Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.256
      1 /*	$NetBSD: tcp_input.c,v 1.256 2006/12/06 09:08:27 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Charles M. Hannum.
     81  * This code is derived from software contributed to The NetBSD Foundation
     82  * by Rui Paulo.
     83  *
     84  * Redistribution and use in source and binary forms, with or without
     85  * modification, are permitted provided that the following conditions
     86  * are met:
     87  * 1. Redistributions of source code must retain the above copyright
     88  *    notice, this list of conditions and the following disclaimer.
     89  * 2. Redistributions in binary form must reproduce the above copyright
     90  *    notice, this list of conditions and the following disclaimer in the
     91  *    documentation and/or other materials provided with the distribution.
     92  * 3. All advertising materials mentioning features or use of this software
     93  *    must display the following acknowledgement:
     94  *	This product includes software developed by the NetBSD
     95  *	Foundation, Inc. and its contributors.
     96  * 4. Neither the name of The NetBSD Foundation nor the names of its
     97  *    contributors may be used to endorse or promote products derived
     98  *    from this software without specific prior written permission.
     99  *
    100  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
    101  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
    102  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    103  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    104  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    105  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    106  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    107  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    108  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    109  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    110  * POSSIBILITY OF SUCH DAMAGE.
    111  */
    112 
    113 /*
    114  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    115  *	The Regents of the University of California.  All rights reserved.
    116  *
    117  * Redistribution and use in source and binary forms, with or without
    118  * modification, are permitted provided that the following conditions
    119  * are met:
    120  * 1. Redistributions of source code must retain the above copyright
    121  *    notice, this list of conditions and the following disclaimer.
    122  * 2. Redistributions in binary form must reproduce the above copyright
    123  *    notice, this list of conditions and the following disclaimer in the
    124  *    documentation and/or other materials provided with the distribution.
    125  * 3. Neither the name of the University nor the names of its contributors
    126  *    may be used to endorse or promote products derived from this software
    127  *    without specific prior written permission.
    128  *
    129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    139  * SUCH DAMAGE.
    140  *
    141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    142  */
    143 
    144 /*
    145  *	TODO list for SYN cache stuff:
    146  *
    147  *	Find room for a "state" field, which is needed to keep a
    148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    149  *	that this is fairly important for very high-volume web and
    150  *	mail servers, which use a large number of short-lived
    151  *	connections.
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.256 2006/12/06 09:08:27 yamt Exp $");
    156 
    157 #include "opt_inet.h"
    158 #include "opt_ipsec.h"
    159 #include "opt_inet_csum.h"
    160 #include "opt_tcp_debug.h"
    161 
    162 #include <sys/param.h>
    163 #include <sys/systm.h>
    164 #include <sys/malloc.h>
    165 #include <sys/mbuf.h>
    166 #include <sys/protosw.h>
    167 #include <sys/socket.h>
    168 #include <sys/socketvar.h>
    169 #include <sys/errno.h>
    170 #include <sys/syslog.h>
    171 #include <sys/pool.h>
    172 #include <sys/domain.h>
    173 #include <sys/kernel.h>
    174 #ifdef TCP_SIGNATURE
    175 #include <sys/md5.h>
    176 #endif
    177 
    178 #include <net/if.h>
    179 #include <net/route.h>
    180 #include <net/if_types.h>
    181 
    182 #include <netinet/in.h>
    183 #include <netinet/in_systm.h>
    184 #include <netinet/ip.h>
    185 #include <netinet/in_pcb.h>
    186 #include <netinet/in_var.h>
    187 #include <netinet/ip_var.h>
    188 #include <netinet/in_offload.h>
    189 
    190 #ifdef INET6
    191 #ifndef INET
    192 #include <netinet/in.h>
    193 #endif
    194 #include <netinet/ip6.h>
    195 #include <netinet6/ip6_var.h>
    196 #include <netinet6/in6_pcb.h>
    197 #include <netinet6/ip6_var.h>
    198 #include <netinet6/in6_var.h>
    199 #include <netinet/icmp6.h>
    200 #include <netinet6/nd6.h>
    201 #ifdef TCP_SIGNATURE
    202 #include <netinet6/scope6_var.h>
    203 #endif
    204 #endif
    205 
    206 #ifndef INET6
    207 /* always need ip6.h for IP6_EXTHDR_GET */
    208 #include <netinet/ip6.h>
    209 #endif
    210 
    211 #include <netinet/tcp.h>
    212 #include <netinet/tcp_fsm.h>
    213 #include <netinet/tcp_seq.h>
    214 #include <netinet/tcp_timer.h>
    215 #include <netinet/tcp_var.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #include <machine/stdarg.h>
    221 
    222 #ifdef IPSEC
    223 #include <netinet6/ipsec.h>
    224 #include <netkey/key.h>
    225 #endif /*IPSEC*/
    226 #ifdef INET6
    227 #include "faith.h"
    228 #if defined(NFAITH) && NFAITH > 0
    229 #include <net/if_faith.h>
    230 #endif
    231 #endif	/* IPSEC */
    232 
    233 #ifdef FAST_IPSEC
    234 #include <netipsec/ipsec.h>
    235 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
    236 #include <netipsec/key.h>
    237 #ifdef INET6
    238 #include <netipsec/ipsec6.h>
    239 #endif
    240 #endif	/* FAST_IPSEC*/
    241 
    242 int	tcprexmtthresh = 3;
    243 int	tcp_log_refused;
    244 
    245 static int tcp_rst_ppslim_count = 0;
    246 static struct timeval tcp_rst_ppslim_last;
    247 static int tcp_ackdrop_ppslim_count = 0;
    248 static struct timeval tcp_ackdrop_ppslim_last;
    249 
    250 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    251 
    252 /* for modulo comparisons of timestamps */
    253 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    254 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    255 
    256 /*
    257  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    258  */
    259 #ifdef INET6
    260 #define ND6_HINT(tp) \
    261 do { \
    262 	if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
    263 	    tp->t_in6pcb->in6p_route.ro_rt) { \
    264 		nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
    265 	} \
    266 } while (/*CONSTCOND*/ 0)
    267 #else
    268 #define ND6_HINT(tp)
    269 #endif
    270 
    271 /*
    272  * Macro to compute ACK transmission behavior.  Delay the ACK unless
    273  * we have already delayed an ACK (must send an ACK every two segments).
    274  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    275  * option is enabled.
    276  */
    277 #define	TCP_SETUP_ACK(tp, th) \
    278 do { \
    279 	if ((tp)->t_flags & TF_DELACK || \
    280 	    (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
    281 		tp->t_flags |= TF_ACKNOW; \
    282 	else \
    283 		TCP_SET_DELACK(tp); \
    284 } while (/*CONSTCOND*/ 0)
    285 
    286 #define ICMP_CHECK(tp, th, acked) \
    287 do { \
    288 	/* \
    289 	 * If we had a pending ICMP message that \
    290 	 * refers to data that have just been  \
    291 	 * acknowledged, disregard the recorded ICMP \
    292 	 * message. \
    293 	 */ \
    294 	if (((tp)->t_flags & TF_PMTUD_PEND) && \
    295 	    SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
    296 		(tp)->t_flags &= ~TF_PMTUD_PEND; \
    297 \
    298 	/* \
    299 	 * Keep track of the largest chunk of data \
    300 	 * acknowledged since last PMTU update \
    301 	 */ \
    302 	if ((tp)->t_pmtud_mss_acked < (acked)) \
    303 		(tp)->t_pmtud_mss_acked = (acked); \
    304 } while (/*CONSTCOND*/ 0)
    305 
    306 /*
    307  * Convert TCP protocol fields to host order for easier processing.
    308  */
    309 #define	TCP_FIELDS_TO_HOST(th)						\
    310 do {									\
    311 	NTOHL((th)->th_seq);						\
    312 	NTOHL((th)->th_ack);						\
    313 	NTOHS((th)->th_win);						\
    314 	NTOHS((th)->th_urp);						\
    315 } while (/*CONSTCOND*/ 0)
    316 
    317 /*
    318  * ... and reverse the above.
    319  */
    320 #define	TCP_FIELDS_TO_NET(th)						\
    321 do {									\
    322 	HTONL((th)->th_seq);						\
    323 	HTONL((th)->th_ack);						\
    324 	HTONS((th)->th_win);						\
    325 	HTONS((th)->th_urp);						\
    326 } while (/*CONSTCOND*/ 0)
    327 
    328 #ifdef TCP_CSUM_COUNTERS
    329 #include <sys/device.h>
    330 
    331 #if defined(INET)
    332 extern struct evcnt tcp_hwcsum_ok;
    333 extern struct evcnt tcp_hwcsum_bad;
    334 extern struct evcnt tcp_hwcsum_data;
    335 extern struct evcnt tcp_swcsum;
    336 #endif /* defined(INET) */
    337 #if defined(INET6)
    338 extern struct evcnt tcp6_hwcsum_ok;
    339 extern struct evcnt tcp6_hwcsum_bad;
    340 extern struct evcnt tcp6_hwcsum_data;
    341 extern struct evcnt tcp6_swcsum;
    342 #endif /* defined(INET6) */
    343 
    344 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    345 
    346 #else
    347 
    348 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    349 
    350 #endif /* TCP_CSUM_COUNTERS */
    351 
    352 #ifdef TCP_REASS_COUNTERS
    353 #include <sys/device.h>
    354 
    355 extern struct evcnt tcp_reass_;
    356 extern struct evcnt tcp_reass_empty;
    357 extern struct evcnt tcp_reass_iteration[8];
    358 extern struct evcnt tcp_reass_prependfirst;
    359 extern struct evcnt tcp_reass_prepend;
    360 extern struct evcnt tcp_reass_insert;
    361 extern struct evcnt tcp_reass_inserttail;
    362 extern struct evcnt tcp_reass_append;
    363 extern struct evcnt tcp_reass_appendtail;
    364 extern struct evcnt tcp_reass_overlaptail;
    365 extern struct evcnt tcp_reass_overlapfront;
    366 extern struct evcnt tcp_reass_segdup;
    367 extern struct evcnt tcp_reass_fragdup;
    368 
    369 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    370 
    371 #else
    372 
    373 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    374 
    375 #endif /* TCP_REASS_COUNTERS */
    376 
    377 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    378     int *);
    379 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    380     const struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    381 
    382 #ifdef INET
    383 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    384 #endif
    385 #ifdef INET6
    386 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    387 #endif
    388 
    389 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    390 
    391 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    392     NULL);
    393 
    394 struct ipqent *
    395 tcpipqent_alloc()
    396 {
    397 	struct ipqent *ipqe;
    398 	int s;
    399 
    400 	s = splvm();
    401 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    402 	splx(s);
    403 
    404 	return ipqe;
    405 }
    406 
    407 void
    408 tcpipqent_free(struct ipqent *ipqe)
    409 {
    410 	int s;
    411 
    412 	s = splvm();
    413 	pool_put(&tcpipqent_pool, ipqe);
    414 	splx(s);
    415 }
    416 
    417 static int
    418 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    419 {
    420 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    421 	struct socket *so = NULL;
    422 	int pkt_flags;
    423 	tcp_seq pkt_seq;
    424 	unsigned pkt_len;
    425 	u_long rcvpartdupbyte = 0;
    426 	u_long rcvoobyte;
    427 #ifdef TCP_REASS_COUNTERS
    428 	u_int count = 0;
    429 #endif
    430 
    431 	if (tp->t_inpcb)
    432 		so = tp->t_inpcb->inp_socket;
    433 #ifdef INET6
    434 	else if (tp->t_in6pcb)
    435 		so = tp->t_in6pcb->in6p_socket;
    436 #endif
    437 
    438 	TCP_REASS_LOCK_CHECK(tp);
    439 
    440 	/*
    441 	 * Call with th==0 after become established to
    442 	 * force pre-ESTABLISHED data up to user socket.
    443 	 */
    444 	if (th == 0)
    445 		goto present;
    446 
    447 	rcvoobyte = *tlen;
    448 	/*
    449 	 * Copy these to local variables because the tcpiphdr
    450 	 * gets munged while we are collapsing mbufs.
    451 	 */
    452 	pkt_seq = th->th_seq;
    453 	pkt_len = *tlen;
    454 	pkt_flags = th->th_flags;
    455 
    456 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    457 
    458 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    459 		/*
    460 		 * When we miss a packet, the vast majority of time we get
    461 		 * packets that follow it in order.  So optimize for that.
    462 		 */
    463 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    464 			p->ipqe_len += pkt_len;
    465 			p->ipqe_flags |= pkt_flags;
    466 			m_cat(p->ipre_mlast, m);
    467 			TRAVERSE(p->ipre_mlast);
    468 			m = NULL;
    469 			tiqe = p;
    470 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    471 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    472 			goto skip_replacement;
    473 		}
    474 		/*
    475 		 * While we're here, if the pkt is completely beyond
    476 		 * anything we have, just insert it at the tail.
    477 		 */
    478 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    479 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    480 			goto insert_it;
    481 		}
    482 	}
    483 
    484 	q = TAILQ_FIRST(&tp->segq);
    485 
    486 	if (q != NULL) {
    487 		/*
    488 		 * If this segment immediately precedes the first out-of-order
    489 		 * block, simply slap the segment in front of it and (mostly)
    490 		 * skip the complicated logic.
    491 		 */
    492 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    493 			q->ipqe_seq = pkt_seq;
    494 			q->ipqe_len += pkt_len;
    495 			q->ipqe_flags |= pkt_flags;
    496 			m_cat(m, q->ipqe_m);
    497 			q->ipqe_m = m;
    498 			q->ipre_mlast = m; /* last mbuf may have changed */
    499 			TRAVERSE(q->ipre_mlast);
    500 			tiqe = q;
    501 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    502 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    503 			goto skip_replacement;
    504 		}
    505 	} else {
    506 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    507 	}
    508 
    509 	/*
    510 	 * Find a segment which begins after this one does.
    511 	 */
    512 	for (p = NULL; q != NULL; q = nq) {
    513 		nq = TAILQ_NEXT(q, ipqe_q);
    514 #ifdef TCP_REASS_COUNTERS
    515 		count++;
    516 #endif
    517 		/*
    518 		 * If the received segment is just right after this
    519 		 * fragment, merge the two together and then check
    520 		 * for further overlaps.
    521 		 */
    522 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    523 #ifdef TCPREASS_DEBUG
    524 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    525 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    526 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    527 #endif
    528 			pkt_len += q->ipqe_len;
    529 			pkt_flags |= q->ipqe_flags;
    530 			pkt_seq = q->ipqe_seq;
    531 			m_cat(q->ipre_mlast, m);
    532 			TRAVERSE(q->ipre_mlast);
    533 			m = q->ipqe_m;
    534 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    535 			goto free_ipqe;
    536 		}
    537 		/*
    538 		 * If the received segment is completely past this
    539 		 * fragment, we need to go the next fragment.
    540 		 */
    541 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    542 			p = q;
    543 			continue;
    544 		}
    545 		/*
    546 		 * If the fragment is past the received segment,
    547 		 * it (or any following) can't be concatenated.
    548 		 */
    549 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    550 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    551 			break;
    552 		}
    553 
    554 		/*
    555 		 * We've received all the data in this segment before.
    556 		 * mark it as a duplicate and return.
    557 		 */
    558 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    559 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    560 			tcpstat.tcps_rcvduppack++;
    561 			tcpstat.tcps_rcvdupbyte += pkt_len;
    562 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    563 			m_freem(m);
    564 			if (tiqe != NULL) {
    565 				tcpipqent_free(tiqe);
    566 			}
    567 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    568 			return (0);
    569 		}
    570 		/*
    571 		 * Received segment completely overlaps this fragment
    572 		 * so we drop the fragment (this keeps the temporal
    573 		 * ordering of segments correct).
    574 		 */
    575 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    576 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    577 			rcvpartdupbyte += q->ipqe_len;
    578 			m_freem(q->ipqe_m);
    579 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    580 			goto free_ipqe;
    581 		}
    582 		/*
    583 		 * RX'ed segment extends past the end of the
    584 		 * fragment.  Drop the overlapping bytes.  Then
    585 		 * merge the fragment and segment then treat as
    586 		 * a longer received packet.
    587 		 */
    588 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    589 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    590 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    591 #ifdef TCPREASS_DEBUG
    592 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    593 			       tp, overlap,
    594 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    595 #endif
    596 			m_adj(m, overlap);
    597 			rcvpartdupbyte += overlap;
    598 			m_cat(q->ipre_mlast, m);
    599 			TRAVERSE(q->ipre_mlast);
    600 			m = q->ipqe_m;
    601 			pkt_seq = q->ipqe_seq;
    602 			pkt_len += q->ipqe_len - overlap;
    603 			rcvoobyte -= overlap;
    604 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    605 			goto free_ipqe;
    606 		}
    607 		/*
    608 		 * RX'ed segment extends past the front of the
    609 		 * fragment.  Drop the overlapping bytes on the
    610 		 * received packet.  The packet will then be
    611 		 * contatentated with this fragment a bit later.
    612 		 */
    613 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    614 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    615 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    616 #ifdef TCPREASS_DEBUG
    617 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    618 			       tp, overlap,
    619 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    620 #endif
    621 			m_adj(m, -overlap);
    622 			pkt_len -= overlap;
    623 			rcvpartdupbyte += overlap;
    624 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    625 			rcvoobyte -= overlap;
    626 		}
    627 		/*
    628 		 * If the received segment immediates precedes this
    629 		 * fragment then tack the fragment onto this segment
    630 		 * and reinsert the data.
    631 		 */
    632 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    633 #ifdef TCPREASS_DEBUG
    634 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    635 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    636 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    637 #endif
    638 			pkt_len += q->ipqe_len;
    639 			pkt_flags |= q->ipqe_flags;
    640 			m_cat(m, q->ipqe_m);
    641 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    642 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    643 			tp->t_segqlen--;
    644 			KASSERT(tp->t_segqlen >= 0);
    645 			KASSERT(tp->t_segqlen != 0 ||
    646 			    (TAILQ_EMPTY(&tp->segq) &&
    647 			    TAILQ_EMPTY(&tp->timeq)));
    648 			if (tiqe == NULL) {
    649 				tiqe = q;
    650 			} else {
    651 				tcpipqent_free(q);
    652 			}
    653 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    654 			break;
    655 		}
    656 		/*
    657 		 * If the fragment is before the segment, remember it.
