tcp_input.c revision 1.276 1 /* $NetBSD: tcp_input.c,v 1.276 2008/01/14 04:19:10 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 * 3. All advertising materials mentioning features or use of this software
93 * must display the following acknowledgement:
94 * This product includes software developed by the NetBSD
95 * Foundation, Inc. and its contributors.
96 * 4. Neither the name of The NetBSD Foundation nor the names of its
97 * contributors may be used to endorse or promote products derived
98 * from this software without specific prior written permission.
99 *
100 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
101 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
102 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
103 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
104 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
105 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
106 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
107 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
108 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
109 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
110 * POSSIBILITY OF SUCH DAMAGE.
111 */
112
113 /*
114 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
115 * The Regents of the University of California. All rights reserved.
116 *
117 * Redistribution and use in source and binary forms, with or without
118 * modification, are permitted provided that the following conditions
119 * are met:
120 * 1. Redistributions of source code must retain the above copyright
121 * notice, this list of conditions and the following disclaimer.
122 * 2. Redistributions in binary form must reproduce the above copyright
123 * notice, this list of conditions and the following disclaimer in the
124 * documentation and/or other materials provided with the distribution.
125 * 3. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.276 2008/01/14 04:19:10 dyoung Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 #ifdef TCP_SIGNATURE
175 #include <sys/md5.h>
176 #endif
177 #include <sys/lwp.h> /* for lwp0 */
178
179 #include <net/if.h>
180 #include <net/route.h>
181 #include <net/if_types.h>
182
183 #include <netinet/in.h>
184 #include <netinet/in_systm.h>
185 #include <netinet/ip.h>
186 #include <netinet/in_pcb.h>
187 #include <netinet/in_var.h>
188 #include <netinet/ip_var.h>
189 #include <netinet/in_offload.h>
190
191 #ifdef INET6
192 #ifndef INET
193 #include <netinet/in.h>
194 #endif
195 #include <netinet/ip6.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_pcb.h>
198 #include <netinet6/ip6_var.h>
199 #include <netinet6/in6_var.h>
200 #include <netinet/icmp6.h>
201 #include <netinet6/nd6.h>
202 #ifdef TCP_SIGNATURE
203 #include <netinet6/scope6_var.h>
204 #endif
205 #endif
206
207 #ifndef INET6
208 /* always need ip6.h for IP6_EXTHDR_GET */
209 #include <netinet/ip6.h>
210 #endif
211
212 #include <netinet/tcp.h>
213 #include <netinet/tcp_fsm.h>
214 #include <netinet/tcp_seq.h>
215 #include <netinet/tcp_timer.h>
216 #include <netinet/tcp_var.h>
217 #include <netinet/tcpip.h>
218 #include <netinet/tcp_congctl.h>
219 #include <netinet/tcp_debug.h>
220
221 #include <machine/stdarg.h>
222
223 #ifdef IPSEC
224 #include <netinet6/ipsec.h>
225 #include <netkey/key.h>
226 #endif /*IPSEC*/
227 #ifdef INET6
228 #include "faith.h"
229 #if defined(NFAITH) && NFAITH > 0
230 #include <net/if_faith.h>
231 #endif
232 #endif /* IPSEC */
233
234 #ifdef FAST_IPSEC
235 #include <netipsec/ipsec.h>
236 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
237 #include <netipsec/key.h>
238 #ifdef INET6
239 #include <netipsec/ipsec6.h>
240 #endif
241 #endif /* FAST_IPSEC*/
242
243 int tcprexmtthresh = 3;
244 int tcp_log_refused;
245
246 int tcp_do_autorcvbuf = 0;
247 int tcp_autorcvbuf_inc = 16 * 1024;
248 int tcp_autorcvbuf_max = 256 * 1024;
249
250 static int tcp_rst_ppslim_count = 0;
251 static struct timeval tcp_rst_ppslim_last;
252 static int tcp_ackdrop_ppslim_count = 0;
253 static struct timeval tcp_ackdrop_ppslim_last;
254
255 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
256
257 /* for modulo comparisons of timestamps */
258 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
259 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
260
261 /*
262 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
263 */
264 #ifdef INET6
265 static inline void
266 nd6_hint(struct tcpcb *tp)
267 {
268 struct rtentry *rt;
269
270 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
271 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
272 nd6_nud_hint(rt, NULL, 0);
273 }
274 #else
275 static inline void
276 nd6_hint(struct tcpcb *tp)
277 {
278 }
279 #endif
280
281 /*
282 * Macro to compute ACK transmission behavior. Delay the ACK unless
283 * we have already delayed an ACK (must send an ACK every two segments).
284 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
285 * option is enabled.
286 */
287 #define TCP_SETUP_ACK(tp, th) \
288 do { \
289 if ((tp)->t_flags & TF_DELACK || \
290 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
291 tp->t_flags |= TF_ACKNOW; \
292 else \
293 TCP_SET_DELACK(tp); \
294 } while (/*CONSTCOND*/ 0)
295
296 #define ICMP_CHECK(tp, th, acked) \
297 do { \
298 /* \
299 * If we had a pending ICMP message that \
300 * refers to data that have just been \
301 * acknowledged, disregard the recorded ICMP \
302 * message. \
303 */ \
304 if (((tp)->t_flags & TF_PMTUD_PEND) && \
305 SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
306 (tp)->t_flags &= ~TF_PMTUD_PEND; \
307 \
308 /* \
309 * Keep track of the largest chunk of data \
310 * acknowledged since last PMTU update \
311 */ \
312 if ((tp)->t_pmtud_mss_acked < (acked)) \
313 (tp)->t_pmtud_mss_acked = (acked); \
314 } while (/*CONSTCOND*/ 0)
315
316 /*
317 * Convert TCP protocol fields to host order for easier processing.
318 */
319 #define TCP_FIELDS_TO_HOST(th) \
320 do { \
321 NTOHL((th)->th_seq); \
322 NTOHL((th)->th_ack); \
323 NTOHS((th)->th_win); \
324 NTOHS((th)->th_urp); \
325 } while (/*CONSTCOND*/ 0)
326
327 /*
328 * ... and reverse the above.
329 */
330 #define TCP_FIELDS_TO_NET(th) \
331 do { \
332 HTONL((th)->th_seq); \
333 HTONL((th)->th_ack); \
334 HTONS((th)->th_win); \
335 HTONS((th)->th_urp); \
336 } while (/*CONSTCOND*/ 0)
337
338 #ifdef TCP_CSUM_COUNTERS
339 #include <sys/device.h>
340
341 #if defined(INET)
342 extern struct evcnt tcp_hwcsum_ok;
343 extern struct evcnt tcp_hwcsum_bad;
344 extern struct evcnt tcp_hwcsum_data;
345 extern struct evcnt tcp_swcsum;
346 #endif /* defined(INET) */
347 #if defined(INET6)
348 extern struct evcnt tcp6_hwcsum_ok;
349 extern struct evcnt tcp6_hwcsum_bad;
350 extern struct evcnt tcp6_hwcsum_data;
351 extern struct evcnt tcp6_swcsum;
352 #endif /* defined(INET6) */
353
354 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
355
356 #else
357
358 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
359
360 #endif /* TCP_CSUM_COUNTERS */
361
362 #ifdef TCP_REASS_COUNTERS
363 #include <sys/device.h>
364
365 extern struct evcnt tcp_reass_;
366 extern struct evcnt tcp_reass_empty;
367 extern struct evcnt tcp_reass_iteration[8];
368 extern struct evcnt tcp_reass_prependfirst;
369 extern struct evcnt tcp_reass_prepend;
370 extern struct evcnt tcp_reass_insert;
371 extern struct evcnt tcp_reass_inserttail;
372 extern struct evcnt tcp_reass_append;
373 extern struct evcnt tcp_reass_appendtail;
374 extern struct evcnt tcp_reass_overlaptail;
375 extern struct evcnt tcp_reass_overlapfront;
376 extern struct evcnt tcp_reass_segdup;
377 extern struct evcnt tcp_reass_fragdup;
378
379 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
380
381 #else
382
383 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
384
385 #endif /* TCP_REASS_COUNTERS */
386
387 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
388 int *);
389 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
390 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
391
392 #ifdef INET
393 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
394 #endif
395 #ifdef INET6
396 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
397 #endif
398
399 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
400
401 #if defined(MBUFTRACE)
402 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
403 #endif /* defined(MBUFTRACE) */
404
405 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
406 NULL, IPL_VM);
407
408 struct ipqent *
409 tcpipqent_alloc()
410 {
411 struct ipqent *ipqe;
412 int s;
413
414 s = splvm();
415 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
416 splx(s);
417
418 return ipqe;
419 }
420
421 void
422 tcpipqent_free(struct ipqent *ipqe)
423 {
424 int s;
425
426 s = splvm();
427 pool_put(&tcpipqent_pool, ipqe);
428 splx(s);
429 }
430
431 static int
432 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
433 {
434 struct ipqent *p, *q, *nq, *tiqe = NULL;
435 struct socket *so = NULL;
436 int pkt_flags;
437 tcp_seq pkt_seq;
438 unsigned pkt_len;
439 u_long rcvpartdupbyte = 0;
440 u_long rcvoobyte;
441 #ifdef TCP_REASS_COUNTERS
442 u_int count = 0;
443 #endif
444
445 if (tp->t_inpcb)
446 so = tp->t_inpcb->inp_socket;
447 #ifdef INET6
448 else if (tp->t_in6pcb)
449 so = tp->t_in6pcb->in6p_socket;
450 #endif
451
452 TCP_REASS_LOCK_CHECK(tp);
453
454 /*
455 * Call with th==0 after become established to
456 * force pre-ESTABLISHED data up to user socket.
457 */
458 if (th == 0)
459 goto present;
460
461 m_claimm(m, &tcp_reass_mowner);
462
463 rcvoobyte = *tlen;
464 /*
465 * Copy these to local variables because the tcpiphdr
466 * gets munged while we are collapsing mbufs.
467 */
468 pkt_seq = th->th_seq;
469 pkt_len = *tlen;
470 pkt_flags = th->th_flags;
471
472 TCP_REASS_COUNTER_INCR(&tcp_reass_);
473
474 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
475 /*
476 * When we miss a packet, the vast majority of time we get
477 * packets that follow it in order. So optimize for that.
478 */
479 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
480 p->ipqe_len += pkt_len;
481 p->ipqe_flags |= pkt_flags;
482 m_cat(p->ipre_mlast, m);
483 TRAVERSE(p->ipre_mlast);
484 m = NULL;
485 tiqe = p;
486 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
487 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
488 goto skip_replacement;
489 }
490 /*
491 * While we're here, if the pkt is completely beyond
492 * anything we have, just insert it at the tail.
493 */
494 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
495 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
496 goto insert_it;
497 }
498 }
499
500 q = TAILQ_FIRST(&tp->segq);
501
502 if (q != NULL) {
503 /*
504 * If this segment immediately precedes the first out-of-order
505 * block, simply slap the segment in front of it and (mostly)
506 * skip the complicated logic.
507 */
508 if (pkt_seq + pkt_len == q->ipqe_seq) {
509 q->ipqe_seq = pkt_seq;
510 q->ipqe_len += pkt_len;
511 q->ipqe_flags |= pkt_flags;
512 m_cat(m, q->ipqe_m);
513 q->ipqe_m = m;
514 q->ipre_mlast = m; /* last mbuf may have changed */
515 TRAVERSE(q->ipre_mlast);
516 tiqe = q;
517 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
518 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
519 goto skip_replacement;
520 }
521 } else {
522 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
523 }
524
525 /*
526 * Find a segment which begins after this one does.
527 */
528 for (p = NULL; q != NULL; q = nq) {
529 nq = TAILQ_NEXT(q, ipqe_q);
530 #ifdef TCP_REASS_COUNTERS
531 count++;
532 #endif
533 /*
534 * If the received segment is just right after this
535 * fragment, merge the two together and then check
536 * for further overlaps.
537 */
538 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
539 #ifdef TCPREASS_DEBUG
540 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
541 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
542 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
543 #endif
544 pkt_len += q->ipqe_len;
545 pkt_flags |= q->ipqe_flags;
546 pkt_seq = q->ipqe_seq;
547 m_cat(q->ipre_mlast, m);
548 TRAVERSE(q->ipre_mlast);
549 m = q->ipqe_m;
550 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
551 goto free_ipqe;
552 }
553 /*
554 * If the received segment is completely past this
555 * fragment, we need to go the next fragment.
556 */
557 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
558 p = q;
559 continue;
560 }
561 /*
562 * If the fragment is past the received segment,
563 * it (or any following) can't be concatenated.
564 */
565 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
566 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
567 break;
568 }
569
570 /*
571 * We've received all the data in this segment before.
572 * mark it as a duplicate and return.
573 */
574 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
575 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
576 tcpstat.tcps_rcvduppack++;
577 tcpstat.tcps_rcvdupbyte += pkt_len;
578 tcp_new_dsack(tp, pkt_seq, pkt_len);
579 m_freem(m);
580 if (tiqe != NULL) {
581 tcpipqent_free(tiqe);
582 }
583 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
584 return (0);
585 }
586 /*
587 * Received segment completely overlaps this fragment
588 * so we drop the fragment (this keeps the temporal
589 * ordering of segments correct).
590 */
591 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
592 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
593 rcvpartdupbyte += q->ipqe_len;
594 m_freem(q->ipqe_m);
595 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
596 goto free_ipqe;
597 }
598 /*
599 * RX'ed segment extends past the end of the
600 * fragment. Drop the overlapping bytes. Then
601 * merge the fragment and segment then treat as
602 * a longer received packet.
603 */
604 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
605 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
606 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
607 #ifdef TCPREASS_DEBUG
608 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
609 tp, overlap,
610 pkt_seq, pkt_seq + pkt_len, pkt_len);
611 #endif
612 m_adj(m, overlap);
613 rcvpartdupbyte += overlap;
614 m_cat(q->ipre_mlast, m);
615 TRAVERSE(q->ipre_mlast);
616 m = q->ipqe_m;
617 pkt_seq = q->ipqe_seq;
618 pkt_len += q->ipqe_len - overlap;
619 rcvoobyte -= overlap;
620 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
621 goto free_ipqe;
622 }
623 /*
624 * RX'ed segment extends past the front of the
625 * fragment. Drop the overlapping bytes on the
626 * received packet. The packet will then be
627 * contatentated with this fragment a bit later.
628 */
629 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
630 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
631 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
632 #ifdef TCPREASS_DEBUG
633 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
634 tp, overlap,
635 pkt_seq, pkt_seq + pkt_len, pkt_len);
636 #endif
637 m_adj(m, -overlap);
638 pkt_len -= overlap;
639 rcvpartdupbyte += overlap;
640 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
641 rcvoobyte -= overlap;
642 }
643 /*
644 * If the received segment immediates precedes this
645 * fragment then tack the fragment onto this segment
646 * and reinsert the data.
647 */
648 if (q->ipqe_seq == pkt_seq + pkt_len) {
649 #ifdef TCPREASS_DEBUG
650 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
651 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
652 pkt_seq, pkt_seq + pkt_len, pkt_len);
653 #endif
654 pkt_len += q->ipqe_len;
655 pkt_flags |= q->ipqe_flags;
656 m_cat(m, q->ipqe_m);
657 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
658 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
659 tp->t_segqlen--;
660 KASSERT(tp->t_segqlen >= 0);
661 KASSERT(tp->t_segqlen != 0 ||
662 (TAILQ_EMPTY(&tp->segq) &&
663 TAILQ_EMPTY(&tp->timeq)));
664 if (tiqe == NULL) {
665 tiqe = q;
666 } else {
667 tcpipqent_free(q);
668 }
669 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
670 break;
671 }
672 /*
673 * If the fragment is before the segment, remember it.
674 * When this loop is terminated, p will contain the
675 * pointer to fragment that is right before the received
676 * segment.
677 */
678 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
679 p = q;
680
681 continue;
682
683 /*
684 * This is a common operation. It also will allow
685 * to save doing a malloc/free in most instances.
686 */
687 free_ipqe:
688 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
689 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
690 tp->t_segqlen--;
691 KASSERT(tp->t_segqlen >= 0);
692 KASSERT(tp->t_segqlen != 0 ||
693 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
694 if (tiqe == NULL) {
695 tiqe = q;
696 } else {
697 tcpipqent_free(q);
698 }
699 }
700
701 #ifdef TCP_REASS_COUNTERS
702 if (count > 7)
703 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
704 else if (count > 0)
705 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
706 #endif
707
708 insert_it:
709
710 /*
711 * Allocate a new queue entry since the received segment did not
712 * collapse onto any other out-of-order block; thus we are allocating
713 * a new block. If it had collapsed, tiqe would not be NULL and
714 * we would be reusing it.
