Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.280
      1 /*	$NetBSD: tcp_input.c,v 1.280 2008/02/20 11:44:07 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Charles M. Hannum.
     81  * This code is derived from software contributed to The NetBSD Foundation
     82  * by Rui Paulo.
     83  *
     84  * Redistribution and use in source and binary forms, with or without
     85  * modification, are permitted provided that the following conditions
     86  * are met:
     87  * 1. Redistributions of source code must retain the above copyright
     88  *    notice, this list of conditions and the following disclaimer.
     89  * 2. Redistributions in binary form must reproduce the above copyright
     90  *    notice, this list of conditions and the following disclaimer in the
     91  *    documentation and/or other materials provided with the distribution.
     92  * 3. All advertising materials mentioning features or use of this software
     93  *    must display the following acknowledgement:
     94  *	This product includes software developed by the NetBSD
     95  *	Foundation, Inc. and its contributors.
     96  * 4. Neither the name of The NetBSD Foundation nor the names of its
     97  *    contributors may be used to endorse or promote products derived
     98  *    from this software without specific prior written permission.
     99  *
    100  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
    101  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
    102  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
    103  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    104  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    105  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    106  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    107  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    108  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    109  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    110  * POSSIBILITY OF SUCH DAMAGE.
    111  */
    112 
    113 /*
    114  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    115  *	The Regents of the University of California.  All rights reserved.
    116  *
    117  * Redistribution and use in source and binary forms, with or without
    118  * modification, are permitted provided that the following conditions
    119  * are met:
    120  * 1. Redistributions of source code must retain the above copyright
    121  *    notice, this list of conditions and the following disclaimer.
    122  * 2. Redistributions in binary form must reproduce the above copyright
    123  *    notice, this list of conditions and the following disclaimer in the
    124  *    documentation and/or other materials provided with the distribution.
    125  * 3. Neither the name of the University nor the names of its contributors
    126  *    may be used to endorse or promote products derived from this software
    127  *    without specific prior written permission.
    128  *
    129  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    130  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    131  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    132  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    133  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    134  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    135  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    136  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    137  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    138  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    139  * SUCH DAMAGE.
    140  *
    141  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    142  */
    143 
    144 /*
    145  *	TODO list for SYN cache stuff:
    146  *
    147  *	Find room for a "state" field, which is needed to keep a
    148  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    149  *	that this is fairly important for very high-volume web and
    150  *	mail servers, which use a large number of short-lived
    151  *	connections.
    152  */
    153 
    154 #include <sys/cdefs.h>
    155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.280 2008/02/20 11:44:07 yamt Exp $");
    156 
    157 #include "opt_inet.h"
    158 #include "opt_ipsec.h"
    159 #include "opt_inet_csum.h"
    160 #include "opt_tcp_debug.h"
    161 
    162 #include <sys/param.h>
    163 #include <sys/systm.h>
    164 #include <sys/malloc.h>
    165 #include <sys/mbuf.h>
    166 #include <sys/protosw.h>
    167 #include <sys/socket.h>
    168 #include <sys/socketvar.h>
    169 #include <sys/errno.h>
    170 #include <sys/syslog.h>
    171 #include <sys/pool.h>
    172 #include <sys/domain.h>
    173 #include <sys/kernel.h>
    174 #ifdef TCP_SIGNATURE
    175 #include <sys/md5.h>
    176 #endif
    177 #include <sys/lwp.h> /* for lwp0 */
    178 
    179 #include <net/if.h>
    180 #include <net/route.h>
    181 #include <net/if_types.h>
    182 
    183 #include <netinet/in.h>
    184 #include <netinet/in_systm.h>
    185 #include <netinet/ip.h>
    186 #include <netinet/in_pcb.h>
    187 #include <netinet/in_var.h>
    188 #include <netinet/ip_var.h>
    189 #include <netinet/in_offload.h>
    190 
    191 #ifdef INET6
    192 #ifndef INET
    193 #include <netinet/in.h>
    194 #endif
    195 #include <netinet/ip6.h>
    196 #include <netinet6/ip6_var.h>
    197 #include <netinet6/in6_pcb.h>
    198 #include <netinet6/ip6_var.h>
    199 #include <netinet6/in6_var.h>
    200 #include <netinet/icmp6.h>
    201 #include <netinet6/nd6.h>
    202 #ifdef TCP_SIGNATURE
    203 #include <netinet6/scope6_var.h>
    204 #endif
    205 #endif
    206 
    207 #ifndef INET6
    208 /* always need ip6.h for IP6_EXTHDR_GET */
    209 #include <netinet/ip6.h>
    210 #endif
    211 
    212 #include <netinet/tcp.h>
    213 #include <netinet/tcp_fsm.h>
    214 #include <netinet/tcp_seq.h>
    215 #include <netinet/tcp_timer.h>
    216 #include <netinet/tcp_var.h>
    217 #include <netinet/tcpip.h>
    218 #include <netinet/tcp_congctl.h>
    219 #include <netinet/tcp_debug.h>
    220 
    221 #include <machine/stdarg.h>
    222 
    223 #ifdef IPSEC
    224 #include <netinet6/ipsec.h>
    225 #include <netkey/key.h>
    226 #endif /*IPSEC*/
    227 #ifdef INET6
    228 #include "faith.h"
    229 #if defined(NFAITH) && NFAITH > 0
    230 #include <net/if_faith.h>
    231 #endif
    232 #endif	/* IPSEC */
    233 
    234 #ifdef FAST_IPSEC
    235 #include <netipsec/ipsec.h>
    236 #include <netipsec/ipsec_var.h>			/* XXX ipsecstat namespace */
    237 #include <netipsec/key.h>
    238 #ifdef INET6
    239 #include <netipsec/ipsec6.h>
    240 #endif
    241 #endif	/* FAST_IPSEC*/
    242 
    243 int	tcprexmtthresh = 3;
    244 int	tcp_log_refused;
    245 
    246 int	tcp_do_autorcvbuf = 0;
    247 int	tcp_autorcvbuf_inc = 16 * 1024;
    248 int	tcp_autorcvbuf_max = 256 * 1024;
    249 
    250 static int tcp_rst_ppslim_count = 0;
    251 static struct timeval tcp_rst_ppslim_last;
    252 static int tcp_ackdrop_ppslim_count = 0;
    253 static struct timeval tcp_ackdrop_ppslim_last;
    254 
    255 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    256 
    257 /* for modulo comparisons of timestamps */
    258 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    259 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    260 
    261 /*
    262  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    263  */
    264 #ifdef INET6
    265 static inline void
    266 nd6_hint(struct tcpcb *tp)
    267 {
    268 	struct rtentry *rt;
    269 
    270 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    271 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    272 		nd6_nud_hint(rt, NULL, 0);
    273 }
    274 #else
    275 static inline void
    276 nd6_hint(struct tcpcb *tp)
    277 {
    278 }
    279 #endif
    280 
    281 /*
    282  * Compute ACK transmission behavior.  Delay the ACK unless
    283  * we have already delayed an ACK (must send an ACK every two segments).
    284  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    285  * option is enabled.
    286  */
    287 static void
    288 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    289 {
    290 
    291 	if (tp->t_flags & TF_DELACK ||
    292 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    293 		tp->t_flags |= TF_ACKNOW;
    294 	else
    295 		TCP_SET_DELACK(tp);
    296 }
    297 
    298 static void
    299 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    300 {
    301 
    302 	/*
    303 	 * If we had a pending ICMP message that refers to data that have
    304 	 * just been acknowledged, disregard the recorded ICMP message.
    305 	 */
    306 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    307 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    308 		tp->t_flags &= ~TF_PMTUD_PEND;
    309 
    310 	/*
    311 	 * Keep track of the largest chunk of data
    312 	 * acknowledged since last PMTU update
    313 	 */
    314 	if (tp->t_pmtud_mss_acked < acked)
    315 		tp->t_pmtud_mss_acked = acked;
    316 }
    317 
    318 /*
    319  * Convert TCP protocol fields to host order for easier processing.
    320  */
    321 static void
    322 tcp_fields_to_host(struct tcphdr *th)
    323 {
    324 
    325 	NTOHL(th->th_seq);
    326 	NTOHL(th->th_ack);
    327 	NTOHS(th->th_win);
    328 	NTOHS(th->th_urp);
    329 }
    330 
    331 /*
    332  * ... and reverse the above.
    333  */
    334 static void
    335 tcp_fields_to_net(struct tcphdr *th)
    336 {
    337 
    338 	HTONL(th->th_seq);
    339 	HTONL(th->th_ack);
    340 	HTONS(th->th_win);
    341 	HTONS(th->th_urp);
    342 }
    343 
    344 #ifdef TCP_CSUM_COUNTERS
    345 #include <sys/device.h>
    346 
    347 #if defined(INET)
    348 extern struct evcnt tcp_hwcsum_ok;
    349 extern struct evcnt tcp_hwcsum_bad;
    350 extern struct evcnt tcp_hwcsum_data;
    351 extern struct evcnt tcp_swcsum;
    352 #endif /* defined(INET) */
    353 #if defined(INET6)
    354 extern struct evcnt tcp6_hwcsum_ok;
    355 extern struct evcnt tcp6_hwcsum_bad;
    356 extern struct evcnt tcp6_hwcsum_data;
    357 extern struct evcnt tcp6_swcsum;
    358 #endif /* defined(INET6) */
    359 
    360 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    361 
    362 #else
    363 
    364 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    365 
    366 #endif /* TCP_CSUM_COUNTERS */
    367 
    368 #ifdef TCP_REASS_COUNTERS
    369 #include <sys/device.h>
    370 
    371 extern struct evcnt tcp_reass_;
    372 extern struct evcnt tcp_reass_empty;
    373 extern struct evcnt tcp_reass_iteration[8];
    374 extern struct evcnt tcp_reass_prependfirst;
    375 extern struct evcnt tcp_reass_prepend;
    376 extern struct evcnt tcp_reass_insert;
    377 extern struct evcnt tcp_reass_inserttail;
    378 extern struct evcnt tcp_reass_append;
    379 extern struct evcnt tcp_reass_appendtail;
    380 extern struct evcnt tcp_reass_overlaptail;
    381 extern struct evcnt tcp_reass_overlapfront;
    382 extern struct evcnt tcp_reass_segdup;
    383 extern struct evcnt tcp_reass_fragdup;
    384 
    385 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    386 
    387 #else
    388 
    389 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    390 
    391 #endif /* TCP_REASS_COUNTERS */
    392 
    393 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    394     int *);
    395 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    396     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    397 
    398 #ifdef INET
    399 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    400 #endif
    401 #ifdef INET6
    402 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    403 #endif
    404 
    405 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    406 
    407 #if defined(MBUFTRACE)
    408 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    409 #endif /* defined(MBUFTRACE) */
    410 
    411 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    412     NULL, IPL_VM);
    413 
    414 struct ipqent *
    415 tcpipqent_alloc()
    416 {
    417 	struct ipqent *ipqe;
    418 	int s;
    419 
    420 	s = splvm();
    421 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    422 	splx(s);
    423 
    424 	return ipqe;
    425 }
    426 
    427 void
    428 tcpipqent_free(struct ipqent *ipqe)
    429 {
    430 	int s;
    431 
    432 	s = splvm();
    433 	pool_put(&tcpipqent_pool, ipqe);
    434 	splx(s);
    435 }
    436 
    437 static int
    438 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    439 {
    440 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    441 	struct socket *so = NULL;
    442 	int pkt_flags;
    443 	tcp_seq pkt_seq;
    444 	unsigned pkt_len;
    445 	u_long rcvpartdupbyte = 0;
    446 	u_long rcvoobyte;
    447 #ifdef TCP_REASS_COUNTERS
    448 	u_int count = 0;
    449 #endif
    450 
    451 	if (tp->t_inpcb)
    452 		so = tp->t_inpcb->inp_socket;
    453 #ifdef INET6
    454 	else if (tp->t_in6pcb)
    455 		so = tp->t_in6pcb->in6p_socket;
    456 #endif
    457 
    458 	TCP_REASS_LOCK_CHECK(tp);
    459 
    460 	/*
    461 	 * Call with th==0 after become established to
    462 	 * force pre-ESTABLISHED data up to user socket.