    658 		 * When this loop is terminated, p will contain the
    659 		 * pointer to fragment that is right before the received
    660 		 * segment.
    661 		 */
    662 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    663 			p = q;
    664 
    665 		continue;
    666 
    667 		/*
    668 		 * This is a common operation.  It also will allow
    669 		 * to save doing a malloc/free in most instances.
    670 		 */
    671 	  free_ipqe:
    672 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    673 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    674 		tp->t_segqlen--;
    675 		KASSERT(tp->t_segqlen >= 0);
    676 		KASSERT(tp->t_segqlen != 0 ||
    677 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    678 		if (tiqe == NULL) {
    679 			tiqe = q;
    680 		} else {
    681 			tcpipqent_free(q);
    682 		}
    683 	}
    684 
    685 #ifdef TCP_REASS_COUNTERS
    686 	if (count > 7)
    687 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    688 	else if (count > 0)
    689 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    690 #endif
    691 
    692     insert_it:
    693 
    694 	/*
    695 	 * Allocate a new queue entry since the received segment did not
    696 	 * collapse onto any other out-of-order block; thus we are allocating
    697 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    698 	 * we would be reusing it.
    699 	 * XXX If we can't, just drop the packet.  XXX
    700 	 */
    701 	if (tiqe == NULL) {
    702 		tiqe = tcpipqent_alloc();
    703 		if (tiqe == NULL) {
    704 			tcpstat.tcps_rcvmemdrop++;
    705 			m_freem(m);
    706 			return (0);
    707 		}
    708 	}
    709 
    710 	/*
    711 	 * Update the counters.
    712 	 */
    713 	tcpstat.tcps_rcvoopack++;
    714 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    715 	if (rcvpartdupbyte) {
    716 	    tcpstat.tcps_rcvpartduppack++;
    717 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    718 	}
    719 
    720 	/*
    721 	 * Insert the new fragment queue entry into both queues.
    722 	 */
    723 	tiqe->ipqe_m = m;
    724 	tiqe->ipre_mlast = m;
    725 	tiqe->ipqe_seq = pkt_seq;
    726 	tiqe->ipqe_len = pkt_len;
    727 	tiqe->ipqe_flags = pkt_flags;
    728 	if (p == NULL) {
    729 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    730 #ifdef TCPREASS_DEBUG
    731 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    732 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    733 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    734 #endif
    735 	} else {
    736 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    737 #ifdef TCPREASS_DEBUG
    738 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    739 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    740 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    741 #endif
    742 	}
    743 	tp->t_segqlen++;
    744 
    745 skip_replacement:
    746 
    747 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    748 
    749 present:
    750 	/*
    751 	 * Present data to user, advancing rcv_nxt through
    752 	 * completed sequence space.
    753 	 */
    754 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    755 		return (0);
    756 	q = TAILQ_FIRST(&tp->segq);
    757 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    758 		return (0);
    759 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    760 		return (0);
    761 
    762 	tp->rcv_nxt += q->ipqe_len;
    763 	pkt_flags = q->ipqe_flags & TH_FIN;
    764 	ND6_HINT(tp);
    765 
    766 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    767 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    768 	tp->t_segqlen--;
    769 	KASSERT(tp->t_segqlen >= 0);
    770 	KASSERT(tp->t_segqlen != 0 ||
    771 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    772 	if (so->so_state & SS_CANTRCVMORE)
    773 		m_freem(q->ipqe_m);
    774 	else
    775 		sbappendstream(&so->so_rcv, q->ipqe_m);
    776 	tcpipqent_free(q);
    777 	sorwakeup(so);
    778 	return (pkt_flags);
    779 }
    780 
    781 #ifdef INET6
    782 int
    783 tcp6_input(struct mbuf **mp, int *offp, int proto)
    784 {
    785 	struct mbuf *m = *mp;
    786 
    787 	/*
    788 	 * draft-itojun-ipv6-tcp-to-anycast
    789 	 * better place to put this in?
    790 	 */
    791 	if (m->m_flags & M_ANYCAST6) {
    792 		struct ip6_hdr *ip6;
    793 		if (m->m_len < sizeof(struct ip6_hdr)) {
    794 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    795 				tcpstat.tcps_rcvshort++;
    796 				return IPPROTO_DONE;
    797 			}
    798 		}
    799 		ip6 = mtod(m, struct ip6_hdr *);
    800 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    801 		    (caddr_t)&ip6->ip6_dst - (caddr_t)ip6);
    802 		return IPPROTO_DONE;
    803 	}
    804 
    805 	tcp_input(m, *offp, proto);
    806 	return IPPROTO_DONE;
    807 }
    808 #endif
    809 
    810 #ifdef INET
    811 static void
    812 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    813 {
    814 	char src[4*sizeof "123"];
    815 	char dst[4*sizeof "123"];
    816 
    817 	if (ip) {
    818 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    819 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    820 	}
    821 	else {
    822 		strlcpy(src, "(unknown)", sizeof(src));
    823 		strlcpy(dst, "(unknown)", sizeof(dst));
    824 	}
    825 	log(LOG_INFO,
    826 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    827 	    dst, ntohs(th->th_dport),
    828 	    src, ntohs(th->th_sport));
    829 }
    830 #endif
    831 
    832 #ifdef INET6
    833 static void
    834 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    835 {
    836 	char src[INET6_ADDRSTRLEN];
    837 	char dst[INET6_ADDRSTRLEN];
    838 
    839 	if (ip6) {
    840 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    841 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    842 	}
    843 	else {
    844 		strlcpy(src, "(unknown v6)", sizeof(src));
    845 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    846 	}
    847 	log(LOG_INFO,
    848 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    849 	    dst, ntohs(th->th_dport),
    850 	    src, ntohs(th->th_sport));
    851 }
    852 #endif
    853 
    854 /*
    855  * Checksum extended TCP header and data.
    856  */
    857 int
    858 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    859     int toff, int off, int tlen)
    860 {
    861 
    862 	/*
    863 	 * XXX it's better to record and check if this mbuf is
    864 	 * already checked.
    865 	 */
    866 
    867 	switch (af) {
    868 #ifdef INET
    869 	case AF_INET:
    870 		switch (m->m_pkthdr.csum_flags &
    871 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    872 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    873 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    874 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    875 			goto badcsum;
    876 
    877 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    878 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    879 
    880 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    881 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    882 				const struct ip *ip =
    883 				    mtod(m, const struct ip *);
    884 
    885 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    886 				    ip->ip_dst.s_addr,
    887 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    888 			}
    889 			if ((hw_csum ^ 0xffff) != 0)
    890 				goto badcsum;
    891 			break;
    892 		}
    893 
    894 		case M_CSUM_TCPv4:
    895 			/* Checksum was okay. */
    896 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    897 			break;
    898 
    899 		default:
    900 			/*
    901 			 * Must compute it ourselves.  Maybe skip checksum
    902 			 * on loopback interfaces.
    903 			 */
    904 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    905 					     IFF_LOOPBACK) ||
    906 					   tcp_do_loopback_cksum)) {
    907 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    908 				if (in4_cksum(m, IPPROTO_TCP, toff,
    909 					      tlen + off) != 0)
    910 					goto badcsum;
    911 			}
    912 			break;
    913 		}
    914 		break;
    915 #endif /* INET4 */
    916 
    917 #ifdef INET6
    918 	case AF_INET6:
    919 		switch (m->m_pkthdr.csum_flags &
    920 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    921 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    922 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    923 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    924 			goto badcsum;
    925 
    926 #if 0 /* notyet */
    927 		case M_CSUM_TCPv6|M_CSUM_DATA:
    928 #endif
    929 
    930 		case M_CSUM_TCPv6:
    931 			/* Checksum was okay. */
    932 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    933 			break;
    934 
    935 		default:
    936 			/*
    937 			 * Must compute it ourselves.  Maybe skip checksum
    938 			 * on loopback interfaces.
    939 			 */
    940 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    941 			    tcp_do_loopback_cksum)) {
    942 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    943 				if (in6_cksum(m, IPPROTO_TCP, toff,
    944 				    tlen + off) != 0)
    945 					goto badcsum;
    946 			}
    947 		}
    948 		break;
    949 #endif /* INET6 */
    950 	}
    951 
    952 	return 0;
    953 
    954 badcsum:
    955 	tcpstat.tcps_rcvbadsum++;
    956 	return -1;
    957 }
    958 
    959 /*
    960  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
    961  */
    962 void
    963 tcp_input(struct mbuf *m, ...)
    964 {
    965 	struct tcphdr *th;
    966 	struct ip *ip;
    967 	struct inpcb *inp;
    968 #ifdef INET6
    969 	struct ip6_hdr *ip6;
    970 	struct in6pcb *in6p;
    971 #endif
    972 	u_int8_t *optp = NULL;
    973 	int optlen = 0;
    974 	int len, tlen, toff, hdroptlen = 0;
    975 	struct tcpcb *tp = 0;
    976 	int tiflags;
    977 	struct socket *so = NULL;
    978 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
    979 #ifdef TCP_DEBUG
    980 	short ostate = 0;
    981 #endif
    982 	u_long tiwin;
    983 	struct tcp_opt_info opti;
    984 	int off, iphlen;
    985 	va_list ap;
    986 	int af;		/* af on the wire */
    987 	struct mbuf *tcp_saveti = NULL;
    988 	uint32_t ts_rtt;
    989 	uint8_t iptos;
    990 
    991 	MCLAIM(m, &tcp_rx_mowner);
    992 	va_start(ap, m);
    993 	toff = va_arg(ap, int);
    994 	(void)va_arg(ap, int);		/* ignore value, advance ap */
    995 	va_end(ap);
    996 
    997 	tcpstat.tcps_rcvtotal++;
    998 
    999 	bzero(&opti, sizeof(opti));
   1000 	opti.ts_present = 0;
   1001 	opti.maxseg = 0;
   1002 
   1003 	/*
   1004 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1005 	 *
   1006 	 * TCP is, by definition, unicast, so we reject all
   1007 	 * multicast outright.
   1008 	 *
   1009 	 * Note, there are additional src/dst address checks in
   1010 	 * the AF-specific code below.
   1011 	 */
   1012 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1013 		/* XXX stat */
   1014 		goto drop;
   1015 	}
   1016 #ifdef INET6
   1017 	if (m->m_flags & M_ANYCAST6) {
   1018 		/* XXX stat */
   1019 		goto drop;
   1020 	}
   1021 #endif
   1022 
   1023 	/*
   1024 	 * Get IP and TCP header.
   1025 	 * Note: IP leaves IP header in first mbuf.
   1026 	 */
   1027 	ip = mtod(m, struct ip *);
   1028 #ifdef INET6
   1029 	ip6 = NULL;
   1030 #endif
   1031 	switch (ip->ip_v) {
   1032 #ifdef INET
   1033 	case 4:
   1034 		af = AF_INET;
   1035 		iphlen = sizeof(struct ip);
   1036 		ip = mtod(m, struct ip *);
   1037 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1038 			sizeof(struct tcphdr));
   1039 		if (th == NULL) {
   1040 			tcpstat.tcps_rcvshort++;
   1041 			return;
   1042 		}
   1043 		/* We do the checksum after PCB lookup... */
   1044 		len = ntohs(ip->ip_len);
   1045 		tlen = len - toff;
   1046 		iptos = ip->ip_tos;
   1047 		break;
   1048 #endif
   1049 #ifdef INET6
   1050 	case 6:
   1051 		ip = NULL;
   1052 		iphlen = sizeof(struct ip6_hdr);
   1053 		af = AF_INET6;
   1054 		ip6 = mtod(m, struct ip6_hdr *);
   1055 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1056 			sizeof(struct tcphdr));
   1057 		if (th == NULL) {
   1058 			tcpstat.tcps_rcvshort++;
   1059 			return;
   1060 		}
   1061 
   1062 		/* Be proactive about malicious use of IPv4 mapped address */
   1063 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1064 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1065 			/* XXX stat */
   1066 			goto drop;
   1067 		}
   1068 
   1069 		/*
   1070 		 * Be proactive about unspecified IPv6 address in source.
   1071 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1072 		 * unspecified IPv6 address can be used to confuse us.
   1073 		 *
   1074 		 * Note that packets with unspecified IPv6 destination is
   1075 		 * already dropped in ip6_input.
   1076 		 */
   1077 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1078 			/* XXX stat */
   1079 			goto drop;
   1080 		}
   1081 
   1082 		/*
   1083 		 * Make sure destination address is not multicast.
   1084 		 * Source address checked in ip6_input().
   1085 		 */
   1086 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1087 			/* XXX stat */
   1088 			goto drop;
   1089 		}
   1090 
   1091 		/* We do the checksum after PCB lookup... */
   1092 		len = m->m_pkthdr.len;
   1093 		tlen = len - toff;
   1094 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1095 		break;
   1096 #endif
   1097 	default:
   1098 		m_freem(m);
   1099 		return;
   1100 	}
   1101 
   1102 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1103 
   1104 	/*
   1105 	 * Check that TCP offset makes sense,
   1106 	 * pull out TCP options and adjust length.		XXX
   1107 	 */
   1108 	off = th->th_off << 2;
   1109 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1110 		tcpstat.tcps_rcvbadoff++;
   1111 		goto drop;
   1112 	}
   1113 	tlen -= off;
   1114 
   1115 	/*
   1116 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1117 	 * length throughout the function.  Other functions can use
   1118 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1119 	 * rja
   1120 	 */
   1121 
   1122 	if (off > sizeof (struct tcphdr)) {
   1123 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1124 		if (th == NULL) {
   1125 			tcpstat.tcps_rcvshort++;
   1126 			return;
   1127 		}
   1128 		/*
   1129 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1130 		 * (as they're before toff) and we don't need to update those.
   1131 		 */
   1132 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1133 		optlen = off - sizeof (struct tcphdr);
   1134 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1135 		/*
   1136 		 * Do quick retrieval of timestamp options ("options
   1137 		 * prediction?").  If timestamp is the only option and it's
   1138 		 * formatted as recommended in RFC 1323 appendix A, we
   1139 		 * quickly get the values now and not bother calling
   1140 		 * tcp_dooptions(), etc.
   1141 		 */
   1142 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1143 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1144 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1145 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1146 		     (th->th_flags & TH_SYN) == 0) {
   1147 			opti.ts_present = 1;
   1148 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1149 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1150 			optp = NULL;	/* we've parsed the options */
   1151 		}
   1152 	}
   1153 	tiflags = th->th_flags;
   1154 
   1155 	/*
   1156 	 * Locate pcb for segment.
   1157 	 */
   1158 findpcb:
   1159 	inp = NULL;
   1160 #ifdef INET6
   1161 	in6p = NULL;
   1162 #endif
   1163 	switch (af) {
   1164 #ifdef INET
   1165 	case AF_INET:
   1166 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1167 		    ip->ip_dst, th->th_dport);
   1168 		if (inp == 0) {
   1169 			++tcpstat.tcps_pcbhashmiss;
   1170 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1171 		}
   1172 #ifdef INET6
   1173 		if (inp == 0) {
   1174 			struct in6_addr s, d;
   1175 
   1176 			/* mapped addr case */
   1177 			bzero(&s, sizeof(s));
   1178 			s.s6_addr16[5] = htons(0xffff);
   1179 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1180 			bzero(&d, sizeof(d));
   1181 			d.s6_addr16[5] = htons(0xffff);
   1182 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1183 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1184 			    th->th_sport, &d, th->th_dport, 0);
   1185 			if (in6p == 0) {
   1186 				++tcpstat.tcps_pcbhashmiss;
   1187 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1188 				    th->th_dport, 0);
   1189 			}
   1190 		}
   1191 #endif
   1192 #ifndef INET6
   1193 		if (inp == 0)
   1194 #else
   1195 		if (inp == 0 && in6p == 0)
   1196 #endif
   1197 		{
   1198 			++tcpstat.tcps_noport;
   1199 			if (tcp_log_refused &&
   1200 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1201 				tcp4_log_refused(ip, th);
   1202 			}
   1203 			TCP_FIELDS_TO_HOST(th);
   1204 			goto dropwithreset_ratelim;
   1205 		}
   1206 #if defined(IPSEC) || defined(FAST_IPSEC)
   1207 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1208 		    ipsec4_in_reject(m, inp)) {
   1209 			ipsecstat.in_polvio++;
   1210 			goto drop;
   1211 		}
   1212 #ifdef INET6
   1213 		else if (in6p &&
   1214 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1215 		    ipsec4_in_reject_so(m, in6p->in6p_socket)) {
   1216 			ipsecstat.in_polvio++;
   1217 			goto drop;
   1218 		}
   1219 #endif
   1220 #endif /*IPSEC*/
   1221 		break;
   1222 #endif /*INET*/
   1223 #ifdef INET6
   1224 	case AF_INET6:
   1225 	    {
   1226 		int faith;
   1227 
   1228 #if defined(NFAITH) && NFAITH > 0
   1229 		faith = faithprefix(&ip6->ip6_dst);
   1230 #else
   1231 		faith = 0;
   1232 #endif
   1233 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1234 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
   1235 		if (in6p == NULL) {
   1236 			++tcpstat.tcps_pcbhashmiss;
   1237 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1238 				th->th_dport, faith);
   1239 		}
   1240 		if (in6p == NULL) {
   1241 			++tcpstat.tcps_noport;
   1242 			if (tcp_log_refused &&
   1243 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1244 				tcp6_log_refused(ip6, th);
   1245 			}
   1246 			TCP_FIELDS_TO_HOST(th);
   1247 			goto dropwithreset_ratelim;
   1248 		}
   1249 #if defined(IPSEC) || defined(FAST_IPSEC)
   1250 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1251 		    ipsec6_in_reject(m, in6p)) {
   1252 			ipsec6stat.in_polvio++;
   1253 			goto drop;
   1254 		}
   1255 #endif /*IPSEC*/
   1256 		break;
   1257 	    }
   1258 #endif
   1259 	}
   1260 
   1261 	/*
   1262 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1263 	 * all data in the incoming segment is discarded.
