tcp_input.c revision 1.27 1 /* $NetBSD: tcp_input.c,v 1.27 1996/12/10 18:20:19 mycroft Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
36 */
37
38 #ifndef TUBA_INCLUDE
39 #include <sys/param.h>
40 #include <sys/systm.h>
41 #include <sys/malloc.h>
42 #include <sys/mbuf.h>
43 #include <sys/protosw.h>
44 #include <sys/socket.h>
45 #include <sys/socketvar.h>
46 #include <sys/errno.h>
47
48 #include <net/if.h>
49 #include <net/route.h>
50
51 #include <netinet/in.h>
52 #include <netinet/in_systm.h>
53 #include <netinet/ip.h>
54 #include <netinet/in_pcb.h>
55 #include <netinet/ip_var.h>
56 #include <netinet/tcp.h>
57 #include <netinet/tcp_fsm.h>
58 #include <netinet/tcp_seq.h>
59 #include <netinet/tcp_timer.h>
60 #include <netinet/tcp_var.h>
61 #include <netinet/tcpip.h>
62 #include <netinet/tcp_debug.h>
63
64 #include <machine/stdarg.h>
65
66 int tcprexmtthresh = 3;
67 struct tcpiphdr tcp_saveti;
68
69 extern u_long sb_max;
70
71 #endif /* TUBA_INCLUDE */
72 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
73
74 /* for modulo comparisons of timestamps */
75 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
76 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
77
78
79 /*
80 * Insert segment ti into reassembly queue of tcp with
81 * control block tp. Return TH_FIN if reassembly now includes
82 * a segment with FIN. The macro form does the common case inline
83 * (segment is the next to be received on an established connection,
84 * and the queue is empty), avoiding linkage into and removal
85 * from the queue and repetition of various conversions.
86 * Set DELACK for segments received in order, but ack immediately
87 * when segments are out of order (so fast retransmit can work).
88 */
89 #define TCP_REASS(tp, ti, m, so, flags) { \
90 if ((ti)->ti_seq == (tp)->rcv_nxt && \
91 (tp)->segq.lh_first == NULL && \
92 (tp)->t_state == TCPS_ESTABLISHED) { \
93 if ((ti)->ti_flags & TH_PUSH) \
94 tp->t_flags |= TF_ACKNOW; \
95 else \
96 tp->t_flags |= TF_DELACK; \
97 (tp)->rcv_nxt += (ti)->ti_len; \
98 flags = (ti)->ti_flags & TH_FIN; \
99 tcpstat.tcps_rcvpack++;\
100 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
101 sbappend(&(so)->so_rcv, (m)); \
102 sorwakeup(so); \
103 } else { \
104 (flags) = tcp_reass((tp), (ti), (m)); \
105 tp->t_flags |= TF_ACKNOW; \
106 } \
107 }
108 #ifndef TUBA_INCLUDE
109
110 int
111 tcp_reass(tp, ti, m)
112 register struct tcpcb *tp;
113 register struct tcpiphdr *ti;
114 struct mbuf *m;
115 {
116 register struct ipqent *p, *q, *nq, *tiqe;
117 struct socket *so = tp->t_inpcb->inp_socket;
118 int flags;
119
120 /*
121 * Call with ti==0 after become established to
122 * force pre-ESTABLISHED data up to user socket.
123 */
124 if (ti == 0)
125 goto present;
126
127 /*
128 * Allocate a new queue entry, before we throw away any data.
129 * If we can't, just drop the packet. XXX
130 */
131 MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
132 if (tiqe == NULL) {
133 tcpstat.tcps_rcvmemdrop++;
134 m_freem(m);
135 return (0);
136 }
137
138 /*
139 * Find a segment which begins after this one does.
140 */
141 for (p = NULL, q = tp->segq.lh_first; q != NULL;
142 p = q, q = q->ipqe_q.le_next)
143 if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
144 break;
145
146 /*
147 * If there is a preceding segment, it may provide some of
148 * our data already. If so, drop the data from the incoming
149 * segment. If it provides all of our data, drop us.
150 */
151 if (p != NULL) {
152 register struct tcpiphdr *phdr = p->ipqe_tcp;
153 register int i;
154
155 /* conversion to int (in i) handles seq wraparound */
156 i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
157 if (i > 0) {
158 if (i >= ti->ti_len) {
159 tcpstat.tcps_rcvduppack++;
160 tcpstat.tcps_rcvdupbyte += ti->ti_len;
161 m_freem(m);
162 FREE(tiqe, M_IPQ);
163 return (0);
164 }
165 m_adj(m, i);
166 ti->ti_len -= i;
167 ti->ti_seq += i;
168 }
169 }
170 tcpstat.tcps_rcvoopack++;
171 tcpstat.tcps_rcvoobyte += ti->ti_len;
172
173 /*
174 * While we overlap succeeding segments trim them or,
175 * if they are completely covered, dequeue them.
176 */
177 for (; q != NULL; q = nq) {
178 register struct tcpiphdr *qhdr = q->ipqe_tcp;
179 register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
180
181 if (i <= 0)
182 break;
183 if (i < qhdr->ti_len) {
184 qhdr->ti_seq += i;
185 qhdr->ti_len -= i;
186 m_adj(q->ipqe_m, i);
187 break;
188 }
189 nq = q->ipqe_q.le_next;
190 m_freem(q->ipqe_m);
191 LIST_REMOVE(q, ipqe_q);
192 FREE(q, M_IPQ);
193 }
194
195 /* Insert the new fragment queue entry into place. */
196 tiqe->ipqe_m = m;
197 tiqe->ipqe_tcp = ti;
198 if (p == NULL) {
199 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
200 } else {
201 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
202 }
203
204 present:
205 /*
206 * Present data to user, advancing rcv_nxt through
207 * completed sequence space.
208 */
209 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
210 return (0);
211 q = tp->segq.lh_first;
212 if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
213 return (0);
214 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
215 return (0);
216 do {
217 tp->rcv_nxt += q->ipqe_tcp->ti_len;
218 flags = q->ipqe_tcp->ti_flags & TH_FIN;
219
220 nq = q->ipqe_q.le_next;
221 LIST_REMOVE(q, ipqe_q);
222 if (so->so_state & SS_CANTRCVMORE)
223 m_freem(q->ipqe_m);
224 else
225 sbappend(&so->so_rcv, q->ipqe_m);
226 FREE(q, M_IPQ);
227 q = nq;
228 } while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
229 sorwakeup(so);
230 return (flags);
231 }
232
233 /*
234 * TCP input routine, follows pages 65-76 of the
235 * protocol specification dated September, 1981 very closely.
236 */
237 void
238 #if __STDC__
239 tcp_input(struct mbuf *m, ...)
