, (sc));			\
   3224 } while (/*CONSTCOND*/0)
   3225 
   3226 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
   3227 
   3228 /*
   3229  * We don't estimate RTT with SYNs, so each packet starts with the default
   3230  * RTT and each timer step has a fixed timeout value.
   3231  */
   3232 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3233 do {									\
   3234 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3235 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3236 	    TCPTV_REXMTMAX);						\
   3237 	callout_reset(&(sc)->sc_timer,					\
   3238 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3239 } while (/*CONSTCOND*/0)
   3240 
   3241 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3242 
   3243 void
   3244 syn_cache_init(void)
   3245 {
   3246 	int i;
   3247 
   3248 	/* Initialize the hash buckets. */
   3249 	for (i = 0; i < tcp_syn_cache_size; i++)
   3250 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3251 }
   3252 
   3253 void
   3254 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3255 {
   3256 	struct syn_cache_head *scp;
   3257 	struct syn_cache *sc2;
   3258 	int s;
   3259 
   3260 	/*
   3261 	 * If there are no entries in the hash table, reinitialize
   3262 	 * the hash secrets.
   3263 	 */
   3264 	if (syn_cache_count == 0) {
   3265 		syn_hash1 = arc4random();
   3266 		syn_hash2 = arc4random();
   3267 	}
   3268 
   3269 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3270 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3271 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3272 
   3273 	/*
   3274 	 * Make sure that we don't overflow the per-bucket
   3275 	 * limit or the total cache size limit.
   3276 	 */
   3277 	s = splsoftnet();
   3278 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3279 		tcpstat.tcps_sc_bucketoverflow++;
   3280 		/*
   3281 		 * The bucket is full.  Toss the oldest element in the
   3282 		 * bucket.  This will be the first entry in the bucket.
   3283 		 */
   3284 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3285 #ifdef DIAGNOSTIC
   3286 		/*
   3287 		 * This should never happen; we should always find an
   3288 		 * entry in our bucket.
   3289 		 */
   3290 		if (sc2 == NULL)
   3291 			panic("syn_cache_insert: bucketoverflow: impossible");
   3292 #endif
   3293 		SYN_CACHE_RM(sc2);
   3294 		SYN_CACHE_PUT(sc2);	/* calls pool_put but see spl above */
   3295 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3296 		struct syn_cache_head *scp2, *sce;
   3297 
   3298 		tcpstat.tcps_sc_overflowed++;
   3299 		/*
   3300 		 * The cache is full.  Toss the oldest entry in the
   3301 		 * first non-empty bucket we can find.
   3302 		 *
   3303 		 * XXX We would really like to toss the oldest
   3304 		 * entry in the cache, but we hope that this
   3305 		 * condition doesn't happen very often.
   3306 		 */
   3307 		scp2 = scp;
   3308 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3309 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3310 			for (++scp2; scp2 != scp; scp2++) {
   3311 				if (scp2 >= sce)
   3312 					scp2 = &tcp_syn_cache[0];
   3313 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3314 					break;
   3315 			}
   3316 #ifdef DIAGNOSTIC
   3317 			/*
   3318 			 * This should never happen; we should always find a
   3319 			 * non-empty bucket.
   3320 			 */
   3321 			if (scp2 == scp)
   3322 				panic("syn_cache_insert: cacheoverflow: "
   3323 				    "impossible");
   3324 #endif
   3325 		}
   3326 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3327 		SYN_CACHE_RM(sc2);
   3328 		SYN_CACHE_PUT(sc2);	/* calls pool_put but see spl above */
   3329 	}
   3330 
   3331 	/*
   3332 	 * Initialize the entry's timer.
   3333 	 */
   3334 	sc->sc_rxttot = 0;
   3335 	sc->sc_rxtshift = 0;
   3336 	SYN_CACHE_TIMER_ARM(sc);
   3337 
   3338 	/* Link it from tcpcb entry */
   3339 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3340 
   3341 	/* Put it into the bucket. */
   3342 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3343 	scp->sch_length++;
   3344 	syn_cache_count++;
   3345 
   3346 	tcpstat.tcps_sc_added++;
   3347 	splx(s);
   3348 }
   3349 
   3350 /*
   3351  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3352  * If we have retransmitted an entry the maximum number of times, expire
   3353  * that entry.
   3354  */
   3355 void
   3356 syn_cache_timer(void *arg)
   3357 {
   3358 	struct syn_cache *sc = arg;
   3359 	int s;
   3360 
   3361 	s = splsoftnet();
   3362 	callout_ack(&sc->sc_timer);
   3363 
   3364 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3365 		tcpstat.tcps_sc_delayed_free++;
   3366 		pool_put(&syn_cache_pool, sc);
   3367 		splx(s);
   3368 		return;
   3369 	}
   3370 
   3371 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3372 		/* Drop it -- too many retransmissions. */
   3373 		goto dropit;
   3374 	}
   3375 
   3376 	/*
   3377 	 * Compute the total amount of time this entry has
   3378 	 * been on a queue.  If this entry has been on longer
   3379 	 * than the keep alive timer would allow, expire it.
