tcp_input.c revision 1.278 1 /* $NetBSD: tcp_input.c,v 1.278 2008/02/04 23:56:14 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 * 3. All advertising materials mentioning features or use of this software
93 * must display the following acknowledgement:
94 * This product includes software developed by the NetBSD
95 * Foundation, Inc. and its contributors.
96 * 4. Neither the name of The NetBSD Foundation nor the names of its
97 * contributors may be used to endorse or promote products derived
98 * from this software without specific prior written permission.
99 *
100 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
101 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
102 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
103 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
104 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
105 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
106 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
107 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
108 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
109 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
110 * POSSIBILITY OF SUCH DAMAGE.
111 */
112
113 /*
114 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
115 * The Regents of the University of California. All rights reserved.
116 *
117 * Redistribution and use in source and binary forms, with or without
118 * modification, are permitted provided that the following conditions
119 * are met:
120 * 1. Redistributions of source code must retain the above copyright
121 * notice, this list of conditions and the following disclaimer.
122 * 2. Redistributions in binary form must reproduce the above copyright
123 * notice, this list of conditions and the following disclaimer in the
124 * documentation and/or other materials provided with the distribution.
125 * 3. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.278 2008/02/04 23:56:14 yamt Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 #ifdef TCP_SIGNATURE
175 #include <sys/md5.h>
176 #endif
177 #include <sys/lwp.h> /* for lwp0 */
178
179 #include <net/if.h>
180 #include <net/route.h>
181 #include <net/if_types.h>
182
183 #include <netinet/in.h>
184 #include <netinet/in_systm.h>
185 #include <netinet/ip.h>
186 #include <netinet/in_pcb.h>
187 #include <netinet/in_var.h>
188 #include <netinet/ip_var.h>
189 #include <netinet/in_offload.h>
190
191 #ifdef INET6
192 #ifndef INET
193 #include <netinet/in.h>
194 #endif
195 #include <netinet/ip6.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_pcb.h>
198 #include <netinet6/ip6_var.h>
199 #include <netinet6/in6_var.h>
200 #include <netinet/icmp6.h>
201 #include <netinet6/nd6.h>
202 #ifdef TCP_SIGNATURE
203 #include <netinet6/scope6_var.h>
204 #endif
205 #endif
206
207 #ifndef INET6
208 /* always need ip6.h for IP6_EXTHDR_GET */
209 #include <netinet/ip6.h>
210 #endif
211
212 #include <netinet/tcp.h>
213 #include <netinet/tcp_fsm.h>
214 #include <netinet/tcp_seq.h>
215 #include <netinet/tcp_timer.h>
216 #include <netinet/tcp_var.h>
217 #include <netinet/tcpip.h>
218 #include <netinet/tcp_congctl.h>
219 #include <netinet/tcp_debug.h>
220
221 #include <machine/stdarg.h>
222
223 #ifdef IPSEC
224 #include <netinet6/ipsec.h>
225 #include <netkey/key.h>
226 #endif /*IPSEC*/
227 #ifdef INET6
228 #include "faith.h"
229 #if defined(NFAITH) && NFAITH > 0
230 #include <net/if_faith.h>
231 #endif
232 #endif /* IPSEC */
233
234 #ifdef FAST_IPSEC
235 #include <netipsec/ipsec.h>
236 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
237 #include <netipsec/key.h>
238 #ifdef INET6
239 #include <netipsec/ipsec6.h>
240 #endif
241 #endif /* FAST_IPSEC*/
242
243 int tcprexmtthresh = 3;
244 int tcp_log_refused;
245
246 int tcp_do_autorcvbuf = 0;
247 int tcp_autorcvbuf_inc = 16 * 1024;
248 int tcp_autorcvbuf_max = 256 * 1024;
249
250 static int tcp_rst_ppslim_count = 0;
251 static struct timeval tcp_rst_ppslim_last;
252 static int tcp_ackdrop_ppslim_count = 0;
253 static struct timeval tcp_ackdrop_ppslim_last;
254
255 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
256
257 /* for modulo comparisons of timestamps */
258 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
259 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
260
261 /*
262 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
263 */
264 #ifdef INET6
265 static inline void
266 nd6_hint(struct tcpcb *tp)
267 {
268 struct rtentry *rt;
269
270 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
271 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
272 nd6_nud_hint(rt, NULL, 0);
273 }
274 #else
275 static inline void
276 nd6_hint(struct tcpcb *tp)
277 {
278 }
279 #endif
280
281 /*
282 * Macro to compute ACK transmission behavior. Delay the ACK unless
283 * we have already delayed an ACK (must send an ACK every two segments).
284 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
285 * option is enabled.
286 */
287 #define TCP_SETUP_ACK(tp, th) \
288 do { \
289 if ((tp)->t_flags & TF_DELACK || \
290 (tcp_ack_on_push && (th)->th_flags & TH_PUSH)) \
291 tp->t_flags |= TF_ACKNOW; \
292 else \
293 TCP_SET_DELACK(tp); \
294 } while (/*CONSTCOND*/ 0)
295
296 #define ICMP_CHECK(tp, th, acked) \
297 do { \
298 /* \
299 * If we had a pending ICMP message that \
300 * refers to data that have just been \
301 * acknowledged, disregard the recorded ICMP \
302 * message. \
303 */ \
304 if (((tp)->t_flags & TF_PMTUD_PEND) && \
305 SEQ_GT((th)->th_ack, (tp)->t_pmtud_th_seq)) \
306 (tp)->t_flags &= ~TF_PMTUD_PEND; \
307 \
308 /* \
309 * Keep track of the largest chunk of data \
310 * acknowledged since last PMTU update \
311 */ \
312 if ((tp)->t_pmtud_mss_acked < (acked)) \
313 (tp)->t_pmtud_mss_acked = (acked); \
314 } while (/*CONSTCOND*/ 0)
315
316 /*
317 * Convert TCP protocol fields to host order for easier processing.
318 */
319 #define TCP_FIELDS_TO_HOST(th) \
320 do { \
321 NTOHL((th)->th_seq); \
322 NTOHL((th)->th_ack); \
323 NTOHS((th)->th_win); \
324 NTOHS((th)->th_urp); \
325 } while (/*CONSTCOND*/ 0)
326
327 /*
328 * ... and reverse the above.
329 */
330 #define TCP_FIELDS_TO_NET(th) \
331 do { \
332 HTONL((th)->th_seq); \
333 HTONL((th)->th_ack); \
334 HTONS((th)->th_win); \
335 HTONS((th)->th_urp); \
336 } while (/*CONSTCOND*/ 0)
337
338 #ifdef TCP_CSUM_COUNTERS
339 #include <sys/device.h>
340
341 #if defined(INET)
342 extern struct evcnt tcp_hwcsum_ok;
343 extern struct evcnt tcp_hwcsum_bad;
344 extern struct evcnt tcp_hwcsum_data;
345 extern struct evcnt tcp_swcsum;
346 #endif /* defined(INET) */
347 #if defined(INET6)
348 extern struct evcnt tcp6_hwcsum_ok;
349 extern struct evcnt tcp6_hwcsum_bad;
350 extern struct evcnt tcp6_hwcsum_data;
351 extern struct evcnt tcp6_swcsum;
352 #endif /* defined(INET6) */
353
354 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
355
356 #else
357
358 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
359
360 #endif /* TCP_CSUM_COUNTERS */
361
362 #ifdef TCP_REASS_COUNTERS
363 #include <sys/device.h>
364
365 extern struct evcnt tcp_reass_;
366 extern struct evcnt tcp_reass_empty;
367 extern struct evcnt tcp_reass_iteration[8];
368 extern struct evcnt tcp_reass_prependfirst;
369 extern struct evcnt tcp_reass_prepend;
370 extern struct evcnt tcp_reass_insert;
371 extern struct evcnt tcp_reass_inserttail;
372 extern struct evcnt tcp_reass_append;
373 extern struct evcnt tcp_reass_appendtail;
374 extern struct evcnt tcp_reass_overlaptail;
375 extern struct evcnt tcp_reass_overlapfront;
376 extern struct evcnt tcp_reass_segdup;
377 extern struct evcnt tcp_reass_fragdup;
378
379 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
380
381 #else
382
383 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
384
385 #endif /* TCP_REASS_COUNTERS */
386
387 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
388 int *);
389 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
390 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
391
392 #ifdef INET
393 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
394 #endif
395 #ifdef INET6
396 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
397 #endif
398
399 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
400
401 #if defined(MBUFTRACE)
402 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
403 #endif /* defined(MBUFTRACE) */
404
405 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
406 NULL, IPL_VM);
407
408 struct ipqent *
409 tcpipqent_alloc()
410 {
411 struct ipqent *ipqe;
412 int s;
413
414 s = splvm();
415 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
416 splx(s);
417
418 return ipqe;
419 }
420
421 void
422 tcpipqent_free(struct ipqent *ipqe)
423 {
424 int s;
425
426 s = splvm();
427 pool_put(&tcpipqent_pool, ipqe);
428 splx(s);
429 }
430
431 static int
432 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
433 {
434 struct ipqent *p, *q, *nq, *tiqe = NULL;
435 struct socket *so = NULL;
436 int pkt_flags;
437 tcp_seq pkt_seq;
438 unsigned pkt_len;
439 u_long rcvpartdupbyte = 0;
440 u_long rcvoobyte;
441 #ifdef TCP_REASS_COUNTERS
442 u_int count = 0;
443 #endif
444
445 if (tp->t_inpcb)
446 so = tp->t_inpcb->inp_socket;
447 #ifdef INET6
448 else if (tp->t_in6pcb)
449 so = tp->t_in6pcb->in6p_socket;
450 #endif
451
452 TCP_REASS_LOCK_CHECK(tp);
453
454 /*
455 * Call with th==0 after become established to
456 * force pre-ESTABLISHED data up to user socket.
457 */
458 if (th == 0)
459 goto present;
460
461 m_claimm(m, &tcp_reass_mowner);
462
463 rcvoobyte = *tlen;
464 /*
465 * Copy these to local variables because the tcpiphdr
466 * gets munged while we are collapsing mbufs.
467 */
468 pkt_seq = th->th_seq;
469 pkt_len = *tlen;
470 pkt_flags = th->th_flags;
471
472 TCP_REASS_COUNTER_INCR(&tcp_reass_);
473
474 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
475 /*
476 * When we miss a packet, the vast majority of time we get
477 * packets that follow it in order. So optimize for that.
478 */
479 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
480 p->ipqe_len += pkt_len;
481 p->ipqe_flags |= pkt_flags;
482 m_cat(p->ipre_mlast, m);
483 TRAVERSE(p->ipre_mlast);
484 m = NULL;
485 tiqe = p;
486 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
487 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
488 goto skip_replacement;
489 }
490 /*
491 * While we're here, if the pkt is completely beyond
492 * anything we have, just insert it at the tail.
493 */
494 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
495 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
496 goto insert_it;
497 }
498 }
499
500 q = TAILQ_FIRST(&tp->segq);
501
502 if (q != NULL) {
503 /*
504 * If this segment immediately precedes the first out-of-order
505 * block, simply slap the segment in front of it and (mostly)
506 * skip the complicated logic.
507 */
508 if (pkt_seq + pkt_len == q->ipqe_seq) {
509 q->ipqe_seq = pkt_seq;
510 q->ipqe_len += pkt_len;
511 q->ipqe_flags |= pkt_flags;
512 m_cat(m, q->ipqe_m);
513 q->ipqe_m = m;
514 q->ipre_mlast = m; /* last mbuf may have changed */
515 TRAVERSE(q->ipre_mlast);
516 tiqe = q;
517 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
518 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
519 goto skip_replacement;
520 }
521 } else {
522 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
523 }
524
525 /*
526 * Find a segment which begins after this one does.
527 */
528 for (p = NULL; q != NULL; q = nq) {
529 nq = TAILQ_NEXT(q, ipqe_q);
530 #ifdef TCP_REASS_COUNTERS
531 count++;
532 #endif
533 /*
534 * If the received segment is just right after this
535 * fragment, merge the two together and then check
536 * for further overlaps.
537 */
538 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
539 #ifdef TCPREASS_DEBUG
540 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
541 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
542 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
543 #endif
544 pkt_len += q->ipqe_len;
545 pkt_flags |= q->ipqe_flags;
546 pkt_seq = q->ipqe_seq;
547 m_cat(q->ipre_mlast, m);
548 TRAVERSE(q->ipre_mlast);
549 m = q->ipqe_m;
550 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
551 goto free_ipqe;
552 }
553 /*
554 * If the received segment is completely past this
555 * fragment, we need to go the next fragment.
556 */
557 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
558 p = q;
559 continue;
560 }
561 /*
562 * If the fragment is past the received segment,
563 * it (or any following) can't be concatenated.
564 */
565 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
566 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
567 break;
568 }
569
570 /*
571 * We've received all the data in this segment before.
572 * mark it as a duplicate and return.
573 */
574 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
575 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
576 tcpstat.tcps_rcvduppack++;
577 tcpstat.tcps_rcvdupbyte += pkt_len;
578 tcp_new_dsack(tp, pkt_seq, pkt_len);
579 m_freem(m);
580 if (tiqe != NULL) {
581 tcpipqent_free(tiqe);
582 }
583 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
584 return (0);
585 }
586 /*
587 * Received segment completely overlaps this fragment
588 * so we drop the fragment (this keeps the temporal
589 * ordering of segments correct).
590 */
591 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
592 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
593 rcvpartdupbyte += q->ipqe_len;
594 m_freem(q->ipqe_m);
595 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
596 goto free_ipqe;
597 }
598 /*
599 * RX'ed segment extends past the end of the
600 * fragment. Drop the overlapping bytes. Then
601 * merge the fragment and segment then treat as
602 * a longer received packet.
603 */
604 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
605 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
606 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
607 #ifdef TCPREASS_DEBUG
608 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
609 tp, overlap,
610 pkt_seq, pkt_seq + pkt_len, pkt_len);
611 #endif
612 m_adj(m, overlap);
613 rcvpartdupbyte += overlap;
614 m_cat(q->ipre_mlast, m);
615 TRAVERSE(q->ipre_mlast);
616 m = q->ipqe_m;
617 pkt_seq = q->ipqe_seq;
618 pkt_len += q->ipqe_len - overlap;
619 rcvoobyte -= overlap;
620 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
621 goto free_ipqe;
622 }
623 /*
624 * RX'ed segment extends past the front of the
625 * fragment. Drop the overlapping bytes on the
626 * received packet. The packet will then be
627 * contatentated with this fragment a bit later.
628 */
629 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
630 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
631 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
632 #ifdef TCPREASS_DEBUG
633 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
634 tp, overlap,
635 pkt_seq, pkt_seq + pkt_len, pkt_len);
636 #endif
637 m_adj(m, -overlap);
638 pkt_len -= overlap;
639 rcvpartdupbyte += overlap;
640 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
641 rcvoobyte -= overlap;
642 }
643 /*
644 * If the received segment immediates precedes this
645 * fragment then tack the fragment onto this segment
646 * and reinsert the data.
647 */
648 if (q->ipqe_seq == pkt_seq + pkt_len) {
649 #ifdef TCPREASS_DEBUG
650 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
651 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
652 pkt_seq, pkt_seq + pkt_len, pkt_len);
653 #endif
654 pkt_len += q->ipqe_len;
655 pkt_flags |= q->ipqe_flags;
656 m_cat(m, q->ipqe_m);
657 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
658 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
659 tp->t_segqlen--;
660 KASSERT(tp->t_segqlen >= 0);
661 KASSERT(tp->t_segqlen != 0 ||
662 (TAILQ_EMPTY(&tp->segq) &&
663 TAILQ_EMPTY(&tp->timeq)));
664 if (tiqe == NULL) {
665 tiqe = q;
666 } else {
667 tcpipqent_free(q);
668 }
669 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
670 break;
671 }
672 /*
673 * If the fragment is before the segment, remember it.
674 * When this loop is terminated, p will contain the
675 * pointer to fragment that is right before the received
676 * segment.
677 */
678 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
679 p = q;
680
681 continue;
682
683 /*
684 * This is a common operation. It also will allow
685 * to save doing a malloc/free in most instances.
686 */
687 free_ipqe:
688 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
689 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
690 tp->t_segqlen--;
691 KASSERT(tp->t_segqlen >= 0);
692 KASSERT(tp->t_segqlen != 0 ||
693 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
694 if (tiqe == NULL) {
695 tiqe = q;
696 } else {
697 tcpipqent_free(q);
698 }
699 }
700
701 #ifdef TCP_REASS_COUNTERS
702 if (count > 7)
703 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
704 else if (count > 0)
705 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
706 #endif
707
708 insert_it:
709
710 /*
711 * Allocate a new queue entry since the received segment did not
712 * collapse onto any other out-of-order block; thus we are allocating
713 * a new block. If it had collapsed, tiqe would not be NULL and
714 * we would be reusing it.
