Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.255
      1 /*	$NetBSD: tcp_input.c,v 1.255 2006/11/16 01:33:45 christos Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Charles M. Hannum.
     81  * This code is derived from software contributed to The NetBSD Foundation
     82  * by Rui Paulo.
     83  *
     84  * Redistribution and use in source and binary forms, with or without
     85  * modification, are permitted provided that the following conditions
     86  * are met:
     87  * 1. Redistributions of source code must retain the above copyright
     88  *    notice, this list of conditions and the following disclaimer.
     89  * 2. Redistributions in binary form must reproduce the above copyright
     90  *    notice, this list of conditions and the following disclaimer in the
     91  *    documentation and/or other materials provided with the distribution.
     92  * 3. All advertising materials mentioning features or use of this software
     93  *    must display the following acknowledgement:
     94  *	This product includes software developed by the NetBSD
     95  *	Foundation, Inc. and its contributors.
     96  * 4. Neither the name of The NetBSD Foundation nor the names of its
     97  *    contributors may be used to endorse or promote products derived
     98  *    from this software without specific prior written permission.
     99  *
    100  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
    101  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
    102  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    103  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    104  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    105  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    106  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    107  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    108  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    109  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    110  * POSSIBILITY OF SUCH DAMAGE.
    111  */
    112 
    113 /*
    114  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    115  *	The Regents of the University of California.  All rights reserved.
    116  *
    117  * Redistribution and use in source and binary forms, with or without
    118  * modification, are permitted provided that the following conditions
    119  * are met:
    120  * 1. Redistributions of source code must retain the above copyright
    121  *    notice, this list of conditions and the following disclaimer.
    122  * 2. Redistributions in binary form must reproduce the above copyright
    123  *    notice, this list of conditions and the following disclaimer in the
    124  *    documentation and/or other materials provided with the distribution.
    125  * 3. Neither the name of the University nor the names of its contributors
    126  *    may be used to endorse or promote products derived from this software
    127  *    without specific prior written permission.
    128  *
    129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    139  * SUCH DAMAGE.
    140  *
    141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    142  */
    143 
    144 /*
    145  *	TODO list for SYN cache stuff:
    146  *
    147  *	Find room for a "state" field, which is needed to keep a
    148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    149  *	that this is fairly important for very high-volume web and
    150  *	mail servers, which use a large number of short-lived
    151  *	connections.
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.255 2006/11/16 01:33:45 christos Exp $");
    156 
    157 #include "opt_inet.h"
    158 #include "opt_ipsec.h"
    159 #include "opt_inet_csum.h"
    160 #include "opt_tcp_debug.h"
    161 
    162 #include <sys/param.h>
    163 #include <sys/systm.h>
    164 #include <sys/malloc.h>
    165 #include <sys/mbuf.h>
    166 #include <sys/protosw.h>
    167 #include <sys/socket.h>
    168 #include <sys/socketvar.h>
    169 #include <sys/errno.h>
    170 #include <sys/syslog.h>
    171 #include <sys/pool.h>
    172 #include <sys/domain.h>
    173 #include <sys/kernel.h>
    174 #ifdef TCP_SIGNATURE
    175 #include <sys/md5.h>
    176 #endif
    177 
    178 #include <net/if.h>
    179 #include <net/route.h>
    180 #include <net/if_types.h>
    181 
    182 #include <netinet/in.h>
    183 #include <netinet/in_systm.h>
    184 #include <netinet/ip.h>
    185 #include <netinet/in_pcb.h>
    186 #include <netinet/in_var.h>
    187 #include <netinet/ip_var.h>
    188 #include <netinet/in_offload.h>
    189 
    190 #ifdef INET6
    191 #ifndef INET
    192 #include <netinet/in.h>
    193 #endif
    194 #include <netinet/ip6.h>
    195 #include <netinet6/ip6_var.h>
    196 #include <netinet6/in6_pcb.h>
    197 #include <netinet6/ip6_var.h>
    198 #include <netinet6/in6_var.h>
    199 #include <netinet/icmp6.h>
    200 #include <netinet6/nd6.h>
    201 #ifdef TCP_SIGNATURE
    202 #include <netinet6/scope6_var.h>
    203 #endif
    204 #endif
    205 
    206 #ifndef INET6
    207 /* always need ip6.h for IP6_EXTHDR_GET */
    208 #include <netinet/ip6.h>
    209 #endif
    210 
    211 #include <netinet/tcp.h>
    212 #include <netinet/tcp_fsm.h>
    213 #include <netinet/tcp_seq.h>
    214 #include <netinet/tcp_timer.h>
    215 #include <netinet/tcp_var.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #include <machine/stdarg.h>
    221 
    222 #ifdef IPSEC
    223 #include <netinet6/ipsec.h>
    224 #include <netkey/key.h>
    225 #endif /*IPSEC*/
    226 #ifdef INET6
    227 #include "faith.h"
    228 #if defined(NFAITH) && NFAITH > 0
    229 #include <net/if_faith.h>
    230 #endif
    231 #endif	/* IPSEC */
    232 
    233 #ifdef FAST_IPSEC
    234 #include <netipsec/ipsec.h>
    235 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
    236 #include <netipsec/key.h>
    237 #ifdef INET6
    238 #include <netipsec/ipsec6.h>
    239 #endif
    240 #endif	/* FAST_IPSEC*/
    241 
    242 int	tcprexmtthresh = 3;
    243 int	tcp_log_refused;
    244 
    245 static int tcp_rst_ppslim_count = 0;
    246 static struct timeval tcp_rst_ppslim_last;
    247 static int tcp_ackdrop_ppslim_count = 0;
    248 static struct timeval tcp_ackdrop_ppslim_last;
    249 
    250 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    251 
    252 /* for modulo comparisons of timestamps */
    253 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    254 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    255 
    256 /*
    257  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    258  */
    259 #ifdef INET6
    260 #define ND6_HINT(tp) \
    261 do { \
    262 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
    263 	    tp->t_in6pcb->in6p_route.ro_rt) { \
    264 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    265 	} \
    266 } while (/*CONSTCOND*/ 0)
    267 #else
    268 #define ND6_HINT(tp)
    269 #endif
    270 
    271 /*
    272  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    273  * we have already delayed an ACK (must send an ACK every two segments).
    274  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    275  * option is enabled.
    276  */
    277 #define	TCP_SETUP_ACK(tp, th) \
    278 do { \
    279 	if ((tp)->t_flags & TF_DELACK || \
    280 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    281 		tp->t_flags |= TF_ACKNOW; \
    282 	else \
    283 		TCP_SET_DELACK(tp); \
    284 } while (/*CONSTCOND*/ 0)
    285 
    286 #define ICMP_CHECK(tp, th, acked) \
    287 do { \
    288 	/* \
    289 	 * If we had a pending ICMP message that \
    290 	 * refers to data that have just been  \
    291 	 * acknowledged, disregard the recorded ICMP \
    292 	 * message. \
    293 	 */ \
    294 	if (((tp)->t_flags & TF_PMTUD_PEND) && \
    295 	    SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
    296 		(tp)->t_flags &= ~TF_PMTUD_PEND; \
    297 \
    298 	/* \
    299 	 * Keep track of the largest chunk of data \
    300 	 * acknowledged since last PMTU update \
    301 	 */ \
    302 	if ((tp)->t_pmtud_mss_acked < (acked)) \
    303 		(tp)->t_pmtud_mss_acked = (acked); \
    304 } while (/*CONSTCOND*/ 0)
    305 
    306 /*
    307  * Convert TCP protocol fields to host order for easier processing.
    308  */
    309 #define	TCP_FIELDS_TO_HOST(th)						\
    310 do {									\
    311 	NTOHL((th)->th_seq);						\
    312 	NTOHL((th)->th_ack);						\
    313 	NTOHS((th)->th_win);						\
    314 	NTOHS((th)->th_urp);						\
    315 } while (/*CONSTCOND*/ 0)
    316 
    317 /*
    318  * ... and reverse the above.
    319  */
    320 #define	TCP_FIELDS_TO_NET(th)						\
    321 do {									\
    322 	HTONL((th)->th_seq);						\
    323 	HTONL((th)->th_ack);						\
    324 	HTONS((th)->th_win);						\
    325 	HTONS((th)->th_urp);						\
    326 } while (/*CONSTCOND*/ 0)
    327 
    328 #ifdef TCP_CSUM_COUNTERS
    329 #include <sys/device.h>
    330 
    331 #if defined(INET)
    332 extern struct evcnt tcp_hwcsum_ok;
    333 extern struct evcnt tcp_hwcsum_bad;
    334 extern struct evcnt tcp_hwcsum_data;
    335 extern struct evcnt tcp_swcsum;
    336 #endif /* defined(INET) */
    337 #if defined(INET6)
    338 extern struct evcnt tcp6_hwcsum_ok;
    339 extern struct evcnt tcp6_hwcsum_bad;
    340 extern struct evcnt tcp6_hwcsum_data;
    341 extern struct evcnt tcp6_swcsum;
    342 #endif /* defined(INET6) */
    343 
    344 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    345 
    346 #else
    347 
    348 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    349 
    350 #endif /* TCP_CSUM_COUNTERS */
    351 
    352 #ifdef TCP_REASS_COUNTERS
    353 #include <sys/device.h>
    354 
    355 extern struct evcnt tcp_reass_;
    356 extern struct evcnt tcp_reass_empty;
    357 extern struct evcnt tcp_reass_iteration[8];
    358 extern struct evcnt tcp_reass_prependfirst;
    359 extern struct evcnt tcp_reass_prepend;
    360 extern struct evcnt tcp_reass_insert;
    361 extern struct evcnt tcp_reass_inserttail;
    362 extern struct evcnt tcp_reass_append;
    363 extern struct evcnt tcp_reass_appendtail;
    364 extern struct evcnt tcp_reass_overlaptail;
    365 extern struct evcnt tcp_reass_overlapfront;
    366 extern struct evcnt tcp_reass_segdup;
    367 extern struct evcnt tcp_reass_fragdup;
    368 
    369 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    370 
    371 #else
    372 
    373 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    374 
    375 #endif /* TCP_REASS_COUNTERS */
    376 
    377 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    378     const struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    379 
    380 #ifdef INET
    381 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    382 #endif
    383 #ifdef INET6
    384 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    385 #endif
    386 
    387 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    388 
    389 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    390     NULL);
    391 
    392 struct ipqent *
    393 tcpipqent_alloc()
    394 {
    395 	struct ipqent *ipqe;
    396 	int s;
    397 
    398 	s = splvm();
    399 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    400 	splx(s);
    401 
    402 	return ipqe;
    403 }
    404 
    405 void
    406 tcpipqent_free(struct ipqent *ipqe)
    407 {
    408 	int s;
    409 
    410 	s = splvm();
    411 	pool_put(&tcpipqent_pool, ipqe);
    412 	splx(s);
    413 }
    414 
    415 int
    416 tcp_reass(struct tcpcb *tp, struct tcphdr *th, struct mbuf *m, int *tlen)
    417 {
    418 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    419 	struct socket *so = NULL;
    420 	int pkt_flags;
    421 	tcp_seq pkt_seq;
    422 	unsigned pkt_len;
    423 	u_long rcvpartdupbyte = 0;
    424 	u_long rcvoobyte;
    425 #ifdef TCP_REASS_COUNTERS
    426 	u_int count = 0;
    427 #endif
    428 
    429 	if (tp->t_inpcb)
    430 		so = tp->t_inpcb->inp_socket;
    431 #ifdef INET6
    432 	else if (tp->t_in6pcb)
    433 		so = tp->t_in6pcb->in6p_socket;
    434 #endif
    435 
    436 	TCP_REASS_LOCK_CHECK(tp);
    437 
    438 	/*
    439 	 * Call with th==0 after become established to
    440 	 * force pre-ESTABLISHED data up to user socket.
    441 	 */
    442 	if (th == 0)
    443 		goto present;
    444 
    445 	rcvoobyte = *tlen;
    446 	/*
    447 	 * Copy these to local variables because the tcpiphdr
    448 	 * gets munged while we are collapsing mbufs.
    449 	 */
    450 	pkt_seq = th->th_seq;
    451 	pkt_len = *tlen;
    452 	pkt_flags = th->th_flags;
    453 
    454 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    455 
    456 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    457 		/*
    458 		 * When we miss a packet, the vast majority of time we get
    459 		 * packets that follow it in order.  So optimize for that.
    460 		 */
    461 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    462 			p->ipqe_len += pkt_len;
    463 			p->ipqe_flags |= pkt_flags;
    464 			m_cat(p->ipre_mlast, m);
    465 			TRAVERSE(p->ipre_mlast);
    466 			m = NULL;
    467 			tiqe = p;
    468 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    469 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    470 			goto skip_replacement;
    471 		}
    472 		/*
    473 		 * While we're here, if the pkt is completely beyond
    474 		 * anything we have, just insert it at the tail.
    475 		 */
    476 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    477 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    478 			goto insert_it;
    479 		}
    480 	}
    481 
    482 	q = TAILQ_FIRST(&tp->segq);
    483 
    484 	if (q != NULL) {
    485 		/*
    486 		 * If this segment immediately precedes the first out-of-order
    487 		 * block, simply slap the segment in front of it and (mostly)
    488 		 * skip the complicated logic.
    489 		 */
    490 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    491 			q->ipqe_seq = pkt_seq;
    492 			q->ipqe_len += pkt_len;
    493 			q->ipqe_flags |= pkt_flags;
    494 			m_cat(m, q->ipqe_m);
    495 			q->ipqe_m = m;
    496 			q->ipre_mlast = m; /* last mbuf may have changed */
    497 			TRAVERSE(q->ipre_mlast);
    498 			tiqe = q;
    499 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    500 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    501 			goto skip_replacement;
    502 		}
    503 	} else {
    504 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    505 	}
    506 
    507 	/*
    508 	 * Find a segment which begins after this one does.
    509 	 */
    510 	for (p = NULL; q != NULL; q = nq) {
    511 		nq = TAILQ_NEXT(q, ipqe_q);
    512 #ifdef TCP_REASS_COUNTERS
    513 		count++;
    514 #endif
    515 		/*
    516 		 * If the received segment is just right after this
    517 		 * fragment, merge the two together and then check
    518 		 * for further overlaps.
    519 		 */
    520 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    521 #ifdef TCPREASS_DEBUG
    522 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    523 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    524 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    525 #endif
    526 			pkt_len += q->ipqe_len;
    527 			pkt_flags |= q->ipqe_flags;
    528 			pkt_seq = q->ipqe_seq;
    529 			m_cat(q->ipre_mlast, m);
    530 			TRAVERSE(q->ipre_mlast);
    531 			m = q->ipqe_m;
    532 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    533 			goto free_ipqe;
    534 		}
    535 		/*
    536 		 * If the received segment is completely past this
    537 		 * fragment, we need to go the next fragment.
    538 		 */
    539 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    540 			p = q;
    541 			continue;
    542 		}
    543 		/*
    544 		 * If the fragment is past the received segment,
    545 		 * it (or any following) can't be concatenated.
    546 		 */
    547 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    548 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    549 			break;
    550 		}
    551 
    552 		/*
    553 		 * We've received all the data in this segment before.
    554 		 * mark it as a duplicate and return.
    555 		 */
    556 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    557 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    558 			tcpstat.tcps_rcvduppack++;
    559 			tcpstat.tcps_rcvdupbyte += pkt_len;
    560 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    561 			m_freem(m);
    562 			if (tiqe != NULL) {
    563 				tcpipqent_free(tiqe);
    564 			}
    565 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    566 			return (0);
    567 		}
    568 		/*
    569 		 * Received segment completely overlaps this fragment
    570 		 * so we drop the fragment (this keeps the temporal
    571 		 * ordering of segments correct).
    572 		 */
    573 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    574 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    575 			rcvpartdupbyte += q->ipqe_len;
    576 			m_freem(q->ipqe_m);
    577 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    578 			goto free_ipqe;
    579 		}
    580 		/*
    581 		 * RX'ed segment extends past the end of the
    582 		 * fragment.  Drop the overlapping bytes.  Then
    583 		 * merge the fragment and segment then treat as
    584 		 * a longer received packet.
    585 		 */
    586 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    587 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    588 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    589 #ifdef TCPREASS_DEBUG
    590 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    591 			       tp, overlap,
    592 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    593 #endif
    594 			m_adj(m, overlap);
    595 			rcvpartdupbyte += overlap;
    596 			m_cat(q->ipre_mlast, m);
    597 			TRAVERSE(q->ipre_mlast);
    598 			m = q->ipqe_m;
    599 			pkt_seq = q->ipqe_seq;
    600 			pkt_len += q->ipqe_len - overlap;
    601 			rcvoobyte -= overlap;
    602 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    603 			goto free_ipqe;
    604 		}
    605 		/*
    606 		 * RX'ed segment extends past the front of the
    607 		 * fragment.  Drop the overlapping bytes on the
    608 		 * received packet.  The packet will then be
    609 		 * contatentated with this fragment a bit later.
    610 		 */
    611 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    612 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    613 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    614 #ifdef TCPREASS_DEBUG
    615 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    616 			       tp, overlap,
    617 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    618 #endif
    619 			m_adj(m, -overlap);
    620 			pkt_len -= overlap;
    621 			rcvpartdupbyte += overlap;
    622 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    623 			rcvoobyte -= overlap;
    624 		}
    625 		/*
    626 		 * If the received segment immediates precedes this
    627 		 * fragment then tack the fragment onto this segment
    628 		 * and reinsert the data.