240 #else
241 tcp_input(m, va_alist)
242 register struct mbuf *m;
243 #endif
244 {
245 register struct tcpiphdr *ti;
246 register struct inpcb *inp;
247 caddr_t optp = NULL;
248 int optlen = 0;
249 int len, tlen, off;
250 register struct tcpcb *tp = 0;
251 register int tiflags;
252 struct socket *so = NULL;
253 int todrop, acked, ourfinisacked, needoutput = 0;
254 short ostate = 0;
255 struct in_addr laddr;
256 int dropsocket = 0;
257 int iss = 0;
258 u_long tiwin;
259 u_int32_t ts_val, ts_ecr;
260 int ts_present = 0;
261 int iphlen;
262 va_list ap;
263
264 va_start(ap, m);
265 iphlen = va_arg(ap, int);
266 va_end(ap);
267
268 tcpstat.tcps_rcvtotal++;
269 /*
270 * Get IP and TCP header together in first mbuf.
271 * Note: IP leaves IP header in first mbuf.
272 */
273 ti = mtod(m, struct tcpiphdr *);
274 if (iphlen > sizeof (struct ip))
275 ip_stripoptions(m, (struct mbuf *)0);
276 if (m->m_len < sizeof (struct tcpiphdr)) {
277 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
278 tcpstat.tcps_rcvshort++;
279 return;
280 }
281 ti = mtod(m, struct tcpiphdr *);
282 }
283
284 /*
285 * Checksum extended TCP header and data.
286 */
287 tlen = ((struct ip *)ti)->ip_len;
288 len = sizeof (struct ip) + tlen;
289 bzero(ti->ti_x1, sizeof ti->ti_x1);
290 ti->ti_len = (u_int16_t)tlen;
291 HTONS(ti->ti_len);
292 if ((ti->ti_sum = in_cksum(m, len)) != 0) {
293 tcpstat.tcps_rcvbadsum++;
294 goto drop;
295 }
296 #endif /* TUBA_INCLUDE */
297
298 /*
299 * Check that TCP offset makes sense,
300 * pull out TCP options and adjust length. XXX
301 */
302 off = ti->ti_off << 2;
303 if (off < sizeof (struct tcphdr) || off > tlen) {
304 tcpstat.tcps_rcvbadoff++;
305 goto drop;
306 }
307 tlen -= off;
308 ti->ti_len = tlen;
309 if (off > sizeof (struct tcphdr)) {
310 if (m->m_len < sizeof(struct ip) + off) {
311 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
312 tcpstat.tcps_rcvshort++;
313 return;
314 }
315 ti = mtod(m, struct tcpiphdr *);
316 }
317 optlen = off - sizeof (struct tcphdr);
318 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
319 /*
320 * Do quick retrieval of timestamp options ("options
321 * prediction?"). If timestamp is the only option and it's
322 * formatted as recommended in RFC 1323 appendix A, we
323 * quickly get the values now and not bother calling
324 * tcp_dooptions(), etc.
325 */
326 if ((optlen == TCPOLEN_TSTAMP_APPA ||
327 (optlen > TCPOLEN_TSTAMP_APPA &&
328 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
329 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
330 (ti->ti_flags & TH_SYN) == 0) {
331 ts_present = 1;
332 ts_val = ntohl(*(u_int32_t *)(optp + 4));
333 ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
334 optp = NULL; /* we've parsed the options */
335 }
336 }
337 tiflags = ti->ti_flags;
338
339 /*
340 * Convert TCP protocol specific fields to host format.
341 */
342 NTOHL(ti->ti_seq);
343 NTOHL(ti->ti_ack);
344 NTOHS(ti->ti_win);
345 NTOHS(ti->ti_urp);
346
347 /*
348 * Locate pcb for segment.
349 */
350 findpcb:
351 inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
352 ti->ti_dst, ti->ti_dport);
353 if (inp == 0) {
354 ++tcpstat.tcps_pcbhashmiss;
355 inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
356 if (inp == 0) {
357 ++tcpstat.tcps_noport;
358 goto dropwithreset;
359 }
360 }
361
362 /*
363 * If the state is CLOSED (i.e., TCB does not exist) then
364 * all data in the incoming segment is discarded.
365 * If the TCB exists but is in CLOSED state, it is embryonic,
366 * but should either do a listen or a connect soon.
367 */
368 tp = intotcpcb(inp);
369 if (tp == 0)
370 goto dropwithreset;
371 if (tp->t_state == TCPS_CLOSED)
372 goto drop;
373
374 /* Unscale the window into a 32-bit value. */
375 if ((tiflags & TH_SYN) == 0)
376 tiwin = ti->ti_win << tp->snd_scale;
377 else
378 tiwin = ti->ti_win;
379
380 so = inp->inp_socket;
381 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
382 if (so->so_options & SO_DEBUG) {
383 ostate = tp->t_state;
384 tcp_saveti = *ti;
385 }
386 if (so->so_options & SO_ACCEPTCONN) {
387 so = sonewconn(so, 0);
388 if (so == 0)
389 goto drop;
390 /*
391 * This is ugly, but ....
392 *
393 * Mark socket as temporary until we're
394 * committed to keeping it. The code at
395 * ``drop'' and ``dropwithreset'' check the
396 * flag dropsocket to see if the temporary
397 * socket created here should be discarded.
398 * We mark the socket as discardable until
399 * we're committed to it below in TCPS_LISTEN.
400 */
401 dropsocket++;
402 inp = (struct inpcb *)so->so_pcb;
403 inp->inp_laddr = ti->ti_dst;
404 inp->inp_lport = ti->ti_dport;
405 in_pcbstate(inp, INP_BOUND);
406 #if BSD>=43
407 inp->inp_options = ip_srcroute();
408 #endif
409 tp = intotcpcb(inp);
410 tp->t_state = TCPS_LISTEN;
411
412 /* Compute proper scaling value from buffer space
413 */
414 while (tp->request_r_scale < TCP_MAX_WINSHIFT &&
415 TCP_MAXWIN << tp->request_r_scale < so->so_rcv.sb_hiwat)
416 tp->request_r_scale++;
417 }
418 }
419
420 /*
421 * Segment received on connection.
422 * Reset idle time and keep-alive timer.
423 */
424 tp->t_idle = 0;
425 if (TCPS_HAVEESTABLISHED(tp->t_state))
426 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
427
428 /*
429 * Process options if not in LISTEN state,
430 * else do it below (after getting remote address).
431 */
432 if (optp && tp->t_state != TCPS_LISTEN)
433 tcp_dooptions(tp, optp, optlen, ti,
434 &ts_present, &ts_val, &ts_ecr);
435
436 /*
437 * Header prediction: check for the two common cases
438 * of a uni-directional data xfer. If the packet has
439 * no control flags, is in-sequence, the window didn't
440 * change and we're not retransmitting, it's a
441 * candidate. If the length is zero and the ack moved
442 * forward, we're the sender side of the xfer. Just
443 * free the data acked & wake any higher level process
444 * that was blocked waiting for space. If the length
445 * is non-zero and the ack didn't move, we're the
446 * receiver side. If we're getting packets in-order
447 * (the reassembly queue is empty), add the data to
448 * the socket buffer and note that we need a delayed ack.
