tcp_input.c revision 1.272 1 /* $NetBSD: tcp_input.c,v 1.272 2007/11/09 23:55:58 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 * 3. All advertising materials mentioning features or use of this software
93 * must display the following acknowledgement:
94 * This product includes software developed by the NetBSD
95 * Foundation, Inc. and its contributors.
96 * 4. Neither the name of The NetBSD Foundation nor the names of its
97 * contributors may be used to endorse or promote products derived
98 * from this software without specific prior written permission.
99 *
100 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
101 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
102 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
103 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
104 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
105 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
106 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
107 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
108 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
109 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
110 * POSSIBILITY OF SUCH DAMAGE.
111 */
112
113 /*
114 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
115 * The Regents of the University of California. All rights reserved.
116 *
117 * Redistribution and use in source and binary forms, with or without
118 * modification, are permitted provided that the following conditions
119 * are met:
120 * 1. Redistributions of source code must retain the above copyright
121 * notice, this list of conditions and the following disclaimer.
122 * 2. Redistributions in binary form must reproduce the above copyright
123 * notice, this list of conditions and the following disclaimer in the
124 * documentation and/or other materials provided with the distribution.
125 * 3. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.272 2007/11/09 23:55:58 dyoung Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 #ifdef TCP_SIGNATURE
175 #include <sys/md5.h>
176 #endif
177
178 #include <net/if.h>
179 #include <net/route.h>
180 #include <net/if_types.h>
181
182 #include <netinet/in.h>
183 #include <netinet/in_systm.h>
184 #include <netinet/ip.h>
185 #include <netinet/in_pcb.h>
186 #include <netinet/in_var.h>
187 #include <netinet/ip_var.h>
188 #include <netinet/in_offload.h>
189
190 #ifdef INET6
191 #ifndef INET
192 #include <netinet/in.h>
193 #endif
194 #include <netinet/ip6.h>
195 #include <netinet6/ip6_var.h>
196 #include <netinet6/in6_pcb.h>
197 #include <netinet6/ip6_var.h>
198 #include <netinet6/in6_var.h>
199 #include <netinet/icmp6.h>
200 #include <netinet6/nd6.h>
201 #ifdef TCP_SIGNATURE
202 #include <netinet6/scope6_var.h>
203 #endif
204 #endif
205
206 #ifndef INET6
207 /* always need ip6.h for IP6_EXTHDR_GET */
208 #include <netinet/ip6.h>
209 #endif
210
211 #include <netinet/tcp.h>
212 #include <netinet/tcp_fsm.h>
213 #include <netinet/tcp_seq.h>
214 #include <netinet/tcp_timer.h>
215 #include <netinet/tcp_var.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219
220 #include <machine/stdarg.h>
221
222 #ifdef IPSEC
223 #include <netinet6/ipsec.h>
224 #include <netkey/key.h>
225 #endif /*IPSEC*/
226 #ifdef INET6
227 #include "faith.h"
228 #if defined(NFAITH) && NFAITH > 0
229 #include <net/if_faith.h>
230 #endif
231 #endif /* IPSEC */
232
233 #ifdef FAST_IPSEC
234 #include <netipsec/ipsec.h>
235 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
236 #include <netipsec/key.h>
237 #ifdef INET6
238 #include <netipsec/ipsec6.h>
239 #endif
240 #endif /* FAST_IPSEC*/
241
242 int tcprexmtthresh = 3;
243 int tcp_log_refused;
244
245 int tcp_do_autorcvbuf = 0;
246 int tcp_autorcvbuf_inc = 16 * 1024;
247 int tcp_autorcvbuf_max = 256 * 1024;
248
249 static int tcp_rst_ppslim_count = 0;
250 static struct timeval tcp_rst_ppslim_last;
251 static int tcp_ackdrop_ppslim_count = 0;
252 static struct timeval tcp_ackdrop_ppslim_last;
253
254 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
255
256 /* for modulo comparisons of timestamps */
257 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
258 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
259
260 /*
261 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
262 */
263 #ifdef INET6
264 #define ND6_HINT(tp) \
265 do { \
266 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
267 tp->t_in6pcb->in6p_route.ro_rt) { \
268 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
269 } \
270 } while (/*CONSTCOND*/ 0)
271 #else
272 #define ND6_HINT(tp)
273 #endif
274
275 /*
276 * Macro to compute ACK transmission behavior. Delay the ACK unless
277 * we have already delayed an ACK (must send an ACK every two segments).
278 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
279 * option is enabled.
280 */
281 #define TCP_SETUP_ACK(tp, th) \
282 do { \
283 if ((tp)->t_flags & TF_DELACK || \
284 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
285 tp->t_flags |= TF_ACKNOW; \
286 else \
287 TCP_SET_DELACK(tp); \
288 } while (/*CONSTCOND*/ 0)
289
290 #define ICMP_CHECK(tp, th, acked) \
291 do { \
292 /* \
293 * If we had a pending ICMP message that \
294 * refers to data that have just been \
295 * acknowledged, disregard the recorded ICMP \
296 * message. \
297 */ \
298 if (((tp)->t_flags & TF_PMTUD_PEND) && \
299 SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
300 (tp)->t_flags &= ~TF_PMTUD_PEND; \
301 \
302 /* \
303 * Keep track of the largest chunk of data \
304 * acknowledged since last PMTU update \
305 */ \
306 if ((tp)->t_pmtud_mss_acked < (acked)) \
307 (tp)->t_pmtud_mss_acked = (acked); \
308 } while (/*CONSTCOND*/ 0)
309
310 /*
311 * Convert TCP protocol fields to host order for easier processing.
312 */
313 #define TCP_FIELDS_TO_HOST(th) \
314 do { \
315 NTOHL((th)->th_seq); \
316 NTOHL((th)->th_ack); \
317 NTOHS((th)->th_win); \
318 NTOHS((th)->th_urp); \
319 } while (/*CONSTCOND*/ 0)
320
321 /*
322 * ... and reverse the above.
323 */
324 #define TCP_FIELDS_TO_NET(th) \
325 do { \
326 HTONL((th)->th_seq); \
327 HTONL((th)->th_ack); \
328 HTONS((th)->th_win); \
329 HTONS((th)->th_urp); \
330 } while (/*CONSTCOND*/ 0)
331
332 #ifdef TCP_CSUM_COUNTERS
333 #include <sys/device.h>
334
335 #if defined(INET)
336 extern struct evcnt tcp_hwcsum_ok;
337 extern struct evcnt tcp_hwcsum_bad;
338 extern struct evcnt tcp_hwcsum_data;
339 extern struct evcnt tcp_swcsum;
340 #endif /* defined(INET) */
341 #if defined(INET6)
342 extern struct evcnt tcp6_hwcsum_ok;
343 extern struct evcnt tcp6_hwcsum_bad;
344 extern struct evcnt tcp6_hwcsum_data;
345 extern struct evcnt tcp6_swcsum;
346 #endif /* defined(INET6) */
347
348 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
349
350 #else
351
352 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
353
354 #endif /* TCP_CSUM_COUNTERS */
355
356 #ifdef TCP_REASS_COUNTERS
357 #include <sys/device.h>
358
359 extern struct evcnt tcp_reass_;
360 extern struct evcnt tcp_reass_empty;
361 extern struct evcnt tcp_reass_iteration[8];
362 extern struct evcnt tcp_reass_prependfirst;
363 extern struct evcnt tcp_reass_prepend;
364 extern struct evcnt tcp_reass_insert;
365 extern struct evcnt tcp_reass_inserttail;
366 extern struct evcnt tcp_reass_append;
367 extern struct evcnt tcp_reass_appendtail;
368 extern struct evcnt tcp_reass_overlaptail;
369 extern struct evcnt tcp_reass_overlapfront;
370 extern struct evcnt tcp_reass_segdup;
371 extern struct evcnt tcp_reass_fragdup;
372
373 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
374
375 #else
376
377 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
378
379 #endif /* TCP_REASS_COUNTERS */
380
381 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
382 int *);
383 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
384 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
385
386 #ifdef INET
387 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
388 #endif
389 #ifdef INET6
390 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
391 #endif
392
393 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
394
395 #if defined(MBUFTRACE)
396 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
397 #endif /* defined(MBUFTRACE) */
398
399 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
400 NULL, IPL_VM);
401
402 struct ipqent *
403 tcpipqent_alloc()
404 {
405 struct ipqent *ipqe;
406 int s;
407
408 s = splvm();
409 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
410 splx(s);
411
412 return ipqe;
413 }
414
415 void
416 tcpipqent_free(struct ipqent *ipqe)
417 {
418 int s;
419
420 s = splvm();
421 pool_put(&tcpipqent_pool, ipqe);
422 splx(s);
423 }
424
425 static int
426 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
427 {
428 struct ipqent *p, *q, *nq, *tiqe = NULL;
429 struct socket *so = NULL;
430 int pkt_flags;
431 tcp_seq pkt_seq;
432 unsigned pkt_len;
433 u_long rcvpartdupbyte = 0;
434 u_long rcvoobyte;
435 #ifdef TCP_REASS_COUNTERS
436 u_int count = 0;
437 #endif
438
439 if (tp->t_inpcb)
440 so = tp->t_inpcb->inp_socket;
441 #ifdef INET6
442 else if (tp->t_in6pcb)
443 so = tp->t_in6pcb->in6p_socket;
444 #endif
445
446 TCP_REASS_LOCK_CHECK(tp);
447
448 /*
449 * Call with th==0 after become established to
450 * force pre-ESTABLISHED data up to user socket.
451 */
452 if (th == 0)
453 goto present;
454
455 m_claimm(m, &tcp_reass_mowner);
456
457 rcvoobyte = *tlen;
458 /*
459 * Copy these to local variables because the tcpiphdr
460 * gets munged while we are collapsing mbufs.
461 */
462 pkt_seq = th->th_seq;
463 pkt_len = *tlen;
464 pkt_flags = th->th_flags;
465
466 TCP_REASS_COUNTER_INCR(&tcp_reass_);
467
468 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
469 /*
470 * When we miss a packet, the vast majority of time we get
471 * packets that follow it in order. So optimize for that.
472 */
473 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
474 p->ipqe_len += pkt_len;
475 p->ipqe_flags |= pkt_flags;
476 m_cat(p->ipre_mlast, m);
477 TRAVERSE(p->ipre_mlast);
478 m = NULL;
479 tiqe = p;
480 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
481 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
482 goto skip_replacement;
483 }
484 /*
485 * While we're here, if the pkt is completely beyond
486 * anything we have, just insert it at the tail.
487 */
488 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
489 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
490 goto insert_it;
491 }
492 }
493
494 q = TAILQ_FIRST(&tp->segq);
495
496 if (q != NULL) {
497 /*
498 * If this segment immediately precedes the first out-of-order
499 * block, simply slap the segment in front of it and (mostly)
500 * skip the complicated logic.
501 */
502 if (pkt_seq + pkt_len == q->ipqe_seq) {
503 q->ipqe_seq = pkt_seq;
504 q->ipqe_len += pkt_len;
505 q->ipqe_flags |= pkt_flags;
506 m_cat(m, q->ipqe_m);
507 q->ipqe_m = m;
508 q->ipre_mlast = m; /* last mbuf may have changed */
509 TRAVERSE(q->ipre_mlast);
510 tiqe = q;
511 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
512 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
513 goto skip_replacement;
514 }
515 } else {
516 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
517 }
518
519 /*
520 * Find a segment which begins after this one does.
521 */
522 for (p = NULL; q != NULL; q = nq) {
523 nq = TAILQ_NEXT(q, ipqe_q);
524 #ifdef TCP_REASS_COUNTERS
525 count++;
526 #endif
527 /*
528 * If the received segment is just right after this
529 * fragment, merge the two together and then check
530 * for further overlaps.
531 */
532 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
533 #ifdef TCPREASS_DEBUG
534 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
535 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
536 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
537 #endif
538 pkt_len += q->ipqe_len;
539 pkt_flags |= q->ipqe_flags;
540 pkt_seq = q->ipqe_seq;
541 m_cat(q->ipre_mlast, m);
542 TRAVERSE(q->ipre_mlast);
543 m = q->ipqe_m;
544 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
545 goto free_ipqe;
546 }
547 /*
548 * If the received segment is completely past this
549 * fragment, we need to go the next fragment.
550 */
551 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
552 p = q;
553 continue;
554 }
555 /*
556 * If the fragment is past the received segment,
557 * it (or any following) can't be concatenated.
558 */
559 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
560 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
561 break;
562 }
563
564 /*
565 * We've received all the data in this segment before.
566 * mark it as a duplicate and return.
567 */
568 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
569 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
570 tcpstat.tcps_rcvduppack++;
571 tcpstat.tcps_rcvdupbyte += pkt_len;
572 tcp_new_dsack(tp, pkt_seq, pkt_len);
573 m_freem(m);
574 if (tiqe != NULL) {
575 tcpipqent_free(tiqe);
576 }
577 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
578 return (0);
579 }
580 /*
581 * Received segment completely overlaps this fragment
582 * so we drop the fragment (this keeps the temporal
583 * ordering of segments correct).
584 */
585 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
586 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 rcvpartdupbyte += q->ipqe_len;
588 m_freem(q->ipqe_m);
589 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
590 goto free_ipqe;
591 }
592 /*
593 * RX'ed segment extends past the end of the
594 * fragment. Drop the overlapping bytes. Then
595 * merge the fragment and segment then treat as
596 * a longer received packet.
597 */
598 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
599 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
600 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
601 #ifdef TCPREASS_DEBUG
602 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
603 tp, overlap,
604 pkt_seq, pkt_seq + pkt_len, pkt_len);
605 #endif
606 m_adj(m, overlap);
607 rcvpartdupbyte += overlap;
608 m_cat(q->ipre_mlast, m);
609 TRAVERSE(q->ipre_mlast);
610 m = q->ipqe_m;
611 pkt_seq = q->ipqe_seq;
612 pkt_len += q->ipqe_len - overlap;
613 rcvoobyte -= overlap;
614 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
615 goto free_ipqe;
616 }
617 /*
618 * RX'ed segment extends past the front of the
619 * fragment. Drop the overlapping bytes on the
620 * received packet. The packet will then be
621 * contatentated with this fragment a bit later.
622 */
623 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
624 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
625 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
626 #ifdef TCPREASS_DEBUG
627 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
628 tp, overlap,
629 pkt_seq, pkt_seq + pkt_len, pkt_len);
630 #endif
631 m_adj(m, -overlap);
632 pkt_len -= overlap;
633 rcvpartdupbyte += overlap;
634 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
635 rcvoobyte -= overlap;
636 }
637 /*
638 * If the received segment immediates precedes this
639 * fragment then tack the fragment onto this segment
640 * and reinsert the data.
641 */
642 if (q->ipqe_seq == pkt_seq + pkt_len) {
643 #ifdef TCPREASS_DEBUG
644 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
645 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
646 pkt_seq, pkt_seq + pkt_len, pkt_len);
647 #endif
648 pkt_len += q->ipqe_len;
649 pkt_flags |= q->ipqe_flags;
650 m_cat(m, q->ipqe_m);
651 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
652 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
653 tp->t_segqlen--;
654 KASSERT(tp->t_segqlen >= 0);
655 KASSERT(tp->t_segqlen != 0 ||
656 (TAILQ_EMPTY(&tp->segq) &&
657 TAILQ_EMPTY(&tp->timeq)));
658 if (tiqe == NULL) {
659 tiqe = q;
660 } else {
661 tcpipqent_free(q);
662 }
663 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
664 break;
665 }
666 /*
667 * If the fragment is before the segment, remember it.
668 * When this loop is terminated, p will contain the
669 * pointer to fragment that is right before the received
670 * segment.
671 */
672 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
673 p = q;
674
675 continue;
676
677 /*
678 * This is a common operation. It also will allow
679 * to save doing a malloc/free in most instances.
680 */
681 free_ipqe:
682 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
683 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
684 tp->t_segqlen--;
685 KASSERT(tp->t_segqlen >= 0);
686 KASSERT(tp->t_segqlen != 0 ||
687 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
688 if (tiqe == NULL) {
689 tiqe = q;
690 } else {
691 tcpipqent_free(q);
692 }
693 }
694
695 #ifdef TCP_REASS_COUNTERS
696 if (count > 7)
697 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
698 else if (count > 0)
699 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
700 #endif
701
702 insert_it:
703
704 /*
705 * Allocate a new queue entry since the received segment did not
706 * collapse onto any other out-of-order block; thus we are allocating
707 * a new block. If it had collapsed, tiqe would not be NULL and
708 * we would be reusing it.
