tcp_input.c revision 1.273 1 /* $NetBSD: tcp_input.c,v 1.273 2007/12/16 14:12:34 elad Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 * 3. All advertising materials mentioning features or use of this software
93 * must display the following acknowledgement:
94 * This product includes software developed by the NetBSD
95 * Foundation, Inc. and its contributors.
96 * 4. Neither the name of The NetBSD Foundation nor the names of its
97 * contributors may be used to endorse or promote products derived
98 * from this software without specific prior written permission.
99 *
100 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
101 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
102 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
103 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
104 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
105 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
106 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
107 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
108 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
109 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
110 * POSSIBILITY OF SUCH DAMAGE.
111 */
112
113 /*
114 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
115 * The Regents of the University of California. All rights reserved.
116 *
117 * Redistribution and use in source and binary forms, with or without
118 * modification, are permitted provided that the following conditions
119 * are met:
120 * 1. Redistributions of source code must retain the above copyright
121 * notice, this list of conditions and the following disclaimer.
122 * 2. Redistributions in binary form must reproduce the above copyright
123 * notice, this list of conditions and the following disclaimer in the
124 * documentation and/or other materials provided with the distribution.
125 * 3. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.273 2007/12/16 14:12:34 elad Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 #ifdef TCP_SIGNATURE
175 #include <sys/md5.h>
176 #endif
177 #include <sys/lwp.h> /* for lwp0 */
178
179 #include <net/if.h>
180 #include <net/route.h>
181 #include <net/if_types.h>
182
183 #include <netinet/in.h>
184 #include <netinet/in_systm.h>
185 #include <netinet/ip.h>
186 #include <netinet/in_pcb.h>
187 #include <netinet/in_var.h>
188 #include <netinet/ip_var.h>
189 #include <netinet/in_offload.h>
190
191 #ifdef INET6
192 #ifndef INET
193 #include <netinet/in.h>
194 #endif
195 #include <netinet/ip6.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_pcb.h>
198 #include <netinet6/ip6_var.h>
199 #include <netinet6/in6_var.h>
200 #include <netinet/icmp6.h>
201 #include <netinet6/nd6.h>
202 #ifdef TCP_SIGNATURE
203 #include <netinet6/scope6_var.h>
204 #endif
205 #endif
206
207 #ifndef INET6
208 /* always need ip6.h for IP6_EXTHDR_GET */
209 #include <netinet/ip6.h>
210 #endif
211
212 #include <netinet/tcp.h>
213 #include <netinet/tcp_fsm.h>
214 #include <netinet/tcp_seq.h>
215 #include <netinet/tcp_timer.h>
216 #include <netinet/tcp_var.h>
217 #include <netinet/tcpip.h>
218 #include <netinet/tcp_congctl.h>
219 #include <netinet/tcp_debug.h>
220
221 #include <machine/stdarg.h>
222
223 #ifdef IPSEC
224 #include <netinet6/ipsec.h>
225 #include <netkey/key.h>
226 #endif /*IPSEC*/
227 #ifdef INET6
228 #include "faith.h"
229 #if defined(NFAITH) && NFAITH > 0
230 #include <net/if_faith.h>
231 #endif
232 #endif /* IPSEC */
233
234 #ifdef FAST_IPSEC
235 #include <netipsec/ipsec.h>
236 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
237 #include <netipsec/key.h>
238 #ifdef INET6
239 #include <netipsec/ipsec6.h>
240 #endif
241 #endif /* FAST_IPSEC*/
242
243 int tcprexmtthresh = 3;
244 int tcp_log_refused;
245
246 int tcp_do_autorcvbuf = 0;
247 int tcp_autorcvbuf_inc = 16 * 1024;
248 int tcp_autorcvbuf_max = 256 * 1024;
249
250 static int tcp_rst_ppslim_count = 0;
251 static struct timeval tcp_rst_ppslim_last;
252 static int tcp_ackdrop_ppslim_count = 0;
253 static struct timeval tcp_ackdrop_ppslim_last;
254
255 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
256
257 /* for modulo comparisons of timestamps */
258 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
259 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
260
261 /*
262 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
263 */
264 #ifdef INET6
265 #define ND6_HINT(tp) \
266 do { \
267 if (tp && tp->t_in6pcb && tp->t_family == AF_INET6 && \
268 tp->t_in6pcb->in6p_route.ro_rt) { \
269 nd6_nud_hint(tp->t_in6pcb->in6p_route.ro_rt, NULL, 0); \
270 } \
271 } while (/*CONSTCOND*/ 0)
272 #else
273 #define ND6_HINT(tp)
274 #endif
275
276 /*
277 * Macro to compute ACK transmission behavior. Delay the ACK unless
278 * we have already delayed an ACK (must send an ACK every two segments).
279 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
280 * option is enabled.
281 */
282 #define TCP_SETUP_ACK(tp, th) \
283 do { \
284 if ((tp)->t_flags & TF_DELACK || \
285 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
286 tp->t_flags |= TF_ACKNOW; \
287 else \
288 TCP_SET_DELACK(tp); \
289 } while (/*CONSTCOND*/ 0)
290
291 #define ICMP_CHECK(tp, th, acked) \
292 do { \
293 /* \
294 * If we had a pending ICMP message that \
295 * refers to data that have just been \
296 * acknowledged, disregard the recorded ICMP \
297 * message. \
298 */ \
299 if (((tp)->t_flags & TF_PMTUD_PEND) && \
300 SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
301 (tp)->t_flags &= ~TF_PMTUD_PEND; \
302 \
303 /* \
304 * Keep track of the largest chunk of data \
305 * acknowledged since last PMTU update \
306 */ \
307 if ((tp)->t_pmtud_mss_acked < (acked)) \
308 (tp)->t_pmtud_mss_acked = (acked); \
309 } while (/*CONSTCOND*/ 0)
310
311 /*
312 * Convert TCP protocol fields to host order for easier processing.
313 */
314 #define TCP_FIELDS_TO_HOST(th) \
315 do { \
316 NTOHL((th)->th_seq); \
317 NTOHL((th)->th_ack); \
318 NTOHS((th)->th_win); \
319 NTOHS((th)->th_urp); \
320 } while (/*CONSTCOND*/ 0)
321
322 /*
323 * ... and reverse the above.
324 */
325 #define TCP_FIELDS_TO_NET(th) \
326 do { \
327 HTONL((th)->th_seq); \
328 HTONL((th)->th_ack); \
329 HTONS((th)->th_win); \
330 HTONS((th)->th_urp); \
331 } while (/*CONSTCOND*/ 0)
332
333 #ifdef TCP_CSUM_COUNTERS
334 #include <sys/device.h>
335
336 #if defined(INET)
337 extern struct evcnt tcp_hwcsum_ok;
338 extern struct evcnt tcp_hwcsum_bad;
339 extern struct evcnt tcp_hwcsum_data;
340 extern struct evcnt tcp_swcsum;
341 #endif /* defined(INET) */
342 #if defined(INET6)
343 extern struct evcnt tcp6_hwcsum_ok;
344 extern struct evcnt tcp6_hwcsum_bad;
345 extern struct evcnt tcp6_hwcsum_data;
346 extern struct evcnt tcp6_swcsum;
347 #endif /* defined(INET6) */
348
349 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
350
351 #else
352
353 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
354
355 #endif /* TCP_CSUM_COUNTERS */
356
357 #ifdef TCP_REASS_COUNTERS
358 #include <sys/device.h>
359
360 extern struct evcnt tcp_reass_;
361 extern struct evcnt tcp_reass_empty;
362 extern struct evcnt tcp_reass_iteration[8];
363 extern struct evcnt tcp_reass_prependfirst;
364 extern struct evcnt tcp_reass_prepend;
365 extern struct evcnt tcp_reass_insert;
366 extern struct evcnt tcp_reass_inserttail;
367 extern struct evcnt tcp_reass_append;
368 extern struct evcnt tcp_reass_appendtail;
369 extern struct evcnt tcp_reass_overlaptail;
370 extern struct evcnt tcp_reass_overlapfront;
371 extern struct evcnt tcp_reass_segdup;
372 extern struct evcnt tcp_reass_fragdup;
373
374 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
375
376 #else
377
378 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
379
380 #endif /* TCP_REASS_COUNTERS */
381
382 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
383 int *);
384 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
385 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
386
387 #ifdef INET
388 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
389 #endif
390 #ifdef INET6
391 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
392 #endif
393
394 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
395
396 #if defined(MBUFTRACE)
397 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
398 #endif /* defined(MBUFTRACE) */
399
400 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
401 NULL, IPL_VM);
402
403 struct ipqent *
404 tcpipqent_alloc()
405 {
406 struct ipqent *ipqe;
407 int s;
408
409 s = splvm();
410 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
411 splx(s);
412
413 return ipqe;
414 }
415
416 void
417 tcpipqent_free(struct ipqent *ipqe)
418 {
419 int s;
420
421 s = splvm();
422 pool_put(&tcpipqent_pool, ipqe);
423 splx(s);
424 }
425
426 static int
427 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
428 {
429 struct ipqent *p, *q, *nq, *tiqe = NULL;
430 struct socket *so = NULL;
431 int pkt_flags;
432 tcp_seq pkt_seq;
433 unsigned pkt_len;
434 u_long rcvpartdupbyte = 0;
435 u_long rcvoobyte;
436 #ifdef TCP_REASS_COUNTERS
437 u_int count = 0;
438 #endif
439
440 if (tp->t_inpcb)
441 so = tp->t_inpcb->inp_socket;
442 #ifdef INET6
443 else if (tp->t_in6pcb)
444 so = tp->t_in6pcb->in6p_socket;
445 #endif
446
447 TCP_REASS_LOCK_CHECK(tp);
448
449 /*
450 * Call with th==0 after become established to
451 * force pre-ESTABLISHED data up to user socket.
452 */
453 if (th == 0)
454 goto present;
455
456 m_claimm(m, &tcp_reass_mowner);
457
458 rcvoobyte = *tlen;
459 /*
460 * Copy these to local variables because the tcpiphdr
461 * gets munged while we are collapsing mbufs.
462 */
463 pkt_seq = th->th_seq;
464 pkt_len = *tlen;
465 pkt_flags = th->th_flags;
466
467 TCP_REASS_COUNTER_INCR(&tcp_reass_);
468
469 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
470 /*
471 * When we miss a packet, the vast majority of time we get
472 * packets that follow it in order. So optimize for that.
473 */
474 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
475 p->ipqe_len += pkt_len;
476 p->ipqe_flags |= pkt_flags;
477 m_cat(p->ipre_mlast, m);
478 TRAVERSE(p->ipre_mlast);
479 m = NULL;
480 tiqe = p;
481 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
482 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
483 goto skip_replacement;
484 }
485 /*
486 * While we're here, if the pkt is completely beyond
487 * anything we have, just insert it at the tail.
488 */
489 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
490 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
491 goto insert_it;
492 }
493 }
494
495 q = TAILQ_FIRST(&tp->segq);
496
497 if (q != NULL) {
498 /*
499 * If this segment immediately precedes the first out-of-order
500 * block, simply slap the segment in front of it and (mostly)
501 * skip the complicated logic.
502 */
503 if (pkt_seq + pkt_len == q->ipqe_seq) {
504 q->ipqe_seq = pkt_seq;
505 q->ipqe_len += pkt_len;
506 q->ipqe_flags |= pkt_flags;
507 m_cat(m, q->ipqe_m);
508 q->ipqe_m = m;
509 q->ipre_mlast = m; /* last mbuf may have changed */
510 TRAVERSE(q->ipre_mlast);
511 tiqe = q;
512 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
513 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
514 goto skip_replacement;
515 }
516 } else {
517 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
518 }
519
520 /*
521 * Find a segment which begins after this one does.
522 */
523 for (p = NULL; q != NULL; q = nq) {
524 nq = TAILQ_NEXT(q, ipqe_q);
525 #ifdef TCP_REASS_COUNTERS
526 count++;
527 #endif
528 /*
529 * If the received segment is just right after this
530 * fragment, merge the two together and then check
531 * for further overlaps.
532 */
533 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
534 #ifdef TCPREASS_DEBUG
535 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
536 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
537 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
538 #endif
539 pkt_len += q->ipqe_len;
540 pkt_flags |= q->ipqe_flags;
541 pkt_seq = q->ipqe_seq;
542 m_cat(q->ipre_mlast, m);
543 TRAVERSE(q->ipre_mlast);
544 m = q->ipqe_m;
545 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
546 goto free_ipqe;
547 }
548 /*
549 * If the received segment is completely past this
550 * fragment, we need to go the next fragment.
551 */
552 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
553 p = q;
554 continue;
555 }
556 /*
557 * If the fragment is past the received segment,
558 * it (or any following) can't be concatenated.
559 */
560 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
561 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
562 break;
563 }
564
565 /*
566 * We've received all the data in this segment before.
567 * mark it as a duplicate and return.
568 */
569 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
570 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
571 tcpstat.tcps_rcvduppack++;
572 tcpstat.tcps_rcvdupbyte += pkt_len;
573 tcp_new_dsack(tp, pkt_seq, pkt_len);
574 m_freem(m);
575 if (tiqe != NULL) {
576 tcpipqent_free(tiqe);
577 }
578 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
579 return (0);
580 }
581 /*
582 * Received segment completely overlaps this fragment
583 * so we drop the fragment (this keeps the temporal
584 * ordering of segments correct).
585 */
586 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
587 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
588 rcvpartdupbyte += q->ipqe_len;
589 m_freem(q->ipqe_m);
590 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
591 goto free_ipqe;
592 }
593 /*
594 * RX'ed segment extends past the end of the
595 * fragment. Drop the overlapping bytes. Then
596 * merge the fragment and segment then treat as
597 * a longer received packet.
598 */
599 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
600 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
601 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
602 #ifdef TCPREASS_DEBUG
603 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
604 tp, overlap,
605 pkt_seq, pkt_seq + pkt_len, pkt_len);
606 #endif
607 m_adj(m, overlap);
608 rcvpartdupbyte += overlap;
609 m_cat(q->ipre_mlast, m);
610 TRAVERSE(q->ipre_mlast);
611 m = q->ipqe_m;
612 pkt_seq = q->ipqe_seq;
613 pkt_len += q->ipqe_len - overlap;
614 rcvoobyte -= overlap;
615 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
616 goto free_ipqe;
617 }
618 /*
619 * RX'ed segment extends past the front of the
620 * fragment. Drop the overlapping bytes on the
621 * received packet. The packet will then be
622 * contatentated with this fragment a bit later.
623 */
624 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
625 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
626 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
627 #ifdef TCPREASS_DEBUG
628 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
629 tp, overlap,
630 pkt_seq, pkt_seq + pkt_len, pkt_len);
631 #endif
632 m_adj(m, -overlap);
633 pkt_len -= overlap;
634 rcvpartdupbyte += overlap;
635 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
636 rcvoobyte -= overlap;
637 }
638 /*
639 * If the received segment immediates precedes this
640 * fragment then tack the fragment onto this segment
641 * and reinsert the data.
642 */
643 if (q->ipqe_seq == pkt_seq + pkt_len) {
644 #ifdef TCPREASS_DEBUG
645 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
646 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
647 pkt_seq, pkt_seq + pkt_len, pkt_len);
648 #endif
649 pkt_len += q->ipqe_len;
650 pkt_flags |= q->ipqe_flags;
651 m_cat(m, q->ipqe_m);
652 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
653 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
654 tp->t_segqlen--;
655 KASSERT(tp->t_segqlen >= 0);
656 KASSERT(tp->t_segqlen != 0 ||
657 (TAILQ_EMPTY(&tp->segq) &&
658 TAILQ_EMPTY(&tp->timeq)));
659 if (tiqe == NULL) {
660 tiqe = q;
661 } else {
662 tcpipqent_free(q);
663 }
664 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
665 break;
666 }
667 /*
668 * If the fragment is before the segment, remember it.
669 * When this loop is terminated, p will contain the
670 * pointer to fragment that is right before the received
671 * segment.
672 */
673 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
674 p = q;
675
676 continue;
677
678 /*
679 * This is a common operation. It also will allow
680 * to save doing a malloc/free in most instances.
681 */
682 free_ipqe:
683 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
684 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
685 tp->t_segqlen--;
686 KASSERT(tp->t_segqlen >= 0);
687 KASSERT(tp->t_segqlen != 0 ||
688 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
689 if (tiqe == NULL) {
690 tiqe = q;
691 } else {
692 tcpipqent_free(q);
693 }
694 }
695
696 #ifdef TCP_REASS_COUNTERS
697 if (count > 7)
698 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
699 else if (count > 0)
700 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
701 #endif
702
703 insert_it:
704
705 /*
706 * Allocate a new queue entry since the received segment did not
707 * collapse onto any other out-of-order block; thus we are allocating
708 * a new block. If it had collapsed, tiqe would not be NULL and
709 * we would be reusing it.