715 * XXX If we can't, just drop the packet. XXX
716 */
717 if (tiqe == NULL) {
718 tiqe = tcpipqent_alloc();
719 if (tiqe == NULL) {
720 tcpstat.tcps_rcvmemdrop++;
721 m_freem(m);
722 return (0);
723 }
724 }
725
726 /*
727 * Update the counters.
728 */
729 tcpstat.tcps_rcvoopack++;
730 tcpstat.tcps_rcvoobyte += rcvoobyte;
731 if (rcvpartdupbyte) {
732 tcpstat.tcps_rcvpartduppack++;
733 tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
734 }
735
736 /*
737 * Insert the new fragment queue entry into both queues.
738 */
739 tiqe->ipqe_m = m;
740 tiqe->ipre_mlast = m;
741 tiqe->ipqe_seq = pkt_seq;
742 tiqe->ipqe_len = pkt_len;
743 tiqe->ipqe_flags = pkt_flags;
744 if (p == NULL) {
745 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
746 #ifdef TCPREASS_DEBUG
747 if (tiqe->ipqe_seq != tp->rcv_nxt)
748 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
749 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
750 #endif
751 } else {
752 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
753 #ifdef TCPREASS_DEBUG
754 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
755 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
756 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
757 #endif
758 }
759 tp->t_segqlen++;
760
761 skip_replacement:
762
763 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
764
765 present:
766 /*
767 * Present data to user, advancing rcv_nxt through
768 * completed sequence space.
769 */
770 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
771 return (0);
772 q = TAILQ_FIRST(&tp->segq);
773 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
774 return (0);
775 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
776 return (0);
777
778 tp->rcv_nxt += q->ipqe_len;
779 pkt_flags = q->ipqe_flags & TH_FIN;
780 nd6_hint(tp);
781
782 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
783 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
784 tp->t_segqlen--;
785 KASSERT(tp->t_segqlen >= 0);
786 KASSERT(tp->t_segqlen != 0 ||
787 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
788 if (so->so_state & SS_CANTRCVMORE)
789 m_freem(q->ipqe_m);
790 else
791 sbappendstream(&so->so_rcv, q->ipqe_m);
792 tcpipqent_free(q);
793 sorwakeup(so);
794 return (pkt_flags);
795 }
796
797 #ifdef INET6
798 int
799 tcp6_input(struct mbuf **mp, int *offp, int proto)
800 {
801 struct mbuf *m = *mp;
802
803 /*
804 * draft-itojun-ipv6-tcp-to-anycast
805 * better place to put this in?
806 */
807 if (m->m_flags & M_ANYCAST6) {
808 struct ip6_hdr *ip6;
809 if (m->m_len < sizeof(struct ip6_hdr)) {
810 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
811 tcpstat.tcps_rcvshort++;
812 return IPPROTO_DONE;
813 }
814 }
815 ip6 = mtod(m, struct ip6_hdr *);
816 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
817 (char *)&ip6->ip6_dst - (char *)ip6);
818 return IPPROTO_DONE;
819 }
820
821 tcp_input(m, *offp, proto);
822 return IPPROTO_DONE;
823 }
824 #endif
825
826 #ifdef INET
827 static void
828 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
829 {
830 char src[4*sizeof "123"];
831 char dst[4*sizeof "123"];
832
833 if (ip) {
834 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
835 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
836 }
837 else {
838 strlcpy(src, "(unknown)", sizeof(src));
839 strlcpy(dst, "(unknown)", sizeof(dst));
840 }
841 log(LOG_INFO,
842 "Connection attempt to TCP %s:%d from %s:%d\n",
843 dst, ntohs(th->th_dport),
844 src, ntohs(th->th_sport));
845 }
846 #endif
847
848 #ifdef INET6
849 static void
850 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
851 {
852 char src[INET6_ADDRSTRLEN];
853 char dst[INET6_ADDRSTRLEN];
854
855 if (ip6) {
856 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
857 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
858 }
859 else {
860 strlcpy(src, "(unknown v6)", sizeof(src));
861 strlcpy(dst, "(unknown v6)", sizeof(dst));
862 }
863 log(LOG_INFO,
864 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
865 dst, ntohs(th->th_dport),
866 src, ntohs(th->th_sport));
867 }
868 #endif
869
870 /*
871 * Checksum extended TCP header and data.
872 */
873 int
874 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
875 int toff, int off, int tlen)
876 {
877
878 /*
879 * XXX it's better to record and check if this mbuf is
880 * already checked.
881 */
882
883 switch (af) {
884 #ifdef INET
885 case AF_INET:
886 switch (m->m_pkthdr.csum_flags &
887 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
888 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
889 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
890 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
891 goto badcsum;
892
893 case M_CSUM_TCPv4|M_CSUM_DATA: {
894 u_int32_t hw_csum = m->m_pkthdr.csum_data;
895
896 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
897 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
898 const struct ip *ip =
899 mtod(m, const struct ip *);
900
901 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
902 ip->ip_dst.s_addr,
903 htons(hw_csum + tlen + off + IPPROTO_TCP));
904 }
905 if ((hw_csum ^ 0xffff) != 0)
906 goto badcsum;
907 break;
908 }
909
910 case M_CSUM_TCPv4:
911 /* Checksum was okay. */
912 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
913 break;
914
915 default:
916 /*
917 * Must compute it ourselves. Maybe skip checksum
918 * on loopback interfaces.
919 */
920 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
921 IFF_LOOPBACK) ||
922 tcp_do_loopback_cksum)) {
923 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
924 if (in4_cksum(m, IPPROTO_TCP, toff,
925 tlen + off) != 0)
926 goto badcsum;
927 }
928 break;
929 }
930 break;
931 #endif /* INET4 */
932
933 #ifdef INET6
934 case AF_INET6:
935 switch (m->m_pkthdr.csum_flags &
936 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
937 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
938 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
939 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
940 goto badcsum;
941
942 #if 0 /* notyet */
943 case M_CSUM_TCPv6|M_CSUM_DATA:
944 #endif
945
946 case M_CSUM_TCPv6:
947 /* Checksum was okay. */
948 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
949 break;
950
951 default:
952 /*
953 * Must compute it ourselves. Maybe skip checksum
954 * on loopback interfaces.
955 */
956 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
957 tcp_do_loopback_cksum)) {
958 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
959 if (in6_cksum(m, IPPROTO_TCP, toff,
960 tlen + off) != 0)
961 goto badcsum;
962 }
963 }
964 break;
965 #endif /* INET6 */
966 }
967
968 return 0;
969
970 badcsum:
971 tcpstat.tcps_rcvbadsum++;
972 return -1;
973 }
974
975 /*
976 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
977 */
978 void
979 tcp_input(struct mbuf *m, ...)
980 {
981 struct tcphdr *th;
982 struct ip *ip;
983 struct inpcb *inp;
984 #ifdef INET6
985 struct ip6_hdr *ip6;
986 struct in6pcb *in6p;
987 #endif
988 u_int8_t *optp = NULL;
989 int optlen = 0;
990 int len, tlen, toff, hdroptlen = 0;
991 struct tcpcb *tp = 0;
992 int tiflags;
993 struct socket *so = NULL;
994 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
995 #ifdef TCP_DEBUG
996 short ostate = 0;
997 #endif
998 u_long tiwin;
999 struct tcp_opt_info opti;
1000 int off, iphlen;
1001 va_list ap;
1002 int af; /* af on the wire */
1003 struct mbuf *tcp_saveti = NULL;
1004 uint32_t ts_rtt;
1005 uint8_t iptos;
1006
1007 MCLAIM(m, &tcp_rx_mowner);
1008 va_start(ap, m);
1009 toff = va_arg(ap, int);
1010 (void)va_arg(ap, int); /* ignore value, advance ap */
1011 va_end(ap);
1012
1013 tcpstat.tcps_rcvtotal++;
1014
1015 bzero(&opti, sizeof(opti));
1016 opti.ts_present = 0;
1017 opti.maxseg = 0;
1018
1019 /*
1020 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1021 *
1022 * TCP is, by definition, unicast, so we reject all
1023 * multicast outright.
1024 *
1025 * Note, there are additional src/dst address checks in
1026 * the AF-specific code below.
1027 */
1028 if (m->m_flags & (M_BCAST|M_MCAST)) {
1029 /* XXX stat */
1030 goto drop;
1031 }
1032 #ifdef INET6
1033 if (m->m_flags & M_ANYCAST6) {
1034 /* XXX stat */
1035 goto drop;
1036 }
1037 #endif
1038
1039 /*
1040 * Get IP and TCP header.
1041 * Note: IP leaves IP header in first mbuf.
1042 */
1043 ip = mtod(m, struct ip *);
1044 #ifdef INET6
1045 ip6 = NULL;
1046 #endif
1047 switch (ip->ip_v) {
1048 #ifdef INET
1049 case 4:
1050 af = AF_INET;
1051 iphlen = sizeof(struct ip);
1052 ip = mtod(m, struct ip *);
1053 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1054 sizeof(struct tcphdr));
1055 if (th == NULL) {
1056 tcpstat.tcps_rcvshort++;
1057 return;
1058 }
1059 /* We do the checksum after PCB lookup... */
1060 len = ntohs(ip->ip_len);
1061 tlen = len - toff;
1062 iptos = ip->ip_tos;
1063 break;
1064 #endif
1065 #ifdef INET6
1066 case 6:
1067 ip = NULL;
1068 iphlen = sizeof(struct ip6_hdr);
1069 af = AF_INET6;
1070 ip6 = mtod(m, struct ip6_hdr *);
1071 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1072 sizeof(struct tcphdr));
1073 if (th == NULL) {
1074 tcpstat.tcps_rcvshort++;
1075 return;
1076 }
1077
1078 /* Be proactive about malicious use of IPv4 mapped address */
1079 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1080 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1081 /* XXX stat */
1082 goto drop;
1083 }
1084
1085 /*
1086 * Be proactive about unspecified IPv6 address in source.
1087 * As we use all-zero to indicate unbounded/unconnected pcb,
1088 * unspecified IPv6 address can be used to confuse us.
1089 *
1090 * Note that packets with unspecified IPv6 destination is
1091 * already dropped in ip6_input.
1092 */
1093 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1094 /* XXX stat */
1095 goto drop;
1096 }
1097
1098 /*
1099 * Make sure destination address is not multicast.
1100 * Source address checked in ip6_input().
1101 */
1102 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1103 /* XXX stat */
1104 goto drop;
1105 }
1106
1107 /* We do the checksum after PCB lookup... */
1108 len = m->m_pkthdr.len;
1109 tlen = len - toff;
1110 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1111 break;
1112 #endif
1113 default:
1114 m_freem(m);
1115 return;
1116 }
1117
1118 KASSERT(TCP_HDR_ALIGNED_P(th));
1119
1120 /*
1121 * Check that TCP offset makes sense,
1122 * pull out TCP options and adjust length. XXX
1123 */
1124 off = th->th_off << 2;
1125 if (off < sizeof (struct tcphdr) || off > tlen) {
1126 tcpstat.tcps_rcvbadoff++;
1127 goto drop;
1128 }
1129 tlen -= off;
1130
1131 /*
1132 * tcp_input() has been modified to use tlen to mean the TCP data
1133 * length throughout the function. Other functions can use
1134 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1135 * rja
1136 */
1137
1138 if (off > sizeof (struct tcphdr)) {
1139 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1140 if (th == NULL) {
1141 tcpstat.tcps_rcvshort++;
1142 return;
1143 }
1144 /*
1145 * NOTE: ip/ip6 will not be affected by m_pulldown()
1146 * (as they're before toff) and we don't need to update those.
1147 */
1148 KASSERT(TCP_HDR_ALIGNED_P(th));
1149 optlen = off - sizeof (struct tcphdr);
1150 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1151 /*
1152 * Do quick retrieval of timestamp options ("options
1153 * prediction?"). If timestamp is the only option and it's
1154 * formatted as recommended in RFC 1323 appendix A, we
1155 * quickly get the values now and not bother calling
1156 * tcp_dooptions(), etc.
1157 */
1158 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1159 (optlen > TCPOLEN_TSTAMP_APPA &&
1160 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1161 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1162 (th->th_flags & TH_SYN) == 0) {
1163 opti.ts_present = 1;
1164 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1165 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1166 optp = NULL; /* we've parsed the options */
1167 }
1168 }
1169 tiflags = th->th_flags;
1170
1171 /*
1172 * Locate pcb for segment.
1173 */
1174 findpcb:
1175 inp = NULL;
1176 #ifdef INET6
1177 in6p = NULL;
1178 #endif
1179 switch (af) {
1180 #ifdef INET
1181 case AF_INET:
1182 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1183 ip->ip_dst, th->th_dport);
1184 if (inp == 0) {
1185 ++tcpstat.tcps_pcbhashmiss;
1186 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1187 }
1188 #ifdef INET6
1189 if (inp == 0) {
1190 struct in6_addr s, d;
1191
1192 /* mapped addr case */
1193 bzero(&s, sizeof(s));
1194 s.s6_addr16[5] = htons(0xffff);
1195 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1196 bzero(&d, sizeof(d));
1197 d.s6_addr16[5] = htons(0xffff);
1198 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1199 in6p = in6_pcblookup_connect(&tcbtable, &s,
1200 th->th_sport, &d, th->th_dport, 0);
1201 if (in6p == 0) {
1202 ++tcpstat.tcps_pcbhashmiss;
1203 in6p = in6_pcblookup_bind(&tcbtable, &d,
1204 th->th_dport, 0);
1205 }
1206 }
1207 #endif
1208 #ifndef INET6
1209 if (inp == 0)
1210 #else
1211 if (inp == 0 && in6p == 0)
1212 #endif
1213 {
1214 ++tcpstat.tcps_noport;
1215 if (tcp_log_refused &&
1216 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1217 tcp4_log_refused(ip, th);
1218 }
1219 TCP_FIELDS_TO_HOST(th);
1220 goto dropwithreset_ratelim;
1221 }
1222 #if defined(IPSEC) || defined(FAST_IPSEC)
1223 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1224 ipsec4_in_reject(m, inp)) {
1225 ipsecstat.in_polvio++;
1226 goto drop;
1227 }
1228 #ifdef INET6
1229 else if (in6p &&
1230 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1231 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1232 ipsecstat.in_polvio++;
1233 goto drop;
1234 }
1235 #endif
1236 #endif /*IPSEC*/
1237 break;
1238 #endif /*INET*/
1239 #ifdef INET6
1240 case AF_INET6:
1241 {
1242 int faith;
1243
1244 #if defined(NFAITH) && NFAITH > 0
1245 faith = faithprefix(&ip6->ip6_dst);
1246 #else
1247 faith = 0;
1248 #endif
1249 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1250 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1251 if (in6p == NULL) {
1252 ++tcpstat.tcps_pcbhashmiss;
1253 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1254 th->th_dport, faith);
1255 }
1256 if (in6p == NULL) {
1257 ++tcpstat.tcps_noport;
1258 if (tcp_log_refused &&
1259 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1260 tcp6_log_refused(ip6, th);
1261 }
1262 TCP_FIELDS_TO_HOST(th);
1263 goto dropwithreset_ratelim;
1264 }
1265 #if defined(IPSEC) || defined(FAST_IPSEC)
1266 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1267 ipsec6_in_reject(m, in6p)) {
1268 ipsec6stat.in_polvio++;
1269 goto drop;
1270 }
1271 #endif /*IPSEC*/
1272 break;
1273 }
1274 #endif
1275 }
1276
1277 /*
1278 * If the state is CLOSED (i.e., TCB does not exist) then
1279 * all data in the incoming segment is discarded.
1280 * If the TCB exists but is in CLOSED state, it is embryonic,
1281 * but should either do a listen or a connect soon.
1282 */
1283 tp = NULL;
1284 so = NULL;
1285 if (inp) {
1286 tp = intotcpcb(inp);
1287 so = inp->inp_socket;
1288 }
1289 #ifdef INET6
1290 else if (in6p) {
1291 tp = in6totcpcb(in6p);
1292 so = in6p->in6p_socket;
1293 }
1294 #endif
1295 if (tp == 0) {
1296 TCP_FIELDS_TO_HOST(th);
1297 goto dropwithreset_ratelim;
1298 }
1299 if (tp->t_state == TCPS_CLOSED)
1300 goto drop;
1301
1302 /*
1303 * Checksum extended TCP header and data.