709 * XXX If we can't, just drop the packet. XXX
710 */
711 if (tiqe == NULL) {
712 tiqe = tcpipqent_alloc();
713 if (tiqe == NULL) {
714 tcpstat.tcps_rcvmemdrop++;
715 m_freem(m);
716 return (0);
717 }
718 }
719
720 /*
721 * Update the counters.
722 */
723 tcpstat.tcps_rcvoopack++;
724 tcpstat.tcps_rcvoobyte += rcvoobyte;
725 if (rcvpartdupbyte) {
726 tcpstat.tcps_rcvpartduppack++;
727 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
728 }
729
730 /*
731 * Insert the new fragment queue entry into both queues.
732 */
733 tiqe->ipqe_m = m;
734 tiqe->ipre_mlast = m;
735 tiqe->ipqe_seq = pkt_seq;
736 tiqe->ipqe_len = pkt_len;
737 tiqe->ipqe_flags = pkt_flags;
738 if (p == NULL) {
739 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
740 #ifdef TCPREASS_DEBUG
741 if (tiqe->ipqe_seq != tp->rcv_nxt)
742 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
743 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
744 #endif
745 } else {
746 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
747 #ifdef TCPREASS_DEBUG
748 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
749 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
750 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
751 #endif
752 }
753 tp->t_segqlen++;
754
755 skip_replacement:
756
757 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
758
759 present:
760 /*
761 * Present data to user, advancing rcv_nxt through
762 * completed sequence space.
763 */
764 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
765 return (0);
766 q = TAILQ_FIRST(&tp->segq);
767 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
768 return (0);
769 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
770 return (0);
771
772 tp->rcv_nxt += q->ipqe_len;
773 pkt_flags = q->ipqe_flags & TH_FIN;
774 ND6_HINT(tp);
775
776 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
777 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
778 tp->t_segqlen--;
779 KASSERT(tp->t_segqlen >= 0);
780 KASSERT(tp->t_segqlen != 0 ||
781 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
782 if (so->so_state & SS_CANTRCVMORE)
783 m_freem(q->ipqe_m);
784 else
785 sbappendstream(&so->so_rcv, q->ipqe_m);
786 tcpipqent_free(q);
787 sorwakeup(so);
788 return (pkt_flags);
789 }
790
791 #ifdef INET6
792 int
793 tcp6_input(struct mbuf **mp, int *offp, int proto)
794 {
795 struct mbuf *m = *mp;
796
797 /*
798 * draft-itojun-ipv6-tcp-to-anycast
799 * better place to put this in?
800 */
801 if (m->m_flags & M_ANYCAST6) {
802 struct ip6_hdr *ip6;
803 if (m->m_len < sizeof(struct ip6_hdr)) {
804 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
805 tcpstat.tcps_rcvshort++;
806 return IPPROTO_DONE;
807 }
808 }
809 ip6 = mtod(m, struct ip6_hdr *);
810 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
811 (char *)&ip6->ip6_dst - (char *)ip6);
812 return IPPROTO_DONE;
813 }
814
815 tcp_input(m, *offp, proto);
816 return IPPROTO_DONE;
817 }
818 #endif
819
820 #ifdef INET
821 static void
822 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
823 {
824 char src[4*sizeof "123"];
825 char dst[4*sizeof "123"];
826
827 if (ip) {
828 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
829 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
830 }
831 else {
832 strlcpy(src, "(unknown)", sizeof(src));
833 strlcpy(dst, "(unknown)", sizeof(dst));
834 }
835 log(LOG_INFO,
836 "Connection attempt to TCP %s:%d from %s:%d\n",
837 dst, ntohs(th->th_dport),
838 src, ntohs(th->th_sport));
839 }
840 #endif
841
842 #ifdef INET6
843 static void
844 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
845 {
846 char src[INET6_ADDRSTRLEN];
847 char dst[INET6_ADDRSTRLEN];
848
849 if (ip6) {
850 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
851 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
852 }
853 else {
854 strlcpy(src, "(unknown v6)", sizeof(src));
855 strlcpy(dst, "(unknown v6)", sizeof(dst));
856 }
857 log(LOG_INFO,
858 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
859 dst, ntohs(th->th_dport),
860 src, ntohs(th->th_sport));
861 }
862 #endif
863
864 /*
865 * Checksum extended TCP header and data.
866 */
867 int
868 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
869 int toff, int off, int tlen)
870 {
871
872 /*
873 * XXX it's better to record and check if this mbuf is
874 * already checked.
875 */
876
877 switch (af) {
878 #ifdef INET
879 case AF_INET:
880 switch (m->m_pkthdr.csum_flags &
881 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
882 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
883 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
884 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
885 goto badcsum;
886
887 case M_CSUM_TCPv4|M_CSUM_DATA: {
888 u_int32_t hw_csum = m->m_pkthdr.csum_data;
889
890 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
891 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
892 const struct ip *ip =
893 mtod(m, const struct ip *);
894
895 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
896 ip->ip_dst.s_addr,
897 htons(hw_csum + tlen + off + IPPROTO_TCP));
898 }
899 if ((hw_csum ^ 0xffff) != 0)
900 goto badcsum;
901 break;
902 }
903
904 case M_CSUM_TCPv4:
905 /* Checksum was okay. */
906 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
907 break;
908
909 default:
910 /*
911 * Must compute it ourselves. Maybe skip checksum
912 * on loopback interfaces.
913 */
914 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
915 IFF_LOOPBACK) ||
916 tcp_do_loopback_cksum)) {
917 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
918 if (in4_cksum(m, IPPROTO_TCP, toff,
919 tlen + off) != 0)
920 goto badcsum;
921 }
922 break;
923 }
924 break;
925 #endif /* INET4 */
926
927 #ifdef INET6
928 case AF_INET6:
929 switch (m->m_pkthdr.csum_flags &
930 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
931 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
932 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
933 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
934 goto badcsum;
935
936 #if 0 /* notyet */
937 case M_CSUM_TCPv6|M_CSUM_DATA:
938 #endif
939
940 case M_CSUM_TCPv6:
941 /* Checksum was okay. */
942 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
943 break;
944
945 default:
946 /*
947 * Must compute it ourselves. Maybe skip checksum
948 * on loopback interfaces.
949 */
950 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
951 tcp_do_loopback_cksum)) {
952 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
953 if (in6_cksum(m, IPPROTO_TCP, toff,
954 tlen + off) != 0)
955 goto badcsum;
956 }
957 }
958 break;
959 #endif /* INET6 */
960 }
961
962 return 0;
963
964 badcsum:
965 tcpstat.tcps_rcvbadsum++;
966 return -1;
967 }
968
969 /*
970 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
971 */
972 void
973 tcp_input(struct mbuf *m, ...)
974 {
975 struct tcphdr *th;
976 struct ip *ip;
977 struct inpcb *inp;
978 #ifdef INET6
979 struct ip6_hdr *ip6;
980 struct in6pcb *in6p;
981 #endif
982 u_int8_t *optp = NULL;
983 int optlen = 0;
984 int len, tlen, toff, hdroptlen = 0;
985 struct tcpcb *tp = 0;
986 int tiflags;
987 struct socket *so = NULL;
988 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
989 #ifdef TCP_DEBUG
990 short ostate = 0;
991 #endif
992 u_long tiwin;
993 struct tcp_opt_info opti;
994 int off, iphlen;
995 va_list ap;
996 int af; /* af on the wire */
997 struct mbuf *tcp_saveti = NULL;
998 uint32_t ts_rtt;
999 uint8_t iptos;
1000
1001 MCLAIM(m, &tcp_rx_mowner);
1002 va_start(ap, m);
1003 toff = va_arg(ap, int);
1004 (void)va_arg(ap, int); /* ignore value, advance ap */
1005 va_end(ap);
1006
1007 tcpstat.tcps_rcvtotal++;
1008
1009 bzero(&opti, sizeof(opti));
1010 opti.ts_present = 0;
1011 opti.maxseg = 0;
1012
1013 /*
1014 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1015 *
1016 * TCP is, by definition, unicast, so we reject all
1017 * multicast outright.
1018 *
1019 * Note, there are additional src/dst address checks in
1020 * the AF-specific code below.
1021 */
1022 if (m->m_flags & (M_BCAST|M_MCAST)) {
1023 /* XXX stat */
1024 goto drop;
1025 }
1026 #ifdef INET6
1027 if (m->m_flags & M_ANYCAST6) {
1028 /* XXX stat */
1029 goto drop;
1030 }
1031 #endif
1032
1033 /*
1034 * Get IP and TCP header.
1035 * Note: IP leaves IP header in first mbuf.
1036 */
1037 ip = mtod(m, struct ip *);
1038 #ifdef INET6
1039 ip6 = NULL;
1040 #endif
1041 switch (ip->ip_v) {
1042 #ifdef INET
1043 case 4:
1044 af = AF_INET;
1045 iphlen = sizeof(struct ip);
1046 ip = mtod(m, struct ip *);
1047 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1048 sizeof(struct tcphdr));
1049 if (th == NULL) {
1050 tcpstat.tcps_rcvshort++;
1051 return;
1052 }
1053 /* We do the checksum after PCB lookup... */
1054 len = ntohs(ip->ip_len);
1055 tlen = len - toff;
1056 iptos = ip->ip_tos;
1057 break;
1058 #endif
1059 #ifdef INET6
1060 case 6:
1061 ip = NULL;
1062 iphlen = sizeof(struct ip6_hdr);
1063 af = AF_INET6;
1064 ip6 = mtod(m, struct ip6_hdr *);
1065 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1066 sizeof(struct tcphdr));
1067 if (th == NULL) {
1068 tcpstat.tcps_rcvshort++;
1069 return;
1070 }
1071
1072 /* Be proactive about malicious use of IPv4 mapped address */
1073 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1074 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1075 /* XXX stat */
1076 goto drop;
1077 }
1078
1079 /*
1080 * Be proactive about unspecified IPv6 address in source.
1081 * As we use all-zero to indicate unbounded/unconnected pcb,
1082 * unspecified IPv6 address can be used to confuse us.
1083 *
1084 * Note that packets with unspecified IPv6 destination is
1085 * already dropped in ip6_input.
1086 */
1087 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1088 /* XXX stat */
1089 goto drop;
1090 }
1091
1092 /*
1093 * Make sure destination address is not multicast.
1094 * Source address checked in ip6_input().
1095 */
1096 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1097 /* XXX stat */
1098 goto drop;
1099 }
1100
1101 /* We do the checksum after PCB lookup... */
1102 len = m->m_pkthdr.len;
1103 tlen = len - toff;
1104 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1105 break;
1106 #endif
1107 default:
1108 m_freem(m);
1109 return;
1110 }
1111
1112 KASSERT(TCP_HDR_ALIGNED_P(th));
1113
1114 /*
1115 * Check that TCP offset makes sense,
1116 * pull out TCP options and adjust length. XXX
1117 */
1118 off = th->th_off << 2;
1119 if (off < sizeof (struct tcphdr) || off > tlen) {
1120 tcpstat.tcps_rcvbadoff++;
1121 goto drop;
1122 }
1123 tlen -= off;
1124
1125 /*
1126 * tcp_input() has been modified to use tlen to mean the TCP data
1127 * length throughout the function. Other functions can use
1128 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1129 * rja
1130 */
1131
1132 if (off > sizeof (struct tcphdr)) {
1133 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1134 if (th == NULL) {
1135 tcpstat.tcps_rcvshort++;
1136 return;
1137 }
1138 /*
1139 * NOTE: ip/ip6 will not be affected by m_pulldown()
1140 * (as they're before toff) and we don't need to update those.
1141 */
1142 KASSERT(TCP_HDR_ALIGNED_P(th));
1143 optlen = off - sizeof (struct tcphdr);
1144 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1145 /*
1146 * Do quick retrieval of timestamp options ("options
1147 * prediction?"). If timestamp is the only option and it's
1148 * formatted as recommended in RFC 1323 appendix A, we
1149 * quickly get the values now and not bother calling
1150 * tcp_dooptions(), etc.
1151 */
1152 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1153 (optlen > TCPOLEN_TSTAMP_APPA &&
1154 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1155 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1156 (th->th_flags & TH_SYN) == 0) {
1157 opti.ts_present = 1;
1158 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1159 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1160 optp = NULL; /* we've parsed the options */
1161 }
1162 }
1163 tiflags = th->th_flags;
1164
1165 /*
1166 * Locate pcb for segment.
1167 */
1168 findpcb:
1169 inp = NULL;
1170 #ifdef INET6
1171 in6p = NULL;
1172 #endif
1173 switch (af) {
1174 #ifdef INET
1175 case AF_INET:
1176 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1177 ip->ip_dst, th->th_dport);
1178 if (inp == 0) {
1179 ++tcpstat.tcps_pcbhashmiss;
1180 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1181 }
1182 #ifdef INET6
1183 if (inp == 0) {
1184 struct in6_addr s, d;
1185
1186 /* mapped addr case */
1187 bzero(&s, sizeof(s));
1188 s.s6_addr16[5] = htons(0xffff);
1189 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1190 bzero(&d, sizeof(d));
1191 d.s6_addr16[5] = htons(0xffff);
1192 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1193 in6p = in6_pcblookup_connect(&tcbtable, &s,
1194 th->th_sport, &d, th->th_dport, 0);
1195 if (in6p == 0) {
1196 ++tcpstat.tcps_pcbhashmiss;
1197 in6p = in6_pcblookup_bind(&tcbtable, &d,
1198 th->th_dport, 0);
1199 }
1200 }
1201 #endif
1202 #ifndef INET6
1203 if (inp == 0)
1204 #else
1205 if (inp == 0 && in6p == 0)
1206 #endif
1207 {
1208 ++tcpstat.tcps_noport;
1209 if (tcp_log_refused &&
1210 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1211 tcp4_log_refused(ip, th);
1212 }
1213 TCP_FIELDS_TO_HOST(th);
1214 goto dropwithreset_ratelim;
1215 }
1216 #if defined(IPSEC) || defined(FAST_IPSEC)
1217 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1218 ipsec4_in_reject(m, inp)) {
1219 ipsecstat.in_polvio++;
1220 goto drop;
1221 }
1222 #ifdef INET6
1223 else if (in6p &&
1224 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1225 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1226 ipsecstat.in_polvio++;
1227 goto drop;
1228 }
1229 #endif
1230 #endif /*IPSEC*/
1231 break;
1232 #endif /*INET*/
1233 #ifdef INET6
1234 case AF_INET6:
1235 {
1236 int faith;
1237
1238 #if defined(NFAITH) && NFAITH > 0
1239 faith = faithprefix(&ip6->ip6_dst);
1240 #else
1241 faith = 0;
1242 #endif
1243 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1244 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1245 if (in6p == NULL) {
1246 ++tcpstat.tcps_pcbhashmiss;
1247 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1248 th->th_dport, faith);
1249 }
1250 if (in6p == NULL) {
1251 ++tcpstat.tcps_noport;
1252 if (tcp_log_refused &&
1253 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1254 tcp6_log_refused(ip6, th);
1255 }
1256 TCP_FIELDS_TO_HOST(th);
1257 goto dropwithreset_ratelim;
1258 }
1259 #if defined(IPSEC) || defined(FAST_IPSEC)
1260 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1261 ipsec6_in_reject(m, in6p)) {
1262 ipsec6stat.in_polvio++;
1263 goto drop;
1264 }
1265 #endif /*IPSEC*/
1266 break;
1267 }
1268 #endif
1269 }
1270
1271 /*
1272 * If the state is CLOSED (i.e., TCB does not exist) then
1273 * all data in the incoming segment is discarded.
1274 * If the TCB exists but is in CLOSED state, it is embryonic,
1275 * but should either do a listen or a connect soon.
1276 */
1277 tp = NULL;
1278 so = NULL;
1279 if (inp) {
1280 tp = intotcpcb(inp);
1281 so = inp->inp_socket;
1282 }
1283 #ifdef INET6
1284 else if (in6p) {
1285 tp = in6totcpcb(in6p);
1286 so = in6p->in6p_socket;
1287 }
1288 #endif
1289 if (tp == 0) {
1290 TCP_FIELDS_TO_HOST(th);
1291 goto dropwithreset_ratelim;
1292 }
1293 if (tp->t_state == TCPS_CLOSED)
1294 goto drop;
1295
1296 /*
1297 * Checksum extended TCP header and data.