715 * XXX If we can't, just drop the packet. XXX
716 */
717 if (tiqe == NULL) {
718 tiqe = tcpipqent_alloc();
719 if (tiqe == NULL) {
720 tcpstat.tcps_rcvmemdrop++;
721 m_freem(m);
722 return (0);
723 }
724 }
725
726 /*
727 * Update the counters.
728 */
729 tcpstat.tcps_rcvoopack++;
730 tcpstat.tcps_rcvoobyte += rcvoobyte;
731 if (rcvpartdupbyte) {
732 tcpstat.tcps_rcvpartduppack++;
733 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
734 }
735
736 /*
737 * Insert the new fragment queue entry into both queues.
738 */
739 tiqe->ipqe_m = m;
740 tiqe->ipre_mlast = m;
741 tiqe->ipqe_seq = pkt_seq;
742 tiqe->ipqe_len = pkt_len;
743 tiqe->ipqe_flags = pkt_flags;
744 if (p == NULL) {
745 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
746 #ifdef TCPREASS_DEBUG
747 if (tiqe->ipqe_seq != tp->rcv_nxt)
748 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
749 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
750 #endif
751 } else {
752 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
753 #ifdef TCPREASS_DEBUG
754 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
755 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
756 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
757 #endif
758 }
759 tp->t_segqlen++;
760
761 skip_replacement:
762
763 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
764
765 present:
766 /*
767 * Present data to user, advancing rcv_nxt through
768 * completed sequence space.
769 */
770 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
771 return (0);
772 q = TAILQ_FIRST(&tp->segq);
773 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
774 return (0);
775 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
776 return (0);
777
778 tp->rcv_nxt += q->ipqe_len;
779 pkt_flags = q->ipqe_flags & TH_FIN;
780 nd6_hint(tp);
781
782 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
783 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
784 tp->t_segqlen--;
785 KASSERT(tp->t_segqlen >= 0);
786 KASSERT(tp->t_segqlen != 0 ||
787 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
788 if (so->so_state & SS_CANTRCVMORE)
789 m_freem(q->ipqe_m);
790 else
791 sbappendstream(&so->so_rcv, q->ipqe_m);
792 tcpipqent_free(q);
793 sorwakeup(so);
794 return (pkt_flags);
795 }
796
797 #ifdef INET6
798 int
799 tcp6_input(struct mbuf **mp, int *offp, int proto)
800 {
801 struct mbuf *m = *mp;
802
803 /*
804 * draft-itojun-ipv6-tcp-to-anycast
805 * better place to put this in?
806 */
807 if (m->m_flags & M_ANYCAST6) {
808 struct ip6_hdr *ip6;
809 if (m->m_len < sizeof(struct ip6_hdr)) {
810 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
811 tcpstat.tcps_rcvshort++;
812 return IPPROTO_DONE;
813 }
814 }
815 ip6 = mtod(m, struct ip6_hdr *);
816 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
817 (char *)&ip6->ip6_dst - (char *)ip6);
818 return IPPROTO_DONE;
819 }
820
821 tcp_input(m, *offp, proto);
822 return IPPROTO_DONE;
823 }
824 #endif
825
826 #ifdef INET
827 static void
828 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
829 {
830 char src[4*sizeof "123"];
831 char dst[4*sizeof "123"];
832
833 if (ip) {
834 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
835 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
836 }
837 else {
838 strlcpy(src, "(unknown)", sizeof(src));
839 strlcpy(dst, "(unknown)", sizeof(dst));
840 }
841 log(LOG_INFO,
842 "Connection attempt to TCP %s:%d from %s:%d\n",
843 dst, ntohs(th->th_dport),
844 src, ntohs(th->th_sport));
845 }
846 #endif
847
848 #ifdef INET6
849 static void
850 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
851 {
852 char src[INET6_ADDRSTRLEN];
853 char dst[INET6_ADDRSTRLEN];
854
855 if (ip6) {
856 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
857 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
858 }
859 else {
860 strlcpy(src, "(unknown v6)", sizeof(src));
861 strlcpy(dst, "(unknown v6)", sizeof(dst));
862 }
863 log(LOG_INFO,
864 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
865 dst, ntohs(th->th_dport),
866 src, ntohs(th->th_sport));
867 }
868 #endif
869
870 /*
871 * Checksum extended TCP header and data.
872 */
873 int
874 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
875 int toff, int off, int tlen)
876 {
877
878 /*
879 * XXX it's better to record and check if this mbuf is
880 * already checked.
881 */
882
883 switch (af) {
884 #ifdef INET
885 case AF_INET:
886 switch (m->m_pkthdr.csum_flags &
887 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
888 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
889 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
890 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
891 goto badcsum;
892
893 case M_CSUM_TCPv4|M_CSUM_DATA: {
894 u_int32_t hw_csum = m->m_pkthdr.csum_data;
895
896 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
897 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
898 const struct ip *ip =
899 mtod(m, const struct ip *);
900
901 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
902 ip->ip_dst.s_addr,
903 htons(hw_csum + tlen + off + IPPROTO_TCP));
904 }
905 if ((hw_csum ^ 0xffff) != 0)
906 goto badcsum;
907 break;
908 }
909
910 case M_CSUM_TCPv4:
911 /* Checksum was okay. */
912 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
913 break;
914
915 default:
916 /*
917 * Must compute it ourselves. Maybe skip checksum
918 * on loopback interfaces.
919 */
920 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
921 IFF_LOOPBACK) ||
922 tcp_do_loopback_cksum)) {
923 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
924 if (in4_cksum(m, IPPROTO_TCP, toff,
925 tlen + off) != 0)
926 goto badcsum;
927 }
928 break;
929 }
930 break;
931 #endif /* INET4 */
932
933 #ifdef INET6
934 case AF_INET6:
935 switch (m->m_pkthdr.csum_flags &
936 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
937 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
938 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
939 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
940 goto badcsum;
941
942 #if 0 /* notyet */
943 case M_CSUM_TCPv6|M_CSUM_DATA:
944 #endif
945
946 case M_CSUM_TCPv6:
947 /* Checksum was okay. */
948 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
949 break;
950
951 default:
952 /*
953 * Must compute it ourselves. Maybe skip checksum
954 * on loopback interfaces.
955 */
956 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
957 tcp_do_loopback_cksum)) {
958 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
959 if (in6_cksum(m, IPPROTO_TCP, toff,
960 tlen + off) != 0)
961 goto badcsum;
962 }
963 }
964 break;
965 #endif /* INET6 */
966 }
967
968 return 0;
969
970 badcsum:
971 tcpstat.tcps_rcvbadsum++;
972 return -1;
973 }
974
975 /*
976 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
977 */
978 void
979 tcp_input(struct mbuf *m, ...)
980 {
981 struct tcphdr *th;
982 struct ip *ip;
983 struct inpcb *inp;
984 #ifdef INET6
985 struct ip6_hdr *ip6;
986 struct in6pcb *in6p;
987 #endif
988 u_int8_t *optp = NULL;
989 int optlen = 0;
990 int len, tlen, toff, hdroptlen = 0;
991 struct tcpcb *tp = 0;
992 int tiflags;
993 struct socket *so = NULL;
994 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
995 #ifdef TCP_DEBUG
996 short ostate = 0;
997 #endif
998 u_long tiwin;
999 struct tcp_opt_info opti;
1000 int off, iphlen;
1001 va_list ap;
1002 int af; /* af on the wire */
1003 struct mbuf *tcp_saveti = NULL;
1004 uint32_t ts_rtt;
1005 uint8_t iptos;
1006
1007 MCLAIM(m, &tcp_rx_mowner);
1008 va_start(ap, m);
1009 toff = va_arg(ap, int);
1010 (void)va_arg(ap, int); /* ignore value, advance ap */
1011 va_end(ap);
1012
1013 tcpstat.tcps_rcvtotal++;
1014
1015 bzero(&opti, sizeof(opti));
1016 opti.ts_present = 0;
1017 opti.maxseg = 0;
1018
1019 /*
1020 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1021 *
1022 * TCP is, by definition, unicast, so we reject all
1023 * multicast outright.
1024 *
1025 * Note, there are additional src/dst address checks in
1026 * the AF-specific code below.
1027 */
1028 if (m->m_flags & (M_BCAST|M_MCAST)) {
1029 /* XXX stat */
1030 goto drop;
1031 }
1032 #ifdef INET6
1033 if (m->m_flags & M_ANYCAST6) {
1034 /* XXX stat */
1035 goto drop;
1036 }
1037 #endif
1038
1039 /*
1040 * Get IP and TCP header.
1041 * Note: IP leaves IP header in first mbuf.
1042 */
1043 ip = mtod(m, struct ip *);
1044 #ifdef INET6
1045 ip6 = NULL;
1046 #endif
1047 switch (ip->ip_v) {
1048 #ifdef INET
1049 case 4:
1050 af = AF_INET;
1051 iphlen = sizeof(struct ip);
1052 ip = mtod(m, struct ip *);
1053 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1054 sizeof(struct tcphdr));
1055 if (th == NULL) {
1056 tcpstat.tcps_rcvshort++;
1057 return;
1058 }
1059 /* We do the checksum after PCB lookup... */
1060 len = ntohs(ip->ip_len);
1061 tlen = len - toff;
1062 iptos = ip->ip_tos;
1063 break;
1064 #endif
1065 #ifdef INET6
1066 case 6:
1067 ip = NULL;
1068 iphlen = sizeof(struct ip6_hdr);
1069 af = AF_INET6;
1070 ip6 = mtod(m, struct ip6_hdr *);
1071 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1072 sizeof(struct tcphdr));
1073 if (th == NULL) {
1074 tcpstat.tcps_rcvshort++;
1075 return;
1076 }
1077
1078 /* Be proactive about malicious use of IPv4 mapped address */
1079 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1080 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1081 /* XXX stat */
1082 goto drop;
1083 }
1084
1085 /*
1086 * Be proactive about unspecified IPv6 address in source.
1087 * As we use all-zero to indicate unbounded/unconnected pcb,
1088 * unspecified IPv6 address can be used to confuse us.
1089 *
1090 * Note that packets with unspecified IPv6 destination is
1091 * already dropped in ip6_input.
1092 */
1093 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1094 /* XXX stat */
1095 goto drop;
1096 }
1097
1098 /*
1099 * Make sure destination address is not multicast.
1100 * Source address checked in ip6_input().
1101 */
1102 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1103 /* XXX stat */
1104 goto drop;
1105 }
1106
1107 /* We do the checksum after PCB lookup... */
1108 len = m->m_pkthdr.len;
1109 tlen = len - toff;
1110 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1111 break;
1112 #endif
1113 default:
1114 m_freem(m);
1115 return;
1116 }
1117
1118 KASSERT(TCP_HDR_ALIGNED_P(th));
1119
1120 /*
1121 * Check that TCP offset makes sense,
1122 * pull out TCP options and adjust length. XXX
1123 */
1124 off = th->th_off << 2;
1125 if (off < sizeof (struct tcphdr) || off > tlen) {
1126 tcpstat.tcps_rcvbadoff++;
1127 goto drop;
1128 }
1129 tlen -= off;
1130
1131 /*
1132 * tcp_input() has been modified to use tlen to mean the TCP data
1133 * length throughout the function. Other functions can use
1134 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1135 * rja
1136 */
1137
1138 if (off > sizeof (struct tcphdr)) {
1139 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1140 if (th == NULL) {
1141 tcpstat.tcps_rcvshort++;
1142 return;
1143 }
1144 /*
1145 * NOTE: ip/ip6 will not be affected by m_pulldown()
1146 * (as they're before toff) and we don't need to update those.
1147 */
1148 KASSERT(TCP_HDR_ALIGNED_P(th));
1149 optlen = off - sizeof (struct tcphdr);
1150 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1151 /*
1152 * Do quick retrieval of timestamp options ("options
1153 * prediction?"). If timestamp is the only option and it's
1154 * formatted as recommended in RFC 1323 appendix A, we
1155 * quickly get the values now and not bother calling
1156 * tcp_dooptions(), etc.
1157 */
1158 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1159 (optlen > TCPOLEN_TSTAMP_APPA &&
1160 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1161 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1162 (th->th_flags & TH_SYN) == 0) {
1163 opti.ts_present = 1;
1164 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1165 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1166 optp = NULL; /* we've parsed the options */
1167 }
1168 }
1169 tiflags = th->th_flags;
1170
1171 /*
1172 * Locate pcb for segment.
1173 */
1174 findpcb:
1175 inp = NULL;
1176 #ifdef INET6
1177 in6p = NULL;
1178 #endif
1179 switch (af) {
1180 #ifdef INET
1181 case AF_INET:
1182 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1183 ip->ip_dst, th->th_dport);
1184 if (inp == 0) {
1185 ++tcpstat.tcps_pcbhashmiss;
1186 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1187 }
1188 #ifdef INET6
1189 if (inp == 0) {
1190 struct in6_addr s, d;
1191
1192 /* mapped addr case */
1193 bzero(&s, sizeof(s));
1194 s.s6_addr16[5] = htons(0xffff);
1195 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1196 bzero(&d, sizeof(d));
1197 d.s6_addr16[5] = htons(0xffff);
1198 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1199 in6p = in6_pcblookup_connect(&tcbtable, &s,
1200 th->th_sport, &d, th->th_dport, 0);
1201 if (in6p == 0) {
1202 ++tcpstat.tcps_pcbhashmiss;
1203 in6p = in6_pcblookup_bind(&tcbtable, &d,
1204 th->th_dport, 0);
1205 }
1206 }
1207 #endif
1208 #ifndef INET6
1209 if (inp == 0)
1210 #else
1211 if (inp == 0 && in6p == 0)
1212 #endif
1213 {
1214 ++tcpstat.tcps_noport;
1215 if (tcp_log_refused &&
1216 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1217 tcp4_log_refused(ip, th);
1218 }
1219 TCP_FIELDS_TO_HOST(th);
1220 goto dropwithreset_ratelim;
1221 }
1222 #if defined(IPSEC) || defined(FAST_IPSEC)
1223 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1224 ipsec4_in_reject(m, inp)) {
1225 ipsecstat.in_polvio++;
1226 goto drop;
1227 }
1228 #ifdef INET6
1229 else if (in6p &&
1230 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1231 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1232 ipsecstat.in_polvio++;
1233 goto drop;
1234 }
1235 #endif
1236 #endif /*IPSEC*/
1237 break;
1238 #endif /*INET*/
1239 #ifdef INET6
1240 case AF_INET6:
1241 {
1242 int faith;
1243
1244 #if defined(NFAITH) && NFAITH > 0
1245 faith = faithprefix(&ip6->ip6_dst);
1246 #else
1247 faith = 0;
1248 #endif
1249 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1250 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1251 if (in6p == NULL) {
1252 ++tcpstat.tcps_pcbhashmiss;
1253 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1254 th->th_dport, faith);
1255 }
1256 if (in6p == NULL) {
1257 ++tcpstat.tcps_noport;
1258 if (tcp_log_refused &&
1259 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1260 tcp6_log_refused(ip6, th);
1261 }
1262 TCP_FIELDS_TO_HOST(th);
1263 goto dropwithreset_ratelim;
1264 }
1265 #if defined(IPSEC) || defined(FAST_IPSEC)
1266 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1267 ipsec6_in_reject(m, in6p)) {
1268 ipsec6stat.in_polvio++;
1269 goto drop;
1270 }
1271 #endif /*IPSEC*/
1272 break;
1273 }
1274 #endif
1275 }
1276
1277 /*
1278 * If the state is CLOSED (i.e., TCB does not exist) then
1279 * all data in the incoming segment is discarded.
1280 * If the TCB exists but is in CLOSED state, it is embryonic,
1281 * but should either do a listen or a connect soon.
1282 */
1283 tp = NULL;
1284 so = NULL;
1285 if (inp) {
1286 tp = intotcpcb(inp);
1287 so = inp->inp_socket;
1288 }
1289 #ifdef INET6
1290 else if (in6p) {
1291 tp = in6totcpcb(in6p);
1292 so = in6p->in6p_socket;
1293 }
1294 #endif
1295 if (tp == 0) {
1296 TCP_FIELDS_TO_HOST(th);
1297 goto dropwithreset_ratelim;
1298 }
1299 if (tp->t_state == TCPS_CLOSED)
1300 goto drop;
1301
1302 /*
1303 * Checksum extended TCP header and data.