   1264 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1265 	 * but should either do a listen or a connect soon.
   1266 	 */
   1267 	tp = NULL;
   1268 	so = NULL;
   1269 	if (inp) {
   1270 		tp = intotcpcb(inp);
   1271 		so = inp->inp_socket;
   1272 	}
   1273 #ifdef INET6
   1274 	else if (in6p) {
   1275 		tp = in6totcpcb(in6p);
   1276 		so = in6p->in6p_socket;
   1277 	}
   1278 #endif
   1279 	if (tp == 0) {
   1280 		TCP_FIELDS_TO_HOST(th);
   1281 		goto dropwithreset_ratelim;
   1282 	}
   1283 	if (tp->t_state == TCPS_CLOSED)
   1284 		goto drop;
   1285 
   1286 	/*
   1287 	 * Checksum extended TCP header and data.
   1288 	 */
   1289 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1290 		goto badcsum;
   1291 
   1292 	TCP_FIELDS_TO_HOST(th);
   1293 
   1294 	/* Unscale the window into a 32-bit value. */
   1295 	if ((tiflags & TH_SYN) == 0)
   1296 		tiwin = th->th_win << tp->snd_scale;
   1297 	else
   1298 		tiwin = th->th_win;
   1299 
   1300 #ifdef INET6
   1301 	/* save packet options if user wanted */
   1302 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1303 		if (in6p->in6p_options) {
   1304 			m_freem(in6p->in6p_options);
   1305 			in6p->in6p_options = 0;
   1306 		}
   1307 		KASSERT(ip6 != NULL);
   1308 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1309 	}
   1310 #endif
   1311 
   1312 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1313 		union syn_cache_sa src;
   1314 		union syn_cache_sa dst;
   1315 
   1316 		bzero(&src, sizeof(src));
   1317 		bzero(&dst, sizeof(dst));
   1318 		switch (af) {
   1319 #ifdef INET
   1320 		case AF_INET:
   1321 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1322 			src.sin.sin_family = AF_INET;
   1323 			src.sin.sin_addr = ip->ip_src;
   1324 			src.sin.sin_port = th->th_sport;
   1325 
   1326 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1327 			dst.sin.sin_family = AF_INET;
   1328 			dst.sin.sin_addr = ip->ip_dst;
   1329 			dst.sin.sin_port = th->th_dport;
   1330 			break;
   1331 #endif
   1332 #ifdef INET6
   1333 		case AF_INET6:
   1334 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1335 			src.sin6.sin6_family = AF_INET6;
   1336 			src.sin6.sin6_addr = ip6->ip6_src;
   1337 			src.sin6.sin6_port = th->th_sport;
   1338 
   1339 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1340 			dst.sin6.sin6_family = AF_INET6;
   1341 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1342 			dst.sin6.sin6_port = th->th_dport;
   1343 			break;
   1344 #endif /* INET6 */
   1345 		default:
   1346 			goto badsyn;	/*sanity*/
   1347 		}
   1348 
   1349 		if (so->so_options & SO_DEBUG) {
   1350 #ifdef TCP_DEBUG
   1351 			ostate = tp->t_state;
   1352 #endif
   1353 
   1354 			tcp_saveti = NULL;
   1355 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1356 				goto nosave;
   1357 
   1358 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1359 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1360 				if (!tcp_saveti)
   1361 					goto nosave;
   1362 			} else {
   1363 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1364 				if (!tcp_saveti)
   1365 					goto nosave;
   1366 				MCLAIM(m, &tcp_mowner);
   1367 				tcp_saveti->m_len = iphlen;
   1368 				m_copydata(m, 0, iphlen,
   1369 				    mtod(tcp_saveti, caddr_t));
   1370 			}
   1371 
   1372 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1373 				m_freem(tcp_saveti);
   1374 				tcp_saveti = NULL;
   1375 			} else {
   1376 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1377 				bcopy(th, mtod(tcp_saveti, caddr_t) + iphlen,
   1378 				    sizeof(struct tcphdr));
   1379 			}
   1380 	nosave:;
   1381 		}
   1382 		if (so->so_options & SO_ACCEPTCONN) {
   1383 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1384 				if (tiflags & TH_RST) {
   1385 					syn_cache_reset(&src.sa, &dst.sa, th);
   1386 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1387 				    (TH_ACK|TH_SYN)) {
   1388 					/*
   1389 					 * Received a SYN,ACK.  This should
   1390 					 * never happen while we are in
   1391 					 * LISTEN.  Send an RST.
   1392 					 */
   1393 					goto badsyn;
   1394 				} else if (tiflags & TH_ACK) {
   1395 					so = syn_cache_get(&src.sa, &dst.sa,
   1396 						th, toff, tlen, so, m);
   1397 					if (so == NULL) {
   1398 						/*
   1399 						 * We don't have a SYN for
   1400 						 * this ACK; send an RST.
   1401 						 */
   1402 						goto badsyn;
   1403 					} else if (so ==
   1404 					    (struct socket *)(-1)) {
   1405 						/*
   1406 						 * We were unable to create
   1407 						 * the connection.  If the
   1408 						 * 3-way handshake was
   1409 						 * completed, and RST has
   1410 						 * been sent to the peer.
   1411 						 * Since the mbuf might be
   1412 						 * in use for the reply,
   1413 						 * do not free it.
   1414 						 */
   1415 						m = NULL;
   1416 					} else {
   1417 						/*
   1418 						 * We have created a
   1419 						 * full-blown connection.
   1420 						 */
   1421 						tp = NULL;
   1422 						inp = NULL;
   1423 #ifdef INET6
   1424 						in6p = NULL;
   1425 #endif
   1426 						switch (so->so_proto->pr_domain->dom_family) {
   1427 #ifdef INET
   1428 						case AF_INET:
   1429 							inp = sotoinpcb(so);
   1430 							tp = intotcpcb(inp);
   1431 							break;
   1432 #endif
   1433 #ifdef INET6
   1434 						case AF_INET6:
   1435 							in6p = sotoin6pcb(so);
   1436 							tp = in6totcpcb(in6p);
   1437 							break;
   1438 #endif
   1439 						}
   1440 						if (tp == NULL)
   1441 							goto badsyn;	/*XXX*/
   1442 						tiwin <<= tp->snd_scale;
   1443 						goto after_listen;
   1444 					}
   1445 				} else {
   1446 					/*
   1447 					 * None of RST, SYN or ACK was set.
   1448 					 * This is an invalid packet for a
   1449 					 * TCB in LISTEN state.  Send a RST.
   1450 					 */
   1451 					goto badsyn;
   1452 				}
   1453 			} else {
   1454 				/*
   1455 				 * Received a SYN.
   1456 				 *
   1457 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1458 				 */
   1459 				if (m->m_flags & (M_BCAST|M_MCAST))
   1460 					goto drop;
   1461 
   1462 				switch (af) {
   1463 #ifdef INET6
   1464 				case AF_INET6:
   1465 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1466 						goto drop;
   1467 					break;
   1468 #endif /* INET6 */
   1469 				case AF_INET:
   1470 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1471 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1472 						goto drop;
   1473 				break;
   1474 				}
   1475 
   1476 #ifdef INET6
   1477 				/*
   1478 				 * If deprecated address is forbidden, we do
   1479 				 * not accept SYN to deprecated interface
   1480 				 * address to prevent any new inbound
   1481 				 * connection from getting established.
   1482 				 * When we do not accept SYN, we send a TCP
   1483 				 * RST, with deprecated source address (instead
   1484 				 * of dropping it).  We compromise it as it is
   1485 				 * much better for peer to send a RST, and
   1486 				 * RST will be the final packet for the
   1487 				 * exchange.
   1488 				 *
   1489 				 * If we do not forbid deprecated addresses, we
   1490 				 * accept the SYN packet.  RFC2462 does not
   1491 				 * suggest dropping SYN in this case.
   1492 				 * If we decipher RFC2462 5.5.4, it says like
   1493 				 * this:
   1494 				 * 1. use of deprecated addr with existing
   1495 				 *    communication is okay - "SHOULD continue
   1496 				 *    to be used"
   1497 				 * 2. use of it with new communication:
   1498 				 *   (2a) "SHOULD NOT be used if alternate
   1499 				 *        address with sufficient scope is
   1500 				 *        available"
   1501 				 *   (2b) nothing mentioned otherwise.
   1502 				 * Here we fall into (2b) case as we have no
   1503 				 * choice in our source address selection - we
   1504 				 * must obey the peer.
   1505 				 *
   1506 				 * The wording in RFC2462 is confusing, and
   1507 				 * there are multiple description text for
   1508 				 * deprecated address handling - worse, they
   1509 				 * are not exactly the same.  I believe 5.5.4
   1510 				 * is the best one, so we follow 5.5.4.
   1511 				 */
   1512 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1513 					struct in6_ifaddr *ia6;
   1514 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1515 					    &ip6->ip6_dst)) &&
   1516 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1517 						tp = NULL;
   1518 						goto dropwithreset;
   1519 					}
   1520 				}
   1521 #endif
   1522 
   1523 #ifdef IPSEC
   1524 				switch (af) {
   1525 #ifdef INET
   1526 				case AF_INET:
   1527 					if (ipsec4_in_reject_so(m, so)) {
   1528 						ipsecstat.in_polvio++;
   1529 						tp = NULL;
   1530 						goto dropwithreset;
   1531 					}
   1532 					break;
   1533 #endif
   1534 #ifdef INET6
   1535 				case AF_INET6:
   1536 					if (ipsec6_in_reject_so(m, so)) {
   1537 						ipsec6stat.in_polvio++;
   1538 						tp = NULL;
   1539 						goto dropwithreset;
   1540 					}
   1541 					break;
   1542 #endif
   1543 				}
   1544 #endif
   1545 
   1546 				/*
   1547 				 * LISTEN socket received a SYN
   1548 				 * from itself?  This can't possibly
   1549 				 * be valid; drop the packet.
   1550 				 */
   1551 				if (th->th_sport == th->th_dport) {
   1552 					int i;
   1553 
   1554 					switch (af) {
   1555 #ifdef INET
   1556 					case AF_INET:
   1557 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1558 						break;
   1559 #endif
   1560 #ifdef INET6
   1561 					case AF_INET6:
   1562 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1563 						break;
   1564 #endif
   1565 					default:
   1566 						i = 1;
   1567 					}
   1568 					if (i) {
   1569 						tcpstat.tcps_badsyn++;
   1570 						goto drop;
   1571 					}
   1572 				}
   1573 
   1574 				/*
   1575 				 * SYN looks ok; create compressed TCP
   1576 				 * state for it.
   1577 				 */
   1578 				if (so->so_qlen <= so->so_qlimit &&
   1579 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1580 						so, m, optp, optlen, &opti))
   1581 					m = NULL;
   1582 			}
   1583 			goto drop;
   1584 		}
   1585 	}
   1586 
   1587 after_listen:
   1588 #ifdef DIAGNOSTIC
   1589 	/*
   1590 	 * Should not happen now that all embryonic connections
   1591 	 * are handled with compressed state.
   1592 	 */
   1593 	if (tp->t_state == TCPS_LISTEN)
   1594 		panic("tcp_input: TCPS_LISTEN");
   1595 #endif
   1596 
   1597 	/*
   1598 	 * Segment received on connection.
   1599 	 * Reset idle time and keep-alive timer.
   1600 	 */
   1601 	tp->t_rcvtime = tcp_now;
   1602 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1603 		TCP_TIMER_ARM(tp, TCPT_KEEP, tcp_keepidle);
   1604 
   1605 	/*
   1606 	 * Process options.
   1607 	 */
   1608 #ifdef TCP_SIGNATURE
   1609 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1610 #else
   1611 	if (optp)
   1612 #endif
   1613 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1614 			goto drop;
   1615 
   1616 	if (TCP_SACK_ENABLED(tp)) {
   1617 		tcp_del_sackholes(tp, th);
   1618 	}
   1619 
   1620 	if (TCP_ECN_ALLOWED(tp)) {
   1621 		switch (iptos & IPTOS_ECN_MASK) {
   1622 		case IPTOS_ECN_CE:
   1623 			tp->t_flags |= TF_ECN_SND_ECE;
   1624 			tcpstat.tcps_ecn_ce++;
   1625 			break;
   1626 		case IPTOS_ECN_ECT0:
   1627 			tcpstat.tcps_ecn_ect++;
   1628 			break;
   1629 		case IPTOS_ECN_ECT1:
   1630 			/* XXX: ignore for now -- rpaulo */
   1631 			break;
   1632 		}
   1633 
   1634 		if (tiflags & TH_CWR)
   1635 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1636 
   1637 		/*
   1638 		 * Congestion experienced.
   1639 		 * Ignore if we are already trying to recover.
   1640 		 */
   1641 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1642 			tp->t_congctl->cong_exp(tp);
   1643 	}
   1644 
   1645 	if (opti.ts_present && opti.ts_ecr) {
   1646 		/*
   1647 		 * Calculate the RTT from the returned time stamp and the
   1648 		 * connection's time base.  If the time stamp is later than
   1649 		 * the current time, or is extremely old, fall back to non-1323
   1650 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
   1651 		 * at the same time.
   1652 		 */
   1653 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1654 		if (ts_rtt > TCP_PAWS_IDLE)
   1655 			ts_rtt = 0;
   1656 	} else {
   1657 		ts_rtt = 0;
   1658 	}
   1659 
   1660 	/*
   1661 	 * Header prediction: check for the two common cases
   1662 	 * of a uni-directional data xfer.  If the packet has
   1663 	 * no control flags, is in-sequence, the window didn't
   1664 	 * change and we're not retransmitting, it's a
   1665 	 * candidate.  If the length is zero and the ack moved
   1666 	 * forward, we're the sender side of the xfer.  Just
   1667 	 * free the data acked & wake any higher level process
   1668 	 * that was blocked waiting for space.  If the length
   1669 	 * is non-zero and the ack didn't move, we're the
   1670 	 * receiver side.  If we're getting packets in-order
   1671 	 * (the reassembly queue is empty), add the data to
   1672 	 * the socket buffer and note that we need a delayed ack.
   1673 	 */
   1674 	if (tp->t_state == TCPS_ESTABLISHED &&
   1675 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1676 	        == TH_ACK &&
   1677 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1678 	    th->th_seq == tp->rcv_nxt &&
   1679 	    tiwin && tiwin == tp->snd_wnd &&
   1680 	    tp->snd_nxt == tp->snd_max) {
   1681 
   1682 		/*
   1683 		 * If last ACK falls within this segment's sequence numbers,
   1684 		 *  record the timestamp.
   1685 		 * NOTE:
   1686 		 * 1) That the test incorporates suggestions from the latest
   1687 		 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1688 		 * 2) That updating only on newer timestamps interferes with
   1689 		 *    our earlier PAWS tests, so this check should be solely
   1690 		 *    predicated on the sequence space of this segment.
   1691 		 * 3) That we modify the segment boundary check to be
   1692 		 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   1693 		 *    instead of RFC1323's
   1694 		 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   1695 		 *    This modified check allows us to overcome RFC1323's
   1696 		 *    limitations as described in Stevens TCP/IP Illustrated
   1697 		 *    Vol. 2 p.869. In such cases, we can still calculate the
   1698 		 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   1699 		 */
   1700 		if (opti.ts_present &&
   1701 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   1702 		    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   1703 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   1704 			tp->ts_recent_age = tcp_now;
   1705 			tp->ts_recent = opti.ts_val;
   1706 		}
   1707 
   1708 		if (tlen == 0) {
   1709 			/* Ack prediction. */
   1710 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1711 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1712 			    tp->snd_cwnd >= tp->snd_wnd &&
   1713 			    tp->t_partialacks < 0) {
   1714 				/*
   1715 				 * this is a pure ack for outstanding data.
   1716 				 */
   1717 				++tcpstat.tcps_predack;
   1718 				if (ts_rtt)
   1719 					tcp_xmit_timer(tp, ts_rtt);
   1720 				else if (tp->t_rtttime &&
   1721 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1722 					tcp_xmit_timer(tp,
   1723 					  tcp_now - tp->t_rtttime);
   1724 				acked = th->th_ack - tp->snd_una;
   1725 				tcpstat.tcps_rcvackpack++;
   1726 				tcpstat.tcps_rcvackbyte += acked;
   1727 				ND6_HINT(tp);
   1728 
   1729 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1730 					tp->t_lastm = NULL;
   1731 				sbdrop(&so->so_snd, acked);
   1732 				tp->t_lastoff -= acked;
   1733 
   1734 				ICMP_CHECK(tp, th, acked);
   1735 
   1736 				tp->snd_una = th->th_ack;
   1737 				tp->snd_fack = tp->snd_una;
   1738 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1739 					tp->snd_high = tp->snd_una;
   1740 				m_freem(m);
   1741 
   1742 				/*
   1743 				 * If all outstanding data are acked, stop
   1744 				 * retransmit timer, otherwise restart timer
   1745 				 * using current (possibly backed-off) value.
   1746 				 * If process is waiting for space,
   1747 				 * wakeup/selwakeup/signal.  If data
   1748 				 * are ready to send, let tcp_output
   1749 				 * decide between more output or persist.
   1750 				 */
   1751 				if (tp->snd_una == tp->snd_max)
   1752 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1753 				else if (TCP_TIMER_ISARMED(tp,
   1754 				    TCPT_PERSIST) == 0)
   1755 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1756 					    tp->t_rxtcur);
   1757 
   1758 				sowwakeup(so);
   1759 				if (so->so_snd.sb_cc)
   1760 					(void) tcp_output(tp);
   1761 				if (tcp_saveti)
   1762 					m_freem(tcp_saveti);
   1763 				return;
   1764 			}
   1765 		} else if (th->th_ack == tp->snd_una &&
   1766 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1767 		    tlen <= sbspace(&so->so_rcv)) {
   1768 			/*
   1769 			 * this is a pure, in-sequence data packet
   1770 			 * with nothing on the reassembly queue and
   1771 			 * we have enough buffer space to take it.