1298 */
1299 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1300 goto badcsum;
1301
1302 TCP_FIELDS_TO_HOST(th);
1303
1304 /* Unscale the window into a 32-bit value. */
1305 if ((tiflags & TH_SYN) == 0)
1306 tiwin = th->th_win << tp->snd_scale;
1307 else
1308 tiwin = th->th_win;
1309
1310 #ifdef INET6
1311 /* save packet options if user wanted */
1312 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1313 if (in6p->in6p_options) {
1314 m_freem(in6p->in6p_options);
1315 in6p->in6p_options = 0;
1316 }
1317 KASSERT(ip6 != NULL);
1318 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1319 }
1320 #endif
1321
1322 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1323 union syn_cache_sa src;
1324 union syn_cache_sa dst;
1325
1326 bzero(&src, sizeof(src));
1327 bzero(&dst, sizeof(dst));
1328 switch (af) {
1329 #ifdef INET
1330 case AF_INET:
1331 src.sin.sin_len = sizeof(struct sockaddr_in);
1332 src.sin.sin_family = AF_INET;
1333 src.sin.sin_addr = ip->ip_src;
1334 src.sin.sin_port = th->th_sport;
1335
1336 dst.sin.sin_len = sizeof(struct sockaddr_in);
1337 dst.sin.sin_family = AF_INET;
1338 dst.sin.sin_addr = ip->ip_dst;
1339 dst.sin.sin_port = th->th_dport;
1340 break;
1341 #endif
1342 #ifdef INET6
1343 case AF_INET6:
1344 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1345 src.sin6.sin6_family = AF_INET6;
1346 src.sin6.sin6_addr = ip6->ip6_src;
1347 src.sin6.sin6_port = th->th_sport;
1348
1349 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1350 dst.sin6.sin6_family = AF_INET6;
1351 dst.sin6.sin6_addr = ip6->ip6_dst;
1352 dst.sin6.sin6_port = th->th_dport;
1353 break;
1354 #endif /* INET6 */
1355 default:
1356 goto badsyn; /*sanity*/
1357 }
1358
1359 if (so->so_options & SO_DEBUG) {
1360 #ifdef TCP_DEBUG
1361 ostate = tp->t_state;
1362 #endif
1363
1364 tcp_saveti = NULL;
1365 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1366 goto nosave;
1367
1368 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1369 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1370 if (!tcp_saveti)
1371 goto nosave;
1372 } else {
1373 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1374 if (!tcp_saveti)
1375 goto nosave;
1376 MCLAIM(m, &tcp_mowner);
1377 tcp_saveti->m_len = iphlen;
1378 m_copydata(m, 0, iphlen,
1379 mtod(tcp_saveti, void *));
1380 }
1381
1382 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1383 m_freem(tcp_saveti);
1384 tcp_saveti = NULL;
1385 } else {
1386 tcp_saveti->m_len += sizeof(struct tcphdr);
1387 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1388 sizeof(struct tcphdr));
1389 }
1390 nosave:;
1391 }
1392 if (so->so_options & SO_ACCEPTCONN) {
1393 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1394 if (tiflags & TH_RST) {
1395 syn_cache_reset(&src.sa, &dst.sa, th);
1396 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1397 (TH_ACK|TH_SYN)) {
1398 /*
1399 * Received a SYN,ACK. This should
1400 * never happen while we are in
1401 * LISTEN. Send an RST.
1402 */
1403 goto badsyn;
1404 } else if (tiflags & TH_ACK) {
1405 so = syn_cache_get(&src.sa, &dst.sa,
1406 th, toff, tlen, so, m);
1407 if (so == NULL) {
1408 /*
1409 * We don't have a SYN for
1410 * this ACK; send an RST.
1411 */
1412 goto badsyn;
1413 } else if (so ==
1414 (struct socket *)(-1)) {
1415 /*
1416 * We were unable to create
1417 * the connection. If the
1418 * 3-way handshake was
1419 * completed, and RST has
1420 * been sent to the peer.
1421 * Since the mbuf might be
1422 * in use for the reply,
1423 * do not free it.
1424 */
1425 m = NULL;
1426 } else {
1427 /*
1428 * We have created a
1429 * full-blown connection.
1430 */
1431 tp = NULL;
1432 inp = NULL;
1433 #ifdef INET6
1434 in6p = NULL;
1435 #endif
1436 switch (so->so_proto->pr_domain->dom_family) {
1437 #ifdef INET
1438 case AF_INET:
1439 inp = sotoinpcb(so);
1440 tp = intotcpcb(inp);
1441 break;
1442 #endif
1443 #ifdef INET6
1444 case AF_INET6:
1445 in6p = sotoin6pcb(so);
1446 tp = in6totcpcb(in6p);
1447 break;
1448 #endif
1449 }
1450 if (tp == NULL)
1451 goto badsyn; /*XXX*/
1452 tiwin <<= tp->snd_scale;
1453 goto after_listen;
1454 }
1455 } else {
1456 /*
1457 * None of RST, SYN or ACK was set.
1458 * This is an invalid packet for a
1459 * TCB in LISTEN state. Send a RST.
1460 */
1461 goto badsyn;
1462 }
1463 } else {
1464 /*
1465 * Received a SYN.
1466 *
1467 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1468 */
1469 if (m->m_flags & (M_BCAST|M_MCAST))
1470 goto drop;
1471
1472 switch (af) {
1473 #ifdef INET6
1474 case AF_INET6:
1475 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1476 goto drop;
1477 break;
1478 #endif /* INET6 */
1479 case AF_INET:
1480 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1481 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1482 goto drop;
1483 break;
1484 }
1485
1486 #ifdef INET6
1487 /*
1488 * If deprecated address is forbidden, we do
1489 * not accept SYN to deprecated interface
1490 * address to prevent any new inbound
1491 * connection from getting established.
1492 * When we do not accept SYN, we send a TCP
1493 * RST, with deprecated source address (instead
1494 * of dropping it). We compromise it as it is
1495 * much better for peer to send a RST, and
1496 * RST will be the final packet for the
1497 * exchange.
1498 *
1499 * If we do not forbid deprecated addresses, we
1500 * accept the SYN packet. RFC2462 does not
1501 * suggest dropping SYN in this case.
1502 * If we decipher RFC2462 5.5.4, it says like
1503 * this:
1504 * 1. use of deprecated addr with existing
1505 * communication is okay - "SHOULD continue
1506 * to be used"
1507 * 2. use of it with new communication:
1508 * (2a) "SHOULD NOT be used if alternate
1509 * address with sufficient scope is
1510 * available"
1511 * (2b) nothing mentioned otherwise.
1512 * Here we fall into (2b) case as we have no
1513 * choice in our source address selection - we
1514 * must obey the peer.
1515 *
1516 * The wording in RFC2462 is confusing, and
1517 * there are multiple description text for
1518 * deprecated address handling - worse, they
1519 * are not exactly the same. I believe 5.5.4
1520 * is the best one, so we follow 5.5.4.
1521 */
1522 if (af == AF_INET6 && !ip6_use_deprecated) {
1523 struct in6_ifaddr *ia6;
1524 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1525 &ip6->ip6_dst)) &&
1526 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1527 tp = NULL;
1528 goto dropwithreset;
1529 }
1530 }
1531 #endif
1532
1533 #if defined(IPSEC) || defined(FAST_IPSEC)
1534 switch (af) {
1535 #ifdef INET
1536 case AF_INET:
1537 if (ipsec4_in_reject_so(m, so)) {
1538 ipsecstat.in_polvio++;
1539 tp = NULL;
1540 goto dropwithreset;
1541 }
1542 break;
1543 #endif
1544 #ifdef INET6
1545 case AF_INET6:
1546 if (ipsec6_in_reject_so(m, so)) {
1547 ipsec6stat.in_polvio++;
1548 tp = NULL;
1549 goto dropwithreset;
1550 }
1551 break;
1552 #endif /*INET6*/
1553 }
1554 #endif /*IPSEC*/
1555
1556 /*
1557 * LISTEN socket received a SYN
1558 * from itself? This can't possibly
1559 * be valid; drop the packet.
1560 */
1561 if (th->th_sport == th->th_dport) {
1562 int i;
1563
1564 switch (af) {
1565 #ifdef INET
1566 case AF_INET:
1567 i = in_hosteq(ip->ip_src, ip->ip_dst);
1568 break;
1569 #endif
1570 #ifdef INET6
1571 case AF_INET6:
1572 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1573 break;
1574 #endif
1575 default:
1576 i = 1;
1577 }
1578 if (i) {
1579 tcpstat.tcps_badsyn++;
1580 goto drop;
1581 }
1582 }
1583
1584 /*
1585 * SYN looks ok; create compressed TCP
1586 * state for it.
1587 */
1588 if (so->so_qlen <= so->so_qlimit &&
1589 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1590 so, m, optp, optlen, &opti))
1591 m = NULL;
1592 }
1593 goto drop;
1594 }
1595 }
1596
1597 after_listen:
1598 #ifdef DIAGNOSTIC
1599 /*
1600 * Should not happen now that all embryonic connections
1601 * are handled with compressed state.
1602 */
1603 if (tp->t_state == TCPS_LISTEN)
1604 panic("tcp_input: TCPS_LISTEN");
1605 #endif
1606
1607 /*
1608 * Segment received on connection.
1609 * Reset idle time and keep-alive timer.
1610 */
1611 tp->t_rcvtime = tcp_now;
1612 if (TCPS_HAVEESTABLISHED(tp->t_state))
1613 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1614
1615 /*
1616 * Process options.
1617 */
1618 #ifdef TCP_SIGNATURE
1619 if (optp || (tp->t_flags & TF_SIGNATURE))
1620 #else
1621 if (optp)
1622 #endif
1623 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1624 goto drop;
1625
1626 if (TCP_SACK_ENABLED(tp)) {
1627 tcp_del_sackholes(tp, th);
1628 }
1629
1630 if (TCP_ECN_ALLOWED(tp)) {
1631 switch (iptos & IPTOS_ECN_MASK) {
1632 case IPTOS_ECN_CE:
1633 tp->t_flags |= TF_ECN_SND_ECE;
1634 tcpstat.tcps_ecn_ce++;
1635 break;
1636 case IPTOS_ECN_ECT0:
1637 tcpstat.tcps_ecn_ect++;
1638 break;
1639 case IPTOS_ECN_ECT1:
1640 /* XXX: ignore for now -- rpaulo */
1641 break;
1642 }
1643
1644 if (tiflags & TH_CWR)
1645 tp->t_flags &= ~TF_ECN_SND_ECE;
1646
1647 /*
1648 * Congestion experienced.
1649 * Ignore if we are already trying to recover.
1650 */
1651 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1652 tp->t_congctl->cong_exp(tp);
1653 }
1654
1655 if (opti.ts_present && opti.ts_ecr) {
1656 /*
1657 * Calculate the RTT from the returned time stamp and the
1658 * connection's time base. If the time stamp is later than
1659 * the current time, or is extremely old, fall back to non-1323
1660 * RTT calculation. Since ts_ecr is unsigned, we can test both
1661 * at the same time.
1662 */
1663 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1664 if (ts_rtt > TCP_PAWS_IDLE)
1665 ts_rtt = 0;
1666 } else {
1667 ts_rtt = 0;
1668 }
1669
1670 /*
1671 * Header prediction: check for the two common cases
1672 * of a uni-directional data xfer. If the packet has
1673 * no control flags, is in-sequence, the window didn't
1674 * change and we're not retransmitting, it's a
1675 * candidate. If the length is zero and the ack moved
1676 * forward, we're the sender side of the xfer. Just
1677 * free the data acked & wake any higher level process
1678 * that was blocked waiting for space. If the length
1679 * is non-zero and the ack didn't move, we're the
1680 * receiver side. If we're getting packets in-order
1681 * (the reassembly queue is empty), add the data to
1682 * the socket buffer and note that we need a delayed ack.
1683 */
1684 if (tp->t_state == TCPS_ESTABLISHED &&
1685 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1686 == TH_ACK &&
1687 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1688 th->th_seq == tp->rcv_nxt &&
1689 tiwin && tiwin == tp->snd_wnd &&
1690 tp->snd_nxt == tp->snd_max) {
1691
1692 /*
1693 * If last ACK falls within this segment's sequence numbers,
1694 * record the timestamp.
1695 * NOTE:
1696 * 1) That the test incorporates suggestions from the latest
1697 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1698 * 2) That updating only on newer timestamps interferes with
1699 * our earlier PAWS tests, so this check should be solely
1700 * predicated on the sequence space of this segment.
1701 * 3) That we modify the segment boundary check to be
1702 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
1703 * instead of RFC1323's
1704 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
1705 * This modified check allows us to overcome RFC1323's
1706 * limitations as described in Stevens TCP/IP Illustrated
1707 * Vol. 2 p.869. In such cases, we can still calculate the
1708 * RTT correctly when RCV.NXT == Last.ACK.Sent.
1709 */
1710 if (opti.ts_present &&
1711 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1712 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1713 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1714 tp->ts_recent_age = tcp_now;
1715 tp->ts_recent = opti.ts_val;
1716 }
1717
1718 if (tlen == 0) {
1719 /* Ack prediction. */
1720 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1721 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1722 tp->snd_cwnd >= tp->snd_wnd &&
1723 tp->t_partialacks < 0) {
1724 /*
1725 * this is a pure ack for outstanding data.
1726 */
1727 ++tcpstat.tcps_predack;
1728 if (ts_rtt)
1729 tcp_xmit_timer(tp, ts_rtt);
1730 else if (tp->t_rtttime &&
1731 SEQ_GT(th->th_ack, tp->t_rtseq))
1732 tcp_xmit_timer(tp,
1733 tcp_now - tp->t_rtttime);
1734 acked = th->th_ack - tp->snd_una;
1735 tcpstat.tcps_rcvackpack++;
1736 tcpstat.tcps_rcvackbyte += acked;
1737 ND6_HINT(tp);
1738
1739 if (acked > (tp->t_lastoff - tp->t_inoff))
1740 tp->t_lastm = NULL;
1741 sbdrop(&so->so_snd, acked);
1742 tp->t_lastoff -= acked;
1743
1744 ICMP_CHECK(tp, th, acked);
1745
1746 tp->snd_una = th->th_ack;
1747 tp->snd_fack = tp->snd_una;
1748 if (SEQ_LT(tp->snd_high, tp->snd_una))
1749 tp->snd_high = tp->snd_una;
1750 m_freem(m);
1751
1752 /*
1753 * If all outstanding data are acked, stop
1754 * retransmit timer, otherwise restart timer
1755 * using current (possibly backed-off) value.
1756 * If process is waiting for space,
1757 * wakeup/selwakeup/signal. If data
1758 * are ready to send, let tcp_output
1759 * decide between more output or persist.
1760 */
1761 if (tp->snd_una == tp->snd_max)
1762 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1763 else if (TCP_TIMER_ISARMED(tp,
1764 TCPT_PERSIST) == 0)
1765 TCP_TIMER_ARM(tp, TCPT_REXMT,
1766 tp->t_rxtcur);
1767
1768 sowwakeup(so);
1769 if (so->so_snd.sb_cc)
1770 (void) tcp_output(tp);
1771 if (tcp_saveti)
1772 m_freem(tcp_saveti);
1773 return;
1774 }
1775 } else if (th->th_ack == tp->snd_una &&
1776 TAILQ_FIRST(&tp->segq) == NULL &&
1777 tlen <= sbspace(&so->so_rcv)) {
1778 int newsize = 0; /* automatic sockbuf scaling */
1779
1780 /*
1781 * this is a pure, in-sequence data packet
1782 * with nothing on the reassembly queue and
1783 * we have enough buffer space to take it.
1784 */
1785 ++tcpstat.tcps_preddat;
1786 tp->rcv_nxt += tlen;
1787 tcpstat.tcps_rcvpack++;
1788 tcpstat.tcps_rcvbyte += tlen;
1789 ND6_HINT(tp);
1790
1791 /*
1792 * Automatic sizing enables the performance of large buffers
1793 * and most of the efficiency of small ones by only allocating
1794 * space when it is needed.
1795 *
1796 * On the receive side the socket buffer memory is only rarely
1797 * used to any significant extent. This allows us to be much
1798 * more aggressive in scaling the receive socket buffer. For
1799 * the case that the buffer space is actually used to a large
1800 * extent and we run out of kernel memory we can simply drop
1801 * the new segments; TCP on the sender will just retransmit it
1802 * later. Setting the buffer size too big may only consume too
1803 * much kernel memory if the application doesn't read() from
1804 * the socket or packet loss or reordering makes use of the
1805 * reassembly queue.
1806 *
1807 * The criteria to step up the receive buffer one notch are:
1808 * 1. the number of bytes received during the time it takes
1809 * one timestamp to be reflected back to us (the RTT);
1810 * 2. received bytes per RTT is within seven eighth of the
1811 * current socket buffer size;
1812 * 3. receive buffer size has not hit maximal automatic size;
1813 *
1814 * This algorithm does one step per RTT at most and only if
1815 * we receive a bulk stream w/o packet losses or reorderings.
1816 * Shrinking the buffer during idle times is not necessary as
1817 * it doesn't consume any memory when idle.