    463 	 */
    464 	if (th == 0)
    465 		goto present;
    466 
    467 	m_claimm(m, &tcp_reass_mowner);
    468 
    469 	rcvoobyte = *tlen;
    470 	/*
    471 	 * Copy these to local variables because the tcpiphdr
    472 	 * gets munged while we are collapsing mbufs.
    473 	 */
    474 	pkt_seq = th->th_seq;
    475 	pkt_len = *tlen;
    476 	pkt_flags = th->th_flags;
    477 
    478 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    479 
    480 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    481 		/*
    482 		 * When we miss a packet, the vast majority of time we get
    483 		 * packets that follow it in order.  So optimize for that.
    484 		 */
    485 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    486 			p->ipqe_len += pkt_len;
    487 			p->ipqe_flags |= pkt_flags;
    488 			m_cat(p->ipre_mlast, m);
    489 			TRAVERSE(p->ipre_mlast);
    490 			m = NULL;
    491 			tiqe = p;
    492 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    493 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    494 			goto skip_replacement;
    495 		}
    496 		/*
    497 		 * While we're here, if the pkt is completely beyond
    498 		 * anything we have, just insert it at the tail.
    499 		 */
    500 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    501 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    502 			goto insert_it;
    503 		}
    504 	}
    505 
    506 	q = TAILQ_FIRST(&tp->segq);
    507 
    508 	if (q != NULL) {
    509 		/*
    510 		 * If this segment immediately precedes the first out-of-order
    511 		 * block, simply slap the segment in front of it and (mostly)
    512 		 * skip the complicated logic.
    513 		 */
    514 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    515 			q->ipqe_seq = pkt_seq;
    516 			q->ipqe_len += pkt_len;
    517 			q->ipqe_flags |= pkt_flags;
    518 			m_cat(m, q->ipqe_m);
    519 			q->ipqe_m = m;
    520 			q->ipre_mlast = m; /* last mbuf may have changed */
    521 			TRAVERSE(q->ipre_mlast);
    522 			tiqe = q;
    523 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    524 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    525 			goto skip_replacement;
    526 		}
    527 	} else {
    528 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    529 	}
    530 
    531 	/*
    532 	 * Find a segment which begins after this one does.
    533 	 */
    534 	for (p = NULL; q != NULL; q = nq) {
    535 		nq = TAILQ_NEXT(q, ipqe_q);
    536 #ifdef TCP_REASS_COUNTERS
    537 		count++;
    538 #endif
    539 		/*
    540 		 * If the received segment is just right after this
    541 		 * fragment, merge the two together and then check
    542 		 * for further overlaps.
    543 		 */
    544 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    545 #ifdef TCPREASS_DEBUG
    546 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    547 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    548 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    549 #endif
    550 			pkt_len += q->ipqe_len;
    551 			pkt_flags |= q->ipqe_flags;
    552 			pkt_seq = q->ipqe_seq;
    553 			m_cat(q->ipre_mlast, m);
    554 			TRAVERSE(q->ipre_mlast);
    555 			m = q->ipqe_m;
    556 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    557 			goto free_ipqe;
    558 		}
    559 		/*
    560 		 * If the received segment is completely past this
    561 		 * fragment, we need to go the next fragment.
    562 		 */
    563 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    564 			p = q;
    565 			continue;
    566 		}
    567 		/*
    568 		 * If the fragment is past the received segment,
    569 		 * it (or any following) can't be concatenated.
    570 		 */
    571 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    572 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    573 			break;
    574 		}
    575 
    576 		/*
    577 		 * We've received all the data in this segment before.
    578 		 * mark it as a duplicate and return.
    579 		 */
    580 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    581 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    582 			tcpstat.tcps_rcvduppack++;
    583 			tcpstat.tcps_rcvdupbyte += pkt_len;
    584 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    585 			m_freem(m);
    586 			if (tiqe != NULL) {
    587 				tcpipqent_free(tiqe);
    588 			}
    589 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    590 			return (0);
    591 		}
    592 		/*
    593 		 * Received segment completely overlaps this fragment
    594 		 * so we drop the fragment (this keeps the temporal
    595 		 * ordering of segments correct).
    596 		 */
    597 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    598 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    599 			rcvpartdupbyte += q->ipqe_len;
    600 			m_freem(q->ipqe_m);
    601 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    602 			goto free_ipqe;
    603 		}
    604 		/*
    605 		 * RX'ed segment extends past the end of the
    606 		 * fragment.  Drop the overlapping bytes.  Then
    607 		 * merge the fragment and segment then treat as
    608 		 * a longer received packet.
    609 		 */
    610 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    611 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    612 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    613 #ifdef TCPREASS_DEBUG
    614 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    615 			       tp, overlap,
    616 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    617 #endif
    618 			m_adj(m, overlap);
    619 			rcvpartdupbyte += overlap;
    620 			m_cat(q->ipre_mlast, m);
    621 			TRAVERSE(q->ipre_mlast);
    622 			m = q->ipqe_m;
    623 			pkt_seq = q->ipqe_seq;
    624 			pkt_len += q->ipqe_len - overlap;
    625 			rcvoobyte -= overlap;
    626 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    627 			goto free_ipqe;
    628 		}
    629 		/*
    630 		 * RX'ed segment extends past the front of the
    631 		 * fragment.  Drop the overlapping bytes on the
    632 		 * received packet.  The packet will then be
    633 		 * contatentated with this fragment a bit later.
    634 		 */
    635 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    636 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    637 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    638 #ifdef TCPREASS_DEBUG
    639 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    640 			       tp, overlap,
    641 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    642 #endif
    643 			m_adj(m, -overlap);
    644 			pkt_len -= overlap;
    645 			rcvpartdupbyte += overlap;
    646 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    647 			rcvoobyte -= overlap;
    648 		}
    649 		/*
    650 		 * If the received segment immediates precedes this
    651 		 * fragment then tack the fragment onto this segment
    652 		 * and reinsert the data.
    653 		 */
    654 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    655 #ifdef TCPREASS_DEBUG
    656 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    657 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    658 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    659 #endif
    660 			pkt_len += q->ipqe_len;
    661 			pkt_flags |= q->ipqe_flags;
    662 			m_cat(m, q->ipqe_m);
    663 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    664 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    665 			tp->t_segqlen--;
    666 			KASSERT(tp->t_segqlen >= 0);
    667 			KASSERT(tp->t_segqlen != 0 ||
    668 			    (TAILQ_EMPTY(&tp->segq) &&
    669 			    TAILQ_EMPTY(&tp->timeq)));
    670 			if (tiqe == NULL) {
    671 				tiqe = q;
    672 			} else {
    673 				tcpipqent_free(q);
    674 			}
    675 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    676 			break;
    677 		}
    678 		/*
    679 		 * If the fragment is before the segment, remember it.
    680 		 * When this loop is terminated, p will contain the
    681 		 * pointer to fragment that is right before the received
    682 		 * segment.
    683 		 */
    684 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    685 			p = q;
    686 
    687 		continue;
    688 
    689 		/*
    690 		 * This is a common operation.  It also will allow
    691 		 * to save doing a malloc/free in most instances.
    692 		 */
    693 	  free_ipqe:
    694 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    695 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    696 		tp->t_segqlen--;
    697 		KASSERT(tp->t_segqlen >= 0);
    698 		KASSERT(tp->t_segqlen != 0 ||
    699 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    700 		if (tiqe == NULL) {
    701 			tiqe = q;
    702 		} else {
    703 			tcpipqent_free(q);
    704 		}
    705 	}
    706 
    707 #ifdef TCP_REASS_COUNTERS
    708 	if (count > 7)
    709 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    710 	else if (count > 0)
    711 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    712 #endif
    713 
    714     insert_it:
    715 
    716 	/*
    717 	 * Allocate a new queue entry since the received segment did not
    718 	 * collapse onto any other out-of-order block; thus we are allocating
    719 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    720 	 * we would be reusing it.
    721 	 * XXX If we can't, just drop the packet.  XXX
    722 	 */
    723 	if (tiqe == NULL) {
    724 		tiqe = tcpipqent_alloc();
    725 		if (tiqe == NULL) {
    726 			tcpstat.tcps_rcvmemdrop++;
    727 			m_freem(m);
    728 			return (0);
    729 		}
    730 	}
    731 
    732 	/*
    733 	 * Update the counters.
    734 	 */
    735 	tcpstat.tcps_rcvoopack++;
    736 	tcpstat.tcps_rcvoobyte += rcvoobyte;
    737 	if (rcvpartdupbyte) {
    738 	    tcpstat.tcps_rcvpartduppack++;
    739 	    tcpstat.tcps_rcvpartdupbyte += rcvpartdupbyte;
    740 	}
    741 
    742 	/*
    743 	 * Insert the new fragment queue entry into both queues.
    744 	 */
    745 	tiqe->ipqe_m = m;
    746 	tiqe->ipre_mlast = m;
    747 	tiqe->ipqe_seq = pkt_seq;
    748 	tiqe->ipqe_len = pkt_len;
    749 	tiqe->ipqe_flags = pkt_flags;
    750 	if (p == NULL) {
    751 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    752 #ifdef TCPREASS_DEBUG
    753 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    754 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    755 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    756 #endif
    757 	} else {
    758 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    759 #ifdef TCPREASS_DEBUG
    760 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    761 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    762 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    763 #endif
    764 	}
    765 	tp->t_segqlen++;
    766 
    767 skip_replacement:
    768 
    769 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    770 
    771 present:
    772 	/*
    773 	 * Present data to user, advancing rcv_nxt through
    774 	 * completed sequence space.