449 */
450 if (tp->t_state == TCPS_ESTABLISHED &&
451 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
452 (!ts_present || TSTMP_GEQ(ts_val, tp->ts_recent)) &&
453 ti->ti_seq == tp->rcv_nxt &&
454 tiwin && tiwin == tp->snd_wnd &&
455 tp->snd_nxt == tp->snd_max) {
456
457 /*
458 * If last ACK falls within this segment's sequence numbers,
459 * record the timestamp.
460 */
461 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
462 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
463 tp->ts_recent_age = tcp_now;
464 tp->ts_recent = ts_val;
465 }
466
467 if (ti->ti_len == 0) {
468 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
469 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
470 tp->snd_cwnd >= tp->snd_wnd &&
471 tp->t_dupacks < tcprexmtthresh) {
472 /*
473 * this is a pure ack for outstanding data.
474 */
475 ++tcpstat.tcps_predack;
476 if (ts_present)
477 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
478 else if (tp->t_rtt &&
479 SEQ_GT(ti->ti_ack, tp->t_rtseq))
480 tcp_xmit_timer(tp, tp->t_rtt);
481 acked = ti->ti_ack - tp->snd_una;
482 tcpstat.tcps_rcvackpack++;
483 tcpstat.tcps_rcvackbyte += acked;
484 sbdrop(&so->so_snd, acked);
485 tp->snd_una = ti->ti_ack;
486 m_freem(m);
487
488 /*
489 * If all outstanding data are acked, stop
490 * retransmit timer, otherwise restart timer
491 * using current (possibly backed-off) value.
492 * If process is waiting for space,
493 * wakeup/selwakeup/signal. If data
494 * are ready to send, let tcp_output
495 * decide between more output or persist.
496 */
497 if (tp->snd_una == tp->snd_max)
498 tp->t_timer[TCPT_REXMT] = 0;
499 else if (tp->t_timer[TCPT_PERSIST] == 0)
500 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
501
502 if (sb_notify(&so->so_snd))
503 sowwakeup(so);
504 if (so->so_snd.sb_cc)
505 (void) tcp_output(tp);
506 return;
507 }
508 } else if (ti->ti_ack == tp->snd_una &&
509 tp->segq.lh_first == NULL &&
510 ti->ti_len <= sbspace(&so->so_rcv)) {
511 /*
512 * this is a pure, in-sequence data packet
513 * with nothing on the reassembly queue and
514 * we have enough buffer space to take it.
515 */
516 ++tcpstat.tcps_preddat;
517 tp->rcv_nxt += ti->ti_len;
518 tcpstat.tcps_rcvpack++;
519 tcpstat.tcps_rcvbyte += ti->ti_len;
520 /*
521 * Drop TCP, IP headers and TCP options then add data
522 * to socket buffer.
523 */
524 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
525 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
526 sbappend(&so->so_rcv, m);
527 sorwakeup(so);
528 if (ti->ti_flags & TH_PUSH)
529 tp->t_flags |= TF_ACKNOW;
530 else
531 tp->t_flags |= TF_DELACK;
532 return;
533 }
534 }
535
536 /*
537 * Drop TCP, IP headers and TCP options.
538 */
539 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
540 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
541
542 /*
543 * Calculate amount of space in receive window,
544 * and then do TCP input processing.
545 * Receive window is amount of space in rcv queue,
546 * but not less than advertised window.
547 */
548 { int win;
549
550 win = sbspace(&so->so_rcv);
551 if (win < 0)
552 win = 0;
553 tp->rcv_wnd = max(win, (int)(tp->rcv_adv - tp->rcv_nxt));
554 }
555
556 switch (tp->t_state) {
557
558 /*
559 * If the state is LISTEN then ignore segment if it contains an RST.
560 * If the segment contains an ACK then it is bad and send a RST.
561 * If it does not contain a SYN then it is not interesting; drop it.
562 * Don't bother responding if the destination was a broadcast.
563 * Otherwise initialize tp->rcv_nxt, and tp->irs, select an initial
564 * tp->iss, and send a segment:
565 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
566 * Also initialize tp->snd_nxt to tp->iss+1 and tp->snd_una to tp->iss.
567 * Fill in remote peer address fields if not previously specified.
568 * Enter SYN_RECEIVED state, and process any other fields of this
569 * segment in this state.
570 */
571 case TCPS_LISTEN: {
572 struct mbuf *am;
573 register struct sockaddr_in *sin;
574
575 if (tiflags & TH_RST)
576 goto drop;
577 if (tiflags & TH_ACK)
578 goto dropwithreset;
579 if ((tiflags & TH_SYN) == 0)
580 goto drop;
581 /*
582 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
583 * in_broadcast() should never return true on a received
584 * packet with M_BCAST not set.
585 */
586 if (m->m_flags & (M_BCAST|M_MCAST) ||
587 IN_MULTICAST(ti->ti_dst.s_addr))
588 goto drop;
589 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
590 if (am == NULL)
591 goto drop;
592 am->m_len = sizeof (struct sockaddr_in);
593 sin = mtod(am, struct sockaddr_in *);
594 sin->sin_family = AF_INET;
595 sin->sin_len = sizeof(*sin);
596 sin->sin_addr = ti->ti_src;
597 sin->sin_port = ti->ti_sport;
598 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
599 laddr = inp->inp_laddr;
600 if (in_nullhost(laddr))
601 inp->inp_laddr = ti->ti_dst;
602 if (in_pcbconnect(inp, am)) {
603 inp->inp_laddr = laddr;
604 (void) m_free(am);
605 goto drop;
606 }
607 (void) m_free(am);
608 tp->t_template = tcp_template(tp);
609 if (tp->t_template == 0) {
610 tp = tcp_drop(tp, ENOBUFS);
611 dropsocket = 0; /* socket is already gone */
612 goto drop;
613 }
614 if (optp)
615 tcp_dooptions(tp, optp, optlen, ti,
616 &ts_present, &ts_val, &ts_ecr);
617 if (iss)
618 tp->iss = iss;
619 else
620 tp->iss = tcp_iss;
621 tcp_iss += TCP_ISSINCR/2;
622 tp->irs = ti->ti_seq;
623 tcp_sendseqinit(tp);
624 tcp_rcvseqinit(tp);
625 tp->t_flags |= TF_ACKNOW;
626 tp->t_state = TCPS_SYN_RECEIVED;
627 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
628 dropsocket = 0; /* committed to socket */
629 tcpstat.tcps_accepts++;
630 goto trimthenstep6;
631 }
632
633 /*
634 * If the state is SYN_SENT:
635 * if seg contains an ACK, but not for our SYN, drop the input.
636 * if seg contains a RST, then drop the connection.
637 * if seg does not contain SYN, then drop it.