710 * XXX If we can't, just drop the packet. XXX
711 */
712 if (tiqe == NULL) {
713 tiqe = tcpipqent_alloc();
714 if (tiqe == NULL) {
715 tcpstat.tcps_rcvmemdrop++;
716 m_freem(m);
717 return (0);
718 }
719 }
720
721 /*
722 * Update the counters.
723 */
724 tcpstat.tcps_rcvoopack++;
725 tcpstat.tcps_rcvoobyte += rcvoobyte;
726 if (rcvpartdupbyte) {
727 tcpstat.tcps_rcvpartduppack++;
728 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
729 }
730
731 /*
732 * Insert the new fragment queue entry into both queues.
733 */
734 tiqe->ipqe_m = m;
735 tiqe->ipre_mlast = m;
736 tiqe->ipqe_seq = pkt_seq;
737 tiqe->ipqe_len = pkt_len;
738 tiqe->ipqe_flags = pkt_flags;
739 if (p == NULL) {
740 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
741 #ifdef TCPREASS_DEBUG
742 if (tiqe->ipqe_seq != tp->rcv_nxt)
743 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
744 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
745 #endif
746 } else {
747 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
748 #ifdef TCPREASS_DEBUG
749 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
750 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
751 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
752 #endif
753 }
754 tp->t_segqlen++;
755
756 skip_replacement:
757
758 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
759
760 present:
761 /*
762 * Present data to user, advancing rcv_nxt through
763 * completed sequence space.
764 */
765 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
766 return (0);
767 q = TAILQ_FIRST(&tp->segq);
768 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
769 return (0);
770 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
771 return (0);
772
773 tp->rcv_nxt += q->ipqe_len;
774 pkt_flags = q->ipqe_flags & TH_FIN;
775 ND6_HINT(tp);
776
777 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
778 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
779 tp->t_segqlen--;
780 KASSERT(tp->t_segqlen >= 0);
781 KASSERT(tp->t_segqlen != 0 ||
782 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
783 if (so->so_state & SS_CANTRCVMORE)
784 m_freem(q->ipqe_m);
785 else
786 sbappendstream(&so->so_rcv, q->ipqe_m);
787 tcpipqent_free(q);
788 sorwakeup(so);
789 return (pkt_flags);
790 }
791
792 #ifdef INET6
793 int
794 tcp6_input(struct mbuf **mp, int *offp, int proto)
795 {
796 struct mbuf *m = *mp;
797
798 /*
799 * draft-itojun-ipv6-tcp-to-anycast
800 * better place to put this in?
801 */
802 if (m->m_flags & M_ANYCAST6) {
803 struct ip6_hdr *ip6;
804 if (m->m_len < sizeof(struct ip6_hdr)) {
805 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
806 tcpstat.tcps_rcvshort++;
807 return IPPROTO_DONE;
808 }
809 }
810 ip6 = mtod(m, struct ip6_hdr *);
811 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
812 (char *)&ip6->ip6_dst - (char *)ip6);
813 return IPPROTO_DONE;
814 }
815
816 tcp_input(m, *offp, proto);
817 return IPPROTO_DONE;
818 }
819 #endif
820
821 #ifdef INET
822 static void
823 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
824 {
825 char src[4*sizeof "123"];
826 char dst[4*sizeof "123"];
827
828 if (ip) {
829 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
830 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
831 }
832 else {
833 strlcpy(src, "(unknown)", sizeof(src));
834 strlcpy(dst, "(unknown)", sizeof(dst));
835 }
836 log(LOG_INFO,
837 "Connection attempt to TCP %s:%d from %s:%d\n",
838 dst, ntohs(th->th_dport),
839 src, ntohs(th->th_sport));
840 }
841 #endif
842
843 #ifdef INET6
844 static void
845 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
846 {
847 char src[INET6_ADDRSTRLEN];
848 char dst[INET6_ADDRSTRLEN];
849
850 if (ip6) {
851 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
852 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
853 }
854 else {
855 strlcpy(src, "(unknown v6)", sizeof(src));
856 strlcpy(dst, "(unknown v6)", sizeof(dst));
857 }
858 log(LOG_INFO,
859 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
860 dst, ntohs(th->th_dport),
861 src, ntohs(th->th_sport));
862 }
863 #endif
864
865 /*
866 * Checksum extended TCP header and data.
867 */
868 int
869 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
870 int toff, int off, int tlen)
871 {
872
873 /*
874 * XXX it's better to record and check if this mbuf is
875 * already checked.
876 */
877
878 switch (af) {
879 #ifdef INET
880 case AF_INET:
881 switch (m->m_pkthdr.csum_flags &
882 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
883 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
884 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
885 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
886 goto badcsum;
887
888 case M_CSUM_TCPv4|M_CSUM_DATA: {
889 u_int32_t hw_csum = m->m_pkthdr.csum_data;
890
891 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
892 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
893 const struct ip *ip =
894 mtod(m, const struct ip *);
895
896 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
897 ip->ip_dst.s_addr,
898 htons(hw_csum + tlen + off + IPPROTO_TCP));
899 }
900 if ((hw_csum ^ 0xffff) != 0)
901 goto badcsum;
902 break;
903 }
904
905 case M_CSUM_TCPv4:
906 /* Checksum was okay. */
907 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
908 break;
909
910 default:
911 /*
912 * Must compute it ourselves. Maybe skip checksum
913 * on loopback interfaces.
914 */
915 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
916 IFF_LOOPBACK) ||
917 tcp_do_loopback_cksum)) {
918 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
919 if (in4_cksum(m, IPPROTO_TCP, toff,
920 tlen + off) != 0)
921 goto badcsum;
922 }
923 break;
924 }
925 break;
926 #endif /* INET4 */
927
928 #ifdef INET6
929 case AF_INET6:
930 switch (m->m_pkthdr.csum_flags &
931 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
932 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
933 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
934 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
935 goto badcsum;
936
937 #if 0 /* notyet */
938 case M_CSUM_TCPv6|M_CSUM_DATA:
939 #endif
940
941 case M_CSUM_TCPv6:
942 /* Checksum was okay. */
943 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
944 break;
945
946 default:
947 /*
948 * Must compute it ourselves. Maybe skip checksum
949 * on loopback interfaces.
950 */
951 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
952 tcp_do_loopback_cksum)) {
953 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
954 if (in6_cksum(m, IPPROTO_TCP, toff,
955 tlen + off) != 0)
956 goto badcsum;
957 }
958 }
959 break;
960 #endif /* INET6 */
961 }
962
963 return 0;
964
965 badcsum:
966 tcpstat.tcps_rcvbadsum++;
967 return -1;
968 }
969
970 /*
971 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
972 */
973 void
974 tcp_input(struct mbuf *m, ...)
975 {
976 struct tcphdr *th;
977 struct ip *ip;
978 struct inpcb *inp;
979 #ifdef INET6
980 struct ip6_hdr *ip6;
981 struct in6pcb *in6p;
982 #endif
983 u_int8_t *optp = NULL;
984 int optlen = 0;
985 int len, tlen, toff, hdroptlen = 0;
986 struct tcpcb *tp = 0;
987 int tiflags;
988 struct socket *so = NULL;
989 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
990 #ifdef TCP_DEBUG
991 short ostate = 0;
992 #endif
993 u_long tiwin;
994 struct tcp_opt_info opti;
995 int off, iphlen;
996 va_list ap;
997 int af; /* af on the wire */
998 struct mbuf *tcp_saveti = NULL;
999 uint32_t ts_rtt;
1000 uint8_t iptos;
1001
1002 MCLAIM(m, &tcp_rx_mowner);
1003 va_start(ap, m);
1004 toff = va_arg(ap, int);
1005 (void)va_arg(ap, int); /* ignore value, advance ap */
1006 va_end(ap);
1007
1008 tcpstat.tcps_rcvtotal++;
1009
1010 bzero(&opti, sizeof(opti));
1011 opti.ts_present = 0;
1012 opti.maxseg = 0;
1013
1014 /*
1015 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1016 *
1017 * TCP is, by definition, unicast, so we reject all
1018 * multicast outright.
1019 *
1020 * Note, there are additional src/dst address checks in
1021 * the AF-specific code below.
1022 */
1023 if (m->m_flags & (M_BCAST|M_MCAST)) {
1024 /* XXX stat */
1025 goto drop;
1026 }
1027 #ifdef INET6
1028 if (m->m_flags & M_ANYCAST6) {
1029 /* XXX stat */
1030 goto drop;
1031 }
1032 #endif
1033
1034 /*
1035 * Get IP and TCP header.
1036 * Note: IP leaves IP header in first mbuf.
1037 */
1038 ip = mtod(m, struct ip *);
1039 #ifdef INET6
1040 ip6 = NULL;
1041 #endif
1042 switch (ip->ip_v) {
1043 #ifdef INET
1044 case 4:
1045 af = AF_INET;
1046 iphlen = sizeof(struct ip);
1047 ip = mtod(m, struct ip *);
1048 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1049 sizeof(struct tcphdr));
1050 if (th == NULL) {
1051 tcpstat.tcps_rcvshort++;
1052 return;
1053 }
1054 /* We do the checksum after PCB lookup... */
1055 len = ntohs(ip->ip_len);
1056 tlen = len - toff;
1057 iptos = ip->ip_tos;
1058 break;
1059 #endif
1060 #ifdef INET6
1061 case 6:
1062 ip = NULL;
1063 iphlen = sizeof(struct ip6_hdr);
1064 af = AF_INET6;
1065 ip6 = mtod(m, struct ip6_hdr *);
1066 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1067 sizeof(struct tcphdr));
1068 if (th == NULL) {
1069 tcpstat.tcps_rcvshort++;
1070 return;
1071 }
1072
1073 /* Be proactive about malicious use of IPv4 mapped address */
1074 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1075 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1076 /* XXX stat */
1077 goto drop;
1078 }
1079
1080 /*
1081 * Be proactive about unspecified IPv6 address in source.
1082 * As we use all-zero to indicate unbounded/unconnected pcb,
1083 * unspecified IPv6 address can be used to confuse us.
1084 *
1085 * Note that packets with unspecified IPv6 destination is
1086 * already dropped in ip6_input.
1087 */
1088 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1089 /* XXX stat */
1090 goto drop;
1091 }
1092
1093 /*
1094 * Make sure destination address is not multicast.
1095 * Source address checked in ip6_input().
1096 */
1097 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1098 /* XXX stat */
1099 goto drop;
1100 }
1101
1102 /* We do the checksum after PCB lookup... */
1103 len = m->m_pkthdr.len;
1104 tlen = len - toff;
1105 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1106 break;
1107 #endif
1108 default:
1109 m_freem(m);
1110 return;
1111 }
1112
1113 KASSERT(TCP_HDR_ALIGNED_P(th));
1114
1115 /*
1116 * Check that TCP offset makes sense,
1117 * pull out TCP options and adjust length. XXX
1118 */
1119 off = th->th_off << 2;
1120 if (off < sizeof (struct tcphdr) || off > tlen) {
1121 tcpstat.tcps_rcvbadoff++;
1122 goto drop;
1123 }
1124 tlen -= off;
1125
1126 /*
1127 * tcp_input() has been modified to use tlen to mean the TCP data
1128 * length throughout the function. Other functions can use
1129 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1130 * rja
1131 */
1132
1133 if (off > sizeof (struct tcphdr)) {
1134 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1135 if (th == NULL) {
1136 tcpstat.tcps_rcvshort++;
1137 return;
1138 }
1139 /*
1140 * NOTE: ip/ip6 will not be affected by m_pulldown()
1141 * (as they're before toff) and we don't need to update those.
1142 */
1143 KASSERT(TCP_HDR_ALIGNED_P(th));
1144 optlen = off - sizeof (struct tcphdr);
1145 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1146 /*
1147 * Do quick retrieval of timestamp options ("options
1148 * prediction?"). If timestamp is the only option and it's
1149 * formatted as recommended in RFC 1323 appendix A, we
1150 * quickly get the values now and not bother calling
1151 * tcp_dooptions(), etc.
1152 */
1153 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1154 (optlen > TCPOLEN_TSTAMP_APPA &&
1155 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1156 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1157 (th->th_flags & TH_SYN) == 0) {
1158 opti.ts_present = 1;
1159 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1160 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1161 optp = NULL; /* we've parsed the options */
1162 }
1163 }
1164 tiflags = th->th_flags;
1165
1166 /*
1167 * Locate pcb for segment.
1168 */
1169 findpcb:
1170 inp = NULL;
1171 #ifdef INET6
1172 in6p = NULL;
1173 #endif
1174 switch (af) {
1175 #ifdef INET
1176 case AF_INET:
1177 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1178 ip->ip_dst, th->th_dport);
1179 if (inp == 0) {
1180 ++tcpstat.tcps_pcbhashmiss;
1181 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1182 }
1183 #ifdef INET6
1184 if (inp == 0) {
1185 struct in6_addr s, d;
1186
1187 /* mapped addr case */
1188 bzero(&s, sizeof(s));
1189 s.s6_addr16[5] = htons(0xffff);
1190 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1191 bzero(&d, sizeof(d));
1192 d.s6_addr16[5] = htons(0xffff);
1193 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1194 in6p = in6_pcblookup_connect(&tcbtable, &s,
1195 th->th_sport, &d, th->th_dport, 0);
1196 if (in6p == 0) {
1197 ++tcpstat.tcps_pcbhashmiss;
1198 in6p = in6_pcblookup_bind(&tcbtable, &d,
1199 th->th_dport, 0);
1200 }
1201 }
1202 #endif
1203 #ifndef INET6
1204 if (inp == 0)
1205 #else
1206 if (inp == 0 && in6p == 0)
1207 #endif
1208 {
1209 ++tcpstat.tcps_noport;
1210 if (tcp_log_refused &&
1211 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1212 tcp4_log_refused(ip, th);
1213 }
1214 TCP_FIELDS_TO_HOST(th);
1215 goto dropwithreset_ratelim;
1216 }
1217 #if defined(IPSEC) || defined(FAST_IPSEC)
1218 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1219 ipsec4_in_reject(m, inp)) {
1220 ipsecstat.in_polvio++;
1221 goto drop;
1222 }
1223 #ifdef INET6
1224 else if (in6p &&
1225 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1226 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1227 ipsecstat.in_polvio++;
1228 goto drop;
1229 }
1230 #endif
1231 #endif /*IPSEC*/
1232 break;
1233 #endif /*INET*/
1234 #ifdef INET6
1235 case AF_INET6:
1236 {
1237 int faith;
1238
1239 #if defined(NFAITH) && NFAITH > 0
1240 faith = faithprefix(&ip6->ip6_dst);
1241 #else
1242 faith = 0;
1243 #endif
1244 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1245 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1246 if (in6p == NULL) {
1247 ++tcpstat.tcps_pcbhashmiss;
1248 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1249 th->th_dport, faith);
1250 }
1251 if (in6p == NULL) {
1252 ++tcpstat.tcps_noport;
1253 if (tcp_log_refused &&
1254 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1255 tcp6_log_refused(ip6, th);
1256 }
1257 TCP_FIELDS_TO_HOST(th);
1258 goto dropwithreset_ratelim;
1259 }
1260 #if defined(IPSEC) || defined(FAST_IPSEC)
1261 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1262 ipsec6_in_reject(m, in6p)) {
1263 ipsec6stat.in_polvio++;
1264 goto drop;
1265 }
1266 #endif /*IPSEC*/
1267 break;
1268 }
1269 #endif
1270 }
1271
1272 /*
1273 * If the state is CLOSED (i.e., TCB does not exist) then
1274 * all data in the incoming segment is discarded.
1275 * If the TCB exists but is in CLOSED state, it is embryonic,
1276 * but should either do a listen or a connect soon.
1277 */
1278 tp = NULL;
1279 so = NULL;
1280 if (inp) {
1281 tp = intotcpcb(inp);
1282 so = inp->inp_socket;
1283 }
1284 #ifdef INET6
1285 else if (in6p) {
1286 tp = in6totcpcb(in6p);
1287 so = in6p->in6p_socket;
1288 }
1289 #endif
1290 if (tp == 0) {
1291 TCP_FIELDS_TO_HOST(th);
1292 goto dropwithreset_ratelim;
1293 }
1294 if (tp->t_state == TCPS_CLOSED)
1295 goto drop;
1296
1297 /*
1298 * Checksum extended TCP header and data.