    629 		 */
    630 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    631 #ifdef TCPREASS_DEBUG
    632 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    633 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    634 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    635 #endif
    636 			pkt_len += q->ipqe_len;
    637 			pkt_flags |= q->ipqe_flags;
    638 			m_cat(m, q->ipqe_m);
    639 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    640 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    641 			tp->t_segqlen--;
    642 			KASSERT(tp->t_segqlen >= 0);
    643 			KASSERT(tp->t_segqlen != 0 ||
    644 			    (TAILQ_EMPTY(&tp->segq) &&
    645 			    TAILQ_EMPTY(&tp->timeq)));
    646 			if (tiqe == NULL) {
    647 				tiqe = q;
    648 			} else {
    649 				tcpipqent_free(q);
    650 			}
    651 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    652 			break;
    653 		}
    654 		/*
    655 		 * If the fragment is before the segment, remember it.
    656 		 * When this loop is terminated, p will contain the
    657 		 * pointer to fragment that is right before the received
    658 		 * segment.
    659 		 */
    660 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    661 			p = q;
    662 
    663 		continue;
    664 
    665 		/*
    666 		 * This is a common operation.  It also will allow
    667 		 * to save doing a malloc/free in most instances.
    668 		 */
    669 	  free_ipqe:
    670 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    671 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    672 		tp->t_segqlen--;
    673 		KASSERT(tp->t_segqlen >= 0);
    674 		KASSERT(tp->t_segqlen != 0 ||
    675 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    676 		if (tiqe == NULL) {
    677 			tiqe = q;
    678 		} else {
    679 			tcpipqent_free(q);
    680 		}
    681 	}
    682 
    683 #ifdef TCP_REASS_COUNTERS
    684 	if (count > 7)
    685 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    686 	else if (count > 0)
    687 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    688 #endif
    689 
    690     insert_it:
    691 
    692 	/*
    693 	 * Allocate a new queue entry since the received segment did not
    694 	 * collapse onto any other out-of-order block; thus we are allocating
    695 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    696 	 * we would be reusing it.
    697 	 * XXX If we can't, just drop the packet.  XXX
    698 	 */
    699 	if (tiqe == NULL) {
    700 		tiqe = tcpipqent_alloc();
    701 		if (tiqe == NULL) {
    702 			tcpstat.tcps_rcvmemdrop++;
    703 			m_freem(m);
    704 			return (0);
    705 		}
    706 	}
    707 
    708 	/*
    709 	 * Update the counters.
    710 	 */
    711 	tcpstat.tcps_rcvoopack++;
    712 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    713 	if (rcvpartdupbyte) {
    714 	    tcpstat.tcps_rcvpartduppack++;
    715 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    716 	}
    717 
    718 	/*
    719 	 * Insert the new fragment queue entry into both queues.
    720 	 */
    721 	tiqe->ipqe_m = m;
    722 	tiqe->ipre_mlast = m;
    723 	tiqe->ipqe_seq = pkt_seq;
    724 	tiqe->ipqe_len = pkt_len;
    725 	tiqe->ipqe_flags = pkt_flags;
    726 	if (p == NULL) {
    727 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    728 #ifdef TCPREASS_DEBUG
    729 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    730 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    731 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    732 #endif
    733 	} else {
    734 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    735 #ifdef TCPREASS_DEBUG
    736 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    737 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    738 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    739 #endif
    740 	}
    741 	tp->t_segqlen++;
    742 
    743 skip_replacement:
    744 
    745 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    746 
    747 present:
    748 	/*
    749 	 * Present data to user, advancing rcv_nxt through
    750 	 * completed sequence space.
    751 	 */
    752 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    753 		return (0);
    754 	q = TAILQ_FIRST(&tp->segq);
    755 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    756 		return (0);
    757 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    758 		return (0);
    759 
    760 	tp->rcv_nxt += q->ipqe_len;
    761 	pkt_flags = q->ipqe_flags & TH_FIN;
    762 	ND6_HINT(tp);
    763 
    764 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    765 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    766 	tp->t_segqlen--;
    767 	KASSERT(tp->t_segqlen >= 0);
    768 	KASSERT(tp->t_segqlen != 0 ||
    769 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    770 	if (so->so_state & SS_CANTRCVMORE)
    771 		m_freem(q->ipqe_m);
    772 	else
    773 		sbappendstream(&so->so_rcv, q->ipqe_m);
    774 	tcpipqent_free(q);
    775 	sorwakeup(so);
    776 	return (pkt_flags);
    777 }
    778 
    779 #ifdef INET6
    780 int
    781 tcp6_input(struct mbuf **mp, int *offp, int proto)
    782 {
    783 	struct mbuf *m = *mp;
    784 
    785 	/*
    786 	 * draft-itojun-ipv6-tcp-to-anycast
    787 	 * better place to put this in?
    788 	 */
    789 	if (m->m_flags & M_ANYCAST6) {
    790 		struct ip6_hdr *ip6;
    791 		if (m->m_len < sizeof(struct ip6_hdr)) {
    792 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    793 				tcpstat.tcps_rcvshort++;
    794 				return IPPROTO_DONE;
    795 			}
    796 		}
    797 		ip6 = mtod(m, struct ip6_hdr *);
    798 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    799 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    800 		return IPPROTO_DONE;
    801 	}
    802 
    803 	tcp_input(m, *offp, proto);
    804 	return IPPROTO_DONE;
    805 }
    806 #endif
    807 
    808 #ifdef INET
    809 static void
    810 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    811 {
    812 	char src[4*sizeof "123"];
    813 	char dst[4*sizeof "123"];
    814 
    815 	if (ip) {
    816 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    817 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    818 	}
    819 	else {
    820 		strlcpy(src, "(unknown)", sizeof(src));
    821 		strlcpy(dst, "(unknown)", sizeof(dst));
    822 	}
    823 	log(LOG_INFO,
    824 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    825 	    dst, ntohs(th->th_dport),
    826 	    src, ntohs(th->th_sport));
    827 }
    828 #endif
    829 
    830 #ifdef INET6
    831 static void
    832 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    833 {
    834 	char src[INET6_ADDRSTRLEN];
    835 	char dst[INET6_ADDRSTRLEN];
    836 
    837 	if (ip6) {
    838 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    839 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    840 	}
    841 	else {
    842 		strlcpy(src, "(unknown v6)", sizeof(src));
    843 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    844 	}
    845 	log(LOG_INFO,
    846 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    847 	    dst, ntohs(th->th_dport),
    848 	    src, ntohs(th->th_sport));
    849 }
    850 #endif
    851 
    852 /*
    853  * Checksum extended TCP header and data.
    854  */
    855 int
    856 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    857     int toff, int off, int tlen)
    858 {
    859 
    860 	/*
    861 	 * XXX it's better to record and check if this mbuf is
    862 	 * already checked.
    863 	 */
    864 
    865 	switch (af) {
    866 #ifdef INET
    867 	case AF_INET:
    868 		switch (m->m_pkthdr.csum_flags &
    869 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    870 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    871 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    872 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    873 			goto badcsum;
    874 
    875 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    876 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    877 
    878 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    879 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    880 				const struct ip *ip =
    881 				    mtod(m, const struct ip *);
    882 
    883 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    884 				    ip->ip_dst.s_addr,
    885 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    886 			}
    887 			if ((hw_csum ^ 0xffff) != 0)
    888 				goto badcsum;
    889 			break;
    890 		}
    891 
    892 		case M_CSUM_TCPv4:
    893 			/* Checksum was okay. */
    894 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    895 			break;
    896 
    897 		default:
    898 			/*
    899 			 * Must compute it ourselves.  Maybe skip checksum
    900 			 * on loopback interfaces.
    901 			 */
    902 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    903 					     IFF_LOOPBACK) ||
    904 					   tcp_do_loopback_cksum)) {
    905 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    906 				if (in4_cksum(m, IPPROTO_TCP, toff,
    907 					      tlen + off) != 0)
    908 					goto badcsum;
    909 			}
    910 			break;
    911 		}
    912 		break;
    913 #endif /* INET4 */
    914 
    915 #ifdef INET6
    916 	case AF_INET6:
    917 		switch (m->m_pkthdr.csum_flags &
    918 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    919 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    920 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    921 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    922 			goto badcsum;
    923 
    924 #if 0 /* notyet */
    925 		case M_CSUM_TCPv6|M_CSUM_DATA:
    926 #endif
    927 
    928 		case M_CSUM_TCPv6:
    929 			/* Checksum was okay. */
    930 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    931 			break;
    932 
    933 		default:
    934 			/*
    935 			 * Must compute it ourselves.  Maybe skip checksum
    936 			 * on loopback interfaces.
    937 			 */
    938 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    939 			    tcp_do_loopback_cksum)) {
    940 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    941 				if (in6_cksum(m, IPPROTO_TCP, toff,
    942 				    tlen + off) != 0)
    943 					goto badcsum;
    944 			}
    945 		}
    946 		break;
    947 #endif /* INET6 */
    948 	}
    949 
    950 	return 0;
    951 
    952 badcsum:
    953 	tcpstat.tcps_rcvbadsum++;
    954 	return -1;
    955 }
    956 
    957 /*
    958  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
    959  */
    960 void
    961 tcp_input(struct mbuf *m, ...)
    962 {
    963 	struct tcphdr *th;
    964 	struct ip *ip;
    965 	struct inpcb *inp;
    966 #ifdef INET6
    967 	struct ip6_hdr *ip6;
    968 	struct in6pcb *in6p;
    969 #endif
    970 	u_int8_t *optp = NULL;
    971 	int optlen = 0;
    972 	int len, tlen, toff, hdroptlen = 0;
    973 	struct tcpcb *tp = 0;
    974 	int tiflags;
    975 	struct socket *so = NULL;
    976 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
    977 #ifdef TCP_DEBUG
    978 	short ostate = 0;
    979 #endif
    980 	u_long tiwin;
    981 	struct tcp_opt_info opti;
    982 	int off, iphlen;
    983 	va_list ap;
    984 	int af;		/* af on the wire */
    985 	struct mbuf *tcp_saveti = NULL;
    986 	uint32_t ts_rtt;
    987 	uint8_t iptos;
    988 
    989 	MCLAIM(m, &tcp_rx_mowner);
    990 	va_start(ap, m);
    991 	toff = va_arg(ap, int);
    992 	(void)va_arg(ap, int);		/* ignore value, advance ap */
    993 	va_end(ap);
    994 
    995 	tcpstat.tcps_rcvtotal++;
    996 
    997 	bzero(&opti, sizeof(opti));
    998 	opti.ts_present = 0;
    999 	opti.maxseg = 0;
   1000 
   1001 	/*
   1002 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1003 	 *
   1004 	 * TCP is, by definition, unicast, so we reject all
   1005 	 * multicast outright.
   1006 	 *
   1007 	 * Note, there are additional src/dst address checks in
   1008 	 * the AF-specific code below.
   1009 	 */
   1010 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1011 		/* XXX stat */
   1012 		goto drop;
   1013 	}
   1014 #ifdef INET6
   1015 	if (m->m_flags & M_ANYCAST6) {
   1016 		/* XXX stat */
   1017 		goto drop;
   1018 	}
   1019 #endif
   1020 
   1021 	/*
   1022 	 * Get IP and TCP header.
   1023 	 * Note: IP leaves IP header in first mbuf.
   1024 	 */
   1025 	ip = mtod(m, struct ip *);
   1026 #ifdef INET6
   1027 	ip6 = NULL;
   1028 #endif
   1029 	switch (ip->ip_v) {
   1030 #ifdef INET
   1031 	case 4:
   1032 		af = AF_INET;
   1033 		iphlen = sizeof(struct ip);
   1034 		ip = mtod(m, struct ip *);
   1035 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1036 			sizeof(struct tcphdr));
   1037 		if (th == NULL) {
   1038 			tcpstat.tcps_rcvshort++;
   1039 			return;
   1040 		}
   1041 		/* We do the checksum after PCB lookup... */
   1042 		len = ntohs(ip->ip_len);
   1043 		tlen = len - toff;
   1044 		iptos = ip->ip_tos;
   1045 		break;
   1046 #endif
   1047 #ifdef INET6
   1048 	case 6:
   1049 		ip = NULL;
   1050 		iphlen = sizeof(struct ip6_hdr);
   1051 		af = AF_INET6;
   1052 		ip6 = mtod(m, struct ip6_hdr *);
   1053 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1054 			sizeof(struct tcphdr));
   1055 		if (th == NULL) {
   1056 			tcpstat.tcps_rcvshort++;
   1057 			return;
   1058 		}
   1059 
   1060 		/* Be proactive about malicious use of IPv4 mapped address */
   1061 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1062 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1063 			/* XXX stat */
   1064 			goto drop;
   1065 		}
   1066 
   1067 		/*
   1068 		 * Be proactive about unspecified IPv6 address in source.
   1069 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1070 		 * unspecified IPv6 address can be used to confuse us.
   1071 		 *
   1072 		 * Note that packets with unspecified IPv6 destination is
   1073 		 * already dropped in ip6_input.
   1074 		 */
   1075 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1076 			/* XXX stat */
   1077 			goto drop;
   1078 		}
   1079 
   1080 		/*
   1081 		 * Make sure destination address is not multicast.
   1082 		 * Source address checked in ip6_input().
   1083 		 */
   1084 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1085 			/* XXX stat */
   1086 			goto drop;
   1087 		}
   1088 
   1089 		/* We do the checksum after PCB lookup... */
   1090 		len = m->m_pkthdr.len;
   1091 		tlen = len - toff;
   1092 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1093 		break;
   1094 #endif
   1095 	default:
   1096 		m_freem(m);
   1097 		return;
   1098 	}
   1099 
   1100 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1101 
   1102 	/*
   1103 	 * Check that TCP offset makes sense,
   1104 	 * pull out TCP options and adjust length.		XXX
   1105 	 */
   1106 	off = th->th_off << 2;
   1107 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1108 		tcpstat.tcps_rcvbadoff++;
   1109 		goto drop;
   1110 	}
   1111 	tlen -= off;
   1112 
   1113 	/*
   1114 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1115 	 * length throughout the function.  Other functions can use
   1116 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1117 	 * rja
   1118 	 */
   1119 
   1120 	if (off > sizeof (struct tcphdr)) {
   1121 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1122 		if (th == NULL) {
   1123 			tcpstat.tcps_rcvshort++;
   1124 			return;
   1125 		}
   1126 		/*
   1127 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1128 		 * (as they're before toff) and we don't need to update those.
   1129 		 */
   1130 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1131 		optlen = off - sizeof (struct tcphdr);
   1132 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1133 		/*
   1134 		 * Do quick retrieval of timestamp options ("options
   1135 		 * prediction?").  If timestamp is the only option and it's
   1136 		 * formatted as recommended in RFC 1323 appendix A, we
   1137 		 * quickly get the values now and not bother calling
   1138 		 * tcp_dooptions(), etc.
   1139 		 */
   1140 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1141 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1142 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1143 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1144 		     (th->th_flags & TH_SYN) == 0) {
   1145 			opti.ts_present = 1;
   1146 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1147 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1148 			optp = NULL;	/* we've parsed the options */
   1149 		}
   1150 	}
   1151 	tiflags = th->th_flags;
   1152 
   1153 	/*
   1154 	 * Locate pcb for segment.
   1155 	 */
   1156 findpcb:
   1157 	inp = NULL;
   1158 #ifdef INET6
   1159 	in6p = NULL;
   1160 #endif
   1161 	switch (af) {
   1162 #ifdef INET
   1163 	case AF_INET:
   1164 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1165 		    ip->ip_dst, th->th_dport);
   1166 		if (inp == 0) {
   1167 			++tcpstat.tcps_pcbhashmiss;
   1168 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1169 		}
   1170 #ifdef INET6
   1171 		if (inp == 0) {
   1172 			struct in6_addr s, d;
   1173 
   1174 			/* mapped addr case */
   1175 			bzero(&s, sizeof(s));
   1176 			s.s6_addr16[5] = htons(0xffff);
   1177 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1178 			bzero(&d, sizeof(d));
   1179 			d.s6_addr16[5] = htons(0xffff);
   1180 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1181 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1182 			    th->th_sport, &d, th->th_dport, 0);
   1183 			if (in6p == 0) {
   1184 				++tcpstat.tcps_pcbhashmiss;
   1185 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1186 				    th->th_dport, 0);
   1187 			}
   1188 		}
   1189 #endif
   1190 #ifndef INET6
   1191 		if (inp == 0)
   1192 #else
   1193 		if (inp == 0 && in6p == 0)
   1194 #endif
   1195 		{
   1196 			++tcpstat.tcps_noport;
   1197 			if (tcp_log_refused &&
   1198 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1199 				tcp4_log_refused(ip, th);
   1200 			}
   1201 			TCP_FIELDS_TO_HOST(th);
   1202 			goto dropwithreset_ratelim;
   1203 		}
   1204 #if defined(IPSEC) || defined(FAST_IPSEC)
   1205 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1206 		    ipsec4_in_reject(m, inp)) {
   1207 			ipsecstat.in_polvio++;
   1208 			goto drop;
   1209 		}
   1210 #ifdef INET6
   1211 		else if (in6p &&
   1212 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1213 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
   1214 			ipsecstat.in_polvio++;
   1215 			goto drop;
   1216 		}
   1217 #endif
   1218 #endif /*IPSEC*/
   1219 		break;
   1220 #endif /*INET*/
   1221 #ifdef INET6
   1222 	case AF_INET6:
   1223 	    {
   1224 		int faith;
   1225 
   1226 #if defined(NFAITH) && NFAITH > 0
   1227 		faith = faithprefix(&ip6->ip6_dst);
   1228 #else
   1229 		faith = 0;
   1230 #endif
   1231 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1232 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
   1233 		if (in6p == NULL) {
   1234 			++tcpstat.tcps_pcbhashmiss;
   1235 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1236 				th->th_dport, faith);
   1237 		}
   1238 		if (in6p == NULL) {
   1239 			++tcpstat.tcps_noport;
   1240 			if (tcp_log_refused &&
   1241 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1242 				tcp6_log_refused(ip6, th);
   1243 			}
   1244 			TCP_FIELDS_TO_HOST(th);
   1245 			goto dropwithreset_ratelim;
   1246 		}
   1247 #if defined(IPSEC) || defined(FAST_IPSEC)
   1248 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1249 		    ipsec6_in_reject(m, in6p)) {
   1250 			ipsec6stat.in_polvio++;
   1251 			goto drop;
   1252 		}
   1253 #endif /*IPSEC*/
   1254 		break;
   1255 	    }
   1256 #endif
   1257 	}
   1258 
   1259 	/*
   1260 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1261 	 * all data in the incoming segment is discarded.