1304 */
1305 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1306 goto badcsum;
1307
1308 TCP_FIELDS_TO_HOST(th);
1309
1310 /* Unscale the window into a 32-bit value. */
1311 if ((tiflags & TH_SYN) == 0)
1312 tiwin = th->th_win << tp->snd_scale;
1313 else
1314 tiwin = th->th_win;
1315
1316 #ifdef INET6
1317 /* save packet options if user wanted */
1318 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1319 if (in6p->in6p_options) {
1320 m_freem(in6p->in6p_options);
1321 in6p->in6p_options = 0;
1322 }
1323 KASSERT(ip6 != NULL);
1324 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1325 }
1326 #endif
1327
1328 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1329 union syn_cache_sa src;
1330 union syn_cache_sa dst;
1331
1332 bzero(&src, sizeof(src));
1333 bzero(&dst, sizeof(dst));
1334 switch (af) {
1335 #ifdef INET
1336 case AF_INET:
1337 src.sin.sin_len = sizeof(struct sockaddr_in);
1338 src.sin.sin_family = AF_INET;
1339 src.sin.sin_addr = ip->ip_src;
1340 src.sin.sin_port = th->th_sport;
1341
1342 dst.sin.sin_len = sizeof(struct sockaddr_in);
1343 dst.sin.sin_family = AF_INET;
1344 dst.sin.sin_addr = ip->ip_dst;
1345 dst.sin.sin_port = th->th_dport;
1346 break;
1347 #endif
1348 #ifdef INET6
1349 case AF_INET6:
1350 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1351 src.sin6.sin6_family = AF_INET6;
1352 src.sin6.sin6_addr = ip6->ip6_src;
1353 src.sin6.sin6_port = th->th_sport;
1354
1355 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1356 dst.sin6.sin6_family = AF_INET6;
1357 dst.sin6.sin6_addr = ip6->ip6_dst;
1358 dst.sin6.sin6_port = th->th_dport;
1359 break;
1360 #endif /* INET6 */
1361 default:
1362 goto badsyn; /*sanity*/
1363 }
1364
1365 if (so->so_options & SO_DEBUG) {
1366 #ifdef TCP_DEBUG
1367 ostate = tp->t_state;
1368 #endif
1369
1370 tcp_saveti = NULL;
1371 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1372 goto nosave;
1373
1374 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1375 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1376 if (!tcp_saveti)
1377 goto nosave;
1378 } else {
1379 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1380 if (!tcp_saveti)
1381 goto nosave;
1382 MCLAIM(m, &tcp_mowner);
1383 tcp_saveti->m_len = iphlen;
1384 m_copydata(m, 0, iphlen,
1385 mtod(tcp_saveti, void *));
1386 }
1387
1388 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1389 m_freem(tcp_saveti);
1390 tcp_saveti = NULL;
1391 } else {
1392 tcp_saveti->m_len += sizeof(struct tcphdr);
1393 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1394 sizeof(struct tcphdr));
1395 }
1396 nosave:;
1397 }
1398 if (so->so_options & SO_ACCEPTCONN) {
1399 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1400 if (tiflags & TH_RST) {
1401 syn_cache_reset(&src.sa, &dst.sa, th);
1402 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1403 (TH_ACK|TH_SYN)) {
1404 /*
1405 * Received a SYN,ACK. This should
1406 * never happen while we are in
1407 * LISTEN. Send an RST.
1408 */
1409 goto badsyn;
1410 } else if (tiflags & TH_ACK) {
1411 so = syn_cache_get(&src.sa, &dst.sa,
1412 th, toff, tlen, so, m);
1413 if (so == NULL) {
1414 /*
1415 * We don't have a SYN for
1416 * this ACK; send an RST.
1417 */
1418 goto badsyn;
1419 } else if (so ==
1420 (struct socket *)(-1)) {
1421 /*
1422 * We were unable to create
1423 * the connection. If the
1424 * 3-way handshake was
1425 * completed, and RST has
1426 * been sent to the peer.
1427 * Since the mbuf might be
1428 * in use for the reply,
1429 * do not free it.
1430 */
1431 m = NULL;
1432 } else {
1433 /*
1434 * We have created a
1435 * full-blown connection.
1436 */
1437 tp = NULL;
1438 inp = NULL;
1439 #ifdef INET6
1440 in6p = NULL;
1441 #endif
1442 switch (so->so_proto->pr_domain->dom_family) {
1443 #ifdef INET
1444 case AF_INET:
1445 inp = sotoinpcb(so);
1446 tp = intotcpcb(inp);
1447 break;
1448 #endif
1449 #ifdef INET6
1450 case AF_INET6:
1451 in6p = sotoin6pcb(so);
1452 tp = in6totcpcb(in6p);
1453 break;
1454 #endif
1455 }
1456 if (tp == NULL)
1457 goto badsyn; /*XXX*/
1458 tiwin <<= tp->snd_scale;
1459 goto after_listen;
1460 }
1461 } else {
1462 /*
1463 * None of RST, SYN or ACK was set.
1464 * This is an invalid packet for a
1465 * TCB in LISTEN state. Send a RST.
1466 */
1467 goto badsyn;
1468 }
1469 } else {
1470 /*
1471 * Received a SYN.
1472 *
1473 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1474 */
1475 if (m->m_flags & (M_BCAST|M_MCAST))
1476 goto drop;
1477
1478 switch (af) {
1479 #ifdef INET6
1480 case AF_INET6:
1481 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1482 goto drop;
1483 break;
1484 #endif /* INET6 */
1485 case AF_INET:
1486 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1487 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1488 goto drop;
1489 break;
1490 }
1491
1492 #ifdef INET6
1493 /*
1494 * If deprecated address is forbidden, we do
1495 * not accept SYN to deprecated interface
1496 * address to prevent any new inbound
1497 * connection from getting established.
1498 * When we do not accept SYN, we send a TCP
1499 * RST, with deprecated source address (instead
1500 * of dropping it). We compromise it as it is
1501 * much better for peer to send a RST, and
1502 * RST will be the final packet for the
1503 * exchange.
1504 *
1505 * If we do not forbid deprecated addresses, we
1506 * accept the SYN packet. RFC2462 does not
1507 * suggest dropping SYN in this case.
1508 * If we decipher RFC2462 5.5.4, it says like
1509 * this:
1510 * 1. use of deprecated addr with existing
1511 * communication is okay - "SHOULD continue
1512 * to be used"
1513 * 2. use of it with new communication:
1514 * (2a) "SHOULD NOT be used if alternate
1515 * address with sufficient scope is
1516 * available"
1517 * (2b) nothing mentioned otherwise.
1518 * Here we fall into (2b) case as we have no
1519 * choice in our source address selection - we
1520 * must obey the peer.
1521 *
1522 * The wording in RFC2462 is confusing, and
1523 * there are multiple description text for
1524 * deprecated address handling - worse, they
1525 * are not exactly the same. I believe 5.5.4
1526 * is the best one, so we follow 5.5.4.
1527 */
1528 if (af == AF_INET6 && !ip6_use_deprecated) {
1529 struct in6_ifaddr *ia6;
1530 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1531 &ip6->ip6_dst)) &&
1532 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1533 tp = NULL;
1534 goto dropwithreset;
1535 }
1536 }
1537 #endif
1538
1539 #if defined(IPSEC) || defined(FAST_IPSEC)
1540 switch (af) {
1541 #ifdef INET
1542 case AF_INET:
1543 if (ipsec4_in_reject_so(m, so)) {
1544 ipsecstat.in_polvio++;
1545 tp = NULL;
1546 goto dropwithreset;
1547 }
1548 break;
1549 #endif
1550 #ifdef INET6
1551 case AF_INET6:
1552 if (ipsec6_in_reject_so(m, so)) {
1553 ipsec6stat.in_polvio++;
1554 tp = NULL;
1555 goto dropwithreset;
1556 }
1557 break;
1558 #endif /*INET6*/
1559 }
1560 #endif /*IPSEC*/
1561
1562 /*
1563 * LISTEN socket received a SYN
1564 * from itself? This can't possibly
1565 * be valid; drop the packet.
1566 */
1567 if (th->th_sport == th->th_dport) {
1568 int i;
1569
1570 switch (af) {
1571 #ifdef INET
1572 case AF_INET:
1573 i = in_hosteq(ip->ip_src, ip->ip_dst);
1574 break;
1575 #endif
1576 #ifdef INET6
1577 case AF_INET6:
1578 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1579 break;
1580 #endif
1581 default:
1582 i = 1;
1583 }
1584 if (i) {
1585 tcpstat.tcps_badsyn++;
1586 goto drop;
1587 }
1588 }
1589
1590 /*
1591 * SYN looks ok; create compressed TCP
1592 * state for it.
1593 */
1594 if (so->so_qlen <= so->so_qlimit &&
1595 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1596 so, m, optp, optlen, &opti))
1597 m = NULL;
1598 }
1599 goto drop;
1600 }
1601 }
1602
1603 after_listen:
1604 #ifdef DIAGNOSTIC
1605 /*
1606 * Should not happen now that all embryonic connections
1607 * are handled with compressed state.
1608 */
1609 if (tp->t_state == TCPS_LISTEN)
1610 panic("tcp_input: TCPS_LISTEN");
1611 #endif
1612
1613 /*
1614 * Segment received on connection.
1615 * Reset idle time and keep-alive timer.
1616 */
1617 tp->t_rcvtime = tcp_now;
1618 if (TCPS_HAVEESTABLISHED(tp->t_state))
1619 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1620
1621 /*
1622 * Process options.
1623 */
1624 #ifdef TCP_SIGNATURE
1625 if (optp || (tp->t_flags & TF_SIGNATURE))
1626 #else
1627 if (optp)
1628 #endif
1629 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1630 goto drop;
1631
1632 if (TCP_SACK_ENABLED(tp)) {
1633 tcp_del_sackholes(tp, th);
1634 }
1635
1636 if (TCP_ECN_ALLOWED(tp)) {
1637 switch (iptos & IPTOS_ECN_MASK) {
1638 case IPTOS_ECN_CE:
1639 tp->t_flags |= TF_ECN_SND_ECE;
1640 tcpstat.tcps_ecn_ce++;
1641 break;
1642 case IPTOS_ECN_ECT0:
1643 tcpstat.tcps_ecn_ect++;
1644 break;
1645 case IPTOS_ECN_ECT1:
1646 /* XXX: ignore for now -- rpaulo */
1647 break;
1648 }
1649
1650 if (tiflags & TH_CWR)
1651 tp->t_flags &= ~TF_ECN_SND_ECE;
1652
1653 /*
1654 * Congestion experienced.
1655 * Ignore if we are already trying to recover.
1656 */
1657 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1658 tp->t_congctl->cong_exp(tp);
1659 }
1660
1661 if (opti.ts_present && opti.ts_ecr) {
1662 /*
1663 * Calculate the RTT from the returned time stamp and the
1664 * connection's time base. If the time stamp is later than
1665 * the current time, or is extremely old, fall back to non-1323
1666 * RTT calculation. Since ts_ecr is unsigned, we can test both
1667 * at the same time.
1668 */
1669 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1670 if (ts_rtt > TCP_PAWS_IDLE)
1671 ts_rtt = 0;
1672 } else {
1673 ts_rtt = 0;
1674 }
1675
1676 /*
1677 * Header prediction: check for the two common cases
1678 * of a uni-directional data xfer. If the packet has
1679 * no control flags, is in-sequence, the window didn't
1680 * change and we're not retransmitting, it's a
1681 * candidate. If the length is zero and the ack moved
1682 * forward, we're the sender side of the xfer. Just
1683 * free the data acked & wake any higher level process
1684 * that was blocked waiting for space. If the length
1685 * is non-zero and the ack didn't move, we're the
1686 * receiver side. If we're getting packets in-order
1687 * (the reassembly queue is empty), add the data to
1688 * the socket buffer and note that we need a delayed ack.
1689 */
1690 if (tp->t_state == TCPS_ESTABLISHED &&
1691 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1692 == TH_ACK &&
1693 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1694 th->th_seq == tp->rcv_nxt &&
1695 tiwin && tiwin == tp->snd_wnd &&
1696 tp->snd_nxt == tp->snd_max) {
1697
1698 /*
1699 * If last ACK falls within this segment's sequence numbers,
1700 * record the timestamp.
1701 * NOTE that the test is modified according to the latest
1702 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1703 *
1704 * note that we already know
1705 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1706 */
1707 if (opti.ts_present &&
1708 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1709 tp->ts_recent_age = tcp_now;
1710 tp->ts_recent = opti.ts_val;
1711 }
1712
1713 if (tlen == 0) {
1714 /* Ack prediction. */
1715 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1716 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1717 tp->snd_cwnd >= tp->snd_wnd &&
1718 tp->t_partialacks < 0) {
1719 /*
1720 * this is a pure ack for outstanding data.
1721 */
1722 ++tcpstat.tcps_predack;
1723 if (ts_rtt)
1724 tcp_xmit_timer(tp, ts_rtt);
1725 else if (tp->t_rtttime &&
1726 SEQ_GT(th->th_ack, tp->t_rtseq))
1727 tcp_xmit_timer(tp,
1728 tcp_now - tp->t_rtttime);
1729 acked = th->th_ack - tp->snd_una;
1730 tcpstat.tcps_rcvackpack++;
1731 tcpstat.tcps_rcvackbyte += acked;
1732 nd6_hint(tp);
1733
1734 if (acked > (tp->t_lastoff - tp->t_inoff))
1735 tp->t_lastm = NULL;
1736 sbdrop(&so->so_snd, acked);
1737 tp->t_lastoff -= acked;
1738
1739 ICMP_CHECK(tp, th, acked);
1740
1741 tp->snd_una = th->th_ack;
1742 tp->snd_fack = tp->snd_una;
1743 if (SEQ_LT(tp->snd_high, tp->snd_una))
1744 tp->snd_high = tp->snd_una;
1745 m_freem(m);
1746
1747 /*
1748 * If all outstanding data are acked, stop
1749 * retransmit timer, otherwise restart timer
1750 * using current (possibly backed-off) value.
1751 * If process is waiting for space,
1752 * wakeup/selwakeup/signal. If data
1753 * are ready to send, let tcp_output
1754 * decide between more output or persist.
1755 */
1756 if (tp->snd_una == tp->snd_max)
1757 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1758 else if (TCP_TIMER_ISARMED(tp,
1759 TCPT_PERSIST) == 0)
1760 TCP_TIMER_ARM(tp, TCPT_REXMT,
1761 tp->t_rxtcur);
1762
1763 sowwakeup(so);
1764 if (so->so_snd.sb_cc)
1765 (void) tcp_output(tp);
1766 if (tcp_saveti)
1767 m_freem(tcp_saveti);
1768 return;
1769 }
1770 } else if (th->th_ack == tp->snd_una &&
1771 TAILQ_FIRST(&tp->segq) == NULL &&
1772 tlen <= sbspace(&so->so_rcv)) {
1773 int newsize = 0; /* automatic sockbuf scaling */
1774
1775 /*
1776 * this is a pure, in-sequence data packet
1777 * with nothing on the reassembly queue and
1778 * we have enough buffer space to take it.
1779 */
1780 ++tcpstat.tcps_preddat;
1781 tp->rcv_nxt += tlen;
1782 tcpstat.tcps_rcvpack++;
1783 tcpstat.tcps_rcvbyte += tlen;
1784 nd6_hint(tp);
1785
1786 /*
1787 * Automatic sizing enables the performance of large buffers
1788 * and most of the efficiency of small ones by only allocating
1789 * space when it is needed.
1790 *
1791 * On the receive side the socket buffer memory is only rarely
1792 * used to any significant extent. This allows us to be much
1793 * more aggressive in scaling the receive socket buffer. For
1794 * the case that the buffer space is actually used to a large
1795 * extent and we run out of kernel memory we can simply drop
1796 * the new segments; TCP on the sender will just retransmit it
1797 * later. Setting the buffer size too big may only consume too
1798 * much kernel memory if the application doesn't read() from
1799 * the socket or packet loss or reordering makes use of the
1800 * reassembly queue.
1801 *
1802 * The criteria to step up the receive buffer one notch are:
1803 * 1. the number of bytes received during the time it takes
1804 * one timestamp to be reflected back to us (the RTT);
1805 * 2. received bytes per RTT is within seven eighth of the
1806 * current socket buffer size;
1807 * 3. receive buffer size has not hit maximal automatic size;
1808 *
1809 * This algorithm does one step per RTT at most and only if
1810 * we receive a bulk stream w/o packet losses or reorderings.
1811 * Shrinking the buffer during idle times is not necessary as
1812 * it doesn't consume any memory when idle.
1813 *
1814 * TODO: Only step up if the application is actually serving
1815 * the buffer to better manage the socket buffer resources.