1818 *
1819 * TODO: Only step up if the application is actually serving
1820 * the buffer to better manage the socket buffer resources.
1821 */
1822 if (tcp_do_autorcvbuf &&
1823 opti.ts_ecr &&
1824 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1825 if (opti.ts_ecr > tp->rfbuf_ts &&
1826 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1827 if (tp->rfbuf_cnt >
1828 (so->so_rcv.sb_hiwat / 8 * 7) &&
1829 so->so_rcv.sb_hiwat <
1830 tcp_autorcvbuf_max) {
1831 newsize =
1832 min(so->so_rcv.sb_hiwat +
1833 tcp_autorcvbuf_inc,
1834 tcp_autorcvbuf_max);
1835 }
1836 /* Start over with next RTT. */
1837 tp->rfbuf_ts = 0;
1838 tp->rfbuf_cnt = 0;
1839 } else
1840 tp->rfbuf_cnt += tlen; /* add up */
1841 }
1842
1843 /*
1844 * Drop TCP, IP headers and TCP options then add data
1845 * to socket buffer.
1846 */
1847 if (so->so_state & SS_CANTRCVMORE)
1848 m_freem(m);
1849 else {
1850 /*
1851 * Set new socket buffer size.
1852 * Give up when limit is reached.
1853 */
1854 if (newsize)
1855 if (!sbreserve(&so->so_rcv,
1856 newsize, so))
1857 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1858 m_adj(m, toff + off);
1859 sbappendstream(&so->so_rcv, m);
1860 }
1861 sorwakeup(so);
1862 TCP_SETUP_ACK(tp, th);
1863 if (tp->t_flags & TF_ACKNOW)
1864 (void) tcp_output(tp);
1865 if (tcp_saveti)
1866 m_freem(tcp_saveti);
1867 return;
1868 }
1869 }
1870
1871 /*
1872 * Compute mbuf offset to TCP data segment.
1873 */
1874 hdroptlen = toff + off;
1875
1876 /*
1877 * Calculate amount of space in receive window,
1878 * and then do TCP input processing.
1879 * Receive window is amount of space in rcv queue,
1880 * but not less than advertised window.
1881 */
1882 { int win;
1883
1884 win = sbspace(&so->so_rcv);
1885 if (win < 0)
1886 win = 0;
1887 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1888 }
1889
1890 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1891 tp->rfbuf_ts = 0;
1892 tp->rfbuf_cnt = 0;
1893
1894 switch (tp->t_state) {
1895 /*
1896 * If the state is SYN_SENT:
1897 * if seg contains an ACK, but not for our SYN, drop the input.
1898 * if seg contains a RST, then drop the connection.
1899 * if seg does not contain SYN, then drop it.
1900 * Otherwise this is an acceptable SYN segment
1901 * initialize tp->rcv_nxt and tp->irs
1902 * if seg contains ack then advance tp->snd_una
1903 * if seg contains a ECE and ECN support is enabled, the stream
1904 * is ECN capable.
1905 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1906 * arrange for segment to be acked (eventually)
1907 * continue processing rest of data/controls, beginning with URG
1908 */
1909 case TCPS_SYN_SENT:
1910 if ((tiflags & TH_ACK) &&
1911 (SEQ_LEQ(th->th_ack, tp->iss) ||
1912 SEQ_GT(th->th_ack, tp->snd_max)))
1913 goto dropwithreset;
1914 if (tiflags & TH_RST) {
1915 if (tiflags & TH_ACK)
1916 tp = tcp_drop(tp, ECONNREFUSED);
1917 goto drop;
1918 }
1919 if ((tiflags & TH_SYN) == 0)
1920 goto drop;
1921 if (tiflags & TH_ACK) {
1922 tp->snd_una = th->th_ack;
1923 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1924 tp->snd_nxt = tp->snd_una;
1925 if (SEQ_LT(tp->snd_high, tp->snd_una))
1926 tp->snd_high = tp->snd_una;
1927 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1928
1929 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1930 tp->t_flags |= TF_ECN_PERMIT;
1931 tcpstat.tcps_ecn_shs++;
1932 }
1933
1934 }
1935 tp->irs = th->th_seq;
1936 tcp_rcvseqinit(tp);
1937 tp->t_flags |= TF_ACKNOW;
1938 tcp_mss_from_peer(tp, opti.maxseg);
1939
1940 /*
1941 * Initialize the initial congestion window. If we
1942 * had to retransmit the SYN, we must initialize cwnd
1943 * to 1 segment (i.e. the Loss Window).
1944 */
1945 if (tp->t_flags & TF_SYN_REXMT)
1946 tp->snd_cwnd = tp->t_peermss;
1947 else {
1948 int ss = tcp_init_win;
1949 #ifdef INET
1950 if (inp != NULL && in_localaddr(inp->inp_faddr))
1951 ss = tcp_init_win_local;
1952 #endif
1953 #ifdef INET6
1954 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1955 ss = tcp_init_win_local;
1956 #endif
1957 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1958 }
1959
1960 tcp_rmx_rtt(tp);
1961 if (tiflags & TH_ACK) {
1962 tcpstat.tcps_connects++;
1963 soisconnected(so);
1964 tcp_established(tp);
1965 /* Do window scaling on this connection? */
1966 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1967 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1968 tp->snd_scale = tp->requested_s_scale;
1969 tp->rcv_scale = tp->request_r_scale;
1970 }
1971 TCP_REASS_LOCK(tp);
1972 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1973 TCP_REASS_UNLOCK(tp);
1974 /*
1975 * if we didn't have to retransmit the SYN,
1976 * use its rtt as our initial srtt & rtt var.
1977 */
1978 if (tp->t_rtttime)
1979 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1980 } else
1981 tp->t_state = TCPS_SYN_RECEIVED;
1982
1983 /*
1984 * Advance th->th_seq to correspond to first data byte.
1985 * If data, trim to stay within window,
1986 * dropping FIN if necessary.
1987 */
1988 th->th_seq++;
1989 if (tlen > tp->rcv_wnd) {
1990 todrop = tlen - tp->rcv_wnd;
1991 m_adj(m, -todrop);
1992 tlen = tp->rcv_wnd;
1993 tiflags &= ~TH_FIN;
1994 tcpstat.tcps_rcvpackafterwin++;
1995 tcpstat.tcps_rcvbyteafterwin += todrop;
1996 }
1997 tp->snd_wl1 = th->th_seq - 1;
1998 tp->rcv_up = th->th_seq;
1999 goto step6;
2000
2001 /*
2002 * If the state is SYN_RECEIVED:
2003 * If seg contains an ACK, but not for our SYN, drop the input
2004 * and generate an RST. See page 36, rfc793
2005 */
2006 case TCPS_SYN_RECEIVED:
2007 if ((tiflags & TH_ACK) &&
2008 (SEQ_LEQ(th->th_ack, tp->iss) ||
2009 SEQ_GT(th->th_ack, tp->snd_max)))
2010 goto dropwithreset;
2011 break;
2012 }
2013
2014 /*
2015 * States other than LISTEN or SYN_SENT.
2016 * First check timestamp, if present.
2017 * Then check that at least some bytes of segment are within
2018 * receive window. If segment begins before rcv_nxt,
2019 * drop leading data (and SYN); if nothing left, just ack.
2020 *
2021 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2022 * and it's less than ts_recent, drop it.
2023 */
2024 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2025 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2026
2027 /* Check to see if ts_recent is over 24 days old. */
2028 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2029 /*
2030 * Invalidate ts_recent. If this segment updates
2031 * ts_recent, the age will be reset later and ts_recent
2032 * will get a valid value. If it does not, setting
2033 * ts_recent to zero will at least satisfy the
2034 * requirement that zero be placed in the timestamp
2035 * echo reply when ts_recent isn't valid. The
2036 * age isn't reset until we get a valid ts_recent
2037 * because we don't want out-of-order segments to be
2038 * dropped when ts_recent is old.
2039 */
2040 tp->ts_recent = 0;
2041 } else {
2042 tcpstat.tcps_rcvduppack++;
2043 tcpstat.tcps_rcvdupbyte += tlen;
2044 tcpstat.tcps_pawsdrop++;
2045 tcp_new_dsack(tp, th->th_seq, tlen);
2046 goto dropafterack;
2047 }
2048 }
2049
2050 todrop = tp->rcv_nxt - th->th_seq;
2051 dupseg = false;
2052 if (todrop > 0) {
2053 if (tiflags & TH_SYN) {
2054 tiflags &= ~TH_SYN;
2055 th->th_seq++;
2056 if (th->th_urp > 1)
2057 th->th_urp--;
2058 else {
2059 tiflags &= ~TH_URG;
2060 th->th_urp = 0;
2061 }
2062 todrop--;
2063 }
2064 if (todrop > tlen ||
2065 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2066 /*
2067 * Any valid FIN or RST must be to the left of the
2068 * window. At this point the FIN or RST must be a
2069 * duplicate or out of sequence; drop it.
2070 */
2071 if (tiflags & TH_RST)
2072 goto drop;
2073 tiflags &= ~(TH_FIN|TH_RST);
2074 /*
2075 * Send an ACK to resynchronize and drop any data.
2076 * But keep on processing for RST or ACK.
2077 */
2078 tp->t_flags |= TF_ACKNOW;
2079 todrop = tlen;
2080 dupseg = true;
2081 tcpstat.tcps_rcvdupbyte += todrop;
2082 tcpstat.tcps_rcvduppack++;
2083 } else if ((tiflags & TH_RST) &&
2084 th->th_seq != tp->last_ack_sent) {
2085 /*
2086 * Test for reset before adjusting the sequence
2087 * number for overlapping data.
2088 */
2089 goto dropafterack_ratelim;
2090 } else {
2091 tcpstat.tcps_rcvpartduppack++;
2092 tcpstat.tcps_rcvpartdupbyte += todrop;
2093 }
2094 tcp_new_dsack(tp, th->th_seq, todrop);
2095 hdroptlen += todrop; /*drop from head afterwards*/
2096 th->th_seq += todrop;
2097 tlen -= todrop;
2098 if (th->th_urp > todrop)
2099 th->th_urp -= todrop;
2100 else {
2101 tiflags &= ~TH_URG;
2102 th->th_urp = 0;
2103 }
2104 }
2105
2106 /*
2107 * If new data are received on a connection after the
2108 * user processes are gone, then RST the other end.
2109 */
2110 if ((so->so_state & SS_NOFDREF) &&
2111 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2112 tp = tcp_close(tp);
2113 tcpstat.tcps_rcvafterclose++;
2114 goto dropwithreset;
2115 }
2116
2117 /*
2118 * If segment ends after window, drop trailing data
2119 * (and PUSH and FIN); if nothing left, just ACK.
2120 */
2121 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2122 if (todrop > 0) {
2123 tcpstat.tcps_rcvpackafterwin++;
2124 if (todrop >= tlen) {
2125 /*
2126 * The segment actually starts after the window.
2127 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2128 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2129 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2130 */
2131 tcpstat.tcps_rcvbyteafterwin += tlen;
2132 /*
2133 * If a new connection request is received
2134 * while in TIME_WAIT, drop the old connection
2135 * and start over if the sequence numbers
2136 * are above the previous ones.
2137 *
2138 * NOTE: We will checksum the packet again, and
2139 * so we need to put the header fields back into
2140 * network order!
2141 * XXX This kind of sucks, but we don't expect
2142 * XXX this to happen very often, so maybe it
2143 * XXX doesn't matter so much.
2144 */
2145 if (tiflags & TH_SYN &&
2146 tp->t_state == TCPS_TIME_WAIT &&
2147 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2148 tp = tcp_close(tp);
2149 TCP_FIELDS_TO_NET(th);
2150 goto findpcb;
2151 }
2152 /*
2153 * If window is closed can only take segments at
2154 * window edge, and have to drop data and PUSH from
2155 * incoming segments. Continue processing, but
2156 * remember to ack. Otherwise, drop segment
2157 * and (if not RST) ack.
2158 */
2159 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2160 tp->t_flags |= TF_ACKNOW;
2161 tcpstat.tcps_rcvwinprobe++;
2162 } else
2163 goto dropafterack;
2164 } else
2165 tcpstat.tcps_rcvbyteafterwin += todrop;
2166 m_adj(m, -todrop);
2167 tlen -= todrop;
2168 tiflags &= ~(TH_PUSH|TH_FIN);
2169 }
2170
2171 /*
2172 * If last ACK falls within this segment's sequence numbers,
2173 * and the timestamp is newer, record it.
2174 */
2175 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
2176 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2177 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
2178 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2179 tp->ts_recent_age = tcp_now;
2180 tp->ts_recent = opti.ts_val;
2181 }
2182
2183 /*
2184 * If the RST bit is set examine the state:
2185 * SYN_RECEIVED STATE:
2186 * If passive open, return to LISTEN state.
2187 * If active open, inform user that connection was refused.
2188 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2189 * Inform user that connection was reset, and close tcb.
2190 * CLOSING, LAST_ACK, TIME_WAIT STATES
2191 * Close the tcb.
2192 */
2193 if (tiflags & TH_RST) {
2194 if (th->th_seq != tp->last_ack_sent)
2195 goto dropafterack_ratelim;
2196
2197 switch (tp->t_state) {
2198 case TCPS_SYN_RECEIVED:
2199 so->so_error = ECONNREFUSED;
2200 goto close;
2201
2202 case TCPS_ESTABLISHED:
2203 case TCPS_FIN_WAIT_1:
2204 case TCPS_FIN_WAIT_2:
2205 case TCPS_CLOSE_WAIT:
2206 so->so_error = ECONNRESET;
2207 close:
2208 tp->t_state = TCPS_CLOSED;
2209 tcpstat.tcps_drops++;
2210 tp = tcp_close(tp);
2211 goto drop;
2212
2213 case TCPS_CLOSING:
2214 case TCPS_LAST_ACK:
2215 case TCPS_TIME_WAIT:
2216 tp = tcp_close(tp);
2217 goto drop;
2218 }
2219 }
2220
2221 /*
2222 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2223 * we must be in a synchronized state. RFC791 states (under RST
2224 * generation) that any unacceptable segment (an out-of-order SYN
2225 * qualifies) received in a synchronized state must elicit only an
2226 * empty acknowledgment segment ... and the connection remains in
2227 * the same state.
2228 */
2229 if (tiflags & TH_SYN) {
2230 if (tp->rcv_nxt == th->th_seq) {
2231 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2232 TH_ACK);
2233 if (tcp_saveti)
2234 m_freem(tcp_saveti);
2235 return;
2236 }
2237
2238 goto dropafterack_ratelim;
2239 }
2240
2241 /*
2242 * If the ACK bit is off we drop the segment and return.
2243 */
2244 if ((tiflags & TH_ACK) == 0) {
2245 if (tp->t_flags & TF_ACKNOW)
2246 goto dropafterack;
2247 else
2248 goto drop;
2249 }
2250
2251 /*
2252 * Ack processing.
2253 */
2254 switch (tp->t_state) {
2255
2256 /*
2257 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2258 * ESTABLISHED state and continue processing, otherwise
2259 * send an RST.
2260 */
2261 case TCPS_SYN_RECEIVED:
2262 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2263 SEQ_GT(th->th_ack, tp->snd_max))
2264 goto dropwithreset;
2265 tcpstat.tcps_connects++;
2266 soisconnected(so);
2267 tcp_established(tp);
2268 /* Do window scaling? */
2269 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2270 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2271 tp->snd_scale = tp->requested_s_scale;
2272 tp->rcv_scale = tp->request_r_scale;
2273 }
2274 TCP_REASS_LOCK(tp);
2275 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2276 TCP_REASS_UNLOCK(tp);
2277 tp->snd_wl1 = th->th_seq - 1;
2278 /* fall into ... */
2279
2280 /*
2281 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2282 * ACKs. If the ack is in the range
2283 * tp->snd_una < th->th_ack <= tp->snd_max
2284 * then advance tp->snd_una to th->th_ack and drop
2285 * data from the retransmission queue. If this ACK reflects
2286 * more up to date window information we update our window information.
2287 */
2288 case TCPS_ESTABLISHED:
2289 case TCPS_FIN_WAIT_1:
2290 case TCPS_FIN_WAIT_2:
2291 case TCPS_CLOSE_WAIT:
2292 case TCPS_CLOSING:
2293 case TCPS_LAST_ACK:
2294 case TCPS_TIME_WAIT:
2295
2296 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2297 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2298 tcpstat.tcps_rcvdupack++;
2299 /*
2300 * If we have outstanding data (other than
2301 * a window probe), this is a completely
2302 * duplicate ack (ie, window info didn't
2303 * change), the ack is the biggest we've
2304 * seen and we've seen exactly our rexmt
2305 * threshhold of them, assume a packet
2306 * has been dropped and retransmit it.