   1262 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1263 	 * but should either do a listen or a connect soon.
   1264 	 */
   1265 	tp = NULL;
   1266 	so = NULL;
   1267 	if (inp) {
   1268 		tp = intotcpcb(inp);
   1269 		so = inp->inp_socket;
   1270 	}
   1271 #ifdef INET6
   1272 	else if (in6p) {
   1273 		tp = in6totcpcb(in6p);
   1274 		so = in6p->in6p_socket;
   1275 	}
   1276 #endif
   1277 	if (tp == 0) {
   1278 		TCP_FIELDS_TO_HOST(th);
   1279 		goto dropwithreset_ratelim;
   1280 	}
   1281 	if (tp->t_state == TCPS_CLOSED)
   1282 		goto drop;
   1283 
   1284 	/*
   1285 	 * Checksum extended TCP header and data.
   1286 	 */
   1287 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1288 		goto badcsum;
   1289 
   1290 	TCP_FIELDS_TO_HOST(th);
   1291 
   1292 	/* Unscale the window into a 32-bit value. */
   1293 	if ((tiflags & TH_SYN) == 0)
   1294 		tiwin = th->th_win << tp->snd_scale;
   1295 	else
   1296 		tiwin = th->th_win;
   1297 
   1298 #ifdef INET6
   1299 	/* save packet options if user wanted */
   1300 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1301 		if (in6p->in6p_options) {
   1302 			m_freem(in6p->in6p_options);
   1303 			in6p->in6p_options = 0;
   1304 		}
   1305 		KASSERT(ip6 != NULL);
   1306 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1307 	}
   1308 #endif
   1309 
   1310 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1311 		union syn_cache_sa src;
   1312 		union syn_cache_sa dst;
   1313 
   1314 		bzero(&src, sizeof(src));
   1315 		bzero(&dst, sizeof(dst));
   1316 		switch (af) {
   1317 #ifdef INET
   1318 		case AF_INET:
   1319 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1320 			src.sin.sin_family = AF_INET;
   1321 			src.sin.sin_addr = ip->ip_src;
   1322 			src.sin.sin_port = th->th_sport;
   1323 
   1324 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1325 			dst.sin.sin_family = AF_INET;
   1326 			dst.sin.sin_addr = ip->ip_dst;
   1327 			dst.sin.sin_port = th->th_dport;
   1328 			break;
   1329 #endif
   1330 #ifdef INET6
   1331 		case AF_INET6:
   1332 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1333 			src.sin6.sin6_family = AF_INET6;
   1334 			src.sin6.sin6_addr = ip6->ip6_src;
   1335 			src.sin6.sin6_port = th->th_sport;
   1336 
   1337 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1338 			dst.sin6.sin6_family = AF_INET6;
   1339 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1340 			dst.sin6.sin6_port = th->th_dport;
   1341 			break;
   1342 #endif /* INET6 */
   1343 		default:
   1344 			goto badsyn;	/*sanity*/
   1345 		}
   1346 
   1347 		if (so->so_options & SO_DEBUG) {
   1348 #ifdef TCP_DEBUG
   1349 			ostate = tp->t_state;
   1350 #endif
   1351 
   1352 			tcp_saveti = NULL;
   1353 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1354 				goto nosave;
   1355 
   1356 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1357 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1358 				if (!tcp_saveti)
   1359 					goto nosave;
   1360 			} else {
   1361 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1362 				if (!tcp_saveti)
   1363 					goto nosave;
   1364 				MCLAIM(m, &tcp_mowner);
   1365 				tcp_saveti->m_len = iphlen;
   1366 				m_copydata(m, 0, iphlen,
   1367 				    mtod(tcp_saveti, caddr_t));
   1368 			}
   1369 
   1370 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1371 				m_freem(tcp_saveti);
   1372 				tcp_saveti = NULL;
   1373 			} else {
   1374 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1375 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1376 				    sizeof(struct tcphdr));
   1377 			}
   1378 	nosave:;
   1379 		}
   1380 		if (so->so_options & SO_ACCEPTCONN) {
   1381 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1382 				if (tiflags & TH_RST) {
   1383 					syn_cache_reset(&src.sa, &dst.sa, th);
   1384 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1385 				    (TH_ACK|TH_SYN)) {
   1386 					/*
   1387 					 * Received a SYN,ACK.  This should
   1388 					 * never happen while we are in
   1389 					 * LISTEN.  Send an RST.
   1390 					 */
   1391 					goto badsyn;
   1392 				} else if (tiflags & TH_ACK) {
   1393 					so = syn_cache_get(&src.sa, &dst.sa,
   1394 						th, toff, tlen, so, m);
   1395 					if (so == NULL) {
   1396 						/*
   1397 						 * We don't have a SYN for
   1398 						 * this ACK; send an RST.
   1399 						 */
   1400 						goto badsyn;
   1401 					} else if (so ==
   1402 					    (struct socket *)(-1)) {
   1403 						/*
   1404 						 * We were unable to create
   1405 						 * the connection.  If the
   1406 						 * 3-way handshake was
   1407 						 * completed, and RST has
   1408 						 * been sent to the peer.
   1409 						 * Since the mbuf might be
   1410 						 * in use for the reply,
   1411 						 * do not free it.
   1412 						 */
   1413 						m = NULL;
   1414 					} else {
   1415 						/*
   1416 						 * We have created a
   1417 						 * full-blown connection.
   1418 						 */
   1419 						tp = NULL;
   1420 						inp = NULL;
   1421 #ifdef INET6
   1422 						in6p = NULL;
   1423 #endif
   1424 						switch (so->so_proto->pr_domain->dom_family) {
   1425 #ifdef INET
   1426 						case AF_INET:
   1427 							inp = sotoinpcb(so);
   1428 							tp = intotcpcb(inp);
   1429 							break;
   1430 #endif
   1431 #ifdef INET6
   1432 						case AF_INET6:
   1433 							in6p = sotoin6pcb(so);
   1434 							tp = in6totcpcb(in6p);
   1435 							break;
   1436 #endif
   1437 						}
   1438 						if (tp == NULL)
   1439 							goto badsyn;	/*XXX*/
   1440 						tiwin <<= tp->snd_scale;
   1441 						goto after_listen;
   1442 					}
   1443 				} else {
   1444 					/*
   1445 					 * None of RST, SYN or ACK was set.
   1446 					 * This is an invalid packet for a
   1447 					 * TCB in LISTEN state.  Send a RST.
   1448 					 */
   1449 					goto badsyn;
   1450 				}
   1451 			} else {
   1452 				/*
   1453 				 * Received a SYN.
   1454 				 *
   1455 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1456 				 */
   1457 				if (m->m_flags & (M_BCAST|M_MCAST))
   1458 					goto drop;
   1459 
   1460 				switch (af) {
   1461 #ifdef INET6
   1462 				case AF_INET6:
   1463 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1464 						goto drop;
   1465 					break;
   1466 #endif /* INET6 */
   1467 				case AF_INET:
   1468 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1469 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1470 						goto drop;
   1471 				break;
   1472 				}
   1473 
   1474 #ifdef INET6
   1475 				/*
   1476 				 * If deprecated address is forbidden, we do
   1477 				 * not accept SYN to deprecated interface
   1478 				 * address to prevent any new inbound
   1479 				 * connection from getting established.
   1480 				 * When we do not accept SYN, we send a TCP
   1481 				 * RST, with deprecated source address (instead
   1482 				 * of dropping it).  We compromise it as it is
   1483 				 * much better for peer to send a RST, and
   1484 				 * RST will be the final packet for the
   1485 				 * exchange.
   1486 				 *
   1487 				 * If we do not forbid deprecated addresses, we
   1488 				 * accept the SYN packet.  RFC2462 does not
   1489 				 * suggest dropping SYN in this case.
   1490 				 * If we decipher RFC2462 5.5.4, it says like
   1491 				 * this:
   1492 				 * 1. use of deprecated addr with existing
   1493 				 *    communication is okay - "SHOULD continue
   1494 				 *    to be used"
   1495 				 * 2. use of it with new communication:
   1496 				 *   (2a) "SHOULD NOT be used if alternate
   1497 				 *        address with sufficient scope is
   1498 				 *        available"
   1499 				 *   (2b) nothing mentioned otherwise.
   1500 				 * Here we fall into (2b) case as we have no
   1501 				 * choice in our source address selection - we
   1502 				 * must obey the peer.
   1503 				 *
   1504 				 * The wording in RFC2462 is confusing, and
   1505 				 * there are multiple description text for
   1506 				 * deprecated address handling - worse, they
   1507 				 * are not exactly the same.  I believe 5.5.4
   1508 				 * is the best one, so we follow 5.5.4.
   1509 				 */
   1510 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1511 					struct in6_ifaddr *ia6;
   1512 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1513 					    &ip6->ip6_dst)) &&
   1514 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1515 						tp = NULL;
   1516 						goto dropwithreset;
   1517 					}
   1518 				}
   1519 #endif
   1520 
   1521 #ifdef IPSEC
   1522 				switch (af) {
   1523 #ifdef INET
   1524 				case AF_INET:
   1525 					if (ipsec4_in_reject_so(m, so)) {
   1526 						ipsecstat.in_polvio++;
   1527 						tp = NULL;
   1528 						goto dropwithreset;
   1529 					}
   1530 					break;
   1531 #endif
   1532 #ifdef INET6
   1533 				case AF_INET6:
   1534 					if (ipsec6_in_reject_so(m, so)) {
   1535 						ipsec6stat.in_polvio++;
   1536 						tp = NULL;
   1537 						goto dropwithreset;
   1538 					}
   1539 					break;
   1540 #endif
   1541 				}
   1542 #endif
   1543 
   1544 				/*
   1545 				 * LISTEN socket received a SYN
   1546 				 * from itself?  This can't possibly
   1547 				 * be valid; drop the packet.
   1548 				 */
   1549 				if (th->th_sport == th->th_dport) {
   1550 					int i;
   1551 
   1552 					switch (af) {
   1553 #ifdef INET
   1554 					case AF_INET:
   1555 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1556 						break;
   1557 #endif
   1558 #ifdef INET6
   1559 					case AF_INET6:
   1560 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1561 						break;
   1562 #endif
   1563 					default:
   1564 						i = 1;
   1565 					}
   1566 					if (i) {
   1567 						tcpstat.tcps_badsyn++;
   1568 						goto drop;
   1569 					}
   1570 				}
   1571 
   1572 				/*
   1573 				 * SYN looks ok; create compressed TCP
   1574 				 * state for it.
   1575 				 */
   1576 				if (so->so_qlen <= so->so_qlimit &&
   1577 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1578 						so, m, optp, optlen, &opti))
   1579 					m = NULL;
   1580 			}
   1581 			goto drop;
   1582 		}
   1583 	}
   1584 
   1585 after_listen:
   1586 #ifdef DIAGNOSTIC
   1587 	/*
   1588 	 * Should not happen now that all embryonic connections
   1589 	 * are handled with compressed state.
   1590 	 */
   1591 	if (tp->t_state == TCPS_LISTEN)
   1592 		panic("tcp_input: TCPS_LISTEN");
   1593 #endif
   1594 
   1595 	/*
   1596 	 * Segment received on connection.
   1597 	 * Reset idle time and keep-alive timer.
   1598 	 */
   1599 	tp->t_rcvtime = tcp_now;
   1600 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1601 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1602 
   1603 	/*
   1604 	 * Process options.
   1605 	 */
   1606 #ifdef TCP_SIGNATURE
   1607 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1608 #else
   1609 	if (optp)
   1610 #endif
   1611 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1612 			goto drop;
   1613 
   1614 	if (TCP_SACK_ENABLED(tp)) {
   1615 		tcp_del_sackholes(tp, th);
   1616 	}
   1617 
   1618 	if (TCP_ECN_ALLOWED(tp)) {
   1619 		switch (iptos & IPTOS_ECN_MASK) {
   1620 		case IPTOS_ECN_CE:
   1621 			tp->t_flags |= TF_ECN_SND_ECE;
   1622 			tcpstat.tcps_ecn_ce++;
   1623 			break;
   1624 		case IPTOS_ECN_ECT0:
   1625 			tcpstat.tcps_ecn_ect++;
   1626 			break;
   1627 		case IPTOS_ECN_ECT1:
   1628 			/* XXX: ignore for now -- rpaulo */
   1629 			break;
   1630 		}
   1631 
   1632 		if (tiflags & TH_CWR)
   1633 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1634 
   1635 		/*
   1636 		 * Congestion experienced.
   1637 		 * Ignore if we are already trying to recover.
   1638 		 */
   1639 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1640 			tp->t_congctl->cong_exp(tp);
   1641 	}
   1642 
   1643 	if (opti.ts_present && opti.ts_ecr) {
   1644 		/*
   1645 		 * Calculate the RTT from the returned time stamp and the
   1646 		 * connection's time base.  If the time stamp is later than
   1647 		 * the current time, or is extremely old, fall back to non-1323
   1648 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
   1649 		 * at the same time.
   1650 		 */
   1651 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1652 		if (ts_rtt > TCP_PAWS_IDLE)
   1653 			ts_rtt = 0;
   1654 	} else {
   1655 		ts_rtt = 0;
   1656 	}
   1657 
   1658 	/*
   1659 	 * Header prediction: check for the two common cases
   1660 	 * of a uni-directional data xfer.  If the packet has
   1661 	 * no control flags, is in-sequence, the window didn't
   1662 	 * change and we're not retransmitting, it's a
   1663 	 * candidate.  If the length is zero and the ack moved
   1664 	 * forward, we're the sender side of the xfer.  Just
   1665 	 * free the data acked & wake any higher level process
   1666 	 * that was blocked waiting for space.  If the length
   1667 	 * is non-zero and the ack didn't move, we're the
   1668 	 * receiver side.  If we're getting packets in-order
   1669 	 * (the reassembly queue is empty), add the data to
   1670 	 * the socket buffer and note that we need a delayed ack.
   1671 	 */
   1672 	if (tp->t_state == TCPS_ESTABLISHED &&
   1673 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1674 	        == TH_ACK &&
   1675 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1676 	    th->th_seq == tp->rcv_nxt &&
   1677 	    tiwin && tiwin == tp->snd_wnd &&
   1678 	    tp->snd_nxt == tp->snd_max) {
   1679 
   1680 		/*
   1681 		 * If last ACK falls within this segment's sequence numbers,
   1682 		 *  record the timestamp.
   1683 		 * NOTE:
   1684 		 * 1) That the test incorporates suggestions from the latest
   1685 		 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1686 		 * 2) That updating only on newer timestamps interferes with
   1687 		 *    our earlier PAWS tests, so this check should be solely
   1688 		 *    predicated on the sequence space of this segment.
   1689 		 * 3) That we modify the segment boundary check to be
   1690 		 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   1691 		 *    instead of RFC1323's
   1692 		 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   1693 		 *    This modified check allows us to overcome RFC1323's
   1694 		 *    limitations as described in Stevens TCP/IP Illustrated
   1695 		 *    Vol. 2 p.869. In such cases, we can still calculate the
   1696 		 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   1697 		 */
   1698 		if (opti.ts_present &&
   1699 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1700 		    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   1701 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1702 			tp->ts_recent_age = tcp_now;
   1703 			tp->ts_recent = opti.ts_val;
   1704 		}
   1705 
   1706 		if (tlen == 0) {
   1707 			/* Ack prediction. */
   1708 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1709 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1710 			    tp->snd_cwnd >= tp->snd_wnd &&
   1711 			    tp->t_partialacks < 0) {
   1712 				/*
   1713 				 * this is a pure ack for outstanding data.
   1714 				 */
   1715 				++tcpstat.tcps_predack;
   1716 				if (ts_rtt)
   1717 					tcp_xmit_timer(tp, ts_rtt);
   1718 				else if (tp->t_rtttime &&
   1719 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1720 					tcp_xmit_timer(tp,
   1721 					  tcp_now - tp->t_rtttime);
   1722 				acked = th->th_ack - tp->snd_una;
   1723 				tcpstat.tcps_rcvackpack++;
   1724 				tcpstat.tcps_rcvackbyte += acked;
   1725 				ND6_HINT(tp);
   1726 
   1727 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1728 					tp->t_lastm = NULL;
   1729 				sbdrop(&so->so_snd, acked);
   1730 				tp->t_lastoff -= acked;
   1731 
   1732 				ICMP_CHECK(tp, th, acked);
   1733 
   1734 				tp->snd_una = th->th_ack;
   1735 				tp->snd_fack = tp->snd_una;
   1736 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1737 					tp->snd_high = tp->snd_una;
   1738 				m_freem(m);
   1739 
   1740 				/*
   1741 				 * If all outstanding data are acked, stop
   1742 				 * retransmit timer, otherwise restart timer
   1743 				 * using current (possibly backed-off) value.
   1744 				 * If process is waiting for space,
   1745 				 * wakeup/selwakeup/signal.  If data
   1746 				 * are ready to send, let tcp_output
   1747 				 * decide between more output or persist.