    775 	 */
    776 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    777 		return (0);
    778 	q = TAILQ_FIRST(&tp->segq);
    779 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    780 		return (0);
    781 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    782 		return (0);
    783 
    784 	tp->rcv_nxt += q->ipqe_len;
    785 	pkt_flags = q->ipqe_flags & TH_FIN;
    786 	nd6_hint(tp);
    787 
    788 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    789 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    790 	tp->t_segqlen--;
    791 	KASSERT(tp->t_segqlen >= 0);
    792 	KASSERT(tp->t_segqlen != 0 ||
    793 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    794 	if (so->so_state & SS_CANTRCVMORE)
    795 		m_freem(q->ipqe_m);
    796 	else
    797 		sbappendstream(&so->so_rcv, q->ipqe_m);
    798 	tcpipqent_free(q);
    799 	sorwakeup(so);
    800 	return (pkt_flags);
    801 }
    802 
    803 #ifdef INET6
    804 int
    805 tcp6_input(struct mbuf **mp, int *offp, int proto)
    806 {
    807 	struct mbuf *m = *mp;
    808 
    809 	/*
    810 	 * draft-itojun-ipv6-tcp-to-anycast
    811 	 * better place to put this in?
    812 	 */
    813 	if (m->m_flags & M_ANYCAST6) {
    814 		struct ip6_hdr *ip6;
    815 		if (m->m_len < sizeof(struct ip6_hdr)) {
    816 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    817 				tcpstat.tcps_rcvshort++;
    818 				return IPPROTO_DONE;
    819 			}
    820 		}
    821 		ip6 = mtod(m, struct ip6_hdr *);
    822 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    823 		    (char *)&ip6->ip6_dst - (char *)ip6);
    824 		return IPPROTO_DONE;
    825 	}
    826 
    827 	tcp_input(m, *offp, proto);
    828 	return IPPROTO_DONE;
    829 }
    830 #endif
    831 
    832 #ifdef INET
    833 static void
    834 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    835 {
    836 	char src[4*sizeof "123"];
    837 	char dst[4*sizeof "123"];
    838 
    839 	if (ip) {
    840 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    841 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    842 	}
    843 	else {
    844 		strlcpy(src, "(unknown)", sizeof(src));
    845 		strlcpy(dst, "(unknown)", sizeof(dst));
    846 	}
    847 	log(LOG_INFO,
    848 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    849 	    dst, ntohs(th->th_dport),
    850 	    src, ntohs(th->th_sport));
    851 }
    852 #endif
    853 
    854 #ifdef INET6
    855 static void
    856 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    857 {
    858 	char src[INET6_ADDRSTRLEN];
    859 	char dst[INET6_ADDRSTRLEN];
    860 
    861 	if (ip6) {
    862 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    863 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    864 	}
    865 	else {
    866 		strlcpy(src, "(unknown v6)", sizeof(src));
    867 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    868 	}
    869 	log(LOG_INFO,
    870 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    871 	    dst, ntohs(th->th_dport),
    872 	    src, ntohs(th->th_sport));
    873 }
    874 #endif
    875 
    876 /*
    877  * Checksum extended TCP header and data.
    878  */
    879 int
    880 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    881     int toff, int off, int tlen)
    882 {
    883 
    884 	/*
    885 	 * XXX it's better to record and check if this mbuf is
    886 	 * already checked.
    887 	 */
    888 
    889 	switch (af) {
    890 #ifdef INET
    891 	case AF_INET:
    892 		switch (m->m_pkthdr.csum_flags &
    893 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    894 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    895 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    896 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    897 			goto badcsum;
    898 
    899 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    900 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    901 
    902 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    903 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    904 				const struct ip *ip =
    905 				    mtod(m, const struct ip *);
    906 
    907 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    908 				    ip->ip_dst.s_addr,
    909 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    910 			}
    911 			if ((hw_csum ^ 0xffff) != 0)
    912 				goto badcsum;
    913 			break;
    914 		}
    915 
    916 		case M_CSUM_TCPv4:
    917 			/* Checksum was okay. */
    918 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    919 			break;
    920 
    921 		default:
    922 			/*
    923 			 * Must compute it ourselves.  Maybe skip checksum
    924 			 * on loopback interfaces.
    925 			 */
    926 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    927 					     IFF_LOOPBACK) ||
    928 					   tcp_do_loopback_cksum)) {
    929 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    930 				if (in4_cksum(m, IPPROTO_TCP, toff,
    931 					      tlen + off) != 0)
    932 					goto badcsum;
    933 			}
    934 			break;
    935 		}
    936 		break;
    937 #endif /* INET4 */
    938 
    939 #ifdef INET6
    940 	case AF_INET6:
    941 		switch (m->m_pkthdr.csum_flags &
    942 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    943 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    944 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    945 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    946 			goto badcsum;
    947 
    948 #if 0 /* notyet */
    949 		case M_CSUM_TCPv6|M_CSUM_DATA:
    950 #endif
    951 
    952 		case M_CSUM_TCPv6:
    953 			/* Checksum was okay. */
    954 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    955 			break;
    956 
    957 		default:
    958 			/*
    959 			 * Must compute it ourselves.  Maybe skip checksum
    960 			 * on loopback interfaces.
    961 			 */
    962 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    963 			    tcp_do_loopback_cksum)) {
    964 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    965 				if (in6_cksum(m, IPPROTO_TCP, toff,
    966 				    tlen + off) != 0)
    967 					goto badcsum;
    968 			}
    969 		}
    970 		break;
    971 #endif /* INET6 */
    972 	}
    973 
    974 	return 0;
    975 
    976 badcsum:
    977 	tcpstat.tcps_rcvbadsum++;
    978 	return -1;
    979 }
    980 
    981 /*
    982  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
    983  */
    984 void
    985 tcp_input(struct mbuf *m, ...)
    986 {
    987 	struct tcphdr *th;
    988 	struct ip *ip;
    989 	struct inpcb *inp;
    990 #ifdef INET6
    991 	struct ip6_hdr *ip6;
    992 	struct in6pcb *in6p;
    993 #endif
    994 	u_int8_t *optp = NULL;
    995 	int optlen = 0;
    996 	int len, tlen, toff, hdroptlen = 0;
    997 	struct tcpcb *tp = 0;
    998 	int tiflags;
    999 	struct socket *so = NULL;
   1000 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
   1001 #ifdef TCP_DEBUG
   1002 	short ostate = 0;
   1003 #endif
   1004 	u_long tiwin;
   1005 	struct tcp_opt_info opti;
   1006 	int off, iphlen;
   1007 	va_list ap;
   1008 	int af;		/* af on the wire */
   1009 	struct mbuf *tcp_saveti = NULL;
   1010 	uint32_t ts_rtt;
   1011 	uint8_t iptos;
   1012 
   1013 	MCLAIM(m, &tcp_rx_mowner);
   1014 	va_start(ap, m);
   1015 	toff = va_arg(ap, int);
   1016 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1017 	va_end(ap);
   1018 
   1019 	tcpstat.tcps_rcvtotal++;
   1020 
   1021 	bzero(&opti, sizeof(opti));
   1022 	opti.ts_present = 0;
   1023 	opti.maxseg = 0;
   1024 
   1025 	/*
   1026 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1027 	 *
   1028 	 * TCP is, by definition, unicast, so we reject all
   1029 	 * multicast outright.
   1030 	 *
   1031 	 * Note, there are additional src/dst address checks in
   1032 	 * the AF-specific code below.
   1033 	 */
   1034 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1035 		/* XXX stat */
   1036 		goto drop;
   1037 	}
   1038 #ifdef INET6
   1039 	if (m->m_flags & M_ANYCAST6) {
   1040 		/* XXX stat */
   1041 		goto drop;
   1042 	}
   1043 #endif
   1044 
   1045 	/*
   1046 	 * Get IP and TCP header.
   1047 	 * Note: IP leaves IP header in first mbuf.
   1048 	 */
   1049 	ip = mtod(m, struct ip *);
   1050 #ifdef INET6
   1051 	ip6 = NULL;
   1052 #endif
   1053 	switch (ip->ip_v) {
   1054 #ifdef INET
   1055 	case 4:
   1056 		af = AF_INET;
   1057 		iphlen = sizeof(struct ip);
   1058 		ip = mtod(m, struct ip *);
   1059 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1060 			sizeof(struct tcphdr));
   1061 		if (th == NULL) {
   1062 			tcpstat.tcps_rcvshort++;
   1063 			return;
   1064 		}
   1065 		/* We do the checksum after PCB lookup... */
   1066 		len = ntohs(ip->ip_len);
   1067 		tlen = len - toff;
   1068 		iptos = ip->ip_tos;
   1069 		break;
   1070 #endif
   1071 #ifdef INET6
   1072 	case 6:
   1073 		ip = NULL;
   1074 		iphlen = sizeof(struct ip6_hdr);
   1075 		af = AF_INET6;
   1076 		ip6 = mtod(m, struct ip6_hdr *);
   1077 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1078 			sizeof(struct tcphdr));
   1079 		if (th == NULL) {
   1080 			tcpstat.tcps_rcvshort++;
   1081 			return;
   1082 		}
   1083 
   1084 		/* Be proactive about malicious use of IPv4 mapped address */
   1085 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1086 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1087 			/* XXX stat */
   1088 			goto drop;
   1089 		}
   1090 
   1091 		/*
   1092 		 * Be proactive about unspecified IPv6 address in source.
   1093 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1094 		 * unspecified IPv6 address can be used to confuse us.
   1095 		 *
   1096 		 * Note that packets with unspecified IPv6 destination is
   1097 		 * already dropped in ip6_input.
   1098 		 */
   1099 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1100 			/* XXX stat */
   1101 			goto drop;
   1102 		}
   1103 
   1104 		/*
   1105 		 * Make sure destination address is not multicast.
   1106 		 * Source address checked in ip6_input().
   1107 		 */
   1108 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1109 			/* XXX stat */
   1110 			goto drop;
   1111 		}
   1112 
   1113 		/* We do the checksum after PCB lookup... */
   1114 		len = m->m_pkthdr.len;
   1115 		tlen = len - toff;
   1116 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1117 		break;
   1118 #endif
   1119 	default:
   1120 		m_freem(m);
   1121 		return;
   1122 	}
   1123 
   1124 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1125 
   1126 	/*
   1127 	 * Check that TCP offset makes sense,
   1128 	 * pull out TCP options and adjust length.		XXX
   1129 	 */
   1130 	off = th->th_off << 2;
   1131 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1132 		tcpstat.tcps_rcvbadoff++;
   1133 		goto drop;
   1134 	}
   1135 	tlen -= off;
   1136 
   1137 	/*
   1138 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1139 	 * length throughout the function.  Other functions can use
   1140 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1141 	 * rja
   1142 	 */
   1143 
   1144 	if (off > sizeof (struct tcphdr)) {
   1145 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1146 		if (th == NULL) {
   1147 			tcpstat.tcps_rcvshort++;
   1148 			return;
   1149 		}
   1150 		/*
   1151 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1152 		 * (as they're before toff) and we don't need to update those.
   1153 		 */
   1154 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1155 		optlen = off - sizeof (struct tcphdr);
   1156 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1157 		/*
   1158 		 * Do quick retrieval of timestamp options ("options
   1159 		 * prediction?").  If timestamp is the only option and it's
   1160 		 * formatted as recommended in RFC 1323 appendix A, we
   1161 		 * quickly get the values now and not bother calling
   1162 		 * tcp_dooptions(), etc.