2307 * Kludge snd_nxt & the congestion
2308 * window so we send only this one
2309 * packet.
2310 */
2311 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2312 th->th_ack != tp->snd_una)
2313 tp->t_dupacks = 0;
2314 else if (tp->t_partialacks < 0 &&
2315 ((!TCP_SACK_ENABLED(tp) &&
2316 ++tp->t_dupacks == tcprexmtthresh) ||
2317 TCP_FACK_FASTRECOV(tp))) {
2318 /*
2319 * Do the fast retransmit, and adjust
2320 * congestion control paramenters.
2321 */
2322 if (tp->t_congctl->fast_retransmit(tp, th)) {
2323 /* False fast retransmit */
2324 break;
2325 } else
2326 goto drop;
2327 } else if (tp->t_dupacks > tcprexmtthresh) {
2328 tp->snd_cwnd += tp->t_segsz;
2329 (void) tcp_output(tp);
2330 goto drop;
2331 }
2332 } else {
2333 /*
2334 * If the ack appears to be very old, only
2335 * allow data that is in-sequence. This
2336 * makes it somewhat more difficult to insert
2337 * forged data by guessing sequence numbers.
2338 * Sent an ack to try to update the send
2339 * sequence number on the other side.
2340 */
2341 if (tlen && th->th_seq != tp->rcv_nxt &&
2342 SEQ_LT(th->th_ack,
2343 tp->snd_una - tp->max_sndwnd))
2344 goto dropafterack;
2345 }
2346 break;
2347 }
2348 /*
2349 * If the congestion window was inflated to account
2350 * for the other side's cached packets, retract it.
2351 */
2352 /* XXX: make SACK have his own congestion control
2353 * struct -- rpaulo */
2354 if (TCP_SACK_ENABLED(tp))
2355 tcp_sack_newack(tp, th);
2356 else
2357 tp->t_congctl->fast_retransmit_newack(tp, th);
2358 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2359 tcpstat.tcps_rcvacktoomuch++;
2360 goto dropafterack;
2361 }
2362 acked = th->th_ack - tp->snd_una;
2363 tcpstat.tcps_rcvackpack++;
2364 tcpstat.tcps_rcvackbyte += acked;
2365
2366 /*
2367 * If we have a timestamp reply, update smoothed
2368 * round trip time. If no timestamp is present but
2369 * transmit timer is running and timed sequence
2370 * number was acked, update smoothed round trip time.
2371 * Since we now have an rtt measurement, cancel the
2372 * timer backoff (cf., Phil Karn's retransmit alg.).
2373 * Recompute the initial retransmit timer.
2374 */
2375 if (ts_rtt)
2376 tcp_xmit_timer(tp, ts_rtt);
2377 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2378 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2379
2380 /*
2381 * If all outstanding data is acked, stop retransmit
2382 * timer and remember to restart (more output or persist).
2383 * If there is more data to be acked, restart retransmit
2384 * timer, using current (possibly backed-off) value.
2385 */
2386 if (th->th_ack == tp->snd_max) {
2387 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2388 needoutput = 1;
2389 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2390 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2391
2392 /*
2393 * New data has been acked, adjust the congestion window.
2394 */
2395 tp->t_congctl->newack(tp, th);
2396
2397 ND6_HINT(tp);
2398 if (acked > so->so_snd.sb_cc) {
2399 tp->snd_wnd -= so->so_snd.sb_cc;
2400 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2401 ourfinisacked = 1;
2402 } else {
2403 if (acked > (tp->t_lastoff - tp->t_inoff))
2404 tp->t_lastm = NULL;
2405 sbdrop(&so->so_snd, acked);
2406 tp->t_lastoff -= acked;
2407 tp->snd_wnd -= acked;
2408 ourfinisacked = 0;
2409 }
2410 sowwakeup(so);
2411
2412 ICMP_CHECK(tp, th, acked);
2413
2414 tp->snd_una = th->th_ack;
2415 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2416 tp->snd_fack = tp->snd_una;
2417 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2418 tp->snd_nxt = tp->snd_una;
2419 if (SEQ_LT(tp->snd_high, tp->snd_una))
2420 tp->snd_high = tp->snd_una;
2421
2422 switch (tp->t_state) {
2423
2424 /*
2425 * In FIN_WAIT_1 STATE in addition to the processing
2426 * for the ESTABLISHED state if our FIN is now acknowledged
2427 * then enter FIN_WAIT_2.
2428 */
2429 case TCPS_FIN_WAIT_1:
2430 if (ourfinisacked) {
2431 /*
2432 * If we can't receive any more
2433 * data, then closing user can proceed.
2434 * Starting the timer is contrary to the
2435 * specification, but if we don't get a FIN
2436 * we'll hang forever.
2437 */
2438 if (so->so_state & SS_CANTRCVMORE) {
2439 soisdisconnected(so);
2440 if (tp->t_maxidle > 0)
2441 TCP_TIMER_ARM(tp, TCPT_2MSL,
2442 tp->t_maxidle);
2443 }
2444 tp->t_state = TCPS_FIN_WAIT_2;
2445 }
2446 break;
2447
2448 /*
2449 * In CLOSING STATE in addition to the processing for
2450 * the ESTABLISHED state if the ACK acknowledges our FIN
2451 * then enter the TIME-WAIT state, otherwise ignore
2452 * the segment.
2453 */
2454 case TCPS_CLOSING:
2455 if (ourfinisacked) {
2456 tp->t_state = TCPS_TIME_WAIT;
2457 tcp_canceltimers(tp);
2458 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2459 soisdisconnected(so);
2460 }
2461 break;
2462
2463 /*
2464 * In LAST_ACK, we may still be waiting for data to drain
2465 * and/or to be acked, as well as for the ack of our FIN.
2466 * If our FIN is now acknowledged, delete the TCB,
2467 * enter the closed state and return.
2468 */
2469 case TCPS_LAST_ACK:
2470 if (ourfinisacked) {
2471 tp = tcp_close(tp);
2472 goto drop;
2473 }
2474 break;
2475
2476 /*
2477 * In TIME_WAIT state the only thing that should arrive
2478 * is a retransmission of the remote FIN. Acknowledge
2479 * it and restart the finack timer.
2480 */
2481 case TCPS_TIME_WAIT:
2482 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2483 goto dropafterack;
2484 }
2485 }
2486
2487 step6:
2488 /*
2489 * Update window information.
2490 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2491 */
2492 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2493 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2494 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2495 /* keep track of pure window updates */
2496 if (tlen == 0 &&
2497 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2498 tcpstat.tcps_rcvwinupd++;
2499 tp->snd_wnd = tiwin;
2500 tp->snd_wl1 = th->th_seq;
2501 tp->snd_wl2 = th->th_ack;
2502 if (tp->snd_wnd > tp->max_sndwnd)
2503 tp->max_sndwnd = tp->snd_wnd;
2504 needoutput = 1;
2505 }
2506
2507 /*
2508 * Process segments with URG.
2509 */
2510 if ((tiflags & TH_URG) && th->th_urp &&
2511 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2512 /*
2513 * This is a kludge, but if we receive and accept
2514 * random urgent pointers, we'll crash in
2515 * soreceive. It's hard to imagine someone
2516 * actually wanting to send this much urgent data.
2517 */
2518 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2519 th->th_urp = 0; /* XXX */
2520 tiflags &= ~TH_URG; /* XXX */
2521 goto dodata; /* XXX */
2522 }
2523 /*
2524 * If this segment advances the known urgent pointer,
2525 * then mark the data stream. This should not happen
2526 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2527 * a FIN has been received from the remote side.
2528 * In these states we ignore the URG.
2529 *
2530 * According to RFC961 (Assigned Protocols),
2531 * the urgent pointer points to the last octet
2532 * of urgent data. We continue, however,
2533 * to consider it to indicate the first octet
2534 * of data past the urgent section as the original
2535 * spec states (in one of two places).
2536 */
2537 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2538 tp->rcv_up = th->th_seq + th->th_urp;
2539 so->so_oobmark = so->so_rcv.sb_cc +
2540 (tp->rcv_up - tp->rcv_nxt) - 1;
2541 if (so->so_oobmark == 0)
2542 so->so_state |= SS_RCVATMARK;
2543 sohasoutofband(so);
2544 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2545 }
2546 /*
2547 * Remove out of band data so doesn't get presented to user.
2548 * This can happen independent of advancing the URG pointer,
2549 * but if two URG's are pending at once, some out-of-band
2550 * data may creep in... ick.
2551 */
2552 if (th->th_urp <= (u_int16_t) tlen
2553 #ifdef SO_OOBINLINE
2554 && (so->so_options & SO_OOBINLINE) == 0
2555 #endif
2556 )
2557 tcp_pulloutofband(so, th, m, hdroptlen);
2558 } else
2559 /*
2560 * If no out of band data is expected,
2561 * pull receive urgent pointer along
2562 * with the receive window.
2563 */
2564 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2565 tp->rcv_up = tp->rcv_nxt;
2566 dodata: /* XXX */
2567
2568 /*
2569 * Process the segment text, merging it into the TCP sequencing queue,
2570 * and arranging for acknowledgement of receipt if necessary.
2571 * This process logically involves adjusting tp->rcv_wnd as data
2572 * is presented to the user (this happens in tcp_usrreq.c,
2573 * case PRU_RCVD). If a FIN has already been received on this
2574 * connection then we just ignore the text.
2575 */
2576 if ((tlen || (tiflags & TH_FIN)) &&
2577 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2578 /*
2579 * Insert segment ti into reassembly queue of tcp with
2580 * control block tp. Return TH_FIN if reassembly now includes
2581 * a segment with FIN. The macro form does the common case
2582 * inline (segment is the next to be received on an
2583 * established connection, and the queue is empty),
2584 * avoiding linkage into and removal from the queue and
2585 * repetition of various conversions.
2586 * Set DELACK for segments received in order, but ack
2587 * immediately when segments are out of order
2588 * (so fast retransmit can work).
2589 */
2590 /* NOTE: this was TCP_REASS() macro, but used only once */
2591 TCP_REASS_LOCK(tp);
2592 if (th->th_seq == tp->rcv_nxt &&
2593 TAILQ_FIRST(&tp->segq) == NULL &&
2594 tp->t_state == TCPS_ESTABLISHED) {
2595 TCP_SETUP_ACK(tp, th);
2596 tp->rcv_nxt += tlen;
2597 tiflags = th->th_flags & TH_FIN;
2598 tcpstat.tcps_rcvpack++;
2599 tcpstat.tcps_rcvbyte += tlen;
2600 ND6_HINT(tp);
2601 if (so->so_state & SS_CANTRCVMORE)
2602 m_freem(m);
2603 else {
2604 m_adj(m, hdroptlen);
2605 sbappendstream(&(so)->so_rcv, m);
2606 }
2607 sorwakeup(so);
2608 } else {
2609 m_adj(m, hdroptlen);
2610 tiflags = tcp_reass(tp, th, m, &tlen);
2611 tp->t_flags |= TF_ACKNOW;
2612 }
2613 TCP_REASS_UNLOCK(tp);
2614
2615 /*
2616 * Note the amount of data that peer has sent into
2617 * our window, in order to estimate the sender's
2618 * buffer size.
2619 */
2620 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2621 } else {
2622 m_freem(m);
2623 m = NULL;
2624 tiflags &= ~TH_FIN;
2625 }
2626
2627 /*
2628 * If FIN is received ACK the FIN and let the user know
2629 * that the connection is closing. Ignore a FIN received before
2630 * the connection is fully established.
2631 */
2632 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2633 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2634 socantrcvmore(so);
2635 tp->t_flags |= TF_ACKNOW;
2636 tp->rcv_nxt++;
2637 }
2638 switch (tp->t_state) {
2639
2640 /*
2641 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2642 */
2643 case TCPS_ESTABLISHED:
2644 tp->t_state = TCPS_CLOSE_WAIT;
2645 break;
2646
2647 /*
2648 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2649 * enter the CLOSING state.
2650 */
2651 case TCPS_FIN_WAIT_1:
2652 tp->t_state = TCPS_CLOSING;
2653 break;
2654
2655 /*
2656 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2657 * starting the time-wait timer, turning off the other
2658 * standard timers.
2659 */
2660 case TCPS_FIN_WAIT_2:
2661 tp->t_state = TCPS_TIME_WAIT;
2662 tcp_canceltimers(tp);
2663 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2664 soisdisconnected(so);
2665 break;
2666
2667 /*
2668 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2669 */
2670 case TCPS_TIME_WAIT:
2671 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2672 break;
2673 }
2674 }
2675 #ifdef TCP_DEBUG
2676 if (so->so_options & SO_DEBUG)
2677 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2678 #endif
2679
2680 /*
2681 * Return any desired output.
2682 */
2683 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2684 (void) tcp_output(tp);
2685 }
2686 if (tcp_saveti)
2687 m_freem(tcp_saveti);
2688 return;
2689
2690 badsyn:
2691 /*
2692 * Received a bad SYN. Increment counters and dropwithreset.
2693 */
2694 tcpstat.tcps_badsyn++;
2695 tp = NULL;
2696 goto dropwithreset;
2697
2698 dropafterack:
2699 /*
2700 * Generate an ACK dropping incoming segment if it occupies
2701 * sequence space, where the ACK reflects our state.
2702 */
2703 if (tiflags & TH_RST)
2704 goto drop;
2705 goto dropafterack2;
2706
2707 dropafterack_ratelim:
2708 /*
2709 * We may want to rate-limit ACKs against SYN/RST attack.
2710 */
2711 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2712 tcp_ackdrop_ppslim) == 0) {
2713 /* XXX stat */
2714 goto drop;
2715 }
2716 /* ...fall into dropafterack2... */
2717
2718 dropafterack2:
2719 m_freem(m);
2720 tp->t_flags |= TF_ACKNOW;
2721 (void) tcp_output(tp);
2722 if (tcp_saveti)
2723 m_freem(tcp_saveti);
2724 return;
2725
2726 dropwithreset_ratelim:
2727 /*
2728 * We may want to rate-limit RSTs in certain situations,
2729 * particularly if we are sending an RST in response to
2730 * an attempt to connect to or otherwise communicate with
2731 * a port for which we have no socket.
2732 */
2733 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2734 tcp_rst_ppslim) == 0) {
2735 /* XXX stat */
2736 goto drop;
2737 }
2738 /* ...fall into dropwithreset... */
2739
2740 dropwithreset:
2741 /*
2742 * Generate a RST, dropping incoming segment.
2743 * Make ACK acceptable to originator of segment.
2744 */
2745 if (tiflags & TH_RST)
2746 goto drop;
2747
2748 switch (af) {
2749 #ifdef INET6
2750 case AF_INET6:
2751 /* For following calls to tcp_respond */
2752 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2753 goto drop;
2754 break;
2755 #endif /* INET6 */
2756 case AF_INET:
2757 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2758 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2759 goto drop;
2760 }
2761
2762 if (tiflags & TH_ACK)
2763 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2764 else {
2765 if (tiflags & TH_SYN)
2766 tlen++;
2767 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2768 TH_RST|TH_ACK);
2769 }
2770 if (tcp_saveti)
2771 m_freem(tcp_saveti);
2772 return;
2773
2774 badcsum:
2775 drop:
2776 /*
2777 * Drop space held by incoming segment and return.
2778 */
2779 if (tp) {
2780 if (tp->t_inpcb)
2781 so = tp->t_inpcb->inp_socket;
2782 #ifdef INET6
2783 else if (tp->t_in6pcb)
2784 so = tp->t_in6pcb->in6p_socket;
2785 #endif
2786 else
2787 so = NULL;
2788 #ifdef TCP_DEBUG
2789 if (so && (so->so_options & SO_DEBUG) != 0)
2790 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2791 #endif
2792 }
2793 if (tcp_saveti)
2794 m_freem(tcp_saveti);
2795 m_freem(m);
2796 return;
2797 }
2798
2799 #ifdef TCP_SIGNATURE
2800 int
2801 tcp_signature_apply(void *fstate, void *data, u_int len)
2802 {
2803
2804 MD5Update(fstate, (u_char *)data, len);
2805 return (0);
2806 }
2807
2808 struct secasvar *
2809 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2810 {
2811 struct secasvar *sav;
2812 #ifdef FAST_IPSEC
2813 union sockaddr_union dst;
2814 #endif
2815 struct ip *ip;
2816 struct ip6_hdr *ip6;
2817
2818 ip = mtod(m, struct ip *);
2819 switch (ip->ip_v) {
2820 case 4:
2821 ip = mtod(m, struct ip *);
2822 ip6 = NULL;
2823 break;
2824 case 6:
2825 ip = NULL;
2826 ip6 = mtod(m, struct ip6_hdr *);
2827 break;
2828 default:
2829 return (NULL);
2830 }
2831
2832 #ifdef FAST_IPSEC
2833 /* Extract the destination from the IP header in the mbuf. */
2834 bzero(&dst, sizeof(union sockaddr_union));
2835 if (ip !=NULL) {
2836 dst.sa.sa_len = sizeof(struct sockaddr_in);
2837 dst.sa.sa_family = AF_INET;
2838 dst.sin.sin_addr = ip->ip_dst;
2839 } else {
2840 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2841 dst.sa.sa_family = AF_INET6;
2842 dst.sin6.sin6_addr = ip6->ip6_dst;
2843 }
2844
2845 /*
2846 * Look up an SADB entry which matches the address of the peer.