   1748 				 */
   1749 				if (tp->snd_una == tp->snd_max)
   1750 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1751 				else if (TCP_TIMER_ISARMED(tp,
   1752 				    TCPT_PERSIST) == 0)
   1753 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1754 					    tp->t_rxtcur);
   1755 
   1756 				sowwakeup(so);
   1757 				if (so->so_snd.sb_cc)
   1758 					(void) tcp_output(tp);
   1759 				if (tcp_saveti)
   1760 					m_freem(tcp_saveti);
   1761 				return;
   1762 			}
   1763 		} else if (th->th_ack == tp->snd_una &&
   1764 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1765 		    tlen <= sbspace(&so->so_rcv)) {
   1766 			/*
   1767 			 * this is a pure, in-sequence data packet
   1768 			 * with nothing on the reassembly queue and
   1769 			 * we have enough buffer space to take it.
   1770 			 */
   1771 			++tcpstat.tcps_preddat;
   1772 			tp->rcv_nxt += tlen;
   1773 			tcpstat.tcps_rcvpack++;
   1774 			tcpstat.tcps_rcvbyte += tlen;
   1775 			ND6_HINT(tp);
   1776 			/*
   1777 			 * Drop TCP, IP headers and TCP options then add data
   1778 			 * to socket buffer.
   1779 			 */
   1780 			if (so->so_state & SS_CANTRCVMORE)
   1781 				m_freem(m);
   1782 			else {
   1783 				m_adj(m, toff + off);
   1784 				sbappendstream(&so->so_rcv, m);
   1785 			}
   1786 			sorwakeup(so);
   1787 			TCP_SETUP_ACK(tp, th);
   1788 			if (tp->t_flags & TF_ACKNOW)
   1789 				(void) tcp_output(tp);
   1790 			if (tcp_saveti)
   1791 				m_freem(tcp_saveti);
   1792 			return;
   1793 		}
   1794 	}
   1795 
   1796 	/*
   1797 	 * Compute mbuf offset to TCP data segment.
   1798 	 */
   1799 	hdroptlen = toff + off;
   1800 
   1801 	/*
   1802 	 * Calculate amount of space in receive window,
   1803 	 * and then do TCP input processing.
   1804 	 * Receive window is amount of space in rcv queue,
   1805 	 * but not less than advertised window.
   1806 	 */
   1807 	{ int win;
   1808 
   1809 	win = sbspace(&so->so_rcv);
   1810 	if (win < 0)
   1811 		win = 0;
   1812 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1813 	}
   1814 
   1815 	switch (tp->t_state) {
   1816 	/*
   1817 	 * If the state is SYN_SENT:
   1818 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1819 	 *	if seg contains a RST, then drop the connection.
   1820 	 *	if seg does not contain SYN, then drop it.
   1821 	 * Otherwise this is an acceptable SYN segment
   1822 	 *	initialize tp->rcv_nxt and tp->irs
   1823 	 *	if seg contains ack then advance tp->snd_una
   1824 	 *	if seg contains a ECE and ECN support is enabled, the stream
   1825 	 *	    is ECN capable.
   1826 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1827 	 *	arrange for segment to be acked (eventually)
   1828 	 *	continue processing rest of data/controls, beginning with URG
   1829 	 */
   1830 	case TCPS_SYN_SENT:
   1831 		if ((tiflags & TH_ACK) &&
   1832 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1833 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1834 			goto dropwithreset;
   1835 		if (tiflags & TH_RST) {
   1836 			if (tiflags & TH_ACK)
   1837 				tp = tcp_drop(tp, ECONNREFUSED);
   1838 			goto drop;
   1839 		}
   1840 		if ((tiflags & TH_SYN) == 0)
   1841 			goto drop;
   1842 		if (tiflags & TH_ACK) {
   1843 			tp->snd_una = th->th_ack;
   1844 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1845 				tp->snd_nxt = tp->snd_una;
   1846 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   1847 				tp->snd_high = tp->snd_una;
   1848 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1849 
   1850 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   1851 				tp->t_flags |= TF_ECN_PERMIT;
   1852 				tcpstat.tcps_ecn_shs++;
   1853 			}
   1854 
   1855 		}
   1856 		tp->irs = th->th_seq;
   1857 		tcp_rcvseqinit(tp);
   1858 		tp->t_flags |= TF_ACKNOW;
   1859 		tcp_mss_from_peer(tp, opti.maxseg);
   1860 
   1861 		/*
   1862 		 * Initialize the initial congestion window.  If we
   1863 		 * had to retransmit the SYN, we must initialize cwnd
   1864 		 * to 1 segment (i.e. the Loss Window).
   1865 		 */
   1866 		if (tp->t_flags & TF_SYN_REXMT)
   1867 			tp->snd_cwnd = tp->t_peermss;
   1868 		else {
   1869 			int ss = tcp_init_win;
   1870 #ifdef INET
   1871 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1872 				ss = tcp_init_win_local;
   1873 #endif
   1874 #ifdef INET6
   1875 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1876 				ss = tcp_init_win_local;
   1877 #endif
   1878 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1879 		}
   1880 
   1881 		tcp_rmx_rtt(tp);
   1882 		if (tiflags & TH_ACK) {
   1883 			tcpstat.tcps_connects++;
   1884 			soisconnected(so);
   1885 			tcp_established(tp);
   1886 			/* Do window scaling on this connection? */
   1887 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1888 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1889 				tp->snd_scale = tp->requested_s_scale;
   1890 				tp->rcv_scale = tp->request_r_scale;
   1891 			}
   1892 			TCP_REASS_LOCK(tp);
   1893 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1894 			TCP_REASS_UNLOCK(tp);
   1895 			/*
   1896 			 * if we didn't have to retransmit the SYN,
   1897 			 * use its rtt as our initial srtt & rtt var.
   1898 			 */
   1899 			if (tp->t_rtttime)
   1900 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1901 		} else
   1902 			tp->t_state = TCPS_SYN_RECEIVED;
   1903 
   1904 		/*
   1905 		 * Advance th->th_seq to correspond to first data byte.
   1906 		 * If data, trim to stay within window,
   1907 		 * dropping FIN if necessary.
   1908 		 */
   1909 		th->th_seq++;
   1910 		if (tlen > tp->rcv_wnd) {
   1911 			todrop = tlen - tp->rcv_wnd;
   1912 			m_adj(m, -todrop);
   1913 			tlen = tp->rcv_wnd;
   1914 			tiflags &= ~TH_FIN;
   1915 			tcpstat.tcps_rcvpackafterwin++;
   1916 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1917 		}
   1918 		tp->snd_wl1 = th->th_seq - 1;
   1919 		tp->rcv_up = th->th_seq;
   1920 		goto step6;
   1921 
   1922 	/*
   1923 	 * If the state is SYN_RECEIVED:
   1924 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1925 	 *	and generate an RST.  See page 36, rfc793
   1926 	 */
   1927 	case TCPS_SYN_RECEIVED:
   1928 		if ((tiflags & TH_ACK) &&
   1929 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1930 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1931 			goto dropwithreset;
   1932 		break;
   1933 	}
   1934 
   1935 	/*
   1936 	 * States other than LISTEN or SYN_SENT.
   1937 	 * First check timestamp, if present.
   1938 	 * Then check that at least some bytes of segment are within
   1939 	 * receive window.  If segment begins before rcv_nxt,
   1940 	 * drop leading data (and SYN); if nothing left, just ack.
   1941 	 *
   1942 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1943 	 * and it's less than ts_recent, drop it.
   1944 	 */
   1945 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1946 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1947 
   1948 		/* Check to see if ts_recent is over 24 days old.  */
   1949 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   1950 			/*
   1951 			 * Invalidate ts_recent.  If this segment updates
   1952 			 * ts_recent, the age will be reset later and ts_recent
   1953 			 * will get a valid value.  If it does not, setting
   1954 			 * ts_recent to zero will at least satisfy the
   1955 			 * requirement that zero be placed in the timestamp
   1956 			 * echo reply when ts_recent isn't valid.  The
   1957 			 * age isn't reset until we get a valid ts_recent
   1958 			 * because we don't want out-of-order segments to be
   1959 			 * dropped when ts_recent is old.
   1960 			 */
   1961 			tp->ts_recent = 0;
   1962 		} else {
   1963 			tcpstat.tcps_rcvduppack++;
   1964 			tcpstat.tcps_rcvdupbyte += tlen;
   1965 			tcpstat.tcps_pawsdrop++;
   1966 			tcp_new_dsack(tp, th->th_seq, tlen);
   1967 			goto dropafterack;
   1968 		}
   1969 	}
   1970 
   1971 	todrop = tp->rcv_nxt - th->th_seq;
   1972 	dupseg = FALSE;
   1973 	if (todrop > 0) {
   1974 		if (tiflags & TH_SYN) {
   1975 			tiflags &= ~TH_SYN;
   1976 			th->th_seq++;
   1977 			if (th->th_urp > 1)
   1978 				th->th_urp--;
   1979 			else {
   1980 				tiflags &= ~TH_URG;
   1981 				th->th_urp = 0;
   1982 			}
   1983 			todrop--;
   1984 		}
   1985 		if (todrop > tlen ||
   1986 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1987 			/*
   1988 			 * Any valid FIN or RST must be to the left of the
   1989 			 * window.  At this point the FIN or RST must be a
   1990 			 * duplicate or out of sequence; drop it.
   1991 			 */
   1992 			if (tiflags & TH_RST)
   1993 				goto drop;
   1994 			tiflags &= ~(TH_FIN|TH_RST);
   1995 			/*
   1996 			 * Send an ACK to resynchronize and drop any data.
   1997 			 * But keep on processing for RST or ACK.
   1998 			 */
   1999 			tp->t_flags |= TF_ACKNOW;
   2000 			todrop = tlen;
   2001 			dupseg = TRUE;
   2002 			tcpstat.tcps_rcvdupbyte += todrop;
   2003 			tcpstat.tcps_rcvduppack++;
   2004 		} else if ((tiflags & TH_RST) &&
   2005 			   th->th_seq != tp->last_ack_sent) {
   2006 			/*
   2007 			 * Test for reset before adjusting the sequence
   2008 			 * number for overlapping data.
   2009 			 */
   2010 			goto dropafterack_ratelim;
   2011 		} else {
   2012 			tcpstat.tcps_rcvpartduppack++;
   2013 			tcpstat.tcps_rcvpartdupbyte += todrop;
   2014 		}
   2015 		tcp_new_dsack(tp, th->th_seq, todrop);
   2016 		hdroptlen += todrop;	/*drop from head afterwards*/
   2017 		th->th_seq += todrop;
   2018 		tlen -= todrop;
   2019 		if (th->th_urp > todrop)
   2020 			th->th_urp -= todrop;
   2021 		else {
   2022 			tiflags &= ~TH_URG;
   2023 			th->th_urp = 0;
   2024 		}
   2025 	}
   2026 
   2027 	/*
   2028 	 * If new data are received on a connection after the
   2029 	 * user processes are gone, then RST the other end.
   2030 	 */
   2031 	if ((so->so_state & SS_NOFDREF) &&
   2032 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2033 		tp = tcp_close(tp);
   2034 		tcpstat.tcps_rcvafterclose++;
   2035 		goto dropwithreset;
   2036 	}
   2037 
   2038 	/*
   2039 	 * If segment ends after window, drop trailing data
   2040 	 * (and PUSH and FIN); if nothing left, just ACK.
   2041 	 */
   2042 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2043 	if (todrop > 0) {
   2044 		tcpstat.tcps_rcvpackafterwin++;
   2045 		if (todrop >= tlen) {
   2046 			/*
   2047 			 * The segment actually starts after the window.
   2048 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2049 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2050 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2051 			 */
   2052 			tcpstat.tcps_rcvbyteafterwin += tlen;
   2053 			/*
   2054 			 * If a new connection request is received
   2055 			 * while in TIME_WAIT, drop the old connection
   2056 			 * and start over if the sequence numbers
   2057 			 * are above the previous ones.
   2058 			 *
   2059 			 * NOTE: We will checksum the packet again, and
   2060 			 * so we need to put the header fields back into
   2061 			 * network order!
   2062 			 * XXX This kind of sucks, but we don't expect
   2063 			 * XXX this to happen very often, so maybe it
   2064 			 * XXX doesn't matter so much.
   2065 			 */
   2066 			if (tiflags & TH_SYN &&
   2067 			    tp->t_state == TCPS_TIME_WAIT &&
   2068 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2069 				tp = tcp_close(tp);
   2070 				TCP_FIELDS_TO_NET(th);
   2071 				goto findpcb;
   2072 			}
   2073 			/*
   2074 			 * If window is closed can only take segments at
   2075 			 * window edge, and have to drop data and PUSH from
   2076 			 * incoming segments.  Continue processing, but
   2077 			 * remember to ack.  Otherwise, drop segment
   2078 			 * and (if not RST) ack.
   2079 			 */
   2080 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2081 				tp->t_flags |= TF_ACKNOW;
   2082 				tcpstat.tcps_rcvwinprobe++;
   2083 			} else
   2084 				goto dropafterack;
   2085 		} else
   2086 			tcpstat.tcps_rcvbyteafterwin += todrop;
   2087 		m_adj(m, -todrop);
   2088 		tlen -= todrop;
   2089 		tiflags &= ~(TH_PUSH|TH_FIN);
   2090 	}
   2091 
   2092 	/*
   2093 	 * If last ACK falls within this segment's sequence numbers,
   2094 	 * and the timestamp is newer, record it.
   2095 	 */
   2096 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   2097 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2098 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   2099 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2100 		tp->ts_recent_age = tcp_now;
   2101 		tp->ts_recent = opti.ts_val;
   2102 	}
   2103 
   2104 	/*
   2105 	 * If the RST bit is set examine the state:
   2106 	 *    SYN_RECEIVED STATE:
   2107 	 *	If passive open, return to LISTEN state.
   2108 	 *	If active open, inform user that connection was refused.
   2109 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2110 	 *	Inform user that connection was reset, and close tcb.
   2111 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2112 	 *	Close the tcb.
   2113 	 */
   2114 	if (tiflags & TH_RST) {
   2115 		if (th->th_seq != tp->last_ack_sent)
   2116 			goto dropafterack_ratelim;
   2117 
   2118 		switch (tp->t_state) {
   2119 		case TCPS_SYN_RECEIVED:
   2120 			so->so_error = ECONNREFUSED;
   2121 			goto close;
   2122 
   2123 		case TCPS_ESTABLISHED:
   2124 		case TCPS_FIN_WAIT_1:
   2125 		case TCPS_FIN_WAIT_2:
   2126 		case TCPS_CLOSE_WAIT:
   2127 			so->so_error = ECONNRESET;
   2128 		close:
   2129 			tp->t_state = TCPS_CLOSED;
   2130 			tcpstat.tcps_drops++;
   2131 			tp = tcp_close(tp);
   2132 			goto drop;
   2133 
   2134 		case TCPS_CLOSING:
   2135 		case TCPS_LAST_ACK:
   2136 		case TCPS_TIME_WAIT:
   2137 			tp = tcp_close(tp);
   2138 			goto drop;
   2139 		}
   2140 	}
   2141 
   2142 	/*
   2143 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2144 	 * we must be in a synchronized state.  RFC791 states (under RST
   2145 	 * generation) that any unacceptable segment (an out-of-order SYN
   2146 	 * qualifies) received in a synchronized state must elicit only an
   2147 	 * empty acknowledgment segment ... and the connection remains in
   2148 	 * the same state.
   2149 	 */
   2150 	if (tiflags & TH_SYN) {
   2151 		if (tp->rcv_nxt == th->th_seq) {
   2152 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2153 			    TH_ACK);
   2154 			if (tcp_saveti)
   2155 				m_freem(tcp_saveti);
   2156 			return;
   2157 		}
   2158 
   2159 		goto dropafterack_ratelim;
   2160 	}
   2161 
   2162 	/*
   2163 	 * If the ACK bit is off we drop the segment and return.
   2164 	 */
   2165 	if ((tiflags & TH_ACK) == 0) {
   2166 		if (tp->t_flags & TF_ACKNOW)
   2167 			goto dropafterack;
   2168 		else
   2169 			goto drop;
   2170 	}
   2171 
   2172 	/*
   2173 	 * Ack processing.
   2174 	 */
   2175 	switch (tp->t_state) {
   2176 
   2177 	/*
   2178 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2179 	 * ESTABLISHED state and continue processing, otherwise
   2180 	 * send an RST.
   2181 	 */
   2182 	case TCPS_SYN_RECEIVED:
   2183 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2184 		    SEQ_GT(th->th_ack, tp->snd_max))
   2185 			goto dropwithreset;
   2186 		tcpstat.tcps_connects++;
   2187 		soisconnected(so);
   2188 		tcp_established(tp);
   2189 		/* Do window scaling? */
   2190 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2191 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2192 			tp->snd_scale = tp->requested_s_scale;
   2193 			tp->rcv_scale = tp->request_r_scale;
   2194 		}
   2195 		TCP_REASS_LOCK(tp);
   2196 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2197 		TCP_REASS_UNLOCK(tp);
   2198 		tp->snd_wl1 = th->th_seq - 1;
   2199 		/* fall into ... */
   2200 
   2201 	/*
   2202 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2203 	 * ACKs.  If the ack is in the range
   2204 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2205 	 * then advance tp->snd_una to th->th_ack and drop
   2206 	 * data from the retransmission queue.  If this ACK reflects
   2207 	 * more up to date window information we update our window information.
   2208 	 */
   2209 	case TCPS_ESTABLISHED:
   2210 	case TCPS_FIN_WAIT_1:
   2211 	case TCPS_FIN_WAIT_2:
   2212 	case TCPS_CLOSE_WAIT:
   2213 	case TCPS_CLOSING:
   2214 	case TCPS_LAST_ACK:
   2215 	case TCPS_TIME_WAIT:
   2216 
   2217 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2218 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2219 				tcpstat.tcps_rcvdupack++;
   2220 				/*
   2221 				 * If we have outstanding data (other than
   2222 				 * a window probe), this is a completely
   2223 				 * duplicate ack (ie, window info didn't
   2224 				 * change), the ack is the biggest we've
   2225 				 * seen and we've seen exactly our rexmt
   2226 				 * threshhold of them, assume a packet
   2227 				 * has been dropped and retransmit it.