1299 */
1300 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1301 goto badcsum;
1302
1303 TCP_FIELDS_TO_HOST(th);
1304
1305 /* Unscale the window into a 32-bit value. */
1306 if ((tiflags & TH_SYN) == 0)
1307 tiwin = th->th_win << tp->snd_scale;
1308 else
1309 tiwin = th->th_win;
1310
1311 #ifdef INET6
1312 /* save packet options if user wanted */
1313 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1314 if (in6p->in6p_options) {
1315 m_freem(in6p->in6p_options);
1316 in6p->in6p_options = 0;
1317 }
1318 KASSERT(ip6 != NULL);
1319 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1320 }
1321 #endif
1322
1323 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1324 union syn_cache_sa src;
1325 union syn_cache_sa dst;
1326
1327 bzero(&src, sizeof(src));
1328 bzero(&dst, sizeof(dst));
1329 switch (af) {
1330 #ifdef INET
1331 case AF_INET:
1332 src.sin.sin_len = sizeof(struct sockaddr_in);
1333 src.sin.sin_family = AF_INET;
1334 src.sin.sin_addr = ip->ip_src;
1335 src.sin.sin_port = th->th_sport;
1336
1337 dst.sin.sin_len = sizeof(struct sockaddr_in);
1338 dst.sin.sin_family = AF_INET;
1339 dst.sin.sin_addr = ip->ip_dst;
1340 dst.sin.sin_port = th->th_dport;
1341 break;
1342 #endif
1343 #ifdef INET6
1344 case AF_INET6:
1345 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1346 src.sin6.sin6_family = AF_INET6;
1347 src.sin6.sin6_addr = ip6->ip6_src;
1348 src.sin6.sin6_port = th->th_sport;
1349
1350 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1351 dst.sin6.sin6_family = AF_INET6;
1352 dst.sin6.sin6_addr = ip6->ip6_dst;
1353 dst.sin6.sin6_port = th->th_dport;
1354 break;
1355 #endif /* INET6 */
1356 default:
1357 goto badsyn; /*sanity*/
1358 }
1359
1360 if (so->so_options & SO_DEBUG) {
1361 #ifdef TCP_DEBUG
1362 ostate = tp->t_state;
1363 #endif
1364
1365 tcp_saveti = NULL;
1366 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1367 goto nosave;
1368
1369 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1370 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1371 if (!tcp_saveti)
1372 goto nosave;
1373 } else {
1374 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1375 if (!tcp_saveti)
1376 goto nosave;
1377 MCLAIM(m, &tcp_mowner);
1378 tcp_saveti->m_len = iphlen;
1379 m_copydata(m, 0, iphlen,
1380 mtod(tcp_saveti, void *));
1381 }
1382
1383 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1384 m_freem(tcp_saveti);
1385 tcp_saveti = NULL;
1386 } else {
1387 tcp_saveti->m_len += sizeof(struct tcphdr);
1388 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1389 sizeof(struct tcphdr));
1390 }
1391 nosave:;
1392 }
1393 if (so->so_options & SO_ACCEPTCONN) {
1394 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1395 if (tiflags & TH_RST) {
1396 syn_cache_reset(&src.sa, &dst.sa, th);
1397 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1398 (TH_ACK|TH_SYN)) {
1399 /*
1400 * Received a SYN,ACK. This should
1401 * never happen while we are in
1402 * LISTEN. Send an RST.
1403 */
1404 goto badsyn;
1405 } else if (tiflags & TH_ACK) {
1406 so = syn_cache_get(&src.sa, &dst.sa,
1407 th, toff, tlen, so, m);
1408 if (so == NULL) {
1409 /*
1410 * We don't have a SYN for
1411 * this ACK; send an RST.
1412 */
1413 goto badsyn;
1414 } else if (so ==
1415 (struct socket *)(-1)) {
1416 /*
1417 * We were unable to create
1418 * the connection. If the
1419 * 3-way handshake was
1420 * completed, and RST has
1421 * been sent to the peer.
1422 * Since the mbuf might be
1423 * in use for the reply,
1424 * do not free it.
1425 */
1426 m = NULL;
1427 } else {
1428 /*
1429 * We have created a
1430 * full-blown connection.
1431 */
1432 tp = NULL;
1433 inp = NULL;
1434 #ifdef INET6
1435 in6p = NULL;
1436 #endif
1437 switch (so->so_proto->pr_domain->dom_family) {
1438 #ifdef INET
1439 case AF_INET:
1440 inp = sotoinpcb(so);
1441 tp = intotcpcb(inp);
1442 break;
1443 #endif
1444 #ifdef INET6
1445 case AF_INET6:
1446 in6p = sotoin6pcb(so);
1447 tp = in6totcpcb(in6p);
1448 break;
1449 #endif
1450 }
1451 if (tp == NULL)
1452 goto badsyn; /*XXX*/
1453 tiwin <<= tp->snd_scale;
1454 goto after_listen;
1455 }
1456 } else {
1457 /*
1458 * None of RST, SYN or ACK was set.
1459 * This is an invalid packet for a
1460 * TCB in LISTEN state. Send a RST.
1461 */
1462 goto badsyn;
1463 }
1464 } else {
1465 /*
1466 * Received a SYN.
1467 *
1468 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1469 */
1470 if (m->m_flags & (M_BCAST|M_MCAST))
1471 goto drop;
1472
1473 switch (af) {
1474 #ifdef INET6
1475 case AF_INET6:
1476 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1477 goto drop;
1478 break;
1479 #endif /* INET6 */
1480 case AF_INET:
1481 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1482 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1483 goto drop;
1484 break;
1485 }
1486
1487 #ifdef INET6
1488 /*
1489 * If deprecated address is forbidden, we do
1490 * not accept SYN to deprecated interface
1491 * address to prevent any new inbound
1492 * connection from getting established.
1493 * When we do not accept SYN, we send a TCP
1494 * RST, with deprecated source address (instead
1495 * of dropping it). We compromise it as it is
1496 * much better for peer to send a RST, and
1497 * RST will be the final packet for the
1498 * exchange.
1499 *
1500 * If we do not forbid deprecated addresses, we
1501 * accept the SYN packet. RFC2462 does not
1502 * suggest dropping SYN in this case.
1503 * If we decipher RFC2462 5.5.4, it says like
1504 * this:
1505 * 1. use of deprecated addr with existing
1506 * communication is okay - "SHOULD continue
1507 * to be used"
1508 * 2. use of it with new communication:
1509 * (2a) "SHOULD NOT be used if alternate
1510 * address with sufficient scope is
1511 * available"
1512 * (2b) nothing mentioned otherwise.
1513 * Here we fall into (2b) case as we have no
1514 * choice in our source address selection - we
1515 * must obey the peer.
1516 *
1517 * The wording in RFC2462 is confusing, and
1518 * there are multiple description text for
1519 * deprecated address handling - worse, they
1520 * are not exactly the same. I believe 5.5.4
1521 * is the best one, so we follow 5.5.4.
1522 */
1523 if (af == AF_INET6 && !ip6_use_deprecated) {
1524 struct in6_ifaddr *ia6;
1525 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1526 &ip6->ip6_dst)) &&
1527 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1528 tp = NULL;
1529 goto dropwithreset;
1530 }
1531 }
1532 #endif
1533
1534 #if defined(IPSEC) || defined(FAST_IPSEC)
1535 switch (af) {
1536 #ifdef INET
1537 case AF_INET:
1538 if (ipsec4_in_reject_so(m, so)) {
1539 ipsecstat.in_polvio++;
1540 tp = NULL;
1541 goto dropwithreset;
1542 }
1543 break;
1544 #endif
1545 #ifdef INET6
1546 case AF_INET6:
1547 if (ipsec6_in_reject_so(m, so)) {
1548 ipsec6stat.in_polvio++;
1549 tp = NULL;
1550 goto dropwithreset;
1551 }
1552 break;
1553 #endif /*INET6*/
1554 }
1555 #endif /*IPSEC*/
1556
1557 /*
1558 * LISTEN socket received a SYN
1559 * from itself? This can't possibly
1560 * be valid; drop the packet.
1561 */
1562 if (th->th_sport == th->th_dport) {
1563 int i;
1564
1565 switch (af) {
1566 #ifdef INET
1567 case AF_INET:
1568 i = in_hosteq(ip->ip_src, ip->ip_dst);
1569 break;
1570 #endif
1571 #ifdef INET6
1572 case AF_INET6:
1573 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1574 break;
1575 #endif
1576 default:
1577 i = 1;
1578 }
1579 if (i) {
1580 tcpstat.tcps_badsyn++;
1581 goto drop;
1582 }
1583 }
1584
1585 /*
1586 * SYN looks ok; create compressed TCP
1587 * state for it.
1588 */
1589 if (so->so_qlen <= so->so_qlimit &&
1590 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1591 so, m, optp, optlen, &opti))
1592 m = NULL;
1593 }
1594 goto drop;
1595 }
1596 }
1597
1598 after_listen:
1599 #ifdef DIAGNOSTIC
1600 /*
1601 * Should not happen now that all embryonic connections
1602 * are handled with compressed state.
1603 */
1604 if (tp->t_state == TCPS_LISTEN)
1605 panic("tcp_input: TCPS_LISTEN");
1606 #endif
1607
1608 /*
1609 * Segment received on connection.
1610 * Reset idle time and keep-alive timer.
1611 */
1612 tp->t_rcvtime = tcp_now;
1613 if (TCPS_HAVEESTABLISHED(tp->t_state))
1614 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1615
1616 /*
1617 * Process options.
1618 */
1619 #ifdef TCP_SIGNATURE
1620 if (optp || (tp->t_flags & TF_SIGNATURE))
1621 #else
1622 if (optp)
1623 #endif
1624 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1625 goto drop;
1626
1627 if (TCP_SACK_ENABLED(tp)) {
1628 tcp_del_sackholes(tp, th);
1629 }
1630
1631 if (TCP_ECN_ALLOWED(tp)) {
1632 switch (iptos & IPTOS_ECN_MASK) {
1633 case IPTOS_ECN_CE:
1634 tp->t_flags |= TF_ECN_SND_ECE;
1635 tcpstat.tcps_ecn_ce++;
1636 break;
1637 case IPTOS_ECN_ECT0:
1638 tcpstat.tcps_ecn_ect++;
1639 break;
1640 case IPTOS_ECN_ECT1:
1641 /* XXX: ignore for now -- rpaulo */
1642 break;
1643 }
1644
1645 if (tiflags & TH_CWR)
1646 tp->t_flags &= ~TF_ECN_SND_ECE;
1647
1648 /*
1649 * Congestion experienced.
1650 * Ignore if we are already trying to recover.
1651 */
1652 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1653 tp->t_congctl->cong_exp(tp);
1654 }
1655
1656 if (opti.ts_present && opti.ts_ecr) {
1657 /*
1658 * Calculate the RTT from the returned time stamp and the
1659 * connection's time base. If the time stamp is later than
1660 * the current time, or is extremely old, fall back to non-1323
1661 * RTT calculation. Since ts_ecr is unsigned, we can test both
1662 * at the same time.
1663 */
1664 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1665 if (ts_rtt > TCP_PAWS_IDLE)
1666 ts_rtt = 0;
1667 } else {
1668 ts_rtt = 0;
1669 }
1670
1671 /*
1672 * Header prediction: check for the two common cases
1673 * of a uni-directional data xfer. If the packet has
1674 * no control flags, is in-sequence, the window didn't
1675 * change and we're not retransmitting, it's a
1676 * candidate. If the length is zero and the ack moved
1677 * forward, we're the sender side of the xfer. Just
1678 * free the data acked & wake any higher level process
1679 * that was blocked waiting for space. If the length
1680 * is non-zero and the ack didn't move, we're the
1681 * receiver side. If we're getting packets in-order
1682 * (the reassembly queue is empty), add the data to
1683 * the socket buffer and note that we need a delayed ack.
1684 */
1685 if (tp->t_state == TCPS_ESTABLISHED &&
1686 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1687 == TH_ACK &&
1688 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1689 th->th_seq == tp->rcv_nxt &&
1690 tiwin && tiwin == tp->snd_wnd &&
1691 tp->snd_nxt == tp->snd_max) {
1692
1693 /*
1694 * If last ACK falls within this segment's sequence numbers,
1695 * record the timestamp.
1696 * NOTE:
1697 * 1) That the test incorporates suggestions from the latest
1698 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1699 * 2) That updating only on newer timestamps interferes with
1700 * our earlier PAWS tests, so this check should be solely
1701 * predicated on the sequence space of this segment.
1702 * 3) That we modify the segment boundary check to be
1703 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
1704 * instead of RFC1323's
1705 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
1706 * This modified check allows us to overcome RFC1323's
1707 * limitations as described in Stevens TCP/IP Illustrated
1708 * Vol. 2 p.869. In such cases, we can still calculate the
1709 * RTT correctly when RCV.NXT == Last.ACK.Sent.
1710 */
1711 if (opti.ts_present &&
1712 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1713 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1714 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1715 tp->ts_recent_age = tcp_now;
1716 tp->ts_recent = opti.ts_val;
1717 }
1718
1719 if (tlen == 0) {
1720 /* Ack prediction. */
1721 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1722 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1723 tp->snd_cwnd >= tp->snd_wnd &&
1724 tp->t_partialacks < 0) {
1725 /*
1726 * this is a pure ack for outstanding data.
1727 */
1728 ++tcpstat.tcps_predack;
1729 if (ts_rtt)
1730 tcp_xmit_timer(tp, ts_rtt);
1731 else if (tp->t_rtttime &&
1732 SEQ_GT(th->th_ack, tp->t_rtseq))
1733 tcp_xmit_timer(tp,
1734 tcp_now - tp->t_rtttime);
1735 acked = th->th_ack - tp->snd_una;
1736 tcpstat.tcps_rcvackpack++;
1737 tcpstat.tcps_rcvackbyte += acked;
1738 ND6_HINT(tp);
1739
1740 if (acked > (tp->t_lastoff - tp->t_inoff))
1741 tp->t_lastm = NULL;
1742 sbdrop(&so->so_snd, acked);
1743 tp->t_lastoff -= acked;
1744
1745 ICMP_CHECK(tp, th, acked);
1746
1747 tp->snd_una = th->th_ack;
1748 tp->snd_fack = tp->snd_una;
1749 if (SEQ_LT(tp->snd_high, tp->snd_una))
1750 tp->snd_high = tp->snd_una;
1751 m_freem(m);
1752
1753 /*
1754 * If all outstanding data are acked, stop
1755 * retransmit timer, otherwise restart timer
1756 * using current (possibly backed-off) value.
1757 * If process is waiting for space,
1758 * wakeup/selwakeup/signal. If data
1759 * are ready to send, let tcp_output
1760 * decide between more output or persist.
1761 */
1762 if (tp->snd_una == tp->snd_max)
1763 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1764 else if (TCP_TIMER_ISARMED(tp,
1765 TCPT_PERSIST) == 0)
1766 TCP_TIMER_ARM(tp, TCPT_REXMT,
1767 tp->t_rxtcur);
1768
1769 sowwakeup(so);
1770 if (so->so_snd.sb_cc)
1771 (void) tcp_output(tp);
1772 if (tcp_saveti)
1773 m_freem(tcp_saveti);
1774 return;
1775 }
1776 } else if (th->th_ack == tp->snd_una &&
1777 TAILQ_FIRST(&tp->segq) == NULL &&
1778 tlen <= sbspace(&so->so_rcv)) {
1779 int newsize = 0; /* automatic sockbuf scaling */
1780
1781 /*
1782 * this is a pure, in-sequence data packet
1783 * with nothing on the reassembly queue and
1784 * we have enough buffer space to take it.
1785 */
1786 ++tcpstat.tcps_preddat;
1787 tp->rcv_nxt += tlen;
1788 tcpstat.tcps_rcvpack++;
1789 tcpstat.tcps_rcvbyte += tlen;
1790 ND6_HINT(tp);
1791
1792 /*
1793 * Automatic sizing enables the performance of large buffers
1794 * and most of the efficiency of small ones by only allocating
1795 * space when it is needed.
1796 *
1797 * On the receive side the socket buffer memory is only rarely
1798 * used to any significant extent. This allows us to be much
1799 * more aggressive in scaling the receive socket buffer. For
1800 * the case that the buffer space is actually used to a large
1801 * extent and we run out of kernel memory we can simply drop
1802 * the new segments; TCP on the sender will just retransmit it
1803 * later. Setting the buffer size too big may only consume too
1804 * much kernel memory if the application doesn't read() from
1805 * the socket or packet loss or reordering makes use of the
1806 * reassembly queue.
1807 *
1808 * The criteria to step up the receive buffer one notch are:
1809 * 1. the number of bytes received during the time it takes
1810 * one timestamp to be reflected back to us (the RTT);
1811 * 2. received bytes per RTT is within seven eighth of the
1812 * current socket buffer size;
1813 * 3. receive buffer size has not hit maximal automatic size;
1814 *
1815 * This algorithm does one step per RTT at most and only if
1816 * we receive a bulk stream w/o packet losses or reorderings.