   3380 	 */
   3381 	sc->sc_rxttot += sc->sc_rxtcur;
   3382 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   3383 		goto dropit;
   3384 
   3385 	tcpstat.tcps_sc_retransmitted++;
   3386 	(void) syn_cache_respond(sc, NULL);
   3387 
   3388 	/* Advance the timer back-off. */
   3389 	sc->sc_rxtshift++;
   3390 	SYN_CACHE_TIMER_ARM(sc);
   3391 
   3392 	splx(s);
   3393 	return;
   3394 
   3395  dropit:
   3396 	tcpstat.tcps_sc_timed_out++;
   3397 	SYN_CACHE_RM(sc);
   3398 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3399 	splx(s);
   3400 }
   3401 
   3402 /*
   3403  * Remove syn cache created by the specified tcb entry,
   3404  * because this does not make sense to keep them
   3405  * (if there's no tcb entry, syn cache entry will never be used)
   3406  */
   3407 void
   3408 syn_cache_cleanup(struct tcpcb *tp)
   3409 {
   3410 	struct syn_cache *sc, *nsc;
   3411 	int s;
   3412 
   3413 	s = splsoftnet();
   3414 
   3415 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3416 		nsc = LIST_NEXT(sc, sc_tpq);
   3417 
   3418 #ifdef DIAGNOSTIC
   3419 		if (sc->sc_tp != tp)
   3420 			panic("invalid sc_tp in syn_cache_cleanup");
   3421 #endif
   3422 		SYN_CACHE_RM(sc);
   3423 		SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3424 	}
   3425 	/* just for safety */
   3426 	LIST_INIT(&tp->t_sc);
   3427 
   3428 	splx(s);
   3429 }
   3430 
   3431 /*
   3432  * Find an entry in the syn cache.
   3433  */
   3434 struct syn_cache *
   3435 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3436     struct syn_cache_head **headp)
   3437 {
   3438 	struct syn_cache *sc;
   3439 	struct syn_cache_head *scp;
   3440 	u_int32_t hash;
   3441 	int s;
   3442 
   3443 	SYN_HASHALL(hash, src, dst);
   3444 
   3445 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3446 	*headp = scp;
   3447 	s = splsoftnet();
   3448 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3449 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3450 		if (sc->sc_hash != hash)
   3451 			continue;
   3452 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3453 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3454 			splx(s);
   3455 			return (sc);
   3456 		}
   3457 	}
   3458 	splx(s);
   3459 	return (NULL);
   3460 }
   3461 
   3462 /*
   3463  * This function gets called when we receive an ACK for a
   3464  * socket in the LISTEN state.  We look up the connection
   3465  * in the syn cache, and if its there, we pull it out of
   3466  * the cache and turn it into a full-blown connection in
   3467  * the SYN-RECEIVED state.
   3468  *
   3469  * The return values may not be immediately obvious, and their effects
   3470  * can be subtle, so here they are:
   3471  *
   3472  *	NULL	SYN was not found in cache; caller should drop the
   3473  *		packet and send an RST.
   3474  *
   3475  *	-1	We were unable to create the new connection, and are
   3476  *		aborting it.  An ACK,RST is being sent to the peer
   3477  *		(unless we got screwey sequence numbners; see below),
   3478  *		because the 3-way handshake has been completed.  Caller
   3479  *		should not free the mbuf, since we may be using it.  If
   3480  *		we are not, we will free it.
   3481  *
   3482  *	Otherwise, the return value is a pointer to the new socket
   3483  *	associated with the connection.
   3484  */
   3485 struct socket *
   3486 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3487     struct tcphdr *th, unsigned int hlen __unused, unsigned int tlen __unused,
   3488     struct socket *so, struct mbuf *m)
   3489 {
   3490 	struct syn_cache *sc;
   3491 	struct syn_cache_head *scp;
   3492 	struct inpcb *inp = NULL;
   3493 #ifdef INET6
   3494 	struct in6pcb *in6p = NULL;
   3495 #endif
   3496 	struct tcpcb *tp = 0;
   3497 	struct mbuf *am;
   3498 	int s;
   3499 	struct socket *oso;
   3500 
   3501 	s = splsoftnet();
   3502 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3503 		splx(s);
   3504 		return (NULL);
   3505 	}
   3506 
   3507 	/*
   3508 	 * Verify the sequence and ack numbers.  Try getting the correct
   3509 	 * response again.