1816 */
1817 if (tcp_do_autorcvbuf &&
1818 opti.ts_ecr &&
1819 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1820 if (opti.ts_ecr > tp->rfbuf_ts &&
1821 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1822 if (tp->rfbuf_cnt >
1823 (so->so_rcv.sb_hiwat / 8 * 7) &&
1824 so->so_rcv.sb_hiwat <
1825 tcp_autorcvbuf_max) {
1826 newsize =
1827 min(so->so_rcv.sb_hiwat +
1828 tcp_autorcvbuf_inc,
1829 tcp_autorcvbuf_max);
1830 }
1831 /* Start over with next RTT. */
1832 tp->rfbuf_ts = 0;
1833 tp->rfbuf_cnt = 0;
1834 } else
1835 tp->rfbuf_cnt += tlen; /* add up */
1836 }
1837
1838 /*
1839 * Drop TCP, IP headers and TCP options then add data
1840 * to socket buffer.
1841 */
1842 if (so->so_state & SS_CANTRCVMORE)
1843 m_freem(m);
1844 else {
1845 /*
1846 * Set new socket buffer size.
1847 * Give up when limit is reached.
1848 */
1849 if (newsize)
1850 if (!sbreserve(&so->so_rcv,
1851 newsize, so))
1852 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1853 m_adj(m, toff + off);
1854 sbappendstream(&so->so_rcv, m);
1855 }
1856 sorwakeup(so);
1857 TCP_SETUP_ACK(tp, th);
1858 if (tp->t_flags & TF_ACKNOW)
1859 (void) tcp_output(tp);
1860 if (tcp_saveti)
1861 m_freem(tcp_saveti);
1862 return;
1863 }
1864 }
1865
1866 /*
1867 * Compute mbuf offset to TCP data segment.
1868 */
1869 hdroptlen = toff + off;
1870
1871 /*
1872 * Calculate amount of space in receive window,
1873 * and then do TCP input processing.
1874 * Receive window is amount of space in rcv queue,
1875 * but not less than advertised window.
1876 */
1877 { int win;
1878
1879 win = sbspace(&so->so_rcv);
1880 if (win < 0)
1881 win = 0;
1882 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1883 }
1884
1885 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1886 tp->rfbuf_ts = 0;
1887 tp->rfbuf_cnt = 0;
1888
1889 switch (tp->t_state) {
1890 /*
1891 * If the state is SYN_SENT:
1892 * if seg contains an ACK, but not for our SYN, drop the input.
1893 * if seg contains a RST, then drop the connection.
1894 * if seg does not contain SYN, then drop it.
1895 * Otherwise this is an acceptable SYN segment
1896 * initialize tp->rcv_nxt and tp->irs
1897 * if seg contains ack then advance tp->snd_una
1898 * if seg contains a ECE and ECN support is enabled, the stream
1899 * is ECN capable.
1900 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1901 * arrange for segment to be acked (eventually)
1902 * continue processing rest of data/controls, beginning with URG
1903 */
1904 case TCPS_SYN_SENT:
1905 if ((tiflags & TH_ACK) &&
1906 (SEQ_LEQ(th->th_ack, tp->iss) ||
1907 SEQ_GT(th->th_ack, tp->snd_max)))
1908 goto dropwithreset;
1909 if (tiflags & TH_RST) {
1910 if (tiflags & TH_ACK)
1911 tp = tcp_drop(tp, ECONNREFUSED);
1912 goto drop;
1913 }
1914 if ((tiflags & TH_SYN) == 0)
1915 goto drop;
1916 if (tiflags & TH_ACK) {
1917 tp->snd_una = th->th_ack;
1918 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1919 tp->snd_nxt = tp->snd_una;
1920 if (SEQ_LT(tp->snd_high, tp->snd_una))
1921 tp->snd_high = tp->snd_una;
1922 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1923
1924 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1925 tp->t_flags |= TF_ECN_PERMIT;
1926 tcpstat.tcps_ecn_shs++;
1927 }
1928
1929 }
1930 tp->irs = th->th_seq;
1931 tcp_rcvseqinit(tp);
1932 tp->t_flags |= TF_ACKNOW;
1933 tcp_mss_from_peer(tp, opti.maxseg);
1934
1935 /*
1936 * Initialize the initial congestion window. If we
1937 * had to retransmit the SYN, we must initialize cwnd
1938 * to 1 segment (i.e. the Loss Window).
1939 */
1940 if (tp->t_flags & TF_SYN_REXMT)
1941 tp->snd_cwnd = tp->t_peermss;
1942 else {
1943 int ss = tcp_init_win;
1944 #ifdef INET
1945 if (inp != NULL && in_localaddr(inp->inp_faddr))
1946 ss = tcp_init_win_local;
1947 #endif
1948 #ifdef INET6
1949 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1950 ss = tcp_init_win_local;
1951 #endif
1952 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1953 }
1954
1955 tcp_rmx_rtt(tp);
1956 if (tiflags & TH_ACK) {
1957 tcpstat.tcps_connects++;
1958 soisconnected(so);
1959 tcp_established(tp);
1960 /* Do window scaling on this connection? */
1961 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1962 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1963 tp->snd_scale = tp->requested_s_scale;
1964 tp->rcv_scale = tp->request_r_scale;
1965 }
1966 TCP_REASS_LOCK(tp);
1967 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1968 TCP_REASS_UNLOCK(tp);
1969 /*
1970 * if we didn't have to retransmit the SYN,
1971 * use its rtt as our initial srtt & rtt var.
1972 */
1973 if (tp->t_rtttime)
1974 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1975 } else
1976 tp->t_state = TCPS_SYN_RECEIVED;
1977
1978 /*
1979 * Advance th->th_seq to correspond to first data byte.
1980 * If data, trim to stay within window,
1981 * dropping FIN if necessary.
1982 */
1983 th->th_seq++;
1984 if (tlen > tp->rcv_wnd) {
1985 todrop = tlen - tp->rcv_wnd;
1986 m_adj(m, -todrop);
1987 tlen = tp->rcv_wnd;
1988 tiflags &= ~TH_FIN;
1989 tcpstat.tcps_rcvpackafterwin++;
1990 tcpstat.tcps_rcvbyteafterwin += todrop;
1991 }
1992 tp->snd_wl1 = th->th_seq - 1;
1993 tp->rcv_up = th->th_seq;
1994 goto step6;
1995
1996 /*
1997 * If the state is SYN_RECEIVED:
1998 * If seg contains an ACK, but not for our SYN, drop the input
1999 * and generate an RST. See page 36, rfc793
2000 */
2001 case TCPS_SYN_RECEIVED:
2002 if ((tiflags & TH_ACK) &&
2003 (SEQ_LEQ(th->th_ack, tp->iss) ||
2004 SEQ_GT(th->th_ack, tp->snd_max)))
2005 goto dropwithreset;
2006 break;
2007 }
2008
2009 /*
2010 * States other than LISTEN or SYN_SENT.
2011 * First check timestamp, if present.
2012 * Then check that at least some bytes of segment are within
2013 * receive window. If segment begins before rcv_nxt,
2014 * drop leading data (and SYN); if nothing left, just ack.
2015 *
2016 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2017 * and it's less than ts_recent, drop it.
2018 */
2019 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2020 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2021
2022 /* Check to see if ts_recent is over 24 days old. */
2023 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2024 /*
2025 * Invalidate ts_recent. If this segment updates
2026 * ts_recent, the age will be reset later and ts_recent
2027 * will get a valid value. If it does not, setting
2028 * ts_recent to zero will at least satisfy the
2029 * requirement that zero be placed in the timestamp
2030 * echo reply when ts_recent isn't valid. The
2031 * age isn't reset until we get a valid ts_recent
2032 * because we don't want out-of-order segments to be
2033 * dropped when ts_recent is old.
2034 */
2035 tp->ts_recent = 0;
2036 } else {
2037 tcpstat.tcps_rcvduppack++;
2038 tcpstat.tcps_rcvdupbyte += tlen;
2039 tcpstat.tcps_pawsdrop++;
2040 tcp_new_dsack(tp, th->th_seq, tlen);
2041 goto dropafterack;
2042 }
2043 }
2044
2045 todrop = tp->rcv_nxt - th->th_seq;
2046 dupseg = false;
2047 if (todrop > 0) {
2048 if (tiflags & TH_SYN) {
2049 tiflags &= ~TH_SYN;
2050 th->th_seq++;
2051 if (th->th_urp > 1)
2052 th->th_urp--;
2053 else {
2054 tiflags &= ~TH_URG;
2055 th->th_urp = 0;
2056 }
2057 todrop--;
2058 }
2059 if (todrop > tlen ||
2060 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2061 /*
2062 * Any valid FIN or RST must be to the left of the
2063 * window. At this point the FIN or RST must be a
2064 * duplicate or out of sequence; drop it.
2065 */
2066 if (tiflags & TH_RST)
2067 goto drop;
2068 tiflags &= ~(TH_FIN|TH_RST);
2069 /*
2070 * Send an ACK to resynchronize and drop any data.
2071 * But keep on processing for RST or ACK.
2072 */
2073 tp->t_flags |= TF_ACKNOW;
2074 todrop = tlen;
2075 dupseg = true;
2076 tcpstat.tcps_rcvdupbyte += todrop;
2077 tcpstat.tcps_rcvduppack++;
2078 } else if ((tiflags & TH_RST) &&
2079 th->th_seq != tp->last_ack_sent) {
2080 /*
2081 * Test for reset before adjusting the sequence
2082 * number for overlapping data.
2083 */
2084 goto dropafterack_ratelim;
2085 } else {
2086 tcpstat.tcps_rcvpartduppack++;
2087 tcpstat.tcps_rcvpartdupbyte += todrop;
2088 }
2089 tcp_new_dsack(tp, th->th_seq, todrop);
2090 hdroptlen += todrop; /*drop from head afterwards*/
2091 th->th_seq += todrop;
2092 tlen -= todrop;
2093 if (th->th_urp > todrop)
2094 th->th_urp -= todrop;
2095 else {
2096 tiflags &= ~TH_URG;
2097 th->th_urp = 0;
2098 }
2099 }
2100
2101 /*
2102 * If new data are received on a connection after the
2103 * user processes are gone, then RST the other end.
2104 */
2105 if ((so->so_state & SS_NOFDREF) &&
2106 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2107 tp = tcp_close(tp);
2108 tcpstat.tcps_rcvafterclose++;
2109 goto dropwithreset;
2110 }
2111
2112 /*
2113 * If segment ends after window, drop trailing data
2114 * (and PUSH and FIN); if nothing left, just ACK.
2115 */
2116 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2117 if (todrop > 0) {
2118 tcpstat.tcps_rcvpackafterwin++;
2119 if (todrop >= tlen) {
2120 /*
2121 * The segment actually starts after the window.
2122 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2123 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2124 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2125 */
2126 tcpstat.tcps_rcvbyteafterwin += tlen;
2127 /*
2128 * If a new connection request is received
2129 * while in TIME_WAIT, drop the old connection
2130 * and start over if the sequence numbers
2131 * are above the previous ones.
2132 *
2133 * NOTE: We will checksum the packet again, and
2134 * so we need to put the header fields back into
2135 * network order!
2136 * XXX This kind of sucks, but we don't expect
2137 * XXX this to happen very often, so maybe it
2138 * XXX doesn't matter so much.
2139 */
2140 if (tiflags & TH_SYN &&
2141 tp->t_state == TCPS_TIME_WAIT &&
2142 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2143 tp = tcp_close(tp);
2144 TCP_FIELDS_TO_NET(th);
2145 goto findpcb;
2146 }
2147 /*
2148 * If window is closed can only take segments at
2149 * window edge, and have to drop data and PUSH from
2150 * incoming segments. Continue processing, but
2151 * remember to ack. Otherwise, drop segment
2152 * and (if not RST) ack.
2153 */
2154 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2155 tp->t_flags |= TF_ACKNOW;
2156 tcpstat.tcps_rcvwinprobe++;
2157 } else
2158 goto dropafterack;
2159 } else
2160 tcpstat.tcps_rcvbyteafterwin += todrop;
2161 m_adj(m, -todrop);
2162 tlen -= todrop;
2163 tiflags &= ~(TH_PUSH|TH_FIN);
2164 }
2165
2166 /*
2167 * If last ACK falls within this segment's sequence numbers,
2168 * record the timestamp.
2169 * NOTE:
2170 * 1) That the test incorporates suggestions from the latest
2171 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2172 * 2) That updating only on newer timestamps interferes with
2173 * our earlier PAWS tests, so this check should be solely
2174 * predicated on the sequence space of this segment.
2175 * 3) That we modify the segment boundary check to be
2176 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2177 * instead of RFC1323's
2178 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2179 * This modified check allows us to overcome RFC1323's
2180 * limitations as described in Stevens TCP/IP Illustrated
2181 * Vol. 2 p.869. In such cases, we can still calculate the
2182 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2183 */
2184 if (opti.ts_present &&
2185 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2186 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2187 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2188 tp->ts_recent_age = tcp_now;
2189 tp->ts_recent = opti.ts_val;
2190 }
2191
2192 /*
2193 * If the RST bit is set examine the state:
2194 * SYN_RECEIVED STATE:
2195 * If passive open, return to LISTEN state.
2196 * If active open, inform user that connection was refused.
2197 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2198 * Inform user that connection was reset, and close tcb.
2199 * CLOSING, LAST_ACK, TIME_WAIT STATES
2200 * Close the tcb.
2201 */
2202 if (tiflags & TH_RST) {
2203 if (th->th_seq != tp->last_ack_sent)
2204 goto dropafterack_ratelim;
2205
2206 switch (tp->t_state) {
2207 case TCPS_SYN_RECEIVED:
2208 so->so_error = ECONNREFUSED;
2209 goto close;
2210
2211 case TCPS_ESTABLISHED:
2212 case TCPS_FIN_WAIT_1:
2213 case TCPS_FIN_WAIT_2:
2214 case TCPS_CLOSE_WAIT:
2215 so->so_error = ECONNRESET;
2216 close:
2217 tp->t_state = TCPS_CLOSED;
2218 tcpstat.tcps_drops++;
2219 tp = tcp_close(tp);
2220 goto drop;
2221
2222 case TCPS_CLOSING:
2223 case TCPS_LAST_ACK:
2224 case TCPS_TIME_WAIT:
2225 tp = tcp_close(tp);
2226 goto drop;
2227 }
2228 }
2229
2230 /*
2231 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2232 * we must be in a synchronized state. RFC791 states (under RST
2233 * generation) that any unacceptable segment (an out-of-order SYN
2234 * qualifies) received in a synchronized state must elicit only an
2235 * empty acknowledgment segment ... and the connection remains in
2236 * the same state.
2237 */
2238 if (tiflags & TH_SYN) {
2239 if (tp->rcv_nxt == th->th_seq) {
2240 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2241 TH_ACK);
2242 if (tcp_saveti)
2243 m_freem(tcp_saveti);
2244 return;
2245 }
2246
2247 goto dropafterack_ratelim;
2248 }
2249
2250 /*
2251 * If the ACK bit is off we drop the segment and return.
2252 */
2253 if ((tiflags & TH_ACK) == 0) {
2254 if (tp->t_flags & TF_ACKNOW)
2255 goto dropafterack;
2256 else
2257 goto drop;
2258 }
2259
2260 /*
2261 * Ack processing.
2262 */
2263 switch (tp->t_state) {
2264
2265 /*
2266 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2267 * ESTABLISHED state and continue processing, otherwise
2268 * send an RST.
2269 */
2270 case TCPS_SYN_RECEIVED:
2271 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2272 SEQ_GT(th->th_ack, tp->snd_max))
2273 goto dropwithreset;
2274 tcpstat.tcps_connects++;
2275 soisconnected(so);
2276 tcp_established(tp);
2277 /* Do window scaling? */
2278 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2279 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2280 tp->snd_scale = tp->requested_s_scale;
2281 tp->rcv_scale = tp->request_r_scale;
2282 }
2283 TCP_REASS_LOCK(tp);
2284 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2285 TCP_REASS_UNLOCK(tp);
2286 tp->snd_wl1 = th->th_seq - 1;
2287 /* fall into ... */
2288
2289 /*
2290 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2291 * ACKs. If the ack is in the range
2292 * tp->snd_una < th->th_ack <= tp->snd_max
2293 * then advance tp->snd_una to th->th_ack and drop
2294 * data from the retransmission queue. If this ACK reflects
2295 * more up to date window information we update our window information.
2296 */
2297 case TCPS_ESTABLISHED:
2298 case TCPS_FIN_WAIT_1:
2299 case TCPS_FIN_WAIT_2:
2300 case TCPS_CLOSE_WAIT:
2301 case TCPS_CLOSING:
2302 case TCPS_LAST_ACK:
2303 case TCPS_TIME_WAIT:
2304
2305 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2306 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2307 tcpstat.tcps_rcvdupack++;
2308 /*
2309 * If we have outstanding data (other than
2310 * a window probe), this is a completely
2311 * duplicate ack (ie, window info didn't
2312 * change), the ack is the biggest we've
2313 * seen and we've seen exactly our rexmt
2314 * threshhold of them, assume a packet
2315 * has been dropped and retransmit it.