1817 * Shrinking the buffer during idle times is not necessary as
1818 * it doesn't consume any memory when idle.
1819 *
1820 * TODO: Only step up if the application is actually serving
1821 * the buffer to better manage the socket buffer resources.
1822 */
1823 if (tcp_do_autorcvbuf &&
1824 opti.ts_ecr &&
1825 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1826 if (opti.ts_ecr > tp->rfbuf_ts &&
1827 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1828 if (tp->rfbuf_cnt >
1829 (so->so_rcv.sb_hiwat / 8 * 7) &&
1830 so->so_rcv.sb_hiwat <
1831 tcp_autorcvbuf_max) {
1832 newsize =
1833 min(so->so_rcv.sb_hiwat +
1834 tcp_autorcvbuf_inc,
1835 tcp_autorcvbuf_max);
1836 }
1837 /* Start over with next RTT. */
1838 tp->rfbuf_ts = 0;
1839 tp->rfbuf_cnt = 0;
1840 } else
1841 tp->rfbuf_cnt += tlen; /* add up */
1842 }
1843
1844 /*
1845 * Drop TCP, IP headers and TCP options then add data
1846 * to socket buffer.
1847 */
1848 if (so->so_state & SS_CANTRCVMORE)
1849 m_freem(m);
1850 else {
1851 /*
1852 * Set new socket buffer size.
1853 * Give up when limit is reached.
1854 */
1855 if (newsize)
1856 if (!sbreserve(&so->so_rcv,
1857 newsize, so))
1858 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1859 m_adj(m, toff + off);
1860 sbappendstream(&so->so_rcv, m);
1861 }
1862 sorwakeup(so);
1863 TCP_SETUP_ACK(tp, th);
1864 if (tp->t_flags & TF_ACKNOW)
1865 (void) tcp_output(tp);
1866 if (tcp_saveti)
1867 m_freem(tcp_saveti);
1868 return;
1869 }
1870 }
1871
1872 /*
1873 * Compute mbuf offset to TCP data segment.
1874 */
1875 hdroptlen = toff + off;
1876
1877 /*
1878 * Calculate amount of space in receive window,
1879 * and then do TCP input processing.
1880 * Receive window is amount of space in rcv queue,
1881 * but not less than advertised window.
1882 */
1883 { int win;
1884
1885 win = sbspace(&so->so_rcv);
1886 if (win < 0)
1887 win = 0;
1888 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1889 }
1890
1891 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1892 tp->rfbuf_ts = 0;
1893 tp->rfbuf_cnt = 0;
1894
1895 switch (tp->t_state) {
1896 /*
1897 * If the state is SYN_SENT:
1898 * if seg contains an ACK, but not for our SYN, drop the input.
1899 * if seg contains a RST, then drop the connection.
1900 * if seg does not contain SYN, then drop it.
1901 * Otherwise this is an acceptable SYN segment
1902 * initialize tp->rcv_nxt and tp->irs
1903 * if seg contains ack then advance tp->snd_una
1904 * if seg contains a ECE and ECN support is enabled, the stream
1905 * is ECN capable.
1906 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1907 * arrange for segment to be acked (eventually)
1908 * continue processing rest of data/controls, beginning with URG
1909 */
1910 case TCPS_SYN_SENT:
1911 if ((tiflags & TH_ACK) &&
1912 (SEQ_LEQ(th->th_ack, tp->iss) ||
1913 SEQ_GT(th->th_ack, tp->snd_max)))
1914 goto dropwithreset;
1915 if (tiflags & TH_RST) {
1916 if (tiflags & TH_ACK)
1917 tp = tcp_drop(tp, ECONNREFUSED);
1918 goto drop;
1919 }
1920 if ((tiflags & TH_SYN) == 0)
1921 goto drop;
1922 if (tiflags & TH_ACK) {
1923 tp->snd_una = th->th_ack;
1924 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1925 tp->snd_nxt = tp->snd_una;
1926 if (SEQ_LT(tp->snd_high, tp->snd_una))
1927 tp->snd_high = tp->snd_una;
1928 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1929
1930 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1931 tp->t_flags |= TF_ECN_PERMIT;
1932 tcpstat.tcps_ecn_shs++;
1933 }
1934
1935 }
1936 tp->irs = th->th_seq;
1937 tcp_rcvseqinit(tp);
1938 tp->t_flags |= TF_ACKNOW;
1939 tcp_mss_from_peer(tp, opti.maxseg);
1940
1941 /*
1942 * Initialize the initial congestion window. If we
1943 * had to retransmit the SYN, we must initialize cwnd
1944 * to 1 segment (i.e. the Loss Window).
1945 */
1946 if (tp->t_flags & TF_SYN_REXMT)
1947 tp->snd_cwnd = tp->t_peermss;
1948 else {
1949 int ss = tcp_init_win;
1950 #ifdef INET
1951 if (inp != NULL && in_localaddr(inp->inp_faddr))
1952 ss = tcp_init_win_local;
1953 #endif
1954 #ifdef INET6
1955 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1956 ss = tcp_init_win_local;
1957 #endif
1958 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1959 }
1960
1961 tcp_rmx_rtt(tp);
1962 if (tiflags & TH_ACK) {
1963 tcpstat.tcps_connects++;
1964 soisconnected(so);
1965 tcp_established(tp);
1966 /* Do window scaling on this connection? */
1967 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1968 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1969 tp->snd_scale = tp->requested_s_scale;
1970 tp->rcv_scale = tp->request_r_scale;
1971 }
1972 TCP_REASS_LOCK(tp);
1973 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1974 TCP_REASS_UNLOCK(tp);
1975 /*
1976 * if we didn't have to retransmit the SYN,
1977 * use its rtt as our initial srtt & rtt var.
1978 */
1979 if (tp->t_rtttime)
1980 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1981 } else
1982 tp->t_state = TCPS_SYN_RECEIVED;
1983
1984 /*
1985 * Advance th->th_seq to correspond to first data byte.
1986 * If data, trim to stay within window,
1987 * dropping FIN if necessary.
1988 */
1989 th->th_seq++;
1990 if (tlen > tp->rcv_wnd) {
1991 todrop = tlen - tp->rcv_wnd;
1992 m_adj(m, -todrop);
1993 tlen = tp->rcv_wnd;
1994 tiflags &= ~TH_FIN;
1995 tcpstat.tcps_rcvpackafterwin++;
1996 tcpstat.tcps_rcvbyteafterwin += todrop;
1997 }
1998 tp->snd_wl1 = th->th_seq - 1;
1999 tp->rcv_up = th->th_seq;
2000 goto step6;
2001
2002 /*
2003 * If the state is SYN_RECEIVED:
2004 * If seg contains an ACK, but not for our SYN, drop the input
2005 * and generate an RST. See page 36, rfc793
2006 */
2007 case TCPS_SYN_RECEIVED:
2008 if ((tiflags & TH_ACK) &&
2009 (SEQ_LEQ(th->th_ack, tp->iss) ||
2010 SEQ_GT(th->th_ack, tp->snd_max)))
2011 goto dropwithreset;
2012 break;
2013 }
2014
2015 /*
2016 * States other than LISTEN or SYN_SENT.
2017 * First check timestamp, if present.
2018 * Then check that at least some bytes of segment are within
2019 * receive window. If segment begins before rcv_nxt,
2020 * drop leading data (and SYN); if nothing left, just ack.
2021 *
2022 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2023 * and it's less than ts_recent, drop it.
2024 */
2025 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2026 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2027
2028 /* Check to see if ts_recent is over 24 days old. */
2029 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2030 /*
2031 * Invalidate ts_recent. If this segment updates
2032 * ts_recent, the age will be reset later and ts_recent
2033 * will get a valid value. If it does not, setting
2034 * ts_recent to zero will at least satisfy the
2035 * requirement that zero be placed in the timestamp
2036 * echo reply when ts_recent isn't valid. The
2037 * age isn't reset until we get a valid ts_recent
2038 * because we don't want out-of-order segments to be
2039 * dropped when ts_recent is old.
2040 */
2041 tp->ts_recent = 0;
2042 } else {
2043 tcpstat.tcps_rcvduppack++;
2044 tcpstat.tcps_rcvdupbyte += tlen;
2045 tcpstat.tcps_pawsdrop++;
2046 tcp_new_dsack(tp, th->th_seq, tlen);
2047 goto dropafterack;
2048 }
2049 }
2050
2051 todrop = tp->rcv_nxt - th->th_seq;
2052 dupseg = false;
2053 if (todrop > 0) {
2054 if (tiflags & TH_SYN) {
2055 tiflags &= ~TH_SYN;
2056 th->th_seq++;
2057 if (th->th_urp > 1)
2058 th->th_urp--;
2059 else {
2060 tiflags &= ~TH_URG;
2061 th->th_urp = 0;
2062 }
2063 todrop--;
2064 }
2065 if (todrop > tlen ||
2066 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2067 /*
2068 * Any valid FIN or RST must be to the left of the
2069 * window. At this point the FIN or RST must be a
2070 * duplicate or out of sequence; drop it.
2071 */
2072 if (tiflags & TH_RST)
2073 goto drop;
2074 tiflags &= ~(TH_FIN|TH_RST);
2075 /*
2076 * Send an ACK to resynchronize and drop any data.
2077 * But keep on processing for RST or ACK.
2078 */
2079 tp->t_flags |= TF_ACKNOW;
2080 todrop = tlen;
2081 dupseg = true;
2082 tcpstat.tcps_rcvdupbyte += todrop;
2083 tcpstat.tcps_rcvduppack++;
2084 } else if ((tiflags & TH_RST) &&
2085 th->th_seq != tp->last_ack_sent) {
2086 /*
2087 * Test for reset before adjusting the sequence
2088 * number for overlapping data.
2089 */
2090 goto dropafterack_ratelim;
2091 } else {
2092 tcpstat.tcps_rcvpartduppack++;
2093 tcpstat.tcps_rcvpartdupbyte += todrop;
2094 }
2095 tcp_new_dsack(tp, th->th_seq, todrop);
2096 hdroptlen += todrop; /*drop from head afterwards*/
2097 th->th_seq += todrop;
2098 tlen -= todrop;
2099 if (th->th_urp > todrop)
2100 th->th_urp -= todrop;
2101 else {
2102 tiflags &= ~TH_URG;
2103 th->th_urp = 0;
2104 }
2105 }
2106
2107 /*
2108 * If new data are received on a connection after the
2109 * user processes are gone, then RST the other end.
2110 */
2111 if ((so->so_state & SS_NOFDREF) &&
2112 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2113 tp = tcp_close(tp);
2114 tcpstat.tcps_rcvafterclose++;
2115 goto dropwithreset;
2116 }
2117
2118 /*
2119 * If segment ends after window, drop trailing data
2120 * (and PUSH and FIN); if nothing left, just ACK.
2121 */
2122 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2123 if (todrop > 0) {
2124 tcpstat.tcps_rcvpackafterwin++;
2125 if (todrop >= tlen) {
2126 /*
2127 * The segment actually starts after the window.
2128 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2129 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2130 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2131 */
2132 tcpstat.tcps_rcvbyteafterwin += tlen;
2133 /*
2134 * If a new connection request is received
2135 * while in TIME_WAIT, drop the old connection
2136 * and start over if the sequence numbers
2137 * are above the previous ones.
2138 *
2139 * NOTE: We will checksum the packet again, and
2140 * so we need to put the header fields back into
2141 * network order!
2142 * XXX This kind of sucks, but we don't expect
2143 * XXX this to happen very often, so maybe it
2144 * XXX doesn't matter so much.
2145 */
2146 if (tiflags & TH_SYN &&
2147 tp->t_state == TCPS_TIME_WAIT &&
2148 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2149 tp = tcp_close(tp);
2150 TCP_FIELDS_TO_NET(th);
2151 goto findpcb;
2152 }
2153 /*
2154 * If window is closed can only take segments at
2155 * window edge, and have to drop data and PUSH from
2156 * incoming segments. Continue processing, but
2157 * remember to ack. Otherwise, drop segment
2158 * and (if not RST) ack.
2159 */
2160 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2161 tp->t_flags |= TF_ACKNOW;
2162 tcpstat.tcps_rcvwinprobe++;
2163 } else
2164 goto dropafterack;
2165 } else
2166 tcpstat.tcps_rcvbyteafterwin += todrop;
2167 m_adj(m, -todrop);
2168 tlen -= todrop;
2169 tiflags &= ~(TH_PUSH|TH_FIN);
2170 }
2171
2172 /*
2173 * If last ACK falls within this segment's sequence numbers,
2174 * and the timestamp is newer, record it.
2175 */
2176 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
2177 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2178 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
2179 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2180 tp->ts_recent_age = tcp_now;
2181 tp->ts_recent = opti.ts_val;
2182 }
2183
2184 /*
2185 * If the RST bit is set examine the state:
2186 * SYN_RECEIVED STATE:
2187 * If passive open, return to LISTEN state.
2188 * If active open, inform user that connection was refused.
2189 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2190 * Inform user that connection was reset, and close tcb.
2191 * CLOSING, LAST_ACK, TIME_WAIT STATES
2192 * Close the tcb.
2193 */
2194 if (tiflags & TH_RST) {
2195 if (th->th_seq != tp->last_ack_sent)
2196 goto dropafterack_ratelim;
2197
2198 switch (tp->t_state) {
2199 case TCPS_SYN_RECEIVED:
2200 so->so_error = ECONNREFUSED;
2201 goto close;
2202
2203 case TCPS_ESTABLISHED:
2204 case TCPS_FIN_WAIT_1:
2205 case TCPS_FIN_WAIT_2:
2206 case TCPS_CLOSE_WAIT:
2207 so->so_error = ECONNRESET;
2208 close:
2209 tp->t_state = TCPS_CLOSED;
2210 tcpstat.tcps_drops++;
2211 tp = tcp_close(tp);
2212 goto drop;
2213
2214 case TCPS_CLOSING:
2215 case TCPS_LAST_ACK:
2216 case TCPS_TIME_WAIT:
2217 tp = tcp_close(tp);
2218 goto drop;
2219 }
2220 }
2221
2222 /*
2223 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2224 * we must be in a synchronized state. RFC791 states (under RST
2225 * generation) that any unacceptable segment (an out-of-order SYN
2226 * qualifies) received in a synchronized state must elicit only an
2227 * empty acknowledgment segment ... and the connection remains in
2228 * the same state.
2229 */
2230 if (tiflags & TH_SYN) {
2231 if (tp->rcv_nxt == th->th_seq) {
2232 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2233 TH_ACK);
2234 if (tcp_saveti)
2235 m_freem(tcp_saveti);
2236 return;
2237 }
2238
2239 goto dropafterack_ratelim;
2240 }
2241
2242 /*
2243 * If the ACK bit is off we drop the segment and return.
2244 */
2245 if ((tiflags & TH_ACK) == 0) {
2246 if (tp->t_flags & TF_ACKNOW)
2247 goto dropafterack;
2248 else
2249 goto drop;
2250 }
2251
2252 /*
2253 * Ack processing.
2254 */
2255 switch (tp->t_state) {
2256
2257 /*
2258 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2259 * ESTABLISHED state and continue processing, otherwise
2260 * send an RST.
2261 */
2262 case TCPS_SYN_RECEIVED:
2263 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2264 SEQ_GT(th->th_ack, tp->snd_max))
2265 goto dropwithreset;
2266 tcpstat.tcps_connects++;
2267 soisconnected(so);
2268 tcp_established(tp);
2269 /* Do window scaling? */
2270 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2271 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2272 tp->snd_scale = tp->requested_s_scale;
2273 tp->rcv_scale = tp->request_r_scale;
2274 }
2275 TCP_REASS_LOCK(tp);
2276 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2277 TCP_REASS_UNLOCK(tp);
2278 tp->snd_wl1 = th->th_seq - 1;
2279 /* fall into ... */
2280
2281 /*
2282 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2283 * ACKs. If the ack is in the range
2284 * tp->snd_una < th->th_ack <= tp->snd_max
2285 * then advance tp->snd_una to th->th_ack and drop
2286 * data from the retransmission queue. If this ACK reflects
2287 * more up to date window information we update our window information.
2288 */
2289 case TCPS_ESTABLISHED:
2290 case TCPS_FIN_WAIT_1:
2291 case TCPS_FIN_WAIT_2:
2292 case TCPS_CLOSE_WAIT:
2293 case TCPS_CLOSING:
2294 case TCPS_LAST_ACK:
2295 case TCPS_TIME_WAIT:
2296
2297 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2298 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2299 tcpstat.tcps_rcvdupack++;
2300 /*
2301 * If we have outstanding data (other than
2302 * a window probe), this is a completely
2303 * duplicate ack (ie, window info didn't
2304 * change), the ack is the biggest we've
2305 * seen and we've seen exactly our rexmt
2306 * threshhold of them, assume a packet
2307 * has been dropped and retransmit it.