1304 */
1305 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1306 goto badcsum;
1307
1308 TCP_FIELDS_TO_HOST(th);
1309
1310 /* Unscale the window into a 32-bit value. */
1311 if ((tiflags & TH_SYN) == 0)
1312 tiwin = th->th_win << tp->snd_scale;
1313 else
1314 tiwin = th->th_win;
1315
1316 #ifdef INET6
1317 /* save packet options if user wanted */
1318 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1319 if (in6p->in6p_options) {
1320 m_freem(in6p->in6p_options);
1321 in6p->in6p_options = 0;
1322 }
1323 KASSERT(ip6 != NULL);
1324 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1325 }
1326 #endif
1327
1328 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1329 union syn_cache_sa src;
1330 union syn_cache_sa dst;
1331
1332 bzero(&src, sizeof(src));
1333 bzero(&dst, sizeof(dst));
1334 switch (af) {
1335 #ifdef INET
1336 case AF_INET:
1337 src.sin.sin_len = sizeof(struct sockaddr_in);
1338 src.sin.sin_family = AF_INET;
1339 src.sin.sin_addr = ip->ip_src;
1340 src.sin.sin_port = th->th_sport;
1341
1342 dst.sin.sin_len = sizeof(struct sockaddr_in);
1343 dst.sin.sin_family = AF_INET;
1344 dst.sin.sin_addr = ip->ip_dst;
1345 dst.sin.sin_port = th->th_dport;
1346 break;
1347 #endif
1348 #ifdef INET6
1349 case AF_INET6:
1350 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1351 src.sin6.sin6_family = AF_INET6;
1352 src.sin6.sin6_addr = ip6->ip6_src;
1353 src.sin6.sin6_port = th->th_sport;
1354
1355 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1356 dst.sin6.sin6_family = AF_INET6;
1357 dst.sin6.sin6_addr = ip6->ip6_dst;
1358 dst.sin6.sin6_port = th->th_dport;
1359 break;
1360 #endif /* INET6 */
1361 default:
1362 goto badsyn; /*sanity*/
1363 }
1364
1365 if (so->so_options & SO_DEBUG) {
1366 #ifdef TCP_DEBUG
1367 ostate = tp->t_state;
1368 #endif
1369
1370 tcp_saveti = NULL;
1371 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1372 goto nosave;
1373
1374 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1375 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1376 if (!tcp_saveti)
1377 goto nosave;
1378 } else {
1379 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1380 if (!tcp_saveti)
1381 goto nosave;
1382 MCLAIM(m, &tcp_mowner);
1383 tcp_saveti->m_len = iphlen;
1384 m_copydata(m, 0, iphlen,
1385 mtod(tcp_saveti, void *));
1386 }
1387
1388 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1389 m_freem(tcp_saveti);
1390 tcp_saveti = NULL;
1391 } else {
1392 tcp_saveti->m_len += sizeof(struct tcphdr);
1393 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1394 sizeof(struct tcphdr));
1395 }
1396 nosave:;
1397 }
1398 if (so->so_options & SO_ACCEPTCONN) {
1399 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1400 if (tiflags & TH_RST) {
1401 syn_cache_reset(&src.sa, &dst.sa, th);
1402 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1403 (TH_ACK|TH_SYN)) {
1404 /*
1405 * Received a SYN,ACK. This should
1406 * never happen while we are in
1407 * LISTEN. Send an RST.
1408 */
1409 goto badsyn;
1410 } else if (tiflags & TH_ACK) {
1411 so = syn_cache_get(&src.sa, &dst.sa,
1412 th, toff, tlen, so, m);
1413 if (so == NULL) {
1414 /*
1415 * We don't have a SYN for
1416 * this ACK; send an RST.
1417 */
1418 goto badsyn;
1419 } else if (so ==
1420 (struct socket *)(-1)) {
1421 /*
1422 * We were unable to create
1423 * the connection. If the
1424 * 3-way handshake was
1425 * completed, and RST has
1426 * been sent to the peer.
1427 * Since the mbuf might be
1428 * in use for the reply,
1429 * do not free it.
1430 */
1431 m = NULL;
1432 } else {
1433 /*
1434 * We have created a
1435 * full-blown connection.
1436 */
1437 tp = NULL;
1438 inp = NULL;
1439 #ifdef INET6
1440 in6p = NULL;
1441 #endif
1442 switch (so->so_proto->pr_domain->dom_family) {
1443 #ifdef INET
1444 case AF_INET:
1445 inp = sotoinpcb(so);
1446 tp = intotcpcb(inp);
1447 break;
1448 #endif
1449 #ifdef INET6
1450 case AF_INET6:
1451 in6p = sotoin6pcb(so);
1452 tp = in6totcpcb(in6p);
1453 break;
1454 #endif
1455 }
1456 if (tp == NULL)
1457 goto badsyn; /*XXX*/
1458 tiwin <<= tp->snd_scale;
1459 goto after_listen;
1460 }
1461 } else {
1462 /*
1463 * None of RST, SYN or ACK was set.
1464 * This is an invalid packet for a
1465 * TCB in LISTEN state. Send a RST.
1466 */
1467 goto badsyn;
1468 }
1469 } else {
1470 /*
1471 * Received a SYN.
1472 *
1473 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1474 */
1475 if (m->m_flags & (M_BCAST|M_MCAST))
1476 goto drop;
1477
1478 switch (af) {
1479 #ifdef INET6
1480 case AF_INET6:
1481 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1482 goto drop;
1483 break;
1484 #endif /* INET6 */
1485 case AF_INET:
1486 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1487 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1488 goto drop;
1489 break;
1490 }
1491
1492 #ifdef INET6
1493 /*
1494 * If deprecated address is forbidden, we do
1495 * not accept SYN to deprecated interface
1496 * address to prevent any new inbound
1497 * connection from getting established.
1498 * When we do not accept SYN, we send a TCP
1499 * RST, with deprecated source address (instead
1500 * of dropping it). We compromise it as it is
1501 * much better for peer to send a RST, and
1502 * RST will be the final packet for the
1503 * exchange.
1504 *
1505 * If we do not forbid deprecated addresses, we
1506 * accept the SYN packet. RFC2462 does not
1507 * suggest dropping SYN in this case.
1508 * If we decipher RFC2462 5.5.4, it says like
1509 * this:
1510 * 1. use of deprecated addr with existing
1511 * communication is okay - "SHOULD continue
1512 * to be used"
1513 * 2. use of it with new communication:
1514 * (2a) "SHOULD NOT be used if alternate
1515 * address with sufficient scope is
1516 * available"
1517 * (2b) nothing mentioned otherwise.
1518 * Here we fall into (2b) case as we have no
1519 * choice in our source address selection - we
1520 * must obey the peer.
1521 *
1522 * The wording in RFC2462 is confusing, and
1523 * there are multiple description text for
1524 * deprecated address handling - worse, they
1525 * are not exactly the same. I believe 5.5.4
1526 * is the best one, so we follow 5.5.4.
1527 */
1528 if (af == AF_INET6 && !ip6_use_deprecated) {
1529 struct in6_ifaddr *ia6;
1530 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1531 &ip6->ip6_dst)) &&
1532 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1533 tp = NULL;
1534 goto dropwithreset;
1535 }
1536 }
1537 #endif
1538
1539 #if defined(IPSEC) || defined(FAST_IPSEC)
1540 switch (af) {
1541 #ifdef INET
1542 case AF_INET:
1543 if (ipsec4_in_reject_so(m, so)) {
1544 ipsecstat.in_polvio++;
1545 tp = NULL;
1546 goto dropwithreset;
1547 }
1548 break;
1549 #endif
1550 #ifdef INET6
1551 case AF_INET6:
1552 if (ipsec6_in_reject_so(m, so)) {
1553 ipsec6stat.in_polvio++;
1554 tp = NULL;
1555 goto dropwithreset;
1556 }
1557 break;
1558 #endif /*INET6*/
1559 }
1560 #endif /*IPSEC*/
1561
1562 /*
1563 * LISTEN socket received a SYN
1564 * from itself? This can't possibly
1565 * be valid; drop the packet.
1566 */
1567 if (th->th_sport == th->th_dport) {
1568 int i;
1569
1570 switch (af) {
1571 #ifdef INET
1572 case AF_INET:
1573 i = in_hosteq(ip->ip_src, ip->ip_dst);
1574 break;
1575 #endif
1576 #ifdef INET6
1577 case AF_INET6:
1578 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1579 break;
1580 #endif
1581 default:
1582 i = 1;
1583 }
1584 if (i) {
1585 tcpstat.tcps_badsyn++;
1586 goto drop;
1587 }
1588 }
1589
1590 /*
1591 * SYN looks ok; create compressed TCP
1592 * state for it.
1593 */
1594 if (so->so_qlen <= so->so_qlimit &&
1595 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1596 so, m, optp, optlen, &opti))
1597 m = NULL;
1598 }
1599 goto drop;
1600 }
1601 }
1602
1603 after_listen:
1604 #ifdef DIAGNOSTIC
1605 /*
1606 * Should not happen now that all embryonic connections
1607 * are handled with compressed state.
1608 */
1609 if (tp->t_state == TCPS_LISTEN)
1610 panic("tcp_input: TCPS_LISTEN");
1611 #endif
1612
1613 /*
1614 * Segment received on connection.
1615 * Reset idle time and keep-alive timer.
1616 */
1617 tp->t_rcvtime = tcp_now;
1618 if (TCPS_HAVEESTABLISHED(tp->t_state))
1619 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1620
1621 /*
1622 * Process options.
1623 */
1624 #ifdef TCP_SIGNATURE
1625 if (optp || (tp->t_flags & TF_SIGNATURE))
1626 #else
1627 if (optp)
1628 #endif
1629 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1630 goto drop;
1631
1632 if (TCP_SACK_ENABLED(tp)) {
1633 tcp_del_sackholes(tp, th);
1634 }
1635
1636 if (TCP_ECN_ALLOWED(tp)) {
1637 switch (iptos & IPTOS_ECN_MASK) {
1638 case IPTOS_ECN_CE:
1639 tp->t_flags |= TF_ECN_SND_ECE;
1640 tcpstat.tcps_ecn_ce++;
1641 break;
1642 case IPTOS_ECN_ECT0:
1643 tcpstat.tcps_ecn_ect++;
1644 break;
1645 case IPTOS_ECN_ECT1:
1646 /* XXX: ignore for now -- rpaulo */
1647 break;
1648 }
1649
1650 if (tiflags & TH_CWR)
1651 tp->t_flags &= ~TF_ECN_SND_ECE;
1652
1653 /*
1654 * Congestion experienced.
1655 * Ignore if we are already trying to recover.
1656 */
1657 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1658 tp->t_congctl->cong_exp(tp);
1659 }
1660
1661 if (opti.ts_present && opti.ts_ecr) {
1662 /*
1663 * Calculate the RTT from the returned time stamp and the
1664 * connection's time base. If the time stamp is later than
1665 * the current time, or is extremely old, fall back to non-1323
1666 * RTT calculation. Since ts_ecr is unsigned, we can test both
1667 * at the same time.
1668 */
1669 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1670 if (ts_rtt > TCP_PAWS_IDLE)
1671 ts_rtt = 0;
1672 } else {
1673 ts_rtt = 0;
1674 }
1675
1676 /*
1677 * Header prediction: check for the two common cases
1678 * of a uni-directional data xfer. If the packet has
1679 * no control flags, is in-sequence, the window didn't
1680 * change and we're not retransmitting, it's a
1681 * candidate. If the length is zero and the ack moved
1682 * forward, we're the sender side of the xfer. Just
1683 * free the data acked & wake any higher level process
1684 * that was blocked waiting for space. If the length
1685 * is non-zero and the ack didn't move, we're the
1686 * receiver side. If we're getting packets in-order
1687 * (the reassembly queue is empty), add the data to
1688 * the socket buffer and note that we need a delayed ack.
1689 */
1690 if (tp->t_state == TCPS_ESTABLISHED &&
1691 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1692 == TH_ACK &&
1693 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1694 th->th_seq == tp->rcv_nxt &&
1695 tiwin && tiwin == tp->snd_wnd &&
1696 tp->snd_nxt == tp->snd_max) {
1697
1698 /*
1699 * If last ACK falls within this segment's sequence numbers,
1700 * record the timestamp.
1701 * NOTE:
1702 * 1) That the test incorporates suggestions from the latest
1703 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1704 * 2) That updating only on newer timestamps interferes with
1705 * our earlier PAWS tests, so this check should be solely
1706 * predicated on the sequence space of this segment.
1707 * 3) That we modify the segment boundary check to be
1708 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
1709 * instead of RFC1323's
1710 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
1711 * This modified check allows us to overcome RFC1323's
1712 * limitations as described in Stevens TCP/IP Illustrated
1713 * Vol. 2 p.869. In such cases, we can still calculate the
1714 * RTT correctly when RCV.NXT == Last.ACK.Sent.
1715 */
1716 if (opti.ts_present &&
1717 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
1718 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
1719 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
1720 tp->ts_recent_age = tcp_now;
1721 tp->ts_recent = opti.ts_val;
1722 }
1723
1724 if (tlen == 0) {
1725 /* Ack prediction. */
1726 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1727 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1728 tp->snd_cwnd >= tp->snd_wnd &&
1729 tp->t_partialacks < 0) {
1730 /*
1731 * this is a pure ack for outstanding data.
1732 */
1733 ++tcpstat.tcps_predack;
1734 if (ts_rtt)
1735 tcp_xmit_timer(tp, ts_rtt);
1736 else if (tp->t_rtttime &&
1737 SEQ_GT(th->th_ack, tp->t_rtseq))
1738 tcp_xmit_timer(tp,
1739 tcp_now - tp->t_rtttime);
1740 acked = th->th_ack - tp->snd_una;
1741 tcpstat.tcps_rcvackpack++;
1742 tcpstat.tcps_rcvackbyte += acked;
1743 nd6_hint(tp);
1744
1745 if (acked > (tp->t_lastoff - tp->t_inoff))
1746 tp->t_lastm = NULL;
1747 sbdrop(&so->so_snd, acked);
1748 tp->t_lastoff -= acked;
1749
1750 ICMP_CHECK(tp, th, acked);
1751
1752 tp->snd_una = th->th_ack;
1753 tp->snd_fack = tp->snd_una;
1754 if (SEQ_LT(tp->snd_high, tp->snd_una))
1755 tp->snd_high = tp->snd_una;
1756 m_freem(m);
1757
1758 /*
1759 * If all outstanding data are acked, stop
1760 * retransmit timer, otherwise restart timer
1761 * using current (possibly backed-off) value.
1762 * If process is waiting for space,
1763 * wakeup/selwakeup/signal. If data
1764 * are ready to send, let tcp_output
1765 * decide between more output or persist.
1766 */
1767 if (tp->snd_una == tp->snd_max)
1768 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1769 else if (TCP_TIMER_ISARMED(tp,
1770 TCPT_PERSIST) == 0)
1771 TCP_TIMER_ARM(tp, TCPT_REXMT,
1772 tp->t_rxtcur);
1773
1774 sowwakeup(so);
1775 if (so->so_snd.sb_cc)
1776 (void) tcp_output(tp);
1777 if (tcp_saveti)
1778 m_freem(tcp_saveti);
1779 return;
1780 }
1781 } else if (th->th_ack == tp->snd_una &&
1782 TAILQ_FIRST(&tp->segq) == NULL &&
1783 tlen <= sbspace(&so->so_rcv)) {
1784 int newsize = 0; /* automatic sockbuf scaling */
1785
1786 /*
1787 * this is a pure, in-sequence data packet
1788 * with nothing on the reassembly queue and
1789 * we have enough buffer space to take it.
1790 */
1791 ++tcpstat.tcps_preddat;
1792 tp->rcv_nxt += tlen;
1793 tcpstat.tcps_rcvpack++;
1794 tcpstat.tcps_rcvbyte += tlen;
1795 nd6_hint(tp);
1796
1797 /*
1798 * Automatic sizing enables the performance of large buffers
1799 * and most of the efficiency of small ones by only allocating
1800 * space when it is needed.
1801 *
1802 * On the receive side the socket buffer memory is only rarely
1803 * used to any significant extent. This allows us to be much
1804 * more aggressive in scaling the receive socket buffer. For
1805 * the case that the buffer space is actually used to a large
1806 * extent and we run out of kernel memory we can simply drop
1807 * the new segments; TCP on the sender will just retransmit it
1808 * later. Setting the buffer size too big may only consume too
1809 * much kernel memory if the application doesn't read() from
1810 * the socket or packet loss or reordering makes use of the
1811 * reassembly queue.
1812 *
1813 * The criteria to step up the receive buffer one notch are:
1814 * 1. the number of bytes received during the time it takes
1815 * one timestamp to be reflected back to us (the RTT);
1816 * 2. received bytes per RTT is within seven eighth of the
1817 * current socket buffer size;
1818 * 3. receive buffer size has not hit maximal automatic size;
1819 *
1820 * This algorithm does one step per RTT at most and only if
1821 * we receive a bulk stream w/o packet losses or reorderings.
1822 * Shrinking the buffer during idle times is not necessary as
1823 * it doesn't consume any memory when idle.