   1163 		 */
   1164 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1165 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1166 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1167 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1168 		     (th->th_flags & TH_SYN) == 0) {
   1169 			opti.ts_present = 1;
   1170 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1171 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1172 			optp = NULL;	/* we've parsed the options */
   1173 		}
   1174 	}
   1175 	tiflags = th->th_flags;
   1176 
   1177 	/*
   1178 	 * Locate pcb for segment.
   1179 	 */
   1180 findpcb:
   1181 	inp = NULL;
   1182 #ifdef INET6
   1183 	in6p = NULL;
   1184 #endif
   1185 	switch (af) {
   1186 #ifdef INET
   1187 	case AF_INET:
   1188 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1189 		    ip->ip_dst, th->th_dport);
   1190 		if (inp == 0) {
   1191 			++tcpstat.tcps_pcbhashmiss;
   1192 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1193 		}
   1194 #ifdef INET6
   1195 		if (inp == 0) {
   1196 			struct in6_addr s, d;
   1197 
   1198 			/* mapped addr case */
   1199 			bzero(&s, sizeof(s));
   1200 			s.s6_addr16[5] = htons(0xffff);
   1201 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1202 			bzero(&d, sizeof(d));
   1203 			d.s6_addr16[5] = htons(0xffff);
   1204 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1205 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1206 			    th->th_sport, &d, th->th_dport, 0);
   1207 			if (in6p == 0) {
   1208 				++tcpstat.tcps_pcbhashmiss;
   1209 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1210 				    th->th_dport, 0);
   1211 			}
   1212 		}
   1213 #endif
   1214 #ifndef INET6
   1215 		if (inp == 0)
   1216 #else
   1217 		if (inp == 0 && in6p == 0)
   1218 #endif
   1219 		{
   1220 			++tcpstat.tcps_noport;
   1221 			if (tcp_log_refused &&
   1222 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1223 				tcp4_log_refused(ip, th);
   1224 			}
   1225 			tcp_fields_to_host(th);
   1226 			goto dropwithreset_ratelim;
   1227 		}
   1228 #if defined(IPSEC) || defined(FAST_IPSEC)
   1229 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1230 		    ipsec4_in_reject(m, inp)) {
   1231 			ipsecstat.in_polvio++;
   1232 			goto drop;
   1233 		}
   1234 #ifdef INET6
   1235 		else if (in6p &&
   1236 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1237 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1238 			ipsecstat.in_polvio++;
   1239 			goto drop;
   1240 		}
   1241 #endif
   1242 #endif /*IPSEC*/
   1243 		break;
   1244 #endif /*INET*/
   1245 #ifdef INET6
   1246 	case AF_INET6:
   1247 	    {
   1248 		int faith;
   1249 
   1250 #if defined(NFAITH) && NFAITH > 0
   1251 		faith = faithprefix(&ip6->ip6_dst);
   1252 #else
   1253 		faith = 0;
   1254 #endif
   1255 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1256 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
   1257 		if (in6p == NULL) {
   1258 			++tcpstat.tcps_pcbhashmiss;
   1259 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1260 				th->th_dport, faith);
   1261 		}
   1262 		if (in6p == NULL) {
   1263 			++tcpstat.tcps_noport;
   1264 			if (tcp_log_refused &&
   1265 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1266 				tcp6_log_refused(ip6, th);
   1267 			}
   1268 			tcp_fields_to_host(th);
   1269 			goto dropwithreset_ratelim;
   1270 		}
   1271 #if defined(IPSEC) || defined(FAST_IPSEC)
   1272 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1273 		    ipsec6_in_reject(m, in6p)) {
   1274 			ipsec6stat.in_polvio++;
   1275 			goto drop;
   1276 		}
   1277 #endif /*IPSEC*/
   1278 		break;
   1279 	    }
   1280 #endif
   1281 	}
   1282 
   1283 	/*
   1284 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1285 	 * all data in the incoming segment is discarded.
   1286 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1287 	 * but should either do a listen or a connect soon.
   1288 	 */
   1289 	tp = NULL;
   1290 	so = NULL;
   1291 	if (inp) {
   1292 		tp = intotcpcb(inp);
   1293 		so = inp->inp_socket;
   1294 	}
   1295 #ifdef INET6
   1296 	else if (in6p) {
   1297 		tp = in6totcpcb(in6p);
   1298 		so = in6p->in6p_socket;
   1299 	}
   1300 #endif
   1301 	if (tp == 0) {
   1302 		tcp_fields_to_host(th);
   1303 		goto dropwithreset_ratelim;
   1304 	}
   1305 	if (tp->t_state == TCPS_CLOSED)
   1306 		goto drop;
   1307 
   1308 	/*
   1309 	 * Checksum extended TCP header and data.
   1310 	 */
   1311 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1312 		goto badcsum;
   1313 
   1314 	tcp_fields_to_host(th);
   1315 
   1316 	/* Unscale the window into a 32-bit value. */
   1317 	if ((tiflags & TH_SYN) == 0)
   1318 		tiwin = th->th_win << tp->snd_scale;
   1319 	else
   1320 		tiwin = th->th_win;
   1321 
   1322 #ifdef INET6
   1323 	/* save packet options if user wanted */
   1324 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1325 		if (in6p->in6p_options) {
   1326 			m_freem(in6p->in6p_options);
   1327 			in6p->in6p_options = 0;
   1328 		}
   1329 		KASSERT(ip6 != NULL);
   1330 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1331 	}
   1332 #endif
   1333 
   1334 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1335 		union syn_cache_sa src;
   1336 		union syn_cache_sa dst;
   1337 
   1338 		bzero(&src, sizeof(src));
   1339 		bzero(&dst, sizeof(dst));
   1340 		switch (af) {
   1341 #ifdef INET
   1342 		case AF_INET:
   1343 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1344 			src.sin.sin_family = AF_INET;
   1345 			src.sin.sin_addr = ip->ip_src;
   1346 			src.sin.sin_port = th->th_sport;
   1347 
   1348 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1349 			dst.sin.sin_family = AF_INET;
   1350 			dst.sin.sin_addr = ip->ip_dst;
   1351 			dst.sin.sin_port = th->th_dport;
   1352 			break;
   1353 #endif
   1354 #ifdef INET6
   1355 		case AF_INET6:
   1356 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1357 			src.sin6.sin6_family = AF_INET6;
   1358 			src.sin6.sin6_addr = ip6->ip6_src;
   1359 			src.sin6.sin6_port = th->th_sport;
   1360 
   1361 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1362 			dst.sin6.sin6_family = AF_INET6;
   1363 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1364 			dst.sin6.sin6_port = th->th_dport;
   1365 			break;
   1366 #endif /* INET6 */
   1367 		default:
   1368 			goto badsyn;	/*sanity*/
   1369 		}
   1370 
   1371 		if (so->so_options & SO_DEBUG) {
   1372 #ifdef TCP_DEBUG
   1373 			ostate = tp->t_state;
   1374 #endif
   1375 
   1376 			tcp_saveti = NULL;
   1377 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1378 				goto nosave;
   1379 
   1380 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1381 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1382 				if (!tcp_saveti)
   1383 					goto nosave;
   1384 			} else {
   1385 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1386 				if (!tcp_saveti)
   1387 					goto nosave;
   1388 				MCLAIM(m, &tcp_mowner);
   1389 				tcp_saveti->m_len = iphlen;
   1390 				m_copydata(m, 0, iphlen,
   1391 				    mtod(tcp_saveti, void *));
   1392 			}
   1393 
   1394 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1395 				m_freem(tcp_saveti);
   1396 				tcp_saveti = NULL;
   1397 			} else {
   1398 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1399 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1400 				    sizeof(struct tcphdr));
   1401 			}
   1402 	nosave:;
   1403 		}
   1404 		if (so->so_options & SO_ACCEPTCONN) {
   1405 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1406 				if (tiflags & TH_RST) {
   1407 					syn_cache_reset(&src.sa, &dst.sa, th);
   1408 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1409 				    (TH_ACK|TH_SYN)) {
   1410 					/*
   1411 					 * Received a SYN,ACK.  This should
   1412 					 * never happen while we are in
   1413 					 * LISTEN.  Send an RST.
   1414 					 */
   1415 					goto badsyn;
   1416 				} else if (tiflags & TH_ACK) {
   1417 					so = syn_cache_get(&src.sa, &dst.sa,
   1418 						th, toff, tlen, so, m);
   1419 					if (so == NULL) {
   1420 						/*
   1421 						 * We don't have a SYN for
   1422 						 * this ACK; send an RST.
   1423 						 */
   1424 						goto badsyn;
   1425 					} else if (so ==
   1426 					    (struct socket *)(-1)) {
   1427 						/*
   1428 						 * We were unable to create
   1429 						 * the connection.  If the
   1430 						 * 3-way handshake was
   1431 						 * completed, and RST has
   1432 						 * been sent to the peer.
   1433 						 * Since the mbuf might be
   1434 						 * in use for the reply,
   1435 						 * do not free it.
   1436 						 */
   1437 						m = NULL;
   1438 					} else {
   1439 						/*
   1440 						 * We have created a
   1441 						 * full-blown connection.
   1442 						 */
   1443 						tp = NULL;
   1444 						inp = NULL;
   1445 #ifdef INET6
   1446 						in6p = NULL;
   1447 #endif
   1448 						switch (so->so_proto->pr_domain->dom_family) {
   1449 #ifdef INET
   1450 						case AF_INET:
   1451 							inp = sotoinpcb(so);
   1452 							tp = intotcpcb(inp);
   1453 							break;
   1454 #endif
   1455 #ifdef INET6
   1456 						case AF_INET6:
   1457 							in6p = sotoin6pcb(so);
   1458 							tp = in6totcpcb(in6p);
   1459 							break;
   1460 #endif
   1461 						}
   1462 						if (tp == NULL)
   1463 							goto badsyn;	/*XXX*/
   1464 						tiwin <<= tp->snd_scale;
   1465 						goto after_listen;
   1466 					}
   1467 				} else {
   1468 					/*
   1469 					 * None of RST, SYN or ACK was set.
   1470 					 * This is an invalid packet for a
   1471 					 * TCB in LISTEN state.  Send a RST.
   1472 					 */
   1473 					goto badsyn;
   1474 				}
   1475 			} else {
   1476 				/*
   1477 				 * Received a SYN.
   1478 				 *
   1479 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1480 				 */
   1481 				if (m->m_flags & (M_BCAST|M_MCAST))
   1482 					goto drop;
   1483 
   1484 				switch (af) {
   1485 #ifdef INET6
   1486 				case AF_INET6:
   1487 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1488 						goto drop;
   1489 					break;
   1490 #endif /* INET6 */
   1491 				case AF_INET:
   1492 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1493 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1494 						goto drop;
   1495 				break;
   1496 				}
   1497 
   1498 #ifdef INET6
   1499 				/*
   1500 				 * If deprecated address is forbidden, we do
   1501 				 * not accept SYN to deprecated interface
   1502 				 * address to prevent any new inbound
   1503 				 * connection from getting established.
   1504 				 * When we do not accept SYN, we send a TCP
   1505 				 * RST, with deprecated source address (instead
   1506 				 * of dropping it).  We compromise it as it is
   1507 				 * much better for peer to send a RST, and
   1508 				 * RST will be the final packet for the
   1509 				 * exchange.