638 * Otherwise this is an acceptable SYN segment
639 * initialize tp->rcv_nxt and tp->irs
640 * if seg contains ack then advance tp->snd_una
641 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
642 * arrange for segment to be acked (eventually)
643 * continue processing rest of data/controls, beginning with URG
644 */
645 case TCPS_SYN_SENT:
646 if ((tiflags & TH_ACK) &&
647 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
648 SEQ_GT(ti->ti_ack, tp->snd_max)))
649 goto dropwithreset;
650 if (tiflags & TH_RST) {
651 if (tiflags & TH_ACK)
652 tp = tcp_drop(tp, ECONNREFUSED);
653 goto drop;
654 }
655 if ((tiflags & TH_SYN) == 0)
656 goto drop;
657 if (tiflags & TH_ACK) {
658 tp->snd_una = ti->ti_ack;
659 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
660 tp->snd_nxt = tp->snd_una;
661 }
662 tp->t_timer[TCPT_REXMT] = 0;
663 tp->irs = ti->ti_seq;
664 tcp_rcvseqinit(tp);
665 tp->t_flags |= TF_ACKNOW;
666 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
667 tcpstat.tcps_connects++;
668 soisconnected(so);
669 tp->t_state = TCPS_ESTABLISHED;
670 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
671 /* Do window scaling on this connection? */
672 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
673 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
674 tp->snd_scale = tp->requested_s_scale;
675 tp->rcv_scale = tp->request_r_scale;
676 }
677 (void) tcp_reass(tp, (struct tcpiphdr *)0,
678 (struct mbuf *)0);
679 /*
680 * if we didn't have to retransmit the SYN,
681 * use its rtt as our initial srtt & rtt var.
682 */
683 if (tp->t_rtt)
684 tcp_xmit_timer(tp, tp->t_rtt);
685 } else
686 tp->t_state = TCPS_SYN_RECEIVED;
687
688 trimthenstep6:
689 /*
690 * Advance ti->ti_seq to correspond to first data byte.
691 * If data, trim to stay within window,
692 * dropping FIN if necessary.
693 */
694 ti->ti_seq++;
695 if (ti->ti_len > tp->rcv_wnd) {
696 todrop = ti->ti_len - tp->rcv_wnd;
697 m_adj(m, -todrop);
698 ti->ti_len = tp->rcv_wnd;
699 tiflags &= ~TH_FIN;
700 tcpstat.tcps_rcvpackafterwin++;
701 tcpstat.tcps_rcvbyteafterwin += todrop;
702 }
703 tp->snd_wl1 = ti->ti_seq - 1;
704 tp->rcv_up = ti->ti_seq;
705 goto step6;
706 }
707
708 /*
709 * States other than LISTEN or SYN_SENT.
710 * First check timestamp, if present.
711 * Then check that at least some bytes of segment are within
712 * receive window. If segment begins before rcv_nxt,
713 * drop leading data (and SYN); if nothing left, just ack.
714 *
715 * RFC 1323 PAWS: If we have a timestamp reply on this segment
716 * and it's less than ts_recent, drop it.
717 */
718 if (ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
719 TSTMP_LT(ts_val, tp->ts_recent)) {
720
721 /* Check to see if ts_recent is over 24 days old. */
722 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
723 /*
724 * Invalidate ts_recent. If this segment updates
725 * ts_recent, the age will be reset later and ts_recent
726 * will get a valid value. If it does not, setting
727 * ts_recent to zero will at least satisfy the
728 * requirement that zero be placed in the timestamp
729 * echo reply when ts_recent isn't valid. The
730 * age isn't reset until we get a valid ts_recent
731 * because we don't want out-of-order segments to be
732 * dropped when ts_recent is old.
733 */
734 tp->ts_recent = 0;
735 } else {
736 tcpstat.tcps_rcvduppack++;
737 tcpstat.tcps_rcvdupbyte += ti->ti_len;
738 tcpstat.tcps_pawsdrop++;
739 goto dropafterack;
740 }
741 }
742
743 todrop = tp->rcv_nxt - ti->ti_seq;
744 if (todrop > 0) {
745 if (tiflags & TH_SYN) {
746 tiflags &= ~TH_SYN;
747 ti->ti_seq++;
748 if (ti->ti_urp > 1)
749 ti->ti_urp--;
750 else {
751 tiflags &= ~TH_URG;
752 ti->ti_urp = 0;
753 }
754 todrop--;
755 }
756 if (todrop >= ti->ti_len) {
757 /*
758 * Any valid FIN must be to the left of the
759 * window. At this point, FIN must be a
760 * duplicate or out-of-sequence, so drop it.
761 */
762 tiflags &= ~TH_FIN;
763 /*
764 * Send ACK to resynchronize, and drop any data,
765 * but keep on processing for RST or ACK.
766 */
767 tp->t_flags |= TF_ACKNOW;
768 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
769 tcpstat.tcps_rcvduppack++;
770 } else {
771 tcpstat.tcps_rcvpartduppack++;
772 tcpstat.tcps_rcvpartdupbyte += todrop;
773 }
774 m_adj(m, todrop);
775 ti->ti_seq += todrop;
776 ti->ti_len -= todrop;
777 if (ti->ti_urp > todrop)
778 ti->ti_urp -= todrop;
779 else {
780 tiflags &= ~TH_URG;
781 ti->ti_urp = 0;
782 }
783 }
784
785 /*
786 * If new data are received on a connection after the
787 * user processes are gone, then RST the other end.
788 */
789 if ((so->so_state & SS_NOFDREF) &&
790 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
791 tp = tcp_close(tp);
792 tcpstat.tcps_rcvafterclose++;
793 goto dropwithreset;
794 }
795
796 /*
797 * If segment ends after window, drop trailing data
798 * (and PUSH and FIN); if nothing left, just ACK.
799 */
800 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
801 if (todrop > 0) {
802 tcpstat.tcps_rcvpackafterwin++;
803 if (todrop >= ti->ti_len) {
804 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
805 /*
806 * If a new connection request is received
807 * while in TIME_WAIT, drop the old connection
808 * and start over if the sequence numbers
809 * are above the previous ones.
810 */
811 if (tiflags & TH_SYN &&
812 tp->t_state == TCPS_TIME_WAIT &&
813 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
814 iss = tp->rcv_nxt + TCP_ISSINCR;
815 tp = tcp_close(tp);
816 goto findpcb;
817 }
818 /*
819 * If window is closed can only take segments at
820 * window edge, and have to drop data and PUSH from
821 * incoming segments. Continue processing, but
822 * remember to ack. Otherwise, drop segment
823 * and ack.
824 */
825 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
826 tp->t_flags |= TF_ACKNOW;
827 tcpstat.tcps_rcvwinprobe++;
828 } else
829 goto dropafterack;
830 } else
831 tcpstat.tcps_rcvbyteafterwin += todrop;
832 m_adj(m, -todrop);
833 ti->ti_len -= todrop;
834 tiflags &= ~(TH_PUSH|TH_FIN);
835 }
836
837 /*
838 * If last ACK falls within this segment's sequence numbers,
839 * record its timestamp.