   3510 	 */
   3511 	if ((th->th_ack != sc->sc_iss + 1) ||
   3512 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3513 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3514 		(void) syn_cache_respond(sc, m);
   3515 		splx(s);
   3516 		return ((struct socket *)(-1));
   3517 	}
   3518 
   3519 	/* Remove this cache entry */
   3520 	SYN_CACHE_RM(sc);
   3521 	splx(s);
   3522 
   3523 	/*
   3524 	 * Ok, create the full blown connection, and set things up
   3525 	 * as they would have been set up if we had created the
   3526 	 * connection when the SYN arrived.  If we can't create
   3527 	 * the connection, abort it.
   3528 	 */
   3529 	/*
   3530 	 * inp still has the OLD in_pcb stuff, set the
   3531 	 * v6-related flags on the new guy, too.   This is
   3532 	 * done particularly for the case where an AF_INET6
   3533 	 * socket is bound only to a port, and a v4 connection
   3534 	 * comes in on that port.
   3535 	 * we also copy the flowinfo from the original pcb
   3536 	 * to the new one.
   3537 	 */
   3538 	oso = so;
   3539 	so = sonewconn(so, SS_ISCONNECTED);
   3540 	if (so == NULL)
   3541 		goto resetandabort;
   3542 
   3543 	switch (so->so_proto->pr_domain->dom_family) {
   3544 #ifdef INET
   3545 	case AF_INET:
   3546 		inp = sotoinpcb(so);
   3547 		break;
   3548 #endif
   3549 #ifdef INET6
   3550 	case AF_INET6:
   3551 		in6p = sotoin6pcb(so);
   3552 		break;
   3553 #endif
   3554 	}
   3555 	switch (src->sa_family) {
   3556 #ifdef INET
   3557 	case AF_INET:
   3558 		if (inp) {
   3559 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3560 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3561 			inp->inp_options = ip_srcroute();
   3562 			in_pcbstate(inp, INP_BOUND);
   3563 			if (inp->inp_options == NULL) {
   3564 				inp->inp_options = sc->sc_ipopts;
   3565 				sc->sc_ipopts = NULL;
   3566 			}
   3567 		}
   3568 #ifdef INET6
   3569 		else if (in6p) {
   3570 			/* IPv4 packet to AF_INET6 socket */
   3571 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3572 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3573 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3574 				&in6p->in6p_laddr.s6_addr32[3],
   3575 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3576 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3577 			in6totcpcb(in6p)->t_family = AF_INET;
   3578 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3579 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3580 			else
   3581 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3582 			in6_pcbstate(in6p, IN6P_BOUND);
   3583 		}
   3584 #endif
   3585 		break;
   3586 #endif
   3587 #ifdef INET6
   3588 	case AF_INET6:
   3589 		if (in6p) {
   3590 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3591 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3592 			in6_pcbstate(in6p, IN6P_BOUND);
   3593 		}
   3594 		break;
   3595 #endif
   3596 	}
   3597 #ifdef INET6
   3598 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3599 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3600 		/* inherit socket options from the listening socket */
   3601 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3602 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3603 			m_freem(in6p->in6p_options);
   3604 			in6p->in6p_options = 0;
   3605 		}
   3606 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3607 			mtod(m, struct ip6_hdr *), m);
   3608 	}
   3609 #endif
   3610 
   3611 #if defined(IPSEC) || defined(FAST_IPSEC)
   3612 	/*
   3613 	 * we make a copy of policy, instead of sharing the policy,
   3614 	 * for better behavior in terms of SA lookup and dead SA removal.
   3615 	 */
   3616 	if (inp) {
   3617 		/* copy old policy into new socket's */
   3618 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3619 			printf("tcp_input: could not copy policy\n");
   3620 	}
   3621 #ifdef INET6
   3622 	else if (in6p) {
   3623 		/* copy old policy into new socket's */
   3624 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3625 		    in6p->in6p_sp))
   3626 			printf("tcp_input: could not copy policy\n");
   3627 	}
   3628 #endif
   3629 #endif
   3630 
   3631 	/*
   3632 	 * Give the new socket our cached route reference.