   2228 				 * Kludge snd_nxt & the congestion
   2229 				 * window so we send only this one
   2230 				 * packet.
   2231 				 */
   2232 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2233 				    th->th_ack != tp->snd_una)
   2234 					tp->t_dupacks = 0;
   2235 				else if (tp->t_partialacks < 0 &&
   2236 					 ((!TCP_SACK_ENABLED(tp) &&
   2237 					 ++tp->t_dupacks == tcprexmtthresh) ||
   2238 					 TCP_FACK_FASTRECOV(tp))) {
   2239 					/*
   2240 					 * Do the fast retransmit, and adjust
   2241 					 * congestion control paramenters.
   2242 					 */
   2243 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2244 						/* False fast retransmit */
   2245 						break;
   2246 					} else
   2247 						goto drop;
   2248 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2249 					tp->snd_cwnd += tp->t_segsz;
   2250 					(void) tcp_output(tp);
   2251 					goto drop;
   2252 				}
   2253 			} else {
   2254 				/*
   2255 				 * If the ack appears to be very old, only
   2256 				 * allow data that is in-sequence.  This
   2257 				 * makes it somewhat more difficult to insert
   2258 				 * forged data by guessing sequence numbers.
   2259 				 * Sent an ack to try to update the send
   2260 				 * sequence number on the other side.
   2261 				 */
   2262 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2263 				    SEQ_LT(th->th_ack,
   2264 				    tp->snd_una - tp->max_sndwnd))
   2265 					goto dropafterack;
   2266 			}
   2267 			break;
   2268 		}
   2269 		/*
   2270 		 * If the congestion window was inflated to account
   2271 		 * for the other side's cached packets, retract it.
   2272 		 */
   2273 		/* XXX: make SACK have his own congestion control
   2274 		 * struct -- rpaulo */
   2275 		if (TCP_SACK_ENABLED(tp))
   2276 			tcp_sack_newack(tp, th);
   2277 		else
   2278 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2279 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2280 			tcpstat.tcps_rcvacktoomuch++;
   2281 			goto dropafterack;
   2282 		}
   2283 		acked = th->th_ack - tp->snd_una;
   2284 		tcpstat.tcps_rcvackpack++;
   2285 		tcpstat.tcps_rcvackbyte += acked;
   2286 
   2287 		/*
   2288 		 * If we have a timestamp reply, update smoothed
   2289 		 * round trip time.  If no timestamp is present but
   2290 		 * transmit timer is running and timed sequence
   2291 		 * number was acked, update smoothed round trip time.
   2292 		 * Since we now have an rtt measurement, cancel the
   2293 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2294 		 * Recompute the initial retransmit timer.
   2295 		 */
   2296 		if (ts_rtt)
   2297 			tcp_xmit_timer(tp, ts_rtt);
   2298 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2299 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2300 
   2301 		/*
   2302 		 * If all outstanding data is acked, stop retransmit
   2303 		 * timer and remember to restart (more output or persist).
   2304 		 * If there is more data to be acked, restart retransmit
   2305 		 * timer, using current (possibly backed-off) value.
   2306 		 */
   2307 		if (th->th_ack == tp->snd_max) {
   2308 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2309 			needoutput = 1;
   2310 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2311 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2312 
   2313 		/*
   2314 		 * New data has been acked, adjust the congestion window.
   2315 		 */
   2316 		tp->t_congctl->newack(tp, th);
   2317 
   2318 		ND6_HINT(tp);
   2319 		if (acked > so->so_snd.sb_cc) {
   2320 			tp->snd_wnd -= so->so_snd.sb_cc;
   2321 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2322 			ourfinisacked = 1;
   2323 		} else {
   2324 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2325 				tp->t_lastm = NULL;
   2326 			sbdrop(&so->so_snd, acked);
   2327 			tp->t_lastoff -= acked;
   2328 			tp->snd_wnd -= acked;
   2329 			ourfinisacked = 0;
   2330 		}
   2331 		sowwakeup(so);
   2332 
   2333 		ICMP_CHECK(tp, th, acked);
   2334 
   2335 		tp->snd_una = th->th_ack;
   2336 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2337 			tp->snd_fack = tp->snd_una;
   2338 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2339 			tp->snd_nxt = tp->snd_una;
   2340 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2341 			tp->snd_high = tp->snd_una;
   2342 
   2343 		switch (tp->t_state) {
   2344 
   2345 		/*
   2346 		 * In FIN_WAIT_1 STATE in addition to the processing
   2347 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2348 		 * then enter FIN_WAIT_2.
   2349 		 */
   2350 		case TCPS_FIN_WAIT_1:
   2351 			if (ourfinisacked) {
   2352 				/*
   2353 				 * If we can't receive any more
   2354 				 * data, then closing user can proceed.
   2355 				 * Starting the timer is contrary to the
   2356 				 * specification, but if we don't get a FIN
   2357 				 * we'll hang forever.
   2358 				 */
   2359 				if (so->so_state & SS_CANTRCVMORE) {
   2360 					soisdisconnected(so);
   2361 					if (tcp_maxidle > 0)
   2362 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2363 						    tcp_maxidle);
   2364 				}
   2365 				tp->t_state = TCPS_FIN_WAIT_2;
   2366 			}
   2367 			break;
   2368 
   2369 	 	/*
   2370 		 * In CLOSING STATE in addition to the processing for
   2371 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2372 		 * then enter the TIME-WAIT state, otherwise ignore
   2373 		 * the segment.
   2374 		 */
   2375 		case TCPS_CLOSING:
   2376 			if (ourfinisacked) {
   2377 				tp->t_state = TCPS_TIME_WAIT;
   2378 				tcp_canceltimers(tp);
   2379 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2380 				soisdisconnected(so);
   2381 			}
   2382 			break;
   2383 
   2384 		/*
   2385 		 * In LAST_ACK, we may still be waiting for data to drain
   2386 		 * and/or to be acked, as well as for the ack of our FIN.
   2387 		 * If our FIN is now acknowledged, delete the TCB,
   2388 		 * enter the closed state and return.
   2389 		 */
   2390 		case TCPS_LAST_ACK:
   2391 			if (ourfinisacked) {
   2392 				tp = tcp_close(tp);
   2393 				goto drop;
   2394 			}
   2395 			break;
   2396 
   2397 		/*
   2398 		 * In TIME_WAIT state the only thing that should arrive
   2399 		 * is a retransmission of the remote FIN.  Acknowledge
   2400 		 * it and restart the finack timer.
   2401 		 */
   2402 		case TCPS_TIME_WAIT:
   2403 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2404 			goto dropafterack;
   2405 		}
   2406 	}
   2407 
   2408 step6:
   2409 	/*
   2410 	 * Update window information.
   2411 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2412 	 */
   2413 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2414 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2415 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2416 		/* keep track of pure window updates */
   2417 		if (tlen == 0 &&
   2418 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2419 			tcpstat.tcps_rcvwinupd++;
   2420 		tp->snd_wnd = tiwin;
   2421 		tp->snd_wl1 = th->th_seq;
   2422 		tp->snd_wl2 = th->th_ack;
   2423 		if (tp->snd_wnd > tp->max_sndwnd)
   2424 			tp->max_sndwnd = tp->snd_wnd;
   2425 		needoutput = 1;
   2426 	}
   2427 
   2428 	/*
   2429 	 * Process segments with URG.
   2430 	 */
   2431 	if ((tiflags & TH_URG) && th->th_urp &&
   2432 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2433 		/*
   2434 		 * This is a kludge, but if we receive and accept
   2435 		 * random urgent pointers, we'll crash in
   2436 		 * soreceive.  It's hard to imagine someone
   2437 		 * actually wanting to send this much urgent data.
   2438 		 */
   2439 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2440 			th->th_urp = 0;			/* XXX */
   2441 			tiflags &= ~TH_URG;		/* XXX */
   2442 			goto dodata;			/* XXX */
   2443 		}
   2444 		/*
   2445 		 * If this segment advances the known urgent pointer,
   2446 		 * then mark the data stream.  This should not happen
   2447 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2448 		 * a FIN has been received from the remote side.
   2449 		 * In these states we ignore the URG.
   2450 		 *
   2451 		 * According to RFC961 (Assigned Protocols),
   2452 		 * the urgent pointer points to the last octet
   2453 		 * of urgent data.  We continue, however,
   2454 		 * to consider it to indicate the first octet
   2455 		 * of data past the urgent section as the original
   2456 		 * spec states (in one of two places).
   2457 		 */
   2458 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2459 			tp->rcv_up = th->th_seq + th->th_urp;
   2460 			so->so_oobmark = so->so_rcv.sb_cc +
   2461 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2462 			if (so->so_oobmark == 0)
   2463 				so->so_state |= SS_RCVATMARK;
   2464 			sohasoutofband(so);
   2465 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2466 		}
   2467 		/*
   2468 		 * Remove out of band data so doesn't get presented to user.
   2469 		 * This can happen independent of advancing the URG pointer,
   2470 		 * but if two URG's are pending at once, some out-of-band
   2471 		 * data may creep in... ick.
   2472 		 */
   2473 		if (th->th_urp <= (u_int16_t) tlen
   2474 #ifdef SO_OOBINLINE
   2475 		     && (so->so_options & SO_OOBINLINE) == 0
   2476 #endif
   2477 		     )
   2478 			tcp_pulloutofband(so, th, m, hdroptlen);
   2479 	} else
   2480 		/*
   2481 		 * If no out of band data is expected,
   2482 		 * pull receive urgent pointer along
   2483 		 * with the receive window.
   2484 		 */
   2485 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2486 			tp->rcv_up = tp->rcv_nxt;
   2487 dodata:							/* XXX */
   2488 
   2489 	/*
   2490 	 * Process the segment text, merging it into the TCP sequencing queue,
   2491 	 * and arranging for acknowledgement of receipt if necessary.
   2492 	 * This process logically involves adjusting tp->rcv_wnd as data
   2493 	 * is presented to the user (this happens in tcp_usrreq.c,
   2494 	 * case PRU_RCVD).  If a FIN has already been received on this
   2495 	 * connection then we just ignore the text.
   2496 	 */
   2497 	if ((tlen || (tiflags & TH_FIN)) &&
   2498 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2499 		/*
   2500 		 * Insert segment ti into reassembly queue of tcp with
   2501 		 * control block tp.  Return TH_FIN if reassembly now includes
   2502 		 * a segment with FIN.  The macro form does the common case
   2503 		 * inline (segment is the next to be received on an
   2504 		 * established connection, and the queue is empty),
   2505 		 * avoiding linkage into and removal from the queue and
   2506 		 * repetition of various conversions.
   2507 		 * Set DELACK for segments received in order, but ack
   2508 		 * immediately when segments are out of order
   2509 		 * (so fast retransmit can work).
   2510 		 */
   2511 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2512 		TCP_REASS_LOCK(tp);
   2513 		if (th->th_seq == tp->rcv_nxt &&
   2514 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2515 		    tp->t_state == TCPS_ESTABLISHED) {
   2516 			TCP_SETUP_ACK(tp, th);
   2517 			tp->rcv_nxt += tlen;
   2518 			tiflags = th->th_flags & TH_FIN;
   2519 			tcpstat.tcps_rcvpack++;
   2520 			tcpstat.tcps_rcvbyte += tlen;
   2521 			ND6_HINT(tp);
   2522 			if (so->so_state & SS_CANTRCVMORE)
   2523 				m_freem(m);
   2524 			else {
   2525 				m_adj(m, hdroptlen);
   2526 				sbappendstream(&(so)->so_rcv, m);
   2527 			}
   2528 			sorwakeup(so);
   2529 		} else {
   2530 			m_adj(m, hdroptlen);
   2531 			tiflags = tcp_reass(tp, th, m, &tlen);
   2532 			tp->t_flags |= TF_ACKNOW;
   2533 		}
   2534 		TCP_REASS_UNLOCK(tp);
   2535 
   2536 		/*
   2537 		 * Note the amount of data that peer has sent into
   2538 		 * our window, in order to estimate the sender's
   2539 		 * buffer size.
   2540 		 */
   2541 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2542 	} else {
   2543 		m_freem(m);
   2544 		m = NULL;
   2545 		tiflags &= ~TH_FIN;
   2546 	}
   2547 
   2548 	/*
   2549 	 * If FIN is received ACK the FIN and let the user know
   2550 	 * that the connection is closing.  Ignore a FIN received before
   2551 	 * the connection is fully established.
   2552 	 */
   2553 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2554 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2555 			socantrcvmore(so);
   2556 			tp->t_flags |= TF_ACKNOW;
   2557 			tp->rcv_nxt++;
   2558 		}
   2559 		switch (tp->t_state) {
   2560 
   2561 	 	/*
   2562 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2563 		 */
   2564 		case TCPS_ESTABLISHED:
   2565 			tp->t_state = TCPS_CLOSE_WAIT;
   2566 			break;
   2567 
   2568 	 	/*
   2569 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2570 		 * enter the CLOSING state.
   2571 		 */
   2572 		case TCPS_FIN_WAIT_1:
   2573 			tp->t_state = TCPS_CLOSING;
   2574 			break;
   2575 
   2576 	 	/*
   2577 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2578 		 * starting the time-wait timer, turning off the other
   2579 		 * standard timers.
   2580 		 */
   2581 		case TCPS_FIN_WAIT_2:
   2582 			tp->t_state = TCPS_TIME_WAIT;
   2583 			tcp_canceltimers(tp);
   2584 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2585 			soisdisconnected(so);
   2586 			break;
   2587 
   2588 		/*
   2589 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2590 		 */
   2591 		case TCPS_TIME_WAIT:
   2592 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2593 			break;
   2594 		}
   2595 	}
   2596 #ifdef TCP_DEBUG
   2597 	if (so->so_options & SO_DEBUG)
   2598 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2599 #endif
   2600 
   2601 	/*
   2602 	 * Return any desired output.
   2603 	 */
   2604 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2605 		(void) tcp_output(tp);
   2606 	}
   2607 	if (tcp_saveti)
   2608 		m_freem(tcp_saveti);
   2609 	return;
   2610 
   2611 badsyn:
   2612 	/*
   2613 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2614 	 */
   2615 	tcpstat.tcps_badsyn++;
   2616 	tp = NULL;
   2617 	goto dropwithreset;
   2618 
   2619 dropafterack:
   2620 	/*
   2621 	 * Generate an ACK dropping incoming segment if it occupies
   2622 	 * sequence space, where the ACK reflects our state.
   2623 	 */
   2624 	if (tiflags & TH_RST)
   2625 		goto drop;
   2626 	goto dropafterack2;
   2627 
   2628 dropafterack_ratelim:
   2629 	/*
   2630 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2631 	 */
   2632 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2633 	    tcp_ackdrop_ppslim) == 0) {
   2634 		/* XXX stat */
   2635 		goto drop;
   2636 	}
   2637 	/* ...fall into dropafterack2... */
   2638 
   2639 dropafterack2:
   2640 	m_freem(m);
   2641 	tp->t_flags |= TF_ACKNOW;
   2642 	(void) tcp_output(tp);
   2643 	if (tcp_saveti)
   2644 		m_freem(tcp_saveti);
   2645 	return;
   2646 
   2647 dropwithreset_ratelim:
   2648 	/*
   2649 	 * We may want to rate-limit RSTs in certain situations,
   2650 	 * particularly if we are sending an RST in response to
   2651 	 * an attempt to connect to or otherwise communicate with
   2652 	 * a port for which we have no socket.
   2653 	 */
   2654 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2655 	    tcp_rst_ppslim) == 0) {
   2656 		/* XXX stat */
   2657 		goto drop;
   2658 	}
   2659 	/* ...fall into dropwithreset... */
   2660 
   2661 dropwithreset:
   2662 	/*
   2663 	 * Generate a RST, dropping incoming segment.
   2664 	 * Make ACK acceptable to originator of segment.
   2665 	 */
   2666 	if (tiflags & TH_RST)
   2667 		goto drop;
   2668 
   2669 	switch (af) {
   2670 #ifdef INET6
   2671 	case AF_INET6:
   2672 		/* For following calls to tcp_respond */
   2673 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2674 			goto drop;
   2675 		break;
   2676 #endif /* INET6 */
   2677 	case AF_INET:
   2678 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2679 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2680 			goto drop;
   2681 	}
   2682 
   2683 	if (tiflags & TH_ACK)
   2684 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2685 	else {
   2686 		if (tiflags & TH_SYN)
   2687 			tlen++;
   2688 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2689 		    TH_RST|TH_ACK);
   2690 	}
   2691 	if (tcp_saveti)
   2692 		m_freem(tcp_saveti);
   2693 	return;
   2694 
   2695 badcsum:
   2696 drop:
   2697 	/*
   2698 	 * Drop space held by incoming segment and return.