1824 *
1825 * TODO: Only step up if the application is actually serving
1826 * the buffer to better manage the socket buffer resources.
1827 */
1828 if (tcp_do_autorcvbuf &&
1829 opti.ts_ecr &&
1830 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1831 if (opti.ts_ecr > tp->rfbuf_ts &&
1832 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1833 if (tp->rfbuf_cnt >
1834 (so->so_rcv.sb_hiwat / 8 * 7) &&
1835 so->so_rcv.sb_hiwat <
1836 tcp_autorcvbuf_max) {
1837 newsize =
1838 min(so->so_rcv.sb_hiwat +
1839 tcp_autorcvbuf_inc,
1840 tcp_autorcvbuf_max);
1841 }
1842 /* Start over with next RTT. */
1843 tp->rfbuf_ts = 0;
1844 tp->rfbuf_cnt = 0;
1845 } else
1846 tp->rfbuf_cnt += tlen; /* add up */
1847 }
1848
1849 /*
1850 * Drop TCP, IP headers and TCP options then add data
1851 * to socket buffer.
1852 */
1853 if (so->so_state & SS_CANTRCVMORE)
1854 m_freem(m);
1855 else {
1856 /*
1857 * Set new socket buffer size.
1858 * Give up when limit is reached.
1859 */
1860 if (newsize)
1861 if (!sbreserve(&so->so_rcv,
1862 newsize, so))
1863 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1864 m_adj(m, toff + off);
1865 sbappendstream(&so->so_rcv, m);
1866 }
1867 sorwakeup(so);
1868 TCP_SETUP_ACK(tp, th);
1869 if (tp->t_flags & TF_ACKNOW)
1870 (void) tcp_output(tp);
1871 if (tcp_saveti)
1872 m_freem(tcp_saveti);
1873 return;
1874 }
1875 }
1876
1877 /*
1878 * Compute mbuf offset to TCP data segment.
1879 */
1880 hdroptlen = toff + off;
1881
1882 /*
1883 * Calculate amount of space in receive window,
1884 * and then do TCP input processing.
1885 * Receive window is amount of space in rcv queue,
1886 * but not less than advertised window.
1887 */
1888 { int win;
1889
1890 win = sbspace(&so->so_rcv);
1891 if (win < 0)
1892 win = 0;
1893 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1894 }
1895
1896 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1897 tp->rfbuf_ts = 0;
1898 tp->rfbuf_cnt = 0;
1899
1900 switch (tp->t_state) {
1901 /*
1902 * If the state is SYN_SENT:
1903 * if seg contains an ACK, but not for our SYN, drop the input.
1904 * if seg contains a RST, then drop the connection.
1905 * if seg does not contain SYN, then drop it.
1906 * Otherwise this is an acceptable SYN segment
1907 * initialize tp->rcv_nxt and tp->irs
1908 * if seg contains ack then advance tp->snd_una
1909 * if seg contains a ECE and ECN support is enabled, the stream
1910 * is ECN capable.
1911 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1912 * arrange for segment to be acked (eventually)
1913 * continue processing rest of data/controls, beginning with URG
1914 */
1915 case TCPS_SYN_SENT:
1916 if ((tiflags & TH_ACK) &&
1917 (SEQ_LEQ(th->th_ack, tp->iss) ||
1918 SEQ_GT(th->th_ack, tp->snd_max)))
1919 goto dropwithreset;
1920 if (tiflags & TH_RST) {
1921 if (tiflags & TH_ACK)
1922 tp = tcp_drop(tp, ECONNREFUSED);
1923 goto drop;
1924 }
1925 if ((tiflags & TH_SYN) == 0)
1926 goto drop;
1927 if (tiflags & TH_ACK) {
1928 tp->snd_una = th->th_ack;
1929 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1930 tp->snd_nxt = tp->snd_una;
1931 if (SEQ_LT(tp->snd_high, tp->snd_una))
1932 tp->snd_high = tp->snd_una;
1933 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1934
1935 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1936 tp->t_flags |= TF_ECN_PERMIT;
1937 tcpstat.tcps_ecn_shs++;
1938 }
1939
1940 }
1941 tp->irs = th->th_seq;
1942 tcp_rcvseqinit(tp);
1943 tp->t_flags |= TF_ACKNOW;
1944 tcp_mss_from_peer(tp, opti.maxseg);
1945
1946 /*
1947 * Initialize the initial congestion window. If we
1948 * had to retransmit the SYN, we must initialize cwnd
1949 * to 1 segment (i.e. the Loss Window).
1950 */
1951 if (tp->t_flags & TF_SYN_REXMT)
1952 tp->snd_cwnd = tp->t_peermss;
1953 else {
1954 int ss = tcp_init_win;
1955 #ifdef INET
1956 if (inp != NULL && in_localaddr(inp->inp_faddr))
1957 ss = tcp_init_win_local;
1958 #endif
1959 #ifdef INET6
1960 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1961 ss = tcp_init_win_local;
1962 #endif
1963 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1964 }
1965
1966 tcp_rmx_rtt(tp);
1967 if (tiflags & TH_ACK) {
1968 tcpstat.tcps_connects++;
1969 soisconnected(so);
1970 tcp_established(tp);
1971 /* Do window scaling on this connection? */
1972 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1973 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1974 tp->snd_scale = tp->requested_s_scale;
1975 tp->rcv_scale = tp->request_r_scale;
1976 }
1977 TCP_REASS_LOCK(tp);
1978 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1979 TCP_REASS_UNLOCK(tp);
1980 /*
1981 * if we didn't have to retransmit the SYN,
1982 * use its rtt as our initial srtt & rtt var.
1983 */
1984 if (tp->t_rtttime)
1985 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1986 } else
1987 tp->t_state = TCPS_SYN_RECEIVED;
1988
1989 /*
1990 * Advance th->th_seq to correspond to first data byte.
1991 * If data, trim to stay within window,
1992 * dropping FIN if necessary.
1993 */
1994 th->th_seq++;
1995 if (tlen > tp->rcv_wnd) {
1996 todrop = tlen - tp->rcv_wnd;
1997 m_adj(m, -todrop);
1998 tlen = tp->rcv_wnd;
1999 tiflags &= ~TH_FIN;
2000 tcpstat.tcps_rcvpackafterwin++;
2001 tcpstat.tcps_rcvbyteafterwin += todrop;
2002 }
2003 tp->snd_wl1 = th->th_seq - 1;
2004 tp->rcv_up = th->th_seq;
2005 goto step6;
2006
2007 /*
2008 * If the state is SYN_RECEIVED:
2009 * If seg contains an ACK, but not for our SYN, drop the input
2010 * and generate an RST. See page 36, rfc793
2011 */
2012 case TCPS_SYN_RECEIVED:
2013 if ((tiflags & TH_ACK) &&
2014 (SEQ_LEQ(th->th_ack, tp->iss) ||
2015 SEQ_GT(th->th_ack, tp->snd_max)))
2016 goto dropwithreset;
2017 break;
2018 }
2019
2020 /*
2021 * States other than LISTEN or SYN_SENT.
2022 * First check timestamp, if present.
2023 * Then check that at least some bytes of segment are within
2024 * receive window. If segment begins before rcv_nxt,
2025 * drop leading data (and SYN); if nothing left, just ack.
2026 *
2027 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2028 * and it's less than ts_recent, drop it.
2029 */
2030 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2031 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2032
2033 /* Check to see if ts_recent is over 24 days old. */
2034 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2035 /*
2036 * Invalidate ts_recent. If this segment updates
2037 * ts_recent, the age will be reset later and ts_recent
2038 * will get a valid value. If it does not, setting
2039 * ts_recent to zero will at least satisfy the
2040 * requirement that zero be placed in the timestamp
2041 * echo reply when ts_recent isn't valid. The
2042 * age isn't reset until we get a valid ts_recent
2043 * because we don't want out-of-order segments to be
2044 * dropped when ts_recent is old.
2045 */
2046 tp->ts_recent = 0;
2047 } else {
2048 tcpstat.tcps_rcvduppack++;
2049 tcpstat.tcps_rcvdupbyte += tlen;
2050 tcpstat.tcps_pawsdrop++;
2051 tcp_new_dsack(tp, th->th_seq, tlen);
2052 goto dropafterack;
2053 }
2054 }
2055
2056 todrop = tp->rcv_nxt - th->th_seq;
2057 dupseg = false;
2058 if (todrop > 0) {
2059 if (tiflags & TH_SYN) {
2060 tiflags &= ~TH_SYN;
2061 th->th_seq++;
2062 if (th->th_urp > 1)
2063 th->th_urp--;
2064 else {
2065 tiflags &= ~TH_URG;
2066 th->th_urp = 0;
2067 }
2068 todrop--;
2069 }
2070 if (todrop > tlen ||
2071 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2072 /*
2073 * Any valid FIN or RST must be to the left of the
2074 * window. At this point the FIN or RST must be a
2075 * duplicate or out of sequence; drop it.
2076 */
2077 if (tiflags & TH_RST)
2078 goto drop;
2079 tiflags &= ~(TH_FIN|TH_RST);
2080 /*
2081 * Send an ACK to resynchronize and drop any data.
2082 * But keep on processing for RST or ACK.
2083 */
2084 tp->t_flags |= TF_ACKNOW;
2085 todrop = tlen;
2086 dupseg = true;
2087 tcpstat.tcps_rcvdupbyte += todrop;
2088 tcpstat.tcps_rcvduppack++;
2089 } else if ((tiflags & TH_RST) &&
2090 th->th_seq != tp->last_ack_sent) {
2091 /*
2092 * Test for reset before adjusting the sequence
2093 * number for overlapping data.
2094 */
2095 goto dropafterack_ratelim;
2096 } else {
2097 tcpstat.tcps_rcvpartduppack++;
2098 tcpstat.tcps_rcvpartdupbyte += todrop;
2099 }
2100 tcp_new_dsack(tp, th->th_seq, todrop);
2101 hdroptlen += todrop; /*drop from head afterwards*/
2102 th->th_seq += todrop;
2103 tlen -= todrop;
2104 if (th->th_urp > todrop)
2105 th->th_urp -= todrop;
2106 else {
2107 tiflags &= ~TH_URG;
2108 th->th_urp = 0;
2109 }
2110 }
2111
2112 /*
2113 * If new data are received on a connection after the
2114 * user processes are gone, then RST the other end.
2115 */
2116 if ((so->so_state & SS_NOFDREF) &&
2117 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2118 tp = tcp_close(tp);
2119 tcpstat.tcps_rcvafterclose++;
2120 goto dropwithreset;
2121 }
2122
2123 /*
2124 * If segment ends after window, drop trailing data
2125 * (and PUSH and FIN); if nothing left, just ACK.
2126 */
2127 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2128 if (todrop > 0) {
2129 tcpstat.tcps_rcvpackafterwin++;
2130 if (todrop >= tlen) {
2131 /*
2132 * The segment actually starts after the window.
2133 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2134 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2135 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2136 */
2137 tcpstat.tcps_rcvbyteafterwin += tlen;
2138 /*
2139 * If a new connection request is received
2140 * while in TIME_WAIT, drop the old connection
2141 * and start over if the sequence numbers
2142 * are above the previous ones.
2143 *
2144 * NOTE: We will checksum the packet again, and
2145 * so we need to put the header fields back into
2146 * network order!
2147 * XXX This kind of sucks, but we don't expect
2148 * XXX this to happen very often, so maybe it
2149 * XXX doesn't matter so much.
2150 */
2151 if (tiflags & TH_SYN &&
2152 tp->t_state == TCPS_TIME_WAIT &&
2153 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2154 tp = tcp_close(tp);
2155 TCP_FIELDS_TO_NET(th);
2156 goto findpcb;
2157 }
2158 /*
2159 * If window is closed can only take segments at
2160 * window edge, and have to drop data and PUSH from
2161 * incoming segments. Continue processing, but
2162 * remember to ack. Otherwise, drop segment
2163 * and (if not RST) ack.
2164 */
2165 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2166 tp->t_flags |= TF_ACKNOW;
2167 tcpstat.tcps_rcvwinprobe++;
2168 } else
2169 goto dropafterack;
2170 } else
2171 tcpstat.tcps_rcvbyteafterwin += todrop;
2172 m_adj(m, -todrop);
2173 tlen -= todrop;
2174 tiflags &= ~(TH_PUSH|TH_FIN);
2175 }
2176
2177 /*
2178 * If last ACK falls within this segment's sequence numbers,
2179 * and the timestamp is newer, record it.
2180 */
2181 if (opti.ts_present && TSTMP_GEQ(opti.ts_val, tp->ts_recent) &&
2182 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2183 SEQ_LT(tp->last_ack_sent, th->th_seq + tlen +
2184 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2185 tp->ts_recent_age = tcp_now;
2186 tp->ts_recent = opti.ts_val;
2187 }
2188
2189 /*
2190 * If the RST bit is set examine the state:
2191 * SYN_RECEIVED STATE:
2192 * If passive open, return to LISTEN state.
2193 * If active open, inform user that connection was refused.
2194 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2195 * Inform user that connection was reset, and close tcb.
2196 * CLOSING, LAST_ACK, TIME_WAIT STATES
2197 * Close the tcb.
2198 */
2199 if (tiflags & TH_RST) {
2200 if (th->th_seq != tp->last_ack_sent)
2201 goto dropafterack_ratelim;
2202
2203 switch (tp->t_state) {
2204 case TCPS_SYN_RECEIVED:
2205 so->so_error = ECONNREFUSED;
2206 goto close;
2207
2208 case TCPS_ESTABLISHED:
2209 case TCPS_FIN_WAIT_1:
2210 case TCPS_FIN_WAIT_2:
2211 case TCPS_CLOSE_WAIT:
2212 so->so_error = ECONNRESET;
2213 close:
2214 tp->t_state = TCPS_CLOSED;
2215 tcpstat.tcps_drops++;
2216 tp = tcp_close(tp);
2217 goto drop;
2218
2219 case TCPS_CLOSING:
2220 case TCPS_LAST_ACK:
2221 case TCPS_TIME_WAIT:
2222 tp = tcp_close(tp);
2223 goto drop;
2224 }
2225 }
2226
2227 /*
2228 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2229 * we must be in a synchronized state. RFC791 states (under RST
2230 * generation) that any unacceptable segment (an out-of-order SYN
2231 * qualifies) received in a synchronized state must elicit only an
2232 * empty acknowledgment segment ... and the connection remains in
2233 * the same state.
2234 */
2235 if (tiflags & TH_SYN) {
2236 if (tp->rcv_nxt == th->th_seq) {
2237 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2238 TH_ACK);
2239 if (tcp_saveti)
2240 m_freem(tcp_saveti);
2241 return;
2242 }
2243
2244 goto dropafterack_ratelim;
2245 }
2246
2247 /*
2248 * If the ACK bit is off we drop the segment and return.
2249 */
2250 if ((tiflags & TH_ACK) == 0) {
2251 if (tp->t_flags & TF_ACKNOW)
2252 goto dropafterack;
2253 else
2254 goto drop;
2255 }
2256
2257 /*
2258 * Ack processing.
2259 */
2260 switch (tp->t_state) {
2261
2262 /*
2263 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2264 * ESTABLISHED state and continue processing, otherwise
2265 * send an RST.
2266 */
2267 case TCPS_SYN_RECEIVED:
2268 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2269 SEQ_GT(th->th_ack, tp->snd_max))
2270 goto dropwithreset;
2271 tcpstat.tcps_connects++;
2272 soisconnected(so);
2273 tcp_established(tp);
2274 /* Do window scaling? */
2275 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2276 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2277 tp->snd_scale = tp->requested_s_scale;
2278 tp->rcv_scale = tp->request_r_scale;
2279 }
2280 TCP_REASS_LOCK(tp);
2281 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2282 TCP_REASS_UNLOCK(tp);
2283 tp->snd_wl1 = th->th_seq - 1;
2284 /* fall into ... */
2285
2286 /*
2287 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2288 * ACKs. If the ack is in the range
2289 * tp->snd_una < th->th_ack <= tp->snd_max
2290 * then advance tp->snd_una to th->th_ack and drop
2291 * data from the retransmission queue. If this ACK reflects
2292 * more up to date window information we update our window information.
2293 */
2294 case TCPS_ESTABLISHED:
2295 case TCPS_FIN_WAIT_1:
2296 case TCPS_FIN_WAIT_2:
2297 case TCPS_CLOSE_WAIT:
2298 case TCPS_CLOSING:
2299 case TCPS_LAST_ACK:
2300 case TCPS_TIME_WAIT:
2301
2302 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2303 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2304 tcpstat.tcps_rcvdupack++;
2305 /*
2306 * If we have outstanding data (other than
2307 * a window probe), this is a completely
2308 * duplicate ack (ie, window info didn't
2309 * change), the ack is the biggest we've
2310 * seen and we've seen exactly our rexmt
2311 * threshhold of them, assume a packet
2312 * has been dropped and retransmit it.