   3633 	 */
   3634 	if (inp)
   3635 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3636 #ifdef INET6
   3637 	else
   3638 		in6p->in6p_route = sc->sc_route6;
   3639 #endif
   3640 	sc->sc_route4.ro_rt = NULL;
   3641 
   3642 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3643 	if (am == NULL)
   3644 		goto resetandabort;
   3645 	MCLAIM(am, &tcp_mowner);
   3646 	am->m_len = src->sa_len;
   3647 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3648 	if (inp) {
   3649 		if (in_pcbconnect(inp, am, NULL)) {
   3650 			(void) m_free(am);
   3651 			goto resetandabort;
   3652 		}
   3653 	}
   3654 #ifdef INET6
   3655 	else if (in6p) {
   3656 		if (src->sa_family == AF_INET) {
   3657 			/* IPv4 packet to AF_INET6 socket */
   3658 			struct sockaddr_in6 *sin6;
   3659 			sin6 = mtod(am, struct sockaddr_in6 *);
   3660 			am->m_len = sizeof(*sin6);
   3661 			bzero(sin6, sizeof(*sin6));
   3662 			sin6->sin6_family = AF_INET6;
   3663 			sin6->sin6_len = sizeof(*sin6);
   3664 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3665 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3666 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3667 				&sin6->sin6_addr.s6_addr32[3],
   3668 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3669 		}
   3670 		if (in6_pcbconnect(in6p, am, NULL)) {
   3671 			(void) m_free(am);
   3672 			goto resetandabort;
   3673 		}
   3674 	}
   3675 #endif
   3676 	else {
   3677 		(void) m_free(am);
   3678 		goto resetandabort;
   3679 	}
   3680 	(void) m_free(am);
   3681 
   3682 	if (inp)
   3683 		tp = intotcpcb(inp);
   3684 #ifdef INET6
   3685 	else if (in6p)
   3686 		tp = in6totcpcb(in6p);
   3687 #endif
   3688 	else
   3689 		tp = NULL;
   3690 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3691 	if (sc->sc_request_r_scale != 15) {
   3692 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3693 		tp->request_r_scale = sc->sc_request_r_scale;
   3694 		tp->snd_scale = sc->sc_requested_s_scale;
   3695 		tp->rcv_scale = sc->sc_request_r_scale;
   3696 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3697 	}
   3698 	if (sc->sc_flags & SCF_TIMESTAMP)
   3699 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3700 	tp->ts_timebase = sc->sc_timebase;
   3701 
   3702 	tp->t_template = tcp_template(tp);
   3703 	if (tp->t_template == 0) {
   3704 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3705 		so = NULL;
   3706 		m_freem(m);
   3707 		goto abort;
   3708 	}
   3709 
   3710 	tp->iss = sc->sc_iss;
   3711 	tp->irs = sc->sc_irs;
   3712 	tcp_sendseqinit(tp);
   3713 	tcp_rcvseqinit(tp);
   3714 	tp->t_state = TCPS_SYN_RECEIVED;
   3715 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3716 	tcpstat.tcps_accepts++;
   3717 
   3718 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3719 		tp->t_flags |= TF_WILL_SACK;
   3720 
   3721 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   3722 		tp->t_flags |= TF_ECN_PERMIT;
   3723 
   3724 #ifdef TCP_SIGNATURE
   3725 	if (sc->sc_flags & SCF_SIGNATURE)
   3726 		tp->t_flags |= TF_SIGNATURE;
   3727 #endif
   3728 
   3729 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3730 	tp->t_ourmss = sc->sc_ourmaxseg;
   3731 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3732 
   3733 	/*
   3734 	 * Initialize the initial congestion window.  If we
   3735 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3736 	 * to 1 segment (i.e. the Loss Window).
   3737 	 */
   3738 	if (sc->sc_rxtshift)
   3739 		tp->snd_cwnd = tp->t_peermss;
   3740 	else {
   3741 		int ss = tcp_init_win;
   3742 #ifdef INET
   3743 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3744 			ss = tcp_init_win_local;
   3745 #endif
   3746 #ifdef INET6
   3747 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3748 			ss = tcp_init_win_local;
   3749 #endif
   3750 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3751 	}
   3752 
   3753 	tcp_rmx_rtt(tp);
   3754 	tp->snd_wl1 = sc->sc_irs;
   3755 	tp->rcv_up = sc->sc_irs + 1;
   3756 
   3757 	/*
   3758 	 * This is what whould have happened in tcp_output() when
   3759 	 * the SYN,ACK was sent.
   3760 	 */
   3761 	tp->snd_up = tp->snd_una;
   3762 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3763 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3764 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3765 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3766 	tp->last_ack_sent = tp->rcv_nxt;
   3767 	tp->t_partialacks = -1;
   3768 	tp->t_dupacks = 0;
   3769 
   3770 	tcpstat.tcps_sc_completed++;
   3771 	s = splsoftnet();
   3772 	SYN_CACHE_PUT(sc);
   3773 	splx(s);
   3774 	return (so);
   3775 
   3776 resetandabort:
   3777 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3778 abort:
   3779 	if (so != NULL)
   3780 		(void) soabort(so);
   3781 	s = splsoftnet();
   3782 	SYN_CACHE_PUT(sc);
   3783 	splx(s);
   3784 	tcpstat.tcps_sc_aborted++;
   3785 	return ((struct socket *)(-1));
   3786 }
   3787 
   3788 /*
   3789  * This function is called when we get a RST for a
   3790  * non-existent connection, so that we can see if the
   3791  * connection is in the syn cache.  If it is, zap it.