   2699 	 */
   2700 	if (tp) {
   2701 		if (tp->t_inpcb)
   2702 			so = tp->t_inpcb->inp_socket;
   2703 #ifdef INET6
   2704 		else if (tp->t_in6pcb)
   2705 			so = tp->t_in6pcb->in6p_socket;
   2706 #endif
   2707 		else
   2708 			so = NULL;
   2709 #ifdef TCP_DEBUG
   2710 		if (so && (so->so_options & SO_DEBUG) != 0)
   2711 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2712 #endif
   2713 	}
   2714 	if (tcp_saveti)
   2715 		m_freem(tcp_saveti);
   2716 	m_freem(m);
   2717 	return;
   2718 }
   2719 
   2720 #ifdef TCP_SIGNATURE
   2721 int
   2722 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
   2723 {
   2724 
   2725 	MD5Update(fstate, (u_char *)data, len);
   2726 	return (0);
   2727 }
   2728 
   2729 struct secasvar *
   2730 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   2731 {
   2732 	struct secasvar *sav;
   2733 #ifdef FAST_IPSEC
   2734 	union sockaddr_union dst;
   2735 #endif
   2736 	struct ip *ip;
   2737 	struct ip6_hdr *ip6;
   2738 
   2739 	ip = mtod(m, struct ip *);
   2740 	switch (ip->ip_v) {
   2741 	case 4:
   2742 		ip = mtod(m, struct ip *);
   2743 		ip6 = NULL;
   2744 		break;
   2745 	case 6:
   2746 		ip = NULL;
   2747 		ip6 = mtod(m, struct ip6_hdr *);
   2748 		break;
   2749 	default:
   2750 		return (NULL);
   2751 	}
   2752 
   2753 #ifdef FAST_IPSEC
   2754 	/* Extract the destination from the IP header in the mbuf. */
   2755 	bzero(&dst, sizeof(union sockaddr_union));
   2756 	dst.sa.sa_len = sizeof(struct sockaddr_in);
   2757 	dst.sa.sa_family = AF_INET;
   2758 	dst.sin.sin_addr = ip->ip_dst;
   2759 
   2760 	/*
   2761 	 * Look up an SADB entry which matches the address of the peer.
   2762 	 */
   2763 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   2764 #else
   2765 	if (ip)
   2766 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
   2767 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
   2768 		    htonl(TCP_SIG_SPI), 0, 0);
   2769 	else
   2770 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
   2771 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
   2772 		    htonl(TCP_SIG_SPI), 0, 0);
   2773 #endif
   2774 
   2775 	return (sav);	/* freesav must be performed by caller */
   2776 }
   2777 
   2778 int
   2779 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   2780     struct secasvar *sav, char *sig)
   2781 {
   2782 	MD5_CTX ctx;
   2783 	struct ip *ip;
   2784 	struct ipovly *ipovly;
   2785 	struct ip6_hdr *ip6;
   2786 	struct ippseudo ippseudo;
   2787 	struct ip6_hdr_pseudo ip6pseudo;
   2788 	struct tcphdr th0;
   2789 	int l, tcphdrlen;
   2790 
   2791 	if (sav == NULL)
   2792 		return (-1);
   2793 
   2794 	tcphdrlen = th->th_off * 4;
   2795 
   2796 	switch (mtod(m, struct ip *)->ip_v) {
   2797 	case 4:
   2798 		ip = mtod(m, struct ip *);
   2799 		ip6 = NULL;
   2800 		break;
   2801 	case 6:
   2802 		ip = NULL;
   2803 		ip6 = mtod(m, struct ip6_hdr *);
   2804 		break;
   2805 	default:
   2806 		return (-1);
   2807 	}
   2808 
   2809 	MD5Init(&ctx);
   2810 
   2811 	if (ip) {
   2812 		memset(&ippseudo, 0, sizeof(ippseudo));
   2813 		ipovly = (struct ipovly *)ip;
   2814 		ippseudo.ippseudo_src = ipovly->ih_src;
   2815 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   2816 		ippseudo.ippseudo_pad = 0;
   2817 		ippseudo.ippseudo_p = IPPROTO_TCP;
   2818 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   2819 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   2820 	} else {
   2821 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   2822 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   2823 		in6_clearscope(&ip6pseudo.ip6ph_src);
   2824 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   2825 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   2826 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   2827 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   2828 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   2829 	}
   2830 
   2831 	th0 = *th;
   2832 	th0.th_sum = 0;
   2833 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   2834 
   2835 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   2836 	if (l > 0)
   2837 		m_apply(m, thoff + tcphdrlen,
   2838 		    m->m_pkthdr.len - thoff - tcphdrlen,
   2839 		    tcp_signature_apply, &ctx);
   2840 
   2841 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   2842 	MD5Final(sig, &ctx);
   2843 
   2844 	return (0);
   2845 }
   2846 #endif
   2847 
   2848 static int
   2849 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   2850     const struct tcphdr *th,
   2851     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   2852 {
   2853 	u_int16_t mss;
   2854 	int opt, optlen = 0;
   2855 #ifdef TCP_SIGNATURE
   2856 	caddr_t sigp = NULL;
   2857 	char sigbuf[TCP_SIGLEN];
   2858 	struct secasvar *sav = NULL;
   2859 #endif
   2860 
   2861 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   2862 		opt = cp[0];
   2863 		if (opt == TCPOPT_EOL)
   2864 			break;
   2865 		if (opt == TCPOPT_NOP)
   2866 			optlen = 1;
   2867 		else {
   2868 			if (cnt < 2)
   2869 				break;
   2870 			optlen = cp[1];
   2871 			if (optlen < 2 || optlen > cnt)
   2872 				break;
   2873 		}
   2874 		switch (opt) {
   2875 
   2876 		default:
   2877 			continue;
   2878 
   2879 		case TCPOPT_MAXSEG:
   2880 			if (optlen != TCPOLEN_MAXSEG)
   2881 				continue;
   2882 			if (!(th->th_flags & TH_SYN))
   2883 				continue;
   2884 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2885 				continue;
   2886 			bcopy(cp + 2, &mss, sizeof(mss));
   2887 			oi->maxseg = ntohs(mss);
   2888 			break;
   2889 
   2890 		case TCPOPT_WINDOW:
   2891 			if (optlen != TCPOLEN_WINDOW)
   2892 				continue;
   2893 			if (!(th->th_flags & TH_SYN))
   2894 				continue;
   2895 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2896 				continue;
   2897 			tp->t_flags |= TF_RCVD_SCALE;
   2898 			tp->requested_s_scale = cp[2];
   2899 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2900 #if 0	/*XXX*/
   2901 				char *p;
   2902 
   2903 				if (ip)
   2904 					p = ntohl(ip->ip_src);
   2905 #ifdef INET6
   2906 				else if (ip6)
   2907 					p = ip6_sprintf(&ip6->ip6_src);
   2908 #endif
   2909 				else
   2910 					p = "(unknown)";
   2911 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2912 				    "assuming %d\n",
   2913 				    tp->requested_s_scale, p,
   2914 				    TCP_MAX_WINSHIFT);
   2915 #else
   2916 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2917 				    "assuming %d\n",
   2918 				    tp->requested_s_scale,
   2919 				    TCP_MAX_WINSHIFT);
   2920 #endif
   2921 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2922 			}
   2923 			break;
   2924 
   2925 		case TCPOPT_TIMESTAMP:
   2926 			if (optlen != TCPOLEN_TIMESTAMP)
   2927 				continue;
   2928 			oi->ts_present = 1;
   2929 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2930 			NTOHL(oi->ts_val);
   2931 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2932 			NTOHL(oi->ts_ecr);
   2933 
   2934 			if (!(th->th_flags & TH_SYN))
   2935 				continue;
   2936 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2937 				continue;
   2938 			/*
   2939 			 * A timestamp received in a SYN makes
   2940 			 * it ok to send timestamp requests and replies.
   2941 			 */
   2942 			tp->t_flags |= TF_RCVD_TSTMP;
   2943 			tp->ts_recent = oi->ts_val;
   2944 			tp->ts_recent_age = tcp_now;
   2945                         break;
   2946 
   2947 		case TCPOPT_SACK_PERMITTED:
   2948 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2949 				continue;
   2950 			if (!(th->th_flags & TH_SYN))
   2951 				continue;
   2952 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2953 				continue;
   2954 			if (tcp_do_sack) {
   2955 				tp->t_flags |= TF_SACK_PERMIT;
   2956 				tp->t_flags |= TF_WILL_SACK;
   2957 			}
   2958 			break;
   2959 
   2960 		case TCPOPT_SACK:
   2961 			tcp_sack_option(tp, th, cp, optlen);
   2962 			break;
   2963 #ifdef TCP_SIGNATURE
   2964 		case TCPOPT_SIGNATURE:
   2965 			if (optlen != TCPOLEN_SIGNATURE)
   2966 				continue;
   2967 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
   2968 				return (-1);
   2969 
   2970 			sigp = sigbuf;
   2971 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   2972 			memset(cp + 2, 0, TCP_SIGLEN);
   2973 			tp->t_flags |= TF_SIGNATURE;
   2974 			break;
   2975 #endif
   2976 		}
   2977 	}
   2978 
   2979 #ifdef TCP_SIGNATURE
   2980 	if (tp->t_flags & TF_SIGNATURE) {
   2981 
   2982 		sav = tcp_signature_getsav(m, th);
   2983 
   2984 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   2985 			return (-1);
   2986 	}
   2987 
   2988 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   2989 		if (sav == NULL)
   2990 			return (-1);
   2991 #ifdef FAST_IPSEC
   2992 		KEY_FREESAV(&sav);
   2993 #else
   2994 		key_freesav(sav);
   2995 #endif
   2996 		return (-1);
   2997 	}
   2998 
   2999 	if (sigp) {
   3000 		char sig[TCP_SIGLEN];
   3001 
   3002 		TCP_FIELDS_TO_NET(th);
   3003 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3004 			TCP_FIELDS_TO_HOST(th);
   3005 			if (sav == NULL)
   3006 				return (-1);
   3007 #ifdef FAST_IPSEC
   3008 			KEY_FREESAV(&sav);
   3009 #else
   3010 			key_freesav(sav);
   3011 #endif
   3012 			return (-1);
   3013 		}
   3014 		TCP_FIELDS_TO_HOST(th);
   3015 
   3016 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
   3017 			tcpstat.tcps_badsig++;
   3018 			if (sav == NULL)
   3019 				return (-1);
   3020 #ifdef FAST_IPSEC
   3021 			KEY_FREESAV(&sav);
   3022 #else
   3023 			key_freesav(sav);
   3024 #endif
   3025 			return (-1);
   3026 		} else
   3027 			tcpstat.tcps_goodsig++;
   3028 
   3029 		key_sa_recordxfer(sav, m);
   3030 #ifdef FAST_IPSEC
   3031 		KEY_FREESAV(&sav);
   3032 #else
   3033 		key_freesav(sav);
   3034 #endif
   3035 	}
   3036 #endif
   3037 
   3038 	return (0);
   3039 }
   3040 
   3041 /*
   3042  * Pull out of band byte out of a segment so
   3043  * it doesn't appear in the user's data queue.
   3044  * It is still reflected in the segment length for
   3045  * sequencing purposes.
   3046  */
   3047 void
   3048 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3049     struct mbuf *m, int off)
   3050 {
   3051 	int cnt = off + th->th_urp - 1;
   3052 
   3053 	while (cnt >= 0) {
   3054 		if (m->m_len > cnt) {
   3055 			char *cp = mtod(m, caddr_t) + cnt;
   3056 			struct tcpcb *tp = sototcpcb(so);
   3057 
   3058 			tp->t_iobc = *cp;
   3059 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3060 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3061 			m->m_len--;
   3062 			return;
   3063 		}
   3064 		cnt -= m->m_len;
   3065 		m = m->m_next;
   3066 		if (m == 0)
   3067 			break;
   3068 	}
   3069 	panic("tcp_pulloutofband");
   3070 }
   3071 
   3072 /*
   3073  * Collect new round-trip time estimate
   3074  * and update averages and current timeout.
   3075  */
   3076 void
   3077 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3078 {
   3079 	int32_t delta;
   3080 
   3081 	tcpstat.tcps_rttupdated++;
   3082 	if (tp->t_srtt != 0) {
   3083 		/*
   3084 		 * srtt is stored as fixed point with 3 bits after the
   3085 		 * binary point (i.e., scaled by 8).  The following magic
   3086 		 * is equivalent to the smoothing algorithm in rfc793 with
   3087 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   3088 		 * point).  Adjust rtt to origin 0.
   3089 		 */
   3090 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3091 		if ((tp->t_srtt += delta) <= 0)
   3092 			tp->t_srtt = 1 << 2;
   3093 		/*
   3094 		 * We accumulate a smoothed rtt variance (actually, a
   3095 		 * smoothed mean difference), then set the retransmit
   3096 		 * timer to smoothed rtt + 4 times the smoothed variance.
   3097 		 * rttvar is stored as fixed point with 2 bits after the
   3098 		 * binary point (scaled by 4).  The following is
   3099 		 * equivalent to rfc793 smoothing with an alpha of .75
   3100 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   3101 		 * rfc793's wired-in beta.
   3102 		 */
   3103 		if (delta < 0)
   3104 			delta = -delta;
   3105 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3106 		if ((tp->t_rttvar += delta) <= 0)
   3107 			tp->t_rttvar = 1 << 2;
   3108 	} else {
   3109 		/*
   3110 		 * No rtt measurement yet - use the unsmoothed rtt.
   3111 		 * Set the variance to half the rtt (so our first
   3112 		 * retransmit happens at 3*rtt).
   3113 		 */
   3114 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3115 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3116 	}
   3117 	tp->t_rtttime = 0;
   3118 	tp->t_rxtshift = 0;
   3119 
   3120 	/*
   3121 	 * the retransmit should happen at rtt + 4 * rttvar.
   3122 	 * Because of the way we do the smoothing, srtt and rttvar
   3123 	 * will each average +1/2 tick of bias.  When we compute
   3124 	 * the retransmit timer, we want 1/2 tick of rounding and
   3125 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3126 	 * firing of the timer.  The bias will give us exactly the
   3127 	 * 1.5 tick we need.  But, because the bias is
   3128 	 * statistical, we have to test that we don't drop below
   3129 	 * the minimum feasible timer (which is 2 ticks).
   3130 	 */
   3131 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3132 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3133 
   3134 	/*
   3135 	 * We received an ack for a packet that wasn't retransmitted;
   3136 	 * it is probably safe to discard any error indications we've
   3137 	 * received recently.  This isn't quite right, but close enough
   3138 	 * for now (a route might have failed after we sent a segment,
   3139 	 * and the return path might not be symmetrical).
   3140 	 */
   3141 	tp->t_softerror = 0;
   3142 }
   3143 
   3144 
   3145 /*
   3146  * TCP compressed state engine.  Currently used to hold compressed
   3147  * state for SYN_RECEIVED.
   3148  */
   3149 
   3150 u_long	syn_cache_count;
   3151 u_int32_t syn_hash1, syn_hash2;
   3152 
   3153 #define SYN_HASH(sa, sp, dp) \
   3154 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3155 				     ((u_int32_t)(sp)))^syn_hash2)))
   3156 #ifndef INET6
   3157 #define	SYN_HASHALL(hash, src, dst) \
   3158 do {									\
   3159 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3160 		((const struct sockaddr_in *)(src))->sin_port,		\
   3161 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3162 } while (/*CONSTCOND*/ 0)
   3163 #else
   3164 #define SYN_HASH6(sa, sp, dp) \
   3165 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3166 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3167 	 & 0x7fffffff)
   3168 
   3169 #define SYN_HASHALL(hash, src, dst) \
   3170 do {									\
   3171 	switch ((src)->sa_family) {					\
   3172 	case AF_INET:							\
   3173 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3174 			((const struct sockaddr_in *)(src))->sin_port,	\
   3175 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3176 		break;							\
   3177 	case AF_INET6:							\
   3178 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3179 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3180 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3181 		break;							\
   3182 	default:							\
   3183 		hash = 0;						\
   3184 	}								\
   3185 } while (/*CONSTCOND*/0)
   3186 #endif /* INET6 */
   3187 
   3188 #define	SYN_CACHE_RM(sc)						\
   3189 do {									\
   3190 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   3191 	    (sc), sc_bucketq);						\
   3192 	(sc)->sc_tp = NULL;						\
   3193 	LIST_REMOVE((sc), sc_tpq);					\
   3194 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   3195 	callout_stop(&(sc)->sc_timer);					\
   3196 	syn_cache_count--;						\
   3197 } while (/*CONSTCOND*/0)
   3198 
   3199 #define	SYN_CACHE_PUT(sc)						\
   3200 do {									\
   3201 	if ((sc)->sc_ipopts)						\
   3202 		(void) m_free((sc)->sc_ipopts);				\
   3203 	if ((sc)->sc_route4.ro_rt != NULL)				\
   3204 		RTFREE((sc)->sc_route4.ro_rt);				\
   3205 	if (callout_invoking(&(sc)->sc_timer))				\
   3206 		(sc)->sc_flags |= SCF_DEAD;				\
   3207 	else								\
   3208 		pool_put(&syn_cache_pool, (sc));			\
   3209 } while (/*CONSTCOND*/0)
   3210 
   3211 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
   3212 
   3213 /*
   3214  * We don't estimate RTT with SYNs, so each packet starts with the default
   3215  * RTT and each timer step has a fixed timeout value.
   3216  */
   3217 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3218 do {									\
   3219 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3220 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3221 	    TCPTV_REXMTMAX);						\
   3222 	callout_reset(&(sc)->sc_timer,					\
   3223 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3224 } while (/*CONSTCOND*/0)
   3225 
   3226 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3227 
   3228 void
   3229 syn_cache_init(void)
   3230 {
   3231 	int i;
   3232 
   3233 	/* Initialize the hash buckets. */
   3234 	for (i = 0; i < tcp_syn_cache_size; i++)
   3235 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3236 }
   3237 
   3238 void
   3239 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3240 {
   3241 	struct syn_cache_head *scp;
   3242 	struct syn_cache *sc2;
   3243 	int s;
   3244 
   3245 	/*
   3246 	 * If there are no entries in the hash table, reinitialize
   3247 	 * the hash secrets.
   3248 	 */
   3249 	if (syn_cache_count == 0) {
   3250 		syn_hash1 = arc4random();
   3251 		syn_hash2 = arc4random();
   3252 	}
   3253 
   3254 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3255 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3256 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3257 
   3258 	/*
   3259 	 * Make sure that we don't overflow the per-bucket
   3260 	 * limit or the total cache size limit.