2316 * Kludge snd_nxt & the congestion
2317 * window so we send only this one
2318 * packet.
2319 */
2320 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2321 th->th_ack != tp->snd_una)
2322 tp->t_dupacks = 0;
2323 else if (tp->t_partialacks < 0 &&
2324 (++tp->t_dupacks == tcprexmtthresh ||
2325 TCP_FACK_FASTRECOV(tp))) {
2326 /*
2327 * Do the fast retransmit, and adjust
2328 * congestion control paramenters.
2329 */
2330 if (tp->t_congctl->fast_retransmit(tp, th)) {
2331 /* False fast retransmit */
2332 break;
2333 } else
2334 goto drop;
2335 } else if (tp->t_dupacks > tcprexmtthresh) {
2336 tp->snd_cwnd += tp->t_segsz;
2337 (void) tcp_output(tp);
2338 goto drop;
2339 }
2340 } else {
2341 /*
2342 * If the ack appears to be very old, only
2343 * allow data that is in-sequence. This
2344 * makes it somewhat more difficult to insert
2345 * forged data by guessing sequence numbers.
2346 * Sent an ack to try to update the send
2347 * sequence number on the other side.
2348 */
2349 if (tlen && th->th_seq != tp->rcv_nxt &&
2350 SEQ_LT(th->th_ack,
2351 tp->snd_una - tp->max_sndwnd))
2352 goto dropafterack;
2353 }
2354 break;
2355 }
2356 /*
2357 * If the congestion window was inflated to account
2358 * for the other side's cached packets, retract it.
2359 */
2360 /* XXX: make SACK have his own congestion control
2361 * struct -- rpaulo */
2362 if (TCP_SACK_ENABLED(tp))
2363 tcp_sack_newack(tp, th);
2364 else
2365 tp->t_congctl->fast_retransmit_newack(tp, th);
2366 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2367 tcpstat.tcps_rcvacktoomuch++;
2368 goto dropafterack;
2369 }
2370 acked = th->th_ack - tp->snd_una;
2371 tcpstat.tcps_rcvackpack++;
2372 tcpstat.tcps_rcvackbyte += acked;
2373
2374 /*
2375 * If we have a timestamp reply, update smoothed
2376 * round trip time. If no timestamp is present but
2377 * transmit timer is running and timed sequence
2378 * number was acked, update smoothed round trip time.
2379 * Since we now have an rtt measurement, cancel the
2380 * timer backoff (cf., Phil Karn's retransmit alg.).
2381 * Recompute the initial retransmit timer.
2382 */
2383 if (ts_rtt)
2384 tcp_xmit_timer(tp, ts_rtt);
2385 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2386 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2387
2388 /*
2389 * If all outstanding data is acked, stop retransmit
2390 * timer and remember to restart (more output or persist).
2391 * If there is more data to be acked, restart retransmit
2392 * timer, using current (possibly backed-off) value.
2393 */
2394 if (th->th_ack == tp->snd_max) {
2395 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2396 needoutput = 1;
2397 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2398 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2399
2400 /*
2401 * New data has been acked, adjust the congestion window.
2402 */
2403 tp->t_congctl->newack(tp, th);
2404
2405 nd6_hint(tp);
2406 if (acked > so->so_snd.sb_cc) {
2407 tp->snd_wnd -= so->so_snd.sb_cc;
2408 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2409 ourfinisacked = 1;
2410 } else {
2411 if (acked > (tp->t_lastoff - tp->t_inoff))
2412 tp->t_lastm = NULL;
2413 sbdrop(&so->so_snd, acked);
2414 tp->t_lastoff -= acked;
2415 tp->snd_wnd -= acked;
2416 ourfinisacked = 0;
2417 }
2418 sowwakeup(so);
2419
2420 ICMP_CHECK(tp, th, acked);
2421
2422 tp->snd_una = th->th_ack;
2423 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2424 tp->snd_fack = tp->snd_una;
2425 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2426 tp->snd_nxt = tp->snd_una;
2427 if (SEQ_LT(tp->snd_high, tp->snd_una))
2428 tp->snd_high = tp->snd_una;
2429
2430 switch (tp->t_state) {
2431
2432 /*
2433 * In FIN_WAIT_1 STATE in addition to the processing
2434 * for the ESTABLISHED state if our FIN is now acknowledged
2435 * then enter FIN_WAIT_2.
2436 */
2437 case TCPS_FIN_WAIT_1:
2438 if (ourfinisacked) {
2439 /*
2440 * If we can't receive any more
2441 * data, then closing user can proceed.
2442 * Starting the timer is contrary to the
2443 * specification, but if we don't get a FIN
2444 * we'll hang forever.
2445 */
2446 if (so->so_state & SS_CANTRCVMORE) {
2447 soisdisconnected(so);
2448 if (tp->t_maxidle > 0)
2449 TCP_TIMER_ARM(tp, TCPT_2MSL,
2450 tp->t_maxidle);
2451 }
2452 tp->t_state = TCPS_FIN_WAIT_2;
2453 }
2454 break;
2455
2456 /*
2457 * In CLOSING STATE in addition to the processing for
2458 * the ESTABLISHED state if the ACK acknowledges our FIN
2459 * then enter the TIME-WAIT state, otherwise ignore
2460 * the segment.
2461 */
2462 case TCPS_CLOSING:
2463 if (ourfinisacked) {
2464 tp->t_state = TCPS_TIME_WAIT;
2465 tcp_canceltimers(tp);
2466 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2467 soisdisconnected(so);
2468 }
2469 break;
2470
2471 /*
2472 * In LAST_ACK, we may still be waiting for data to drain
2473 * and/or to be acked, as well as for the ack of our FIN.
2474 * If our FIN is now acknowledged, delete the TCB,
2475 * enter the closed state and return.
2476 */
2477 case TCPS_LAST_ACK:
2478 if (ourfinisacked) {
2479 tp = tcp_close(tp);
2480 goto drop;
2481 }
2482 break;
2483
2484 /*
2485 * In TIME_WAIT state the only thing that should arrive
2486 * is a retransmission of the remote FIN. Acknowledge
2487 * it and restart the finack timer.
2488 */
2489 case TCPS_TIME_WAIT:
2490 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2491 goto dropafterack;
2492 }
2493 }
2494
2495 step6:
2496 /*
2497 * Update window information.
2498 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2499 */
2500 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2501 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2502 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2503 /* keep track of pure window updates */
2504 if (tlen == 0 &&
2505 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2506 tcpstat.tcps_rcvwinupd++;
2507 tp->snd_wnd = tiwin;
2508 tp->snd_wl1 = th->th_seq;
2509 tp->snd_wl2 = th->th_ack;
2510 if (tp->snd_wnd > tp->max_sndwnd)
2511 tp->max_sndwnd = tp->snd_wnd;
2512 needoutput = 1;
2513 }
2514
2515 /*
2516 * Process segments with URG.
2517 */
2518 if ((tiflags & TH_URG) && th->th_urp &&
2519 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2520 /*
2521 * This is a kludge, but if we receive and accept
2522 * random urgent pointers, we'll crash in
2523 * soreceive. It's hard to imagine someone
2524 * actually wanting to send this much urgent data.
2525 */
2526 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2527 th->th_urp = 0; /* XXX */
2528 tiflags &= ~TH_URG; /* XXX */
2529 goto dodata; /* XXX */
2530 }
2531 /*
2532 * If this segment advances the known urgent pointer,
2533 * then mark the data stream. This should not happen
2534 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2535 * a FIN has been received from the remote side.
2536 * In these states we ignore the URG.
2537 *
2538 * According to RFC961 (Assigned Protocols),
2539 * the urgent pointer points to the last octet
2540 * of urgent data. We continue, however,
2541 * to consider it to indicate the first octet
2542 * of data past the urgent section as the original
2543 * spec states (in one of two places).
2544 */
2545 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2546 tp->rcv_up = th->th_seq + th->th_urp;
2547 so->so_oobmark = so->so_rcv.sb_cc +
2548 (tp->rcv_up - tp->rcv_nxt) - 1;
2549 if (so->so_oobmark == 0)
2550 so->so_state |= SS_RCVATMARK;
2551 sohasoutofband(so);
2552 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2553 }
2554 /*
2555 * Remove out of band data so doesn't get presented to user.
2556 * This can happen independent of advancing the URG pointer,
2557 * but if two URG's are pending at once, some out-of-band
2558 * data may creep in... ick.
2559 */
2560 if (th->th_urp <= (u_int16_t) tlen
2561 #ifdef SO_OOBINLINE
2562 && (so->so_options & SO_OOBINLINE) == 0
2563 #endif
2564 )
2565 tcp_pulloutofband(so, th, m, hdroptlen);
2566 } else
2567 /*
2568 * If no out of band data is expected,
2569 * pull receive urgent pointer along
2570 * with the receive window.
2571 */
2572 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2573 tp->rcv_up = tp->rcv_nxt;
2574 dodata: /* XXX */
2575
2576 /*
2577 * Process the segment text, merging it into the TCP sequencing queue,
2578 * and arranging for acknowledgement of receipt if necessary.
2579 * This process logically involves adjusting tp->rcv_wnd as data
2580 * is presented to the user (this happens in tcp_usrreq.c,
2581 * case PRU_RCVD). If a FIN has already been received on this
2582 * connection then we just ignore the text.
2583 */
2584 if ((tlen || (tiflags & TH_FIN)) &&
2585 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2586 /*
2587 * Insert segment ti into reassembly queue of tcp with
2588 * control block tp. Return TH_FIN if reassembly now includes
2589 * a segment with FIN. The macro form does the common case
2590 * inline (segment is the next to be received on an
2591 * established connection, and the queue is empty),
2592 * avoiding linkage into and removal from the queue and
2593 * repetition of various conversions.
2594 * Set DELACK for segments received in order, but ack
2595 * immediately when segments are out of order
2596 * (so fast retransmit can work).
2597 */
2598 /* NOTE: this was TCP_REASS() macro, but used only once */
2599 TCP_REASS_LOCK(tp);
2600 if (th->th_seq == tp->rcv_nxt &&
2601 TAILQ_FIRST(&tp->segq) == NULL &&
2602 tp->t_state == TCPS_ESTABLISHED) {
2603 TCP_SETUP_ACK(tp, th);
2604 tp->rcv_nxt += tlen;
2605 tiflags = th->th_flags & TH_FIN;
2606 tcpstat.tcps_rcvpack++;
2607 tcpstat.tcps_rcvbyte += tlen;
2608 nd6_hint(tp);
2609 if (so->so_state & SS_CANTRCVMORE)
2610 m_freem(m);
2611 else {
2612 m_adj(m, hdroptlen);
2613 sbappendstream(&(so)->so_rcv, m);
2614 }
2615 sorwakeup(so);
2616 } else {
2617 m_adj(m, hdroptlen);
2618 tiflags = tcp_reass(tp, th, m, &tlen);
2619 tp->t_flags |= TF_ACKNOW;
2620 }
2621 TCP_REASS_UNLOCK(tp);
2622
2623 /*
2624 * Note the amount of data that peer has sent into
2625 * our window, in order to estimate the sender's
2626 * buffer size.
2627 */
2628 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2629 } else {
2630 m_freem(m);
2631 m = NULL;
2632 tiflags &= ~TH_FIN;
2633 }
2634
2635 /*
2636 * If FIN is received ACK the FIN and let the user know
2637 * that the connection is closing. Ignore a FIN received before
2638 * the connection is fully established.
2639 */
2640 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2641 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2642 socantrcvmore(so);
2643 tp->t_flags |= TF_ACKNOW;
2644 tp->rcv_nxt++;
2645 }
2646 switch (tp->t_state) {
2647
2648 /*
2649 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2650 */
2651 case TCPS_ESTABLISHED:
2652 tp->t_state = TCPS_CLOSE_WAIT;
2653 break;
2654
2655 /*
2656 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2657 * enter the CLOSING state.
2658 */
2659 case TCPS_FIN_WAIT_1:
2660 tp->t_state = TCPS_CLOSING;
2661 break;
2662
2663 /*
2664 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2665 * starting the time-wait timer, turning off the other
2666 * standard timers.
2667 */
2668 case TCPS_FIN_WAIT_2:
2669 tp->t_state = TCPS_TIME_WAIT;
2670 tcp_canceltimers(tp);
2671 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2672 soisdisconnected(so);
2673 break;
2674
2675 /*
2676 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2677 */
2678 case TCPS_TIME_WAIT:
2679 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2680 break;
2681 }
2682 }
2683 #ifdef TCP_DEBUG
2684 if (so->so_options & SO_DEBUG)
2685 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2686 #endif
2687
2688 /*
2689 * Return any desired output.
2690 */
2691 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2692 (void) tcp_output(tp);
2693 }
2694 if (tcp_saveti)
2695 m_freem(tcp_saveti);
2696 return;
2697
2698 badsyn:
2699 /*
2700 * Received a bad SYN. Increment counters and dropwithreset.
2701 */
2702 tcpstat.tcps_badsyn++;
2703 tp = NULL;
2704 goto dropwithreset;
2705
2706 dropafterack:
2707 /*
2708 * Generate an ACK dropping incoming segment if it occupies
2709 * sequence space, where the ACK reflects our state.
2710 */
2711 if (tiflags & TH_RST)
2712 goto drop;
2713 goto dropafterack2;
2714
2715 dropafterack_ratelim:
2716 /*
2717 * We may want to rate-limit ACKs against SYN/RST attack.
2718 */
2719 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2720 tcp_ackdrop_ppslim) == 0) {
2721 /* XXX stat */
2722 goto drop;
2723 }
2724 /* ...fall into dropafterack2... */
2725
2726 dropafterack2:
2727 m_freem(m);
2728 tp->t_flags |= TF_ACKNOW;
2729 (void) tcp_output(tp);
2730 if (tcp_saveti)
2731 m_freem(tcp_saveti);
2732 return;
2733
2734 dropwithreset_ratelim:
2735 /*
2736 * We may want to rate-limit RSTs in certain situations,
2737 * particularly if we are sending an RST in response to
2738 * an attempt to connect to or otherwise communicate with
2739 * a port for which we have no socket.
2740 */
2741 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2742 tcp_rst_ppslim) == 0) {
2743 /* XXX stat */
2744 goto drop;
2745 }
2746 /* ...fall into dropwithreset... */
2747
2748 dropwithreset:
2749 /*
2750 * Generate a RST, dropping incoming segment.
2751 * Make ACK acceptable to originator of segment.
2752 */
2753 if (tiflags & TH_RST)
2754 goto drop;
2755
2756 switch (af) {
2757 #ifdef INET6
2758 case AF_INET6:
2759 /* For following calls to tcp_respond */
2760 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2761 goto drop;
2762 break;
2763 #endif /* INET6 */
2764 case AF_INET:
2765 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2766 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2767 goto drop;
2768 }
2769
2770 if (tiflags & TH_ACK)
2771 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2772 else {
2773 if (tiflags & TH_SYN)
2774 tlen++;
2775 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2776 TH_RST|TH_ACK);
2777 }
2778 if (tcp_saveti)
2779 m_freem(tcp_saveti);
2780 return;
2781
2782 badcsum:
2783 drop:
2784 /*
2785 * Drop space held by incoming segment and return.
2786 */
2787 if (tp) {
2788 if (tp->t_inpcb)
2789 so = tp->t_inpcb->inp_socket;
2790 #ifdef INET6
2791 else if (tp->t_in6pcb)
2792 so = tp->t_in6pcb->in6p_socket;
2793 #endif
2794 else
2795 so = NULL;
2796 #ifdef TCP_DEBUG
2797 if (so && (so->so_options & SO_DEBUG) != 0)
2798 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2799 #endif
2800 }
2801 if (tcp_saveti)
2802 m_freem(tcp_saveti);
2803 m_freem(m);
2804 return;
2805 }
2806
2807 #ifdef TCP_SIGNATURE
2808 int
2809 tcp_signature_apply(void *fstate, void *data, u_int len)
2810 {
2811
2812 MD5Update(fstate, (u_char *)data, len);
2813 return (0);
2814 }
2815
2816 struct secasvar *
2817 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2818 {
2819 struct secasvar *sav;
2820 #ifdef FAST_IPSEC
2821 union sockaddr_union dst;
2822 #endif
2823 struct ip *ip;
2824 struct ip6_hdr *ip6;
2825
2826 ip = mtod(m, struct ip *);
2827 switch (ip->ip_v) {
2828 case 4:
2829 ip = mtod(m, struct ip *);
2830 ip6 = NULL;
2831 break;
2832 case 6:
2833 ip = NULL;
2834 ip6 = mtod(m, struct ip6_hdr *);
2835 break;
2836 default:
2837 return (NULL);
2838 }
2839
2840 #ifdef FAST_IPSEC
2841 /* Extract the destination from the IP header in the mbuf. */
2842 bzero(&dst, sizeof(union sockaddr_union));
2843 if (ip !=NULL) {
2844 dst.sa.sa_len = sizeof(struct sockaddr_in);
2845 dst.sa.sa_family = AF_INET;
2846 dst.sin.sin_addr = ip->ip_dst;
2847 } else {
2848 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2849 dst.sa.sa_family = AF_INET6;
2850 dst.sin6.sin6_addr = ip6->ip6_dst;
2851 }
2852
2853 /*
2854 * Look up an SADB entry which matches the address of the peer.