   1510 				 *
   1511 				 * If we do not forbid deprecated addresses, we
   1512 				 * accept the SYN packet.  RFC2462 does not
   1513 				 * suggest dropping SYN in this case.
   1514 				 * If we decipher RFC2462 5.5.4, it says like
   1515 				 * this:
   1516 				 * 1. use of deprecated addr with existing
   1517 				 *    communication is okay - "SHOULD continue
   1518 				 *    to be used"
   1519 				 * 2. use of it with new communication:
   1520 				 *   (2a) "SHOULD NOT be used if alternate
   1521 				 *        address with sufficient scope is
   1522 				 *        available"
   1523 				 *   (2b) nothing mentioned otherwise.
   1524 				 * Here we fall into (2b) case as we have no
   1525 				 * choice in our source address selection - we
   1526 				 * must obey the peer.
   1527 				 *
   1528 				 * The wording in RFC2462 is confusing, and
   1529 				 * there are multiple description text for
   1530 				 * deprecated address handling - worse, they
   1531 				 * are not exactly the same.  I believe 5.5.4
   1532 				 * is the best one, so we follow 5.5.4.
   1533 				 */
   1534 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1535 					struct in6_ifaddr *ia6;
   1536 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1537 					    &ip6->ip6_dst)) &&
   1538 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1539 						tp = NULL;
   1540 						goto dropwithreset;
   1541 					}
   1542 				}
   1543 #endif
   1544 
   1545 #if defined(IPSEC) || defined(FAST_IPSEC)
   1546 				switch (af) {
   1547 #ifdef INET
   1548 				case AF_INET:
   1549 					if (ipsec4_in_reject_so(m, so)) {
   1550 						ipsecstat.in_polvio++;
   1551 						tp = NULL;
   1552 						goto dropwithreset;
   1553 					}
   1554 					break;
   1555 #endif
   1556 #ifdef INET6
   1557 				case AF_INET6:
   1558 					if (ipsec6_in_reject_so(m, so)) {
   1559 						ipsec6stat.in_polvio++;
   1560 						tp = NULL;
   1561 						goto dropwithreset;
   1562 					}
   1563 					break;
   1564 #endif /*INET6*/
   1565 				}
   1566 #endif /*IPSEC*/
   1567 
   1568 				/*
   1569 				 * LISTEN socket received a SYN
   1570 				 * from itself?  This can't possibly
   1571 				 * be valid; drop the packet.
   1572 				 */
   1573 				if (th->th_sport == th->th_dport) {
   1574 					int i;
   1575 
   1576 					switch (af) {
   1577 #ifdef INET
   1578 					case AF_INET:
   1579 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1580 						break;
   1581 #endif
   1582 #ifdef INET6
   1583 					case AF_INET6:
   1584 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1585 						break;
   1586 #endif
   1587 					default:
   1588 						i = 1;
   1589 					}
   1590 					if (i) {
   1591 						tcpstat.tcps_badsyn++;
   1592 						goto drop;
   1593 					}
   1594 				}
   1595 
   1596 				/*
   1597 				 * SYN looks ok; create compressed TCP
   1598 				 * state for it.
   1599 				 */
   1600 				if (so->so_qlen <= so->so_qlimit &&
   1601 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1602 						so, m, optp, optlen, &opti))
   1603 					m = NULL;
   1604 			}
   1605 			goto drop;
   1606 		}
   1607 	}
   1608 
   1609 after_listen:
   1610 #ifdef DIAGNOSTIC
   1611 	/*
   1612 	 * Should not happen now that all embryonic connections
   1613 	 * are handled with compressed state.
   1614 	 */
   1615 	if (tp->t_state == TCPS_LISTEN)
   1616 		panic("tcp_input: TCPS_LISTEN");
   1617 #endif
   1618 
   1619 	/*
   1620 	 * Segment received on connection.
   1621 	 * Reset idle time and keep-alive timer.
   1622 	 */
   1623 	tp->t_rcvtime = tcp_now;
   1624 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1625 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1626 
   1627 	/*
   1628 	 * Process options.
   1629 	 */
   1630 #ifdef TCP_SIGNATURE
   1631 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1632 #else
   1633 	if (optp)
   1634 #endif
   1635 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1636 			goto drop;
   1637 
   1638 	if (TCP_SACK_ENABLED(tp)) {
   1639 		tcp_del_sackholes(tp, th);
   1640 	}
   1641 
   1642 	if (TCP_ECN_ALLOWED(tp)) {
   1643 		switch (iptos & IPTOS_ECN_MASK) {
   1644 		case IPTOS_ECN_CE:
   1645 			tp->t_flags |= TF_ECN_SND_ECE;
   1646 			tcpstat.tcps_ecn_ce++;
   1647 			break;
   1648 		case IPTOS_ECN_ECT0:
   1649 			tcpstat.tcps_ecn_ect++;
   1650 			break;
   1651 		case IPTOS_ECN_ECT1:
   1652 			/* XXX: ignore for now -- rpaulo */
   1653 			break;
   1654 		}
   1655 
   1656 		if (tiflags & TH_CWR)
   1657 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1658 
   1659 		/*
   1660 		 * Congestion experienced.
   1661 		 * Ignore if we are already trying to recover.
   1662 		 */
   1663 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1664 			tp->t_congctl->cong_exp(tp);
   1665 	}
   1666 
   1667 	if (opti.ts_present && opti.ts_ecr) {
   1668 		/*
   1669 		 * Calculate the RTT from the returned time stamp and the
   1670 		 * connection's time base.  If the time stamp is later than
   1671 		 * the current time, or is extremely old, fall back to non-1323
   1672 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
   1673 		 * at the same time.
   1674 		 */
   1675 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1676 		if (ts_rtt > TCP_PAWS_IDLE)
   1677 			ts_rtt = 0;
   1678 	} else {
   1679 		ts_rtt = 0;
   1680 	}
   1681 
   1682 	/*
   1683 	 * Header prediction: check for the two common cases
   1684 	 * of a uni-directional data xfer.  If the packet has
   1685 	 * no control flags, is in-sequence, the window didn't
   1686 	 * change and we're not retransmitting, it's a
   1687 	 * candidate.  If the length is zero and the ack moved
   1688 	 * forward, we're the sender side of the xfer.  Just
   1689 	 * free the data acked & wake any higher level process
   1690 	 * that was blocked waiting for space.  If the length
   1691 	 * is non-zero and the ack didn't move, we're the
   1692 	 * receiver side.  If we're getting packets in-order
   1693 	 * (the reassembly queue is empty), add the data to
   1694 	 * the socket buffer and note that we need a delayed ack.
   1695 	 */
   1696 	if (tp->t_state == TCPS_ESTABLISHED &&
   1697 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1698 	        == TH_ACK &&
   1699 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1700 	    th->th_seq == tp->rcv_nxt &&
   1701 	    tiwin && tiwin == tp->snd_wnd &&
   1702 	    tp->snd_nxt == tp->snd_max) {
   1703 
   1704 		/*
   1705 		 * If last ACK falls within this segment's sequence numbers,
   1706 		 * record the timestamp.
   1707 		 * NOTE that the test is modified according to the latest
   1708 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1709 		 *
   1710 		 * note that we already know
   1711 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1712 		 */
   1713 		if (opti.ts_present &&
   1714 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1715 			tp->ts_recent_age = tcp_now;
   1716 			tp->ts_recent = opti.ts_val;
   1717 		}
   1718 
   1719 		if (tlen == 0) {
   1720 			/* Ack prediction. */
   1721 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1722 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1723 			    tp->snd_cwnd >= tp->snd_wnd &&
   1724 			    tp->t_partialacks < 0) {
   1725 				/*
   1726 				 * this is a pure ack for outstanding data.
   1727 				 */
   1728 				++tcpstat.tcps_predack;
   1729 				if (ts_rtt)
   1730 					tcp_xmit_timer(tp, ts_rtt);
   1731 				else if (tp->t_rtttime &&
   1732 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1733 					tcp_xmit_timer(tp,
   1734 					  tcp_now - tp->t_rtttime);
   1735 				acked = th->th_ack - tp->snd_una;
   1736 				tcpstat.tcps_rcvackpack++;
   1737 				tcpstat.tcps_rcvackbyte += acked;
   1738 				nd6_hint(tp);
   1739 
   1740 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1741 					tp->t_lastm = NULL;
   1742 				sbdrop(&so->so_snd, acked);
   1743 				tp->t_lastoff -= acked;
   1744 
   1745 				icmp_check(tp, th, acked);
   1746 
   1747 				tp->snd_una = th->th_ack;
   1748 				tp->snd_fack = tp->snd_una;
   1749 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1750 					tp->snd_high = tp->snd_una;
   1751 				m_freem(m);
   1752 
   1753 				/*
   1754 				 * If all outstanding data are acked, stop
   1755 				 * retransmit timer, otherwise restart timer
   1756 				 * using current (possibly backed-off) value.
   1757 				 * If process is waiting for space,
   1758 				 * wakeup/selwakeup/signal.  If data
   1759 				 * are ready to send, let tcp_output
   1760 				 * decide between more output or persist.
   1761 				 */
   1762 				if (tp->snd_una == tp->snd_max)
   1763 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1764 				else if (TCP_TIMER_ISARMED(tp,
   1765 				    TCPT_PERSIST) == 0)
   1766 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1767 					    tp->t_rxtcur);
   1768 
   1769 				sowwakeup(so);
   1770 				if (so->so_snd.sb_cc)
   1771 					(void) tcp_output(tp);
   1772 				if (tcp_saveti)
   1773 					m_freem(tcp_saveti);
   1774 				return;
   1775 			}
   1776 		} else if (th->th_ack == tp->snd_una &&
   1777 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1778 		    tlen <= sbspace(&so->so_rcv)) {
   1779 			int newsize = 0;	/* automatic sockbuf scaling */
   1780 
   1781 			/*
   1782 			 * this is a pure, in-sequence data packet
   1783 			 * with nothing on the reassembly queue and
   1784 			 * we have enough buffer space to take it.
   1785 			 */
   1786 			++tcpstat.tcps_preddat;
   1787 			tp->rcv_nxt += tlen;
   1788 			tcpstat.tcps_rcvpack++;
   1789 			tcpstat.tcps_rcvbyte += tlen;
   1790 			nd6_hint(tp);
   1791 
   1792 		/*
   1793 		 * Automatic sizing enables the performance of large buffers
   1794 		 * and most of the efficiency of small ones by only allocating
   1795 		 * space when it is needed.
   1796 		 *
   1797 		 * On the receive side the socket buffer memory is only rarely
   1798 		 * used to any significant extent.  This allows us to be much
   1799 		 * more aggressive in scaling the receive socket buffer.  For
   1800 		 * the case that the buffer space is actually used to a large
   1801 		 * extent and we run out of kernel memory we can simply drop
   1802 		 * the new segments; TCP on the sender will just retransmit it
   1803 		 * later.  Setting the buffer size too big may only consume too
   1804 		 * much kernel memory if the application doesn't read() from
   1805 		 * the socket or packet loss or reordering makes use of the
   1806 		 * reassembly queue.