   1772 			 */
   1773 			++tcpstat.tcps_preddat;
   1774 			tp->rcv_nxt += tlen;
   1775 			tcpstat.tcps_rcvpack++;
   1776 			tcpstat.tcps_rcvbyte += tlen;
   1777 			ND6_HINT(tp);
   1778 			/*
   1779 			 * Drop TCP, IP headers and TCP options then add data
   1780 			 * to socket buffer.
   1781 			 */
   1782 			if (so->so_state & SS_CANTRCVMORE)
   1783 				m_freem(m);
   1784 			else {
   1785 				m_adj(m, toff + off);
   1786 				sbappendstream(&so->so_rcv, m);
   1787 			}
   1788 			sorwakeup(so);
   1789 			TCP_SETUP_ACK(tp, th);
   1790 			if (tp->t_flags & TF_ACKNOW)
   1791 				(void) tcp_output(tp);
   1792 			if (tcp_saveti)
   1793 				m_freem(tcp_saveti);
   1794 			return;
   1795 		}
   1796 	}
   1797 
   1798 	/*
   1799 	 * Compute mbuf offset to TCP data segment.
   1800 	 */
   1801 	hdroptlen = toff + off;
   1802 
   1803 	/*
   1804 	 * Calculate amount of space in receive window,
   1805 	 * and then do TCP input processing.
   1806 	 * Receive window is amount of space in rcv queue,
   1807 	 * but not less than advertised window.
   1808 	 */
   1809 	{ int win;
   1810 
   1811 	win = sbspace(&so->so_rcv);
   1812 	if (win < 0)
   1813 		win = 0;
   1814 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1815 	}
   1816 
   1817 	switch (tp->t_state) {
   1818 	/*
   1819 	 * If the state is SYN_SENT:
   1820 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1821 	 *	if seg contains a RST, then drop the connection.
   1822 	 *	if seg does not contain SYN, then drop it.
   1823 	 * Otherwise this is an acceptable SYN segment
   1824 	 *	initialize tp->rcv_nxt and tp->irs
   1825 	 *	if seg contains ack then advance tp->snd_una
   1826 	 *	if seg contains a ECE and ECN support is enabled, the stream
   1827 	 *	    is ECN capable.
   1828 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1829 	 *	arrange for segment to be acked (eventually)
   1830 	 *	continue processing rest of data/controls, beginning with URG
   1831 	 */
   1832 	case TCPS_SYN_SENT:
   1833 		if ((tiflags & TH_ACK) &&
   1834 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1835 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1836 			goto dropwithreset;
   1837 		if (tiflags & TH_RST) {
   1838 			if (tiflags & TH_ACK)
   1839 				tp = tcp_drop(tp, ECONNREFUSED);
   1840 			goto drop;
   1841 		}
   1842 		if ((tiflags & TH_SYN) == 0)
   1843 			goto drop;
   1844 		if (tiflags & TH_ACK) {
   1845 			tp->snd_una = th->th_ack;
   1846 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1847 				tp->snd_nxt = tp->snd_una;
   1848 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   1849 				tp->snd_high = tp->snd_una;
   1850 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1851 
   1852 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   1853 				tp->t_flags |= TF_ECN_PERMIT;
   1854 				tcpstat.tcps_ecn_shs++;
   1855 			}
   1856 
   1857 		}
   1858 		tp->irs = th->th_seq;
   1859 		tcp_rcvseqinit(tp);
   1860 		tp->t_flags |= TF_ACKNOW;
   1861 		tcp_mss_from_peer(tp, opti.maxseg);
   1862 
   1863 		/*
   1864 		 * Initialize the initial congestion window.  If we
   1865 		 * had to retransmit the SYN, we must initialize cwnd
   1866 		 * to 1 segment (i.e. the Loss Window).
   1867 		 */
   1868 		if (tp->t_flags & TF_SYN_REXMT)
   1869 			tp->snd_cwnd = tp->t_peermss;
   1870 		else {
   1871 			int ss = tcp_init_win;
   1872 #ifdef INET
   1873 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1874 				ss = tcp_init_win_local;
   1875 #endif
   1876 #ifdef INET6
   1877 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1878 				ss = tcp_init_win_local;
   1879 #endif
   1880 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1881 		}
   1882 
   1883 		tcp_rmx_rtt(tp);
   1884 		if (tiflags & TH_ACK) {
   1885 			tcpstat.tcps_connects++;
   1886 			soisconnected(so);
   1887 			tcp_established(tp);
   1888 			/* Do window scaling on this connection? */
   1889 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1890 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1891 				tp->snd_scale = tp->requested_s_scale;
   1892 				tp->rcv_scale = tp->request_r_scale;
   1893 			}
   1894 			TCP_REASS_LOCK(tp);
   1895 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1896 			TCP_REASS_UNLOCK(tp);
   1897 			/*
   1898 			 * if we didn't have to retransmit the SYN,
   1899 			 * use its rtt as our initial srtt & rtt var.
   1900 			 */
   1901 			if (tp->t_rtttime)
   1902 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1903 		} else
   1904 			tp->t_state = TCPS_SYN_RECEIVED;
   1905 
   1906 		/*
   1907 		 * Advance th->th_seq to correspond to first data byte.
   1908 		 * If data, trim to stay within window,
   1909 		 * dropping FIN if necessary.
   1910 		 */
   1911 		th->th_seq++;
   1912 		if (tlen > tp->rcv_wnd) {
   1913 			todrop = tlen - tp->rcv_wnd;
   1914 			m_adj(m, -todrop);
   1915 			tlen = tp->rcv_wnd;
   1916 			tiflags &= ~TH_FIN;
   1917 			tcpstat.tcps_rcvpackafterwin++;
   1918 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1919 		}
   1920 		tp->snd_wl1 = th->th_seq - 1;
   1921 		tp->rcv_up = th->th_seq;
   1922 		goto step6;
   1923 
   1924 	/*
   1925 	 * If the state is SYN_RECEIVED:
   1926 	 *	If seg contains an ACK, but not for our SYN, drop the input
   1927 	 *	and generate an RST.  See page 36, rfc793
   1928 	 */
   1929 	case TCPS_SYN_RECEIVED:
   1930 		if ((tiflags & TH_ACK) &&
   1931 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1932 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1933 			goto dropwithreset;
   1934 		break;
   1935 	}
   1936 
   1937 	/*
   1938 	 * States other than LISTEN or SYN_SENT.
   1939 	 * First check timestamp, if present.
   1940 	 * Then check that at least some bytes of segment are within
   1941 	 * receive window.  If segment begins before rcv_nxt,
   1942 	 * drop leading data (and SYN); if nothing left, just ack.
   1943 	 *
   1944 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   1945 	 * and it's less than ts_recent, drop it.
   1946 	 */
   1947 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   1948 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   1949 
   1950 		/* Check to see if ts_recent is over 24 days old.  */
   1951 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   1952 			/*
   1953 			 * Invalidate ts_recent.  If this segment updates
   1954 			 * ts_recent, the age will be reset later and ts_recent
   1955 			 * will get a valid value.  If it does not, setting
   1956 			 * ts_recent to zero will at least satisfy the
   1957 			 * requirement that zero be placed in the timestamp
   1958 			 * echo reply when ts_recent isn't valid.  The
   1959 			 * age isn't reset until we get a valid ts_recent
   1960 			 * because we don't want out-of-order segments to be
   1961 			 * dropped when ts_recent is old.
   1962 			 */
   1963 			tp->ts_recent = 0;
   1964 		} else {
   1965 			tcpstat.tcps_rcvduppack++;
   1966 			tcpstat.tcps_rcvdupbyte += tlen;
   1967 			tcpstat.tcps_pawsdrop++;
   1968 			tcp_new_dsack(tp, th->th_seq, tlen);
   1969 			goto dropafterack;
   1970 		}
   1971 	}
   1972 
   1973 	todrop = tp->rcv_nxt - th->th_seq;
   1974 	dupseg = FALSE;
   1975 	if (todrop > 0) {
   1976 		if (tiflags & TH_SYN) {
   1977 			tiflags &= ~TH_SYN;
   1978 			th->th_seq++;
   1979 			if (th->th_urp > 1)
   1980 				th->th_urp--;
   1981 			else {
   1982 				tiflags &= ~TH_URG;
   1983 				th->th_urp = 0;
   1984 			}
   1985 			todrop--;
   1986 		}
   1987 		if (todrop > tlen ||
   1988 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1989 			/*
   1990 			 * Any valid FIN or RST must be to the left of the
   1991 			 * window.  At this point the FIN or RST must be a
   1992 			 * duplicate or out of sequence; drop it.
   1993 			 */
   1994 			if (tiflags & TH_RST)
   1995 				goto drop;
   1996 			tiflags &= ~(TH_FIN|TH_RST);
   1997 			/*
   1998 			 * Send an ACK to resynchronize and drop any data.
   1999 			 * But keep on processing for RST or ACK.
   2000 			 */
   2001 			tp->t_flags |= TF_ACKNOW;
   2002 			todrop = tlen;
   2003 			dupseg = TRUE;
   2004 			tcpstat.tcps_rcvdupbyte += todrop;
   2005 			tcpstat.tcps_rcvduppack++;
   2006 		} else if ((tiflags & TH_RST) &&
   2007 			   th->th_seq != tp->last_ack_sent) {
   2008 			/*
   2009 			 * Test for reset before adjusting the sequence
   2010 			 * number for overlapping data.
   2011 			 */
   2012 			goto dropafterack_ratelim;
   2013 		} else {
   2014 			tcpstat.tcps_rcvpartduppack++;
   2015 			tcpstat.tcps_rcvpartdupbyte += todrop;
   2016 		}
   2017 		tcp_new_dsack(tp, th->th_seq, todrop);
   2018 		hdroptlen += todrop;	/*drop from head afterwards*/
   2019 		th->th_seq += todrop;
   2020 		tlen -= todrop;
   2021 		if (th->th_urp > todrop)
   2022 			th->th_urp -= todrop;
   2023 		else {
   2024 			tiflags &= ~TH_URG;
   2025 			th->th_urp = 0;
   2026 		}
   2027 	}
   2028 
   2029 	/*
   2030 	 * If new data are received on a connection after the
   2031 	 * user processes are gone, then RST the other end.
   2032 	 */
   2033 	if ((so->so_state & SS_NOFDREF) &&
   2034 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2035 		tp = tcp_close(tp);
   2036 		tcpstat.tcps_rcvafterclose++;
   2037 		goto dropwithreset;
   2038 	}
   2039 
   2040 	/*
   2041 	 * If segment ends after window, drop trailing data
   2042 	 * (and PUSH and FIN); if nothing left, just ACK.
   2043 	 */
   2044 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2045 	if (todrop > 0) {
   2046 		tcpstat.tcps_rcvpackafterwin++;
   2047 		if (todrop >= tlen) {
   2048 			/*
   2049 			 * The segment actually starts after the window.
   2050 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2051 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2052 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2053 			 */
   2054 			tcpstat.tcps_rcvbyteafterwin += tlen;
   2055 			/*
   2056 			 * If a new connection request is received
   2057 			 * while in TIME_WAIT, drop the old connection
   2058 			 * and start over if the sequence numbers
   2059 			 * are above the previous ones.
   2060 			 *
   2061 			 * NOTE: We will checksum the packet again, and
   2062 			 * so we need to put the header fields back into
   2063 			 * network order!
   2064 			 * XXX This kind of sucks, but we don't expect
   2065 			 * XXX this to happen very often, so maybe it
   2066 			 * XXX doesn't matter so much.
   2067 			 */
   2068 			if (tiflags & TH_SYN &&
   2069 			    tp->t_state == TCPS_TIME_WAIT &&
   2070 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2071 				tp = tcp_close(tp);
   2072 				TCP_FIELDS_TO_NET(th);
   2073 				goto findpcb;
   2074 			}
   2075 			/*
   2076 			 * If window is closed can only take segments at
   2077 			 * window edge, and have to drop data and PUSH from
   2078 			 * incoming segments.  Continue processing, but
   2079 			 * remember to ack.  Otherwise, drop segment
   2080 			 * and (if not RST) ack.
   2081 			 */
   2082 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2083 				tp->t_flags |= TF_ACKNOW;
   2084 				tcpstat.tcps_rcvwinprobe++;
   2085 			} else
   2086 				goto dropafterack;
   2087 		} else
   2088 			tcpstat.tcps_rcvbyteafterwin += todrop;
   2089 		m_adj(m, -todrop);
   2090 		tlen -= todrop;
   2091 		tiflags &= ~(TH_PUSH|TH_FIN);
   2092 	}
   2093 
   2094 	/*
   2095 	 * If last ACK falls within this segment's sequence numbers,
   2096 	 * and the timestamp is newer, record it.
   2097 	 */
   2098 	if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
   2099 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2100 	    SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
   2101 		   ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2102 		tp->ts_recent_age = tcp_now;
   2103 		tp->ts_recent = opti.ts_val;
   2104 	}
   2105 
   2106 	/*
   2107 	 * If the RST bit is set examine the state:
   2108 	 *    SYN_RECEIVED STATE:
   2109 	 *	If passive open, return to LISTEN state.
   2110 	 *	If active open, inform user that connection was refused.
   2111 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2112 	 *	Inform user that connection was reset, and close tcb.
   2113 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2114 	 *	Close the tcb.
   2115 	 */
   2116 	if (tiflags & TH_RST) {
   2117 		if (th->th_seq != tp->last_ack_sent)
   2118 			goto dropafterack_ratelim;
   2119 
   2120 		switch (tp->t_state) {
   2121 		case TCPS_SYN_RECEIVED:
   2122 			so->so_error = ECONNREFUSED;
   2123 			goto close;
   2124 
   2125 		case TCPS_ESTABLISHED:
   2126 		case TCPS_FIN_WAIT_1:
   2127 		case TCPS_FIN_WAIT_2:
   2128 		case TCPS_CLOSE_WAIT:
   2129 			so->so_error = ECONNRESET;
   2130 		close:
   2131 			tp->t_state = TCPS_CLOSED;
   2132 			tcpstat.tcps_drops++;
   2133 			tp = tcp_close(tp);
   2134 			goto drop;
   2135 
   2136 		case TCPS_CLOSING:
   2137 		case TCPS_LAST_ACK:
   2138 		case TCPS_TIME_WAIT:
   2139 			tp = tcp_close(tp);
   2140 			goto drop;
   2141 		}
   2142 	}
   2143 
   2144 	/*
   2145 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2146 	 * we must be in a synchronized state.  RFC791 states (under RST
   2147 	 * generation) that any unacceptable segment (an out-of-order SYN
   2148 	 * qualifies) received in a synchronized state must elicit only an
   2149 	 * empty acknowledgment segment ... and the connection remains in
   2150 	 * the same state.
   2151 	 */
   2152 	if (tiflags & TH_SYN) {
   2153 		if (tp->rcv_nxt == th->th_seq) {
   2154 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2155 			    TH_ACK);
   2156 			if (tcp_saveti)
   2157 				m_freem(tcp_saveti);
   2158 			return;
   2159 		}
   2160 
   2161 		goto dropafterack_ratelim;
   2162 	}
   2163 
   2164 	/*
   2165 	 * If the ACK bit is off we drop the segment and return.
   2166 	 */
   2167 	if ((tiflags & TH_ACK) == 0) {
   2168 		if (tp->t_flags & TF_ACKNOW)
   2169 			goto dropafterack;
   2170 		else
   2171 			goto drop;
   2172 	}
   2173 
   2174 	/*
   2175 	 * Ack processing.
   2176 	 */
   2177 	switch (tp->t_state) {
   2178 
   2179 	/*
   2180 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2181 	 * ESTABLISHED state and continue processing, otherwise
   2182 	 * send an RST.
   2183 	 */
   2184 	case TCPS_SYN_RECEIVED:
   2185 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2186 		    SEQ_GT(th->th_ack, tp->snd_max))
   2187 			goto dropwithreset;
   2188 		tcpstat.tcps_connects++;
   2189 		soisconnected(so);
   2190 		tcp_established(tp);
   2191 		/* Do window scaling? */
   2192 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2193 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2194 			tp->snd_scale = tp->requested_s_scale;
   2195 			tp->rcv_scale = tp->request_r_scale;
   2196 		}
   2197 		TCP_REASS_LOCK(tp);
   2198 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2199 		TCP_REASS_UNLOCK(tp);
   2200 		tp->snd_wl1 = th->th_seq - 1;
   2201 		/* fall into ... */
   2202 
   2203 	/*
   2204 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2205 	 * ACKs.  If the ack is in the range
   2206 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2207 	 * then advance tp->snd_una to th->th_ack and drop
   2208 	 * data from the retransmission queue.  If this ACK reflects
   2209 	 * more up to date window information we update our window information.
   2210 	 */
   2211 	case TCPS_ESTABLISHED:
   2212 	case TCPS_FIN_WAIT_1:
   2213 	case TCPS_FIN_WAIT_2:
   2214 	case TCPS_CLOSE_WAIT:
   2215 	case TCPS_CLOSING:
   2216 	case TCPS_LAST_ACK:
   2217 	case TCPS_TIME_WAIT:
   2218 
   2219 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2220 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2221 				tcpstat.tcps_rcvdupack++;
   2222 				/*
   2223 				 * If we have outstanding data (other than
   2224 				 * a window probe), this is a completely
   2225 				 * duplicate ack (ie, window info didn't
   2226 				 * change), the ack is the biggest we've
   2227 				 * seen and we've seen exactly our rexmt
   2228 				 * threshhold of them, assume a packet
   2229 				 * has been dropped and retransmit it.
   2230 				 * Kludge snd_nxt & the congestion
   2231 				 * window so we send only this one
   2232 				 * packet.