2855 */
2856 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2857 #else
2858 if (ip)
2859 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2860 (void *)&ip->ip_dst, IPPROTO_TCP,
2861 htonl(TCP_SIG_SPI), 0, 0);
2862 else
2863 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2864 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2865 htonl(TCP_SIG_SPI), 0, 0);
2866 #endif
2867
2868 return (sav); /* freesav must be performed by caller */
2869 }
2870
2871 int
2872 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2873 struct secasvar *sav, char *sig)
2874 {
2875 MD5_CTX ctx;
2876 struct ip *ip;
2877 struct ipovly *ipovly;
2878 struct ip6_hdr *ip6;
2879 struct ippseudo ippseudo;
2880 struct ip6_hdr_pseudo ip6pseudo;
2881 struct tcphdr th0;
2882 int l, tcphdrlen;
2883
2884 if (sav == NULL)
2885 return (-1);
2886
2887 tcphdrlen = th->th_off * 4;
2888
2889 switch (mtod(m, struct ip *)->ip_v) {
2890 case 4:
2891 ip = mtod(m, struct ip *);
2892 ip6 = NULL;
2893 break;
2894 case 6:
2895 ip = NULL;
2896 ip6 = mtod(m, struct ip6_hdr *);
2897 break;
2898 default:
2899 return (-1);
2900 }
2901
2902 MD5Init(&ctx);
2903
2904 if (ip) {
2905 memset(&ippseudo, 0, sizeof(ippseudo));
2906 ipovly = (struct ipovly *)ip;
2907 ippseudo.ippseudo_src = ipovly->ih_src;
2908 ippseudo.ippseudo_dst = ipovly->ih_dst;
2909 ippseudo.ippseudo_pad = 0;
2910 ippseudo.ippseudo_p = IPPROTO_TCP;
2911 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2912 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2913 } else {
2914 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2915 ip6pseudo.ip6ph_src = ip6->ip6_src;
2916 in6_clearscope(&ip6pseudo.ip6ph_src);
2917 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2918 in6_clearscope(&ip6pseudo.ip6ph_dst);
2919 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2920 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2921 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2922 }
2923
2924 th0 = *th;
2925 th0.th_sum = 0;
2926 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2927
2928 l = m->m_pkthdr.len - thoff - tcphdrlen;
2929 if (l > 0)
2930 m_apply(m, thoff + tcphdrlen,
2931 m->m_pkthdr.len - thoff - tcphdrlen,
2932 tcp_signature_apply, &ctx);
2933
2934 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2935 MD5Final(sig, &ctx);
2936
2937 return (0);
2938 }
2939 #endif
2940
2941 static int
2942 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2943 struct tcphdr *th,
2944 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2945 {
2946 u_int16_t mss;
2947 int opt, optlen = 0;
2948 #ifdef TCP_SIGNATURE
2949 void *sigp = NULL;
2950 char sigbuf[TCP_SIGLEN];
2951 struct secasvar *sav = NULL;
2952 #endif
2953
2954 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2955 opt = cp[0];
2956 if (opt == TCPOPT_EOL)
2957 break;
2958 if (opt == TCPOPT_NOP)
2959 optlen = 1;
2960 else {
2961 if (cnt < 2)
2962 break;
2963 optlen = cp[1];
2964 if (optlen < 2 || optlen > cnt)
2965 break;
2966 }
2967 switch (opt) {
2968
2969 default:
2970 continue;
2971
2972 case TCPOPT_MAXSEG:
2973 if (optlen != TCPOLEN_MAXSEG)
2974 continue;
2975 if (!(th->th_flags & TH_SYN))
2976 continue;
2977 if (TCPS_HAVERCVDSYN(tp->t_state))
2978 continue;
2979 bcopy(cp + 2, &mss, sizeof(mss));
2980 oi->maxseg = ntohs(mss);
2981 break;
2982
2983 case TCPOPT_WINDOW:
2984 if (optlen != TCPOLEN_WINDOW)
2985 continue;
2986 if (!(th->th_flags & TH_SYN))
2987 continue;
2988 if (TCPS_HAVERCVDSYN(tp->t_state))
2989 continue;
2990 tp->t_flags |= TF_RCVD_SCALE;
2991 tp->requested_s_scale = cp[2];
2992 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
2993 #if 0 /*XXX*/
2994 char *p;
2995
2996 if (ip)
2997 p = ntohl(ip->ip_src);
2998 #ifdef INET6
2999 else if (ip6)
3000 p = ip6_sprintf(&ip6->ip6_src);
3001 #endif
3002 else
3003 p = "(unknown)";
3004 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3005 "assuming %d\n",
3006 tp->requested_s_scale, p,
3007 TCP_MAX_WINSHIFT);
3008 #else
3009 log(LOG_ERR, "TCP: invalid wscale %d, "
3010 "assuming %d\n",
3011 tp->requested_s_scale,
3012 TCP_MAX_WINSHIFT);
3013 #endif
3014 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3015 }
3016 break;
3017
3018 case TCPOPT_TIMESTAMP:
3019 if (optlen != TCPOLEN_TIMESTAMP)
3020 continue;
3021 oi->ts_present = 1;
3022 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3023 NTOHL(oi->ts_val);
3024 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3025 NTOHL(oi->ts_ecr);
3026
3027 if (!(th->th_flags & TH_SYN))
3028 continue;
3029 if (TCPS_HAVERCVDSYN(tp->t_state))
3030 continue;
3031 /*
3032 * A timestamp received in a SYN makes
3033 * it ok to send timestamp requests and replies.
3034 */
3035 tp->t_flags |= TF_RCVD_TSTMP;
3036 tp->ts_recent = oi->ts_val;
3037 tp->ts_recent_age = tcp_now;
3038 break;
3039
3040 case TCPOPT_SACK_PERMITTED:
3041 if (optlen != TCPOLEN_SACK_PERMITTED)
3042 continue;
3043 if (!(th->th_flags & TH_SYN))
3044 continue;
3045 if (TCPS_HAVERCVDSYN(tp->t_state))
3046 continue;
3047 if (tcp_do_sack) {
3048 tp->t_flags |= TF_SACK_PERMIT;
3049 tp->t_flags |= TF_WILL_SACK;
3050 }
3051 break;
3052
3053 case TCPOPT_SACK:
3054 tcp_sack_option(tp, th, cp, optlen);
3055 break;
3056 #ifdef TCP_SIGNATURE
3057 case TCPOPT_SIGNATURE:
3058 if (optlen != TCPOLEN_SIGNATURE)
3059 continue;
3060 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3061 return (-1);
3062
3063 sigp = sigbuf;
3064 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3065 tp->t_flags |= TF_SIGNATURE;
3066 break;
3067 #endif
3068 }
3069 }
3070
3071 #ifdef TCP_SIGNATURE
3072 if (tp->t_flags & TF_SIGNATURE) {
3073
3074 sav = tcp_signature_getsav(m, th);
3075
3076 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3077 return (-1);
3078 }
3079
3080 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3081 if (sav == NULL)
3082 return (-1);
3083 #ifdef FAST_IPSEC
3084 KEY_FREESAV(&sav);
3085 #else
3086 key_freesav(sav);
3087 #endif
3088 return (-1);
3089 }
3090
3091 if (sigp) {
3092 char sig[TCP_SIGLEN];
3093
3094 TCP_FIELDS_TO_NET(th);
3095 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3096 TCP_FIELDS_TO_HOST(th);
3097 if (sav == NULL)
3098 return (-1);
3099 #ifdef FAST_IPSEC
3100 KEY_FREESAV(&sav);
3101 #else
3102 key_freesav(sav);
3103 #endif
3104 return (-1);
3105 }
3106 TCP_FIELDS_TO_HOST(th);
3107
3108 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3109 tcpstat.tcps_badsig++;
3110 if (sav == NULL)
3111 return (-1);
3112 #ifdef FAST_IPSEC
3113 KEY_FREESAV(&sav);
3114 #else
3115 key_freesav(sav);
3116 #endif
3117 return (-1);
3118 } else
3119 tcpstat.tcps_goodsig++;
3120
3121 key_sa_recordxfer(sav, m);
3122 #ifdef FAST_IPSEC
3123 KEY_FREESAV(&sav);
3124 #else
3125 key_freesav(sav);
3126 #endif
3127 }
3128 #endif
3129
3130 return (0);
3131 }
3132
3133 /*
3134 * Pull out of band byte out of a segment so
3135 * it doesn't appear in the user's data queue.
3136 * It is still reflected in the segment length for
3137 * sequencing purposes.
3138 */
3139 void
3140 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3141 struct mbuf *m, int off)
3142 {
3143 int cnt = off + th->th_urp - 1;
3144
3145 while (cnt >= 0) {
3146 if (m->m_len > cnt) {
3147 char *cp = mtod(m, char *) + cnt;
3148 struct tcpcb *tp = sototcpcb(so);
3149
3150 tp->t_iobc = *cp;
3151 tp->t_oobflags |= TCPOOB_HAVEDATA;
3152 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3153 m->m_len--;
3154 return;
3155 }
3156 cnt -= m->m_len;
3157 m = m->m_next;
3158 if (m == 0)
3159 break;
3160 }
3161 panic("tcp_pulloutofband");
3162 }
3163
3164 /*
3165 * Collect new round-trip time estimate
3166 * and update averages and current timeout.
3167 */
3168 void
3169 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3170 {
3171 int32_t delta;
3172
3173 tcpstat.tcps_rttupdated++;
3174 if (tp->t_srtt != 0) {
3175 /*
3176 * srtt is stored as fixed point with 3 bits after the
3177 * binary point (i.e., scaled by 8). The following magic
3178 * is equivalent to the smoothing algorithm in rfc793 with
3179 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3180 * point). Adjust rtt to origin 0.
3181 */
3182 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3183 if ((tp->t_srtt += delta) <= 0)
3184 tp->t_srtt = 1 << 2;
3185 /*
3186 * We accumulate a smoothed rtt variance (actually, a
3187 * smoothed mean difference), then set the retransmit
3188 * timer to smoothed rtt + 4 times the smoothed variance.
3189 * rttvar is stored as fixed point with 2 bits after the
3190 * binary point (scaled by 4). The following is
3191 * equivalent to rfc793 smoothing with an alpha of .75
3192 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3193 * rfc793's wired-in beta.
3194 */
3195 if (delta < 0)
3196 delta = -delta;
3197 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3198 if ((tp->t_rttvar += delta) <= 0)
3199 tp->t_rttvar = 1 << 2;
3200 } else {
3201 /*
3202 * No rtt measurement yet - use the unsmoothed rtt.
3203 * Set the variance to half the rtt (so our first
3204 * retransmit happens at 3*rtt).
3205 */
3206 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3207 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3208 }
3209 tp->t_rtttime = 0;
3210 tp->t_rxtshift = 0;
3211
3212 /*
3213 * the retransmit should happen at rtt + 4 * rttvar.
3214 * Because of the way we do the smoothing, srtt and rttvar
3215 * will each average +1/2 tick of bias. When we compute
3216 * the retransmit timer, we want 1/2 tick of rounding and
3217 * 1 extra tick because of +-1/2 tick uncertainty in the
3218 * firing of the timer. The bias will give us exactly the
3219 * 1.5 tick we need. But, because the bias is
3220 * statistical, we have to test that we don't drop below
3221 * the minimum feasible timer (which is 2 ticks).
3222 */
3223 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3224 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3225
3226 /*
3227 * We received an ack for a packet that wasn't retransmitted;
3228 * it is probably safe to discard any error indications we've
3229 * received recently. This isn't quite right, but close enough
3230 * for now (a route might have failed after we sent a segment,
3231 * and the return path might not be symmetrical).
3232 */
3233 tp->t_softerror = 0;
3234 }
3235
3236
3237 /*
3238 * TCP compressed state engine. Currently used to hold compressed
3239 * state for SYN_RECEIVED.
3240 */
3241
3242 u_long syn_cache_count;
3243 u_int32_t syn_hash1, syn_hash2;
3244
3245 #define SYN_HASH(sa, sp, dp) \
3246 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3247 ((u_int32_t)(sp)))^syn_hash2)))
3248 #ifndef INET6
3249 #define SYN_HASHALL(hash, src, dst) \
3250 do { \
3251 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3252 ((const struct sockaddr_in *)(src))->sin_port, \
3253 ((const struct sockaddr_in *)(dst))->sin_port); \
3254 } while (/*CONSTCOND*/ 0)
3255 #else
3256 #define SYN_HASH6(sa, sp, dp) \
3257 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3258 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3259 & 0x7fffffff)
3260
3261 #define SYN_HASHALL(hash, src, dst) \
3262 do { \
3263 switch ((src)->sa_family) { \
3264 case AF_INET: \
3265 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3266 ((const struct sockaddr_in *)(src))->sin_port, \
3267 ((const struct sockaddr_in *)(dst))->sin_port); \
3268 break; \
3269 case AF_INET6: \
3270 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3271 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3272 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3273 break; \
3274 default: \
3275 hash = 0; \
3276 } \
3277 } while (/*CONSTCOND*/0)
3278 #endif /* INET6 */
3279
3280 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3281 IPL_SOFTNET);
3282
3283 /*
3284 * We don't estimate RTT with SYNs, so each packet starts with the default
3285 * RTT and each timer step has a fixed timeout value.
3286 */
3287 #define SYN_CACHE_TIMER_ARM(sc) \
3288 do { \
3289 TCPT_RANGESET((sc)->sc_rxtcur, \
3290 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3291 TCPTV_REXMTMAX); \
3292 callout_reset(&(sc)->sc_timer, \
3293 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3294 } while (/*CONSTCOND*/0)
3295
3296 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3297
3298 static inline void
3299 syn_cache_rm(struct syn_cache *sc)
3300 {
3301 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3302 sc, sc_bucketq);
3303 sc->sc_tp = NULL;
3304 LIST_REMOVE(sc, sc_tpq);
3305 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3306 callout_stop(&sc->sc_timer);
3307 syn_cache_count--;
3308 }
3309
3310 static inline void
3311 syn_cache_put(struct syn_cache *sc)
3312 {
3313 if (sc->sc_ipopts)
3314 (void) m_free(sc->sc_ipopts);
3315 rtcache_free(&sc->sc_route);
3316 if (callout_invoking(&sc->sc_timer))
3317 sc->sc_flags |= SCF_DEAD;
3318 else {
3319 callout_destroy(&sc->sc_timer);
3320 pool_put(&syn_cache_pool, sc);
3321 }
3322 }
3323
3324 void
3325 syn_cache_init(void)
3326 {
3327 int i;
3328
3329 /* Initialize the hash buckets. */
3330 for (i = 0; i < tcp_syn_cache_size; i++)
3331 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3332 }
3333
3334 void
3335 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3336 {
3337 struct syn_cache_head *scp;
3338 struct syn_cache *sc2;
3339 int s;
3340
3341 /*
3342 * If there are no entries in the hash table, reinitialize
3343 * the hash secrets.
3344 */
3345 if (syn_cache_count == 0) {
3346 syn_hash1 = arc4random();
3347 syn_hash2 = arc4random();
3348 }
3349
3350 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3351 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3352 scp = &tcp_syn_cache[sc->sc_bucketidx];
3353
3354 /*
3355 * Make sure that we don't overflow the per-bucket
3356 * limit or the total cache size limit.
3357 */
3358 s = splsoftnet();
3359 if (scp->sch_length >= tcp_syn_bucket_limit) {
3360 tcpstat.tcps_sc_bucketoverflow++;
3361 /*
3362 * The bucket is full. Toss the oldest element in the
3363 * bucket. This will be the first entry in the bucket.
3364 */
3365 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3366 #ifdef DIAGNOSTIC
3367 /*
3368 * This should never happen; we should always find an
3369 * entry in our bucket.
3370 */
3371 if (sc2 == NULL)
3372 panic("syn_cache_insert: bucketoverflow: impossible");
3373 #endif
3374 syn_cache_rm(sc2);
3375 syn_cache_put(sc2); /* calls pool_put but see spl above */
3376 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3377 struct syn_cache_head *scp2, *sce;
3378
3379 tcpstat.tcps_sc_overflowed++;
3380 /*
3381 * The cache is full. Toss the oldest entry in the
3382 * first non-empty bucket we can find.