   1807 		 *
   1808 		 * The criteria to step up the receive buffer one notch are:
   1809 		 *  1. the number of bytes received during the time it takes
   1810 		 *     one timestamp to be reflected back to us (the RTT);
   1811 		 *  2. received bytes per RTT is within seven eighth of the
   1812 		 *     current socket buffer size;
   1813 		 *  3. receive buffer size has not hit maximal automatic size;
   1814 		 *
   1815 		 * This algorithm does one step per RTT at most and only if
   1816 		 * we receive a bulk stream w/o packet losses or reorderings.
   1817 		 * Shrinking the buffer during idle times is not necessary as
   1818 		 * it doesn't consume any memory when idle.
   1819 		 *
   1820 		 * TODO: Only step up if the application is actually serving
   1821 		 * the buffer to better manage the socket buffer resources.
   1822 		 */
   1823 			if (tcp_do_autorcvbuf &&
   1824 			    opti.ts_ecr &&
   1825 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   1826 				if (opti.ts_ecr > tp->rfbuf_ts &&
   1827 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   1828 					if (tp->rfbuf_cnt >
   1829 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   1830 					    so->so_rcv.sb_hiwat <
   1831 					    tcp_autorcvbuf_max) {
   1832 						newsize =
   1833 						    min(so->so_rcv.sb_hiwat +
   1834 						    tcp_autorcvbuf_inc,
   1835 						    tcp_autorcvbuf_max);
   1836 					}
   1837 					/* Start over with next RTT. */
   1838 					tp->rfbuf_ts = 0;
   1839 					tp->rfbuf_cnt = 0;
   1840 				} else
   1841 					tp->rfbuf_cnt += tlen;	/* add up */
   1842 			}
   1843 
   1844 			/*
   1845 			 * Drop TCP, IP headers and TCP options then add data
   1846 			 * to socket buffer.
   1847 			 */
   1848 			if (so->so_state & SS_CANTRCVMORE)
   1849 				m_freem(m);
   1850 			else {
   1851 				/*
   1852 				 * Set new socket buffer size.
   1853 				 * Give up when limit is reached.
   1854 				 */
   1855 				if (newsize)
   1856 					if (!sbreserve(&so->so_rcv,
   1857 					    newsize, so))
   1858 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1859 				m_adj(m, toff + off);
   1860 				sbappendstream(&so->so_rcv, m);
   1861 			}
   1862 			sorwakeup(so);
   1863 			tcp_setup_ack(tp, th);
   1864 			if (tp->t_flags & TF_ACKNOW)
   1865 				(void) tcp_output(tp);
   1866 			if (tcp_saveti)
   1867 				m_freem(tcp_saveti);
   1868 			return;
   1869 		}
   1870 	}
   1871 
   1872 	/*
   1873 	 * Compute mbuf offset to TCP data segment.
   1874 	 */
   1875 	hdroptlen = toff + off;
   1876 
   1877 	/*
   1878 	 * Calculate amount of space in receive window,
   1879 	 * and then do TCP input processing.
   1880 	 * Receive window is amount of space in rcv queue,
   1881 	 * but not less than advertised window.
   1882 	 */
   1883 	{ int win;
   1884 
   1885 	win = sbspace(&so->so_rcv);
   1886 	if (win < 0)
   1887 		win = 0;
   1888 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1889 	}
   1890 
   1891 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   1892 	tp->rfbuf_ts = 0;
   1893 	tp->rfbuf_cnt = 0;
   1894 
   1895 	switch (tp->t_state) {
   1896 	/*
   1897 	 * If the state is SYN_SENT:
   1898 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1899 	 *	if seg contains a RST, then drop the connection.
   1900 	 *	if seg does not contain SYN, then drop it.
   1901 	 * Otherwise this is an acceptable SYN segment
   1902 	 *	initialize tp->rcv_nxt and tp->irs
   1903 	 *	if seg contains ack then advance tp->snd_una
   1904 	 *	if seg contains a ECE and ECN support is enabled, the stream
   1905 	 *	    is ECN capable.
   1906 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1907 	 *	arrange for segment to be acked (eventually)
   1908 	 *	continue processing rest of data/controls, beginning with URG
   1909 	 */
   1910 	case TCPS_SYN_SENT:
   1911 		if ((tiflags & TH_ACK) &&
   1912 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1913 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1914 			goto dropwithreset;
   1915 		if (tiflags & TH_RST) {
   1916 			if (tiflags & TH_ACK)
   1917 				tp = tcp_drop(tp, ECONNREFUSED);
   1918 			goto drop;
   1919 		}
   1920 		if ((tiflags & TH_SYN) == 0)
   1921 			goto drop;
   1922 		if (tiflags & TH_ACK) {
   1923 			tp->snd_una = th->th_ack;
   1924 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1925 				tp->snd_nxt = tp->snd_una;
   1926 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   1927 				tp->snd_high = tp->snd_una;
   1928 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1929 
   1930 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   1931 				tp->t_flags |= TF_ECN_PERMIT;
   1932 				tcpstat.tcps_ecn_shs++;
   1933 			}
   1934 
   1935 		}
   1936 		tp->irs = th->th_seq;
   1937 		tcp_rcvseqinit(tp);
   1938 		tp->t_flags |= TF_ACKNOW;
   1939 		tcp_mss_from_peer(tp, opti.maxseg);
   1940 
   1941 		/*
   1942 		 * Initialize the initial congestion window.  If we
   1943 		 * had to retransmit the SYN, we must initialize cwnd
   1944 		 * to 1 segment (i.e. the Loss Window).
   1945 		 */
   1946 		if (tp->t_flags & TF_SYN_REXMT)
   1947 			tp->snd_cwnd = tp->t_peermss;
   1948 		else {
   1949 			int ss = tcp_init_win;
   1950 #ifdef INET
   1951 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1952 				ss = tcp_init_win_local;
   1953 #endif
   1954 #ifdef INET6
   1955 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1956 				ss = tcp_init_win_local;
   1957 #endif
   1958 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1959 		}
   1960 
   1961 		tcp_rmx_rtt(tp);
   1962 		if (tiflags & TH_ACK) {
   1963 			tcpstat.tcps_connects++;
   1964 			soisconnected(so);
   1965 			tcp_established(tp);
   1966 			/* Do window scaling on this connection? */
   1967 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1968 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1969 				tp->snd_scale = tp->requested_s_scale;
   1970 				tp->rcv_scale = tp->request_r_scale;
   1971 			}
   1972 			TCP_REASS_LOCK(tp);
   1973 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1974 			TCP_REASS_UNLOCK(tp);
   1975 			/*
   1976 			 * if we didn't have to retransmit the SYN,
   1977 			 * use its rtt as our initial srtt & rtt var.
   1978 			 */
   1979 			if (tp->t_rtttime)
   1980 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1981 		} else
   1982 			tp->t_state = TCPS_SYN_RECEIVED;
   1983 
   1984 		/*
   1985 		 * Advance th->th_seq to correspond to first data byte.
   1986 		 * If data, trim to stay within window,
   1987 		 * dropping FIN if necessary.
   1988 		 */
   1989 		th->th_seq++;
   1990 		if (tlen > tp->rcv_wnd) {
   1991 			todrop = tlen - tp->rcv_wnd;
   1992 			m_adj(m, -todrop);
   1993 			tlen = tp->rcv_wnd;
   1994 			tiflags &= ~TH_FIN;
   1995 			tcpstat.tcps_rcvpackafterwin++;
   1996 			tcpstat.tcps_rcvbyteafterwin += todrop;
   1997 		}
   1998 		tp->snd_wl1 = th->th_seq - 1;
   1999 		tp->rcv_up = th->th_seq;
   2000 		goto step6;
   2001 
   2002 	/*
   2003 	 * If the state is SYN_RECEIVED:
   2004 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2005 	 *	and generate an RST.  See page 36, rfc793
   2006 	 */
   2007 	case TCPS_SYN_RECEIVED:
   2008 		if ((tiflags & TH_ACK) &&
   2009 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2010 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2011 			goto dropwithreset;
   2012 		break;
   2013 	}
   2014 
   2015 	/*
   2016 	 * States other than LISTEN or SYN_SENT.
   2017 	 * First check timestamp, if present.
   2018 	 * Then check that at least some bytes of segment are within
   2019 	 * receive window.  If segment begins before rcv_nxt,
   2020 	 * drop leading data (and SYN); if nothing left, just ack.
   2021 	 *
   2022 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2023 	 * and it's less than ts_recent, drop it.
   2024 	 */
   2025 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2026 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2027 
   2028 		/* Check to see if ts_recent is over 24 days old.  */
   2029 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2030 			/*
   2031 			 * Invalidate ts_recent.  If this segment updates
   2032 			 * ts_recent, the age will be reset later and ts_recent
   2033 			 * will get a valid value.  If it does not, setting
   2034 			 * ts_recent to zero will at least satisfy the
   2035 			 * requirement that zero be placed in the timestamp
   2036 			 * echo reply when ts_recent isn't valid.  The
   2037 			 * age isn't reset until we get a valid ts_recent
   2038 			 * because we don't want out-of-order segments to be
   2039 			 * dropped when ts_recent is old.
   2040 			 */
   2041 			tp->ts_recent = 0;
   2042 		} else {
   2043 			tcpstat.tcps_rcvduppack++;
   2044 			tcpstat.tcps_rcvdupbyte += tlen;
   2045 			tcpstat.tcps_pawsdrop++;
   2046 			tcp_new_dsack(tp, th->th_seq, tlen);
   2047 			goto dropafterack;
   2048 		}
   2049 	}
   2050 
   2051 	todrop = tp->rcv_nxt - th->th_seq;
   2052 	dupseg = false;
   2053 	if (todrop > 0) {
   2054 		if (tiflags & TH_SYN) {
   2055 			tiflags &= ~TH_SYN;
   2056 			th->th_seq++;
   2057 			if (th->th_urp > 1)
   2058 				th->th_urp--;
   2059 			else {
   2060 				tiflags &= ~TH_URG;
   2061 				th->th_urp = 0;
   2062 			}
   2063 			todrop--;
   2064 		}
   2065 		if (todrop > tlen ||
   2066 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2067 			/*
   2068 			 * Any valid FIN or RST must be to the left of the
   2069 			 * window.  At this point the FIN or RST must be a
   2070 			 * duplicate or out of sequence; drop it.
   2071 			 */
   2072 			if (tiflags & TH_RST)
   2073 				goto drop;
   2074 			tiflags &= ~(TH_FIN|TH_RST);
   2075 			/*
   2076 			 * Send an ACK to resynchronize and drop any data.
   2077 			 * But keep on processing for RST or ACK.
   2078 			 */
   2079 			tp->t_flags |= TF_ACKNOW;
   2080 			todrop = tlen;
   2081 			dupseg = true;
   2082 			tcpstat.tcps_rcvdupbyte += todrop;
   2083 			tcpstat.tcps_rcvduppack++;
   2084 		} else if ((tiflags & TH_RST) &&
   2085 			   th->th_seq != tp->last_ack_sent) {
   2086 			/*
   2087 			 * Test for reset before adjusting the sequence
   2088 			 * number for overlapping data.