840 */
841 if (ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
842 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
843 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
844 tp->ts_recent_age = tcp_now;
845 tp->ts_recent = ts_val;
846 }
847
848 /*
849 * If the RST bit is set examine the state:
850 * SYN_RECEIVED STATE:
851 * If passive open, return to LISTEN state.
852 * If active open, inform user that connection was refused.
853 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
854 * Inform user that connection was reset, and close tcb.
855 * CLOSING, LAST_ACK, TIME_WAIT STATES
856 * Close the tcb.
857 */
858 if (tiflags&TH_RST) switch (tp->t_state) {
859
860 case TCPS_SYN_RECEIVED:
861 so->so_error = ECONNREFUSED;
862 goto close;
863
864 case TCPS_ESTABLISHED:
865 case TCPS_FIN_WAIT_1:
866 case TCPS_FIN_WAIT_2:
867 case TCPS_CLOSE_WAIT:
868 so->so_error = ECONNRESET;
869 close:
870 tp->t_state = TCPS_CLOSED;
871 tcpstat.tcps_drops++;
872 tp = tcp_close(tp);
873 goto drop;
874
875 case TCPS_CLOSING:
876 case TCPS_LAST_ACK:
877 case TCPS_TIME_WAIT:
878 tp = tcp_close(tp);
879 goto drop;
880 }
881
882 /*
883 * If a SYN is in the window, then this is an
884 * error and we send an RST and drop the connection.
885 */
886 if (tiflags & TH_SYN) {
887 tp = tcp_drop(tp, ECONNRESET);
888 goto dropwithreset;
889 }
890
891 /*
892 * If the ACK bit is off we drop the segment and return.
893 */
894 if ((tiflags & TH_ACK) == 0)
895 goto drop;
896
897 /*
898 * Ack processing.
899 */
900 switch (tp->t_state) {
901
902 /*
903 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
904 * ESTABLISHED state and continue processing, otherwise
905 * send an RST.
906 */
907 case TCPS_SYN_RECEIVED:
908 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
909 SEQ_GT(ti->ti_ack, tp->snd_max))
910 goto dropwithreset;
911 tcpstat.tcps_connects++;
912 soisconnected(so);
913 tp->t_state = TCPS_ESTABLISHED;
914 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
915 /* Do window scaling? */
916 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
917 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
918 tp->snd_scale = tp->requested_s_scale;
919 tp->rcv_scale = tp->request_r_scale;
920 }
921 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
922 tp->snd_wl1 = ti->ti_seq - 1;
923 /* fall into ... */
924
925 /*
926 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
927 * ACKs. If the ack is in the range
928 * tp->snd_una < ti->ti_ack <= tp->snd_max
929 * then advance tp->snd_una to ti->ti_ack and drop
930 * data from the retransmission queue. If this ACK reflects
931 * more up to date window information we update our window information.
932 */
933 case TCPS_ESTABLISHED:
934 case TCPS_FIN_WAIT_1:
935 case TCPS_FIN_WAIT_2:
936 case TCPS_CLOSE_WAIT:
937 case TCPS_CLOSING:
938 case TCPS_LAST_ACK:
939 case TCPS_TIME_WAIT:
940
941 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
942 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
943 tcpstat.tcps_rcvdupack++;
944 /*
945 * If we have outstanding data (other than
946 * a window probe), this is a completely
947 * duplicate ack (ie, window info didn't
948 * change), the ack is the biggest we've
949 * seen and we've seen exactly our rexmt
950 * threshhold of them, assume a packet
951 * has been dropped and retransmit it.
952 * Kludge snd_nxt & the congestion
953 * window so we send only this one
954 * packet.
955 *
956 * We know we're losing at the current
957 * window size so do congestion avoidance
958 * (set ssthresh to half the current window
959 * and pull our congestion window back to
960 * the new ssthresh).
961 *
962 * Dup acks mean that packets have left the
963 * network (they're now cached at the receiver)
964 * so bump cwnd by the amount in the receiver
965 * to keep a constant cwnd packets in the
966 * network.
967 */
968 if (tp->t_timer[TCPT_REXMT] == 0 ||
969 ti->ti_ack != tp->snd_una)
970 tp->t_dupacks = 0;
971 else if (++tp->t_dupacks == tcprexmtthresh) {
972 tcp_seq onxt = tp->snd_nxt;
973 u_int win =
974 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
975 tp->t_maxseg;
976
977 if (win < 2)
978 win = 2;
979 tp->snd_ssthresh = win * tp->t_maxseg;
980 tp->t_timer[TCPT_REXMT] = 0;
981 tp->t_rtt = 0;
982 tp->snd_nxt = ti->ti_ack;
983 tp->snd_cwnd = tp->t_maxseg;
984 (void) tcp_output(tp);
985 tp->snd_cwnd = tp->snd_ssthresh +
986 tp->t_maxseg * tp->t_dupacks;
987 if (SEQ_GT(onxt, tp->snd_nxt))
988 tp->snd_nxt = onxt;
989 goto drop;
990 } else if (tp->t_dupacks > tcprexmtthresh) {
991 tp->snd_cwnd += tp->t_maxseg;
992 (void) tcp_output(tp);
993 goto drop;
994 }
995 } else
996 tp->t_dupacks = 0;
997 break;
998 }
999 /*
1000 * If the congestion window was inflated to account
1001 * for the other side's cached packets, retract it.
1002 */
1003 if (tp->t_dupacks >= tcprexmtthresh &&
1004 tp->snd_cwnd > tp->snd_ssthresh)
1005 tp->snd_cwnd = tp->snd_ssthresh;
1006 tp->t_dupacks = 0;
1007 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1008 tcpstat.tcps_rcvacktoomuch++;
1009 goto dropafterack;
1010 }
1011 acked = ti->ti_ack - tp->snd_una;
1012 tcpstat.tcps_rcvackpack++;
1013 tcpstat.tcps_rcvackbyte += acked;
1014
1015 /*
1016 * If we have a timestamp reply, update smoothed
1017 * round trip time. If no timestamp is present but
1018 * transmit timer is running and timed sequence
1019 * number was acked, update smoothed round trip time.
1020 * Since we now have an rtt measurement, cancel the
1021 * timer backoff (cf., Phil Karn's retransmit alg.).
1022 * Recompute the initial retransmit timer.
1023 */
1024 if (ts_present)
1025 tcp_xmit_timer(tp, tcp_now-ts_ecr+1);
1026 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1027 tcp_xmit_timer(tp,tp->t_rtt);
1028
1029 /*
1030 * If all outstanding data is acked, stop retransmit
1031 * timer and remember to restart (more output or persist).
1032 * If there is more data to be acked, restart retransmit
1033 * timer, using current (possibly backed-off) value.
1034 */
1035 if (ti->ti_ack == tp->snd_max) {
1036 tp->t_timer[TCPT_REXMT] = 0;
1037 needoutput = 1;
1038 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1039 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1040 /*
1041 * When new data is acked, open the congestion window.