   3261 	 */
   3262 	s = splsoftnet();
   3263 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3264 		tcpstat.tcps_sc_bucketoverflow++;
   3265 		/*
   3266 		 * The bucket is full.  Toss the oldest element in the
   3267 		 * bucket.  This will be the first entry in the bucket.
   3268 		 */
   3269 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3270 #ifdef DIAGNOSTIC
   3271 		/*
   3272 		 * This should never happen; we should always find an
   3273 		 * entry in our bucket.
   3274 		 */
   3275 		if (sc2 == NULL)
   3276 			panic("syn_cache_insert: bucketoverflow: impossible");
   3277 #endif
   3278 		SYN_CACHE_RM(sc2);
   3279 		SYN_CACHE_PUT(sc2);	/* calls pool_put but see spl above */
   3280 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3281 		struct syn_cache_head *scp2, *sce;
   3282 
   3283 		tcpstat.tcps_sc_overflowed++;
   3284 		/*
   3285 		 * The cache is full.  Toss the oldest entry in the
   3286 		 * first non-empty bucket we can find.
   3287 		 *
   3288 		 * XXX We would really like to toss the oldest
   3289 		 * entry in the cache, but we hope that this
   3290 		 * condition doesn't happen very often.
   3291 		 */
   3292 		scp2 = scp;
   3293 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3294 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3295 			for (++scp2; scp2 != scp; scp2++) {
   3296 				if (scp2 >= sce)
   3297 					scp2 = &tcp_syn_cache[0];
   3298 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3299 					break;
   3300 			}
   3301 #ifdef DIAGNOSTIC
   3302 			/*
   3303 			 * This should never happen; we should always find a
   3304 			 * non-empty bucket.
   3305 			 */
   3306 			if (scp2 == scp)
   3307 				panic("syn_cache_insert: cacheoverflow: "
   3308 				    "impossible");
   3309 #endif
   3310 		}
   3311 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3312 		SYN_CACHE_RM(sc2);
   3313 		SYN_CACHE_PUT(sc2);	/* calls pool_put but see spl above */
   3314 	}
   3315 
   3316 	/*
   3317 	 * Initialize the entry's timer.
   3318 	 */
   3319 	sc->sc_rxttot = 0;
   3320 	sc->sc_rxtshift = 0;
   3321 	SYN_CACHE_TIMER_ARM(sc);
   3322 
   3323 	/* Link it from tcpcb entry */
   3324 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3325 
   3326 	/* Put it into the bucket. */
   3327 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3328 	scp->sch_length++;
   3329 	syn_cache_count++;
   3330 
   3331 	tcpstat.tcps_sc_added++;
   3332 	splx(s);
   3333 }
   3334 
   3335 /*
   3336  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3337  * If we have retransmitted an entry the maximum number of times, expire
   3338  * that entry.
   3339  */
   3340 void
   3341 syn_cache_timer(void *arg)
   3342 {
   3343 	struct syn_cache *sc = arg;
   3344 	int s;
   3345 
   3346 	s = splsoftnet();
   3347 	callout_ack(&sc->sc_timer);
   3348 
   3349 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3350 		tcpstat.tcps_sc_delayed_free++;
   3351 		pool_put(&syn_cache_pool, sc);
   3352 		splx(s);
   3353 		return;
   3354 	}
   3355 
   3356 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3357 		/* Drop it -- too many retransmissions. */
   3358 		goto dropit;
   3359 	}
   3360 
   3361 	/*
   3362 	 * Compute the total amount of time this entry has
   3363 	 * been on a queue.  If this entry has been on longer
   3364 	 * than the keep alive timer would allow, expire it.
   3365 	 */
   3366 	sc->sc_rxttot += sc->sc_rxtcur;
   3367 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   3368 		goto dropit;
   3369 
   3370 	tcpstat.tcps_sc_retransmitted++;
   3371 	(void) syn_cache_respond(sc, NULL);
   3372 
   3373 	/* Advance the timer back-off. */
   3374 	sc->sc_rxtshift++;
   3375 	SYN_CACHE_TIMER_ARM(sc);
   3376 
   3377 	splx(s);
   3378 	return;
   3379 
   3380  dropit:
   3381 	tcpstat.tcps_sc_timed_out++;
   3382 	SYN_CACHE_RM(sc);
   3383 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3384 	splx(s);
   3385 }
   3386 
   3387 /*
   3388  * Remove syn cache created by the specified tcb entry,
   3389  * because this does not make sense to keep them
   3390  * (if there's no tcb entry, syn cache entry will never be used)
   3391  */
   3392 void
   3393 syn_cache_cleanup(struct tcpcb *tp)
   3394 {
   3395 	struct syn_cache *sc, *nsc;
   3396 	int s;
   3397 
   3398 	s = splsoftnet();
   3399 
   3400 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3401 		nsc = LIST_NEXT(sc, sc_tpq);
   3402 
   3403 #ifdef DIAGNOSTIC
   3404 		if (sc->sc_tp != tp)
   3405 			panic("invalid sc_tp in syn_cache_cleanup");
   3406 #endif
   3407 		SYN_CACHE_RM(sc);
   3408 		SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3409 	}
   3410 	/* just for safety */
   3411 	LIST_INIT(&tp->t_sc);
   3412 
   3413 	splx(s);
   3414 }
   3415 
   3416 /*
   3417  * Find an entry in the syn cache.
   3418  */
   3419 struct syn_cache *
   3420 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3421     struct syn_cache_head **headp)
   3422 {
   3423 	struct syn_cache *sc;
   3424 	struct syn_cache_head *scp;
   3425 	u_int32_t hash;
   3426 	int s;
   3427 
   3428 	SYN_HASHALL(hash, src, dst);
   3429 
   3430 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3431 	*headp = scp;
   3432 	s = splsoftnet();
   3433 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3434 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3435 		if (sc->sc_hash != hash)
   3436 			continue;
   3437 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3438 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3439 			splx(s);
   3440 			return (sc);
   3441 		}
   3442 	}
   3443 	splx(s);
   3444 	return (NULL);
   3445 }
   3446 
   3447 /*
   3448  * This function gets called when we receive an ACK for a
   3449  * socket in the LISTEN state.  We look up the connection
   3450  * in the syn cache, and if its there, we pull it out of
   3451  * the cache and turn it into a full-blown connection in
   3452  * the SYN-RECEIVED state.
   3453  *
   3454  * The return values may not be immediately obvious, and their effects
   3455  * can be subtle, so here they are:
   3456  *
   3457  *	NULL	SYN was not found in cache; caller should drop the
   3458  *		packet and send an RST.
   3459  *
   3460  *	-1	We were unable to create the new connection, and are
   3461  *		aborting it.  An ACK,RST is being sent to the peer
   3462  *		(unless we got screwey sequence numbners; see below),
   3463  *		because the 3-way handshake has been completed.  Caller
   3464  *		should not free the mbuf, since we may be using it.  If
   3465  *		we are not, we will free it.
   3466  *
   3467  *	Otherwise, the return value is a pointer to the new socket
   3468  *	associated with the connection.
   3469  */
   3470 struct socket *
   3471 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3472     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3473     struct socket *so, struct mbuf *m)
   3474 {
   3475 	struct syn_cache *sc;
   3476 	struct syn_cache_head *scp;
   3477 	struct inpcb *inp = NULL;
   3478 #ifdef INET6
   3479 	struct in6pcb *in6p = NULL;
   3480 #endif
   3481 	struct tcpcb *tp = 0;
   3482 	struct mbuf *am;
   3483 	int s;
   3484 	struct socket *oso;
   3485 
   3486 	s = splsoftnet();
   3487 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3488 		splx(s);
   3489 		return (NULL);
   3490 	}
   3491 
   3492 	/*
   3493 	 * Verify the sequence and ack numbers.  Try getting the correct
   3494 	 * response again.
   3495 	 */
   3496 	if ((th->th_ack != sc->sc_iss + 1) ||
   3497 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3498 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3499 		(void) syn_cache_respond(sc, m);
   3500 		splx(s);
   3501 		return ((struct socket *)(-1));
   3502 	}
   3503 
   3504 	/* Remove this cache entry */
   3505 	SYN_CACHE_RM(sc);
   3506 	splx(s);
   3507 
   3508 	/*
   3509 	 * Ok, create the full blown connection, and set things up
   3510 	 * as they would have been set up if we had created the
   3511 	 * connection when the SYN arrived.  If we can't create
   3512 	 * the connection, abort it.
   3513 	 */
   3514 	/*
   3515 	 * inp still has the OLD in_pcb stuff, set the
   3516 	 * v6-related flags on the new guy, too.   This is
   3517 	 * done particularly for the case where an AF_INET6
   3518 	 * socket is bound only to a port, and a v4 connection
   3519 	 * comes in on that port.
   3520 	 * we also copy the flowinfo from the original pcb
   3521 	 * to the new one.
   3522 	 */
   3523 	oso = so;
   3524 	so = sonewconn(so, SS_ISCONNECTED);
   3525 	if (so == NULL)
   3526 		goto resetandabort;
   3527 
   3528 	switch (so->so_proto->pr_domain->dom_family) {
   3529 #ifdef INET
   3530 	case AF_INET:
   3531 		inp = sotoinpcb(so);
   3532 		break;
   3533 #endif
   3534 #ifdef INET6
   3535 	case AF_INET6:
   3536 		in6p = sotoin6pcb(so);
   3537 		break;
   3538 #endif
   3539 	}
   3540 	switch (src->sa_family) {
   3541 #ifdef INET
   3542 	case AF_INET:
   3543 		if (inp) {
   3544 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3545 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3546 			inp->inp_options = ip_srcroute();
   3547 			in_pcbstate(inp, INP_BOUND);
   3548 			if (inp->inp_options == NULL) {
   3549 				inp->inp_options = sc->sc_ipopts;
   3550 				sc->sc_ipopts = NULL;
   3551 			}
   3552 		}
   3553 #ifdef INET6
   3554 		else if (in6p) {
   3555 			/* IPv4 packet to AF_INET6 socket */
   3556 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3557 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3558 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3559 				&in6p->in6p_laddr.s6_addr32[3],
   3560 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3561 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3562 			in6totcpcb(in6p)->t_family = AF_INET;
   3563 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3564 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3565 			else
   3566 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3567 			in6_pcbstate(in6p, IN6P_BOUND);
   3568 		}
   3569 #endif
   3570 		break;
   3571 #endif
   3572 #ifdef INET6
   3573 	case AF_INET6:
   3574 		if (in6p) {
   3575 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3576 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3577 			in6_pcbstate(in6p, IN6P_BOUND);
   3578 		}
   3579 		break;
   3580 #endif
   3581 	}
   3582 #ifdef INET6
   3583 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3584 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3585 		/* inherit socket options from the listening socket */
   3586 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3587 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3588 			m_freem(in6p->in6p_options);
   3589 			in6p->in6p_options = 0;
   3590 		}
   3591 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3592 			mtod(m, struct ip6_hdr *), m);
   3593 	}
   3594 #endif
   3595 
   3596 #if defined(IPSEC) || defined(FAST_IPSEC)
   3597 	/*
   3598 	 * we make a copy of policy, instead of sharing the policy,
   3599 	 * for better behavior in terms of SA lookup and dead SA removal.
   3600 	 */
   3601 	if (inp) {
   3602 		/* copy old policy into new socket's */
   3603 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3604 			printf("tcp_input: could not copy policy\n");
   3605 	}
   3606 #ifdef INET6
   3607 	else if (in6p) {
   3608 		/* copy old policy into new socket's */
   3609 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3610 		    in6p->in6p_sp))
   3611 			printf("tcp_input: could not copy policy\n");
   3612 	}
   3613 #endif
   3614 #endif
   3615 
   3616 	/*
   3617 	 * Give the new socket our cached route reference.
   3618 	 */
   3619 	if (inp)
   3620 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3621 #ifdef INET6
   3622 	else
   3623 		in6p->in6p_route = sc->sc_route6;
   3624 #endif
   3625 	sc->sc_route4.ro_rt = NULL;
   3626 
   3627 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3628 	if (am == NULL)
   3629 		goto resetandabort;
   3630 	MCLAIM(am, &tcp_mowner);
   3631 	am->m_len = src->sa_len;
   3632 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3633 	if (inp) {
   3634 		if (in_pcbconnect(inp, am, NULL)) {
   3635 			(void) m_free(am);
   3636 			goto resetandabort;
   3637 		}
   3638 	}
   3639 #ifdef INET6
   3640 	else if (in6p) {
   3641 		if (src->sa_family == AF_INET) {
   3642 			/* IPv4 packet to AF_INET6 socket */
   3643 			struct sockaddr_in6 *sin6;
   3644 			sin6 = mtod(am, struct sockaddr_in6 *);
   3645 			am->m_len = sizeof(*sin6);
   3646 			bzero(sin6, sizeof(*sin6));
   3647 			sin6->sin6_family = AF_INET6;
   3648 			sin6->sin6_len = sizeof(*sin6);
   3649 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3650 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3651 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3652 				&sin6->sin6_addr.s6_addr32[3],
   3653 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3654 		}
   3655 		if (in6_pcbconnect(in6p, am, NULL)) {
   3656 			(void) m_free(am);
   3657 			goto resetandabort;
   3658 		}
   3659 	}
   3660 #endif
   3661 	else {
   3662 		(void) m_free(am);
   3663 		goto resetandabort;
   3664 	}
   3665 	(void) m_free(am);
   3666 
   3667 	if (inp)
   3668 		tp = intotcpcb(inp);
   3669 #ifdef INET6
   3670 	else if (in6p)
   3671 		tp = in6totcpcb(in6p);
   3672 #endif
   3673 	else
   3674 		tp = NULL;
   3675 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3676 	if (sc->sc_request_r_scale != 15) {
   3677 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3678 		tp->request_r_scale = sc->sc_request_r_scale;
   3679 		tp->snd_scale = sc->sc_requested_s_scale;
   3680 		tp->rcv_scale = sc->sc_request_r_scale;
   3681 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3682 	}
   3683 	if (sc->sc_flags & SCF_TIMESTAMP)
   3684 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3685 	tp->ts_timebase = sc->sc_timebase;
   3686 
   3687 	tp->t_template = tcp_template(tp);
   3688 	if (tp->t_template == 0) {
   3689 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3690 		so = NULL;
   3691 		m_freem(m);
   3692 		goto abort;
   3693 	}
   3694 
   3695 	tp->iss = sc->sc_iss;
   3696 	tp->irs = sc->sc_irs;
   3697 	tcp_sendseqinit(tp);
   3698 	tcp_rcvseqinit(tp);
   3699 	tp->t_state = TCPS_SYN_RECEIVED;
   3700 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3701 	tcpstat.tcps_accepts++;
   3702 
   3703 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3704 		tp->t_flags |= TF_WILL_SACK;
   3705 
   3706 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   3707 		tp->t_flags |= TF_ECN_PERMIT;
   3708 
   3709 #ifdef TCP_SIGNATURE
   3710 	if (sc->sc_flags & SCF_SIGNATURE)
   3711 		tp->t_flags |= TF_SIGNATURE;
   3712 #endif
   3713 
   3714 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3715 	tp->t_ourmss = sc->sc_ourmaxseg;
   3716 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3717 
   3718 	/*
   3719 	 * Initialize the initial congestion window.  If we
   3720 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3721 	 * to 1 segment (i.e. the Loss Window).
   3722 	 */
   3723 	if (sc->sc_rxtshift)
   3724 		tp->snd_cwnd = tp->t_peermss;
   3725 	else {
   3726 		int ss = tcp_init_win;
   3727 #ifdef INET
   3728 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3729 			ss = tcp_init_win_local;
   3730 #endif
   3731 #ifdef INET6
   3732 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3733 			ss = tcp_init_win_local;
   3734 #endif
   3735 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3736 	}
   3737 
   3738 	tcp_rmx_rtt(tp);
   3739 	tp->snd_wl1 = sc->sc_irs;
   3740 	tp->rcv_up = sc->sc_irs + 1;
   3741 
   3742 	/*
   3743 	 * This is what whould have happened in tcp_output() when
   3744 	 * the SYN,ACK was sent.
   3745 	 */
   3746 	tp->snd_up = tp->snd_una;
   3747 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3748 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3749 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3750 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3751 	tp->last_ack_sent = tp->rcv_nxt;
   3752 	tp->t_partialacks = -1;
   3753 	tp->t_dupacks = 0;
   3754 
   3755 	tcpstat.tcps_sc_completed++;
   3756 	s = splsoftnet();
   3757 	SYN_CACHE_PUT(sc);
   3758 	splx(s);
   3759 	return (so);
   3760 
   3761 resetandabort:
   3762 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3763 abort:
   3764 	if (so != NULL)
   3765 		(void) soabort(so);
   3766 	s = splsoftnet();
   3767 	SYN_CACHE_PUT(sc);
   3768 	splx(s);
   3769 	tcpstat.tcps_sc_aborted++;
   3770 	return ((struct socket *)(-1));
   3771 }
   3772 
   3773 /*
   3774  * This function is called when we get a RST for a
   3775  * non-existent connection, so that we can see if the
   3776  * connection is in the syn cache.  If it is, zap it.
   3777  */
   3778 
   3779 void
   3780 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   3781 {
   3782 	struct syn_cache *sc;
   3783 	struct syn_cache_head *scp;
   3784 	int s = splsoftnet();
   3785 
   3786 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3787 		splx(s);
   3788 		return;
   3789 	}
   3790 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3791 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3792 		splx(s);
   3793 		return;
   3794 	}
   3795 	SYN_CACHE_RM(sc);
   3796 	tcpstat.tcps_sc_reset++;
   3797 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3798 	splx(s);
   3799 }
   3800 
   3801 void
   3802 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   3803     struct tcphdr *th)
   3804 {
   3805 	struct syn_cache *sc;
   3806 	struct syn_cache_head *scp;
   3807 	int s;
   3808 
   3809 	s = splsoftnet();
   3810 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3811 		splx(s);
   3812 		return;
   3813 	}
   3814 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3815 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3816 		splx(s);
   3817 		return;
   3818 	}
   3819 
   3820 	/*
   3821 	 * If we've retransmitted 3 times and this is our second error,
   3822 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3823 	 * This prevents us from incorrectly nuking an entry during a
   3824 	 * spurious network outage.