   2233 				 */
   2234 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2235 				    th->th_ack != tp->snd_una)
   2236 					tp->t_dupacks = 0;
   2237 				else if (tp->t_partialacks < 0 &&
   2238 					 ((!TCP_SACK_ENABLED(tp) &&
   2239 					 ++tp->t_dupacks == tcprexmtthresh) ||
   2240 					 TCP_FACK_FASTRECOV(tp))) {
   2241 					/*
   2242 					 * Do the fast retransmit, and adjust
   2243 					 * congestion control paramenters.
   2244 					 */
   2245 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2246 						/* False fast retransmit */
   2247 						break;
   2248 					} else
   2249 						goto drop;
   2250 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2251 					tp->snd_cwnd += tp->t_segsz;
   2252 					(void) tcp_output(tp);
   2253 					goto drop;
   2254 				}
   2255 			} else {
   2256 				/*
   2257 				 * If the ack appears to be very old, only
   2258 				 * allow data that is in-sequence.  This
   2259 				 * makes it somewhat more difficult to insert
   2260 				 * forged data by guessing sequence numbers.
   2261 				 * Sent an ack to try to update the send
   2262 				 * sequence number on the other side.
   2263 				 */
   2264 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2265 				    SEQ_LT(th->th_ack,
   2266 				    tp->snd_una - tp->max_sndwnd))
   2267 					goto dropafterack;
   2268 			}
   2269 			break;
   2270 		}
   2271 		/*
   2272 		 * If the congestion window was inflated to account
   2273 		 * for the other side's cached packets, retract it.
   2274 		 */
   2275 		/* XXX: make SACK have his own congestion control
   2276 		 * struct -- rpaulo */
   2277 		if (TCP_SACK_ENABLED(tp))
   2278 			tcp_sack_newack(tp, th);
   2279 		else
   2280 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2281 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2282 			tcpstat.tcps_rcvacktoomuch++;
   2283 			goto dropafterack;
   2284 		}
   2285 		acked = th->th_ack - tp->snd_una;
   2286 		tcpstat.tcps_rcvackpack++;
   2287 		tcpstat.tcps_rcvackbyte += acked;
   2288 
   2289 		/*
   2290 		 * If we have a timestamp reply, update smoothed
   2291 		 * round trip time.  If no timestamp is present but
   2292 		 * transmit timer is running and timed sequence
   2293 		 * number was acked, update smoothed round trip time.
   2294 		 * Since we now have an rtt measurement, cancel the
   2295 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2296 		 * Recompute the initial retransmit timer.
   2297 		 */
   2298 		if (ts_rtt)
   2299 			tcp_xmit_timer(tp, ts_rtt);
   2300 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2301 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2302 
   2303 		/*
   2304 		 * If all outstanding data is acked, stop retransmit
   2305 		 * timer and remember to restart (more output or persist).
   2306 		 * If there is more data to be acked, restart retransmit
   2307 		 * timer, using current (possibly backed-off) value.
   2308 		 */
   2309 		if (th->th_ack == tp->snd_max) {
   2310 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2311 			needoutput = 1;
   2312 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2313 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2314 
   2315 		/*
   2316 		 * New data has been acked, adjust the congestion window.
   2317 		 */
   2318 		tp->t_congctl->newack(tp, th);
   2319 
   2320 		ND6_HINT(tp);
   2321 		if (acked > so->so_snd.sb_cc) {
   2322 			tp->snd_wnd -= so->so_snd.sb_cc;
   2323 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2324 			ourfinisacked = 1;
   2325 		} else {
   2326 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2327 				tp->t_lastm = NULL;
   2328 			sbdrop(&so->so_snd, acked);
   2329 			tp->t_lastoff -= acked;
   2330 			tp->snd_wnd -= acked;
   2331 			ourfinisacked = 0;
   2332 		}
   2333 		sowwakeup(so);
   2334 
   2335 		ICMP_CHECK(tp, th, acked);
   2336 
   2337 		tp->snd_una = th->th_ack;
   2338 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2339 			tp->snd_fack = tp->snd_una;
   2340 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2341 			tp->snd_nxt = tp->snd_una;
   2342 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2343 			tp->snd_high = tp->snd_una;
   2344 
   2345 		switch (tp->t_state) {
   2346 
   2347 		/*
   2348 		 * In FIN_WAIT_1 STATE in addition to the processing
   2349 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2350 		 * then enter FIN_WAIT_2.
   2351 		 */
   2352 		case TCPS_FIN_WAIT_1:
   2353 			if (ourfinisacked) {
   2354 				/*
   2355 				 * If we can't receive any more
   2356 				 * data, then closing user can proceed.
   2357 				 * Starting the timer is contrary to the
   2358 				 * specification, but if we don't get a FIN
   2359 				 * we'll hang forever.
   2360 				 */
   2361 				if (so->so_state & SS_CANTRCVMORE) {
   2362 					soisdisconnected(so);
   2363 					if (tcp_maxidle > 0)
   2364 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2365 						    tcp_maxidle);
   2366 				}
   2367 				tp->t_state = TCPS_FIN_WAIT_2;
   2368 			}
   2369 			break;
   2370 
   2371 	 	/*
   2372 		 * In CLOSING STATE in addition to the processing for
   2373 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2374 		 * then enter the TIME-WAIT state, otherwise ignore
   2375 		 * the segment.
   2376 		 */
   2377 		case TCPS_CLOSING:
   2378 			if (ourfinisacked) {
   2379 				tp->t_state = TCPS_TIME_WAIT;
   2380 				tcp_canceltimers(tp);
   2381 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2382 				soisdisconnected(so);
   2383 			}
   2384 			break;
   2385 
   2386 		/*
   2387 		 * In LAST_ACK, we may still be waiting for data to drain
   2388 		 * and/or to be acked, as well as for the ack of our FIN.
   2389 		 * If our FIN is now acknowledged, delete the TCB,
   2390 		 * enter the closed state and return.
   2391 		 */
   2392 		case TCPS_LAST_ACK:
   2393 			if (ourfinisacked) {
   2394 				tp = tcp_close(tp);
   2395 				goto drop;
   2396 			}
   2397 			break;
   2398 
   2399 		/*
   2400 		 * In TIME_WAIT state the only thing that should arrive
   2401 		 * is a retransmission of the remote FIN.  Acknowledge
   2402 		 * it and restart the finack timer.
   2403 		 */
   2404 		case TCPS_TIME_WAIT:
   2405 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2406 			goto dropafterack;
   2407 		}
   2408 	}
   2409 
   2410 step6:
   2411 	/*
   2412 	 * Update window information.
   2413 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2414 	 */
   2415 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2416 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2417 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2418 		/* keep track of pure window updates */
   2419 		if (tlen == 0 &&
   2420 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2421 			tcpstat.tcps_rcvwinupd++;
   2422 		tp->snd_wnd = tiwin;
   2423 		tp->snd_wl1 = th->th_seq;
   2424 		tp->snd_wl2 = th->th_ack;
   2425 		if (tp->snd_wnd > tp->max_sndwnd)
   2426 			tp->max_sndwnd = tp->snd_wnd;
   2427 		needoutput = 1;
   2428 	}
   2429 
   2430 	/*
   2431 	 * Process segments with URG.
   2432 	 */
   2433 	if ((tiflags & TH_URG) && th->th_urp &&
   2434 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2435 		/*
   2436 		 * This is a kludge, but if we receive and accept
   2437 		 * random urgent pointers, we'll crash in
   2438 		 * soreceive.  It's hard to imagine someone
   2439 		 * actually wanting to send this much urgent data.
   2440 		 */
   2441 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2442 			th->th_urp = 0;			/* XXX */
   2443 			tiflags &= ~TH_URG;		/* XXX */
   2444 			goto dodata;			/* XXX */
   2445 		}
   2446 		/*
   2447 		 * If this segment advances the known urgent pointer,
   2448 		 * then mark the data stream.  This should not happen
   2449 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2450 		 * a FIN has been received from the remote side.
   2451 		 * In these states we ignore the URG.
   2452 		 *
   2453 		 * According to RFC961 (Assigned Protocols),
   2454 		 * the urgent pointer points to the last octet
   2455 		 * of urgent data.  We continue, however,
   2456 		 * to consider it to indicate the first octet
   2457 		 * of data past the urgent section as the original
   2458 		 * spec states (in one of two places).
   2459 		 */
   2460 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2461 			tp->rcv_up = th->th_seq + th->th_urp;
   2462 			so->so_oobmark = so->so_rcv.sb_cc +
   2463 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2464 			if (so->so_oobmark == 0)
   2465 				so->so_state |= SS_RCVATMARK;
   2466 			sohasoutofband(so);
   2467 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2468 		}
   2469 		/*
   2470 		 * Remove out of band data so doesn't get presented to user.
   2471 		 * This can happen independent of advancing the URG pointer,
   2472 		 * but if two URG's are pending at once, some out-of-band
   2473 		 * data may creep in... ick.
   2474 		 */
   2475 		if (th->th_urp <= (u_int16_t) tlen
   2476 #ifdef SO_OOBINLINE
   2477 		     && (so->so_options & SO_OOBINLINE) == 0
   2478 #endif
   2479 		     )
   2480 			tcp_pulloutofband(so, th, m, hdroptlen);
   2481 	} else
   2482 		/*
   2483 		 * If no out of band data is expected,
   2484 		 * pull receive urgent pointer along
   2485 		 * with the receive window.
   2486 		 */
   2487 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2488 			tp->rcv_up = tp->rcv_nxt;
   2489 dodata:							/* XXX */
   2490 
   2491 	/*
   2492 	 * Process the segment text, merging it into the TCP sequencing queue,
   2493 	 * and arranging for acknowledgement of receipt if necessary.
   2494 	 * This process logically involves adjusting tp->rcv_wnd as data
   2495 	 * is presented to the user (this happens in tcp_usrreq.c,
   2496 	 * case PRU_RCVD).  If a FIN has already been received on this
   2497 	 * connection then we just ignore the text.
   2498 	 */
   2499 	if ((tlen || (tiflags & TH_FIN)) &&
   2500 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2501 		/*
   2502 		 * Insert segment ti into reassembly queue of tcp with
   2503 		 * control block tp.  Return TH_FIN if reassembly now includes
   2504 		 * a segment with FIN.  The macro form does the common case
   2505 		 * inline (segment is the next to be received on an
   2506 		 * established connection, and the queue is empty),
   2507 		 * avoiding linkage into and removal from the queue and
   2508 		 * repetition of various conversions.
   2509 		 * Set DELACK for segments received in order, but ack
   2510 		 * immediately when segments are out of order
   2511 		 * (so fast retransmit can work).
   2512 		 */
   2513 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2514 		TCP_REASS_LOCK(tp);
   2515 		if (th->th_seq == tp->rcv_nxt &&
   2516 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2517 		    tp->t_state == TCPS_ESTABLISHED) {
   2518 			TCP_SETUP_ACK(tp, th);
   2519 			tp->rcv_nxt += tlen;
   2520 			tiflags = th->th_flags & TH_FIN;
   2521 			tcpstat.tcps_rcvpack++;
   2522 			tcpstat.tcps_rcvbyte += tlen;
   2523 			ND6_HINT(tp);
   2524 			if (so->so_state & SS_CANTRCVMORE)
   2525 				m_freem(m);
   2526 			else {
   2527 				m_adj(m, hdroptlen);
   2528 				sbappendstream(&(so)->so_rcv, m);
   2529 			}
   2530 			sorwakeup(so);
   2531 		} else {
   2532 			m_adj(m, hdroptlen);
   2533 			tiflags = tcp_reass(tp, th, m, &tlen);
   2534 			tp->t_flags |= TF_ACKNOW;
   2535 		}
   2536 		TCP_REASS_UNLOCK(tp);
   2537 
   2538 		/*
   2539 		 * Note the amount of data that peer has sent into
   2540 		 * our window, in order to estimate the sender's
   2541 		 * buffer size.
   2542 		 */
   2543 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2544 	} else {
   2545 		m_freem(m);
   2546 		m = NULL;
   2547 		tiflags &= ~TH_FIN;
   2548 	}
   2549 
   2550 	/*
   2551 	 * If FIN is received ACK the FIN and let the user know
   2552 	 * that the connection is closing.  Ignore a FIN received before
   2553 	 * the connection is fully established.
   2554 	 */
   2555 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2556 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2557 			socantrcvmore(so);
   2558 			tp->t_flags |= TF_ACKNOW;
   2559 			tp->rcv_nxt++;
   2560 		}
   2561 		switch (tp->t_state) {
   2562 
   2563 	 	/*
   2564 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2565 		 */
   2566 		case TCPS_ESTABLISHED:
   2567 			tp->t_state = TCPS_CLOSE_WAIT;
   2568 			break;
   2569 
   2570 	 	/*
   2571 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2572 		 * enter the CLOSING state.
   2573 		 */
   2574 		case TCPS_FIN_WAIT_1:
   2575 			tp->t_state = TCPS_CLOSING;
   2576 			break;
   2577 
   2578 	 	/*
   2579 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2580 		 * starting the time-wait timer, turning off the other
   2581 		 * standard timers.
   2582 		 */
   2583 		case TCPS_FIN_WAIT_2:
   2584 			tp->t_state = TCPS_TIME_WAIT;
   2585 			tcp_canceltimers(tp);
   2586 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2587 			soisdisconnected(so);
   2588 			break;
   2589 
   2590 		/*
   2591 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2592 		 */
   2593 		case TCPS_TIME_WAIT:
   2594 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2595 			break;
   2596 		}
   2597 	}
   2598 #ifdef TCP_DEBUG
   2599 	if (so->so_options & SO_DEBUG)
   2600 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2601 #endif
   2602 
   2603 	/*
   2604 	 * Return any desired output.
   2605 	 */
   2606 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2607 		(void) tcp_output(tp);
   2608 	}
   2609 	if (tcp_saveti)
   2610 		m_freem(tcp_saveti);
   2611 	return;
   2612 
   2613 badsyn:
   2614 	/*
   2615 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2616 	 */
   2617 	tcpstat.tcps_badsyn++;
   2618 	tp = NULL;
   2619 	goto dropwithreset;
   2620 
   2621 dropafterack:
   2622 	/*
   2623 	 * Generate an ACK dropping incoming segment if it occupies
   2624 	 * sequence space, where the ACK reflects our state.
   2625 	 */
   2626 	if (tiflags & TH_RST)
   2627 		goto drop;
   2628 	goto dropafterack2;
   2629 
   2630 dropafterack_ratelim:
   2631 	/*
   2632 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2633 	 */
   2634 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2635 	    tcp_ackdrop_ppslim) == 0) {
   2636 		/* XXX stat */
   2637 		goto drop;
   2638 	}
   2639 	/* ...fall into dropafterack2... */
   2640 
   2641 dropafterack2:
   2642 	m_freem(m);
   2643 	tp->t_flags |= TF_ACKNOW;
   2644 	(void) tcp_output(tp);
   2645 	if (tcp_saveti)
   2646 		m_freem(tcp_saveti);
   2647 	return;
   2648 
   2649 dropwithreset_ratelim:
   2650 	/*
   2651 	 * We may want to rate-limit RSTs in certain situations,
   2652 	 * particularly if we are sending an RST in response to
   2653 	 * an attempt to connect to or otherwise communicate with
   2654 	 * a port for which we have no socket.
   2655 	 */
   2656 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2657 	    tcp_rst_ppslim) == 0) {
   2658 		/* XXX stat */
   2659 		goto drop;
   2660 	}
   2661 	/* ...fall into dropwithreset... */
   2662 
   2663 dropwithreset:
   2664 	/*
   2665 	 * Generate a RST, dropping incoming segment.
   2666 	 * Make ACK acceptable to originator of segment.
   2667 	 */
   2668 	if (tiflags & TH_RST)
   2669 		goto drop;
   2670 
   2671 	switch (af) {
   2672 #ifdef INET6
   2673 	case AF_INET6:
   2674 		/* For following calls to tcp_respond */
   2675 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2676 			goto drop;
   2677 		break;
   2678 #endif /* INET6 */
   2679 	case AF_INET:
   2680 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2681 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2682 			goto drop;
   2683 	}
   2684 
   2685 	if (tiflags & TH_ACK)
   2686 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2687 	else {
   2688 		if (tiflags & TH_SYN)
   2689 			tlen++;
   2690 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2691 		    TH_RST|TH_ACK);
   2692 	}
   2693 	if (tcp_saveti)
   2694 		m_freem(tcp_saveti);
   2695 	return;
   2696 
   2697 badcsum:
   2698 drop:
   2699 	/*
   2700 	 * Drop space held by incoming segment and return.
   2701 	 */
   2702 	if (tp) {
   2703 		if (tp->t_inpcb)
   2704 			so = tp->t_inpcb->inp_socket;
   2705 #ifdef INET6
   2706 		else if (tp->t_in6pcb)
   2707 			so = tp->t_in6pcb->in6p_socket;
   2708 #endif
   2709 		else
   2710 			so = NULL;
   2711 #ifdef TCP_DEBUG
   2712 		if (so && (so->so_options & SO_DEBUG) != 0)
   2713 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2714 #endif
   2715 	}
   2716 	if (tcp_saveti)
   2717 		m_freem(tcp_saveti);
   2718 	m_freem(m);
   2719 	return;
   2720 }
   2721 
   2722 #ifdef TCP_SIGNATURE
   2723 int
   2724 tcp_signature_apply(void *fstate, caddr_t data, u_int len)
   2725 {
   2726 
   2727 	MD5Update(fstate, (u_char *)data, len);
   2728 	return (0);
   2729 }
   2730 
   2731 struct secasvar *
   2732 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   2733 {
   2734 	struct secasvar *sav;
   2735 #ifdef FAST_IPSEC
   2736 	union sockaddr_union dst;
   2737 #endif
   2738 	struct ip *ip;
   2739 	struct ip6_hdr *ip6;
   2740 
   2741 	ip = mtod(m, struct ip *);
   2742 	switch (ip->ip_v) {
   2743 	case 4:
   2744 		ip = mtod(m, struct ip *);
   2745 		ip6 = NULL;
   2746 		break;
   2747 	case 6:
   2748 		ip = NULL;
   2749 		ip6 = mtod(m, struct ip6_hdr *);
   2750 		break;
   2751 	default:
   2752 		return (NULL);
   2753 	}
   2754 
   2755 #ifdef FAST_IPSEC
   2756 	/* Extract the destination from the IP header in the mbuf. */
   2757 	bzero(&dst, sizeof(union sockaddr_union));
   2758 	dst.sa.sa_len = sizeof(struct sockaddr_in);
   2759 	dst.sa.sa_family = AF_INET;
   2760 	dst.sin.sin_addr = ip->ip_dst;
   2761 
   2762 	/*
   2763 	 * Look up an SADB entry which matches the address of the peer.