1042 * If the window gives us less than ssthresh packets
1043 * in flight, open exponentially (maxseg per packet).
1044 * Otherwise open linearly: maxseg per window
1045 * (maxseg^2 / cwnd per packet), plus a constant
1046 * fraction of a packet (maxseg/8) to help larger windows
1047 * open quickly enough.
1048 */
1049 {
1050 register u_int cw = tp->snd_cwnd;
1051 register u_int incr = tp->t_maxseg;
1052
1053 if (cw > tp->snd_ssthresh)
1054 incr = incr * incr / cw;
1055 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1056 }
1057 if (acked > so->so_snd.sb_cc) {
1058 tp->snd_wnd -= so->so_snd.sb_cc;
1059 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1060 ourfinisacked = 1;
1061 } else {
1062 sbdrop(&so->so_snd, acked);
1063 tp->snd_wnd -= acked;
1064 ourfinisacked = 0;
1065 }
1066 if (sb_notify(&so->so_snd))
1067 sowwakeup(so);
1068 tp->snd_una = ti->ti_ack;
1069 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1070 tp->snd_nxt = tp->snd_una;
1071
1072 switch (tp->t_state) {
1073
1074 /*
1075 * In FIN_WAIT_1 STATE in addition to the processing
1076 * for the ESTABLISHED state if our FIN is now acknowledged
1077 * then enter FIN_WAIT_2.
1078 */
1079 case TCPS_FIN_WAIT_1:
1080 if (ourfinisacked) {
1081 /*
1082 * If we can't receive any more
1083 * data, then closing user can proceed.
1084 * Starting the timer is contrary to the
1085 * specification, but if we don't get a FIN
1086 * we'll hang forever.
1087 */
1088 if (so->so_state & SS_CANTRCVMORE) {
1089 soisdisconnected(so);
1090 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1091 }
1092 tp->t_state = TCPS_FIN_WAIT_2;
1093 }
1094 break;
1095
1096 /*
1097 * In CLOSING STATE in addition to the processing for
1098 * the ESTABLISHED state if the ACK acknowledges our FIN
1099 * then enter the TIME-WAIT state, otherwise ignore
1100 * the segment.
1101 */
1102 case TCPS_CLOSING:
1103 if (ourfinisacked) {
1104 tp->t_state = TCPS_TIME_WAIT;
1105 tcp_canceltimers(tp);
1106 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1107 soisdisconnected(so);
1108 }
1109 break;
1110
1111 /*
1112 * In LAST_ACK, we may still be waiting for data to drain
1113 * and/or to be acked, as well as for the ack of our FIN.
1114 * If our FIN is now acknowledged, delete the TCB,
1115 * enter the closed state and return.
1116 */
1117 case TCPS_LAST_ACK:
1118 if (ourfinisacked) {
1119 tp = tcp_close(tp);
1120 goto drop;
1121 }
1122 break;
1123
1124 /*
1125 * In TIME_WAIT state the only thing that should arrive
1126 * is a retransmission of the remote FIN. Acknowledge
1127 * it and restart the finack timer.
1128 */
1129 case TCPS_TIME_WAIT:
1130 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1131 goto dropafterack;
1132 }
1133 }
1134
1135 step6:
1136 /*
1137 * Update window information.
1138 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1139 */
1140 if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1141 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1142 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1143 /* keep track of pure window updates */
1144 if (ti->ti_len == 0 &&
1145 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1146 tcpstat.tcps_rcvwinupd++;
1147 tp->snd_wnd = tiwin;
1148 tp->snd_wl1 = ti->ti_seq;
1149 tp->snd_wl2 = ti->ti_ack;
1150 if (tp->snd_wnd > tp->max_sndwnd)
1151 tp->max_sndwnd = tp->snd_wnd;
1152 needoutput = 1;
1153 }
1154
1155 /*
1156 * Process segments with URG.
1157 */
1158 if ((tiflags & TH_URG) && ti->ti_urp &&
1159 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1160 /*
1161 * This is a kludge, but if we receive and accept
1162 * random urgent pointers, we'll crash in
1163 * soreceive. It's hard to imagine someone
1164 * actually wanting to send this much urgent data.
1165 */
1166 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1167 ti->ti_urp = 0; /* XXX */
1168 tiflags &= ~TH_URG; /* XXX */
1169 goto dodata; /* XXX */
1170 }
1171 /*
1172 * If this segment advances the known urgent pointer,
1173 * then mark the data stream. This should not happen
1174 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1175 * a FIN has been received from the remote side.
1176 * In these states we ignore the URG.
1177 *
1178 * According to RFC961 (Assigned Protocols),
1179 * the urgent pointer points to the last octet
1180 * of urgent data. We continue, however,
1181 * to consider it to indicate the first octet
1182 * of data past the urgent section as the original
1183 * spec states (in one of two places).
1184 */
1185 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1186 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1187 so->so_oobmark = so->so_rcv.sb_cc +
1188 (tp->rcv_up - tp->rcv_nxt) - 1;
1189 if (so->so_oobmark == 0)
1190 so->so_state |= SS_RCVATMARK;
1191 sohasoutofband(so);
1192 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1193 }
1194 /*
1195 * Remove out of band data so doesn't get presented to user.
1196 * This can happen independent of advancing the URG pointer,
1197 * but if two URG's are pending at once, some out-of-band
1198 * data may creep in... ick.
1199 */
1200 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1201 #ifdef SO_OOBINLINE
1202 && (so->so_options & SO_OOBINLINE) == 0
1203 #endif
1204 )
1205 tcp_pulloutofband(so, ti, m);
1206 } else
1207 /*
1208 * If no out of band data is expected,
1209 * pull receive urgent pointer along
1210 * with the receive window.
1211 */
1212 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1213 tp->rcv_up = tp->rcv_nxt;
1214 dodata: /* XXX */
1215
1216 /*
1217 * Process the segment text, merging it into the TCP sequencing queue,
1218 * and arranging for acknowledgment of receipt if necessary.
1219 * This process logically involves adjusting tp->rcv_wnd as data
1220 * is presented to the user (this happens in tcp_usrreq.c,
1221 * case PRU_RCVD). If a FIN has already been received on this
1222 * connection then we just ignore the text.
1223 */
1224 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1225 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1226 TCP_REASS(tp, ti, m, so, tiflags);
1227 /*
1228 * Note the amount of data that peer has sent into
1229 * our window, in order to estimate the sender's
1230 * buffer size.
1231 */
1232 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1233 } else {
1234 m_freem(m);
1235 tiflags &= ~TH_FIN;
1236 }
1237
1238 /*
1239 * If FIN is received ACK the FIN and let the user know
1240 * that the connection is closing. Ignore a FIN received before
1241 * the connection is fully established.
1242 */
1243 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1244 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1245 socantrcvmore(so);
1246 tp->t_flags |= TF_ACKNOW;
1247 tp->rcv_nxt++;
1248 }
1249 switch (tp->t_state) {
1250
1251 /*
1252 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1253 */
1254 case TCPS_ESTABLISHED:
1255 tp->t_state = TCPS_CLOSE_WAIT;
1256 break;
1257
1258 /*
1259 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1260 * enter the CLOSING state.