   2089 			 */
   2090 			goto dropafterack_ratelim;
   2091 		} else {
   2092 			tcpstat.tcps_rcvpartduppack++;
   2093 			tcpstat.tcps_rcvpartdupbyte += todrop;
   2094 		}
   2095 		tcp_new_dsack(tp, th->th_seq, todrop);
   2096 		hdroptlen += todrop;	/*drop from head afterwards*/
   2097 		th->th_seq += todrop;
   2098 		tlen -= todrop;
   2099 		if (th->th_urp > todrop)
   2100 			th->th_urp -= todrop;
   2101 		else {
   2102 			tiflags &= ~TH_URG;
   2103 			th->th_urp = 0;
   2104 		}
   2105 	}
   2106 
   2107 	/*
   2108 	 * If new data are received on a connection after the
   2109 	 * user processes are gone, then RST the other end.
   2110 	 */
   2111 	if ((so->so_state & SS_NOFDREF) &&
   2112 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2113 		tp = tcp_close(tp);
   2114 		tcpstat.tcps_rcvafterclose++;
   2115 		goto dropwithreset;
   2116 	}
   2117 
   2118 	/*
   2119 	 * If segment ends after window, drop trailing data
   2120 	 * (and PUSH and FIN); if nothing left, just ACK.
   2121 	 */
   2122 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2123 	if (todrop > 0) {
   2124 		tcpstat.tcps_rcvpackafterwin++;
   2125 		if (todrop >= tlen) {
   2126 			/*
   2127 			 * The segment actually starts after the window.
   2128 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2129 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2130 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2131 			 */
   2132 			tcpstat.tcps_rcvbyteafterwin += tlen;
   2133 			/*
   2134 			 * If a new connection request is received
   2135 			 * while in TIME_WAIT, drop the old connection
   2136 			 * and start over if the sequence numbers
   2137 			 * are above the previous ones.
   2138 			 *
   2139 			 * NOTE: We will checksum the packet again, and
   2140 			 * so we need to put the header fields back into
   2141 			 * network order!
   2142 			 * XXX This kind of sucks, but we don't expect
   2143 			 * XXX this to happen very often, so maybe it
   2144 			 * XXX doesn't matter so much.
   2145 			 */
   2146 			if (tiflags & TH_SYN &&
   2147 			    tp->t_state == TCPS_TIME_WAIT &&
   2148 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2149 				tp = tcp_close(tp);
   2150 				tcp_fields_to_net(th);
   2151 				goto findpcb;
   2152 			}
   2153 			/*
   2154 			 * If window is closed can only take segments at
   2155 			 * window edge, and have to drop data and PUSH from
   2156 			 * incoming segments.  Continue processing, but
   2157 			 * remember to ack.  Otherwise, drop segment
   2158 			 * and (if not RST) ack.
   2159 			 */
   2160 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2161 				tp->t_flags |= TF_ACKNOW;
   2162 				tcpstat.tcps_rcvwinprobe++;
   2163 			} else
   2164 				goto dropafterack;
   2165 		} else
   2166 			tcpstat.tcps_rcvbyteafterwin += todrop;
   2167 		m_adj(m, -todrop);
   2168 		tlen -= todrop;
   2169 		tiflags &= ~(TH_PUSH|TH_FIN);
   2170 	}
   2171 
   2172 	/*
   2173 	 * If last ACK falls within this segment's sequence numbers,
   2174 	 *  record the timestamp.
   2175 	 * NOTE:
   2176 	 * 1) That the test incorporates suggestions from the latest
   2177 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2178 	 * 2) That updating only on newer timestamps interferes with
   2179 	 *    our earlier PAWS tests, so this check should be solely
   2180 	 *    predicated on the sequence space of this segment.
   2181 	 * 3) That we modify the segment boundary check to be
   2182 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2183 	 *    instead of RFC1323's
   2184 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2185 	 *    This modified check allows us to overcome RFC1323's
   2186 	 *    limitations as described in Stevens TCP/IP Illustrated
   2187 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2188 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2189 	 */
   2190 	if (opti.ts_present &&
   2191 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2192 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2193 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2194 		tp->ts_recent_age = tcp_now;
   2195 		tp->ts_recent = opti.ts_val;
   2196 	}
   2197 
   2198 	/*
   2199 	 * If the RST bit is set examine the state:
   2200 	 *    SYN_RECEIVED STATE:
   2201 	 *	If passive open, return to LISTEN state.
   2202 	 *	If active open, inform user that connection was refused.
   2203 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2204 	 *	Inform user that connection was reset, and close tcb.
   2205 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2206 	 *	Close the tcb.
   2207 	 */
   2208 	if (tiflags & TH_RST) {
   2209 		if (th->th_seq != tp->last_ack_sent)
   2210 			goto dropafterack_ratelim;
   2211 
   2212 		switch (tp->t_state) {
   2213 		case TCPS_SYN_RECEIVED:
   2214 			so->so_error = ECONNREFUSED;
   2215 			goto close;
   2216 
   2217 		case TCPS_ESTABLISHED:
   2218 		case TCPS_FIN_WAIT_1:
   2219 		case TCPS_FIN_WAIT_2:
   2220 		case TCPS_CLOSE_WAIT:
   2221 			so->so_error = ECONNRESET;
   2222 		close:
   2223 			tp->t_state = TCPS_CLOSED;
   2224 			tcpstat.tcps_drops++;
   2225 			tp = tcp_close(tp);
   2226 			goto drop;
   2227 
   2228 		case TCPS_CLOSING:
   2229 		case TCPS_LAST_ACK:
   2230 		case TCPS_TIME_WAIT:
   2231 			tp = tcp_close(tp);
   2232 			goto drop;
   2233 		}
   2234 	}
   2235 
   2236 	/*
   2237 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2238 	 * we must be in a synchronized state.  RFC791 states (under RST
   2239 	 * generation) that any unacceptable segment (an out-of-order SYN
   2240 	 * qualifies) received in a synchronized state must elicit only an
   2241 	 * empty acknowledgment segment ... and the connection remains in
   2242 	 * the same state.
   2243 	 */
   2244 	if (tiflags & TH_SYN) {
   2245 		if (tp->rcv_nxt == th->th_seq) {
   2246 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2247 			    TH_ACK);
   2248 			if (tcp_saveti)
   2249 				m_freem(tcp_saveti);
   2250 			return;
   2251 		}
   2252 
   2253 		goto dropafterack_ratelim;
   2254 	}
   2255 
   2256 	/*
   2257 	 * If the ACK bit is off we drop the segment and return.
   2258 	 */
   2259 	if ((tiflags & TH_ACK) == 0) {
   2260 		if (tp->t_flags & TF_ACKNOW)
   2261 			goto dropafterack;
   2262 		else
   2263 			goto drop;
   2264 	}
   2265 
   2266 	/*
   2267 	 * Ack processing.
   2268 	 */
   2269 	switch (tp->t_state) {
   2270 
   2271 	/*
   2272 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2273 	 * ESTABLISHED state and continue processing, otherwise
   2274 	 * send an RST.
   2275 	 */
   2276 	case TCPS_SYN_RECEIVED:
   2277 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2278 		    SEQ_GT(th->th_ack, tp->snd_max))
   2279 			goto dropwithreset;
   2280 		tcpstat.tcps_connects++;
   2281 		soisconnected(so);
   2282 		tcp_established(tp);
   2283 		/* Do window scaling? */
   2284 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2285 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2286 			tp->snd_scale = tp->requested_s_scale;
   2287 			tp->rcv_scale = tp->request_r_scale;
   2288 		}
   2289 		TCP_REASS_LOCK(tp);
   2290 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2291 		TCP_REASS_UNLOCK(tp);
   2292 		tp->snd_wl1 = th->th_seq - 1;
   2293 		/* fall into ... */
   2294 
   2295 	/*
   2296 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2297 	 * ACKs.  If the ack is in the range
   2298 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2299 	 * then advance tp->snd_una to th->th_ack and drop
   2300 	 * data from the retransmission queue.  If this ACK reflects
   2301 	 * more up to date window information we update our window information.
   2302 	 */
   2303 	case TCPS_ESTABLISHED:
   2304 	case TCPS_FIN_WAIT_1:
   2305 	case TCPS_FIN_WAIT_2:
   2306 	case TCPS_CLOSE_WAIT:
   2307 	case TCPS_CLOSING:
   2308 	case TCPS_LAST_ACK:
   2309 	case TCPS_TIME_WAIT:
   2310 
   2311 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2312 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2313 				tcpstat.tcps_rcvdupack++;
   2314 				/*
   2315 				 * If we have outstanding data (other than
   2316 				 * a window probe), this is a completely
   2317 				 * duplicate ack (ie, window info didn't
   2318 				 * change), the ack is the biggest we've
   2319 				 * seen and we've seen exactly our rexmt
   2320 				 * threshhold of them, assume a packet
   2321 				 * has been dropped and retransmit it.
   2322 				 * Kludge snd_nxt & the congestion
   2323 				 * window so we send only this one
   2324 				 * packet.
   2325 				 */
   2326 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2327 				    th->th_ack != tp->snd_una)
   2328 					tp->t_dupacks = 0;
   2329 				else if (tp->t_partialacks < 0 &&
   2330 					 (++tp->t_dupacks == tcprexmtthresh ||
   2331 					 TCP_FACK_FASTRECOV(tp))) {
   2332 					/*
   2333 					 * Do the fast retransmit, and adjust
   2334 					 * congestion control paramenters.
   2335 					 */
   2336 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2337 						/* False fast retransmit */
   2338 						break;
   2339 					} else
   2340 						goto drop;
   2341 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2342 					tp->snd_cwnd += tp->t_segsz;
   2343 					(void) tcp_output(tp);
   2344 					goto drop;
   2345 				}
   2346 			} else {
   2347 				/*
   2348 				 * If the ack appears to be very old, only
   2349 				 * allow data that is in-sequence.  This
   2350 				 * makes it somewhat more difficult to insert
   2351 				 * forged data by guessing sequence numbers.
   2352 				 * Sent an ack to try to update the send
   2353 				 * sequence number on the other side.
   2354 				 */
   2355 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2356 				    SEQ_LT(th->th_ack,
   2357 				    tp->snd_una - tp->max_sndwnd))
   2358 					goto dropafterack;
   2359 			}
   2360 			break;
   2361 		}
   2362 		/*
   2363 		 * If the congestion window was inflated to account
   2364 		 * for the other side's cached packets, retract it.
   2365 		 */
   2366 		/* XXX: make SACK have his own congestion control
   2367 		 * struct -- rpaulo */
   2368 		if (TCP_SACK_ENABLED(tp))
   2369 			tcp_sack_newack(tp, th);
   2370 		else
   2371 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2372 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2373 			tcpstat.tcps_rcvacktoomuch++;
   2374 			goto dropafterack;
   2375 		}
   2376 		acked = th->th_ack - tp->snd_una;
   2377 		tcpstat.tcps_rcvackpack++;
   2378 		tcpstat.tcps_rcvackbyte += acked;
   2379 
   2380 		/*
   2381 		 * If we have a timestamp reply, update smoothed
   2382 		 * round trip time.  If no timestamp is present but
   2383 		 * transmit timer is running and timed sequence
   2384 		 * number was acked, update smoothed round trip time.