2313 * Kludge snd_nxt & the congestion
2314 * window so we send only this one
2315 * packet.
2316 */
2317 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2318 th->th_ack != tp->snd_una)
2319 tp->t_dupacks = 0;
2320 else if (tp->t_partialacks < 0 &&
2321 ((!TCP_SACK_ENABLED(tp) &&
2322 ++tp->t_dupacks == tcprexmtthresh) ||
2323 TCP_FACK_FASTRECOV(tp))) {
2324 /*
2325 * Do the fast retransmit, and adjust
2326 * congestion control paramenters.
2327 */
2328 if (tp->t_congctl->fast_retransmit(tp, th)) {
2329 /* False fast retransmit */
2330 break;
2331 } else
2332 goto drop;
2333 } else if (tp->t_dupacks > tcprexmtthresh) {
2334 tp->snd_cwnd += tp->t_segsz;
2335 (void) tcp_output(tp);
2336 goto drop;
2337 }
2338 } else {
2339 /*
2340 * If the ack appears to be very old, only
2341 * allow data that is in-sequence. This
2342 * makes it somewhat more difficult to insert
2343 * forged data by guessing sequence numbers.
2344 * Sent an ack to try to update the send
2345 * sequence number on the other side.
2346 */
2347 if (tlen && th->th_seq != tp->rcv_nxt &&
2348 SEQ_LT(th->th_ack,
2349 tp->snd_una - tp->max_sndwnd))
2350 goto dropafterack;
2351 }
2352 break;
2353 }
2354 /*
2355 * If the congestion window was inflated to account
2356 * for the other side's cached packets, retract it.
2357 */
2358 /* XXX: make SACK have his own congestion control
2359 * struct -- rpaulo */
2360 if (TCP_SACK_ENABLED(tp))
2361 tcp_sack_newack(tp, th);
2362 else
2363 tp->t_congctl->fast_retransmit_newack(tp, th);
2364 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2365 tcpstat.tcps_rcvacktoomuch++;
2366 goto dropafterack;
2367 }
2368 acked = th->th_ack - tp->snd_una;
2369 tcpstat.tcps_rcvackpack++;
2370 tcpstat.tcps_rcvackbyte += acked;
2371
2372 /*
2373 * If we have a timestamp reply, update smoothed
2374 * round trip time. If no timestamp is present but
2375 * transmit timer is running and timed sequence
2376 * number was acked, update smoothed round trip time.
2377 * Since we now have an rtt measurement, cancel the
2378 * timer backoff (cf., Phil Karn's retransmit alg.).
2379 * Recompute the initial retransmit timer.
2380 */
2381 if (ts_rtt)
2382 tcp_xmit_timer(tp, ts_rtt);
2383 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2384 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2385
2386 /*
2387 * If all outstanding data is acked, stop retransmit
2388 * timer and remember to restart (more output or persist).
2389 * If there is more data to be acked, restart retransmit
2390 * timer, using current (possibly backed-off) value.
2391 */
2392 if (th->th_ack == tp->snd_max) {
2393 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2394 needoutput = 1;
2395 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2396 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2397
2398 /*
2399 * New data has been acked, adjust the congestion window.
2400 */
2401 tp->t_congctl->newack(tp, th);
2402
2403 nd6_hint(tp);
2404 if (acked > so->so_snd.sb_cc) {
2405 tp->snd_wnd -= so->so_snd.sb_cc;
2406 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2407 ourfinisacked = 1;
2408 } else {
2409 if (acked > (tp->t_lastoff - tp->t_inoff))
2410 tp->t_lastm = NULL;
2411 sbdrop(&so->so_snd, acked);
2412 tp->t_lastoff -= acked;
2413 tp->snd_wnd -= acked;
2414 ourfinisacked = 0;
2415 }
2416 sowwakeup(so);
2417
2418 ICMP_CHECK(tp, th, acked);
2419
2420 tp->snd_una = th->th_ack;
2421 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2422 tp->snd_fack = tp->snd_una;
2423 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2424 tp->snd_nxt = tp->snd_una;
2425 if (SEQ_LT(tp->snd_high, tp->snd_una))
2426 tp->snd_high = tp->snd_una;
2427
2428 switch (tp->t_state) {
2429
2430 /*
2431 * In FIN_WAIT_1 STATE in addition to the processing
2432 * for the ESTABLISHED state if our FIN is now acknowledged
2433 * then enter FIN_WAIT_2.
2434 */
2435 case TCPS_FIN_WAIT_1:
2436 if (ourfinisacked) {
2437 /*
2438 * If we can't receive any more
2439 * data, then closing user can proceed.
2440 * Starting the timer is contrary to the
2441 * specification, but if we don't get a FIN
2442 * we'll hang forever.
2443 */
2444 if (so->so_state & SS_CANTRCVMORE) {
2445 soisdisconnected(so);
2446 if (tp->t_maxidle > 0)
2447 TCP_TIMER_ARM(tp, TCPT_2MSL,
2448 tp->t_maxidle);
2449 }
2450 tp->t_state = TCPS_FIN_WAIT_2;
2451 }
2452 break;
2453
2454 /*
2455 * In CLOSING STATE in addition to the processing for
2456 * the ESTABLISHED state if the ACK acknowledges our FIN
2457 * then enter the TIME-WAIT state, otherwise ignore
2458 * the segment.
2459 */
2460 case TCPS_CLOSING:
2461 if (ourfinisacked) {
2462 tp->t_state = TCPS_TIME_WAIT;
2463 tcp_canceltimers(tp);
2464 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2465 soisdisconnected(so);
2466 }
2467 break;
2468
2469 /*
2470 * In LAST_ACK, we may still be waiting for data to drain
2471 * and/or to be acked, as well as for the ack of our FIN.
2472 * If our FIN is now acknowledged, delete the TCB,
2473 * enter the closed state and return.
2474 */
2475 case TCPS_LAST_ACK:
2476 if (ourfinisacked) {
2477 tp = tcp_close(tp);
2478 goto drop;
2479 }
2480 break;
2481
2482 /*
2483 * In TIME_WAIT state the only thing that should arrive
2484 * is a retransmission of the remote FIN. Acknowledge
2485 * it and restart the finack timer.
2486 */
2487 case TCPS_TIME_WAIT:
2488 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2489 goto dropafterack;
2490 }
2491 }
2492
2493 step6:
2494 /*
2495 * Update window information.
2496 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2497 */
2498 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2499 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2500 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2501 /* keep track of pure window updates */
2502 if (tlen == 0 &&
2503 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2504 tcpstat.tcps_rcvwinupd++;
2505 tp->snd_wnd = tiwin;
2506 tp->snd_wl1 = th->th_seq;
2507 tp->snd_wl2 = th->th_ack;
2508 if (tp->snd_wnd > tp->max_sndwnd)
2509 tp->max_sndwnd = tp->snd_wnd;
2510 needoutput = 1;
2511 }
2512
2513 /*
2514 * Process segments with URG.
2515 */
2516 if ((tiflags & TH_URG) && th->th_urp &&
2517 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2518 /*
2519 * This is a kludge, but if we receive and accept
2520 * random urgent pointers, we'll crash in
2521 * soreceive. It's hard to imagine someone
2522 * actually wanting to send this much urgent data.
2523 */
2524 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2525 th->th_urp = 0; /* XXX */
2526 tiflags &= ~TH_URG; /* XXX */
2527 goto dodata; /* XXX */
2528 }
2529 /*
2530 * If this segment advances the known urgent pointer,
2531 * then mark the data stream. This should not happen
2532 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2533 * a FIN has been received from the remote side.
2534 * In these states we ignore the URG.
2535 *
2536 * According to RFC961 (Assigned Protocols),
2537 * the urgent pointer points to the last octet
2538 * of urgent data. We continue, however,
2539 * to consider it to indicate the first octet
2540 * of data past the urgent section as the original
2541 * spec states (in one of two places).
2542 */
2543 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2544 tp->rcv_up = th->th_seq + th->th_urp;
2545 so->so_oobmark = so->so_rcv.sb_cc +
2546 (tp->rcv_up - tp->rcv_nxt) - 1;
2547 if (so->so_oobmark == 0)
2548 so->so_state |= SS_RCVATMARK;
2549 sohasoutofband(so);
2550 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2551 }
2552 /*
2553 * Remove out of band data so doesn't get presented to user.
2554 * This can happen independent of advancing the URG pointer,
2555 * but if two URG's are pending at once, some out-of-band
2556 * data may creep in... ick.
2557 */
2558 if (th->th_urp <= (u_int16_t) tlen
2559 #ifdef SO_OOBINLINE
2560 && (so->so_options & SO_OOBINLINE) == 0
2561 #endif
2562 )
2563 tcp_pulloutofband(so, th, m, hdroptlen);
2564 } else
2565 /*
2566 * If no out of band data is expected,
2567 * pull receive urgent pointer along
2568 * with the receive window.
2569 */
2570 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2571 tp->rcv_up = tp->rcv_nxt;
2572 dodata: /* XXX */
2573
2574 /*
2575 * Process the segment text, merging it into the TCP sequencing queue,
2576 * and arranging for acknowledgement of receipt if necessary.
2577 * This process logically involves adjusting tp->rcv_wnd as data
2578 * is presented to the user (this happens in tcp_usrreq.c,
2579 * case PRU_RCVD). If a FIN has already been received on this
2580 * connection then we just ignore the text.
2581 */
2582 if ((tlen || (tiflags & TH_FIN)) &&
2583 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2584 /*
2585 * Insert segment ti into reassembly queue of tcp with
2586 * control block tp. Return TH_FIN if reassembly now includes
2587 * a segment with FIN. The macro form does the common case
2588 * inline (segment is the next to be received on an
2589 * established connection, and the queue is empty),
2590 * avoiding linkage into and removal from the queue and
2591 * repetition of various conversions.
2592 * Set DELACK for segments received in order, but ack
2593 * immediately when segments are out of order
2594 * (so fast retransmit can work).
2595 */
2596 /* NOTE: this was TCP_REASS() macro, but used only once */
2597 TCP_REASS_LOCK(tp);
2598 if (th->th_seq == tp->rcv_nxt &&
2599 TAILQ_FIRST(&tp->segq) == NULL &&
2600 tp->t_state == TCPS_ESTABLISHED) {
2601 TCP_SETUP_ACK(tp, th);
2602 tp->rcv_nxt += tlen;
2603 tiflags = th->th_flags & TH_FIN;
2604 tcpstat.tcps_rcvpack++;
2605 tcpstat.tcps_rcvbyte += tlen;
2606 nd6_hint(tp);
2607 if (so->so_state & SS_CANTRCVMORE)
2608 m_freem(m);
2609 else {
2610 m_adj(m, hdroptlen);
2611 sbappendstream(&(so)->so_rcv, m);
2612 }
2613 sorwakeup(so);
2614 } else {
2615 m_adj(m, hdroptlen);
2616 tiflags = tcp_reass(tp, th, m, &tlen);
2617 tp->t_flags |= TF_ACKNOW;
2618 }
2619 TCP_REASS_UNLOCK(tp);
2620
2621 /*
2622 * Note the amount of data that peer has sent into
2623 * our window, in order to estimate the sender's
2624 * buffer size.
2625 */
2626 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2627 } else {
2628 m_freem(m);
2629 m = NULL;
2630 tiflags &= ~TH_FIN;
2631 }
2632
2633 /*
2634 * If FIN is received ACK the FIN and let the user know
2635 * that the connection is closing. Ignore a FIN received before
2636 * the connection is fully established.
2637 */
2638 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2639 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2640 socantrcvmore(so);
2641 tp->t_flags |= TF_ACKNOW;
2642 tp->rcv_nxt++;
2643 }
2644 switch (tp->t_state) {
2645
2646 /*
2647 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2648 */
2649 case TCPS_ESTABLISHED:
2650 tp->t_state = TCPS_CLOSE_WAIT;
2651 break;
2652
2653 /*
2654 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2655 * enter the CLOSING state.
2656 */
2657 case TCPS_FIN_WAIT_1:
2658 tp->t_state = TCPS_CLOSING;
2659 break;
2660
2661 /*
2662 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2663 * starting the time-wait timer, turning off the other
2664 * standard timers.
2665 */
2666 case TCPS_FIN_WAIT_2:
2667 tp->t_state = TCPS_TIME_WAIT;
2668 tcp_canceltimers(tp);
2669 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2670 soisdisconnected(so);
2671 break;
2672
2673 /*
2674 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2675 */
2676 case TCPS_TIME_WAIT:
2677 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2678 break;
2679 }
2680 }
2681 #ifdef TCP_DEBUG
2682 if (so->so_options & SO_DEBUG)
2683 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2684 #endif
2685
2686 /*
2687 * Return any desired output.
2688 */
2689 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2690 (void) tcp_output(tp);
2691 }
2692 if (tcp_saveti)
2693 m_freem(tcp_saveti);
2694 return;
2695
2696 badsyn:
2697 /*
2698 * Received a bad SYN. Increment counters and dropwithreset.
2699 */
2700 tcpstat.tcps_badsyn++;
2701 tp = NULL;
2702 goto dropwithreset;
2703
2704 dropafterack:
2705 /*
2706 * Generate an ACK dropping incoming segment if it occupies
2707 * sequence space, where the ACK reflects our state.
2708 */
2709 if (tiflags & TH_RST)
2710 goto drop;
2711 goto dropafterack2;
2712
2713 dropafterack_ratelim:
2714 /*
2715 * We may want to rate-limit ACKs against SYN/RST attack.
2716 */
2717 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2718 tcp_ackdrop_ppslim) == 0) {
2719 /* XXX stat */
2720 goto drop;
2721 }
2722 /* ...fall into dropafterack2... */
2723
2724 dropafterack2:
2725 m_freem(m);
2726 tp->t_flags |= TF_ACKNOW;
2727 (void) tcp_output(tp);
2728 if (tcp_saveti)
2729 m_freem(tcp_saveti);
2730 return;
2731
2732 dropwithreset_ratelim:
2733 /*
2734 * We may want to rate-limit RSTs in certain situations,
2735 * particularly if we are sending an RST in response to
2736 * an attempt to connect to or otherwise communicate with
2737 * a port for which we have no socket.
2738 */
2739 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2740 tcp_rst_ppslim) == 0) {
2741 /* XXX stat */
2742 goto drop;
2743 }
2744 /* ...fall into dropwithreset... */
2745
2746 dropwithreset:
2747 /*
2748 * Generate a RST, dropping incoming segment.
2749 * Make ACK acceptable to originator of segment.
2750 */
2751 if (tiflags & TH_RST)
2752 goto drop;
2753
2754 switch (af) {
2755 #ifdef INET6
2756 case AF_INET6:
2757 /* For following calls to tcp_respond */
2758 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2759 goto drop;
2760 break;
2761 #endif /* INET6 */
2762 case AF_INET:
2763 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2764 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2765 goto drop;
2766 }
2767
2768 if (tiflags & TH_ACK)
2769 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2770 else {
2771 if (tiflags & TH_SYN)
2772 tlen++;
2773 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2774 TH_RST|TH_ACK);
2775 }
2776 if (tcp_saveti)
2777 m_freem(tcp_saveti);
2778 return;
2779
2780 badcsum:
2781 drop:
2782 /*
2783 * Drop space held by incoming segment and return.
2784 */
2785 if (tp) {
2786 if (tp->t_inpcb)
2787 so = tp->t_inpcb->inp_socket;
2788 #ifdef INET6
2789 else if (tp->t_in6pcb)
2790 so = tp->t_in6pcb->in6p_socket;
2791 #endif
2792 else
2793 so = NULL;
2794 #ifdef TCP_DEBUG
2795 if (so && (so->so_options & SO_DEBUG) != 0)
2796 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2797 #endif
2798 }
2799 if (tcp_saveti)
2800 m_freem(tcp_saveti);
2801 m_freem(m);
2802 return;
2803 }
2804
2805 #ifdef TCP_SIGNATURE
2806 int
2807 tcp_signature_apply(void *fstate, void *data, u_int len)
2808 {
2809
2810 MD5Update(fstate, (u_char *)data, len);
2811 return (0);
2812 }
2813
2814 struct secasvar *
2815 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2816 {
2817 struct secasvar *sav;
2818 #ifdef FAST_IPSEC
2819 union sockaddr_union dst;
2820 #endif
2821 struct ip *ip;
2822 struct ip6_hdr *ip6;
2823
2824 ip = mtod(m, struct ip *);
2825 switch (ip->ip_v) {
2826 case 4:
2827 ip = mtod(m, struct ip *);
2828 ip6 = NULL;
2829 break;
2830 case 6:
2831 ip = NULL;
2832 ip6 = mtod(m, struct ip6_hdr *);
2833 break;
2834 default:
2835 return (NULL);
2836 }
2837
2838 #ifdef FAST_IPSEC
2839 /* Extract the destination from the IP header in the mbuf. */
2840 bzero(&dst, sizeof(union sockaddr_union));
2841 if (ip !=NULL) {
2842 dst.sa.sa_len = sizeof(struct sockaddr_in);
2843 dst.sa.sa_family = AF_INET;
2844 dst.sin.sin_addr = ip->ip_dst;
2845 } else {
2846 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2847 dst.sa.sa_family = AF_INET6;
2848 dst.sin6.sin6_addr = ip6->ip6_dst;
2849 }
2850
2851 /*
2852 * Look up an SADB entry which matches the address of the peer.