1261 */
1262 case TCPS_FIN_WAIT_1:
1263 tp->t_state = TCPS_CLOSING;
1264 break;
1265
1266 /*
1267 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1268 * starting the time-wait timer, turning off the other
1269 * standard timers.
1270 */
1271 case TCPS_FIN_WAIT_2:
1272 tp->t_state = TCPS_TIME_WAIT;
1273 tcp_canceltimers(tp);
1274 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1275 soisdisconnected(so);
1276 break;
1277
1278 /*
1279 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1280 */
1281 case TCPS_TIME_WAIT:
1282 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1283 break;
1284 }
1285 }
1286 if (so->so_options & SO_DEBUG)
1287 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1288
1289 /*
1290 * Return any desired output.
1291 */
1292 if (needoutput || (tp->t_flags & TF_ACKNOW))
1293 (void) tcp_output(tp);
1294 return;
1295
1296 dropafterack:
1297 /*
1298 * Generate an ACK dropping incoming segment if it occupies
1299 * sequence space, where the ACK reflects our state.
1300 */
1301 if (tiflags & TH_RST)
1302 goto drop;
1303 m_freem(m);
1304 tp->t_flags |= TF_ACKNOW;
1305 (void) tcp_output(tp);
1306 return;
1307
1308 dropwithreset:
1309 /*
1310 * Generate a RST, dropping incoming segment.
1311 * Make ACK acceptable to originator of segment.
1312 * Don't bother to respond if destination was broadcast/multicast.
1313 */
1314 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1315 IN_MULTICAST(ti->ti_dst.s_addr))
1316 goto drop;
1317 if (tiflags & TH_ACK)
1318 tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1319 else {
1320 if (tiflags & TH_SYN)
1321 ti->ti_len++;
1322 tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1323 TH_RST|TH_ACK);
1324 }
1325 /* destroy temporarily created socket */
1326 if (dropsocket)
1327 (void) soabort(so);
1328 return;
1329
1330 drop:
1331 /*
1332 * Drop space held by incoming segment and return.
1333 */
1334 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1335 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1336 m_freem(m);
1337 /* destroy temporarily created socket */
1338 if (dropsocket)
1339 (void) soabort(so);
1340 return;
1341 #ifndef TUBA_INCLUDE
1342 }
1343
1344 void
1345 tcp_dooptions(tp, cp, cnt, ti, ts_present, ts_val, ts_ecr)
1346 struct tcpcb *tp;
1347 u_char *cp;
1348 int cnt;
1349 struct tcpiphdr *ti;
1350 int *ts_present;
1351 u_int32_t *ts_val, *ts_ecr;
1352 {
1353 u_int16_t mss;
1354 int opt, optlen;
1355
1356 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1357 opt = cp[0];
1358 if (opt == TCPOPT_EOL)
1359 break;
1360 if (opt == TCPOPT_NOP)
1361 optlen = 1;
1362 else {
1363 optlen = cp[1];
1364 if (optlen <= 0)
1365 break;
1366 }
1367 switch (opt) {
1368
1369 default:
1370 continue;
1371
1372 case TCPOPT_MAXSEG:
1373 if (optlen != TCPOLEN_MAXSEG)
1374 continue;
1375 if (!(ti->ti_flags & TH_SYN))
1376 continue;
1377 bcopy((char *) cp + 2, (char *) &mss, sizeof(mss));
1378 NTOHS(mss);
1379 (void) tcp_mss(tp, mss); /* sets t_maxseg */
1380 break;
1381
1382 case TCPOPT_WINDOW:
1383 if (optlen != TCPOLEN_WINDOW)
1384 continue;
1385 if (!(ti->ti_flags & TH_SYN))
1386 continue;
1387 tp->t_flags |= TF_RCVD_SCALE;
1388 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1389 break;
1390
1391 case TCPOPT_TIMESTAMP:
1392 if (optlen != TCPOLEN_TIMESTAMP)
1393 continue;
1394 *ts_present = 1;
1395 bcopy((char *)cp + 2, (char *) ts_val, sizeof(*ts_val));
1396 NTOHL(*ts_val);
1397 bcopy((char *)cp + 6, (char *) ts_ecr, sizeof(*ts_ecr));
1398 NTOHL(*ts_ecr);
1399
1400 /*
1401 * A timestamp received in a SYN makes
1402 * it ok to send timestamp requests and replies.
1403 */
1404 if (ti->ti_flags & TH_SYN) {
1405 tp->t_flags |= TF_RCVD_TSTMP;
1406 tp->ts_recent = *ts_val;
1407 tp->ts_recent_age = tcp_now;
1408 }
1409 break;
1410 }
1411 }
1412 }
1413
1414 /*
1415 * Pull out of band byte out of a segment so
1416 * it doesn't appear in the user's data queue.
1417 * It is still reflected in the segment length for
1418 * sequencing purposes.
1419 */
1420 void
1421 tcp_pulloutofband(so, ti, m)
1422 struct socket *so;
1423 struct tcpiphdr *ti;
1424 register struct mbuf *m;
1425 {
1426 int cnt = ti->ti_urp - 1;
1427
1428 while (cnt >= 0) {
1429 if (m->m_len > cnt) {
1430 char *cp = mtod(m, caddr_t) + cnt;
1431 struct tcpcb *tp = sototcpcb(so);
1432
1433 tp->t_iobc = *cp;
1434 tp->t_oobflags |= TCPOOB_HAVEDATA;
1435 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1436 m->m_len--;
1437 return;
1438 }
1439 cnt -= m->m_len;
1440 m = m->m_next;
1441 if (m == 0)
1442 break;
1443 }
1444 panic("tcp_pulloutofband");
1445 }
1446
1447 /*
1448 * Collect new round-trip time estimate
1449 * and update averages and current timeout.
1450 */
1451 void
1452 tcp_xmit_timer(tp, rtt)
1453 register struct tcpcb *tp;
1454 short rtt;
1455 {
1456 register short delta;
1457
1458 tcpstat.tcps_rttupdated++;
1459 --rtt;
1460 if (tp->t_srtt != 0) {
1461 /*
1462 * srtt is stored as fixed point with 3 bits after the
1463 * binary point (i.e., scaled by 8). The following magic
1464 * is equivalent to the smoothing algorithm in rfc793 with
1465 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1466 * point). Adjust rtt to origin 0.
1467 */
1468 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1469 if ((tp->t_srtt += delta) <= 0)
1470 tp->t_srtt = 1 << 2;
1471 /*
1472 * We accumulate a smoothed rtt variance (actually, a
1473 * smoothed mean difference), then set the retransmit
1474 * timer to smoothed rtt + 4 times the smoothed variance.