3383 *
3384 * XXX We would really like to toss the oldest
3385 * entry in the cache, but we hope that this
3386 * condition doesn't happen very often.
3387 */
3388 scp2 = scp;
3389 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3390 sce = &tcp_syn_cache[tcp_syn_cache_size];
3391 for (++scp2; scp2 != scp; scp2++) {
3392 if (scp2 >= sce)
3393 scp2 = &tcp_syn_cache[0];
3394 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3395 break;
3396 }
3397 #ifdef DIAGNOSTIC
3398 /*
3399 * This should never happen; we should always find a
3400 * non-empty bucket.
3401 */
3402 if (scp2 == scp)
3403 panic("syn_cache_insert: cacheoverflow: "
3404 "impossible");
3405 #endif
3406 }
3407 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3408 syn_cache_rm(sc2);
3409 syn_cache_put(sc2); /* calls pool_put but see spl above */
3410 }
3411
3412 /*
3413 * Initialize the entry's timer.
3414 */
3415 sc->sc_rxttot = 0;
3416 sc->sc_rxtshift = 0;
3417 SYN_CACHE_TIMER_ARM(sc);
3418
3419 /* Link it from tcpcb entry */
3420 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3421
3422 /* Put it into the bucket. */
3423 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3424 scp->sch_length++;
3425 syn_cache_count++;
3426
3427 tcpstat.tcps_sc_added++;
3428 splx(s);
3429 }
3430
3431 /*
3432 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3433 * If we have retransmitted an entry the maximum number of times, expire
3434 * that entry.
3435 */
3436 void
3437 syn_cache_timer(void *arg)
3438 {
3439 struct syn_cache *sc = arg;
3440 int s;
3441
3442 s = splsoftnet();
3443 callout_ack(&sc->sc_timer);
3444
3445 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3446 tcpstat.tcps_sc_delayed_free++;
3447 callout_destroy(&sc->sc_timer);
3448 pool_put(&syn_cache_pool, sc);
3449 splx(s);
3450 return;
3451 }
3452
3453 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3454 /* Drop it -- too many retransmissions. */
3455 goto dropit;
3456 }
3457
3458 /*
3459 * Compute the total amount of time this entry has
3460 * been on a queue. If this entry has been on longer
3461 * than the keep alive timer would allow, expire it.
3462 */
3463 sc->sc_rxttot += sc->sc_rxtcur;
3464 if (sc->sc_rxttot >= tcp_keepinit)
3465 goto dropit;
3466
3467 tcpstat.tcps_sc_retransmitted++;
3468 (void) syn_cache_respond(sc, NULL);
3469
3470 /* Advance the timer back-off. */
3471 sc->sc_rxtshift++;
3472 SYN_CACHE_TIMER_ARM(sc);
3473
3474 splx(s);
3475 return;
3476
3477 dropit:
3478 tcpstat.tcps_sc_timed_out++;
3479 syn_cache_rm(sc);
3480 syn_cache_put(sc); /* calls pool_put but see spl above */
3481 splx(s);
3482 }
3483
3484 /*
3485 * Remove syn cache created by the specified tcb entry,
3486 * because this does not make sense to keep them
3487 * (if there's no tcb entry, syn cache entry will never be used)
3488 */
3489 void
3490 syn_cache_cleanup(struct tcpcb *tp)
3491 {
3492 struct syn_cache *sc, *nsc;
3493 int s;
3494
3495 s = splsoftnet();
3496
3497 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3498 nsc = LIST_NEXT(sc, sc_tpq);
3499
3500 #ifdef DIAGNOSTIC
3501 if (sc->sc_tp != tp)
3502 panic("invalid sc_tp in syn_cache_cleanup");
3503 #endif
3504 syn_cache_rm(sc);
3505 syn_cache_put(sc); /* calls pool_put but see spl above */
3506 }
3507 /* just for safety */
3508 LIST_INIT(&tp->t_sc);
3509
3510 splx(s);
3511 }
3512
3513 /*
3514 * Find an entry in the syn cache.
3515 */
3516 struct syn_cache *
3517 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3518 struct syn_cache_head **headp)
3519 {
3520 struct syn_cache *sc;
3521 struct syn_cache_head *scp;
3522 u_int32_t hash;
3523 int s;
3524
3525 SYN_HASHALL(hash, src, dst);
3526
3527 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3528 *headp = scp;
3529 s = splsoftnet();
3530 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3531 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3532 if (sc->sc_hash != hash)
3533 continue;
3534 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3535 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3536 splx(s);
3537 return (sc);
3538 }
3539 }
3540 splx(s);
3541 return (NULL);
3542 }
3543
3544 /*
3545 * This function gets called when we receive an ACK for a
3546 * socket in the LISTEN state. We look up the connection
3547 * in the syn cache, and if its there, we pull it out of
3548 * the cache and turn it into a full-blown connection in
3549 * the SYN-RECEIVED state.
3550 *
3551 * The return values may not be immediately obvious, and their effects
3552 * can be subtle, so here they are:
3553 *
3554 * NULL SYN was not found in cache; caller should drop the
3555 * packet and send an RST.
3556 *
3557 * -1 We were unable to create the new connection, and are
3558 * aborting it. An ACK,RST is being sent to the peer
3559 * (unless we got screwey sequence numbners; see below),
3560 * because the 3-way handshake has been completed. Caller
3561 * should not free the mbuf, since we may be using it. If
3562 * we are not, we will free it.
3563 *
3564 * Otherwise, the return value is a pointer to the new socket
3565 * associated with the connection.
3566 */
3567 struct socket *
3568 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3569 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3570 struct socket *so, struct mbuf *m)
3571 {
3572 struct syn_cache *sc;
3573 struct syn_cache_head *scp;
3574 struct inpcb *inp = NULL;
3575 #ifdef INET6
3576 struct in6pcb *in6p = NULL;
3577 #endif
3578 struct tcpcb *tp = 0;
3579 struct mbuf *am;
3580 int s;
3581 struct socket *oso;
3582
3583 s = splsoftnet();
3584 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3585 splx(s);
3586 return (NULL);
3587 }
3588
3589 /*
3590 * Verify the sequence and ack numbers. Try getting the correct
3591 * response again.
3592 */
3593 if ((th->th_ack != sc->sc_iss + 1) ||
3594 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3595 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3596 (void) syn_cache_respond(sc, m);
3597 splx(s);
3598 return ((struct socket *)(-1));
3599 }
3600
3601 /* Remove this cache entry */
3602 syn_cache_rm(sc);
3603 splx(s);
3604
3605 /*
3606 * Ok, create the full blown connection, and set things up
3607 * as they would have been set up if we had created the
3608 * connection when the SYN arrived. If we can't create
3609 * the connection, abort it.
3610 */
3611 /*
3612 * inp still has the OLD in_pcb stuff, set the
3613 * v6-related flags on the new guy, too. This is
3614 * done particularly for the case where an AF_INET6
3615 * socket is bound only to a port, and a v4 connection
3616 * comes in on that port.
3617 * we also copy the flowinfo from the original pcb
3618 * to the new one.
3619 */
3620 oso = so;
3621 so = sonewconn(so, SS_ISCONNECTED);
3622 if (so == NULL)
3623 goto resetandabort;
3624
3625 switch (so->so_proto->pr_domain->dom_family) {
3626 #ifdef INET
3627 case AF_INET:
3628 inp = sotoinpcb(so);
3629 break;
3630 #endif
3631 #ifdef INET6
3632 case AF_INET6:
3633 in6p = sotoin6pcb(so);
3634 break;
3635 #endif
3636 }
3637 switch (src->sa_family) {
3638 #ifdef INET
3639 case AF_INET:
3640 if (inp) {
3641 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3642 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3643 inp->inp_options = ip_srcroute();
3644 in_pcbstate(inp, INP_BOUND);
3645 if (inp->inp_options == NULL) {
3646 inp->inp_options = sc->sc_ipopts;
3647 sc->sc_ipopts = NULL;
3648 }
3649 }
3650 #ifdef INET6
3651 else if (in6p) {
3652 /* IPv4 packet to AF_INET6 socket */
3653 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3654 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3655 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3656 &in6p->in6p_laddr.s6_addr32[3],
3657 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3658 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3659 in6totcpcb(in6p)->t_family = AF_INET;
3660 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3661 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3662 else
3663 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3664 in6_pcbstate(in6p, IN6P_BOUND);
3665 }
3666 #endif
3667 break;
3668 #endif
3669 #ifdef INET6
3670 case AF_INET6:
3671 if (in6p) {
3672 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3673 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3674 in6_pcbstate(in6p, IN6P_BOUND);
3675 }
3676 break;
3677 #endif
3678 }
3679 #ifdef INET6
3680 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3681 struct in6pcb *oin6p = sotoin6pcb(oso);
3682 /* inherit socket options from the listening socket */
3683 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3684 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3685 m_freem(in6p->in6p_options);
3686 in6p->in6p_options = 0;
3687 }
3688 ip6_savecontrol(in6p, &in6p->in6p_options,
3689 mtod(m, struct ip6_hdr *), m);
3690 }
3691 #endif
3692
3693 #if defined(IPSEC) || defined(FAST_IPSEC)
3694 /*
3695 * we make a copy of policy, instead of sharing the policy,
3696 * for better behavior in terms of SA lookup and dead SA removal.
3697 */
3698 if (inp) {
3699 /* copy old policy into new socket's */
3700 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3701 printf("tcp_input: could not copy policy\n");
3702 }
3703 #ifdef INET6
3704 else if (in6p) {
3705 /* copy old policy into new socket's */
3706 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3707 in6p->in6p_sp))
3708 printf("tcp_input: could not copy policy\n");
3709 }
3710 #endif
3711 #endif
3712
3713 /*
3714 * Give the new socket our cached route reference.
3715 */
3716 if (inp) {
3717 rtcache_copy(&inp->inp_route, &sc->sc_route);
3718 rtcache_free(&sc->sc_route);
3719 }
3720 #ifdef INET6
3721 else {
3722 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3723 rtcache_free(&sc->sc_route);
3724 }
3725 #endif
3726
3727 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3728 if (am == NULL)
3729 goto resetandabort;
3730 MCLAIM(am, &tcp_mowner);
3731 am->m_len = src->sa_len;
3732 bcopy(src, mtod(am, void *), src->sa_len);
3733 if (inp) {
3734 if (in_pcbconnect(inp, am, &lwp0)) {
3735 (void) m_free(am);
3736 goto resetandabort;
3737 }
3738 }
3739 #ifdef INET6
3740 else if (in6p) {
3741 if (src->sa_family == AF_INET) {
3742 /* IPv4 packet to AF_INET6 socket */
3743 struct sockaddr_in6 *sin6;
3744 sin6 = mtod(am, struct sockaddr_in6 *);
3745 am->m_len = sizeof(*sin6);
3746 bzero(sin6, sizeof(*sin6));
3747 sin6->sin6_family = AF_INET6;
3748 sin6->sin6_len = sizeof(*sin6);
3749 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3750 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3751 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3752 &sin6->sin6_addr.s6_addr32[3],
3753 sizeof(sin6->sin6_addr.s6_addr32[3]));
3754 }
3755 if (in6_pcbconnect(in6p, am, NULL)) {
3756 (void) m_free(am);
3757 goto resetandabort;
3758 }
3759 }
3760 #endif
3761 else {
3762 (void) m_free(am);
3763 goto resetandabort;
3764 }
3765 (void) m_free(am);
3766
3767 if (inp)
3768 tp = intotcpcb(inp);
3769 #ifdef INET6
3770 else if (in6p)
3771 tp = in6totcpcb(in6p);
3772 #endif
3773 else
3774 tp = NULL;
3775 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3776 if (sc->sc_request_r_scale != 15) {
3777 tp->requested_s_scale = sc->sc_requested_s_scale;
3778 tp->request_r_scale = sc->sc_request_r_scale;
3779 tp->snd_scale = sc->sc_requested_s_scale;
3780 tp->rcv_scale = sc->sc_request_r_scale;
3781 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3782 }
3783 if (sc->sc_flags & SCF_TIMESTAMP)
3784 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3785 tp->ts_timebase = sc->sc_timebase;
3786
3787 tp->t_template = tcp_template(tp);
3788 if (tp->t_template == 0) {
3789 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3790 so = NULL;
3791 m_freem(m);
3792 goto abort;
3793 }
3794
3795 tp->iss = sc->sc_iss;
3796 tp->irs = sc->sc_irs;
3797 tcp_sendseqinit(tp);
3798 tcp_rcvseqinit(tp);
3799 tp->t_state = TCPS_SYN_RECEIVED;
3800 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3801 tcpstat.tcps_accepts++;
3802
3803 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3804 tp->t_flags |= TF_WILL_SACK;
3805
3806 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3807 tp->t_flags |= TF_ECN_PERMIT;
3808
3809 #ifdef TCP_SIGNATURE
3810 if (sc->sc_flags & SCF_SIGNATURE)
3811 tp->t_flags |= TF_SIGNATURE;
3812 #endif
3813
3814 /* Initialize tp->t_ourmss before we deal with the peer's! */
3815 tp->t_ourmss = sc->sc_ourmaxseg;
3816 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3817
3818 /*
3819 * Initialize the initial congestion window. If we
3820 * had to retransmit the SYN,ACK, we must initialize cwnd
3821 * to 1 segment (i.e. the Loss Window).
3822 */
3823 if (sc->sc_rxtshift)
3824 tp->snd_cwnd = tp->t_peermss;
3825 else {
3826 int ss = tcp_init_win;
3827 #ifdef INET
3828 if (inp != NULL && in_localaddr(inp->inp_faddr))
3829 ss = tcp_init_win_local;
3830 #endif
3831 #ifdef INET6
3832 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3833 ss = tcp_init_win_local;
3834 #endif
3835 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3836 }
3837
3838 tcp_rmx_rtt(tp);
3839 tp->snd_wl1 = sc->sc_irs;
3840 tp->rcv_up = sc->sc_irs + 1;
3841
3842 /*
3843 * This is what whould have happened in tcp_output() when
3844 * the SYN,ACK was sent.
3845 */
3846 tp->snd_up = tp->snd_una;
3847 tp->snd_max = tp->snd_nxt = tp->iss+1;
3848 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3849 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3850 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3851 tp->last_ack_sent = tp->rcv_nxt;
3852 tp->t_partialacks = -1;
3853 tp->t_dupacks = 0;
3854
3855 tcpstat.tcps_sc_completed++;
3856 s = splsoftnet();
3857 syn_cache_put(sc);
3858 splx(s);
3859 return (so);
3860
3861 resetandabort:
3862 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3863 abort:
3864 if (so != NULL)
3865 (void) soabort(so);
3866 s = splsoftnet();
3867 syn_cache_put(sc);
3868 splx(s);
3869 tcpstat.tcps_sc_aborted++;
3870 return ((struct socket *)(-1));
3871 }
3872
3873 /*
3874 * This function is called when we get a RST for a
3875 * non-existent connection, so that we can see if the
3876 * connection is in the syn cache. If it is, zap it.
3877 */
3878
3879 void
3880 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3881 {
3882 struct syn_cache *sc;
3883 struct syn_cache_head *scp;
3884 int s = splsoftnet();
3885
3886 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3887 splx(s);
3888 return;
3889 }
3890 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3891 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3892 splx(s);
3893 return;
3894 }
3895 syn_cache_rm(sc);
3896 tcpstat.tcps_sc_reset++;
3897 syn_cache_put(sc); /* calls pool_put but see spl above */
3898 splx(s);
3899 }
3900
3901 void
3902 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3903 struct tcphdr *th)
3904 {
3905 struct syn_cache *sc;
3906 struct syn_cache_head *scp;
3907 int s;
3908
3909 s = splsoftnet();
3910 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3911 splx(s);
3912 return;
3913 }
3914 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3915 if (ntohl (th->th_seq) != sc->sc_iss) {
3916 splx(s);
3917 return;
3918 }
3919
3920 /*
3921 * If we've retransmitted 3 times and this is our second error,
3922 * we remove the entry. Otherwise, we allow it to continue on.
3923 * This prevents us from incorrectly nuking an entry during a
3924 * spurious network outage.
3925 *
3926 * See tcp_notify().
3927 */
3928 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3929 sc->sc_flags |= SCF_UNREACH;
3930 splx(s);
3931 return;
3932 }
3933
3934 syn_cache_rm(sc);
3935 tcpstat.tcps_sc_unreach++;
3936 syn_cache_put(sc); /* calls pool_put but see spl above */
3937 splx(s);
3938 }
3939
3940 /*
3941 * Given a LISTEN socket and an inbound SYN request, add
3942 * this to the syn cache, and send back a segment:
3943 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3944 * to the source.