2847 */
2848 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2849 #else
2850 if (ip)
2851 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2852 (void *)&ip->ip_dst, IPPROTO_TCP,
2853 htonl(TCP_SIG_SPI), 0, 0);
2854 else
2855 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2856 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2857 htonl(TCP_SIG_SPI), 0, 0);
2858 #endif
2859
2860 return (sav); /* freesav must be performed by caller */
2861 }
2862
2863 int
2864 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2865 struct secasvar *sav, char *sig)
2866 {
2867 MD5_CTX ctx;
2868 struct ip *ip;
2869 struct ipovly *ipovly;
2870 struct ip6_hdr *ip6;
2871 struct ippseudo ippseudo;
2872 struct ip6_hdr_pseudo ip6pseudo;
2873 struct tcphdr th0;
2874 int l, tcphdrlen;
2875
2876 if (sav == NULL)
2877 return (-1);
2878
2879 tcphdrlen = th->th_off * 4;
2880
2881 switch (mtod(m, struct ip *)->ip_v) {
2882 case 4:
2883 ip = mtod(m, struct ip *);
2884 ip6 = NULL;
2885 break;
2886 case 6:
2887 ip = NULL;
2888 ip6 = mtod(m, struct ip6_hdr *);
2889 break;
2890 default:
2891 return (-1);
2892 }
2893
2894 MD5Init(&ctx);
2895
2896 if (ip) {
2897 memset(&ippseudo, 0, sizeof(ippseudo));
2898 ipovly = (struct ipovly *)ip;
2899 ippseudo.ippseudo_src = ipovly->ih_src;
2900 ippseudo.ippseudo_dst = ipovly->ih_dst;
2901 ippseudo.ippseudo_pad = 0;
2902 ippseudo.ippseudo_p = IPPROTO_TCP;
2903 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2904 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2905 } else {
2906 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2907 ip6pseudo.ip6ph_src = ip6->ip6_src;
2908 in6_clearscope(&ip6pseudo.ip6ph_src);
2909 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2910 in6_clearscope(&ip6pseudo.ip6ph_dst);
2911 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2912 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2913 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2914 }
2915
2916 th0 = *th;
2917 th0.th_sum = 0;
2918 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2919
2920 l = m->m_pkthdr.len - thoff - tcphdrlen;
2921 if (l > 0)
2922 m_apply(m, thoff + tcphdrlen,
2923 m->m_pkthdr.len - thoff - tcphdrlen,
2924 tcp_signature_apply, &ctx);
2925
2926 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2927 MD5Final(sig, &ctx);
2928
2929 return (0);
2930 }
2931 #endif
2932
2933 static int
2934 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2935 struct tcphdr *th,
2936 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2937 {
2938 u_int16_t mss;
2939 int opt, optlen = 0;
2940 #ifdef TCP_SIGNATURE
2941 void *sigp = NULL;
2942 char sigbuf[TCP_SIGLEN];
2943 struct secasvar *sav = NULL;
2944 #endif
2945
2946 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2947 opt = cp[0];
2948 if (opt == TCPOPT_EOL)
2949 break;
2950 if (opt == TCPOPT_NOP)
2951 optlen = 1;
2952 else {
2953 if (cnt < 2)
2954 break;
2955 optlen = cp[1];
2956 if (optlen < 2 || optlen > cnt)
2957 break;
2958 }
2959 switch (opt) {
2960
2961 default:
2962 continue;
2963
2964 case TCPOPT_MAXSEG:
2965 if (optlen != TCPOLEN_MAXSEG)
2966 continue;
2967 if (!(th->th_flags & TH_SYN))
2968 continue;
2969 if (TCPS_HAVERCVDSYN(tp->t_state))
2970 continue;
2971 bcopy(cp + 2, &mss, sizeof(mss));
2972 oi->maxseg = ntohs(mss);
2973 break;
2974
2975 case TCPOPT_WINDOW:
2976 if (optlen != TCPOLEN_WINDOW)
2977 continue;
2978 if (!(th->th_flags & TH_SYN))
2979 continue;
2980 if (TCPS_HAVERCVDSYN(tp->t_state))
2981 continue;
2982 tp->t_flags |= TF_RCVD_SCALE;
2983 tp->requested_s_scale = cp[2];
2984 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2985 #if 0 /*XXX*/
2986 char *p;
2987
2988 if (ip)
2989 p = ntohl(ip->ip_src);
2990 #ifdef INET6
2991 else if (ip6)
2992 p = ip6_sprintf(&ip6->ip6_src);
2993 #endif
2994 else
2995 p = "(unknown)";
2996 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2997 "assuming %d\n",
2998 tp->requested_s_scale, p,
2999 TCP_MAX_WINSHIFT);
3000 #else
3001 log(LOG_ERR, "TCP: invalid wscale %d, "
3002 "assuming %d\n",
3003 tp->requested_s_scale,
3004 TCP_MAX_WINSHIFT);
3005 #endif
3006 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3007 }
3008 break;
3009
3010 case TCPOPT_TIMESTAMP:
3011 if (optlen != TCPOLEN_TIMESTAMP)
3012 continue;
3013 oi->ts_present = 1;
3014 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3015 NTOHL(oi->ts_val);
3016 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3017 NTOHL(oi->ts_ecr);
3018
3019 if (!(th->th_flags & TH_SYN))
3020 continue;
3021 if (TCPS_HAVERCVDSYN(tp->t_state))
3022 continue;
3023 /*
3024 * A timestamp received in a SYN makes
3025 * it ok to send timestamp requests and replies.
3026 */
3027 tp->t_flags |= TF_RCVD_TSTMP;
3028 tp->ts_recent = oi->ts_val;
3029 tp->ts_recent_age = tcp_now;
3030 break;
3031
3032 case TCPOPT_SACK_PERMITTED:
3033 if (optlen != TCPOLEN_SACK_PERMITTED)
3034 continue;
3035 if (!(th->th_flags & TH_SYN))
3036 continue;
3037 if (TCPS_HAVERCVDSYN(tp->t_state))
3038 continue;
3039 if (tcp_do_sack) {
3040 tp->t_flags |= TF_SACK_PERMIT;
3041 tp->t_flags |= TF_WILL_SACK;
3042 }
3043 break;
3044
3045 case TCPOPT_SACK:
3046 tcp_sack_option(tp, th, cp, optlen);
3047 break;
3048 #ifdef TCP_SIGNATURE
3049 case TCPOPT_SIGNATURE:
3050 if (optlen != TCPOLEN_SIGNATURE)
3051 continue;
3052 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3053 return (-1);
3054
3055 sigp = sigbuf;
3056 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3057 tp->t_flags |= TF_SIGNATURE;
3058 break;
3059 #endif
3060 }
3061 }
3062
3063 #ifdef TCP_SIGNATURE
3064 if (tp->t_flags & TF_SIGNATURE) {
3065
3066 sav = tcp_signature_getsav(m, th);
3067
3068 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3069 return (-1);
3070 }
3071
3072 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3073 if (sav == NULL)
3074 return (-1);
3075 #ifdef FAST_IPSEC
3076 KEY_FREESAV(&sav);
3077 #else
3078 key_freesav(sav);
3079 #endif
3080 return (-1);
3081 }
3082
3083 if (sigp) {
3084 char sig[TCP_SIGLEN];
3085
3086 TCP_FIELDS_TO_NET(th);
3087 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3088 TCP_FIELDS_TO_HOST(th);
3089 if (sav == NULL)
3090 return (-1);
3091 #ifdef FAST_IPSEC
3092 KEY_FREESAV(&sav);
3093 #else
3094 key_freesav(sav);
3095 #endif
3096 return (-1);
3097 }
3098 TCP_FIELDS_TO_HOST(th);
3099
3100 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3101 tcpstat.tcps_badsig++;
3102 if (sav == NULL)
3103 return (-1);
3104 #ifdef FAST_IPSEC
3105 KEY_FREESAV(&sav);
3106 #else
3107 key_freesav(sav);
3108 #endif
3109 return (-1);
3110 } else
3111 tcpstat.tcps_goodsig++;
3112
3113 key_sa_recordxfer(sav, m);
3114 #ifdef FAST_IPSEC
3115 KEY_FREESAV(&sav);
3116 #else
3117 key_freesav(sav);
3118 #endif
3119 }
3120 #endif
3121
3122 return (0);
3123 }
3124
3125 /*
3126 * Pull out of band byte out of a segment so
3127 * it doesn't appear in the user's data queue.
3128 * It is still reflected in the segment length for
3129 * sequencing purposes.
3130 */
3131 void
3132 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3133 struct mbuf *m, int off)
3134 {
3135 int cnt = off + th->th_urp - 1;
3136
3137 while (cnt >= 0) {
3138 if (m->m_len > cnt) {
3139 char *cp = mtod(m, char *) + cnt;
3140 struct tcpcb *tp = sototcpcb(so);
3141
3142 tp->t_iobc = *cp;
3143 tp->t_oobflags |= TCPOOB_HAVEDATA;
3144 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3145 m->m_len--;
3146 return;
3147 }
3148 cnt -= m->m_len;
3149 m = m->m_next;
3150 if (m == 0)
3151 break;
3152 }
3153 panic("tcp_pulloutofband");
3154 }
3155
3156 /*
3157 * Collect new round-trip time estimate
3158 * and update averages and current timeout.
3159 */
3160 void
3161 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3162 {
3163 int32_t delta;
3164
3165 tcpstat.tcps_rttupdated++;
3166 if (tp->t_srtt != 0) {
3167 /*
3168 * srtt is stored as fixed point with 3 bits after the
3169 * binary point (i.e., scaled by 8). The following magic
3170 * is equivalent to the smoothing algorithm in rfc793 with
3171 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3172 * point). Adjust rtt to origin 0.
3173 */
3174 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3175 if ((tp->t_srtt += delta) <= 0)
3176 tp->t_srtt = 1 << 2;
3177 /*
3178 * We accumulate a smoothed rtt variance (actually, a
3179 * smoothed mean difference), then set the retransmit
3180 * timer to smoothed rtt + 4 times the smoothed variance.
3181 * rttvar is stored as fixed point with 2 bits after the
3182 * binary point (scaled by 4). The following is
3183 * equivalent to rfc793 smoothing with an alpha of .75
3184 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3185 * rfc793's wired-in beta.
3186 */
3187 if (delta < 0)
3188 delta = -delta;
3189 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3190 if ((tp->t_rttvar += delta) <= 0)
3191 tp->t_rttvar = 1 << 2;
3192 } else {
3193 /*
3194 * No rtt measurement yet - use the unsmoothed rtt.
3195 * Set the variance to half the rtt (so our first
3196 * retransmit happens at 3*rtt).
3197 */
3198 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3199 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3200 }
3201 tp->t_rtttime = 0;
3202 tp->t_rxtshift = 0;
3203
3204 /*
3205 * the retransmit should happen at rtt + 4 * rttvar.
3206 * Because of the way we do the smoothing, srtt and rttvar
3207 * will each average +1/2 tick of bias. When we compute
3208 * the retransmit timer, we want 1/2 tick of rounding and
3209 * 1 extra tick because of +-1/2 tick uncertainty in the
3210 * firing of the timer. The bias will give us exactly the
3211 * 1.5 tick we need. But, because the bias is
3212 * statistical, we have to test that we don't drop below
3213 * the minimum feasible timer (which is 2 ticks).
3214 */
3215 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3216 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3217
3218 /*
3219 * We received an ack for a packet that wasn't retransmitted;
3220 * it is probably safe to discard any error indications we've
3221 * received recently. This isn't quite right, but close enough
3222 * for now (a route might have failed after we sent a segment,
3223 * and the return path might not be symmetrical).
3224 */
3225 tp->t_softerror = 0;
3226 }
3227
3228
3229 /*
3230 * TCP compressed state engine. Currently used to hold compressed
3231 * state for SYN_RECEIVED.
3232 */
3233
3234 u_long syn_cache_count;
3235 u_int32_t syn_hash1, syn_hash2;
3236
3237 #define SYN_HASH(sa, sp, dp) \
3238 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3239 ((u_int32_t)(sp)))^syn_hash2)))
3240 #ifndef INET6
3241 #define SYN_HASHALL(hash, src, dst) \
3242 do { \
3243 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3244 ((const struct sockaddr_in *)(src))->sin_port, \
3245 ((const struct sockaddr_in *)(dst))->sin_port); \
3246 } while (/*CONSTCOND*/ 0)
3247 #else
3248 #define SYN_HASH6(sa, sp, dp) \
3249 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3250 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3251 & 0x7fffffff)
3252
3253 #define SYN_HASHALL(hash, src, dst) \
3254 do { \
3255 switch ((src)->sa_family) { \
3256 case AF_INET: \
3257 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3258 ((const struct sockaddr_in *)(src))->sin_port, \
3259 ((const struct sockaddr_in *)(dst))->sin_port); \
3260 break; \
3261 case AF_INET6: \
3262 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3263 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3264 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3265 break; \
3266 default: \
3267 hash = 0; \
3268 } \
3269 } while (/*CONSTCOND*/0)
3270 #endif /* INET6 */
3271
3272 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3273 IPL_SOFTNET);
3274
3275 /*
3276 * We don't estimate RTT with SYNs, so each packet starts with the default
3277 * RTT and each timer step has a fixed timeout value.
3278 */
3279 #define SYN_CACHE_TIMER_ARM(sc) \
3280 do { \
3281 TCPT_RANGESET((sc)->sc_rxtcur, \
3282 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3283 TCPTV_REXMTMAX); \
3284 callout_reset(&(sc)->sc_timer, \
3285 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3286 } while (/*CONSTCOND*/0)
3287
3288 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3289
3290 static inline void
3291 syn_cache_rm(struct syn_cache *sc)
3292 {
3293 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3294 sc, sc_bucketq);
3295 sc->sc_tp = NULL;
3296 LIST_REMOVE(sc, sc_tpq);
3297 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3298 callout_stop(&sc->sc_timer);
3299 syn_cache_count--;
3300 }
3301
3302 static inline void
3303 syn_cache_put(struct syn_cache *sc)
3304 {
3305 if (sc->sc_ipopts)
3306 (void) m_free(sc->sc_ipopts);
3307 rtcache_free(&sc->sc_route);
3308 if (callout_invoking(&sc->sc_timer))
3309 sc->sc_flags |= SCF_DEAD;
3310 else {
3311 callout_destroy(&sc->sc_timer);
3312 pool_put(&syn_cache_pool, sc);
3313 }
3314 }
3315
3316 void
3317 syn_cache_init(void)
3318 {
3319 int i;
3320
3321 /* Initialize the hash buckets. */
3322 for (i = 0; i < tcp_syn_cache_size; i++)
3323 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3324 }
3325
3326 void
3327 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3328 {
3329 struct syn_cache_head *scp;
3330 struct syn_cache *sc2;
3331 int s;
3332
3333 /*
3334 * If there are no entries in the hash table, reinitialize
3335 * the hash secrets.
3336 */
3337 if (syn_cache_count == 0) {
3338 syn_hash1 = arc4random();
3339 syn_hash2 = arc4random();
3340 }
3341
3342 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3343 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3344 scp = &tcp_syn_cache[sc->sc_bucketidx];
3345
3346 /*
3347 * Make sure that we don't overflow the per-bucket
3348 * limit or the total cache size limit.
3349 */
3350 s = splsoftnet();
3351 if (scp->sch_length >= tcp_syn_bucket_limit) {
3352 tcpstat.tcps_sc_bucketoverflow++;
3353 /*
3354 * The bucket is full. Toss the oldest element in the
3355 * bucket. This will be the first entry in the bucket.
3356 */
3357 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3358 #ifdef DIAGNOSTIC
3359 /*
3360 * This should never happen; we should always find an
3361 * entry in our bucket.