   2764 	 */
   2765 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   2766 #else
   2767 	if (ip)
   2768 		sav = key_allocsa(AF_INET, (caddr_t)&ip->ip_src,
   2769 		    (caddr_t)&ip->ip_dst, IPPROTO_TCP,
   2770 		    htonl(TCP_SIG_SPI), 0, 0);
   2771 	else
   2772 		sav = key_allocsa(AF_INET6, (caddr_t)&ip6->ip6_src,
   2773 		    (caddr_t)&ip6->ip6_dst, IPPROTO_TCP,
   2774 		    htonl(TCP_SIG_SPI), 0, 0);
   2775 #endif
   2776 
   2777 	return (sav);	/* freesav must be performed by caller */
   2778 }
   2779 
   2780 int
   2781 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   2782     struct secasvar *sav, char *sig)
   2783 {
   2784 	MD5_CTX ctx;
   2785 	struct ip *ip;
   2786 	struct ipovly *ipovly;
   2787 	struct ip6_hdr *ip6;
   2788 	struct ippseudo ippseudo;
   2789 	struct ip6_hdr_pseudo ip6pseudo;
   2790 	struct tcphdr th0;
   2791 	int l, tcphdrlen;
   2792 
   2793 	if (sav == NULL)
   2794 		return (-1);
   2795 
   2796 	tcphdrlen = th->th_off * 4;
   2797 
   2798 	switch (mtod(m, struct ip *)->ip_v) {
   2799 	case 4:
   2800 		ip = mtod(m, struct ip *);
   2801 		ip6 = NULL;
   2802 		break;
   2803 	case 6:
   2804 		ip = NULL;
   2805 		ip6 = mtod(m, struct ip6_hdr *);
   2806 		break;
   2807 	default:
   2808 		return (-1);
   2809 	}
   2810 
   2811 	MD5Init(&ctx);
   2812 
   2813 	if (ip) {
   2814 		memset(&ippseudo, 0, sizeof(ippseudo));
   2815 		ipovly = (struct ipovly *)ip;
   2816 		ippseudo.ippseudo_src = ipovly->ih_src;
   2817 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   2818 		ippseudo.ippseudo_pad = 0;
   2819 		ippseudo.ippseudo_p = IPPROTO_TCP;
   2820 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   2821 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   2822 	} else {
   2823 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   2824 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   2825 		in6_clearscope(&ip6pseudo.ip6ph_src);
   2826 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   2827 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   2828 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   2829 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   2830 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   2831 	}
   2832 
   2833 	th0 = *th;
   2834 	th0.th_sum = 0;
   2835 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   2836 
   2837 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   2838 	if (l > 0)
   2839 		m_apply(m, thoff + tcphdrlen,
   2840 		    m->m_pkthdr.len - thoff - tcphdrlen,
   2841 		    tcp_signature_apply, &ctx);
   2842 
   2843 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   2844 	MD5Final(sig, &ctx);
   2845 
   2846 	return (0);
   2847 }
   2848 #endif
   2849 
   2850 static int
   2851 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   2852     const struct tcphdr *th,
   2853     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   2854 {
   2855 	u_int16_t mss;
   2856 	int opt, optlen = 0;
   2857 #ifdef TCP_SIGNATURE
   2858 	caddr_t sigp = NULL;
   2859 	char sigbuf[TCP_SIGLEN];
   2860 	struct secasvar *sav = NULL;
   2861 #endif
   2862 
   2863 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   2864 		opt = cp[0];
   2865 		if (opt == TCPOPT_EOL)
   2866 			break;
   2867 		if (opt == TCPOPT_NOP)
   2868 			optlen = 1;
   2869 		else {
   2870 			if (cnt < 2)
   2871 				break;
   2872 			optlen = cp[1];
   2873 			if (optlen < 2 || optlen > cnt)
   2874 				break;
   2875 		}
   2876 		switch (opt) {
   2877 
   2878 		default:
   2879 			continue;
   2880 
   2881 		case TCPOPT_MAXSEG:
   2882 			if (optlen != TCPOLEN_MAXSEG)
   2883 				continue;
   2884 			if (!(th->th_flags & TH_SYN))
   2885 				continue;
   2886 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2887 				continue;
   2888 			bcopy(cp + 2, &mss, sizeof(mss));
   2889 			oi->maxseg = ntohs(mss);
   2890 			break;
   2891 
   2892 		case TCPOPT_WINDOW:
   2893 			if (optlen != TCPOLEN_WINDOW)
   2894 				continue;
   2895 			if (!(th->th_flags & TH_SYN))
   2896 				continue;
   2897 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2898 				continue;
   2899 			tp->t_flags |= TF_RCVD_SCALE;
   2900 			tp->requested_s_scale = cp[2];
   2901 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2902 #if 0	/*XXX*/
   2903 				char *p;
   2904 
   2905 				if (ip)
   2906 					p = ntohl(ip->ip_src);
   2907 #ifdef INET6
   2908 				else if (ip6)
   2909 					p = ip6_sprintf(&ip6->ip6_src);
   2910 #endif
   2911 				else
   2912 					p = "(unknown)";
   2913 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   2914 				    "assuming %d\n",
   2915 				    tp->requested_s_scale, p,
   2916 				    TCP_MAX_WINSHIFT);
   2917 #else
   2918 				log(LOG_ERR, "TCP: invalid wscale %d, "
   2919 				    "assuming %d\n",
   2920 				    tp->requested_s_scale,
   2921 				    TCP_MAX_WINSHIFT);
   2922 #endif
   2923 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   2924 			}
   2925 			break;
   2926 
   2927 		case TCPOPT_TIMESTAMP:
   2928 			if (optlen != TCPOLEN_TIMESTAMP)
   2929 				continue;
   2930 			oi->ts_present = 1;
   2931 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   2932 			NTOHL(oi->ts_val);
   2933 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   2934 			NTOHL(oi->ts_ecr);
   2935 
   2936 			if (!(th->th_flags & TH_SYN))
   2937 				continue;
   2938 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2939 				continue;
   2940 			/*
   2941 			 * A timestamp received in a SYN makes
   2942 			 * it ok to send timestamp requests and replies.
   2943 			 */
   2944 			tp->t_flags |= TF_RCVD_TSTMP;
   2945 			tp->ts_recent = oi->ts_val;
   2946 			tp->ts_recent_age = tcp_now;
   2947                         break;
   2948 
   2949 		case TCPOPT_SACK_PERMITTED:
   2950 			if (optlen != TCPOLEN_SACK_PERMITTED)
   2951 				continue;
   2952 			if (!(th->th_flags & TH_SYN))
   2953 				continue;
   2954 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2955 				continue;
   2956 			if (tcp_do_sack) {
   2957 				tp->t_flags |= TF_SACK_PERMIT;
   2958 				tp->t_flags |= TF_WILL_SACK;
   2959 			}
   2960 			break;
   2961 
   2962 		case TCPOPT_SACK:
   2963 			tcp_sack_option(tp, th, cp, optlen);
   2964 			break;
   2965 #ifdef TCP_SIGNATURE
   2966 		case TCPOPT_SIGNATURE:
   2967 			if (optlen != TCPOLEN_SIGNATURE)
   2968 				continue;
   2969 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
   2970 				return (-1);
   2971 
   2972 			sigp = sigbuf;
   2973 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   2974 			memset(cp + 2, 0, TCP_SIGLEN);
   2975 			tp->t_flags |= TF_SIGNATURE;
   2976 			break;
   2977 #endif
   2978 		}
   2979 	}
   2980 
   2981 #ifdef TCP_SIGNATURE
   2982 	if (tp->t_flags & TF_SIGNATURE) {
   2983 
   2984 		sav = tcp_signature_getsav(m, th);
   2985 
   2986 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   2987 			return (-1);
   2988 	}
   2989 
   2990 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   2991 		if (sav == NULL)
   2992 			return (-1);
   2993 #ifdef FAST_IPSEC
   2994 		KEY_FREESAV(&sav);
   2995 #else
   2996 		key_freesav(sav);
   2997 #endif
   2998 		return (-1);
   2999 	}
   3000 
   3001 	if (sigp) {
   3002 		char sig[TCP_SIGLEN];
   3003 
   3004 		TCP_FIELDS_TO_NET(th);
   3005 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3006 			TCP_FIELDS_TO_HOST(th);
   3007 			if (sav == NULL)
   3008 				return (-1);
   3009 #ifdef FAST_IPSEC
   3010 			KEY_FREESAV(&sav);
   3011 #else
   3012 			key_freesav(sav);
   3013 #endif
   3014 			return (-1);
   3015 		}
   3016 		TCP_FIELDS_TO_HOST(th);
   3017 
   3018 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
   3019 			tcpstat.tcps_badsig++;
   3020 			if (sav == NULL)
   3021 				return (-1);
   3022 #ifdef FAST_IPSEC
   3023 			KEY_FREESAV(&sav);
   3024 #else
   3025 			key_freesav(sav);
   3026 #endif
   3027 			return (-1);
   3028 		} else
   3029 			tcpstat.tcps_goodsig++;
   3030 
   3031 		key_sa_recordxfer(sav, m);
   3032 #ifdef FAST_IPSEC
   3033 		KEY_FREESAV(&sav);
   3034 #else
   3035 		key_freesav(sav);
   3036 #endif
   3037 	}
   3038 #endif
   3039 
   3040 	return (0);
   3041 }
   3042 
   3043 /*
   3044  * Pull out of band byte out of a segment so
   3045  * it doesn't appear in the user's data queue.
   3046  * It is still reflected in the segment length for
   3047  * sequencing purposes.
   3048  */
   3049 void
   3050 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3051     struct mbuf *m, int off)
   3052 {
   3053 	int cnt = off + th->th_urp - 1;
   3054 
   3055 	while (cnt >= 0) {
   3056 		if (m->m_len > cnt) {
   3057 			char *cp = mtod(m, caddr_t) + cnt;
   3058 			struct tcpcb *tp = sototcpcb(so);
   3059 
   3060 			tp->t_iobc = *cp;
   3061 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3062 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3063 			m->m_len--;
   3064 			return;
   3065 		}
   3066 		cnt -= m->m_len;
   3067 		m = m->m_next;
   3068 		if (m == 0)
   3069 			break;
   3070 	}
   3071 	panic("tcp_pulloutofband");
   3072 }
   3073 
   3074 /*
   3075  * Collect new round-trip time estimate
   3076  * and update averages and current timeout.
   3077  */
   3078 void
   3079 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3080 {
   3081 	int32_t delta;
   3082 
   3083 	tcpstat.tcps_rttupdated++;
   3084 	if (tp->t_srtt != 0) {
   3085 		/*
   3086 		 * srtt is stored as fixed point with 3 bits after the
   3087 		 * binary point (i.e., scaled by 8).  The following magic
   3088 		 * is equivalent to the smoothing algorithm in rfc793 with
   3089 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   3090 		 * point).  Adjust rtt to origin 0.
   3091 		 */
   3092 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3093 		if ((tp->t_srtt += delta) <= 0)
   3094 			tp->t_srtt = 1 << 2;
   3095 		/*
   3096 		 * We accumulate a smoothed rtt variance (actually, a
   3097 		 * smoothed mean difference), then set the retransmit
   3098 		 * timer to smoothed rtt + 4 times the smoothed variance.
   3099 		 * rttvar is stored as fixed point with 2 bits after the
   3100 		 * binary point (scaled by 4).  The following is
   3101 		 * equivalent to rfc793 smoothing with an alpha of .75
   3102 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   3103 		 * rfc793's wired-in beta.
   3104 		 */
   3105 		if (delta < 0)
   3106 			delta = -delta;
   3107 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3108 		if ((tp->t_rttvar += delta) <= 0)
   3109 			tp->t_rttvar = 1 << 2;
   3110 	} else {
   3111 		/*
   3112 		 * No rtt measurement yet - use the unsmoothed rtt.
   3113 		 * Set the variance to half the rtt (so our first
   3114 		 * retransmit happens at 3*rtt).
   3115 		 */
   3116 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3117 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3118 	}
   3119 	tp->t_rtttime = 0;
   3120 	tp->t_rxtshift = 0;
   3121 
   3122 	/*
   3123 	 * the retransmit should happen at rtt + 4 * rttvar.
   3124 	 * Because of the way we do the smoothing, srtt and rttvar
   3125 	 * will each average +1/2 tick of bias.  When we compute
   3126 	 * the retransmit timer, we want 1/2 tick of rounding and
   3127 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3128 	 * firing of the timer.  The bias will give us exactly the
   3129 	 * 1.5 tick we need.  But, because the bias is
   3130 	 * statistical, we have to test that we don't drop below
   3131 	 * the minimum feasible timer (which is 2 ticks).
   3132 	 */
   3133 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3134 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3135 
   3136 	/*
   3137 	 * We received an ack for a packet that wasn't retransmitted;
   3138 	 * it is probably safe to discard any error indications we've
   3139 	 * received recently.  This isn't quite right, but close enough
   3140 	 * for now (a route might have failed after we sent a segment,
   3141 	 * and the return path might not be symmetrical).
   3142 	 */
   3143 	tp->t_softerror = 0;
   3144 }
   3145 
   3146 
   3147 /*
   3148  * TCP compressed state engine.  Currently used to hold compressed
   3149  * state for SYN_RECEIVED.
   3150  */
   3151 
   3152 u_long	syn_cache_count;
   3153 u_int32_t syn_hash1, syn_hash2;
   3154 
   3155 #define SYN_HASH(sa, sp, dp) \
   3156 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3157 				     ((u_int32_t)(sp)))^syn_hash2)))
   3158 #ifndef INET6
   3159 #define	SYN_HASHALL(hash, src, dst) \
   3160 do {									\
   3161 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3162 		((const struct sockaddr_in *)(src))->sin_port,		\
   3163 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3164 } while (/*CONSTCOND*/ 0)
   3165 #else
   3166 #define SYN_HASH6(sa, sp, dp) \
   3167 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3168 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3169 	 & 0x7fffffff)
   3170 
   3171 #define SYN_HASHALL(hash, src, dst) \
   3172 do {									\
   3173 	switch ((src)->sa_family) {					\
   3174 	case AF_INET:							\
   3175 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3176 			((const struct sockaddr_in *)(src))->sin_port,	\
   3177 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3178 		break;							\
   3179 	case AF_INET6:							\
   3180 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3181 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3182 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3183 		break;							\
   3184 	default:							\
   3185 		hash = 0;						\
   3186 	}								\
   3187 } while (/*CONSTCOND*/0)
   3188 #endif /* INET6 */
   3189 
   3190 #define	SYN_CACHE_RM(sc)						\
   3191 do {									\
   3192 	TAILQ_REMOVE(&tcp_syn_cache[(sc)->sc_bucketidx].sch_bucket,	\
   3193 	    (sc), sc_bucketq);						\
   3194 	(sc)->sc_tp = NULL;						\
   3195 	LIST_REMOVE((sc), sc_tpq);					\
   3196 	tcp_syn_cache[(sc)->sc_bucketidx].sch_length--;			\
   3197 	callout_stop(&(sc)->sc_timer);					\
   3198 	syn_cache_count--;						\
   3199 } while (/*CONSTCOND*/0)
   3200 
   3201 #define	SYN_CACHE_PUT(sc)						\
   3202 do {									\
   3203 	if ((sc)->sc_ipopts)						\
   3204 		(void) m_free((sc)->sc_ipopts);				\
   3205 	if ((sc)->sc_route4.ro_rt != NULL)				\
   3206 		RTFREE((sc)->sc_route4.ro_rt);				\
   3207 	if (callout_invoking(&(sc)->sc_timer))				\
   3208 		(sc)->sc_flags |= SCF_DEAD;				\
   3209 	else								\
   3210 		pool_put(&syn_cache_pool, (sc));			\
   3211 } while (/*CONSTCOND*/0)
   3212 
   3213 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL);
   3214 
   3215 /*
   3216  * We don't estimate RTT with SYNs, so each packet starts with the default
   3217  * RTT and each timer step has a fixed timeout value.
   3218  */
   3219 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3220 do {									\
   3221 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3222 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3223 	    TCPTV_REXMTMAX);						\
   3224 	callout_reset(&(sc)->sc_timer,					\
   3225 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3226 } while (/*CONSTCOND*/0)
   3227 
   3228 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3229 
   3230 void
   3231 syn_cache_init(void)
   3232 {
   3233 	int i;
   3234 
   3235 	/* Initialize the hash buckets. */
   3236 	for (i = 0; i < tcp_syn_cache_size; i++)
   3237 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3238 }
   3239 
   3240 void
   3241 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3242 {
   3243 	struct syn_cache_head *scp;
   3244 	struct syn_cache *sc2;
   3245 	int s;
   3246 
   3247 	/*
   3248 	 * If there are no entries in the hash table, reinitialize
   3249 	 * the hash secrets.
   3250 	 */
   3251 	if (syn_cache_count == 0) {
   3252 		syn_hash1 = arc4random();
   3253 		syn_hash2 = arc4random();
   3254 	}
   3255 
   3256 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3257 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3258 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3259 
   3260 	/*
   3261 	 * Make sure that we don't overflow the per-bucket
   3262 	 * limit or the total cache size limit.
   3263 	 */
   3264 	s = splsoftnet();
   3265 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3266 		tcpstat.tcps_sc_bucketoverflow++;
   3267 		/*
   3268 		 * The bucket is full.  Toss the oldest element in the
   3269 		 * bucket.  This will be the first entry in the bucket.