2853 */
2854 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2855 #else
2856 if (ip)
2857 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2858 (void *)&ip->ip_dst, IPPROTO_TCP,
2859 htonl(TCP_SIG_SPI), 0, 0);
2860 else
2861 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2862 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2863 htonl(TCP_SIG_SPI), 0, 0);
2864 #endif
2865
2866 return (sav); /* freesav must be performed by caller */
2867 }
2868
2869 int
2870 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2871 struct secasvar *sav, char *sig)
2872 {
2873 MD5_CTX ctx;
2874 struct ip *ip;
2875 struct ipovly *ipovly;
2876 struct ip6_hdr *ip6;
2877 struct ippseudo ippseudo;
2878 struct ip6_hdr_pseudo ip6pseudo;
2879 struct tcphdr th0;
2880 int l, tcphdrlen;
2881
2882 if (sav == NULL)
2883 return (-1);
2884
2885 tcphdrlen = th->th_off * 4;
2886
2887 switch (mtod(m, struct ip *)->ip_v) {
2888 case 4:
2889 ip = mtod(m, struct ip *);
2890 ip6 = NULL;
2891 break;
2892 case 6:
2893 ip = NULL;
2894 ip6 = mtod(m, struct ip6_hdr *);
2895 break;
2896 default:
2897 return (-1);
2898 }
2899
2900 MD5Init(&ctx);
2901
2902 if (ip) {
2903 memset(&ippseudo, 0, sizeof(ippseudo));
2904 ipovly = (struct ipovly *)ip;
2905 ippseudo.ippseudo_src = ipovly->ih_src;
2906 ippseudo.ippseudo_dst = ipovly->ih_dst;
2907 ippseudo.ippseudo_pad = 0;
2908 ippseudo.ippseudo_p = IPPROTO_TCP;
2909 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2910 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2911 } else {
2912 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2913 ip6pseudo.ip6ph_src = ip6->ip6_src;
2914 in6_clearscope(&ip6pseudo.ip6ph_src);
2915 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2916 in6_clearscope(&ip6pseudo.ip6ph_dst);
2917 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2918 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2919 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2920 }
2921
2922 th0 = *th;
2923 th0.th_sum = 0;
2924 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2925
2926 l = m->m_pkthdr.len - thoff - tcphdrlen;
2927 if (l > 0)
2928 m_apply(m, thoff + tcphdrlen,
2929 m->m_pkthdr.len - thoff - tcphdrlen,
2930 tcp_signature_apply, &ctx);
2931
2932 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2933 MD5Final(sig, &ctx);
2934
2935 return (0);
2936 }
2937 #endif
2938
2939 static int
2940 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2941 struct tcphdr *th,
2942 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2943 {
2944 u_int16_t mss;
2945 int opt, optlen = 0;
2946 #ifdef TCP_SIGNATURE
2947 void *sigp = NULL;
2948 char sigbuf[TCP_SIGLEN];
2949 struct secasvar *sav = NULL;
2950 #endif
2951
2952 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2953 opt = cp[0];
2954 if (opt == TCPOPT_EOL)
2955 break;
2956 if (opt == TCPOPT_NOP)
2957 optlen = 1;
2958 else {
2959 if (cnt < 2)
2960 break;
2961 optlen = cp[1];
2962 if (optlen < 2 || optlen > cnt)
2963 break;
2964 }
2965 switch (opt) {
2966
2967 default:
2968 continue;
2969
2970 case TCPOPT_MAXSEG:
2971 if (optlen != TCPOLEN_MAXSEG)
2972 continue;
2973 if (!(th->th_flags & TH_SYN))
2974 continue;
2975 if (TCPS_HAVERCVDSYN(tp->t_state))
2976 continue;
2977 bcopy(cp + 2, &mss, sizeof(mss));
2978 oi->maxseg = ntohs(mss);
2979 break;
2980
2981 case TCPOPT_WINDOW:
2982 if (optlen != TCPOLEN_WINDOW)
2983 continue;
2984 if (!(th->th_flags & TH_SYN))
2985 continue;
2986 if (TCPS_HAVERCVDSYN(tp->t_state))
2987 continue;
2988 tp->t_flags |= TF_RCVD_SCALE;
2989 tp->requested_s_scale = cp[2];
2990 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2991 #if 0 /*XXX*/
2992 char *p;
2993
2994 if (ip)
2995 p = ntohl(ip->ip_src);
2996 #ifdef INET6
2997 else if (ip6)
2998 p = ip6_sprintf(&ip6->ip6_src);
2999 #endif
3000 else
3001 p = "(unknown)";
3002 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3003 "assuming %d\n",
3004 tp->requested_s_scale, p,
3005 TCP_MAX_WINSHIFT);
3006 #else
3007 log(LOG_ERR, "TCP: invalid wscale %d, "
3008 "assuming %d\n",
3009 tp->requested_s_scale,
3010 TCP_MAX_WINSHIFT);
3011 #endif
3012 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3013 }
3014 break;
3015
3016 case TCPOPT_TIMESTAMP:
3017 if (optlen != TCPOLEN_TIMESTAMP)
3018 continue;
3019 oi->ts_present = 1;
3020 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3021 NTOHL(oi->ts_val);
3022 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3023 NTOHL(oi->ts_ecr);
3024
3025 if (!(th->th_flags & TH_SYN))
3026 continue;
3027 if (TCPS_HAVERCVDSYN(tp->t_state))
3028 continue;
3029 /*
3030 * A timestamp received in a SYN makes
3031 * it ok to send timestamp requests and replies.
3032 */
3033 tp->t_flags |= TF_RCVD_TSTMP;
3034 tp->ts_recent = oi->ts_val;
3035 tp->ts_recent_age = tcp_now;
3036 break;
3037
3038 case TCPOPT_SACK_PERMITTED:
3039 if (optlen != TCPOLEN_SACK_PERMITTED)
3040 continue;
3041 if (!(th->th_flags & TH_SYN))
3042 continue;
3043 if (TCPS_HAVERCVDSYN(tp->t_state))
3044 continue;
3045 if (tcp_do_sack) {
3046 tp->t_flags |= TF_SACK_PERMIT;
3047 tp->t_flags |= TF_WILL_SACK;
3048 }
3049 break;
3050
3051 case TCPOPT_SACK:
3052 tcp_sack_option(tp, th, cp, optlen);
3053 break;
3054 #ifdef TCP_SIGNATURE
3055 case TCPOPT_SIGNATURE:
3056 if (optlen != TCPOLEN_SIGNATURE)
3057 continue;
3058 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3059 return (-1);
3060
3061 sigp = sigbuf;
3062 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3063 tp->t_flags |= TF_SIGNATURE;
3064 break;
3065 #endif
3066 }
3067 }
3068
3069 #ifdef TCP_SIGNATURE
3070 if (tp->t_flags & TF_SIGNATURE) {
3071
3072 sav = tcp_signature_getsav(m, th);
3073
3074 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3075 return (-1);
3076 }
3077
3078 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3079 if (sav == NULL)
3080 return (-1);
3081 #ifdef FAST_IPSEC
3082 KEY_FREESAV(&sav);
3083 #else
3084 key_freesav(sav);
3085 #endif
3086 return (-1);
3087 }
3088
3089 if (sigp) {
3090 char sig[TCP_SIGLEN];
3091
3092 TCP_FIELDS_TO_NET(th);
3093 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3094 TCP_FIELDS_TO_HOST(th);
3095 if (sav == NULL)
3096 return (-1);
3097 #ifdef FAST_IPSEC
3098 KEY_FREESAV(&sav);
3099 #else
3100 key_freesav(sav);
3101 #endif
3102 return (-1);
3103 }
3104 TCP_FIELDS_TO_HOST(th);
3105
3106 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3107 tcpstat.tcps_badsig++;
3108 if (sav == NULL)
3109 return (-1);
3110 #ifdef FAST_IPSEC
3111 KEY_FREESAV(&sav);
3112 #else
3113 key_freesav(sav);
3114 #endif
3115 return (-1);
3116 } else
3117 tcpstat.tcps_goodsig++;
3118
3119 key_sa_recordxfer(sav, m);
3120 #ifdef FAST_IPSEC
3121 KEY_FREESAV(&sav);
3122 #else
3123 key_freesav(sav);
3124 #endif
3125 }
3126 #endif
3127
3128 return (0);
3129 }
3130
3131 /*
3132 * Pull out of band byte out of a segment so
3133 * it doesn't appear in the user's data queue.
3134 * It is still reflected in the segment length for
3135 * sequencing purposes.
3136 */
3137 void
3138 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3139 struct mbuf *m, int off)
3140 {
3141 int cnt = off + th->th_urp - 1;
3142
3143 while (cnt >= 0) {
3144 if (m->m_len > cnt) {
3145 char *cp = mtod(m, char *) + cnt;
3146 struct tcpcb *tp = sototcpcb(so);
3147
3148 tp->t_iobc = *cp;
3149 tp->t_oobflags |= TCPOOB_HAVEDATA;
3150 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3151 m->m_len--;
3152 return;
3153 }
3154 cnt -= m->m_len;
3155 m = m->m_next;
3156 if (m == 0)
3157 break;
3158 }
3159 panic("tcp_pulloutofband");
3160 }
3161
3162 /*
3163 * Collect new round-trip time estimate
3164 * and update averages and current timeout.
3165 */
3166 void
3167 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3168 {
3169 int32_t delta;
3170
3171 tcpstat.tcps_rttupdated++;
3172 if (tp->t_srtt != 0) {
3173 /*
3174 * srtt is stored as fixed point with 3 bits after the
3175 * binary point (i.e., scaled by 8). The following magic
3176 * is equivalent to the smoothing algorithm in rfc793 with
3177 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3178 * point). Adjust rtt to origin 0.
3179 */
3180 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3181 if ((tp->t_srtt += delta) <= 0)
3182 tp->t_srtt = 1 << 2;
3183 /*
3184 * We accumulate a smoothed rtt variance (actually, a
3185 * smoothed mean difference), then set the retransmit
3186 * timer to smoothed rtt + 4 times the smoothed variance.
3187 * rttvar is stored as fixed point with 2 bits after the
3188 * binary point (scaled by 4). The following is
3189 * equivalent to rfc793 smoothing with an alpha of .75
3190 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3191 * rfc793's wired-in beta.
3192 */
3193 if (delta < 0)
3194 delta = -delta;
3195 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3196 if ((tp->t_rttvar += delta) <= 0)
3197 tp->t_rttvar = 1 << 2;
3198 } else {
3199 /*
3200 * No rtt measurement yet - use the unsmoothed rtt.
3201 * Set the variance to half the rtt (so our first
3202 * retransmit happens at 3*rtt).
3203 */
3204 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3205 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3206 }
3207 tp->t_rtttime = 0;
3208 tp->t_rxtshift = 0;
3209
3210 /*
3211 * the retransmit should happen at rtt + 4 * rttvar.
3212 * Because of the way we do the smoothing, srtt and rttvar
3213 * will each average +1/2 tick of bias. When we compute
3214 * the retransmit timer, we want 1/2 tick of rounding and
3215 * 1 extra tick because of +-1/2 tick uncertainty in the
3216 * firing of the timer. The bias will give us exactly the
3217 * 1.5 tick we need. But, because the bias is
3218 * statistical, we have to test that we don't drop below
3219 * the minimum feasible timer (which is 2 ticks).
3220 */
3221 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3222 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3223
3224 /*
3225 * We received an ack for a packet that wasn't retransmitted;
3226 * it is probably safe to discard any error indications we've
3227 * received recently. This isn't quite right, but close enough
3228 * for now (a route might have failed after we sent a segment,
3229 * and the return path might not be symmetrical).
3230 */
3231 tp->t_softerror = 0;
3232 }
3233
3234
3235 /*
3236 * TCP compressed state engine. Currently used to hold compressed
3237 * state for SYN_RECEIVED.
3238 */
3239
3240 u_long syn_cache_count;
3241 u_int32_t syn_hash1, syn_hash2;
3242
3243 #define SYN_HASH(sa, sp, dp) \
3244 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3245 ((u_int32_t)(sp)))^syn_hash2)))
3246 #ifndef INET6
3247 #define SYN_HASHALL(hash, src, dst) \
3248 do { \
3249 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3250 ((const struct sockaddr_in *)(src))->sin_port, \
3251 ((const struct sockaddr_in *)(dst))->sin_port); \
3252 } while (/*CONSTCOND*/ 0)
3253 #else
3254 #define SYN_HASH6(sa, sp, dp) \
3255 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3256 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3257 & 0x7fffffff)
3258
3259 #define SYN_HASHALL(hash, src, dst) \
3260 do { \
3261 switch ((src)->sa_family) { \
3262 case AF_INET: \
3263 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3264 ((const struct sockaddr_in *)(src))->sin_port, \
3265 ((const struct sockaddr_in *)(dst))->sin_port); \
3266 break; \
3267 case AF_INET6: \
3268 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3269 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3270 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3271 break; \
3272 default: \
3273 hash = 0; \
3274 } \
3275 } while (/*CONSTCOND*/0)
3276 #endif /* INET6 */
3277
3278 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3279 IPL_SOFTNET);
3280
3281 /*
3282 * We don't estimate RTT with SYNs, so each packet starts with the default
3283 * RTT and each timer step has a fixed timeout value.
3284 */
3285 #define SYN_CACHE_TIMER_ARM(sc) \
3286 do { \
3287 TCPT_RANGESET((sc)->sc_rxtcur, \
3288 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3289 TCPTV_REXMTMAX); \
3290 callout_reset(&(sc)->sc_timer, \
3291 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3292 } while (/*CONSTCOND*/0)
3293
3294 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3295
3296 static inline void
3297 syn_cache_rm(struct syn_cache *sc)
3298 {
3299 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3300 sc, sc_bucketq);
3301 sc->sc_tp = NULL;
3302 LIST_REMOVE(sc, sc_tpq);
3303 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3304 callout_stop(&sc->sc_timer);
3305 syn_cache_count--;
3306 }
3307
3308 static inline void
3309 syn_cache_put(struct syn_cache *sc)
3310 {
3311 if (sc->sc_ipopts)
3312 (void) m_free(sc->sc_ipopts);
3313 rtcache_free(&sc->sc_route);
3314 if (callout_invoking(&sc->sc_timer))
3315 sc->sc_flags |= SCF_DEAD;
3316 else {
3317 callout_destroy(&sc->sc_timer);
3318 pool_put(&syn_cache_pool, sc);
3319 }
3320 }
3321
3322 void
3323 syn_cache_init(void)
3324 {
3325 int i;
3326
3327 /* Initialize the hash buckets. */
3328 for (i = 0; i < tcp_syn_cache_size; i++)
3329 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3330 }
3331
3332 void
3333 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3334 {
3335 struct syn_cache_head *scp;
3336 struct syn_cache *sc2;
3337 int s;
3338
3339 /*
3340 * If there are no entries in the hash table, reinitialize
3341 * the hash secrets.
3342 */
3343 if (syn_cache_count == 0) {
3344 syn_hash1 = arc4random();
3345 syn_hash2 = arc4random();
3346 }
3347
3348 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3349 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3350 scp = &tcp_syn_cache[sc->sc_bucketidx];
3351
3352 /*
3353 * Make sure that we don't overflow the per-bucket
3354 * limit or the total cache size limit.
3355 */
3356 s = splsoftnet();
3357 if (scp->sch_length >= tcp_syn_bucket_limit) {
3358 tcpstat.tcps_sc_bucketoverflow++;
3359 /*
3360 * The bucket is full. Toss the oldest element in the
3361 * bucket. This will be the first entry in the bucket.
3362 */
3363 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3364 #ifdef DIAGNOSTIC
3365 /*
3366 * This should never happen; we should always find an
3367 * entry in our bucket.