   3792  */
   3793 
   3794 void
   3795 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   3796 {
   3797 	struct syn_cache *sc;
   3798 	struct syn_cache_head *scp;
   3799 	int s = splsoftnet();
   3800 
   3801 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3802 		splx(s);
   3803 		return;
   3804 	}
   3805 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3806 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3807 		splx(s);
   3808 		return;
   3809 	}
   3810 	SYN_CACHE_RM(sc);
   3811 	tcpstat.tcps_sc_reset++;
   3812 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3813 	splx(s);
   3814 }
   3815 
   3816 void
   3817 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   3818     struct tcphdr *th)
   3819 {
   3820 	struct syn_cache *sc;
   3821 	struct syn_cache_head *scp;
   3822 	int s;
   3823 
   3824 	s = splsoftnet();
   3825 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3826 		splx(s);
   3827 		return;
   3828 	}
   3829 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3830 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3831 		splx(s);
   3832 		return;
   3833 	}
   3834 
   3835 	/*
   3836 	 * If we've retransmitted 3 times and this is our second error,
   3837 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3838 	 * This prevents us from incorrectly nuking an entry during a
   3839 	 * spurious network outage.
   3840 	 *
   3841 	 * See tcp_notify().
   3842 	 */
   3843 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3844 		sc->sc_flags |= SCF_UNREACH;
   3845 		splx(s);
   3846 		return;
   3847 	}
   3848 
   3849 	SYN_CACHE_RM(sc);
   3850 	tcpstat.tcps_sc_unreach++;
   3851 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3852 	splx(s);
   3853 }
   3854 
   3855 /*
   3856  * Given a LISTEN socket and an inbound SYN request, add
   3857  * this to the syn cache, and send back a segment:
   3858  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3859  * to the source.
   3860  *
   3861  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3862  * Doing so would require that we hold onto the data and deliver it
   3863  * to the application.  However, if we are the target of a SYN-flood
   3864  * DoS attack, an attacker could send data which would eventually
   3865  * consume all available buffer space if it were ACKed.  By not ACKing
   3866  * the data, we avoid this DoS scenario.
   3867  */
   3868 
   3869 int
   3870 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   3871     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   3872     int optlen, struct tcp_opt_info *oi)
   3873 {
   3874 	struct tcpcb tb, *tp;
   3875 	long win;
   3876 	struct syn_cache *sc;
   3877 	struct syn_cache_head *scp;
   3878 	struct mbuf *ipopts;
   3879 	struct tcp_opt_info opti;
   3880 	int s;
   3881 
   3882 	tp = sototcpcb(so);
   3883 
   3884 	bzero(&opti, sizeof(opti));
   3885 
   3886 	/*
   3887 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3888 	 *
   3889 	 * Note this check is performed in tcp_input() very early on.
   3890 	 */
   3891 
   3892 	/*
   3893 	 * Initialize some local state.
   3894 	 */
   3895 	win = sbspace(&so->so_rcv);
   3896 	if (win > TCP_MAXWIN)
   3897 		win = TCP_MAXWIN;
   3898 
   3899 	switch (src->sa_family) {
   3900 #ifdef INET
   3901 	case AF_INET:
   3902 		/*
   3903 		 * Remember the IP options, if any.
   3904 		 */
   3905 		ipopts = ip_srcroute();
   3906 		break;
   3907 #endif
   3908 	default:
   3909 		ipopts = NULL;
   3910 	}
   3911 
   3912 #ifdef TCP_SIGNATURE
   3913 	if (optp || (tp->t_flags & TF_SIGNATURE))
   3914 #else
   3915 	if (optp)
   3916 #endif
   3917 	{
   3918 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3919 #ifdef TCP_SIGNATURE
   3920 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   3921 #endif
   3922 		tb.t_state = TCPS_LISTEN;
   3923 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   3924 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   3925 			return (0);
   3926 	} else
   3927 		tb.t_flags = 0;
   3928 
   3929 	/*
   3930 	 * See if we already have an entry for this connection.
   3931 	 * If we do, resend the SYN,ACK.  We do not count this
   3932 	 * as a retransmission (XXX though maybe we should).
   3933 	 */
   3934 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3935 		tcpstat.tcps_sc_dupesyn++;
   3936 		if (ipopts) {
   3937 			/*
   3938 			 * If we were remembering a previous source route,
   3939 			 * forget it and use the new one we've been given.