1475 * rttvar is stored as fixed point with 2 bits after the
1476 * binary point (scaled by 4). The following is
1477 * equivalent to rfc793 smoothing with an alpha of .75
1478 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1479 * rfc793's wired-in beta.
1480 */
1481 if (delta < 0)
1482 delta = -delta;
1483 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1484 if ((tp->t_rttvar += delta) <= 0)
1485 tp->t_rttvar = 1 << 2;
1486 } else {
1487 /*
1488 * No rtt measurement yet - use the unsmoothed rtt.
1489 * Set the variance to half the rtt (so our first
1490 * retransmit happens at 3*rtt).
1491 */
1492 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1493 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1494 }
1495 tp->t_rtt = 0;
1496 tp->t_rxtshift = 0;
1497
1498 /*
1499 * the retransmit should happen at rtt + 4 * rttvar.
1500 * Because of the way we do the smoothing, srtt and rttvar
1501 * will each average +1/2 tick of bias. When we compute
1502 * the retransmit timer, we want 1/2 tick of rounding and
1503 * 1 extra tick because of +-1/2 tick uncertainty in the
1504 * firing of the timer. The bias will give us exactly the
1505 * 1.5 tick we need. But, because the bias is
1506 * statistical, we have to test that we don't drop below
1507 * the minimum feasible timer (which is 2 ticks).
1508 */
1509 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1510 rtt + 2, TCPTV_REXMTMAX);
1511
1512 /*
1513 * We received an ack for a packet that wasn't retransmitted;
1514 * it is probably safe to discard any error indications we've
1515 * received recently. This isn't quite right, but close enough
1516 * for now (a route might have failed after we sent a segment,
1517 * and the return path might not be symmetrical).
1518 */
1519 tp->t_softerror = 0;
1520 }
1521
1522 /*
1523 * Determine a reasonable value for maxseg size.
1524 * If the route is known, check route for mtu.
1525 * If none, use an mss that can be handled on the outgoing
1526 * interface without forcing IP to fragment; if bigger than
1527 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1528 * to utilize large mbufs. If no route is found, route has no mtu,
1529 * or the destination isn't local, use a default, hopefully conservative
1530 * size (usually 512 or the default IP max size, but no more than the mtu
1531 * of the interface), as we can't discover anything about intervening
1532 * gateways or networks. We also initialize the congestion/slow start
1533 * window to be a single segment if the destination isn't local.
1534 * While looking at the routing entry, we also initialize other path-dependent
1535 * parameters from pre-set or cached values in the routing entry.
1536 */
1537 int
1538 tcp_mss(tp, offer)
1539 register struct tcpcb *tp;
1540 u_int offer;
1541 {
1542 struct route *ro;
1543 register struct rtentry *rt;
1544 struct ifnet *ifp;
1545 register int rtt, mss;
1546 u_long bufsize;
1547 struct inpcb *inp;
1548 struct socket *so;
1549 extern int tcp_mssdflt;
1550
1551 inp = tp->t_inpcb;
1552 ro = &inp->inp_route;
1553
1554 if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1555 /* No route yet, so try to acquire one */
1556 if (!in_nullhost(inp->inp_faddr)) {
1557 ro->ro_dst.sa_family = AF_INET;
1558 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1559 satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
1560 rtalloc(ro);
1561 }
1562 if ((rt = ro->ro_rt) == (struct rtentry *)0)
1563 return (tcp_mssdflt);
1564 }
1565 ifp = rt->rt_ifp;
1566 so = inp->inp_socket;
1567
1568 #ifdef RTV_MTU /* if route characteristics exist ... */
1569 /*
1570 * While we're here, check if there's an initial rtt
1571 * or rttvar. Convert from the route-table units
1572 * to scaled multiples of the slow timeout timer.
1573 */
1574 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1575 /*
1576 * XXX the lock bit for MTU indicates that the value
1577 * is also a minimum value; this is subject to time.
1578 */
1579 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1580 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1581 tp->t_srtt = rtt /
1582 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1583 if (rt->rt_rmx.rmx_rttvar)
1584 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1585 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1586 else
1587 /* default variation is +- 1 rtt */
1588 tp->t_rttvar =
1589 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1590 TCPT_RANGESET(tp->t_rxtcur,
1591 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1592 tp->t_rttmin, TCPTV_REXMTMAX);
1593 }
1594 /*
1595 * if there's an mtu associated with the route, use it
1596 */
1597 if (rt->rt_rmx.rmx_mtu)
1598 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1599 else
1600 #endif /* RTV_MTU */
1601 {
1602 mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1603 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1604 if (mss > MCLBYTES)
1605 mss &= ~(MCLBYTES-1);
1606 #else
1607 if (mss > MCLBYTES)
1608 mss = mss / MCLBYTES * MCLBYTES;
1609 #endif
1610 if (!in_localaddr(inp->inp_faddr))
1611 mss = min(mss, tcp_mssdflt);
1612 }
1613 /*
1614 * The current mss, t_maxseg, is initialized to the default value.
1615 * If we compute a smaller value, reduce the current mss.
1616 * If we compute a larger value, return it for use in sending
1617 * a max seg size option, but don't store it for use
1618 * unless we received an offer at least that large from peer.
1619 * However, do not accept offers under 32 bytes.
1620 */
1621 if (offer)
1622 mss = min(mss, offer);
1623 mss = max(mss, 32); /* sanity */
1624 if (mss < tp->t_maxseg || offer != 0) {
1625 /*
1626 * If there's a pipesize, change the socket buffer
1627 * to that size. Make the socket buffers an integral
1628 * number of mss units; if the mss is larger than
1629 * the socket buffer, decrease the mss.
1630 */
1631 #ifdef RTV_SPIPE
1632 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1633 #endif
1634 bufsize = so->so_snd.sb_hiwat;
1635 if (bufsize < mss)
1636 mss = bufsize;
1637 else {
1638 bufsize = roundup(bufsize, mss);
1639 if (bufsize > sb_max)
1640 bufsize = sb_max;
1641 (void)sbreserve(&so->so_snd, bufsize);
1642 }
1643 tp->t_maxseg = mss;
1644
1645 #ifdef RTV_RPIPE
1646 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1647 #endif
1648 bufsize = so->so_rcv.sb_hiwat;
1649 if (bufsize > mss) {
1650 bufsize = roundup(bufsize, mss);
1651 if (bufsize > sb_max)
1652 bufsize = sb_max;
1653 (void)sbreserve(&so->so_rcv, bufsize);
1654 }
1655 }
1656 tp->snd_cwnd = mss;
1657
1658 #ifdef RTV_SSTHRESH
1659 if (rt->rt_rmx.rmx_ssthresh) {
1660 /*
1661 * There's some sort of gateway or interface
1662 * buffer limit on the path. Use this to set
1663 * the slow start threshhold, but set the
1664 * threshold to no less than 2*mss.
1665 */
1666 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1667 }
1668 #endif /* RTV_MTU */
1669 return (mss);
1670 }
1671 #endif /* TUBA_INCLUDE */
1672