2308 * Kludge snd_nxt & the congestion
2309 * window so we send only this one
2310 * packet.
2311 */
2312 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2313 th->th_ack != tp->snd_una)
2314 tp->t_dupacks = 0;
2315 else if (tp->t_partialacks < 0 &&
2316 ((!TCP_SACK_ENABLED(tp) &&
2317 ++tp->t_dupacks == tcprexmtthresh) ||
2318 TCP_FACK_FASTRECOV(tp))) {
2319 /*
2320 * Do the fast retransmit, and adjust
2321 * congestion control paramenters.
2322 */
2323 if (tp->t_congctl->fast_retransmit(tp, th)) {
2324 /* False fast retransmit */
2325 break;
2326 } else
2327 goto drop;
2328 } else if (tp->t_dupacks > tcprexmtthresh) {
2329 tp->snd_cwnd += tp->t_segsz;
2330 (void) tcp_output(tp);
2331 goto drop;
2332 }
2333 } else {
2334 /*
2335 * If the ack appears to be very old, only
2336 * allow data that is in-sequence. This
2337 * makes it somewhat more difficult to insert
2338 * forged data by guessing sequence numbers.
2339 * Sent an ack to try to update the send
2340 * sequence number on the other side.
2341 */
2342 if (tlen && th->th_seq != tp->rcv_nxt &&
2343 SEQ_LT(th->th_ack,
2344 tp->snd_una - tp->max_sndwnd))
2345 goto dropafterack;
2346 }
2347 break;
2348 }
2349 /*
2350 * If the congestion window was inflated to account
2351 * for the other side's cached packets, retract it.
2352 */
2353 /* XXX: make SACK have his own congestion control
2354 * struct -- rpaulo */
2355 if (TCP_SACK_ENABLED(tp))
2356 tcp_sack_newack(tp, th);
2357 else
2358 tp->t_congctl->fast_retransmit_newack(tp, th);
2359 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2360 tcpstat.tcps_rcvacktoomuch++;
2361 goto dropafterack;
2362 }
2363 acked = th->th_ack - tp->snd_una;
2364 tcpstat.tcps_rcvackpack++;
2365 tcpstat.tcps_rcvackbyte += acked;
2366
2367 /*
2368 * If we have a timestamp reply, update smoothed
2369 * round trip time. If no timestamp is present but
2370 * transmit timer is running and timed sequence
2371 * number was acked, update smoothed round trip time.
2372 * Since we now have an rtt measurement, cancel the
2373 * timer backoff (cf., Phil Karn's retransmit alg.).
2374 * Recompute the initial retransmit timer.
2375 */
2376 if (ts_rtt)
2377 tcp_xmit_timer(tp, ts_rtt);
2378 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2379 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2380
2381 /*
2382 * If all outstanding data is acked, stop retransmit
2383 * timer and remember to restart (more output or persist).
2384 * If there is more data to be acked, restart retransmit
2385 * timer, using current (possibly backed-off) value.
2386 */
2387 if (th->th_ack == tp->snd_max) {
2388 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2389 needoutput = 1;
2390 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2391 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2392
2393 /*
2394 * New data has been acked, adjust the congestion window.
2395 */
2396 tp->t_congctl->newack(tp, th);
2397
2398 ND6_HINT(tp);
2399 if (acked > so->so_snd.sb_cc) {
2400 tp->snd_wnd -= so->so_snd.sb_cc;
2401 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2402 ourfinisacked = 1;
2403 } else {
2404 if (acked > (tp->t_lastoff - tp->t_inoff))
2405 tp->t_lastm = NULL;
2406 sbdrop(&so->so_snd, acked);
2407 tp->t_lastoff -= acked;
2408 tp->snd_wnd -= acked;
2409 ourfinisacked = 0;
2410 }
2411 sowwakeup(so);
2412
2413 ICMP_CHECK(tp, th, acked);
2414
2415 tp->snd_una = th->th_ack;
2416 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2417 tp->snd_fack = tp->snd_una;
2418 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2419 tp->snd_nxt = tp->snd_una;
2420 if (SEQ_LT(tp->snd_high, tp->snd_una))
2421 tp->snd_high = tp->snd_una;
2422
2423 switch (tp->t_state) {
2424
2425 /*
2426 * In FIN_WAIT_1 STATE in addition to the processing
2427 * for the ESTABLISHED state if our FIN is now acknowledged
2428 * then enter FIN_WAIT_2.
2429 */
2430 case TCPS_FIN_WAIT_1:
2431 if (ourfinisacked) {
2432 /*
2433 * If we can't receive any more
2434 * data, then closing user can proceed.
2435 * Starting the timer is contrary to the
2436 * specification, but if we don't get a FIN
2437 * we'll hang forever.
2438 */
2439 if (so->so_state & SS_CANTRCVMORE) {
2440 soisdisconnected(so);
2441 if (tp->t_maxidle > 0)
2442 TCP_TIMER_ARM(tp, TCPT_2MSL,
2443 tp->t_maxidle);
2444 }
2445 tp->t_state = TCPS_FIN_WAIT_2;
2446 }
2447 break;
2448
2449 /*
2450 * In CLOSING STATE in addition to the processing for
2451 * the ESTABLISHED state if the ACK acknowledges our FIN
2452 * then enter the TIME-WAIT state, otherwise ignore
2453 * the segment.
2454 */
2455 case TCPS_CLOSING:
2456 if (ourfinisacked) {
2457 tp->t_state = TCPS_TIME_WAIT;
2458 tcp_canceltimers(tp);
2459 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2460 soisdisconnected(so);
2461 }
2462 break;
2463
2464 /*
2465 * In LAST_ACK, we may still be waiting for data to drain
2466 * and/or to be acked, as well as for the ack of our FIN.
2467 * If our FIN is now acknowledged, delete the TCB,
2468 * enter the closed state and return.
2469 */
2470 case TCPS_LAST_ACK:
2471 if (ourfinisacked) {
2472 tp = tcp_close(tp);
2473 goto drop;
2474 }
2475 break;
2476
2477 /*
2478 * In TIME_WAIT state the only thing that should arrive
2479 * is a retransmission of the remote FIN. Acknowledge
2480 * it and restart the finack timer.
2481 */
2482 case TCPS_TIME_WAIT:
2483 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2484 goto dropafterack;
2485 }
2486 }
2487
2488 step6:
2489 /*
2490 * Update window information.
2491 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2492 */
2493 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2494 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2495 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2496 /* keep track of pure window updates */
2497 if (tlen == 0 &&
2498 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2499 tcpstat.tcps_rcvwinupd++;
2500 tp->snd_wnd = tiwin;
2501 tp->snd_wl1 = th->th_seq;
2502 tp->snd_wl2 = th->th_ack;
2503 if (tp->snd_wnd > tp->max_sndwnd)
2504 tp->max_sndwnd = tp->snd_wnd;
2505 needoutput = 1;
2506 }
2507
2508 /*
2509 * Process segments with URG.
2510 */
2511 if ((tiflags & TH_URG) && th->th_urp &&
2512 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2513 /*
2514 * This is a kludge, but if we receive and accept
2515 * random urgent pointers, we'll crash in
2516 * soreceive. It's hard to imagine someone
2517 * actually wanting to send this much urgent data.
2518 */
2519 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2520 th->th_urp = 0; /* XXX */
2521 tiflags &= ~TH_URG; /* XXX */
2522 goto dodata; /* XXX */
2523 }
2524 /*
2525 * If this segment advances the known urgent pointer,
2526 * then mark the data stream. This should not happen
2527 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2528 * a FIN has been received from the remote side.
2529 * In these states we ignore the URG.
2530 *
2531 * According to RFC961 (Assigned Protocols),
2532 * the urgent pointer points to the last octet
2533 * of urgent data. We continue, however,
2534 * to consider it to indicate the first octet
2535 * of data past the urgent section as the original
2536 * spec states (in one of two places).
2537 */
2538 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2539 tp->rcv_up = th->th_seq + th->th_urp;
2540 so->so_oobmark = so->so_rcv.sb_cc +
2541 (tp->rcv_up - tp->rcv_nxt) - 1;
2542 if (so->so_oobmark == 0)
2543 so->so_state |= SS_RCVATMARK;
2544 sohasoutofband(so);
2545 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2546 }
2547 /*
2548 * Remove out of band data so doesn't get presented to user.
2549 * This can happen independent of advancing the URG pointer,
2550 * but if two URG's are pending at once, some out-of-band
2551 * data may creep in... ick.
2552 */
2553 if (th->th_urp <= (u_int16_t) tlen
2554 #ifdef SO_OOBINLINE
2555 && (so->so_options & SO_OOBINLINE) == 0
2556 #endif
2557 )
2558 tcp_pulloutofband(so, th, m, hdroptlen);
2559 } else
2560 /*
2561 * If no out of band data is expected,
2562 * pull receive urgent pointer along
2563 * with the receive window.
2564 */
2565 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2566 tp->rcv_up = tp->rcv_nxt;
2567 dodata: /* XXX */
2568
2569 /*
2570 * Process the segment text, merging it into the TCP sequencing queue,
2571 * and arranging for acknowledgement of receipt if necessary.
2572 * This process logically involves adjusting tp->rcv_wnd as data
2573 * is presented to the user (this happens in tcp_usrreq.c,
2574 * case PRU_RCVD). If a FIN has already been received on this
2575 * connection then we just ignore the text.
2576 */
2577 if ((tlen || (tiflags & TH_FIN)) &&
2578 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2579 /*
2580 * Insert segment ti into reassembly queue of tcp with
2581 * control block tp. Return TH_FIN if reassembly now includes
2582 * a segment with FIN. The macro form does the common case
2583 * inline (segment is the next to be received on an
2584 * established connection, and the queue is empty),
2585 * avoiding linkage into and removal from the queue and
2586 * repetition of various conversions.
2587 * Set DELACK for segments received in order, but ack
2588 * immediately when segments are out of order
2589 * (so fast retransmit can work).
2590 */
2591 /* NOTE: this was TCP_REASS() macro, but used only once */
2592 TCP_REASS_LOCK(tp);
2593 if (th->th_seq == tp->rcv_nxt &&
2594 TAILQ_FIRST(&tp->segq) == NULL &&
2595 tp->t_state == TCPS_ESTABLISHED) {
2596 TCP_SETUP_ACK(tp, th);
2597 tp->rcv_nxt += tlen;
2598 tiflags = th->th_flags & TH_FIN;
2599 tcpstat.tcps_rcvpack++;
2600 tcpstat.tcps_rcvbyte += tlen;
2601 ND6_HINT(tp);
2602 if (so->so_state & SS_CANTRCVMORE)
2603 m_freem(m);
2604 else {
2605 m_adj(m, hdroptlen);
2606 sbappendstream(&(so)->so_rcv, m);
2607 }
2608 sorwakeup(so);
2609 } else {
2610 m_adj(m, hdroptlen);
2611 tiflags = tcp_reass(tp, th, m, &tlen);
2612 tp->t_flags |= TF_ACKNOW;
2613 }
2614 TCP_REASS_UNLOCK(tp);
2615
2616 /*
2617 * Note the amount of data that peer has sent into
2618 * our window, in order to estimate the sender's
2619 * buffer size.
2620 */
2621 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2622 } else {
2623 m_freem(m);
2624 m = NULL;
2625 tiflags &= ~TH_FIN;
2626 }
2627
2628 /*
2629 * If FIN is received ACK the FIN and let the user know
2630 * that the connection is closing. Ignore a FIN received before
2631 * the connection is fully established.
2632 */
2633 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2634 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2635 socantrcvmore(so);
2636 tp->t_flags |= TF_ACKNOW;
2637 tp->rcv_nxt++;
2638 }
2639 switch (tp->t_state) {
2640
2641 /*
2642 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2643 */
2644 case TCPS_ESTABLISHED:
2645 tp->t_state = TCPS_CLOSE_WAIT;
2646 break;
2647
2648 /*
2649 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2650 * enter the CLOSING state.
2651 */
2652 case TCPS_FIN_WAIT_1:
2653 tp->t_state = TCPS_CLOSING;
2654 break;
2655
2656 /*
2657 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2658 * starting the time-wait timer, turning off the other
2659 * standard timers.
2660 */
2661 case TCPS_FIN_WAIT_2:
2662 tp->t_state = TCPS_TIME_WAIT;
2663 tcp_canceltimers(tp);
2664 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2665 soisdisconnected(so);
2666 break;
2667
2668 /*
2669 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2670 */
2671 case TCPS_TIME_WAIT:
2672 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2673 break;
2674 }
2675 }
2676 #ifdef TCP_DEBUG
2677 if (so->so_options & SO_DEBUG)
2678 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2679 #endif
2680
2681 /*
2682 * Return any desired output.
2683 */
2684 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2685 (void) tcp_output(tp);
2686 }
2687 if (tcp_saveti)
2688 m_freem(tcp_saveti);
2689 return;
2690
2691 badsyn:
2692 /*
2693 * Received a bad SYN. Increment counters and dropwithreset.
2694 */
2695 tcpstat.tcps_badsyn++;
2696 tp = NULL;
2697 goto dropwithreset;
2698
2699 dropafterack:
2700 /*
2701 * Generate an ACK dropping incoming segment if it occupies
2702 * sequence space, where the ACK reflects our state.
2703 */
2704 if (tiflags & TH_RST)
2705 goto drop;
2706 goto dropafterack2;
2707
2708 dropafterack_ratelim:
2709 /*
2710 * We may want to rate-limit ACKs against SYN/RST attack.
2711 */
2712 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2713 tcp_ackdrop_ppslim) == 0) {
2714 /* XXX stat */
2715 goto drop;
2716 }
2717 /* ...fall into dropafterack2... */
2718
2719 dropafterack2:
2720 m_freem(m);
2721 tp->t_flags |= TF_ACKNOW;
2722 (void) tcp_output(tp);
2723 if (tcp_saveti)
2724 m_freem(tcp_saveti);
2725 return;
2726
2727 dropwithreset_ratelim:
2728 /*
2729 * We may want to rate-limit RSTs in certain situations,
2730 * particularly if we are sending an RST in response to
2731 * an attempt to connect to or otherwise communicate with
2732 * a port for which we have no socket.
2733 */
2734 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2735 tcp_rst_ppslim) == 0) {
2736 /* XXX stat */
2737 goto drop;
2738 }
2739 /* ...fall into dropwithreset... */
2740
2741 dropwithreset:
2742 /*
2743 * Generate a RST, dropping incoming segment.
2744 * Make ACK acceptable to originator of segment.
2745 */
2746 if (tiflags & TH_RST)
2747 goto drop;
2748
2749 switch (af) {
2750 #ifdef INET6
2751 case AF_INET6:
2752 /* For following calls to tcp_respond */
2753 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2754 goto drop;
2755 break;
2756 #endif /* INET6 */
2757 case AF_INET:
2758 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2759 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2760 goto drop;
2761 }
2762
2763 if (tiflags & TH_ACK)
2764 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2765 else {
2766 if (tiflags & TH_SYN)
2767 tlen++;
2768 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2769 TH_RST|TH_ACK);
2770 }
2771 if (tcp_saveti)
2772 m_freem(tcp_saveti);
2773 return;
2774
2775 badcsum:
2776 drop:
2777 /*
2778 * Drop space held by incoming segment and return.
2779 */
2780 if (tp) {
2781 if (tp->t_inpcb)
2782 so = tp->t_inpcb->inp_socket;
2783 #ifdef INET6
2784 else if (tp->t_in6pcb)
2785 so = tp->t_in6pcb->in6p_socket;
2786 #endif
2787 else
2788 so = NULL;
2789 #ifdef TCP_DEBUG
2790 if (so && (so->so_options & SO_DEBUG) != 0)
2791 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2792 #endif
2793 }
2794 if (tcp_saveti)
2795 m_freem(tcp_saveti);
2796 m_freem(m);
2797 return;
2798 }
2799
2800 #ifdef TCP_SIGNATURE
2801 int
2802 tcp_signature_apply(void *fstate, void *data, u_int len)
2803 {
2804
2805 MD5Update(fstate, (u_char *)data, len);
2806 return (0);
2807 }
2808
2809 struct secasvar *
2810 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2811 {
2812 struct secasvar *sav;
2813 #ifdef FAST_IPSEC
2814 union sockaddr_union dst;
2815 #endif
2816 struct ip *ip;
2817 struct ip6_hdr *ip6;
2818
2819 ip = mtod(m, struct ip *);
2820 switch (ip->ip_v) {
2821 case 4:
2822 ip = mtod(m, struct ip *);
2823 ip6 = NULL;
2824 break;
2825 case 6:
2826 ip = NULL;
2827 ip6 = mtod(m, struct ip6_hdr *);
2828 break;
2829 default:
2830 return (NULL);
2831 }
2832
2833 #ifdef FAST_IPSEC
2834 /* Extract the destination from the IP header in the mbuf. */
2835 bzero(&dst, sizeof(union sockaddr_union));
2836 if (ip !=NULL) {
2837 dst.sa.sa_len = sizeof(struct sockaddr_in);
2838 dst.sa.sa_family = AF_INET;
2839 dst.sin.sin_addr = ip->ip_dst;
2840 } else {
2841 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2842 dst.sa.sa_family = AF_INET6;
2843 dst.sin6.sin6_addr = ip6->ip6_dst;
2844 }
2845
2846 /*
2847 * Look up an SADB entry which matches the address of the peer.