   3825 	 *
   3826 	 * See tcp_notify().
   3827 	 */
   3828 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3829 		sc->sc_flags |= SCF_UNREACH;
   3830 		splx(s);
   3831 		return;
   3832 	}
   3833 
   3834 	SYN_CACHE_RM(sc);
   3835 	tcpstat.tcps_sc_unreach++;
   3836 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3837 	splx(s);
   3838 }
   3839 
   3840 /*
   3841  * Given a LISTEN socket and an inbound SYN request, add
   3842  * this to the syn cache, and send back a segment:
   3843  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3844  * to the source.
   3845  *
   3846  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3847  * Doing so would require that we hold onto the data and deliver it
   3848  * to the application.  However, if we are the target of a SYN-flood
   3849  * DoS attack, an attacker could send data which would eventually
   3850  * consume all available buffer space if it were ACKed.  By not ACKing
   3851  * the data, we avoid this DoS scenario.
   3852  */
   3853 
   3854 int
   3855 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   3856     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   3857     int optlen, struct tcp_opt_info *oi)
   3858 {
   3859 	struct tcpcb tb, *tp;
   3860 	long win;
   3861 	struct syn_cache *sc;
   3862 	struct syn_cache_head *scp;
   3863 	struct mbuf *ipopts;
   3864 	struct tcp_opt_info opti;
   3865 	int s;
   3866 
   3867 	tp = sototcpcb(so);
   3868 
   3869 	bzero(&opti, sizeof(opti));
   3870 
   3871 	/*
   3872 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3873 	 *
   3874 	 * Note this check is performed in tcp_input() very early on.
   3875 	 */
   3876 
   3877 	/*
   3878 	 * Initialize some local state.
   3879 	 */
   3880 	win = sbspace(&so->so_rcv);
   3881 	if (win > TCP_MAXWIN)
   3882 		win = TCP_MAXWIN;
   3883 
   3884 	switch (src->sa_family) {
   3885 #ifdef INET
   3886 	case AF_INET:
   3887 		/*
   3888 		 * Remember the IP options, if any.
   3889 		 */
   3890 		ipopts = ip_srcroute();
   3891 		break;
   3892 #endif
   3893 	default:
   3894 		ipopts = NULL;
   3895 	}
   3896 
   3897 #ifdef TCP_SIGNATURE
   3898 	if (optp || (tp->t_flags & TF_SIGNATURE))
   3899 #else
   3900 	if (optp)
   3901 #endif
   3902 	{
   3903 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3904 #ifdef TCP_SIGNATURE
   3905 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   3906 #endif
   3907 		tb.t_state = TCPS_LISTEN;
   3908 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   3909 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   3910 			return (0);
   3911 	} else
   3912 		tb.t_flags = 0;
   3913 
   3914 	/*
   3915 	 * See if we already have an entry for this connection.
   3916 	 * If we do, resend the SYN,ACK.  We do not count this
   3917 	 * as a retransmission (XXX though maybe we should).
   3918 	 */
   3919 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3920 		tcpstat.tcps_sc_dupesyn++;
   3921 		if (ipopts) {
   3922 			/*
   3923 			 * If we were remembering a previous source route,
   3924 			 * forget it and use the new one we've been given.
   3925 			 */
   3926 			if (sc->sc_ipopts)
   3927 				(void) m_free(sc->sc_ipopts);
   3928 			sc->sc_ipopts = ipopts;
   3929 		}
   3930 		sc->sc_timestamp = tb.ts_recent;
   3931 		if (syn_cache_respond(sc, m) == 0) {
   3932 			tcpstat.tcps_sndacks++;
   3933 			tcpstat.tcps_sndtotal++;
   3934 		}
   3935 		return (1);
   3936 	}
   3937 
   3938 	s = splsoftnet();
   3939 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3940 	splx(s);
   3941 	if (sc == NULL) {
   3942 		if (ipopts)
   3943 			(void) m_free(ipopts);
   3944 		return (0);
   3945 	}
   3946 
   3947 	/*
   3948 	 * Fill in the cache, and put the necessary IP and TCP
   3949 	 * options into the reply.
   3950 	 */
   3951 	bzero(sc, sizeof(struct syn_cache));
   3952 	callout_init(&sc->sc_timer);
   3953 	bcopy(src, &sc->sc_src, src->sa_len);
   3954 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3955 	sc->sc_flags = 0;
   3956 	sc->sc_ipopts = ipopts;
   3957 	sc->sc_irs = th->th_seq;
   3958 	switch (src->sa_family) {
   3959 #ifdef INET
   3960 	case AF_INET:
   3961 	    {
   3962 		struct sockaddr_in *srcin = (void *) src;
   3963 		struct sockaddr_in *dstin = (void *) dst;
   3964 
   3965 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3966 		    &srcin->sin_addr, dstin->sin_port,
   3967 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3968 		break;
   3969 	    }
   3970 #endif /* INET */
   3971 #ifdef INET6
   3972 	case AF_INET6:
   3973 	    {
   3974 		struct sockaddr_in6 *srcin6 = (void *) src;
   3975 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3976 
   3977 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3978 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3979 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3980 		break;
   3981 	    }
   3982 #endif /* INET6 */
   3983 	}
   3984 	sc->sc_peermaxseg = oi->maxseg;
   3985 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3986 						m->m_pkthdr.rcvif : NULL,
   3987 						sc->sc_src.sa.sa_family);
   3988 	sc->sc_win = win;
   3989 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   3990 	sc->sc_timestamp = tb.ts_recent;
   3991 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   3992 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   3993 		sc->sc_flags |= SCF_TIMESTAMP;
   3994 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3995 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3996 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3997 		sc->sc_request_r_scale = 0;
   3998 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   3999 		    TCP_MAXWIN << sc->sc_request_r_scale <
   4000 		    so->so_rcv.sb_hiwat)
   4001 			sc->sc_request_r_scale++;
   4002 	} else {
   4003 		sc->sc_requested_s_scale = 15;
   4004 		sc->sc_request_r_scale = 15;
   4005 	}
   4006 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4007 		sc->sc_flags |= SCF_SACK_PERMIT;
   4008 
   4009 	/*
   4010 	 * ECN setup packet recieved.
   4011 	 */
   4012 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4013 		sc->sc_flags |= SCF_ECN_PERMIT;
   4014 
   4015 #ifdef TCP_SIGNATURE
   4016 	if (tb.t_flags & TF_SIGNATURE)
   4017 		sc->sc_flags |= SCF_SIGNATURE;
   4018 #endif
   4019 	sc->sc_tp = tp;
   4020 	if (syn_cache_respond(sc, m) == 0) {
   4021 		syn_cache_insert(sc, tp);
   4022 		tcpstat.tcps_sndacks++;
   4023 		tcpstat.tcps_sndtotal++;
   4024 	} else {
   4025 		s = splsoftnet();
   4026 		SYN_CACHE_PUT(sc);
   4027 		splx(s);
   4028 		tcpstat.tcps_sc_dropped++;
   4029 	}
   4030 	return (1);
   4031 }
   4032 
   4033 int
   4034 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4035 {
   4036 	struct route *ro;
   4037 	u_int8_t *optp;
   4038 	int optlen, error;
   4039 	u_int16_t tlen;
   4040 	struct ip *ip = NULL;
   4041 #ifdef INET6
   4042 	struct ip6_hdr *ip6 = NULL;
   4043 #endif
   4044 	struct tcpcb *tp = NULL;
   4045 	struct tcphdr *th;
   4046 	u_int hlen;
   4047 	struct socket *so;
   4048 
   4049 	switch (sc->sc_src.sa.sa_family) {
   4050 	case AF_INET:
   4051 		hlen = sizeof(struct ip);
   4052 		ro = &sc->sc_route4;
   4053 		break;
   4054 #ifdef INET6
   4055 	case AF_INET6:
   4056 		hlen = sizeof(struct ip6_hdr);
   4057 		ro = (struct route *)&sc->sc_route6;
   4058 		break;
   4059 #endif
   4060 	default:
   4061 		if (m)
   4062 			m_freem(m);
   4063 		return (EAFNOSUPPORT);
   4064 	}
   4065 
   4066 	/* Compute the size of the TCP options. */
   4067 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4068 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4069 #ifdef TCP_SIGNATURE
   4070 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4071 #endif
   4072 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4073 
   4074 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4075 
   4076 	/*
   4077 	 * Create the IP+TCP header from scratch.
   4078 	 */
   4079 	if (m)
   4080 		m_freem(m);
   4081 #ifdef DIAGNOSTIC
   4082 	if (max_linkhdr + tlen > MCLBYTES)
   4083 		return (ENOBUFS);
   4084 #endif
   4085 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4086 	if (m && tlen > MHLEN) {
   4087 		MCLGET(m, M_DONTWAIT);
   4088 		if ((m->m_flags & M_EXT) == 0) {
   4089 			m_freem(m);
   4090 			m = NULL;
   4091 		}
   4092 	}
   4093 	if (m == NULL)
   4094 		return (ENOBUFS);
   4095 	MCLAIM(m, &tcp_tx_mowner);
   4096 
   4097 	/* Fixup the mbuf. */
   4098 	m->m_data += max_linkhdr;
   4099 	m->m_len = m->m_pkthdr.len = tlen;
   4100 	if (sc->sc_tp) {
   4101 		tp = sc->sc_tp;
   4102 		if (tp->t_inpcb)
   4103 			so = tp->t_inpcb->inp_socket;
   4104 #ifdef INET6
   4105 		else if (tp->t_in6pcb)
   4106 			so = tp->t_in6pcb->in6p_socket;
   4107 #endif
   4108 		else
   4109 			so = NULL;
   4110 	} else
   4111 		so = NULL;
   4112 	m->m_pkthdr.rcvif = NULL;
   4113 	memset(mtod(m, u_char *), 0, tlen);
   4114 
   4115 	switch (sc->sc_src.sa.sa_family) {
   4116 	case AF_INET:
   4117 		ip = mtod(m, struct ip *);
   4118 		ip->ip_v = 4;
   4119 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4120 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4121 		ip->ip_p = IPPROTO_TCP;
   4122 		th = (struct tcphdr *)(ip + 1);
   4123 		th->th_dport = sc->sc_src.sin.sin_port;
   4124 		th->th_sport = sc->sc_dst.sin.sin_port;
   4125 		break;
   4126 #ifdef INET6
   4127 	case AF_INET6:
   4128 		ip6 = mtod(m, struct ip6_hdr *);
   4129 		ip6->ip6_vfc = IPV6_VERSION;
   4130 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4131 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4132 		ip6->ip6_nxt = IPPROTO_TCP;
   4133 		/* ip6_plen will be updated in ip6_output() */
   4134 		th = (struct tcphdr *)(ip6 + 1);
   4135 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4136 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4137 		break;
   4138 #endif
   4139 	default:
   4140 		th = NULL;
   4141 	}
   4142 
   4143 	th->th_seq = htonl(sc->sc_iss);
   4144 	th->th_ack = htonl(sc->sc_irs + 1);
   4145 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4146 	th->th_flags = TH_SYN|TH_ACK;
   4147 	th->th_win = htons(sc->sc_win);
   4148 	/* th_sum already 0 */
   4149 	/* th_urp already 0 */
   4150 
   4151 	/* Tack on the TCP options. */
   4152 	optp = (u_int8_t *)(th + 1);
   4153 	*optp++ = TCPOPT_MAXSEG;
   4154 	*optp++ = 4;
   4155 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4156 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4157 
   4158 	if (sc->sc_request_r_scale != 15) {
   4159 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4160 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4161 		    sc->sc_request_r_scale);
   4162 		optp += 4;
   4163 	}
   4164 
   4165 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4166 		u_int32_t *lp = (u_int32_t *)(optp);
   4167 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4168 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4169 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4170 		*lp   = htonl(sc->sc_timestamp);
   4171 		optp += TCPOLEN_TSTAMP_APPA;
   4172 	}
   4173 
   4174 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4175 		u_int8_t *p = optp;
   4176 
   4177 		/* Let the peer know that we will SACK. */
   4178 		p[0] = TCPOPT_SACK_PERMITTED;
   4179 		p[1] = 2;
   4180 		p[2] = TCPOPT_NOP;
   4181 		p[3] = TCPOPT_NOP;
   4182 		optp += 4;
   4183 	}
   4184 
   4185 	/*
   4186 	 * Send ECN SYN-ACK setup packet.
   4187 	 * Routes can be asymetric, so, even if we receive a packet
   4188 	 * with ECE and CWR set, we must not assume no one will block
   4189 	 * the ECE packet we are about to send.
   4190 	 */
   4191 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4192 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4193 		th->th_flags |= TH_ECE;
   4194 		tcpstat.tcps_ecn_shs++;
   4195 
   4196 		/*
   4197 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4198 		 *
   4199 		 * "[...] a TCP node MAY respond to an ECN-setup
   4200 		 * SYN packet by setting ECT in the responding
   4201 		 * ECN-setup SYN/ACK packet, indicating to routers
   4202 		 * that the SYN/ACK packet is ECN-Capable.
   4203 		 * This allows a congested router along the path
   4204 		 * to mark the packet instead of dropping the
   4205 		 * packet as an indication of congestion."
   4206 		 *
   4207 		 * "[...] There can be a great benefit in setting
   4208 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4209 		 * Congestion is  most likely to occur in
   4210 		 * the server-to-client direction.  As a result,
   4211 		 * setting an ECN-capable codepoint in SYN/ACK
   4212 		 * packets can reduce the occurence of three-second
   4213 		 * retransmit timeouts resulting from the drop
   4214 		 * of SYN/ACK packets."
   4215 		 *
   4216 		 * Page 4 and 6, January 2006.
   4217 		 */
   4218 
   4219 		switch (sc->sc_src.sa.sa_family) {
   4220 #ifdef INET
   4221 		case AF_INET:
   4222 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4223 			break;
   4224 #endif
   4225 #ifdef INET6
   4226 		case AF_INET6:
   4227 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4228 			break;
   4229 #endif
   4230 		}
   4231 		tcpstat.tcps_ecn_ect++;
   4232 	}
   4233 
   4234 #ifdef TCP_SIGNATURE
   4235 	if (sc->sc_flags & SCF_SIGNATURE) {
   4236 		struct secasvar *sav;
   4237 		u_int8_t *sigp;
   4238 
   4239 		sav = tcp_signature_getsav(m, th);
   4240 
   4241 		if (sav == NULL) {
   4242 			if (m)
   4243 				m_freem(m);
   4244 			return (EPERM);
   4245 		}
   4246 
   4247 		*optp++ = TCPOPT_SIGNATURE;
   4248 		*optp++ = TCPOLEN_SIGNATURE;
   4249 		sigp = optp;
   4250 		bzero(optp, TCP_SIGLEN);
   4251 		optp += TCP_SIGLEN;
   4252 		*optp++ = TCPOPT_NOP;
   4253 		*optp++ = TCPOPT_EOL;
   4254 
   4255 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4256 
   4257 		key_sa_recordxfer(sav, m);
   4258 #ifdef FAST_IPSEC
   4259 		KEY_FREESAV(&sav);
   4260 #else
   4261 		key_freesav(sav);
   4262 #endif
   4263 	}
   4264 #endif
   4265 
   4266 	/* Compute the packet's checksum. */
   4267 	switch (sc->sc_src.sa.sa_family) {
   4268 	case AF_INET:
   4269 		ip->ip_len = htons(tlen - hlen);
   4270 		th->th_sum = 0;
   4271 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4272 		break;
   4273 #ifdef INET6
   4274 	case AF_INET6:
   4275 		ip6->ip6_plen = htons(tlen - hlen);
   4276 		th->th_sum = 0;
   4277 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4278 		break;
   4279 #endif
   4280 	}
   4281 
   4282 	/*
   4283 	 * Fill in some straggling IP bits.  Note the stack expects
   4284 	 * ip_len to be in host order, for convenience.
   4285 	 */
   4286 	switch (sc->sc_src.sa.sa_family) {
   4287 #ifdef INET
   4288 	case AF_INET:
   4289 		ip->ip_len = htons(tlen);
   4290 		ip->ip_ttl = ip_defttl;
   4291 		/* XXX tos? */
   4292 		break;
   4293 #endif
   4294 #ifdef INET6
   4295 	case AF_INET6:
   4296 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4297 		ip6->ip6_vfc |= IPV6_VERSION;
   4298 		ip6->ip6_plen = htons(tlen - hlen);
   4299 		/* ip6_hlim will be initialized afterwards */
   4300 		/* XXX flowlabel? */
   4301 		break;
   4302 #endif
   4303 	}
   4304 
   4305 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4306 	tp = sc->sc_tp;
   4307 
   4308 	switch (sc->sc_src.sa.sa_family) {
   4309 #ifdef INET
   4310 	case AF_INET:
   4311 		error = ip_output(m, sc->sc_ipopts, ro,
   4312 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4313 		    (struct ip_moptions *)NULL, so);
   4314 		break;
   4315 #endif
   4316 #ifdef INET6
   4317 	case AF_INET6:
   4318 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4319 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   4320 
   4321 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
   4322 			(struct ip6_moptions *)0, so, NULL);
   4323 		break;
   4324 #endif
   4325 	default:
   4326 		error = EAFNOSUPPORT;
   4327 		break;
   4328 	}
   4329 	return (error);
   4330 }
   4331