3362 */
3363 if (sc2 == NULL)
3364 panic("syn_cache_insert: bucketoverflow: impossible");
3365 #endif
3366 syn_cache_rm(sc2);
3367 syn_cache_put(sc2); /* calls pool_put but see spl above */
3368 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3369 struct syn_cache_head *scp2, *sce;
3370
3371 tcpstat.tcps_sc_overflowed++;
3372 /*
3373 * The cache is full. Toss the oldest entry in the
3374 * first non-empty bucket we can find.
3375 *
3376 * XXX We would really like to toss the oldest
3377 * entry in the cache, but we hope that this
3378 * condition doesn't happen very often.
3379 */
3380 scp2 = scp;
3381 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3382 sce = &tcp_syn_cache[tcp_syn_cache_size];
3383 for (++scp2; scp2 != scp; scp2++) {
3384 if (scp2 >= sce)
3385 scp2 = &tcp_syn_cache[0];
3386 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3387 break;
3388 }
3389 #ifdef DIAGNOSTIC
3390 /*
3391 * This should never happen; we should always find a
3392 * non-empty bucket.
3393 */
3394 if (scp2 == scp)
3395 panic("syn_cache_insert: cacheoverflow: "
3396 "impossible");
3397 #endif
3398 }
3399 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3400 syn_cache_rm(sc2);
3401 syn_cache_put(sc2); /* calls pool_put but see spl above */
3402 }
3403
3404 /*
3405 * Initialize the entry's timer.
3406 */
3407 sc->sc_rxttot = 0;
3408 sc->sc_rxtshift = 0;
3409 SYN_CACHE_TIMER_ARM(sc);
3410
3411 /* Link it from tcpcb entry */
3412 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3413
3414 /* Put it into the bucket. */
3415 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3416 scp->sch_length++;
3417 syn_cache_count++;
3418
3419 tcpstat.tcps_sc_added++;
3420 splx(s);
3421 }
3422
3423 /*
3424 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3425 * If we have retransmitted an entry the maximum number of times, expire
3426 * that entry.
3427 */
3428 void
3429 syn_cache_timer(void *arg)
3430 {
3431 struct syn_cache *sc = arg;
3432 int s;
3433
3434 s = splsoftnet();
3435 callout_ack(&sc->sc_timer);
3436
3437 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3438 tcpstat.tcps_sc_delayed_free++;
3439 callout_destroy(&sc->sc_timer);
3440 pool_put(&syn_cache_pool, sc);
3441 splx(s);
3442 return;
3443 }
3444
3445 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3446 /* Drop it -- too many retransmissions. */
3447 goto dropit;
3448 }
3449
3450 /*
3451 * Compute the total amount of time this entry has
3452 * been on a queue. If this entry has been on longer
3453 * than the keep alive timer would allow, expire it.
3454 */
3455 sc->sc_rxttot += sc->sc_rxtcur;
3456 if (sc->sc_rxttot >= tcp_keepinit)
3457 goto dropit;
3458
3459 tcpstat.tcps_sc_retransmitted++;
3460 (void) syn_cache_respond(sc, NULL);
3461
3462 /* Advance the timer back-off. */
3463 sc->sc_rxtshift++;
3464 SYN_CACHE_TIMER_ARM(sc);
3465
3466 splx(s);
3467 return;
3468
3469 dropit:
3470 tcpstat.tcps_sc_timed_out++;
3471 syn_cache_rm(sc);
3472 syn_cache_put(sc); /* calls pool_put but see spl above */
3473 splx(s);
3474 }
3475
3476 /*
3477 * Remove syn cache created by the specified tcb entry,
3478 * because this does not make sense to keep them
3479 * (if there's no tcb entry, syn cache entry will never be used)
3480 */
3481 void
3482 syn_cache_cleanup(struct tcpcb *tp)
3483 {
3484 struct syn_cache *sc, *nsc;
3485 int s;
3486
3487 s = splsoftnet();
3488
3489 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3490 nsc = LIST_NEXT(sc, sc_tpq);
3491
3492 #ifdef DIAGNOSTIC
3493 if (sc->sc_tp != tp)
3494 panic("invalid sc_tp in syn_cache_cleanup");
3495 #endif
3496 syn_cache_rm(sc);
3497 syn_cache_put(sc); /* calls pool_put but see spl above */
3498 }
3499 /* just for safety */
3500 LIST_INIT(&tp->t_sc);
3501
3502 splx(s);
3503 }
3504
3505 /*
3506 * Find an entry in the syn cache.
3507 */
3508 struct syn_cache *
3509 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3510 struct syn_cache_head **headp)
3511 {
3512 struct syn_cache *sc;
3513 struct syn_cache_head *scp;
3514 u_int32_t hash;
3515 int s;
3516
3517 SYN_HASHALL(hash, src, dst);
3518
3519 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3520 *headp = scp;
3521 s = splsoftnet();
3522 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3523 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3524 if (sc->sc_hash != hash)
3525 continue;
3526 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3527 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3528 splx(s);
3529 return (sc);
3530 }
3531 }
3532 splx(s);
3533 return (NULL);
3534 }
3535
3536 /*
3537 * This function gets called when we receive an ACK for a
3538 * socket in the LISTEN state. We look up the connection
3539 * in the syn cache, and if its there, we pull it out of
3540 * the cache and turn it into a full-blown connection in
3541 * the SYN-RECEIVED state.
3542 *
3543 * The return values may not be immediately obvious, and their effects
3544 * can be subtle, so here they are:
3545 *
3546 * NULL SYN was not found in cache; caller should drop the
3547 * packet and send an RST.
3548 *
3549 * -1 We were unable to create the new connection, and are
3550 * aborting it. An ACK,RST is being sent to the peer
3551 * (unless we got screwey sequence numbners; see below),
3552 * because the 3-way handshake has been completed. Caller
3553 * should not free the mbuf, since we may be using it. If
3554 * we are not, we will free it.
3555 *
3556 * Otherwise, the return value is a pointer to the new socket
3557 * associated with the connection.
3558 */
3559 struct socket *
3560 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3561 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3562 struct socket *so, struct mbuf *m)
3563 {
3564 struct syn_cache *sc;
3565 struct syn_cache_head *scp;
3566 struct inpcb *inp = NULL;
3567 #ifdef INET6
3568 struct in6pcb *in6p = NULL;
3569 #endif
3570 struct tcpcb *tp = 0;
3571 struct mbuf *am;
3572 int s;
3573 struct socket *oso;
3574
3575 s = splsoftnet();
3576 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3577 splx(s);
3578 return (NULL);
3579 }
3580
3581 /*
3582 * Verify the sequence and ack numbers. Try getting the correct
3583 * response again.
3584 */
3585 if ((th->th_ack != sc->sc_iss + 1) ||
3586 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3587 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3588 (void) syn_cache_respond(sc, m);
3589 splx(s);
3590 return ((struct socket *)(-1));
3591 }
3592
3593 /* Remove this cache entry */
3594 syn_cache_rm(sc);
3595 splx(s);
3596
3597 /*
3598 * Ok, create the full blown connection, and set things up
3599 * as they would have been set up if we had created the
3600 * connection when the SYN arrived. If we can't create
3601 * the connection, abort it.
3602 */
3603 /*
3604 * inp still has the OLD in_pcb stuff, set the
3605 * v6-related flags on the new guy, too. This is
3606 * done particularly for the case where an AF_INET6
3607 * socket is bound only to a port, and a v4 connection
3608 * comes in on that port.
3609 * we also copy the flowinfo from the original pcb
3610 * to the new one.
3611 */
3612 oso = so;
3613 so = sonewconn(so, SS_ISCONNECTED);
3614 if (so == NULL)
3615 goto resetandabort;
3616
3617 switch (so->so_proto->pr_domain->dom_family) {
3618 #ifdef INET
3619 case AF_INET:
3620 inp = sotoinpcb(so);
3621 break;
3622 #endif
3623 #ifdef INET6
3624 case AF_INET6:
3625 in6p = sotoin6pcb(so);
3626 break;
3627 #endif
3628 }
3629 switch (src->sa_family) {
3630 #ifdef INET
3631 case AF_INET:
3632 if (inp) {
3633 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3634 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3635 inp->inp_options = ip_srcroute();
3636 in_pcbstate(inp, INP_BOUND);
3637 if (inp->inp_options == NULL) {
3638 inp->inp_options = sc->sc_ipopts;
3639 sc->sc_ipopts = NULL;
3640 }
3641 }
3642 #ifdef INET6
3643 else if (in6p) {
3644 /* IPv4 packet to AF_INET6 socket */
3645 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3646 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3647 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3648 &in6p->in6p_laddr.s6_addr32[3],
3649 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3650 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3651 in6totcpcb(in6p)->t_family = AF_INET;
3652 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3653 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3654 else
3655 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3656 in6_pcbstate(in6p, IN6P_BOUND);
3657 }
3658 #endif
3659 break;
3660 #endif
3661 #ifdef INET6
3662 case AF_INET6:
3663 if (in6p) {
3664 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3665 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3666 in6_pcbstate(in6p, IN6P_BOUND);
3667 }
3668 break;
3669 #endif
3670 }
3671 #ifdef INET6
3672 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3673 struct in6pcb *oin6p = sotoin6pcb(oso);
3674 /* inherit socket options from the listening socket */
3675 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3676 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3677 m_freem(in6p->in6p_options);
3678 in6p->in6p_options = 0;
3679 }
3680 ip6_savecontrol(in6p, &in6p->in6p_options,
3681 mtod(m, struct ip6_hdr *), m);
3682 }
3683 #endif
3684
3685 #if defined(IPSEC) || defined(FAST_IPSEC)
3686 /*
3687 * we make a copy of policy, instead of sharing the policy,
3688 * for better behavior in terms of SA lookup and dead SA removal.
3689 */
3690 if (inp) {
3691 /* copy old policy into new socket's */
3692 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3693 printf("tcp_input: could not copy policy\n");
3694 }
3695 #ifdef INET6
3696 else if (in6p) {
3697 /* copy old policy into new socket's */
3698 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3699 in6p->in6p_sp))
3700 printf("tcp_input: could not copy policy\n");
3701 }
3702 #endif
3703 #endif
3704
3705 /*
3706 * Give the new socket our cached route reference.
3707 */
3708 if (inp) {
3709 rtcache_copy(&inp->inp_route, &sc->sc_route);
3710 rtcache_free(&sc->sc_route);
3711 }
3712 #ifdef INET6
3713 else {
3714 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3715 rtcache_free(&sc->sc_route);
3716 }
3717 #endif
3718
3719 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3720 if (am == NULL)
3721 goto resetandabort;
3722 MCLAIM(am, &tcp_mowner);
3723 am->m_len = src->sa_len;
3724 bcopy(src, mtod(am, void *), src->sa_len);
3725 if (inp) {
3726 if (in_pcbconnect(inp, am, NULL)) {
3727 (void) m_free(am);
3728 goto resetandabort;
3729 }
3730 }
3731 #ifdef INET6
3732 else if (in6p) {
3733 if (src->sa_family == AF_INET) {
3734 /* IPv4 packet to AF_INET6 socket */
3735 struct sockaddr_in6 *sin6;
3736 sin6 = mtod(am, struct sockaddr_in6 *);
3737 am->m_len = sizeof(*sin6);
3738 bzero(sin6, sizeof(*sin6));
3739 sin6->sin6_family = AF_INET6;
3740 sin6->sin6_len = sizeof(*sin6);
3741 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3742 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3743 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3744 &sin6->sin6_addr.s6_addr32[3],
3745 sizeof(sin6->sin6_addr.s6_addr32[3]));
3746 }
3747 if (in6_pcbconnect(in6p, am, NULL)) {
3748 (void) m_free(am);
3749 goto resetandabort;
3750 }
3751 }
3752 #endif
3753 else {
3754 (void) m_free(am);
3755 goto resetandabort;
3756 }
3757 (void) m_free(am);
3758
3759 if (inp)
3760 tp = intotcpcb(inp);
3761 #ifdef INET6
3762 else if (in6p)
3763 tp = in6totcpcb(in6p);
3764 #endif
3765 else
3766 tp = NULL;
3767 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3768 if (sc->sc_request_r_scale != 15) {
3769 tp->requested_s_scale = sc->sc_requested_s_scale;
3770 tp->request_r_scale = sc->sc_request_r_scale;
3771 tp->snd_scale = sc->sc_requested_s_scale;
3772 tp->rcv_scale = sc->sc_request_r_scale;
3773 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3774 }
3775 if (sc->sc_flags & SCF_TIMESTAMP)
3776 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3777 tp->ts_timebase = sc->sc_timebase;
3778
3779 tp->t_template = tcp_template(tp);
3780 if (tp->t_template == 0) {
3781 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3782 so = NULL;
3783 m_freem(m);
3784 goto abort;
3785 }
3786
3787 tp->iss = sc->sc_iss;
3788 tp->irs = sc->sc_irs;
3789 tcp_sendseqinit(tp);
3790 tcp_rcvseqinit(tp);
3791 tp->t_state = TCPS_SYN_RECEIVED;
3792 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3793 tcpstat.tcps_accepts++;
3794
3795 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3796 tp->t_flags |= TF_WILL_SACK;
3797
3798 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3799 tp->t_flags |= TF_ECN_PERMIT;
3800
3801 #ifdef TCP_SIGNATURE
3802 if (sc->sc_flags & SCF_SIGNATURE)
3803 tp->t_flags |= TF_SIGNATURE;
3804 #endif
3805
3806 /* Initialize tp->t_ourmss before we deal with the peer's! */
3807 tp->t_ourmss = sc->sc_ourmaxseg;
3808 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3809
3810 /*
3811 * Initialize the initial congestion window. If we
3812 * had to retransmit the SYN,ACK, we must initialize cwnd
3813 * to 1 segment (i.e. the Loss Window).
3814 */
3815 if (sc->sc_rxtshift)
3816 tp->snd_cwnd = tp->t_peermss;
3817 else {
3818 int ss = tcp_init_win;
3819 #ifdef INET
3820 if (inp != NULL && in_localaddr(inp->inp_faddr))
3821 ss = tcp_init_win_local;
3822 #endif
3823 #ifdef INET6
3824 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3825 ss = tcp_init_win_local;
3826 #endif
3827 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3828 }
3829
3830 tcp_rmx_rtt(tp);
3831 tp->snd_wl1 = sc->sc_irs;
3832 tp->rcv_up = sc->sc_irs + 1;
3833
3834 /*
3835 * This is what whould have happened in tcp_output() when
3836 * the SYN,ACK was sent.
3837 */
3838 tp->snd_up = tp->snd_una;
3839 tp->snd_max = tp->snd_nxt = tp->iss+1;
3840 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3841 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3842 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3843 tp->last_ack_sent = tp->rcv_nxt;
3844 tp->t_partialacks = -1;
3845 tp->t_dupacks = 0;
3846
3847 tcpstat.tcps_sc_completed++;
3848 s = splsoftnet();
3849 syn_cache_put(sc);
3850 splx(s);
3851 return (so);
3852
3853 resetandabort:
3854 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3855 abort:
3856 if (so != NULL)
3857 (void) soabort(so);
3858 s = splsoftnet();
3859 syn_cache_put(sc);
3860 splx(s);
3861 tcpstat.tcps_sc_aborted++;
3862 return ((struct socket *)(-1));
3863 }
3864
3865 /*
3866 * This function is called when we get a RST for a
3867 * non-existent connection, so that we can see if the
3868 * connection is in the syn cache. If it is, zap it.
3869 */
3870
3871 void
3872 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3873 {
3874 struct syn_cache *sc;
3875 struct syn_cache_head *scp;
3876 int s = splsoftnet();
3877
3878 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3879 splx(s);
3880 return;
3881 }
3882 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3883 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3884 splx(s);
3885 return;
3886 }
3887 syn_cache_rm(sc);
3888 tcpstat.tcps_sc_reset++;
3889 syn_cache_put(sc); /* calls pool_put but see spl above */
3890 splx(s);
3891 }
3892
3893 void
3894 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3895 struct tcphdr *th)
3896 {
3897 struct syn_cache *sc;
3898 struct syn_cache_head *scp;
3899 int s;
3900
3901 s = splsoftnet();
3902 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3903 splx(s);
3904 return;
3905 }
3906 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3907 if (ntohl (th->th_seq) != sc->sc_iss) {
3908 splx(s);
3909 return;
3910 }
3911
3912 /*
3913 * If we've retransmitted 3 times and this is our second error,
3914 * we remove the entry. Otherwise, we allow it to continue on.
3915 * This prevents us from incorrectly nuking an entry during a
3916 * spurious network outage.
3917 *
3918 * See tcp_notify().
3919 */
3920 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3921 sc->sc_flags |= SCF_UNREACH;
3922 splx(s);
3923 return;
3924 }
3925
3926 syn_cache_rm(sc);
3927 tcpstat.tcps_sc_unreach++;
3928 syn_cache_put(sc); /* calls pool_put but see spl above */
3929 splx(s);
3930 }
3931
3932 /*
3933 * Given a LISTEN socket and an inbound SYN request, add
3934 * this to the syn cache, and send back a segment:
3935 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3936 * to the source.