2848 */
2849 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2850 #else
2851 if (ip)
2852 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2853 (void *)&ip->ip_dst, IPPROTO_TCP,
2854 htonl(TCP_SIG_SPI), 0, 0);
2855 else
2856 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2857 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2858 htonl(TCP_SIG_SPI), 0, 0);
2859 #endif
2860
2861 return (sav); /* freesav must be performed by caller */
2862 }
2863
2864 int
2865 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2866 struct secasvar *sav, char *sig)
2867 {
2868 MD5_CTX ctx;
2869 struct ip *ip;
2870 struct ipovly *ipovly;
2871 struct ip6_hdr *ip6;
2872 struct ippseudo ippseudo;
2873 struct ip6_hdr_pseudo ip6pseudo;
2874 struct tcphdr th0;
2875 int l, tcphdrlen;
2876
2877 if (sav == NULL)
2878 return (-1);
2879
2880 tcphdrlen = th->th_off * 4;
2881
2882 switch (mtod(m, struct ip *)->ip_v) {
2883 case 4:
2884 ip = mtod(m, struct ip *);
2885 ip6 = NULL;
2886 break;
2887 case 6:
2888 ip = NULL;
2889 ip6 = mtod(m, struct ip6_hdr *);
2890 break;
2891 default:
2892 return (-1);
2893 }
2894
2895 MD5Init(&ctx);
2896
2897 if (ip) {
2898 memset(&ippseudo, 0, sizeof(ippseudo));
2899 ipovly = (struct ipovly *)ip;
2900 ippseudo.ippseudo_src = ipovly->ih_src;
2901 ippseudo.ippseudo_dst = ipovly->ih_dst;
2902 ippseudo.ippseudo_pad = 0;
2903 ippseudo.ippseudo_p = IPPROTO_TCP;
2904 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2905 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2906 } else {
2907 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2908 ip6pseudo.ip6ph_src = ip6->ip6_src;
2909 in6_clearscope(&ip6pseudo.ip6ph_src);
2910 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2911 in6_clearscope(&ip6pseudo.ip6ph_dst);
2912 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2913 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2914 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2915 }
2916
2917 th0 = *th;
2918 th0.th_sum = 0;
2919 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2920
2921 l = m->m_pkthdr.len - thoff - tcphdrlen;
2922 if (l > 0)
2923 m_apply(m, thoff + tcphdrlen,
2924 m->m_pkthdr.len - thoff - tcphdrlen,
2925 tcp_signature_apply, &ctx);
2926
2927 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2928 MD5Final(sig, &ctx);
2929
2930 return (0);
2931 }
2932 #endif
2933
2934 static int
2935 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2936 struct tcphdr *th,
2937 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2938 {
2939 u_int16_t mss;
2940 int opt, optlen = 0;
2941 #ifdef TCP_SIGNATURE
2942 void *sigp = NULL;
2943 char sigbuf[TCP_SIGLEN];
2944 struct secasvar *sav = NULL;
2945 #endif
2946
2947 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2948 opt = cp[0];
2949 if (opt == TCPOPT_EOL)
2950 break;
2951 if (opt == TCPOPT_NOP)
2952 optlen = 1;
2953 else {
2954 if (cnt < 2)
2955 break;
2956 optlen = cp[1];
2957 if (optlen < 2 || optlen > cnt)
2958 break;
2959 }
2960 switch (opt) {
2961
2962 default:
2963 continue;
2964
2965 case TCPOPT_MAXSEG:
2966 if (optlen != TCPOLEN_MAXSEG)
2967 continue;
2968 if (!(th->th_flags & TH_SYN))
2969 continue;
2970 if (TCPS_HAVERCVDSYN(tp->t_state))
2971 continue;
2972 bcopy(cp + 2, &mss, sizeof(mss));
2973 oi->maxseg = ntohs(mss);
2974 break;
2975
2976 case TCPOPT_WINDOW:
2977 if (optlen != TCPOLEN_WINDOW)
2978 continue;
2979 if (!(th->th_flags & TH_SYN))
2980 continue;
2981 if (TCPS_HAVERCVDSYN(tp->t_state))
2982 continue;
2983 tp->t_flags |= TF_RCVD_SCALE;
2984 tp->requested_s_scale = cp[2];
2985 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2986 #if 0 /*XXX*/
2987 char *p;
2988
2989 if (ip)
2990 p = ntohl(ip->ip_src);
2991 #ifdef INET6
2992 else if (ip6)
2993 p = ip6_sprintf(&ip6->ip6_src);
2994 #endif
2995 else
2996 p = "(unknown)";
2997 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
2998 "assuming %d\n",
2999 tp->requested_s_scale, p,
3000 TCP_MAX_WINSHIFT);
3001 #else
3002 log(LOG_ERR, "TCP: invalid wscale %d, "
3003 "assuming %d\n",
3004 tp->requested_s_scale,
3005 TCP_MAX_WINSHIFT);
3006 #endif
3007 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3008 }
3009 break;
3010
3011 case TCPOPT_TIMESTAMP:
3012 if (optlen != TCPOLEN_TIMESTAMP)
3013 continue;
3014 oi->ts_present = 1;
3015 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3016 NTOHL(oi->ts_val);
3017 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3018 NTOHL(oi->ts_ecr);
3019
3020 if (!(th->th_flags & TH_SYN))
3021 continue;
3022 if (TCPS_HAVERCVDSYN(tp->t_state))
3023 continue;
3024 /*
3025 * A timestamp received in a SYN makes
3026 * it ok to send timestamp requests and replies.
3027 */
3028 tp->t_flags |= TF_RCVD_TSTMP;
3029 tp->ts_recent = oi->ts_val;
3030 tp->ts_recent_age = tcp_now;
3031 break;
3032
3033 case TCPOPT_SACK_PERMITTED:
3034 if (optlen != TCPOLEN_SACK_PERMITTED)
3035 continue;
3036 if (!(th->th_flags & TH_SYN))
3037 continue;
3038 if (TCPS_HAVERCVDSYN(tp->t_state))
3039 continue;
3040 if (tcp_do_sack) {
3041 tp->t_flags |= TF_SACK_PERMIT;
3042 tp->t_flags |= TF_WILL_SACK;
3043 }
3044 break;
3045
3046 case TCPOPT_SACK:
3047 tcp_sack_option(tp, th, cp, optlen);
3048 break;
3049 #ifdef TCP_SIGNATURE
3050 case TCPOPT_SIGNATURE:
3051 if (optlen != TCPOLEN_SIGNATURE)
3052 continue;
3053 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3054 return (-1);
3055
3056 sigp = sigbuf;
3057 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3058 tp->t_flags |= TF_SIGNATURE;
3059 break;
3060 #endif
3061 }
3062 }
3063
3064 #ifdef TCP_SIGNATURE
3065 if (tp->t_flags & TF_SIGNATURE) {
3066
3067 sav = tcp_signature_getsav(m, th);
3068
3069 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3070 return (-1);
3071 }
3072
3073 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3074 if (sav == NULL)
3075 return (-1);
3076 #ifdef FAST_IPSEC
3077 KEY_FREESAV(&sav);
3078 #else
3079 key_freesav(sav);
3080 #endif
3081 return (-1);
3082 }
3083
3084 if (sigp) {
3085 char sig[TCP_SIGLEN];
3086
3087 TCP_FIELDS_TO_NET(th);
3088 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3089 TCP_FIELDS_TO_HOST(th);
3090 if (sav == NULL)
3091 return (-1);
3092 #ifdef FAST_IPSEC
3093 KEY_FREESAV(&sav);
3094 #else
3095 key_freesav(sav);
3096 #endif
3097 return (-1);
3098 }
3099 TCP_FIELDS_TO_HOST(th);
3100
3101 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3102 tcpstat.tcps_badsig++;
3103 if (sav == NULL)
3104 return (-1);
3105 #ifdef FAST_IPSEC
3106 KEY_FREESAV(&sav);
3107 #else
3108 key_freesav(sav);
3109 #endif
3110 return (-1);
3111 } else
3112 tcpstat.tcps_goodsig++;
3113
3114 key_sa_recordxfer(sav, m);
3115 #ifdef FAST_IPSEC
3116 KEY_FREESAV(&sav);
3117 #else
3118 key_freesav(sav);
3119 #endif
3120 }
3121 #endif
3122
3123 return (0);
3124 }
3125
3126 /*
3127 * Pull out of band byte out of a segment so
3128 * it doesn't appear in the user's data queue.
3129 * It is still reflected in the segment length for
3130 * sequencing purposes.
3131 */
3132 void
3133 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3134 struct mbuf *m, int off)
3135 {
3136 int cnt = off + th->th_urp - 1;
3137
3138 while (cnt >= 0) {
3139 if (m->m_len > cnt) {
3140 char *cp = mtod(m, char *) + cnt;
3141 struct tcpcb *tp = sototcpcb(so);
3142
3143 tp->t_iobc = *cp;
3144 tp->t_oobflags |= TCPOOB_HAVEDATA;
3145 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3146 m->m_len--;
3147 return;
3148 }
3149 cnt -= m->m_len;
3150 m = m->m_next;
3151 if (m == 0)
3152 break;
3153 }
3154 panic("tcp_pulloutofband");
3155 }
3156
3157 /*
3158 * Collect new round-trip time estimate
3159 * and update averages and current timeout.
3160 */
3161 void
3162 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3163 {
3164 int32_t delta;
3165
3166 tcpstat.tcps_rttupdated++;
3167 if (tp->t_srtt != 0) {
3168 /*
3169 * srtt is stored as fixed point with 3 bits after the
3170 * binary point (i.e., scaled by 8). The following magic
3171 * is equivalent to the smoothing algorithm in rfc793 with
3172 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3173 * point). Adjust rtt to origin 0.
3174 */
3175 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3176 if ((tp->t_srtt += delta) <= 0)
3177 tp->t_srtt = 1 << 2;
3178 /*
3179 * We accumulate a smoothed rtt variance (actually, a
3180 * smoothed mean difference), then set the retransmit
3181 * timer to smoothed rtt + 4 times the smoothed variance.
3182 * rttvar is stored as fixed point with 2 bits after the
3183 * binary point (scaled by 4). The following is
3184 * equivalent to rfc793 smoothing with an alpha of .75
3185 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3186 * rfc793's wired-in beta.
3187 */
3188 if (delta < 0)
3189 delta = -delta;
3190 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3191 if ((tp->t_rttvar += delta) <= 0)
3192 tp->t_rttvar = 1 << 2;
3193 } else {
3194 /*
3195 * No rtt measurement yet - use the unsmoothed rtt.
3196 * Set the variance to half the rtt (so our first
3197 * retransmit happens at 3*rtt).
3198 */
3199 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3200 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3201 }
3202 tp->t_rtttime = 0;
3203 tp->t_rxtshift = 0;
3204
3205 /*
3206 * the retransmit should happen at rtt + 4 * rttvar.
3207 * Because of the way we do the smoothing, srtt and rttvar
3208 * will each average +1/2 tick of bias. When we compute
3209 * the retransmit timer, we want 1/2 tick of rounding and
3210 * 1 extra tick because of +-1/2 tick uncertainty in the
3211 * firing of the timer. The bias will give us exactly the
3212 * 1.5 tick we need. But, because the bias is
3213 * statistical, we have to test that we don't drop below
3214 * the minimum feasible timer (which is 2 ticks).
3215 */
3216 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3217 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3218
3219 /*
3220 * We received an ack for a packet that wasn't retransmitted;
3221 * it is probably safe to discard any error indications we've
3222 * received recently. This isn't quite right, but close enough
3223 * for now (a route might have failed after we sent a segment,
3224 * and the return path might not be symmetrical).
3225 */
3226 tp->t_softerror = 0;
3227 }
3228
3229
3230 /*
3231 * TCP compressed state engine. Currently used to hold compressed
3232 * state for SYN_RECEIVED.
3233 */
3234
3235 u_long syn_cache_count;
3236 u_int32_t syn_hash1, syn_hash2;
3237
3238 #define SYN_HASH(sa, sp, dp) \
3239 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3240 ((u_int32_t)(sp)))^syn_hash2)))
3241 #ifndef INET6
3242 #define SYN_HASHALL(hash, src, dst) \
3243 do { \
3244 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3245 ((const struct sockaddr_in *)(src))->sin_port, \
3246 ((const struct sockaddr_in *)(dst))->sin_port); \
3247 } while (/*CONSTCOND*/ 0)
3248 #else
3249 #define SYN_HASH6(sa, sp, dp) \
3250 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3251 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3252 & 0x7fffffff)
3253
3254 #define SYN_HASHALL(hash, src, dst) \
3255 do { \
3256 switch ((src)->sa_family) { \
3257 case AF_INET: \
3258 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3259 ((const struct sockaddr_in *)(src))->sin_port, \
3260 ((const struct sockaddr_in *)(dst))->sin_port); \
3261 break; \
3262 case AF_INET6: \
3263 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3264 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3265 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3266 break; \
3267 default: \
3268 hash = 0; \
3269 } \
3270 } while (/*CONSTCOND*/0)
3271 #endif /* INET6 */
3272
3273 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3274 IPL_SOFTNET);
3275
3276 /*
3277 * We don't estimate RTT with SYNs, so each packet starts with the default
3278 * RTT and each timer step has a fixed timeout value.
3279 */
3280 #define SYN_CACHE_TIMER_ARM(sc) \
3281 do { \
3282 TCPT_RANGESET((sc)->sc_rxtcur, \
3283 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3284 TCPTV_REXMTMAX); \
3285 callout_reset(&(sc)->sc_timer, \
3286 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3287 } while (/*CONSTCOND*/0)
3288
3289 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3290
3291 static inline void
3292 syn_cache_rm(struct syn_cache *sc)
3293 {
3294 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3295 sc, sc_bucketq);
3296 sc->sc_tp = NULL;
3297 LIST_REMOVE(sc, sc_tpq);
3298 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3299 callout_stop(&sc->sc_timer);
3300 syn_cache_count--;
3301 }
3302
3303 static inline void
3304 syn_cache_put(struct syn_cache *sc)
3305 {
3306 if (sc->sc_ipopts)
3307 (void) m_free(sc->sc_ipopts);
3308 rtcache_free(&sc->sc_route);
3309 if (callout_invoking(&sc->sc_timer))
3310 sc->sc_flags |= SCF_DEAD;
3311 else {
3312 callout_destroy(&sc->sc_timer);
3313 pool_put(&syn_cache_pool, sc);
3314 }
3315 }
3316
3317 void
3318 syn_cache_init(void)
3319 {
3320 int i;
3321
3322 /* Initialize the hash buckets. */
3323 for (i = 0; i < tcp_syn_cache_size; i++)
3324 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3325 }
3326
3327 void
3328 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3329 {
3330 struct syn_cache_head *scp;
3331 struct syn_cache *sc2;
3332 int s;
3333
3334 /*
3335 * If there are no entries in the hash table, reinitialize
3336 * the hash secrets.
3337 */
3338 if (syn_cache_count == 0) {
3339 syn_hash1 = arc4random();
3340 syn_hash2 = arc4random();
3341 }
3342
3343 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3344 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3345 scp = &tcp_syn_cache[sc->sc_bucketidx];
3346
3347 /*
3348 * Make sure that we don't overflow the per-bucket
3349 * limit or the total cache size limit.
3350 */
3351 s = splsoftnet();
3352 if (scp->sch_length >= tcp_syn_bucket_limit) {
3353 tcpstat.tcps_sc_bucketoverflow++;
3354 /*
3355 * The bucket is full. Toss the oldest element in the
3356 * bucket. This will be the first entry in the bucket.
3357 */
3358 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3359 #ifdef DIAGNOSTIC
3360 /*
3361 * This should never happen; we should always find an
3362 * entry in our bucket.