   3940 			 */
   3941 			if (sc->sc_ipopts)
   3942 				(void) m_free(sc->sc_ipopts);
   3943 			sc->sc_ipopts = ipopts;
   3944 		}
   3945 		sc->sc_timestamp = tb.ts_recent;
   3946 		if (syn_cache_respond(sc, m) == 0) {
   3947 			tcpstat.tcps_sndacks++;
   3948 			tcpstat.tcps_sndtotal++;
   3949 		}
   3950 		return (1);
   3951 	}
   3952 
   3953 	s = splsoftnet();
   3954 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3955 	splx(s);
   3956 	if (sc == NULL) {
   3957 		if (ipopts)
   3958 			(void) m_free(ipopts);
   3959 		return (0);
   3960 	}
   3961 
   3962 	/*
   3963 	 * Fill in the cache, and put the necessary IP and TCP
   3964 	 * options into the reply.
   3965 	 */
   3966 	bzero(sc, sizeof(struct syn_cache));
   3967 	callout_init(&sc->sc_timer);
   3968 	bcopy(src, &sc->sc_src, src->sa_len);
   3969 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3970 	sc->sc_flags = 0;
   3971 	sc->sc_ipopts = ipopts;
   3972 	sc->sc_irs = th->th_seq;
   3973 	switch (src->sa_family) {
   3974 #ifdef INET
   3975 	case AF_INET:
   3976 	    {
   3977 		struct sockaddr_in *srcin = (void *) src;
   3978 		struct sockaddr_in *dstin = (void *) dst;
   3979 
   3980 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3981 		    &srcin->sin_addr, dstin->sin_port,
   3982 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3983 		break;
   3984 	    }
   3985 #endif /* INET */
   3986 #ifdef INET6
   3987 	case AF_INET6:
   3988 	    {
   3989 		struct sockaddr_in6 *srcin6 = (void *) src;
   3990 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3991 
   3992 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3993 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3994 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3995 		break;
   3996 	    }
   3997 #endif /* INET6 */
   3998 	}
   3999 	sc->sc_peermaxseg = oi->maxseg;
   4000 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4001 						m->m_pkthdr.rcvif : NULL,
   4002 						sc->sc_src.sa.sa_family);
   4003 	sc->sc_win = win;
   4004 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   4005 	sc->sc_timestamp = tb.ts_recent;
   4006 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4007 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4008 		sc->sc_flags |= SCF_TIMESTAMP;
   4009 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4010 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4011 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4012 		sc->sc_request_r_scale = 0;
   4013 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4014 		    TCP_MAXWIN << sc->sc_request_r_scale <
   4015 		    so->so_rcv.sb_hiwat)
   4016 			sc->sc_request_r_scale++;
   4017 	} else {
   4018 		sc->sc_requested_s_scale = 15;
   4019 		sc->sc_request_r_scale = 15;
   4020 	}
   4021 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4022 		sc->sc_flags |= SCF_SACK_PERMIT;
   4023 
   4024 	/*
   4025 	 * ECN setup packet recieved.
   4026 	 */
   4027 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4028 		sc->sc_flags |= SCF_ECN_PERMIT;
   4029 
   4030 #ifdef TCP_SIGNATURE
   4031 	if (tb.t_flags & TF_SIGNATURE)
   4032 		sc->sc_flags |= SCF_SIGNATURE;
   4033 #endif
   4034 	sc->sc_tp = tp;
   4035 	if (syn_cache_respond(sc, m) == 0) {
   4036 		syn_cache_insert(sc, tp);
   4037 		tcpstat.tcps_sndacks++;
   4038 		tcpstat.tcps_sndtotal++;
   4039 	} else {
   4040 		s = splsoftnet();
   4041 		SYN_CACHE_PUT(sc);
   4042 		splx(s);
   4043 		tcpstat.tcps_sc_dropped++;
   4044 	}
   4045 	return (1);
   4046 }
   4047 
   4048 int
   4049 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4050 {
   4051 	struct route *ro;
   4052 	u_int8_t *optp;
   4053 	int optlen, error;
   4054 	u_int16_t tlen;
   4055 	struct ip *ip = NULL;
   4056 #ifdef INET6
   4057 	struct ip6_hdr *ip6 = NULL;
   4058 #endif
   4059 	struct tcpcb *tp = NULL;
   4060 	struct tcphdr *th;
   4061 	u_int hlen;
   4062 	struct socket *so;
   4063 
   4064 	switch (sc->sc_src.sa.sa_family) {
   4065 	case AF_INET:
   4066 		hlen = sizeof(struct ip);
   4067 		ro = &sc->sc_route4;
   4068 		break;
   4069 #ifdef INET6
   4070 	case AF_INET6:
   4071 		hlen = sizeof(struct ip6_hdr);
   4072 		ro = (struct route *)&sc->sc_route6;
   4073 		break;
   4074 #endif
   4075 	default:
   4076 		if (m)
   4077 			m_freem(m);
   4078 		return (EAFNOSUPPORT);
   4079 	}
   4080 
   4081 	/* Compute the size of the TCP options. */
   4082 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4083 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4084 #ifdef TCP_SIGNATURE
   4085 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4086 #endif
   4087 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4088 
   4089 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4090 
   4091 	/*
   4092 	 * Create the IP+TCP header from scratch.