   3270 		 */
   3271 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3272 #ifdef DIAGNOSTIC
   3273 		/*
   3274 		 * This should never happen; we should always find an
   3275 		 * entry in our bucket.
   3276 		 */
   3277 		if (sc2 == NULL)
   3278 			panic("syn_cache_insert: bucketoverflow: impossible");
   3279 #endif
   3280 		SYN_CACHE_RM(sc2);
   3281 		SYN_CACHE_PUT(sc2);	/* calls pool_put but see spl above */
   3282 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3283 		struct syn_cache_head *scp2, *sce;
   3284 
   3285 		tcpstat.tcps_sc_overflowed++;
   3286 		/*
   3287 		 * The cache is full.  Toss the oldest entry in the
   3288 		 * first non-empty bucket we can find.
   3289 		 *
   3290 		 * XXX We would really like to toss the oldest
   3291 		 * entry in the cache, but we hope that this
   3292 		 * condition doesn't happen very often.
   3293 		 */
   3294 		scp2 = scp;
   3295 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3296 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3297 			for (++scp2; scp2 != scp; scp2++) {
   3298 				if (scp2 >= sce)
   3299 					scp2 = &tcp_syn_cache[0];
   3300 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3301 					break;
   3302 			}
   3303 #ifdef DIAGNOSTIC
   3304 			/*
   3305 			 * This should never happen; we should always find a
   3306 			 * non-empty bucket.
   3307 			 */
   3308 			if (scp2 == scp)
   3309 				panic("syn_cache_insert: cacheoverflow: "
   3310 				    "impossible");
   3311 #endif
   3312 		}
   3313 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3314 		SYN_CACHE_RM(sc2);
   3315 		SYN_CACHE_PUT(sc2);	/* calls pool_put but see spl above */
   3316 	}
   3317 
   3318 	/*
   3319 	 * Initialize the entry's timer.
   3320 	 */
   3321 	sc->sc_rxttot = 0;
   3322 	sc->sc_rxtshift = 0;
   3323 	SYN_CACHE_TIMER_ARM(sc);
   3324 
   3325 	/* Link it from tcpcb entry */
   3326 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3327 
   3328 	/* Put it into the bucket. */
   3329 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3330 	scp->sch_length++;
   3331 	syn_cache_count++;
   3332 
   3333 	tcpstat.tcps_sc_added++;
   3334 	splx(s);
   3335 }
   3336 
   3337 /*
   3338  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3339  * If we have retransmitted an entry the maximum number of times, expire
   3340  * that entry.
   3341  */
   3342 void
   3343 syn_cache_timer(void *arg)
   3344 {
   3345 	struct syn_cache *sc = arg;
   3346 	int s;
   3347 
   3348 	s = splsoftnet();
   3349 	callout_ack(&sc->sc_timer);
   3350 
   3351 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3352 		tcpstat.tcps_sc_delayed_free++;
   3353 		pool_put(&syn_cache_pool, sc);
   3354 		splx(s);
   3355 		return;
   3356 	}
   3357 
   3358 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3359 		/* Drop it -- too many retransmissions. */
   3360 		goto dropit;
   3361 	}
   3362 
   3363 	/*
   3364 	 * Compute the total amount of time this entry has
   3365 	 * been on a queue.  If this entry has been on longer
   3366 	 * than the keep alive timer would allow, expire it.
   3367 	 */
   3368 	sc->sc_rxttot += sc->sc_rxtcur;
   3369 	if (sc->sc_rxttot >= TCPTV_KEEP_INIT)
   3370 		goto dropit;
   3371 
   3372 	tcpstat.tcps_sc_retransmitted++;
   3373 	(void) syn_cache_respond(sc, NULL);
   3374 
   3375 	/* Advance the timer back-off. */
   3376 	sc->sc_rxtshift++;
   3377 	SYN_CACHE_TIMER_ARM(sc);
   3378 
   3379 	splx(s);
   3380 	return;
   3381 
   3382  dropit:
   3383 	tcpstat.tcps_sc_timed_out++;
   3384 	SYN_CACHE_RM(sc);
   3385 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3386 	splx(s);
   3387 }
   3388 
   3389 /*
   3390  * Remove syn cache created by the specified tcb entry,
   3391  * because this does not make sense to keep them
   3392  * (if there's no tcb entry, syn cache entry will never be used)
   3393  */
   3394 void
   3395 syn_cache_cleanup(struct tcpcb *tp)
   3396 {
   3397 	struct syn_cache *sc, *nsc;
   3398 	int s;
   3399 
   3400 	s = splsoftnet();
   3401 
   3402 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3403 		nsc = LIST_NEXT(sc, sc_tpq);
   3404 
   3405 #ifdef DIAGNOSTIC
   3406 		if (sc->sc_tp != tp)
   3407 			panic("invalid sc_tp in syn_cache_cleanup");
   3408 #endif
   3409 		SYN_CACHE_RM(sc);
   3410 		SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3411 	}
   3412 	/* just for safety */
   3413 	LIST_INIT(&tp->t_sc);
   3414 
   3415 	splx(s);
   3416 }
   3417 
   3418 /*
   3419  * Find an entry in the syn cache.
   3420  */
   3421 struct syn_cache *
   3422 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3423     struct syn_cache_head **headp)
   3424 {
   3425 	struct syn_cache *sc;
   3426 	struct syn_cache_head *scp;
   3427 	u_int32_t hash;
   3428 	int s;
   3429 
   3430 	SYN_HASHALL(hash, src, dst);
   3431 
   3432 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3433 	*headp = scp;
   3434 	s = splsoftnet();
   3435 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3436 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3437 		if (sc->sc_hash != hash)
   3438 			continue;
   3439 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3440 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3441 			splx(s);
   3442 			return (sc);
   3443 		}
   3444 	}
   3445 	splx(s);
   3446 	return (NULL);
   3447 }
   3448 
   3449 /*
   3450  * This function gets called when we receive an ACK for a
   3451  * socket in the LISTEN state.  We look up the connection
   3452  * in the syn cache, and if its there, we pull it out of
   3453  * the cache and turn it into a full-blown connection in
   3454  * the SYN-RECEIVED state.
   3455  *
   3456  * The return values may not be immediately obvious, and their effects
   3457  * can be subtle, so here they are:
   3458  *
   3459  *	NULL	SYN was not found in cache; caller should drop the
   3460  *		packet and send an RST.
   3461  *
   3462  *	-1	We were unable to create the new connection, and are
   3463  *		aborting it.  An ACK,RST is being sent to the peer
   3464  *		(unless we got screwey sequence numbners; see below),
   3465  *		because the 3-way handshake has been completed.  Caller
   3466  *		should not free the mbuf, since we may be using it.  If
   3467  *		we are not, we will free it.
   3468  *
   3469  *	Otherwise, the return value is a pointer to the new socket
   3470  *	associated with the connection.
   3471  */
   3472 struct socket *
   3473 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3474     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3475     struct socket *so, struct mbuf *m)
   3476 {
   3477 	struct syn_cache *sc;
   3478 	struct syn_cache_head *scp;
   3479 	struct inpcb *inp = NULL;
   3480 #ifdef INET6
   3481 	struct in6pcb *in6p = NULL;
   3482 #endif
   3483 	struct tcpcb *tp = 0;
   3484 	struct mbuf *am;
   3485 	int s;
   3486 	struct socket *oso;
   3487 
   3488 	s = splsoftnet();
   3489 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3490 		splx(s);
   3491 		return (NULL);
   3492 	}
   3493 
   3494 	/*
   3495 	 * Verify the sequence and ack numbers.  Try getting the correct
   3496 	 * response again.
   3497 	 */
   3498 	if ((th->th_ack != sc->sc_iss + 1) ||
   3499 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3500 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3501 		(void) syn_cache_respond(sc, m);
   3502 		splx(s);
   3503 		return ((struct socket *)(-1));
   3504 	}
   3505 
   3506 	/* Remove this cache entry */
   3507 	SYN_CACHE_RM(sc);
   3508 	splx(s);
   3509 
   3510 	/*
   3511 	 * Ok, create the full blown connection, and set things up
   3512 	 * as they would have been set up if we had created the
   3513 	 * connection when the SYN arrived.  If we can't create
   3514 	 * the connection, abort it.
   3515 	 */
   3516 	/*
   3517 	 * inp still has the OLD in_pcb stuff, set the
   3518 	 * v6-related flags on the new guy, too.   This is
   3519 	 * done particularly for the case where an AF_INET6
   3520 	 * socket is bound only to a port, and a v4 connection
   3521 	 * comes in on that port.
   3522 	 * we also copy the flowinfo from the original pcb
   3523 	 * to the new one.
   3524 	 */
   3525 	oso = so;
   3526 	so = sonewconn(so, SS_ISCONNECTED);
   3527 	if (so == NULL)
   3528 		goto resetandabort;
   3529 
   3530 	switch (so->so_proto->pr_domain->dom_family) {
   3531 #ifdef INET
   3532 	case AF_INET:
   3533 		inp = sotoinpcb(so);
   3534 		break;
   3535 #endif
   3536 #ifdef INET6
   3537 	case AF_INET6:
   3538 		in6p = sotoin6pcb(so);
   3539 		break;
   3540 #endif
   3541 	}
   3542 	switch (src->sa_family) {
   3543 #ifdef INET
   3544 	case AF_INET:
   3545 		if (inp) {
   3546 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3547 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3548 			inp->inp_options = ip_srcroute();
   3549 			in_pcbstate(inp, INP_BOUND);
   3550 			if (inp->inp_options == NULL) {
   3551 				inp->inp_options = sc->sc_ipopts;
   3552 				sc->sc_ipopts = NULL;
   3553 			}
   3554 		}
   3555 #ifdef INET6
   3556 		else if (in6p) {
   3557 			/* IPv4 packet to AF_INET6 socket */
   3558 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3559 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3560 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3561 				&in6p->in6p_laddr.s6_addr32[3],
   3562 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3563 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3564 			in6totcpcb(in6p)->t_family = AF_INET;
   3565 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3566 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3567 			else
   3568 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3569 			in6_pcbstate(in6p, IN6P_BOUND);
   3570 		}
   3571 #endif
   3572 		break;
   3573 #endif
   3574 #ifdef INET6
   3575 	case AF_INET6:
   3576 		if (in6p) {
   3577 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3578 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3579 			in6_pcbstate(in6p, IN6P_BOUND);
   3580 		}
   3581 		break;
   3582 #endif
   3583 	}
   3584 #ifdef INET6
   3585 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3586 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3587 		/* inherit socket options from the listening socket */
   3588 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3589 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3590 			m_freem(in6p->in6p_options);
   3591 			in6p->in6p_options = 0;
   3592 		}
   3593 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3594 			mtod(m, struct ip6_hdr *), m);
   3595 	}
   3596 #endif
   3597 
   3598 #if defined(IPSEC) || defined(FAST_IPSEC)
   3599 	/*
   3600 	 * we make a copy of policy, instead of sharing the policy,
   3601 	 * for better behavior in terms of SA lookup and dead SA removal.
   3602 	 */
   3603 	if (inp) {
   3604 		/* copy old policy into new socket's */
   3605 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3606 			printf("tcp_input: could not copy policy\n");
   3607 	}
   3608 #ifdef INET6
   3609 	else if (in6p) {
   3610 		/* copy old policy into new socket's */
   3611 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3612 		    in6p->in6p_sp))
   3613 			printf("tcp_input: could not copy policy\n");
   3614 	}
   3615 #endif
   3616 #endif
   3617 
   3618 	/*
   3619 	 * Give the new socket our cached route reference.
   3620 	 */
   3621 	if (inp)
   3622 		inp->inp_route = sc->sc_route4;		/* struct assignment */
   3623 #ifdef INET6
   3624 	else
   3625 		in6p->in6p_route = sc->sc_route6;
   3626 #endif
   3627 	sc->sc_route4.ro_rt = NULL;
   3628 
   3629 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3630 	if (am == NULL)
   3631 		goto resetandabort;
   3632 	MCLAIM(am, &tcp_mowner);
   3633 	am->m_len = src->sa_len;
   3634 	bcopy(src, mtod(am, caddr_t), src->sa_len);
   3635 	if (inp) {
   3636 		if (in_pcbconnect(inp, am, NULL)) {
   3637 			(void) m_free(am);
   3638 			goto resetandabort;
   3639 		}
   3640 	}
   3641 #ifdef INET6
   3642 	else if (in6p) {
   3643 		if (src->sa_family == AF_INET) {
   3644 			/* IPv4 packet to AF_INET6 socket */
   3645 			struct sockaddr_in6 *sin6;
   3646 			sin6 = mtod(am, struct sockaddr_in6 *);
   3647 			am->m_len = sizeof(*sin6);
   3648 			bzero(sin6, sizeof(*sin6));
   3649 			sin6->sin6_family = AF_INET6;
   3650 			sin6->sin6_len = sizeof(*sin6);
   3651 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3652 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3653 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3654 				&sin6->sin6_addr.s6_addr32[3],
   3655 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3656 		}
   3657 		if (in6_pcbconnect(in6p, am, NULL)) {
   3658 			(void) m_free(am);
   3659 			goto resetandabort;
   3660 		}
   3661 	}
   3662 #endif
   3663 	else {
   3664 		(void) m_free(am);
   3665 		goto resetandabort;
   3666 	}
   3667 	(void) m_free(am);
   3668 
   3669 	if (inp)
   3670 		tp = intotcpcb(inp);
   3671 #ifdef INET6
   3672 	else if (in6p)
   3673 		tp = in6totcpcb(in6p);
   3674 #endif
   3675 	else
   3676 		tp = NULL;
   3677 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3678 	if (sc->sc_request_r_scale != 15) {
   3679 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3680 		tp->request_r_scale = sc->sc_request_r_scale;
   3681 		tp->snd_scale = sc->sc_requested_s_scale;
   3682 		tp->rcv_scale = sc->sc_request_r_scale;
   3683 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3684 	}
   3685 	if (sc->sc_flags & SCF_TIMESTAMP)
   3686 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3687 	tp->ts_timebase = sc->sc_timebase;
   3688 
   3689 	tp->t_template = tcp_template(tp);
   3690 	if (tp->t_template == 0) {
   3691 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3692 		so = NULL;
   3693 		m_freem(m);
   3694 		goto abort;
   3695 	}
   3696 
   3697 	tp->iss = sc->sc_iss;
   3698 	tp->irs = sc->sc_irs;
   3699 	tcp_sendseqinit(tp);
   3700 	tcp_rcvseqinit(tp);
   3701 	tp->t_state = TCPS_SYN_RECEIVED;
   3702 	TCP_TIMER_ARM(tp, TCPT_KEEP, TCPTV_KEEP_INIT);
   3703 	tcpstat.tcps_accepts++;
   3704 
   3705 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3706 		tp->t_flags |= TF_WILL_SACK;
   3707 
   3708 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   3709 		tp->t_flags |= TF_ECN_PERMIT;
   3710 
   3711 #ifdef TCP_SIGNATURE
   3712 	if (sc->sc_flags & SCF_SIGNATURE)
   3713 		tp->t_flags |= TF_SIGNATURE;
   3714 #endif
   3715 
   3716 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3717 	tp->t_ourmss = sc->sc_ourmaxseg;
   3718 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3719 
   3720 	/*
   3721 	 * Initialize the initial congestion window.  If we
   3722 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3723 	 * to 1 segment (i.e. the Loss Window).
   3724 	 */
   3725 	if (sc->sc_rxtshift)
   3726 		tp->snd_cwnd = tp->t_peermss;
   3727 	else {
   3728 		int ss = tcp_init_win;
   3729 #ifdef INET
   3730 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3731 			ss = tcp_init_win_local;
   3732 #endif
   3733 #ifdef INET6
   3734 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3735 			ss = tcp_init_win_local;
   3736 #endif
   3737 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3738 	}
   3739 
   3740 	tcp_rmx_rtt(tp);
   3741 	tp->snd_wl1 = sc->sc_irs;
   3742 	tp->rcv_up = sc->sc_irs + 1;
   3743 
   3744 	/*
   3745 	 * This is what whould have happened in tcp_output() when
   3746 	 * the SYN,ACK was sent.
   3747 	 */
   3748 	tp->snd_up = tp->snd_una;
   3749 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3750 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3751 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3752 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3753 	tp->last_ack_sent = tp->rcv_nxt;
   3754 	tp->t_partialacks = -1;
   3755 	tp->t_dupacks = 0;
   3756 
   3757 	tcpstat.tcps_sc_completed++;
   3758 	s = splsoftnet();
   3759 	SYN_CACHE_PUT(sc);
   3760 	splx(s);
   3761 	return (so);
   3762 
   3763 resetandabort:
   3764 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3765 abort:
   3766 	if (so != NULL)
   3767 		(void) soabort(so);
   3768 	s = splsoftnet();
   3769 	SYN_CACHE_PUT(sc);
   3770 	splx(s);
   3771 	tcpstat.tcps_sc_aborted++;
   3772 	return ((struct socket *)(-1));
   3773 }
   3774 
   3775 /*
   3776  * This function is called when we get a RST for a
   3777  * non-existent connection, so that we can see if the
   3778  * connection is in the syn cache.  If it is, zap it.
   3779  */
   3780 
   3781 void
   3782 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   3783 {
   3784 	struct syn_cache *sc;
   3785 	struct syn_cache_head *scp;
   3786 	int s = splsoftnet();
   3787 
   3788 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3789 		splx(s);
   3790 		return;
   3791 	}
   3792 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3793 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3794 		splx(s);
   3795 		return;
   3796 	}
   3797 	SYN_CACHE_RM(sc);
   3798 	tcpstat.tcps_sc_reset++;
   3799 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3800 	splx(s);
   3801 }
   3802 
   3803 void
   3804 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   3805     struct tcphdr *th)
   3806 {
   3807 	struct syn_cache *sc;
   3808 	struct syn_cache_head *scp;
   3809 	int s;
   3810 
   3811 	s = splsoftnet();
   3812 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3813 		splx(s);
   3814 		return;
   3815 	}
   3816 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3817 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3818 		splx(s);
   3819 		return;
   3820 	}
   3821 
   3822 	/*
   3823 	 * If we've retransmitted 3 times and this is our second error,
   3824 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3825 	 * This prevents us from incorrectly nuking an entry during a
   3826 	 * spurious network outage.