3368 */
3369 if (sc2 == NULL)
3370 panic("syn_cache_insert: bucketoverflow: impossible");
3371 #endif
3372 syn_cache_rm(sc2);
3373 syn_cache_put(sc2); /* calls pool_put but see spl above */
3374 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3375 struct syn_cache_head *scp2, *sce;
3376
3377 tcpstat.tcps_sc_overflowed++;
3378 /*
3379 * The cache is full. Toss the oldest entry in the
3380 * first non-empty bucket we can find.
3381 *
3382 * XXX We would really like to toss the oldest
3383 * entry in the cache, but we hope that this
3384 * condition doesn't happen very often.
3385 */
3386 scp2 = scp;
3387 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3388 sce = &tcp_syn_cache[tcp_syn_cache_size];
3389 for (++scp2; scp2 != scp; scp2++) {
3390 if (scp2 >= sce)
3391 scp2 = &tcp_syn_cache[0];
3392 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3393 break;
3394 }
3395 #ifdef DIAGNOSTIC
3396 /*
3397 * This should never happen; we should always find a
3398 * non-empty bucket.
3399 */
3400 if (scp2 == scp)
3401 panic("syn_cache_insert: cacheoverflow: "
3402 "impossible");
3403 #endif
3404 }
3405 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3406 syn_cache_rm(sc2);
3407 syn_cache_put(sc2); /* calls pool_put but see spl above */
3408 }
3409
3410 /*
3411 * Initialize the entry's timer.
3412 */
3413 sc->sc_rxttot = 0;
3414 sc->sc_rxtshift = 0;
3415 SYN_CACHE_TIMER_ARM(sc);
3416
3417 /* Link it from tcpcb entry */
3418 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3419
3420 /* Put it into the bucket. */
3421 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3422 scp->sch_length++;
3423 syn_cache_count++;
3424
3425 tcpstat.tcps_sc_added++;
3426 splx(s);
3427 }
3428
3429 /*
3430 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3431 * If we have retransmitted an entry the maximum number of times, expire
3432 * that entry.
3433 */
3434 void
3435 syn_cache_timer(void *arg)
3436 {
3437 struct syn_cache *sc = arg;
3438 int s;
3439
3440 s = splsoftnet();
3441 callout_ack(&sc->sc_timer);
3442
3443 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3444 tcpstat.tcps_sc_delayed_free++;
3445 callout_destroy(&sc->sc_timer);
3446 pool_put(&syn_cache_pool, sc);
3447 splx(s);
3448 return;
3449 }
3450
3451 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3452 /* Drop it -- too many retransmissions. */
3453 goto dropit;
3454 }
3455
3456 /*
3457 * Compute the total amount of time this entry has
3458 * been on a queue. If this entry has been on longer
3459 * than the keep alive timer would allow, expire it.
3460 */
3461 sc->sc_rxttot += sc->sc_rxtcur;
3462 if (sc->sc_rxttot >= tcp_keepinit)
3463 goto dropit;
3464
3465 tcpstat.tcps_sc_retransmitted++;
3466 (void) syn_cache_respond(sc, NULL);
3467
3468 /* Advance the timer back-off. */
3469 sc->sc_rxtshift++;
3470 SYN_CACHE_TIMER_ARM(sc);
3471
3472 splx(s);
3473 return;
3474
3475 dropit:
3476 tcpstat.tcps_sc_timed_out++;
3477 syn_cache_rm(sc);
3478 syn_cache_put(sc); /* calls pool_put but see spl above */
3479 splx(s);
3480 }
3481
3482 /*
3483 * Remove syn cache created by the specified tcb entry,
3484 * because this does not make sense to keep them
3485 * (if there's no tcb entry, syn cache entry will never be used)
3486 */
3487 void
3488 syn_cache_cleanup(struct tcpcb *tp)
3489 {
3490 struct syn_cache *sc, *nsc;
3491 int s;
3492
3493 s = splsoftnet();
3494
3495 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3496 nsc = LIST_NEXT(sc, sc_tpq);
3497
3498 #ifdef DIAGNOSTIC
3499 if (sc->sc_tp != tp)
3500 panic("invalid sc_tp in syn_cache_cleanup");
3501 #endif
3502 syn_cache_rm(sc);
3503 syn_cache_put(sc); /* calls pool_put but see spl above */
3504 }
3505 /* just for safety */
3506 LIST_INIT(&tp->t_sc);
3507
3508 splx(s);
3509 }
3510
3511 /*
3512 * Find an entry in the syn cache.
3513 */
3514 struct syn_cache *
3515 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3516 struct syn_cache_head **headp)
3517 {
3518 struct syn_cache *sc;
3519 struct syn_cache_head *scp;
3520 u_int32_t hash;
3521 int s;
3522
3523 SYN_HASHALL(hash, src, dst);
3524
3525 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3526 *headp = scp;
3527 s = splsoftnet();
3528 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3529 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3530 if (sc->sc_hash != hash)
3531 continue;
3532 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3533 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3534 splx(s);
3535 return (sc);
3536 }
3537 }
3538 splx(s);
3539 return (NULL);
3540 }
3541
3542 /*
3543 * This function gets called when we receive an ACK for a
3544 * socket in the LISTEN state. We look up the connection
3545 * in the syn cache, and if its there, we pull it out of
3546 * the cache and turn it into a full-blown connection in
3547 * the SYN-RECEIVED state.
3548 *
3549 * The return values may not be immediately obvious, and their effects
3550 * can be subtle, so here they are:
3551 *
3552 * NULL SYN was not found in cache; caller should drop the
3553 * packet and send an RST.
3554 *
3555 * -1 We were unable to create the new connection, and are
3556 * aborting it. An ACK,RST is being sent to the peer
3557 * (unless we got screwey sequence numbners; see below),
3558 * because the 3-way handshake has been completed. Caller
3559 * should not free the mbuf, since we may be using it. If
3560 * we are not, we will free it.
3561 *
3562 * Otherwise, the return value is a pointer to the new socket
3563 * associated with the connection.
3564 */
3565 struct socket *
3566 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3567 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3568 struct socket *so, struct mbuf *m)
3569 {
3570 struct syn_cache *sc;
3571 struct syn_cache_head *scp;
3572 struct inpcb *inp = NULL;
3573 #ifdef INET6
3574 struct in6pcb *in6p = NULL;
3575 #endif
3576 struct tcpcb *tp = 0;
3577 struct mbuf *am;
3578 int s;
3579 struct socket *oso;
3580
3581 s = splsoftnet();
3582 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3583 splx(s);
3584 return (NULL);
3585 }
3586
3587 /*
3588 * Verify the sequence and ack numbers. Try getting the correct
3589 * response again.
3590 */
3591 if ((th->th_ack != sc->sc_iss + 1) ||
3592 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3593 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3594 (void) syn_cache_respond(sc, m);
3595 splx(s);
3596 return ((struct socket *)(-1));
3597 }
3598
3599 /* Remove this cache entry */
3600 syn_cache_rm(sc);
3601 splx(s);
3602
3603 /*
3604 * Ok, create the full blown connection, and set things up
3605 * as they would have been set up if we had created the
3606 * connection when the SYN arrived. If we can't create
3607 * the connection, abort it.
3608 */
3609 /*
3610 * inp still has the OLD in_pcb stuff, set the
3611 * v6-related flags on the new guy, too. This is
3612 * done particularly for the case where an AF_INET6
3613 * socket is bound only to a port, and a v4 connection
3614 * comes in on that port.
3615 * we also copy the flowinfo from the original pcb
3616 * to the new one.
3617 */
3618 oso = so;
3619 so = sonewconn(so, SS_ISCONNECTED);
3620 if (so == NULL)
3621 goto resetandabort;
3622
3623 switch (so->so_proto->pr_domain->dom_family) {
3624 #ifdef INET
3625 case AF_INET:
3626 inp = sotoinpcb(so);
3627 break;
3628 #endif
3629 #ifdef INET6
3630 case AF_INET6:
3631 in6p = sotoin6pcb(so);
3632 break;
3633 #endif
3634 }
3635 switch (src->sa_family) {
3636 #ifdef INET
3637 case AF_INET:
3638 if (inp) {
3639 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3640 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3641 inp->inp_options = ip_srcroute();
3642 in_pcbstate(inp, INP_BOUND);
3643 if (inp->inp_options == NULL) {
3644 inp->inp_options = sc->sc_ipopts;
3645 sc->sc_ipopts = NULL;
3646 }
3647 }
3648 #ifdef INET6
3649 else if (in6p) {
3650 /* IPv4 packet to AF_INET6 socket */
3651 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3652 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3653 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3654 &in6p->in6p_laddr.s6_addr32[3],
3655 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3656 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3657 in6totcpcb(in6p)->t_family = AF_INET;
3658 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3659 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3660 else
3661 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3662 in6_pcbstate(in6p, IN6P_BOUND);
3663 }
3664 #endif
3665 break;
3666 #endif
3667 #ifdef INET6
3668 case AF_INET6:
3669 if (in6p) {
3670 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3671 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3672 in6_pcbstate(in6p, IN6P_BOUND);
3673 }
3674 break;
3675 #endif
3676 }
3677 #ifdef INET6
3678 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3679 struct in6pcb *oin6p = sotoin6pcb(oso);
3680 /* inherit socket options from the listening socket */
3681 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3682 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3683 m_freem(in6p->in6p_options);
3684 in6p->in6p_options = 0;
3685 }
3686 ip6_savecontrol(in6p, &in6p->in6p_options,
3687 mtod(m, struct ip6_hdr *), m);
3688 }
3689 #endif
3690
3691 #if defined(IPSEC) || defined(FAST_IPSEC)
3692 /*
3693 * we make a copy of policy, instead of sharing the policy,
3694 * for better behavior in terms of SA lookup and dead SA removal.
3695 */
3696 if (inp) {
3697 /* copy old policy into new socket's */
3698 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3699 printf("tcp_input: could not copy policy\n");
3700 }
3701 #ifdef INET6
3702 else if (in6p) {
3703 /* copy old policy into new socket's */
3704 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3705 in6p->in6p_sp))
3706 printf("tcp_input: could not copy policy\n");
3707 }
3708 #endif
3709 #endif
3710
3711 /*
3712 * Give the new socket our cached route reference.
3713 */
3714 if (inp) {
3715 rtcache_copy(&inp->inp_route, &sc->sc_route);
3716 rtcache_free(&sc->sc_route);
3717 }
3718 #ifdef INET6
3719 else {
3720 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3721 rtcache_free(&sc->sc_route);
3722 }
3723 #endif
3724
3725 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3726 if (am == NULL)
3727 goto resetandabort;
3728 MCLAIM(am, &tcp_mowner);
3729 am->m_len = src->sa_len;
3730 bcopy(src, mtod(am, void *), src->sa_len);
3731 if (inp) {
3732 if (in_pcbconnect(inp, am, &lwp0)) {
3733 (void) m_free(am);
3734 goto resetandabort;
3735 }
3736 }
3737 #ifdef INET6
3738 else if (in6p) {
3739 if (src->sa_family == AF_INET) {
3740 /* IPv4 packet to AF_INET6 socket */
3741 struct sockaddr_in6 *sin6;
3742 sin6 = mtod(am, struct sockaddr_in6 *);
3743 am->m_len = sizeof(*sin6);
3744 bzero(sin6, sizeof(*sin6));
3745 sin6->sin6_family = AF_INET6;
3746 sin6->sin6_len = sizeof(*sin6);
3747 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3748 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3749 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3750 &sin6->sin6_addr.s6_addr32[3],
3751 sizeof(sin6->sin6_addr.s6_addr32[3]));
3752 }
3753 if (in6_pcbconnect(in6p, am, NULL)) {
3754 (void) m_free(am);
3755 goto resetandabort;
3756 }
3757 }
3758 #endif
3759 else {
3760 (void) m_free(am);
3761 goto resetandabort;
3762 }
3763 (void) m_free(am);
3764
3765 if (inp)
3766 tp = intotcpcb(inp);
3767 #ifdef INET6
3768 else if (in6p)
3769 tp = in6totcpcb(in6p);
3770 #endif
3771 else
3772 tp = NULL;
3773 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3774 if (sc->sc_request_r_scale != 15) {
3775 tp->requested_s_scale = sc->sc_requested_s_scale;
3776 tp->request_r_scale = sc->sc_request_r_scale;
3777 tp->snd_scale = sc->sc_requested_s_scale;
3778 tp->rcv_scale = sc->sc_request_r_scale;
3779 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3780 }
3781 if (sc->sc_flags & SCF_TIMESTAMP)
3782 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3783 tp->ts_timebase = sc->sc_timebase;
3784
3785 tp->t_template = tcp_template(tp);
3786 if (tp->t_template == 0) {
3787 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3788 so = NULL;
3789 m_freem(m);
3790 goto abort;
3791 }
3792
3793 tp->iss = sc->sc_iss;
3794 tp->irs = sc->sc_irs;
3795 tcp_sendseqinit(tp);
3796 tcp_rcvseqinit(tp);
3797 tp->t_state = TCPS_SYN_RECEIVED;
3798 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3799 tcpstat.tcps_accepts++;
3800
3801 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3802 tp->t_flags |= TF_WILL_SACK;
3803
3804 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3805 tp->t_flags |= TF_ECN_PERMIT;
3806
3807 #ifdef TCP_SIGNATURE
3808 if (sc->sc_flags & SCF_SIGNATURE)
3809 tp->t_flags |= TF_SIGNATURE;
3810 #endif
3811
3812 /* Initialize tp->t_ourmss before we deal with the peer's! */
3813 tp->t_ourmss = sc->sc_ourmaxseg;
3814 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3815
3816 /*
3817 * Initialize the initial congestion window. If we
3818 * had to retransmit the SYN,ACK, we must initialize cwnd
3819 * to 1 segment (i.e. the Loss Window).
3820 */
3821 if (sc->sc_rxtshift)
3822 tp->snd_cwnd = tp->t_peermss;
3823 else {
3824 int ss = tcp_init_win;
3825 #ifdef INET
3826 if (inp != NULL && in_localaddr(inp->inp_faddr))
3827 ss = tcp_init_win_local;
3828 #endif
3829 #ifdef INET6
3830 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3831 ss = tcp_init_win_local;
3832 #endif
3833 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3834 }
3835
3836 tcp_rmx_rtt(tp);
3837 tp->snd_wl1 = sc->sc_irs;
3838 tp->rcv_up = sc->sc_irs + 1;
3839
3840 /*
3841 * This is what whould have happened in tcp_output() when
3842 * the SYN,ACK was sent.
3843 */
3844 tp->snd_up = tp->snd_una;
3845 tp->snd_max = tp->snd_nxt = tp->iss+1;
3846 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3847 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3848 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3849 tp->last_ack_sent = tp->rcv_nxt;
3850 tp->t_partialacks = -1;
3851 tp->t_dupacks = 0;
3852
3853 tcpstat.tcps_sc_completed++;
3854 s = splsoftnet();
3855 syn_cache_put(sc);
3856 splx(s);
3857 return (so);
3858
3859 resetandabort:
3860 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3861 abort:
3862 if (so != NULL)
3863 (void) soabort(so);
3864 s = splsoftnet();
3865 syn_cache_put(sc);
3866 splx(s);
3867 tcpstat.tcps_sc_aborted++;
3868 return ((struct socket *)(-1));
3869 }
3870
3871 /*
3872 * This function is called when we get a RST for a
3873 * non-existent connection, so that we can see if the
3874 * connection is in the syn cache. If it is, zap it.
3875 */
3876
3877 void
3878 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3879 {
3880 struct syn_cache *sc;
3881 struct syn_cache_head *scp;
3882 int s = splsoftnet();
3883
3884 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3885 splx(s);
3886 return;
3887 }
3888 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3889 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3890 splx(s);
3891 return;
3892 }
3893 syn_cache_rm(sc);
3894 tcpstat.tcps_sc_reset++;
3895 syn_cache_put(sc); /* calls pool_put but see spl above */
3896 splx(s);
3897 }
3898
3899 void
3900 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3901 struct tcphdr *th)
3902 {
3903 struct syn_cache *sc;
3904 struct syn_cache_head *scp;
3905 int s;
3906
3907 s = splsoftnet();
3908 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3909 splx(s);
3910 return;
3911 }
3912 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3913 if (ntohl (th->th_seq) != sc->sc_iss) {
3914 splx(s);
3915 return;
3916 }
3917
3918 /*
3919 * If we've retransmitted 3 times and this is our second error,
3920 * we remove the entry. Otherwise, we allow it to continue on.
3921 * This prevents us from incorrectly nuking an entry during a
3922 * spurious network outage.
3923 *
3924 * See tcp_notify().
3925 */
3926 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3927 sc->sc_flags |= SCF_UNREACH;
3928 splx(s);
3929 return;
3930 }
3931
3932 syn_cache_rm(sc);
3933 tcpstat.tcps_sc_unreach++;
3934 syn_cache_put(sc); /* calls pool_put but see spl above */
3935 splx(s);
3936 }
3937
3938 /*
3939 * Given a LISTEN socket and an inbound SYN request, add
3940 * this to the syn cache, and send back a segment:
3941 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3942 * to the source.