   4093 	 */
   4094 	if (m)
   4095 		m_freem(m);
   4096 #ifdef DIAGNOSTIC
   4097 	if (max_linkhdr + tlen > MCLBYTES)
   4098 		return (ENOBUFS);
   4099 #endif
   4100 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4101 	if (m && tlen > MHLEN) {
   4102 		MCLGET(m, M_DONTWAIT);
   4103 		if ((m->m_flags & M_EXT) == 0) {
   4104 			m_freem(m);
   4105 			m = NULL;
   4106 		}
   4107 	}
   4108 	if (m == NULL)
   4109 		return (ENOBUFS);
   4110 	MCLAIM(m, &tcp_tx_mowner);
   4111 
   4112 	/* Fixup the mbuf. */
   4113 	m->m_data += max_linkhdr;
   4114 	m->m_len = m->m_pkthdr.len = tlen;
   4115 	if (sc->sc_tp) {
   4116 		tp = sc->sc_tp;
   4117 		if (tp->t_inpcb)
   4118 			so = tp->t_inpcb->inp_socket;
   4119 #ifdef INET6
   4120 		else if (tp->t_in6pcb)
   4121 			so = tp->t_in6pcb->in6p_socket;
   4122 #endif
   4123 		else
   4124 			so = NULL;
   4125 	} else
   4126 		so = NULL;
   4127 	m->m_pkthdr.rcvif = NULL;
   4128 	memset(mtod(m, u_char *), 0, tlen);
   4129 
   4130 	switch (sc->sc_src.sa.sa_family) {
   4131 	case AF_INET:
   4132 		ip = mtod(m, struct ip *);
   4133 		ip->ip_v = 4;
   4134 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4135 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4136 		ip->ip_p = IPPROTO_TCP;
   4137 		th = (struct tcphdr *)(ip + 1);
   4138 		th->th_dport = sc->sc_src.sin.sin_port;
   4139 		th->th_sport = sc->sc_dst.sin.sin_port;
   4140 		break;
   4141 #ifdef INET6
   4142 	case AF_INET6:
   4143 		ip6 = mtod(m, struct ip6_hdr *);
   4144 		ip6->ip6_vfc = IPV6_VERSION;
   4145 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4146 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4147 		ip6->ip6_nxt = IPPROTO_TCP;
   4148 		/* ip6_plen will be updated in ip6_output() */
   4149 		th = (struct tcphdr *)(ip6 + 1);
   4150 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4151 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4152 		break;
   4153 #endif
   4154 	default:
   4155 		th = NULL;
   4156 	}
   4157 
   4158 	th->th_seq = htonl(sc->sc_iss);
   4159 	th->th_ack = htonl(sc->sc_irs + 1);
   4160 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4161 	th->th_flags = TH_SYN|TH_ACK;
   4162 	th->th_win = htons(sc->sc_win);
   4163 	/* th_sum already 0 */
   4164 	/* th_urp already 0 */
   4165 
   4166 	/* Tack on the TCP options. */
   4167 	optp = (u_int8_t *)(th + 1);
   4168 	*optp++ = TCPOPT_MAXSEG;
   4169 	*optp++ = 4;
   4170 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4171 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4172 
   4173 	if (sc->sc_request_r_scale != 15) {
   4174 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4175 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4176 		    sc->sc_request_r_scale);
   4177 		optp += 4;
   4178 	}
   4179 
   4180 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4181 		u_int32_t *lp = (u_int32_t *)(optp);
   4182 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4183 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4184 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4185 		*lp   = htonl(sc->sc_timestamp);
   4186 		optp += TCPOLEN_TSTAMP_APPA;
   4187 	}
   4188 
   4189 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4190 		u_int8_t *p = optp;
   4191 
   4192 		/* Let the peer know that we will SACK. */
   4193 		p[0] = TCPOPT_SACK_PERMITTED;
   4194 		p[1] = 2;
   4195 		p[2] = TCPOPT_NOP;
   4196 		p[3] = TCPOPT_NOP;
   4197 		optp += 4;
   4198 	}
   4199 
   4200 	/*
   4201 	 * Send ECN SYN-ACK setup packet.
   4202 	 * Routes can be asymetric, so, even if we receive a packet
   4203 	 * with ECE and CWR set, we must not assume no one will block
   4204 	 * the ECE packet we are about to send.