   3827 	 *
   3828 	 * See tcp_notify().
   3829 	 */
   3830 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3831 		sc->sc_flags |= SCF_UNREACH;
   3832 		splx(s);
   3833 		return;
   3834 	}
   3835 
   3836 	SYN_CACHE_RM(sc);
   3837 	tcpstat.tcps_sc_unreach++;
   3838 	SYN_CACHE_PUT(sc);	/* calls pool_put but see spl above */
   3839 	splx(s);
   3840 }
   3841 
   3842 /*
   3843  * Given a LISTEN socket and an inbound SYN request, add
   3844  * this to the syn cache, and send back a segment:
   3845  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3846  * to the source.
   3847  *
   3848  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3849  * Doing so would require that we hold onto the data and deliver it
   3850  * to the application.  However, if we are the target of a SYN-flood
   3851  * DoS attack, an attacker could send data which would eventually
   3852  * consume all available buffer space if it were ACKed.  By not ACKing
   3853  * the data, we avoid this DoS scenario.
   3854  */
   3855 
   3856 int
   3857 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   3858     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   3859     int optlen, struct tcp_opt_info *oi)
   3860 {
   3861 	struct tcpcb tb, *tp;
   3862 	long win;
   3863 	struct syn_cache *sc;
   3864 	struct syn_cache_head *scp;
   3865 	struct mbuf *ipopts;
   3866 	struct tcp_opt_info opti;
   3867 	int s;
   3868 
   3869 	tp = sototcpcb(so);
   3870 
   3871 	bzero(&opti, sizeof(opti));
   3872 
   3873 	/*
   3874 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3875 	 *
   3876 	 * Note this check is performed in tcp_input() very early on.
   3877 	 */
   3878 
   3879 	/*
   3880 	 * Initialize some local state.
   3881 	 */
   3882 	win = sbspace(&so->so_rcv);
   3883 	if (win > TCP_MAXWIN)
   3884 		win = TCP_MAXWIN;
   3885 
   3886 	switch (src->sa_family) {
   3887 #ifdef INET
   3888 	case AF_INET:
   3889 		/*
   3890 		 * Remember the IP options, if any.
   3891 		 */
   3892 		ipopts = ip_srcroute();
   3893 		break;
   3894 #endif
   3895 	default:
   3896 		ipopts = NULL;
   3897 	}
   3898 
   3899 #ifdef TCP_SIGNATURE
   3900 	if (optp || (tp->t_flags & TF_SIGNATURE))
   3901 #else
   3902 	if (optp)
   3903 #endif
   3904 	{
   3905 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   3906 #ifdef TCP_SIGNATURE
   3907 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   3908 #endif
   3909 		tb.t_state = TCPS_LISTEN;
   3910 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   3911 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   3912 			return (0);
   3913 	} else
   3914 		tb.t_flags = 0;
   3915 
   3916 	/*
   3917 	 * See if we already have an entry for this connection.
   3918 	 * If we do, resend the SYN,ACK.  We do not count this
   3919 	 * as a retransmission (XXX though maybe we should).
   3920 	 */
   3921 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   3922 		tcpstat.tcps_sc_dupesyn++;
   3923 		if (ipopts) {
   3924 			/*
   3925 			 * If we were remembering a previous source route,
   3926 			 * forget it and use the new one we've been given.
   3927 			 */
   3928 			if (sc->sc_ipopts)
   3929 				(void) m_free(sc->sc_ipopts);
   3930 			sc->sc_ipopts = ipopts;
   3931 		}
   3932 		sc->sc_timestamp = tb.ts_recent;
   3933 		if (syn_cache_respond(sc, m) == 0) {
   3934 			tcpstat.tcps_sndacks++;
   3935 			tcpstat.tcps_sndtotal++;
   3936 		}
   3937 		return (1);
   3938 	}
   3939 
   3940 	s = splsoftnet();
   3941 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   3942 	splx(s);
   3943 	if (sc == NULL) {
   3944 		if (ipopts)
   3945 			(void) m_free(ipopts);
   3946 		return (0);
   3947 	}
   3948 
   3949 	/*
   3950 	 * Fill in the cache, and put the necessary IP and TCP
   3951 	 * options into the reply.
   3952 	 */
   3953 	bzero(sc, sizeof(struct syn_cache));
   3954 	callout_init(&sc->sc_timer);
   3955 	bcopy(src, &sc->sc_src, src->sa_len);
   3956 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   3957 	sc->sc_flags = 0;
   3958 	sc->sc_ipopts = ipopts;
   3959 	sc->sc_irs = th->th_seq;
   3960 	switch (src->sa_family) {
   3961 #ifdef INET
   3962 	case AF_INET:
   3963 	    {
   3964 		struct sockaddr_in *srcin = (void *) src;
   3965 		struct sockaddr_in *dstin = (void *) dst;
   3966 
   3967 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   3968 		    &srcin->sin_addr, dstin->sin_port,
   3969 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   3970 		break;
   3971 	    }
   3972 #endif /* INET */
   3973 #ifdef INET6
   3974 	case AF_INET6:
   3975 	    {
   3976 		struct sockaddr_in6 *srcin6 = (void *) src;
   3977 		struct sockaddr_in6 *dstin6 = (void *) dst;
   3978 
   3979 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   3980 		    &srcin6->sin6_addr, dstin6->sin6_port,
   3981 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   3982 		break;
   3983 	    }
   3984 #endif /* INET6 */
   3985 	}
   3986 	sc->sc_peermaxseg = oi->maxseg;
   3987 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   3988 						m->m_pkthdr.rcvif : NULL,
   3989 						sc->sc_src.sa.sa_family);
   3990 	sc->sc_win = win;
   3991 	sc->sc_timebase = tcp_now;	/* see tcp_newtcpcb() */
   3992 	sc->sc_timestamp = tb.ts_recent;
   3993 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   3994 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   3995 		sc->sc_flags |= SCF_TIMESTAMP;
   3996 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   3997 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   3998 		sc->sc_requested_s_scale = tb.requested_s_scale;
   3999 		sc->sc_request_r_scale = 0;
   4000 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4001 		    TCP_MAXWIN << sc->sc_request_r_scale <
   4002 		    so->so_rcv.sb_hiwat)
   4003 			sc->sc_request_r_scale++;
   4004 	} else {
   4005 		sc->sc_requested_s_scale = 15;
   4006 		sc->sc_request_r_scale = 15;
   4007 	}
   4008 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4009 		sc->sc_flags |= SCF_SACK_PERMIT;
   4010 
   4011 	/*
   4012 	 * ECN setup packet recieved.
   4013 	 */
   4014 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4015 		sc->sc_flags |= SCF_ECN_PERMIT;
   4016 
   4017 #ifdef TCP_SIGNATURE
   4018 	if (tb.t_flags & TF_SIGNATURE)
   4019 		sc->sc_flags |= SCF_SIGNATURE;
   4020 #endif
   4021 	sc->sc_tp = tp;
   4022 	if (syn_cache_respond(sc, m) == 0) {
   4023 		syn_cache_insert(sc, tp);
   4024 		tcpstat.tcps_sndacks++;
   4025 		tcpstat.tcps_sndtotal++;
   4026 	} else {
   4027 		s = splsoftnet();
   4028 		SYN_CACHE_PUT(sc);
   4029 		splx(s);
   4030 		tcpstat.tcps_sc_dropped++;
   4031 	}
   4032 	return (1);
   4033 }
   4034 
   4035 int
   4036 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4037 {
   4038 	struct route *ro;
   4039 	u_int8_t *optp;
   4040 	int optlen, error;
   4041 	u_int16_t tlen;
   4042 	struct ip *ip = NULL;
   4043 #ifdef INET6
   4044 	struct ip6_hdr *ip6 = NULL;
   4045 #endif
   4046 	struct tcpcb *tp = NULL;
   4047 	struct tcphdr *th;
   4048 	u_int hlen;
   4049 	struct socket *so;
   4050 
   4051 	switch (sc->sc_src.sa.sa_family) {
   4052 	case AF_INET:
   4053 		hlen = sizeof(struct ip);
   4054 		ro = &sc->sc_route4;
   4055 		break;
   4056 #ifdef INET6
   4057 	case AF_INET6:
   4058 		hlen = sizeof(struct ip6_hdr);
   4059 		ro = (struct route *)&sc->sc_route6;
   4060 		break;
   4061 #endif
   4062 	default:
   4063 		if (m)
   4064 			m_freem(m);
   4065 		return (EAFNOSUPPORT);
   4066 	}
   4067 
   4068 	/* Compute the size of the TCP options. */
   4069 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4070 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4071 #ifdef TCP_SIGNATURE
   4072 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4073 #endif
   4074 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4075 
   4076 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4077 
   4078 	/*
   4079 	 * Create the IP+TCP header from scratch.
   4080 	 */
   4081 	if (m)
   4082 		m_freem(m);
   4083 #ifdef DIAGNOSTIC
   4084 	if (max_linkhdr + tlen > MCLBYTES)
   4085 		return (ENOBUFS);
   4086 #endif
   4087 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4088 	if (m && tlen > MHLEN) {
   4089 		MCLGET(m, M_DONTWAIT);
   4090 		if ((m->m_flags & M_EXT) == 0) {
   4091 			m_freem(m);
   4092 			m = NULL;
   4093 		}
   4094 	}
   4095 	if (m == NULL)
   4096 		return (ENOBUFS);
   4097 	MCLAIM(m, &tcp_tx_mowner);
   4098 
   4099 	/* Fixup the mbuf. */
   4100 	m->m_data += max_linkhdr;
   4101 	m->m_len = m->m_pkthdr.len = tlen;
   4102 	if (sc->sc_tp) {
   4103 		tp = sc->sc_tp;
   4104 		if (tp->t_inpcb)
   4105 			so = tp->t_inpcb->inp_socket;
   4106 #ifdef INET6
   4107 		else if (tp->t_in6pcb)
   4108 			so = tp->t_in6pcb->in6p_socket;
   4109 #endif
   4110 		else
   4111 			so = NULL;
   4112 	} else
   4113 		so = NULL;
   4114 	m->m_pkthdr.rcvif = NULL;
   4115 	memset(mtod(m, u_char *), 0, tlen);
   4116 
   4117 	switch (sc->sc_src.sa.sa_family) {
   4118 	case AF_INET:
   4119 		ip = mtod(m, struct ip *);
   4120 		ip->ip_v = 4;
   4121 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4122 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4123 		ip->ip_p = IPPROTO_TCP;
   4124 		th = (struct tcphdr *)(ip + 1);
   4125 		th->th_dport = sc->sc_src.sin.sin_port;
   4126 		th->th_sport = sc->sc_dst.sin.sin_port;
   4127 		break;
   4128 #ifdef INET6
   4129 	case AF_INET6:
   4130 		ip6 = mtod(m, struct ip6_hdr *);
   4131 		ip6->ip6_vfc = IPV6_VERSION;
   4132 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4133 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4134 		ip6->ip6_nxt = IPPROTO_TCP;
   4135 		/* ip6_plen will be updated in ip6_output() */
   4136 		th = (struct tcphdr *)(ip6 + 1);
   4137 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4138 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4139 		break;
   4140 #endif
   4141 	default:
   4142 		th = NULL;
   4143 	}
   4144 
   4145 	th->th_seq = htonl(sc->sc_iss);
   4146 	th->th_ack = htonl(sc->sc_irs + 1);
   4147 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4148 	th->th_flags = TH_SYN|TH_ACK;
   4149 	th->th_win = htons(sc->sc_win);
   4150 	/* th_sum already 0 */
   4151 	/* th_urp already 0 */
   4152 
   4153 	/* Tack on the TCP options. */
   4154 	optp = (u_int8_t *)(th + 1);
   4155 	*optp++ = TCPOPT_MAXSEG;
   4156 	*optp++ = 4;
   4157 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4158 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4159 
   4160 	if (sc->sc_request_r_scale != 15) {
   4161 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4162 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4163 		    sc->sc_request_r_scale);
   4164 		optp += 4;
   4165 	}
   4166 
   4167 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4168 		u_int32_t *lp = (u_int32_t *)(optp);
   4169 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4170 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4171 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4172 		*lp   = htonl(sc->sc_timestamp);
   4173 		optp += TCPOLEN_TSTAMP_APPA;
   4174 	}
   4175 
   4176 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4177 		u_int8_t *p = optp;
   4178 
   4179 		/* Let the peer know that we will SACK. */
   4180 		p[0] = TCPOPT_SACK_PERMITTED;
   4181 		p[1] = 2;
   4182 		p[2] = TCPOPT_NOP;
   4183 		p[3] = TCPOPT_NOP;
   4184 		optp += 4;
   4185 	}
   4186 
   4187 	/*
   4188 	 * Send ECN SYN-ACK setup packet.
   4189 	 * Routes can be asymetric, so, even if we receive a packet
   4190 	 * with ECE and CWR set, we must not assume no one will block
   4191 	 * the ECE packet we are about to send.
   4192 	 */
   4193 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4194 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4195 		th->th_flags |= TH_ECE;
   4196 		tcpstat.tcps_ecn_shs++;
   4197 
   4198 		/*
   4199 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4200 		 *
   4201 		 * "[...] a TCP node MAY respond to an ECN-setup
   4202 		 * SYN packet by setting ECT in the responding
   4203 		 * ECN-setup SYN/ACK packet, indicating to routers
   4204 		 * that the SYN/ACK packet is ECN-Capable.
   4205 		 * This allows a congested router along the path
   4206 		 * to mark the packet instead of dropping the
   4207 		 * packet as an indication of congestion."
   4208 		 *
   4209 		 * "[...] There can be a great benefit in setting
   4210 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4211 		 * Congestion is  most likely to occur in
   4212 		 * the server-to-client direction.  As a result,
   4213 		 * setting an ECN-capable codepoint in SYN/ACK
   4214 		 * packets can reduce the occurence of three-second
   4215 		 * retransmit timeouts resulting from the drop
   4216 		 * of SYN/ACK packets."
   4217 		 *
   4218 		 * Page 4 and 6, January 2006.
   4219 		 */
   4220 
   4221 		switch (sc->sc_src.sa.sa_family) {
   4222 #ifdef INET
   4223 		case AF_INET:
   4224 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4225 			break;
   4226 #endif
   4227 #ifdef INET6
   4228 		case AF_INET6:
   4229 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4230 			break;
   4231 #endif
   4232 		}
   4233 		tcpstat.tcps_ecn_ect++;
   4234 	}
   4235 
   4236 #ifdef TCP_SIGNATURE
   4237 	if (sc->sc_flags & SCF_SIGNATURE) {
   4238 		struct secasvar *sav;
   4239 		u_int8_t *sigp;
   4240 
   4241 		sav = tcp_signature_getsav(m, th);
   4242 
   4243 		if (sav == NULL) {
   4244 			if (m)
   4245 				m_freem(m);
   4246 			return (EPERM);
   4247 		}
   4248 
   4249 		*optp++ = TCPOPT_SIGNATURE;
   4250 		*optp++ = TCPOLEN_SIGNATURE;
   4251 		sigp = optp;
   4252 		bzero(optp, TCP_SIGLEN);
   4253 		optp += TCP_SIGLEN;
   4254 		*optp++ = TCPOPT_NOP;
   4255 		*optp++ = TCPOPT_EOL;
   4256 
   4257 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4258 
   4259 		key_sa_recordxfer(sav, m);
   4260 #ifdef FAST_IPSEC
   4261 		KEY_FREESAV(&sav);
   4262 #else
   4263 		key_freesav(sav);
   4264 #endif
   4265 	}
   4266 #endif
   4267 
   4268 	/* Compute the packet's checksum. */
   4269 	switch (sc->sc_src.sa.sa_family) {
   4270 	case AF_INET:
   4271 		ip->ip_len = htons(tlen - hlen);
   4272 		th->th_sum = 0;
   4273 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4274 		break;
   4275 #ifdef INET6
   4276 	case AF_INET6:
   4277 		ip6->ip6_plen = htons(tlen - hlen);
   4278 		th->th_sum = 0;
   4279 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4280 		break;
   4281 #endif
   4282 	}
   4283 
   4284 	/*
   4285 	 * Fill in some straggling IP bits.  Note the stack expects
   4286 	 * ip_len to be in host order, for convenience.
   4287 	 */
   4288 	switch (sc->sc_src.sa.sa_family) {
   4289 #ifdef INET
   4290 	case AF_INET:
   4291 		ip->ip_len = htons(tlen);
   4292 		ip->ip_ttl = ip_defttl;
   4293 		/* XXX tos? */
   4294 		break;
   4295 #endif
   4296 #ifdef INET6
   4297 	case AF_INET6:
   4298 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4299 		ip6->ip6_vfc |= IPV6_VERSION;
   4300 		ip6->ip6_plen = htons(tlen - hlen);
   4301 		/* ip6_hlim will be initialized afterwards */
   4302 		/* XXX flowlabel? */
   4303 		break;
   4304 #endif
   4305 	}
   4306 
   4307 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4308 	tp = sc->sc_tp;
   4309 
   4310 	switch (sc->sc_src.sa.sa_family) {
   4311 #ifdef INET
   4312 	case AF_INET:
   4313 		error = ip_output(m, sc->sc_ipopts, ro,
   4314 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4315 		    (struct ip_moptions *)NULL, so);
   4316 		break;
   4317 #endif
   4318 #ifdef INET6
   4319 	case AF_INET6:
   4320 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4321 				ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
   4322 
   4323 		error = ip6_output(m, NULL /*XXX*/, (struct route_in6 *)ro, 0,
   4324 			(struct ip6_moptions *)0, so, NULL);
   4325 		break;
   4326 #endif
   4327 	default:
   4328 		error = EAFNOSUPPORT;
   4329 		break;
   4330 	}
   4331 	return (error);
   4332 }
   4333