3363 */
3364 if (sc2 == NULL)
3365 panic("syn_cache_insert: bucketoverflow: impossible");
3366 #endif
3367 syn_cache_rm(sc2);
3368 syn_cache_put(sc2); /* calls pool_put but see spl above */
3369 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3370 struct syn_cache_head *scp2, *sce;
3371
3372 tcpstat.tcps_sc_overflowed++;
3373 /*
3374 * The cache is full. Toss the oldest entry in the
3375 * first non-empty bucket we can find.
3376 *
3377 * XXX We would really like to toss the oldest
3378 * entry in the cache, but we hope that this
3379 * condition doesn't happen very often.
3380 */
3381 scp2 = scp;
3382 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3383 sce = &tcp_syn_cache[tcp_syn_cache_size];
3384 for (++scp2; scp2 != scp; scp2++) {
3385 if (scp2 >= sce)
3386 scp2 = &tcp_syn_cache[0];
3387 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3388 break;
3389 }
3390 #ifdef DIAGNOSTIC
3391 /*
3392 * This should never happen; we should always find a
3393 * non-empty bucket.
3394 */
3395 if (scp2 == scp)
3396 panic("syn_cache_insert: cacheoverflow: "
3397 "impossible");
3398 #endif
3399 }
3400 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3401 syn_cache_rm(sc2);
3402 syn_cache_put(sc2); /* calls pool_put but see spl above */
3403 }
3404
3405 /*
3406 * Initialize the entry's timer.
3407 */
3408 sc->sc_rxttot = 0;
3409 sc->sc_rxtshift = 0;
3410 SYN_CACHE_TIMER_ARM(sc);
3411
3412 /* Link it from tcpcb entry */
3413 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3414
3415 /* Put it into the bucket. */
3416 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3417 scp->sch_length++;
3418 syn_cache_count++;
3419
3420 tcpstat.tcps_sc_added++;
3421 splx(s);
3422 }
3423
3424 /*
3425 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3426 * If we have retransmitted an entry the maximum number of times, expire
3427 * that entry.
3428 */
3429 void
3430 syn_cache_timer(void *arg)
3431 {
3432 struct syn_cache *sc = arg;
3433 int s;
3434
3435 s = splsoftnet();
3436 callout_ack(&sc->sc_timer);
3437
3438 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3439 tcpstat.tcps_sc_delayed_free++;
3440 callout_destroy(&sc->sc_timer);
3441 pool_put(&syn_cache_pool, sc);
3442 splx(s);
3443 return;
3444 }
3445
3446 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3447 /* Drop it -- too many retransmissions. */
3448 goto dropit;
3449 }
3450
3451 /*
3452 * Compute the total amount of time this entry has
3453 * been on a queue. If this entry has been on longer
3454 * than the keep alive timer would allow, expire it.
3455 */
3456 sc->sc_rxttot += sc->sc_rxtcur;
3457 if (sc->sc_rxttot >= tcp_keepinit)
3458 goto dropit;
3459
3460 tcpstat.tcps_sc_retransmitted++;
3461 (void) syn_cache_respond(sc, NULL);
3462
3463 /* Advance the timer back-off. */
3464 sc->sc_rxtshift++;
3465 SYN_CACHE_TIMER_ARM(sc);
3466
3467 splx(s);
3468 return;
3469
3470 dropit:
3471 tcpstat.tcps_sc_timed_out++;
3472 syn_cache_rm(sc);
3473 syn_cache_put(sc); /* calls pool_put but see spl above */
3474 splx(s);
3475 }
3476
3477 /*
3478 * Remove syn cache created by the specified tcb entry,
3479 * because this does not make sense to keep them
3480 * (if there's no tcb entry, syn cache entry will never be used)
3481 */
3482 void
3483 syn_cache_cleanup(struct tcpcb *tp)
3484 {
3485 struct syn_cache *sc, *nsc;
3486 int s;
3487
3488 s = splsoftnet();
3489
3490 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3491 nsc = LIST_NEXT(sc, sc_tpq);
3492
3493 #ifdef DIAGNOSTIC
3494 if (sc->sc_tp != tp)
3495 panic("invalid sc_tp in syn_cache_cleanup");
3496 #endif
3497 syn_cache_rm(sc);
3498 syn_cache_put(sc); /* calls pool_put but see spl above */
3499 }
3500 /* just for safety */
3501 LIST_INIT(&tp->t_sc);
3502
3503 splx(s);
3504 }
3505
3506 /*
3507 * Find an entry in the syn cache.
3508 */
3509 struct syn_cache *
3510 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3511 struct syn_cache_head **headp)
3512 {
3513 struct syn_cache *sc;
3514 struct syn_cache_head *scp;
3515 u_int32_t hash;
3516 int s;
3517
3518 SYN_HASHALL(hash, src, dst);
3519
3520 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3521 *headp = scp;
3522 s = splsoftnet();
3523 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3524 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3525 if (sc->sc_hash != hash)
3526 continue;
3527 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3528 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3529 splx(s);
3530 return (sc);
3531 }
3532 }
3533 splx(s);
3534 return (NULL);
3535 }
3536
3537 /*
3538 * This function gets called when we receive an ACK for a
3539 * socket in the LISTEN state. We look up the connection
3540 * in the syn cache, and if its there, we pull it out of
3541 * the cache and turn it into a full-blown connection in
3542 * the SYN-RECEIVED state.
3543 *
3544 * The return values may not be immediately obvious, and their effects
3545 * can be subtle, so here they are:
3546 *
3547 * NULL SYN was not found in cache; caller should drop the
3548 * packet and send an RST.
3549 *
3550 * -1 We were unable to create the new connection, and are
3551 * aborting it. An ACK,RST is being sent to the peer
3552 * (unless we got screwey sequence numbners; see below),
3553 * because the 3-way handshake has been completed. Caller
3554 * should not free the mbuf, since we may be using it. If
3555 * we are not, we will free it.
3556 *
3557 * Otherwise, the return value is a pointer to the new socket
3558 * associated with the connection.
3559 */
3560 struct socket *
3561 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3562 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3563 struct socket *so, struct mbuf *m)
3564 {
3565 struct syn_cache *sc;
3566 struct syn_cache_head *scp;
3567 struct inpcb *inp = NULL;
3568 #ifdef INET6
3569 struct in6pcb *in6p = NULL;
3570 #endif
3571 struct tcpcb *tp = 0;
3572 struct mbuf *am;
3573 int s;
3574 struct socket *oso;
3575
3576 s = splsoftnet();
3577 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3578 splx(s);
3579 return (NULL);
3580 }
3581
3582 /*
3583 * Verify the sequence and ack numbers. Try getting the correct
3584 * response again.
3585 */
3586 if ((th->th_ack != sc->sc_iss + 1) ||
3587 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3588 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3589 (void) syn_cache_respond(sc, m);
3590 splx(s);
3591 return ((struct socket *)(-1));
3592 }
3593
3594 /* Remove this cache entry */
3595 syn_cache_rm(sc);
3596 splx(s);
3597
3598 /*
3599 * Ok, create the full blown connection, and set things up
3600 * as they would have been set up if we had created the
3601 * connection when the SYN arrived. If we can't create
3602 * the connection, abort it.
3603 */
3604 /*
3605 * inp still has the OLD in_pcb stuff, set the
3606 * v6-related flags on the new guy, too. This is
3607 * done particularly for the case where an AF_INET6
3608 * socket is bound only to a port, and a v4 connection
3609 * comes in on that port.
3610 * we also copy the flowinfo from the original pcb
3611 * to the new one.
3612 */
3613 oso = so;
3614 so = sonewconn(so, SS_ISCONNECTED);
3615 if (so == NULL)
3616 goto resetandabort;
3617
3618 switch (so->so_proto->pr_domain->dom_family) {
3619 #ifdef INET
3620 case AF_INET:
3621 inp = sotoinpcb(so);
3622 break;
3623 #endif
3624 #ifdef INET6
3625 case AF_INET6:
3626 in6p = sotoin6pcb(so);
3627 break;
3628 #endif
3629 }
3630 switch (src->sa_family) {
3631 #ifdef INET
3632 case AF_INET:
3633 if (inp) {
3634 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3635 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3636 inp->inp_options = ip_srcroute();
3637 in_pcbstate(inp, INP_BOUND);
3638 if (inp->inp_options == NULL) {
3639 inp->inp_options = sc->sc_ipopts;
3640 sc->sc_ipopts = NULL;
3641 }
3642 }
3643 #ifdef INET6
3644 else if (in6p) {
3645 /* IPv4 packet to AF_INET6 socket */
3646 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3647 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3648 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3649 &in6p->in6p_laddr.s6_addr32[3],
3650 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3651 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3652 in6totcpcb(in6p)->t_family = AF_INET;
3653 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3654 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3655 else
3656 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3657 in6_pcbstate(in6p, IN6P_BOUND);
3658 }
3659 #endif
3660 break;
3661 #endif
3662 #ifdef INET6
3663 case AF_INET6:
3664 if (in6p) {
3665 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3666 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3667 in6_pcbstate(in6p, IN6P_BOUND);
3668 }
3669 break;
3670 #endif
3671 }
3672 #ifdef INET6
3673 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3674 struct in6pcb *oin6p = sotoin6pcb(oso);
3675 /* inherit socket options from the listening socket */
3676 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3677 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3678 m_freem(in6p->in6p_options);
3679 in6p->in6p_options = 0;
3680 }
3681 ip6_savecontrol(in6p, &in6p->in6p_options,
3682 mtod(m, struct ip6_hdr *), m);
3683 }
3684 #endif
3685
3686 #if defined(IPSEC) || defined(FAST_IPSEC)
3687 /*
3688 * we make a copy of policy, instead of sharing the policy,
3689 * for better behavior in terms of SA lookup and dead SA removal.
3690 */
3691 if (inp) {
3692 /* copy old policy into new socket's */
3693 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3694 printf("tcp_input: could not copy policy\n");
3695 }
3696 #ifdef INET6
3697 else if (in6p) {
3698 /* copy old policy into new socket's */
3699 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3700 in6p->in6p_sp))
3701 printf("tcp_input: could not copy policy\n");
3702 }
3703 #endif
3704 #endif
3705
3706 /*
3707 * Give the new socket our cached route reference.
3708 */
3709 if (inp) {
3710 rtcache_copy(&inp->inp_route, &sc->sc_route);
3711 rtcache_free(&sc->sc_route);
3712 }
3713 #ifdef INET6
3714 else {
3715 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3716 rtcache_free(&sc->sc_route);
3717 }
3718 #endif
3719
3720 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3721 if (am == NULL)
3722 goto resetandabort;
3723 MCLAIM(am, &tcp_mowner);
3724 am->m_len = src->sa_len;
3725 bcopy(src, mtod(am, void *), src->sa_len);
3726 if (inp) {
3727 if (in_pcbconnect(inp, am, &lwp0)) {
3728 (void) m_free(am);
3729 goto resetandabort;
3730 }
3731 }
3732 #ifdef INET6
3733 else if (in6p) {
3734 if (src->sa_family == AF_INET) {
3735 /* IPv4 packet to AF_INET6 socket */
3736 struct sockaddr_in6 *sin6;
3737 sin6 = mtod(am, struct sockaddr_in6 *);
3738 am->m_len = sizeof(*sin6);
3739 bzero(sin6, sizeof(*sin6));
3740 sin6->sin6_family = AF_INET6;
3741 sin6->sin6_len = sizeof(*sin6);
3742 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3743 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3744 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3745 &sin6->sin6_addr.s6_addr32[3],
3746 sizeof(sin6->sin6_addr.s6_addr32[3]));
3747 }
3748 if (in6_pcbconnect(in6p, am, NULL)) {
3749 (void) m_free(am);
3750 goto resetandabort;
3751 }
3752 }
3753 #endif
3754 else {
3755 (void) m_free(am);
3756 goto resetandabort;
3757 }
3758 (void) m_free(am);
3759
3760 if (inp)
3761 tp = intotcpcb(inp);
3762 #ifdef INET6
3763 else if (in6p)
3764 tp = in6totcpcb(in6p);
3765 #endif
3766 else
3767 tp = NULL;
3768 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3769 if (sc->sc_request_r_scale != 15) {
3770 tp->requested_s_scale = sc->sc_requested_s_scale;
3771 tp->request_r_scale = sc->sc_request_r_scale;
3772 tp->snd_scale = sc->sc_requested_s_scale;
3773 tp->rcv_scale = sc->sc_request_r_scale;
3774 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3775 }
3776 if (sc->sc_flags & SCF_TIMESTAMP)
3777 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3778 tp->ts_timebase = sc->sc_timebase;
3779
3780 tp->t_template = tcp_template(tp);
3781 if (tp->t_template == 0) {
3782 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3783 so = NULL;
3784 m_freem(m);
3785 goto abort;
3786 }
3787
3788 tp->iss = sc->sc_iss;
3789 tp->irs = sc->sc_irs;
3790 tcp_sendseqinit(tp);
3791 tcp_rcvseqinit(tp);
3792 tp->t_state = TCPS_SYN_RECEIVED;
3793 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3794 tcpstat.tcps_accepts++;
3795
3796 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3797 tp->t_flags |= TF_WILL_SACK;
3798
3799 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3800 tp->t_flags |= TF_ECN_PERMIT;
3801
3802 #ifdef TCP_SIGNATURE
3803 if (sc->sc_flags & SCF_SIGNATURE)
3804 tp->t_flags |= TF_SIGNATURE;
3805 #endif
3806
3807 /* Initialize tp->t_ourmss before we deal with the peer's! */
3808 tp->t_ourmss = sc->sc_ourmaxseg;
3809 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3810
3811 /*
3812 * Initialize the initial congestion window. If we
3813 * had to retransmit the SYN,ACK, we must initialize cwnd
3814 * to 1 segment (i.e. the Loss Window).
3815 */
3816 if (sc->sc_rxtshift)
3817 tp->snd_cwnd = tp->t_peermss;
3818 else {
3819 int ss = tcp_init_win;
3820 #ifdef INET
3821 if (inp != NULL && in_localaddr(inp->inp_faddr))
3822 ss = tcp_init_win_local;
3823 #endif
3824 #ifdef INET6
3825 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3826 ss = tcp_init_win_local;
3827 #endif
3828 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3829 }
3830
3831 tcp_rmx_rtt(tp);
3832 tp->snd_wl1 = sc->sc_irs;
3833 tp->rcv_up = sc->sc_irs + 1;
3834
3835 /*
3836 * This is what whould have happened in tcp_output() when
3837 * the SYN,ACK was sent.
3838 */
3839 tp->snd_up = tp->snd_una;
3840 tp->snd_max = tp->snd_nxt = tp->iss+1;
3841 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3842 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3843 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3844 tp->last_ack_sent = tp->rcv_nxt;
3845 tp->t_partialacks = -1;
3846 tp->t_dupacks = 0;
3847
3848 tcpstat.tcps_sc_completed++;
3849 s = splsoftnet();
3850 syn_cache_put(sc);
3851 splx(s);
3852 return (so);
3853
3854 resetandabort:
3855 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3856 abort:
3857 if (so != NULL)
3858 (void) soabort(so);
3859 s = splsoftnet();
3860 syn_cache_put(sc);
3861 splx(s);
3862 tcpstat.tcps_sc_aborted++;
3863 return ((struct socket *)(-1));
3864 }
3865
3866 /*
3867 * This function is called when we get a RST for a
3868 * non-existent connection, so that we can see if the
3869 * connection is in the syn cache. If it is, zap it.
3870 */
3871
3872 void
3873 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3874 {
3875 struct syn_cache *sc;
3876 struct syn_cache_head *scp;
3877 int s = splsoftnet();
3878
3879 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3880 splx(s);
3881 return;
3882 }
3883 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3884 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3885 splx(s);
3886 return;
3887 }
3888 syn_cache_rm(sc);
3889 tcpstat.tcps_sc_reset++;
3890 syn_cache_put(sc); /* calls pool_put but see spl above */
3891 splx(s);
3892 }
3893
3894 void
3895 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3896 struct tcphdr *th)
3897 {
3898 struct syn_cache *sc;
3899 struct syn_cache_head *scp;
3900 int s;
3901
3902 s = splsoftnet();
3903 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3904 splx(s);
3905 return;
3906 }
3907 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3908 if (ntohl (th->th_seq) != sc->sc_iss) {
3909 splx(s);
3910 return;
3911 }
3912
3913 /*
3914 * If we've retransmitted 3 times and this is our second error,
3915 * we remove the entry. Otherwise, we allow it to continue on.
3916 * This prevents us from incorrectly nuking an entry during a
3917 * spurious network outage.
3918 *
3919 * See tcp_notify().
3920 */
3921 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3922 sc->sc_flags |= SCF_UNREACH;
3923 splx(s);
3924 return;
3925 }
3926
3927 syn_cache_rm(sc);
3928 tcpstat.tcps_sc_unreach++;
3929 syn_cache_put(sc); /* calls pool_put but see spl above */
3930 splx(s);
3931 }
3932
3933 /*
3934 * Given a LISTEN socket and an inbound SYN request, add
3935 * this to the syn cache, and send back a segment:
3936 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3937 * to the source.