3937 *
3938 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3939 * Doing so would require that we hold onto the data and deliver it
3940 * to the application. However, if we are the target of a SYN-flood
3941 * DoS attack, an attacker could send data which would eventually
3942 * consume all available buffer space if it were ACKed. By not ACKing
3943 * the data, we avoid this DoS scenario.
3944 */
3945
3946 int
3947 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3948 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3949 int optlen, struct tcp_opt_info *oi)
3950 {
3951 struct tcpcb tb, *tp;
3952 long win;
3953 struct syn_cache *sc;
3954 struct syn_cache_head *scp;
3955 struct mbuf *ipopts;
3956 struct tcp_opt_info opti;
3957 int s;
3958
3959 tp = sototcpcb(so);
3960
3961 bzero(&opti, sizeof(opti));
3962
3963 /*
3964 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3965 *
3966 * Note this check is performed in tcp_input() very early on.
3967 */
3968
3969 /*
3970 * Initialize some local state.
3971 */
3972 win = sbspace(&so->so_rcv);
3973 if (win > TCP_MAXWIN)
3974 win = TCP_MAXWIN;
3975
3976 switch (src->sa_family) {
3977 #ifdef INET
3978 case AF_INET:
3979 /*
3980 * Remember the IP options, if any.
3981 */
3982 ipopts = ip_srcroute();
3983 break;
3984 #endif
3985 default:
3986 ipopts = NULL;
3987 }
3988
3989 #ifdef TCP_SIGNATURE
3990 if (optp || (tp->t_flags & TF_SIGNATURE))
3991 #else
3992 if (optp)
3993 #endif
3994 {
3995 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3996 #ifdef TCP_SIGNATURE
3997 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3998 #endif
3999 tb.t_state = TCPS_LISTEN;
4000 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4001 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4002 return (0);
4003 } else
4004 tb.t_flags = 0;
4005
4006 /*
4007 * See if we already have an entry for this connection.
4008 * If we do, resend the SYN,ACK. We do not count this
4009 * as a retransmission (XXX though maybe we should).
4010 */
4011 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4012 tcpstat.tcps_sc_dupesyn++;
4013 if (ipopts) {
4014 /*
4015 * If we were remembering a previous source route,
4016 * forget it and use the new one we've been given.
4017 */
4018 if (sc->sc_ipopts)
4019 (void) m_free(sc->sc_ipopts);
4020 sc->sc_ipopts = ipopts;
4021 }
4022 sc->sc_timestamp = tb.ts_recent;
4023 if (syn_cache_respond(sc, m) == 0) {
4024 tcpstat.tcps_sndacks++;
4025 tcpstat.tcps_sndtotal++;
4026 }
4027 return (1);
4028 }
4029
4030 s = splsoftnet();
4031 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4032 splx(s);
4033 if (sc == NULL) {
4034 if (ipopts)
4035 (void) m_free(ipopts);
4036 return (0);
4037 }
4038
4039 /*
4040 * Fill in the cache, and put the necessary IP and TCP
4041 * options into the reply.
4042 */
4043 bzero(sc, sizeof(struct syn_cache));
4044 callout_init(&sc->sc_timer, 0);
4045 bcopy(src, &sc->sc_src, src->sa_len);
4046 bcopy(dst, &sc->sc_dst, dst->sa_len);
4047 sc->sc_flags = 0;
4048 sc->sc_ipopts = ipopts;
4049 sc->sc_irs = th->th_seq;
4050 switch (src->sa_family) {
4051 #ifdef INET
4052 case AF_INET:
4053 {
4054 struct sockaddr_in *srcin = (void *) src;
4055 struct sockaddr_in *dstin = (void *) dst;
4056
4057 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4058 &srcin->sin_addr, dstin->sin_port,
4059 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4060 break;
4061 }
4062 #endif /* INET */
4063 #ifdef INET6
4064 case AF_INET6:
4065 {
4066 struct sockaddr_in6 *srcin6 = (void *) src;
4067 struct sockaddr_in6 *dstin6 = (void *) dst;
4068
4069 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4070 &srcin6->sin6_addr, dstin6->sin6_port,
4071 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4072 break;
4073 }
4074 #endif /* INET6 */
4075 }
4076 sc->sc_peermaxseg = oi->maxseg;
4077 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4078 m->m_pkthdr.rcvif : NULL,
4079 sc->sc_src.sa.sa_family);
4080 sc->sc_win = win;
4081 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
4082 sc->sc_timestamp = tb.ts_recent;
4083 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4084 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4085 sc->sc_flags |= SCF_TIMESTAMP;
4086 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4087 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4088 sc->sc_requested_s_scale = tb.requested_s_scale;
4089 sc->sc_request_r_scale = 0;
4090 /*
4091 * Pick the smallest possible scaling factor that
4092 * will still allow us to scale up to sb_max.
4093 *
4094 * We do this because there are broken firewalls that
4095 * will corrupt the window scale option, leading to
4096 * the other endpoint believing that our advertised
4097 * window is unscaled. At scale factors larger than
4098 * 5 the unscaled window will drop below 1500 bytes,
4099 * leading to serious problems when traversing these
4100 * broken firewalls.
4101 *
4102 * With the default sbmax of 256K, a scale factor
4103 * of 3 will be chosen by this algorithm. Those who
4104 * choose a larger sbmax should watch out
4105 * for the compatiblity problems mentioned above.
4106 *
4107 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4108 * or <SYN,ACK>) segment itself is never scaled.
4109 */
4110 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4111 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4112 sc->sc_request_r_scale++;
4113 } else {
4114 sc->sc_requested_s_scale = 15;
4115 sc->sc_request_r_scale = 15;
4116 }
4117 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4118 sc->sc_flags |= SCF_SACK_PERMIT;
4119
4120 /*
4121 * ECN setup packet recieved.
4122 */
4123 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4124 sc->sc_flags |= SCF_ECN_PERMIT;
4125
4126 #ifdef TCP_SIGNATURE
4127 if (tb.t_flags & TF_SIGNATURE)
4128 sc->sc_flags |= SCF_SIGNATURE;
4129 #endif
4130 sc->sc_tp = tp;
4131 if (syn_cache_respond(sc, m) == 0) {
4132 syn_cache_insert(sc, tp);
4133 tcpstat.tcps_sndacks++;
4134 tcpstat.tcps_sndtotal++;
4135 } else {
4136 s = splsoftnet();
4137 syn_cache_put(sc);
4138 splx(s);
4139 tcpstat.tcps_sc_dropped++;
4140 }
4141 return (1);
4142 }
4143
4144 int
4145 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4146 {
4147 struct route *ro;
4148 u_int8_t *optp;
4149 int optlen, error;
4150 u_int16_t tlen;
4151 struct ip *ip = NULL;
4152 #ifdef INET6
4153 struct ip6_hdr *ip6 = NULL;
4154 #endif
4155 struct tcpcb *tp = NULL;
4156 struct tcphdr *th;
4157 u_int hlen;
4158 struct socket *so;
4159
4160 ro = &sc->sc_route;
4161 switch (sc->sc_src.sa.sa_family) {
4162 case AF_INET:
4163 hlen = sizeof(struct ip);
4164 break;
4165 #ifdef INET6
4166 case AF_INET6:
4167 hlen = sizeof(struct ip6_hdr);
4168 break;
4169 #endif
4170 default:
4171 if (m)
4172 m_freem(m);
4173 return (EAFNOSUPPORT);
4174 }
4175
4176 /* Compute the size of the TCP options. */
4177 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4178 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4179 #ifdef TCP_SIGNATURE
4180 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4181 #endif
4182 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4183
4184 tlen = hlen + sizeof(struct tcphdr) + optlen;
4185
4186 /*
4187 * Create the IP+TCP header from scratch.
4188 */
4189 if (m)
4190 m_freem(m);
4191 #ifdef DIAGNOSTIC
4192 if (max_linkhdr + tlen > MCLBYTES)
4193 return (ENOBUFS);
4194 #endif
4195 MGETHDR(m, M_DONTWAIT, MT_DATA);
4196 if (m && tlen > MHLEN) {
4197 MCLGET(m, M_DONTWAIT);
4198 if ((m->m_flags & M_EXT) == 0) {
4199 m_freem(m);
4200 m = NULL;
4201 }
4202 }
4203 if (m == NULL)
4204 return (ENOBUFS);
4205 MCLAIM(m, &tcp_tx_mowner);
4206
4207 /* Fixup the mbuf. */
4208 m->m_data += max_linkhdr;
4209 m->m_len = m->m_pkthdr.len = tlen;
4210 if (sc->sc_tp) {
4211 tp = sc->sc_tp;
4212 if (tp->t_inpcb)
4213 so = tp->t_inpcb->inp_socket;
4214 #ifdef INET6
4215 else if (tp->t_in6pcb)
4216 so = tp->t_in6pcb->in6p_socket;
4217 #endif
4218 else
4219 so = NULL;
4220 } else
4221 so = NULL;
4222 m->m_pkthdr.rcvif = NULL;
4223 memset(mtod(m, u_char *), 0, tlen);
4224
4225 switch (sc->sc_src.sa.sa_family) {
4226 case AF_INET:
4227 ip = mtod(m, struct ip *);
4228 ip->ip_v = 4;
4229 ip->ip_dst = sc->sc_src.sin.sin_addr;
4230 ip->ip_src = sc->sc_dst.sin.sin_addr;
4231 ip->ip_p = IPPROTO_TCP;
4232 th = (struct tcphdr *)(ip + 1);
4233 th->th_dport = sc->sc_src.sin.sin_port;
4234 th->th_sport = sc->sc_dst.sin.sin_port;
4235 break;
4236 #ifdef INET6
4237 case AF_INET6:
4238 ip6 = mtod(m, struct ip6_hdr *);
4239 ip6->ip6_vfc = IPV6_VERSION;
4240 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4241 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4242 ip6->ip6_nxt = IPPROTO_TCP;
4243 /* ip6_plen will be updated in ip6_output() */
4244 th = (struct tcphdr *)(ip6 + 1);
4245 th->th_dport = sc->sc_src.sin6.sin6_port;
4246 th->th_sport = sc->sc_dst.sin6.sin6_port;
4247 break;
4248 #endif
4249 default:
4250 th = NULL;
4251 }
4252
4253 th->th_seq = htonl(sc->sc_iss);
4254 th->th_ack = htonl(sc->sc_irs + 1);
4255 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4256 th->th_flags = TH_SYN|TH_ACK;
4257 th->th_win = htons(sc->sc_win);
4258 /* th_sum already 0 */
4259 /* th_urp already 0 */
4260
4261 /* Tack on the TCP options. */
4262 optp = (u_int8_t *)(th + 1);
4263 *optp++ = TCPOPT_MAXSEG;
4264 *optp++ = 4;
4265 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4266 *optp++ = sc->sc_ourmaxseg & 0xff;
4267
4268 if (sc->sc_request_r_scale != 15) {
4269 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4270 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4271 sc->sc_request_r_scale);
4272 optp += 4;
4273 }
4274
4275 if (sc->sc_flags & SCF_TIMESTAMP) {
4276 u_int32_t *lp = (u_int32_t *)(optp);
4277 /* Form timestamp option as shown in appendix A of RFC 1323. */
4278 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4279 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4280 *lp = htonl(sc->sc_timestamp);
4281 optp += TCPOLEN_TSTAMP_APPA;
4282 }
4283
4284 if (sc->sc_flags & SCF_SACK_PERMIT) {
4285 u_int8_t *p = optp;
4286
4287 /* Let the peer know that we will SACK. */
4288 p[0] = TCPOPT_SACK_PERMITTED;
4289 p[1] = 2;
4290 p[2] = TCPOPT_NOP;
4291 p[3] = TCPOPT_NOP;
4292 optp += 4;
4293 }
4294
4295 /*
4296 * Send ECN SYN-ACK setup packet.
4297 * Routes can be asymetric, so, even if we receive a packet
4298 * with ECE and CWR set, we must not assume no one will block
4299 * the ECE packet we are about to send.
4300 */
4301 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4302 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4303 th->th_flags |= TH_ECE;
4304 tcpstat.tcps_ecn_shs++;
4305
4306 /*
4307 * draft-ietf-tcpm-ecnsyn-00.txt
4308 *
4309 * "[...] a TCP node MAY respond to an ECN-setup
4310 * SYN packet by setting ECT in the responding
4311 * ECN-setup SYN/ACK packet, indicating to routers
4312 * that the SYN/ACK packet is ECN-Capable.
4313 * This allows a congested router along the path
4314 * to mark the packet instead of dropping the
4315 * packet as an indication of congestion."
4316 *
4317 * "[...] There can be a great benefit in setting
4318 * an ECN-capable codepoint in SYN/ACK packets [...]
4319 * Congestion is most likely to occur in
4320 * the server-to-client direction. As a result,
4321 * setting an ECN-capable codepoint in SYN/ACK
4322 * packets can reduce the occurence of three-second
4323 * retransmit timeouts resulting from the drop
4324 * of SYN/ACK packets."
4325 *
4326 * Page 4 and 6, January 2006.
4327 */
4328
4329 switch (sc->sc_src.sa.sa_family) {
4330 #ifdef INET
4331 case AF_INET:
4332 ip->ip_tos |= IPTOS_ECN_ECT0;
4333 break;
4334 #endif
4335 #ifdef INET6
4336 case AF_INET6:
4337 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4338 break;
4339 #endif
4340 }
4341 tcpstat.tcps_ecn_ect++;
4342 }
4343
4344 #ifdef TCP_SIGNATURE
4345 if (sc->sc_flags & SCF_SIGNATURE) {
4346 struct secasvar *sav;
4347 u_int8_t *sigp;
4348
4349 sav = tcp_signature_getsav(m, th);
4350
4351 if (sav == NULL) {
4352 if (m)
4353 m_freem(m);
4354 return (EPERM);
4355 }
4356
4357 *optp++ = TCPOPT_SIGNATURE;
4358 *optp++ = TCPOLEN_SIGNATURE;
4359 sigp = optp;
4360 bzero(optp, TCP_SIGLEN);
4361 optp += TCP_SIGLEN;
4362 *optp++ = TCPOPT_NOP;
4363 *optp++ = TCPOPT_EOL;
4364
4365 (void)tcp_signature(m, th, hlen, sav, sigp);
4366
4367 key_sa_recordxfer(sav, m);
4368 #ifdef FAST_IPSEC
4369 KEY_FREESAV(&sav);
4370 #else
4371 key_freesav(sav);
4372 #endif
4373 }
4374 #endif
4375
4376 /* Compute the packet's checksum. */
4377 switch (sc->sc_src.sa.sa_family) {
4378 case AF_INET:
4379 ip->ip_len = htons(tlen - hlen);
4380 th->th_sum = 0;
4381 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4382 break;
4383 #ifdef INET6
4384 case AF_INET6:
4385 ip6->ip6_plen = htons(tlen - hlen);
4386 th->th_sum = 0;
4387 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4388 break;
4389 #endif
4390 }
4391
4392 /*
4393 * Fill in some straggling IP bits. Note the stack expects
4394 * ip_len to be in host order, for convenience.
4395 */
4396 switch (sc->sc_src.sa.sa_family) {
4397 #ifdef INET
4398 case AF_INET:
4399 ip->ip_len = htons(tlen);
4400 ip->ip_ttl = ip_defttl;
4401 /* XXX tos? */
4402 break;
4403 #endif
4404 #ifdef INET6
4405 case AF_INET6:
4406 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4407 ip6->ip6_vfc |= IPV6_VERSION;
4408 ip6->ip6_plen = htons(tlen - hlen);
4409 /* ip6_hlim will be initialized afterwards */
4410 /* XXX flowlabel? */
4411 break;
4412 #endif
4413 }
4414
4415 /* XXX use IPsec policy on listening socket, on SYN ACK */
4416 tp = sc->sc_tp;
4417
4418 switch (sc->sc_src.sa.sa_family) {
4419 #ifdef INET
4420 case AF_INET:
4421 error = ip_output(m, sc->sc_ipopts, ro,
4422 (ip_mtudisc ? IP_MTUDISC : 0),
4423 (struct ip_moptions *)NULL, so);
4424 break;
4425 #endif
4426 #ifdef INET6
4427 case AF_INET6:
4428 ip6->ip6_hlim = in6_selecthlim(NULL,
4429 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4430
4431 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4432 break;
4433 #endif
4434 default:
4435 error = EAFNOSUPPORT;
4436 break;
4437 }
4438 return (error);
4439 }
4440