3945 *
3946 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3947 * Doing so would require that we hold onto the data and deliver it
3948 * to the application. However, if we are the target of a SYN-flood
3949 * DoS attack, an attacker could send data which would eventually
3950 * consume all available buffer space if it were ACKed. By not ACKing
3951 * the data, we avoid this DoS scenario.
3952 */
3953
3954 int
3955 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3956 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3957 int optlen, struct tcp_opt_info *oi)
3958 {
3959 struct tcpcb tb, *tp;
3960 long win;
3961 struct syn_cache *sc;
3962 struct syn_cache_head *scp;
3963 struct mbuf *ipopts;
3964 struct tcp_opt_info opti;
3965 int s;
3966
3967 tp = sototcpcb(so);
3968
3969 bzero(&opti, sizeof(opti));
3970
3971 /*
3972 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
3973 *
3974 * Note this check is performed in tcp_input() very early on.
3975 */
3976
3977 /*
3978 * Initialize some local state.
3979 */
3980 win = sbspace(&so->so_rcv);
3981 if (win > TCP_MAXWIN)
3982 win = TCP_MAXWIN;
3983
3984 switch (src->sa_family) {
3985 #ifdef INET
3986 case AF_INET:
3987 /*
3988 * Remember the IP options, if any.
3989 */
3990 ipopts = ip_srcroute();
3991 break;
3992 #endif
3993 default:
3994 ipopts = NULL;
3995 }
3996
3997 #ifdef TCP_SIGNATURE
3998 if (optp || (tp->t_flags & TF_SIGNATURE))
3999 #else
4000 if (optp)
4001 #endif
4002 {
4003 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4004 #ifdef TCP_SIGNATURE
4005 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4006 #endif
4007 tb.t_state = TCPS_LISTEN;
4008 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4009 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4010 return (0);
4011 } else
4012 tb.t_flags = 0;
4013
4014 /*
4015 * See if we already have an entry for this connection.
4016 * If we do, resend the SYN,ACK. We do not count this
4017 * as a retransmission (XXX though maybe we should).
4018 */
4019 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4020 tcpstat.tcps_sc_dupesyn++;
4021 if (ipopts) {
4022 /*
4023 * If we were remembering a previous source route,
4024 * forget it and use the new one we've been given.
4025 */
4026 if (sc->sc_ipopts)
4027 (void) m_free(sc->sc_ipopts);
4028 sc->sc_ipopts = ipopts;
4029 }
4030 sc->sc_timestamp = tb.ts_recent;
4031 if (syn_cache_respond(sc, m) == 0) {
4032 tcpstat.tcps_sndacks++;
4033 tcpstat.tcps_sndtotal++;
4034 }
4035 return (1);
4036 }
4037
4038 s = splsoftnet();
4039 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4040 splx(s);
4041 if (sc == NULL) {
4042 if (ipopts)
4043 (void) m_free(ipopts);
4044 return (0);
4045 }
4046
4047 /*
4048 * Fill in the cache, and put the necessary IP and TCP
4049 * options into the reply.
4050 */
4051 bzero(sc, sizeof(struct syn_cache));
4052 callout_init(&sc->sc_timer, 0);
4053 bcopy(src, &sc->sc_src, src->sa_len);
4054 bcopy(dst, &sc->sc_dst, dst->sa_len);
4055 sc->sc_flags = 0;
4056 sc->sc_ipopts = ipopts;
4057 sc->sc_irs = th->th_seq;
4058 switch (src->sa_family) {
4059 #ifdef INET
4060 case AF_INET:
4061 {
4062 struct sockaddr_in *srcin = (void *) src;
4063 struct sockaddr_in *dstin = (void *) dst;
4064
4065 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4066 &srcin->sin_addr, dstin->sin_port,
4067 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4068 break;
4069 }
4070 #endif /* INET */
4071 #ifdef INET6
4072 case AF_INET6:
4073 {
4074 struct sockaddr_in6 *srcin6 = (void *) src;
4075 struct sockaddr_in6 *dstin6 = (void *) dst;
4076
4077 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4078 &srcin6->sin6_addr, dstin6->sin6_port,
4079 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4080 break;
4081 }
4082 #endif /* INET6 */
4083 }
4084 sc->sc_peermaxseg = oi->maxseg;
4085 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4086 m->m_pkthdr.rcvif : NULL,
4087 sc->sc_src.sa.sa_family);
4088 sc->sc_win = win;
4089 sc->sc_timebase = tcp_now; /* see tcp_newtcpcb() */
4090 sc->sc_timestamp = tb.ts_recent;
4091 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4092 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4093 sc->sc_flags |= SCF_TIMESTAMP;
4094 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4095 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4096 sc->sc_requested_s_scale = tb.requested_s_scale;
4097 sc->sc_request_r_scale = 0;
4098 /*
4099 * Pick the smallest possible scaling factor that
4100 * will still allow us to scale up to sb_max.
4101 *
4102 * We do this because there are broken firewalls that
4103 * will corrupt the window scale option, leading to
4104 * the other endpoint believing that our advertised
4105 * window is unscaled. At scale factors larger than
4106 * 5 the unscaled window will drop below 1500 bytes,
4107 * leading to serious problems when traversing these
4108 * broken firewalls.
4109 *
4110 * With the default sbmax of 256K, a scale factor
4111 * of 3 will be chosen by this algorithm. Those who
4112 * choose a larger sbmax should watch out
4113 * for the compatiblity problems mentioned above.
4114 *
4115 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4116 * or <SYN,ACK>) segment itself is never scaled.
4117 */
4118 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4119 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4120 sc->sc_request_r_scale++;
4121 } else {
4122 sc->sc_requested_s_scale = 15;
4123 sc->sc_request_r_scale = 15;
4124 }
4125 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4126 sc->sc_flags |= SCF_SACK_PERMIT;
4127
4128 /*
4129 * ECN setup packet recieved.
4130 */
4131 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4132 sc->sc_flags |= SCF_ECN_PERMIT;
4133
4134 #ifdef TCP_SIGNATURE
4135 if (tb.t_flags & TF_SIGNATURE)
4136 sc->sc_flags |= SCF_SIGNATURE;
4137 #endif
4138 sc->sc_tp = tp;
4139 if (syn_cache_respond(sc, m) == 0) {
4140 syn_cache_insert(sc, tp);
4141 tcpstat.tcps_sndacks++;
4142 tcpstat.tcps_sndtotal++;
4143 } else {
4144 s = splsoftnet();
4145 syn_cache_put(sc);
4146 splx(s);
4147 tcpstat.tcps_sc_dropped++;
4148 }
4149 return (1);
4150 }
4151
4152 int
4153 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4154 {
4155 #ifdef INET6
4156 struct rtentry *rt;
4157 #endif
4158 struct route *ro;
4159 u_int8_t *optp;
4160 int optlen, error;
4161 u_int16_t tlen;
4162 struct ip *ip = NULL;
4163 #ifdef INET6
4164 struct ip6_hdr *ip6 = NULL;
4165 #endif
4166 struct tcpcb *tp = NULL;
4167 struct tcphdr *th;
4168 u_int hlen;
4169 struct socket *so;
4170
4171 ro = &sc->sc_route;
4172 switch (sc->sc_src.sa.sa_family) {
4173 case AF_INET:
4174 hlen = sizeof(struct ip);
4175 break;
4176 #ifdef INET6
4177 case AF_INET6:
4178 hlen = sizeof(struct ip6_hdr);
4179 break;
4180 #endif
4181 default:
4182 if (m)
4183 m_freem(m);
4184 return (EAFNOSUPPORT);
4185 }
4186
4187 /* Compute the size of the TCP options. */
4188 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4189 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4190 #ifdef TCP_SIGNATURE
4191 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4192 #endif
4193 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4194
4195 tlen = hlen + sizeof(struct tcphdr) + optlen;
4196
4197 /*
4198 * Create the IP+TCP header from scratch.
4199 */
4200 if (m)
4201 m_freem(m);
4202 #ifdef DIAGNOSTIC
4203 if (max_linkhdr + tlen > MCLBYTES)
4204 return (ENOBUFS);
4205 #endif
4206 MGETHDR(m, M_DONTWAIT, MT_DATA);
4207 if (m && tlen > MHLEN) {
4208 MCLGET(m, M_DONTWAIT);
4209 if ((m->m_flags & M_EXT) == 0) {
4210 m_freem(m);
4211 m = NULL;
4212 }
4213 }
4214 if (m == NULL)
4215 return (ENOBUFS);
4216 MCLAIM(m, &tcp_tx_mowner);
4217
4218 /* Fixup the mbuf. */
4219 m->m_data += max_linkhdr;
4220 m->m_len = m->m_pkthdr.len = tlen;
4221 if (sc->sc_tp) {
4222 tp = sc->sc_tp;
4223 if (tp->t_inpcb)
4224 so = tp->t_inpcb->inp_socket;
4225 #ifdef INET6
4226 else if (tp->t_in6pcb)
4227 so = tp->t_in6pcb->in6p_socket;
4228 #endif
4229 else
4230 so = NULL;
4231 } else
4232 so = NULL;
4233 m->m_pkthdr.rcvif = NULL;
4234 memset(mtod(m, u_char *), 0, tlen);
4235
4236 switch (sc->sc_src.sa.sa_family) {
4237 case AF_INET:
4238 ip = mtod(m, struct ip *);
4239 ip->ip_v = 4;
4240 ip->ip_dst = sc->sc_src.sin.sin_addr;
4241 ip->ip_src = sc->sc_dst.sin.sin_addr;
4242 ip->ip_p = IPPROTO_TCP;
4243 th = (struct tcphdr *)(ip + 1);
4244 th->th_dport = sc->sc_src.sin.sin_port;
4245 th->th_sport = sc->sc_dst.sin.sin_port;
4246 break;
4247 #ifdef INET6
4248 case AF_INET6:
4249 ip6 = mtod(m, struct ip6_hdr *);
4250 ip6->ip6_vfc = IPV6_VERSION;
4251 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4252 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4253 ip6->ip6_nxt = IPPROTO_TCP;
4254 /* ip6_plen will be updated in ip6_output() */
4255 th = (struct tcphdr *)(ip6 + 1);
4256 th->th_dport = sc->sc_src.sin6.sin6_port;
4257 th->th_sport = sc->sc_dst.sin6.sin6_port;
4258 break;
4259 #endif
4260 default:
4261 th = NULL;
4262 }
4263
4264 th->th_seq = htonl(sc->sc_iss);
4265 th->th_ack = htonl(sc->sc_irs + 1);
4266 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4267 th->th_flags = TH_SYN|TH_ACK;
4268 th->th_win = htons(sc->sc_win);
4269 /* th_sum already 0 */
4270 /* th_urp already 0 */
4271
4272 /* Tack on the TCP options. */
4273 optp = (u_int8_t *)(th + 1);
4274 *optp++ = TCPOPT_MAXSEG;
4275 *optp++ = 4;
4276 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4277 *optp++ = sc->sc_ourmaxseg & 0xff;
4278
4279 if (sc->sc_request_r_scale != 15) {
4280 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4281 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4282 sc->sc_request_r_scale);
4283 optp += 4;
4284 }
4285
4286 if (sc->sc_flags & SCF_TIMESTAMP) {
4287 u_int32_t *lp = (u_int32_t *)(optp);
4288 /* Form timestamp option as shown in appendix A of RFC 1323. */
4289 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4290 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4291 *lp = htonl(sc->sc_timestamp);
4292 optp += TCPOLEN_TSTAMP_APPA;
4293 }
4294
4295 if (sc->sc_flags & SCF_SACK_PERMIT) {
4296 u_int8_t *p = optp;
4297
4298 /* Let the peer know that we will SACK. */
4299 p[0] = TCPOPT_SACK_PERMITTED;
4300 p[1] = 2;
4301 p[2] = TCPOPT_NOP;
4302 p[3] = TCPOPT_NOP;
4303 optp += 4;
4304 }
4305
4306 /*
4307 * Send ECN SYN-ACK setup packet.
4308 * Routes can be asymetric, so, even if we receive a packet
4309 * with ECE and CWR set, we must not assume no one will block
4310 * the ECE packet we are about to send.
4311 */
4312 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4313 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4314 th->th_flags |= TH_ECE;
4315 tcpstat.tcps_ecn_shs++;
4316
4317 /*
4318 * draft-ietf-tcpm-ecnsyn-00.txt
4319 *
4320 * "[...] a TCP node MAY respond to an ECN-setup
4321 * SYN packet by setting ECT in the responding
4322 * ECN-setup SYN/ACK packet, indicating to routers
4323 * that the SYN/ACK packet is ECN-Capable.
4324 * This allows a congested router along the path
4325 * to mark the packet instead of dropping the
4326 * packet as an indication of congestion."
4327 *
4328 * "[...] There can be a great benefit in setting
4329 * an ECN-capable codepoint in SYN/ACK packets [...]
4330 * Congestion is most likely to occur in
4331 * the server-to-client direction. As a result,
4332 * setting an ECN-capable codepoint in SYN/ACK
4333 * packets can reduce the occurence of three-second
4334 * retransmit timeouts resulting from the drop
4335 * of SYN/ACK packets."
4336 *
4337 * Page 4 and 6, January 2006.
4338 */
4339
4340 switch (sc->sc_src.sa.sa_family) {
4341 #ifdef INET
4342 case AF_INET:
4343 ip->ip_tos |= IPTOS_ECN_ECT0;
4344 break;
4345 #endif
4346 #ifdef INET6
4347 case AF_INET6:
4348 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4349 break;
4350 #endif
4351 }
4352 tcpstat.tcps_ecn_ect++;
4353 }
4354
4355 #ifdef TCP_SIGNATURE
4356 if (sc->sc_flags & SCF_SIGNATURE) {
4357 struct secasvar *sav;
4358 u_int8_t *sigp;
4359
4360 sav = tcp_signature_getsav(m, th);
4361
4362 if (sav == NULL) {
4363 if (m)
4364 m_freem(m);
4365 return (EPERM);
4366 }
4367
4368 *optp++ = TCPOPT_SIGNATURE;
4369 *optp++ = TCPOLEN_SIGNATURE;
4370 sigp = optp;
4371 bzero(optp, TCP_SIGLEN);
4372 optp += TCP_SIGLEN;
4373 *optp++ = TCPOPT_NOP;
4374 *optp++ = TCPOPT_EOL;
4375
4376 (void)tcp_signature(m, th, hlen, sav, sigp);
4377
4378 key_sa_recordxfer(sav, m);
4379 #ifdef FAST_IPSEC
4380 KEY_FREESAV(&sav);
4381 #else
4382 key_freesav(sav);
4383 #endif
4384 }
4385 #endif
4386
4387 /* Compute the packet's checksum. */
4388 switch (sc->sc_src.sa.sa_family) {
4389 case AF_INET:
4390 ip->ip_len = htons(tlen - hlen);
4391 th->th_sum = 0;
4392 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4393 break;
4394 #ifdef INET6
4395 case AF_INET6:
4396 ip6->ip6_plen = htons(tlen - hlen);
4397 th->th_sum = 0;
4398 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4399 break;
4400 #endif
4401 }
4402
4403 /*
4404 * Fill in some straggling IP bits. Note the stack expects
4405 * ip_len to be in host order, for convenience.
4406 */
4407 switch (sc->sc_src.sa.sa_family) {
4408 #ifdef INET
4409 case AF_INET:
4410 ip->ip_len = htons(tlen);
4411 ip->ip_ttl = ip_defttl;
4412 /* XXX tos? */
4413 break;
4414 #endif
4415 #ifdef INET6
4416 case AF_INET6:
4417 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4418 ip6->ip6_vfc |= IPV6_VERSION;
4419 ip6->ip6_plen = htons(tlen - hlen);
4420 /* ip6_hlim will be initialized afterwards */
4421 /* XXX flowlabel? */
4422 break;
4423 #endif
4424 }
4425
4426 /* XXX use IPsec policy on listening socket, on SYN ACK */
4427 tp = sc->sc_tp;
4428
4429 switch (sc->sc_src.sa.sa_family) {
4430 #ifdef INET
4431 case AF_INET:
4432 error = ip_output(m, sc->sc_ipopts, ro,
4433 (ip_mtudisc ? IP_MTUDISC : 0),
4434 (struct ip_moptions *)NULL, so);
4435 break;
4436 #endif
4437 #ifdef INET6
4438 case AF_INET6:
4439 ip6->ip6_hlim = in6_selecthlim(NULL,
4440 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4441 : NULL);
4442
4443 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4444 break;
4445 #endif
4446 default:
4447 error = EAFNOSUPPORT;
4448 break;
4449 }
4450 return (error);
4451 }
4452