   4205 	 */
   4206 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4207 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4208 		th->th_flags |= TH_ECE;
   4209 		tcpstat.tcps_ecn_shs++;
   4210 
   4211 		/*
   4212 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4213 		 *
   4214 		 * "[...] a TCP node MAY respond to an ECN-setup
   4215 		 * SYN packet by setting ECT in the responding
   4216 		 * ECN-setup SYN/ACK packet, indicating to routers
   4217 		 * that the SYN/ACK packet is ECN-Capable.
   4218 		 * This allows a congested router along the path
   4219 		 * to mark the packet instead of dropping the
   4220 		 * packet as an indication of congestion."
   4221 		 *
   4222 		 * "[...] There can be a great benefit in setting
   4223 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4224 		 * Congestion is  most likely to occur in
   4225 		 * the server-to-client direction.  As a result,
   4226 		 * setting an ECN-capable codepoint in SYN/ACK
   4227 		 * packets can reduce the occurence of three-second
   4228 		 * retransmit timeouts resulting from the drop
   4229 		 * of SYN/ACK packets."
   4230 		 *
   4231 		 * Page 4 and 6, January 2006.
   4232 		 */
   4233 
   4234 		switch (sc->sc_src.sa.sa_family) {
   4235 #ifdef INET
   4236 		case AF_INET:
   4237 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4238 			break;
   4239 #endif
   4240 #ifdef INET6
   4241 		case AF_INET6:
   4242 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4243 			break;
   4244 #endif
   4245 		}
   4246 		tcpstat.tcps_ecn_ect++;
   4247 	}
   4248 
   4249 #ifdef TCP_SIGNATURE
   4250 	if (sc->sc_flags & SCF_SIGNATURE) {
   4251 		struct secasvar *sav;
   4252 		u_int8_t *sigp;
   4253 
   4254 		sav = tcp_signature_getsav(m, th);
   4255 
   4256 		if (sav == NULL) {
   4257 			if (m)
   4258 				m_freem(m);
   4259 			return (EPERM);
   4260 		}
   4261 
   4262 		*optp++ = TCPOPT_SIGNATURE;
   4263 		*optp++ = TCPOLEN_SIGNATURE;
   4264 		sigp = optp;
   4265 		bzero(optp, TCP_SIGLEN);
   4266 		optp += TCP_SIGLEN;
   4267 		*optp++ = TCPOPT_NOP;
   4268 		*optp++ = TCPOPT_EOL;
   4269 
   4270 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4271 
   4272 		key_sa_recordxfer(sav, m);
   4273 #ifdef FAST_IPSEC
   4274 		KEY_FREESAV(&sav);
   4275 #else
   4276 		key_freesav(sav);
   4277 #endif
   4278 	}
   4279 #endif
   4280 
   4281 	/* Compute the packet's checksum. */
   4282 	switch (sc->sc_src.sa.sa_family) {
   4283 	case AF_INET:
   4284 		ip->ip_len = htons(tlen - hlen);
   4285 		th->th_sum = 0;
   4286 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4287 		break;
   4288 #ifdef INET6
   4289 	case AF_INET6:
   4290 		ip6->ip6_plen = htons(tlen - hlen);
   4291 		th->th_sum = 0;
   4292 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4293 		break;
   4294 #endif
   4295 	}
   4296 
   4297 	/*
   4298 	 * Fill in some straggling IP bits.  Note the stack expects
   4299 	 * ip_len to be in host order, for convenience.
   4300 	 */
   4301 	switch (sc->sc_src.sa.sa_family) {
   4302 #ifdef INET
   4303 	case AF_INET:
   4304 		ip->ip_len = htons(tlen);
   4305 		ip->ip_ttl = ip_defttl;
   4306 		/* XXX tos? */
   4307 		break;
   4308 #endif
   4309 #ifdef INET6
   4310 	case AF_INET6:
   4311 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4312 		ip6->ip6_vfc |= IPV6_VERSION;
   4313 		ip6->ip6_plen = htons(tlen - hlen);
   4314 		/* ip6_hlim will be initialized afterwards */
   4315 		/* XXX flowlabel? */
   4316 		break;
   4317 #endif
   4318 	}
   4319 
   4320 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4321 	tp = sc->sc_tp;
   4322 
   4323 	switch (sc->sc_src.sa.sa_family) {
   4324 #ifdef INET
   4325 	case AF_INET:
   4326 		error = ip_output(m, sc->sc_ipopts, ro,
   4327 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4328 		    (struct ip_moptions *)NULL, so);
   4329 		break;
   4330 #endif
   4331 #ifdef INET6
   4332 	case AF_INET6:
   4333 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4334 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   4335 
   4336 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
   4337 			(struct ip6_moptions *)0, so, NULL);
   4338 		break;
   4339 #endif
   4340 	default:
   4341 		error = EAFNOSUPPORT;
   4342 		break;
   4343 	}
   4344 	return (error);
   4345 }
   4346