3943 *
3944 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3945 * Doing so would require that we hold onto the data and deliver it
3946 * to the application. However, if we are the target of a SYN-flood
3947 * DoS attack, an attacker could send data which would eventually
3948 * consume all available buffer space if it were ACKed. By not ACKing
3949 * the data, we avoid this DoS scenario.
3950 */
3951
3952 int
3953 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3954 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3955 int optlen, struct tcp_opt_info *oi)
3956 {
3957 struct tcpcb tb, *tp;
3958 long win;
3959 struct syn_cache *sc;
3960 struct syn_cache_head *scp;
3961 struct mbuf *ipopts;
3962 struct tcp_opt_info opti;
3963 int s;
3964
3965 tp = sototcpcb(so);
3966
3967 bzero(&opti, sizeof(opti));
3968
3969 /*
3970 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3971 *
3972 * Note this check is performed in tcp_input() very early on.
3973 */
3974
3975 /*
3976 * Initialize some local state.
3977 */
3978 win = sbspace(&so->so_rcv);
3979 if (win > TCP_MAXWIN)
3980 win = TCP_MAXWIN;
3981
3982 switch (src->sa_family) {
3983 #ifdef INET
3984 case AF_INET:
3985 /*
3986 * Remember the IP options, if any.
3987 */
3988 ipopts = ip_srcroute();
3989 break;
3990 #endif
3991 default:
3992 ipopts = NULL;
3993 }
3994
3995 #ifdef TCP_SIGNATURE
3996 if (optp || (tp->t_flags & TF_SIGNATURE))
3997 #else
3998 if (optp)
3999 #endif
4000 {
4001 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4002 #ifdef TCP_SIGNATURE
4003 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4004 #endif
4005 tb.t_state = TCPS_LISTEN;
4006 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4007 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4008 return (0);
4009 } else
4010 tb.t_flags = 0;
4011
4012 /*
4013 * See if we already have an entry for this connection.
4014 * If we do, resend the SYN,ACK. We do not count this
4015 * as a retransmission (XXX though maybe we should).
4016 */
4017 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4018 tcpstat.tcps_sc_dupesyn++;
4019 if (ipopts) {
4020 /*
4021 * If we were remembering a previous source route,
4022 * forget it and use the new one we've been given.
4023 */
4024 if (sc->sc_ipopts)
4025 (void) m_free(sc->sc_ipopts);
4026 sc->sc_ipopts = ipopts;
4027 }
4028 sc->sc_timestamp = tb.ts_recent;
4029 if (syn_cache_respond(sc, m) == 0) {
4030 tcpstat.tcps_sndacks++;
4031 tcpstat.tcps_sndtotal++;
4032 }
4033 return (1);
4034 }
4035
4036 s = splsoftnet();
4037 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4038 splx(s);
4039 if (sc == NULL) {
4040 if (ipopts)
4041 (void) m_free(ipopts);
4042 return (0);
4043 }
4044
4045 /*
4046 * Fill in the cache, and put the necessary IP and TCP
4047 * options into the reply.
4048 */
4049 bzero(sc, sizeof(struct syn_cache));
4050 callout_init(&sc->sc_timer, 0);
4051 bcopy(src, &sc->sc_src, src->sa_len);
4052 bcopy(dst, &sc->sc_dst, dst->sa_len);
4053 sc->sc_flags = 0;
4054 sc->sc_ipopts = ipopts;
4055 sc->sc_irs = th->th_seq;
4056 switch (src->sa_family) {
4057 #ifdef INET
4058 case AF_INET:
4059 {
4060 struct sockaddr_in *srcin = (void *) src;
4061 struct sockaddr_in *dstin = (void *) dst;
4062
4063 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4064 &srcin->sin_addr, dstin->sin_port,
4065 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4066 break;
4067 }
4068 #endif /* INET */
4069 #ifdef INET6
4070 case AF_INET6:
4071 {
4072 struct sockaddr_in6 *srcin6 = (void *) src;
4073 struct sockaddr_in6 *dstin6 = (void *) dst;
4074
4075 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4076 &srcin6->sin6_addr, dstin6->sin6_port,
4077 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4078 break;
4079 }
4080 #endif /* INET6 */
4081 }
4082 sc->sc_peermaxseg = oi->maxseg;
4083 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4084 m->m_pkthdr.rcvif : NULL,
4085 sc->sc_src.sa.sa_family);
4086 sc->sc_win = win;
4087 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
4088 sc->sc_timestamp = tb.ts_recent;
4089 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4090 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4091 sc->sc_flags |= SCF_TIMESTAMP;
4092 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4093 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4094 sc->sc_requested_s_scale = tb.requested_s_scale;
4095 sc->sc_request_r_scale = 0;
4096 /*
4097 * Pick the smallest possible scaling factor that
4098 * will still allow us to scale up to sb_max.
4099 *
4100 * We do this because there are broken firewalls that
4101 * will corrupt the window scale option, leading to
4102 * the other endpoint believing that our advertised
4103 * window is unscaled. At scale factors larger than
4104 * 5 the unscaled window will drop below 1500 bytes,
4105 * leading to serious problems when traversing these
4106 * broken firewalls.
4107 *
4108 * With the default sbmax of 256K, a scale factor
4109 * of 3 will be chosen by this algorithm. Those who
4110 * choose a larger sbmax should watch out
4111 * for the compatiblity problems mentioned above.
4112 *
4113 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4114 * or <SYN,ACK>) segment itself is never scaled.
4115 */
4116 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4117 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4118 sc->sc_request_r_scale++;
4119 } else {
4120 sc->sc_requested_s_scale = 15;
4121 sc->sc_request_r_scale = 15;
4122 }
4123 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4124 sc->sc_flags |= SCF_SACK_PERMIT;
4125
4126 /*
4127 * ECN setup packet recieved.
4128 */
4129 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4130 sc->sc_flags |= SCF_ECN_PERMIT;
4131
4132 #ifdef TCP_SIGNATURE
4133 if (tb.t_flags & TF_SIGNATURE)
4134 sc->sc_flags |= SCF_SIGNATURE;
4135 #endif
4136 sc->sc_tp = tp;
4137 if (syn_cache_respond(sc, m) == 0) {
4138 syn_cache_insert(sc, tp);
4139 tcpstat.tcps_sndacks++;
4140 tcpstat.tcps_sndtotal++;
4141 } else {
4142 s = splsoftnet();
4143 syn_cache_put(sc);
4144 splx(s);
4145 tcpstat.tcps_sc_dropped++;
4146 }
4147 return (1);
4148 }
4149
4150 int
4151 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4152 {
4153 #ifdef INET6
4154 struct rtentry *rt;
4155 #endif
4156 struct route *ro;
4157 u_int8_t *optp;
4158 int optlen, error;
4159 u_int16_t tlen;
4160 struct ip *ip = NULL;
4161 #ifdef INET6
4162 struct ip6_hdr *ip6 = NULL;
4163 #endif
4164 struct tcpcb *tp = NULL;
4165 struct tcphdr *th;
4166 u_int hlen;
4167 struct socket *so;
4168
4169 ro = &sc->sc_route;
4170 switch (sc->sc_src.sa.sa_family) {
4171 case AF_INET:
4172 hlen = sizeof(struct ip);
4173 break;
4174 #ifdef INET6
4175 case AF_INET6:
4176 hlen = sizeof(struct ip6_hdr);
4177 break;
4178 #endif
4179 default:
4180 if (m)
4181 m_freem(m);
4182 return (EAFNOSUPPORT);
4183 }
4184
4185 /* Compute the size of the TCP options. */
4186 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4187 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4188 #ifdef TCP_SIGNATURE
4189 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4190 #endif
4191 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4192
4193 tlen = hlen + sizeof(struct tcphdr) + optlen;
4194
4195 /*
4196 * Create the IP+TCP header from scratch.
4197 */
4198 if (m)
4199 m_freem(m);
4200 #ifdef DIAGNOSTIC
4201 if (max_linkhdr + tlen > MCLBYTES)
4202 return (ENOBUFS);
4203 #endif
4204 MGETHDR(m, M_DONTWAIT, MT_DATA);
4205 if (m && tlen > MHLEN) {
4206 MCLGET(m, M_DONTWAIT);
4207 if ((m->m_flags & M_EXT) == 0) {
4208 m_freem(m);
4209 m = NULL;
4210 }
4211 }
4212 if (m == NULL)
4213 return (ENOBUFS);
4214 MCLAIM(m, &tcp_tx_mowner);
4215
4216 /* Fixup the mbuf. */
4217 m->m_data += max_linkhdr;
4218 m->m_len = m->m_pkthdr.len = tlen;
4219 if (sc->sc_tp) {
4220 tp = sc->sc_tp;
4221 if (tp->t_inpcb)
4222 so = tp->t_inpcb->inp_socket;
4223 #ifdef INET6
4224 else if (tp->t_in6pcb)
4225 so = tp->t_in6pcb->in6p_socket;
4226 #endif
4227 else
4228 so = NULL;
4229 } else
4230 so = NULL;
4231 m->m_pkthdr.rcvif = NULL;
4232 memset(mtod(m, u_char *), 0, tlen);
4233
4234 switch (sc->sc_src.sa.sa_family) {
4235 case AF_INET:
4236 ip = mtod(m, struct ip *);
4237 ip->ip_v = 4;
4238 ip->ip_dst = sc->sc_src.sin.sin_addr;
4239 ip->ip_src = sc->sc_dst.sin.sin_addr;
4240 ip->ip_p = IPPROTO_TCP;
4241 th = (struct tcphdr *)(ip + 1);
4242 th->th_dport = sc->sc_src.sin.sin_port;
4243 th->th_sport = sc->sc_dst.sin.sin_port;
4244 break;
4245 #ifdef INET6
4246 case AF_INET6:
4247 ip6 = mtod(m, struct ip6_hdr *);
4248 ip6->ip6_vfc = IPV6_VERSION;
4249 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4250 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4251 ip6->ip6_nxt = IPPROTO_TCP;
4252 /* ip6_plen will be updated in ip6_output() */
4253 th = (struct tcphdr *)(ip6 + 1);
4254 th->th_dport = sc->sc_src.sin6.sin6_port;
4255 th->th_sport = sc->sc_dst.sin6.sin6_port;
4256 break;
4257 #endif
4258 default:
4259 th = NULL;
4260 }
4261
4262 th->th_seq = htonl(sc->sc_iss);
4263 th->th_ack = htonl(sc->sc_irs + 1);
4264 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4265 th->th_flags = TH_SYN|TH_ACK;
4266 th->th_win = htons(sc->sc_win);
4267 /* th_sum already 0 */
4268 /* th_urp already 0 */
4269
4270 /* Tack on the TCP options. */
4271 optp = (u_int8_t *)(th + 1);
4272 *optp++ = TCPOPT_MAXSEG;
4273 *optp++ = 4;
4274 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4275 *optp++ = sc->sc_ourmaxseg & 0xff;
4276
4277 if (sc->sc_request_r_scale != 15) {
4278 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4279 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4280 sc->sc_request_r_scale);
4281 optp += 4;
4282 }
4283
4284 if (sc->sc_flags & SCF_TIMESTAMP) {
4285 u_int32_t *lp = (u_int32_t *)(optp);
4286 /* Form timestamp option as shown in appendix A of RFC 1323. */
4287 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4288 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4289 *lp = htonl(sc->sc_timestamp);
4290 optp += TCPOLEN_TSTAMP_APPA;
4291 }
4292
4293 if (sc->sc_flags & SCF_SACK_PERMIT) {
4294 u_int8_t *p = optp;
4295
4296 /* Let the peer know that we will SACK. */
4297 p[0] = TCPOPT_SACK_PERMITTED;
4298 p[1] = 2;
4299 p[2] = TCPOPT_NOP;
4300 p[3] = TCPOPT_NOP;
4301 optp += 4;
4302 }
4303
4304 /*
4305 * Send ECN SYN-ACK setup packet.
4306 * Routes can be asymetric, so, even if we receive a packet
4307 * with ECE and CWR set, we must not assume no one will block
4308 * the ECE packet we are about to send.
4309 */
4310 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4311 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4312 th->th_flags |= TH_ECE;
4313 tcpstat.tcps_ecn_shs++;
4314
4315 /*
4316 * draft-ietf-tcpm-ecnsyn-00.txt
4317 *
4318 * "[...] a TCP node MAY respond to an ECN-setup
4319 * SYN packet by setting ECT in the responding
4320 * ECN-setup SYN/ACK packet, indicating to routers
4321 * that the SYN/ACK packet is ECN-Capable.
4322 * This allows a congested router along the path
4323 * to mark the packet instead of dropping the
4324 * packet as an indication of congestion."
4325 *
4326 * "[...] There can be a great benefit in setting
4327 * an ECN-capable codepoint in SYN/ACK packets [...]
4328 * Congestion is most likely to occur in
4329 * the server-to-client direction. As a result,
4330 * setting an ECN-capable codepoint in SYN/ACK
4331 * packets can reduce the occurence of three-second
4332 * retransmit timeouts resulting from the drop
4333 * of SYN/ACK packets."
4334 *
4335 * Page 4 and 6, January 2006.
4336 */
4337
4338 switch (sc->sc_src.sa.sa_family) {
4339 #ifdef INET
4340 case AF_INET:
4341 ip->ip_tos |= IPTOS_ECN_ECT0;
4342 break;
4343 #endif
4344 #ifdef INET6
4345 case AF_INET6:
4346 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4347 break;
4348 #endif
4349 }
4350 tcpstat.tcps_ecn_ect++;
4351 }
4352
4353 #ifdef TCP_SIGNATURE
4354 if (sc->sc_flags & SCF_SIGNATURE) {
4355 struct secasvar *sav;
4356 u_int8_t *sigp;
4357
4358 sav = tcp_signature_getsav(m, th);
4359
4360 if (sav == NULL) {
4361 if (m)
4362 m_freem(m);
4363 return (EPERM);
4364 }
4365
4366 *optp++ = TCPOPT_SIGNATURE;
4367 *optp++ = TCPOLEN_SIGNATURE;
4368 sigp = optp;
4369 bzero(optp, TCP_SIGLEN);
4370 optp += TCP_SIGLEN;
4371 *optp++ = TCPOPT_NOP;
4372 *optp++ = TCPOPT_EOL;
4373
4374 (void)tcp_signature(m, th, hlen, sav, sigp);
4375
4376 key_sa_recordxfer(sav, m);
4377 #ifdef FAST_IPSEC
4378 KEY_FREESAV(&sav);
4379 #else
4380 key_freesav(sav);
4381 #endif
4382 }
4383 #endif
4384
4385 /* Compute the packet's checksum. */
4386 switch (sc->sc_src.sa.sa_family) {
4387 case AF_INET:
4388 ip->ip_len = htons(tlen - hlen);
4389 th->th_sum = 0;
4390 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4391 break;
4392 #ifdef INET6
4393 case AF_INET6:
4394 ip6->ip6_plen = htons(tlen - hlen);
4395 th->th_sum = 0;
4396 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4397 break;
4398 #endif
4399 }
4400
4401 /*
4402 * Fill in some straggling IP bits. Note the stack expects
4403 * ip_len to be in host order, for convenience.
4404 */
4405 switch (sc->sc_src.sa.sa_family) {
4406 #ifdef INET
4407 case AF_INET:
4408 ip->ip_len = htons(tlen);
4409 ip->ip_ttl = ip_defttl;
4410 /* XXX tos? */
4411 break;
4412 #endif
4413 #ifdef INET6
4414 case AF_INET6:
4415 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4416 ip6->ip6_vfc |= IPV6_VERSION;
4417 ip6->ip6_plen = htons(tlen - hlen);
4418 /* ip6_hlim will be initialized afterwards */
4419 /* XXX flowlabel? */
4420 break;
4421 #endif
4422 }
4423
4424 /* XXX use IPsec policy on listening socket, on SYN ACK */
4425 tp = sc->sc_tp;
4426
4427 switch (sc->sc_src.sa.sa_family) {
4428 #ifdef INET
4429 case AF_INET:
4430 error = ip_output(m, sc->sc_ipopts, ro,
4431 (ip_mtudisc ? IP_MTUDISC : 0),
4432 (struct ip_moptions *)NULL, so);
4433 break;
4434 #endif
4435 #ifdef INET6
4436 case AF_INET6:
4437 ip6->ip6_hlim = in6_selecthlim(NULL,
4438 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4439 : NULL);
4440
4441 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4442 break;
4443 #endif
4444 default:
4445 error = EAFNOSUPPORT;
4446 break;
4447 }
4448 return (error);
4449 }
4450