3938 *
3939 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3940 * Doing so would require that we hold onto the data and deliver it
3941 * to the application. However, if we are the target of a SYN-flood
3942 * DoS attack, an attacker could send data which would eventually
3943 * consume all available buffer space if it were ACKed. By not ACKing
3944 * the data, we avoid this DoS scenario.
3945 */
3946
3947 int
3948 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3949 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3950 int optlen, struct tcp_opt_info *oi)
3951 {
3952 struct tcpcb tb, *tp;
3953 long win;
3954 struct syn_cache *sc;
3955 struct syn_cache_head *scp;
3956 struct mbuf *ipopts;
3957 struct tcp_opt_info opti;
3958 int s;
3959
3960 tp = sototcpcb(so);
3961
3962 bzero(&opti, sizeof(opti));
3963
3964 /*
3965 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3966 *
3967 * Note this check is performed in tcp_input() very early on.
3968 */
3969
3970 /*
3971 * Initialize some local state.
3972 */
3973 win = sbspace(&so->so_rcv);
3974 if (win > TCP_MAXWIN)
3975 win = TCP_MAXWIN;
3976
3977 switch (src->sa_family) {
3978 #ifdef INET
3979 case AF_INET:
3980 /*
3981 * Remember the IP options, if any.
3982 */
3983 ipopts = ip_srcroute();
3984 break;
3985 #endif
3986 default:
3987 ipopts = NULL;
3988 }
3989
3990 #ifdef TCP_SIGNATURE
3991 if (optp || (tp->t_flags & TF_SIGNATURE))
3992 #else
3993 if (optp)
3994 #endif
3995 {
3996 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
3997 #ifdef TCP_SIGNATURE
3998 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
3999 #endif
4000 tb.t_state = TCPS_LISTEN;
4001 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4002 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4003 return (0);
4004 } else
4005 tb.t_flags = 0;
4006
4007 /*
4008 * See if we already have an entry for this connection.
4009 * If we do, resend the SYN,ACK. We do not count this
4010 * as a retransmission (XXX though maybe we should).
4011 */
4012 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4013 tcpstat.tcps_sc_dupesyn++;
4014 if (ipopts) {
4015 /*
4016 * If we were remembering a previous source route,
4017 * forget it and use the new one we've been given.
4018 */
4019 if (sc->sc_ipopts)
4020 (void) m_free(sc->sc_ipopts);
4021 sc->sc_ipopts = ipopts;
4022 }
4023 sc->sc_timestamp = tb.ts_recent;
4024 if (syn_cache_respond(sc, m) == 0) {
4025 tcpstat.tcps_sndacks++;
4026 tcpstat.tcps_sndtotal++;
4027 }
4028 return (1);
4029 }
4030
4031 s = splsoftnet();
4032 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4033 splx(s);
4034 if (sc == NULL) {
4035 if (ipopts)
4036 (void) m_free(ipopts);
4037 return (0);
4038 }
4039
4040 /*
4041 * Fill in the cache, and put the necessary IP and TCP
4042 * options into the reply.
4043 */
4044 bzero(sc, sizeof(struct syn_cache));
4045 callout_init(&sc->sc_timer, 0);
4046 bcopy(src, &sc->sc_src, src->sa_len);
4047 bcopy(dst, &sc->sc_dst, dst->sa_len);
4048 sc->sc_flags = 0;
4049 sc->sc_ipopts = ipopts;
4050 sc->sc_irs = th->th_seq;
4051 switch (src->sa_family) {
4052 #ifdef INET
4053 case AF_INET:
4054 {
4055 struct sockaddr_in *srcin = (void *) src;
4056 struct sockaddr_in *dstin = (void *) dst;
4057
4058 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4059 &srcin->sin_addr, dstin->sin_port,
4060 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4061 break;
4062 }
4063 #endif /* INET */
4064 #ifdef INET6
4065 case AF_INET6:
4066 {
4067 struct sockaddr_in6 *srcin6 = (void *) src;
4068 struct sockaddr_in6 *dstin6 = (void *) dst;
4069
4070 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4071 &srcin6->sin6_addr, dstin6->sin6_port,
4072 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4073 break;
4074 }
4075 #endif /* INET6 */
4076 }
4077 sc->sc_peermaxseg = oi->maxseg;
4078 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4079 m->m_pkthdr.rcvif : NULL,
4080 sc->sc_src.sa.sa_family);
4081 sc->sc_win = win;
4082 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
4083 sc->sc_timestamp = tb.ts_recent;
4084 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4085 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4086 sc->sc_flags |= SCF_TIMESTAMP;
4087 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4088 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4089 sc->sc_requested_s_scale = tb.requested_s_scale;
4090 sc->sc_request_r_scale = 0;
4091 /*
4092 * Pick the smallest possible scaling factor that
4093 * will still allow us to scale up to sb_max.
4094 *
4095 * We do this because there are broken firewalls that
4096 * will corrupt the window scale option, leading to
4097 * the other endpoint believing that our advertised
4098 * window is unscaled. At scale factors larger than
4099 * 5 the unscaled window will drop below 1500 bytes,
4100 * leading to serious problems when traversing these
4101 * broken firewalls.
4102 *
4103 * With the default sbmax of 256K, a scale factor
4104 * of 3 will be chosen by this algorithm. Those who
4105 * choose a larger sbmax should watch out
4106 * for the compatiblity problems mentioned above.
4107 *
4108 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4109 * or <SYN,ACK>) segment itself is never scaled.
4110 */
4111 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4112 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4113 sc->sc_request_r_scale++;
4114 } else {
4115 sc->sc_requested_s_scale = 15;
4116 sc->sc_request_r_scale = 15;
4117 }
4118 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4119 sc->sc_flags |= SCF_SACK_PERMIT;
4120
4121 /*
4122 * ECN setup packet recieved.
4123 */
4124 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4125 sc->sc_flags |= SCF_ECN_PERMIT;
4126
4127 #ifdef TCP_SIGNATURE
4128 if (tb.t_flags & TF_SIGNATURE)
4129 sc->sc_flags |= SCF_SIGNATURE;
4130 #endif
4131 sc->sc_tp = tp;
4132 if (syn_cache_respond(sc, m) == 0) {
4133 syn_cache_insert(sc, tp);
4134 tcpstat.tcps_sndacks++;
4135 tcpstat.tcps_sndtotal++;
4136 } else {
4137 s = splsoftnet();
4138 syn_cache_put(sc);
4139 splx(s);
4140 tcpstat.tcps_sc_dropped++;
4141 }
4142 return (1);
4143 }
4144
4145 int
4146 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4147 {
4148 struct route *ro;
4149 u_int8_t *optp;
4150 int optlen, error;
4151 u_int16_t tlen;
4152 struct ip *ip = NULL;
4153 #ifdef INET6
4154 struct ip6_hdr *ip6 = NULL;
4155 #endif
4156 struct tcpcb *tp = NULL;
4157 struct tcphdr *th;
4158 u_int hlen;
4159 struct socket *so;
4160
4161 ro = &sc->sc_route;
4162 switch (sc->sc_src.sa.sa_family) {
4163 case AF_INET:
4164 hlen = sizeof(struct ip);
4165 break;
4166 #ifdef INET6
4167 case AF_INET6:
4168 hlen = sizeof(struct ip6_hdr);
4169 break;
4170 #endif
4171 default:
4172 if (m)
4173 m_freem(m);
4174 return (EAFNOSUPPORT);
4175 }
4176
4177 /* Compute the size of the TCP options. */
4178 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4179 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4180 #ifdef TCP_SIGNATURE
4181 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4182 #endif
4183 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4184
4185 tlen = hlen + sizeof(struct tcphdr) + optlen;
4186
4187 /*
4188 * Create the IP+TCP header from scratch.
4189 */
4190 if (m)
4191 m_freem(m);
4192 #ifdef DIAGNOSTIC
4193 if (max_linkhdr + tlen > MCLBYTES)
4194 return (ENOBUFS);
4195 #endif
4196 MGETHDR(m, M_DONTWAIT, MT_DATA);
4197 if (m && tlen > MHLEN) {
4198 MCLGET(m, M_DONTWAIT);
4199 if ((m->m_flags & M_EXT) == 0) {
4200 m_freem(m);
4201 m = NULL;
4202 }
4203 }
4204 if (m == NULL)
4205 return (ENOBUFS);
4206 MCLAIM(m, &tcp_tx_mowner);
4207
4208 /* Fixup the mbuf. */
4209 m->m_data += max_linkhdr;
4210 m->m_len = m->m_pkthdr.len = tlen;
4211 if (sc->sc_tp) {
4212 tp = sc->sc_tp;
4213 if (tp->t_inpcb)
4214 so = tp->t_inpcb->inp_socket;
4215 #ifdef INET6
4216 else if (tp->t_in6pcb)
4217 so = tp->t_in6pcb->in6p_socket;
4218 #endif
4219 else
4220 so = NULL;
4221 } else
4222 so = NULL;
4223 m->m_pkthdr.rcvif = NULL;
4224 memset(mtod(m, u_char *), 0, tlen);
4225
4226 switch (sc->sc_src.sa.sa_family) {
4227 case AF_INET:
4228 ip = mtod(m, struct ip *);
4229 ip->ip_v = 4;
4230 ip->ip_dst = sc->sc_src.sin.sin_addr;
4231 ip->ip_src = sc->sc_dst.sin.sin_addr;
4232 ip->ip_p = IPPROTO_TCP;
4233 th = (struct tcphdr *)(ip + 1);
4234 th->th_dport = sc->sc_src.sin.sin_port;
4235 th->th_sport = sc->sc_dst.sin.sin_port;
4236 break;
4237 #ifdef INET6
4238 case AF_INET6:
4239 ip6 = mtod(m, struct ip6_hdr *);
4240 ip6->ip6_vfc = IPV6_VERSION;
4241 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4242 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4243 ip6->ip6_nxt = IPPROTO_TCP;
4244 /* ip6_plen will be updated in ip6_output() */
4245 th = (struct tcphdr *)(ip6 + 1);
4246 th->th_dport = sc->sc_src.sin6.sin6_port;
4247 th->th_sport = sc->sc_dst.sin6.sin6_port;
4248 break;
4249 #endif
4250 default:
4251 th = NULL;
4252 }
4253
4254 th->th_seq = htonl(sc->sc_iss);
4255 th->th_ack = htonl(sc->sc_irs + 1);
4256 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4257 th->th_flags = TH_SYN|TH_ACK;
4258 th->th_win = htons(sc->sc_win);
4259 /* th_sum already 0 */
4260 /* th_urp already 0 */
4261
4262 /* Tack on the TCP options. */
4263 optp = (u_int8_t *)(th + 1);
4264 *optp++ = TCPOPT_MAXSEG;
4265 *optp++ = 4;
4266 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4267 *optp++ = sc->sc_ourmaxseg & 0xff;
4268
4269 if (sc->sc_request_r_scale != 15) {
4270 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4271 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4272 sc->sc_request_r_scale);
4273 optp += 4;
4274 }
4275
4276 if (sc->sc_flags & SCF_TIMESTAMP) {
4277 u_int32_t *lp = (u_int32_t *)(optp);
4278 /* Form timestamp option as shown in appendix A of RFC 1323. */
4279 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4280 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4281 *lp = htonl(sc->sc_timestamp);
4282 optp += TCPOLEN_TSTAMP_APPA;
4283 }
4284
4285 if (sc->sc_flags & SCF_SACK_PERMIT) {
4286 u_int8_t *p = optp;
4287
4288 /* Let the peer know that we will SACK. */
4289 p[0] = TCPOPT_SACK_PERMITTED;
4290 p[1] = 2;
4291 p[2] = TCPOPT_NOP;
4292 p[3] = TCPOPT_NOP;
4293 optp += 4;
4294 }
4295
4296 /*
4297 * Send ECN SYN-ACK setup packet.
4298 * Routes can be asymetric, so, even if we receive a packet
4299 * with ECE and CWR set, we must not assume no one will block
4300 * the ECE packet we are about to send.
4301 */
4302 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4303 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4304 th->th_flags |= TH_ECE;
4305 tcpstat.tcps_ecn_shs++;
4306
4307 /*
4308 * draft-ietf-tcpm-ecnsyn-00.txt
4309 *
4310 * "[...] a TCP node MAY respond to an ECN-setup
4311 * SYN packet by setting ECT in the responding
4312 * ECN-setup SYN/ACK packet, indicating to routers
4313 * that the SYN/ACK packet is ECN-Capable.
4314 * This allows a congested router along the path
4315 * to mark the packet instead of dropping the
4316 * packet as an indication of congestion."
4317 *
4318 * "[...] There can be a great benefit in setting
4319 * an ECN-capable codepoint in SYN/ACK packets [...]
4320 * Congestion is most likely to occur in
4321 * the server-to-client direction. As a result,
4322 * setting an ECN-capable codepoint in SYN/ACK
4323 * packets can reduce the occurence of three-second
4324 * retransmit timeouts resulting from the drop
4325 * of SYN/ACK packets."
4326 *
4327 * Page 4 and 6, January 2006.
4328 */
4329
4330 switch (sc->sc_src.sa.sa_family) {
4331 #ifdef INET
4332 case AF_INET:
4333 ip->ip_tos |= IPTOS_ECN_ECT0;
4334 break;
4335 #endif
4336 #ifdef INET6
4337 case AF_INET6:
4338 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4339 break;
4340 #endif
4341 }
4342 tcpstat.tcps_ecn_ect++;
4343 }
4344
4345 #ifdef TCP_SIGNATURE
4346 if (sc->sc_flags & SCF_SIGNATURE) {
4347 struct secasvar *sav;
4348 u_int8_t *sigp;
4349
4350 sav = tcp_signature_getsav(m, th);
4351
4352 if (sav == NULL) {
4353 if (m)
4354 m_freem(m);
4355 return (EPERM);
4356 }
4357
4358 *optp++ = TCPOPT_SIGNATURE;
4359 *optp++ = TCPOLEN_SIGNATURE;
4360 sigp = optp;
4361 bzero(optp, TCP_SIGLEN);
4362 optp += TCP_SIGLEN;
4363 *optp++ = TCPOPT_NOP;
4364 *optp++ = TCPOPT_EOL;
4365
4366 (void)tcp_signature(m, th, hlen, sav, sigp);
4367
4368 key_sa_recordxfer(sav, m);
4369 #ifdef FAST_IPSEC
4370 KEY_FREESAV(&sav);
4371 #else
4372 key_freesav(sav);
4373 #endif
4374 }
4375 #endif
4376
4377 /* Compute the packet's checksum. */
4378 switch (sc->sc_src.sa.sa_family) {
4379 case AF_INET:
4380 ip->ip_len = htons(tlen - hlen);
4381 th->th_sum = 0;
4382 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4383 break;
4384 #ifdef INET6
4385 case AF_INET6:
4386 ip6->ip6_plen = htons(tlen - hlen);
4387 th->th_sum = 0;
4388 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4389 break;
4390 #endif
4391 }
4392
4393 /*
4394 * Fill in some straggling IP bits. Note the stack expects
4395 * ip_len to be in host order, for convenience.
4396 */
4397 switch (sc->sc_src.sa.sa_family) {
4398 #ifdef INET
4399 case AF_INET:
4400 ip->ip_len = htons(tlen);
4401 ip->ip_ttl = ip_defttl;
4402 /* XXX tos? */
4403 break;
4404 #endif
4405 #ifdef INET6
4406 case AF_INET6:
4407 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4408 ip6->ip6_vfc |= IPV6_VERSION;
4409 ip6->ip6_plen = htons(tlen - hlen);
4410 /* ip6_hlim will be initialized afterwards */
4411 /* XXX flowlabel? */
4412 break;
4413 #endif
4414 }
4415
4416 /* XXX use IPsec policy on listening socket, on SYN ACK */
4417 tp = sc->sc_tp;
4418
4419 switch (sc->sc_src.sa.sa_family) {
4420 #ifdef INET
4421 case AF_INET:
4422 error = ip_output(m, sc->sc_ipopts, ro,
4423 (ip_mtudisc ? IP_MTUDISC : 0),
4424 (struct ip_moptions *)NULL, so);
4425 break;
4426 #endif
4427 #ifdef INET6
4428 case AF_INET6:
4429 ip6->ip6_hlim = in6_selecthlim(NULL,
4430 ro->ro_rt ? ro->ro_rt->rt_ifp : NULL);
4431
4432 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4433 break;
4434 #endif
4435 default:
4436 error = EAFNOSUPPORT;
4437 break;
4438 }
4439 return (error);
4440 }
4441