   2385 		 * Since we now have an rtt measurement, cancel the
   2386 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2387 		 * Recompute the initial retransmit timer.
   2388 		 */
   2389 		if (ts_rtt)
   2390 			tcp_xmit_timer(tp, ts_rtt);
   2391 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2392 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2393 
   2394 		/*
   2395 		 * If all outstanding data is acked, stop retransmit
   2396 		 * timer and remember to restart (more output or persist).
   2397 		 * If there is more data to be acked, restart retransmit
   2398 		 * timer, using current (possibly backed-off) value.
   2399 		 */
   2400 		if (th->th_ack == tp->snd_max) {
   2401 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2402 			needoutput = 1;
   2403 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2404 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2405 
   2406 		/*
   2407 		 * New data has been acked, adjust the congestion window.
   2408 		 */
   2409 		tp->t_congctl->newack(tp, th);
   2410 
   2411 		nd6_hint(tp);
   2412 		if (acked > so->so_snd.sb_cc) {
   2413 			tp->snd_wnd -= so->so_snd.sb_cc;
   2414 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2415 			ourfinisacked = 1;
   2416 		} else {
   2417 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2418 				tp->t_lastm = NULL;
   2419 			sbdrop(&so->so_snd, acked);
   2420 			tp->t_lastoff -= acked;
   2421 			tp->snd_wnd -= acked;
   2422 			ourfinisacked = 0;
   2423 		}
   2424 		sowwakeup(so);
   2425 
   2426 		icmp_check(tp, th, acked);
   2427 
   2428 		tp->snd_una = th->th_ack;
   2429 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2430 			tp->snd_fack = tp->snd_una;
   2431 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2432 			tp->snd_nxt = tp->snd_una;
   2433 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2434 			tp->snd_high = tp->snd_una;
   2435 
   2436 		switch (tp->t_state) {
   2437 
   2438 		/*
   2439 		 * In FIN_WAIT_1 STATE in addition to the processing
   2440 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2441 		 * then enter FIN_WAIT_2.
   2442 		 */
   2443 		case TCPS_FIN_WAIT_1:
   2444 			if (ourfinisacked) {
   2445 				/*
   2446 				 * If we can't receive any more
   2447 				 * data, then closing user can proceed.
   2448 				 * Starting the timer is contrary to the
   2449 				 * specification, but if we don't get a FIN
   2450 				 * we'll hang forever.
   2451 				 */
   2452 				if (so->so_state & SS_CANTRCVMORE) {
   2453 					soisdisconnected(so);
   2454 					if (tp->t_maxidle > 0)
   2455 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2456 						    tp->t_maxidle);
   2457 				}
   2458 				tp->t_state = TCPS_FIN_WAIT_2;
   2459 			}
   2460 			break;
   2461 
   2462 	 	/*
   2463 		 * In CLOSING STATE in addition to the processing for
   2464 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2465 		 * then enter the TIME-WAIT state, otherwise ignore
   2466 		 * the segment.
   2467 		 */
   2468 		case TCPS_CLOSING:
   2469 			if (ourfinisacked) {
   2470 				tp->t_state = TCPS_TIME_WAIT;
   2471 				tcp_canceltimers(tp);
   2472 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2473 				soisdisconnected(so);
   2474 			}
   2475 			break;
   2476 
   2477 		/*
   2478 		 * In LAST_ACK, we may still be waiting for data to drain
   2479 		 * and/or to be acked, as well as for the ack of our FIN.
   2480 		 * If our FIN is now acknowledged, delete the TCB,
   2481 		 * enter the closed state and return.
   2482 		 */
   2483 		case TCPS_LAST_ACK:
   2484 			if (ourfinisacked) {
   2485 				tp = tcp_close(tp);
   2486 				goto drop;
   2487 			}
   2488 			break;
   2489 
   2490 		/*
   2491 		 * In TIME_WAIT state the only thing that should arrive
   2492 		 * is a retransmission of the remote FIN.  Acknowledge
   2493 		 * it and restart the finack timer.
   2494 		 */
   2495 		case TCPS_TIME_WAIT:
   2496 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2497 			goto dropafterack;
   2498 		}
   2499 	}
   2500 
   2501 step6:
   2502 	/*
   2503 	 * Update window information.
   2504 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2505 	 */
   2506 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2507 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2508 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2509 		/* keep track of pure window updates */
   2510 		if (tlen == 0 &&
   2511 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2512 			tcpstat.tcps_rcvwinupd++;
   2513 		tp->snd_wnd = tiwin;
   2514 		tp->snd_wl1 = th->th_seq;
   2515 		tp->snd_wl2 = th->th_ack;
   2516 		if (tp->snd_wnd > tp->max_sndwnd)
   2517 			tp->max_sndwnd = tp->snd_wnd;
   2518 		needoutput = 1;
   2519 	}
   2520 
   2521 	/*
   2522 	 * Process segments with URG.
   2523 	 */
   2524 	if ((tiflags & TH_URG) && th->th_urp &&
   2525 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2526 		/*
   2527 		 * This is a kludge, but if we receive and accept
   2528 		 * random urgent pointers, we'll crash in
   2529 		 * soreceive.  It's hard to imagine someone
   2530 		 * actually wanting to send this much urgent data.
   2531 		 */
   2532 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2533 			th->th_urp = 0;			/* XXX */
   2534 			tiflags &= ~TH_URG;		/* XXX */
   2535 			goto dodata;			/* XXX */
   2536 		}
   2537 		/*
   2538 		 * If this segment advances the known urgent pointer,
   2539 		 * then mark the data stream.  This should not happen
   2540 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2541 		 * a FIN has been received from the remote side.
   2542 		 * In these states we ignore the URG.
   2543 		 *
   2544 		 * According to RFC961 (Assigned Protocols),
   2545 		 * the urgent pointer points to the last octet
   2546 		 * of urgent data.  We continue, however,
   2547 		 * to consider it to indicate the first octet
   2548 		 * of data past the urgent section as the original
   2549 		 * spec states (in one of two places).
   2550 		 */
   2551 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2552 			tp->rcv_up = th->th_seq + th->th_urp;
   2553 			so->so_oobmark = so->so_rcv.sb_cc +
   2554 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2555 			if (so->so_oobmark == 0)
   2556 				so->so_state |= SS_RCVATMARK;
   2557 			sohasoutofband(so);
   2558 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2559 		}
   2560 		/*
   2561 		 * Remove out of band data so doesn't get presented to user.
   2562 		 * This can happen independent of advancing the URG pointer,
   2563 		 * but if two URG's are pending at once, some out-of-band
   2564 		 * data may creep in... ick.
   2565 		 */
   2566 		if (th->th_urp <= (u_int16_t) tlen
   2567 #ifdef SO_OOBINLINE
   2568 		     && (so->so_options & SO_OOBINLINE) == 0
   2569 #endif
   2570 		     )
   2571 			tcp_pulloutofband(so, th, m, hdroptlen);
   2572 	} else
   2573 		/*
   2574 		 * If no out of band data is expected,
   2575 		 * pull receive urgent pointer along
   2576 		 * with the receive window.
   2577 		 */
   2578 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2579 			tp->rcv_up = tp->rcv_nxt;
   2580 dodata:							/* XXX */
   2581 
   2582 	/*
   2583 	 * Process the segment text, merging it into the TCP sequencing queue,
   2584 	 * and arranging for acknowledgement of receipt if necessary.
   2585 	 * This process logically involves adjusting tp->rcv_wnd as data
   2586 	 * is presented to the user (this happens in tcp_usrreq.c,
   2587 	 * case PRU_RCVD).  If a FIN has already been received on this
   2588 	 * connection then we just ignore the text.
   2589 	 */
   2590 	if ((tlen || (tiflags & TH_FIN)) &&
   2591 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2592 		/*
   2593 		 * Insert segment ti into reassembly queue of tcp with
   2594 		 * control block tp.  Return TH_FIN if reassembly now includes
   2595 		 * a segment with FIN.  The macro form does the common case
   2596 		 * inline (segment is the next to be received on an
   2597 		 * established connection, and the queue is empty),
   2598 		 * avoiding linkage into and removal from the queue and
   2599 		 * repetition of various conversions.
   2600 		 * Set DELACK for segments received in order, but ack
   2601 		 * immediately when segments are out of order
   2602 		 * (so fast retransmit can work).
   2603 		 */
   2604 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2605 		TCP_REASS_LOCK(tp);
   2606 		if (th->th_seq == tp->rcv_nxt &&
   2607 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2608 		    tp->t_state == TCPS_ESTABLISHED) {
   2609 			tcp_setup_ack(tp, th);
   2610 			tp->rcv_nxt += tlen;
   2611 			tiflags = th->th_flags & TH_FIN;
   2612 			tcpstat.tcps_rcvpack++;
   2613 			tcpstat.tcps_rcvbyte += tlen;
   2614 			nd6_hint(tp);
   2615 			if (so->so_state & SS_CANTRCVMORE)
   2616 				m_freem(m);
   2617 			else {
   2618 				m_adj(m, hdroptlen);
   2619 				sbappendstream(&(so)->so_rcv, m);
   2620 			}
   2621 			sorwakeup(so);
   2622 		} else {
   2623 			m_adj(m, hdroptlen);
   2624 			tiflags = tcp_reass(tp, th, m, &tlen);
   2625 			tp->t_flags |= TF_ACKNOW;
   2626 		}
   2627 		TCP_REASS_UNLOCK(tp);
   2628 
   2629 		/*
   2630 		 * Note the amount of data that peer has sent into
   2631 		 * our window, in order to estimate the sender's
   2632 		 * buffer size.
   2633 		 */
   2634 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2635 	} else {
   2636 		m_freem(m);
   2637 		m = NULL;
   2638 		tiflags &= ~TH_FIN;
   2639 	}
   2640 
   2641 	/*
   2642 	 * If FIN is received ACK the FIN and let the user know
   2643 	 * that the connection is closing.  Ignore a FIN received before
   2644 	 * the connection is fully established.
   2645 	 */
   2646 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2647 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2648 			socantrcvmore(so);
   2649 			tp->t_flags |= TF_ACKNOW;
   2650 			tp->rcv_nxt++;
   2651 		}
   2652 		switch (tp->t_state) {
   2653 
   2654 	 	/*
   2655 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2656 		 */
   2657 		case TCPS_ESTABLISHED:
   2658 			tp->t_state = TCPS_CLOSE_WAIT;
   2659 			break;
   2660 
   2661 	 	/*
   2662 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2663 		 * enter the CLOSING state.
   2664 		 */
   2665 		case TCPS_FIN_WAIT_1:
   2666 			tp->t_state = TCPS_CLOSING;
   2667 			break;
   2668 
   2669 	 	/*
   2670 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2671 		 * starting the time-wait timer, turning off the other
   2672 		 * standard timers.
   2673 		 */
   2674 		case TCPS_FIN_WAIT_2:
   2675 			tp->t_state = TCPS_TIME_WAIT;
   2676 			tcp_canceltimers(tp);
   2677 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2678 			soisdisconnected(so);
   2679 			break;
   2680 
   2681 		/*
   2682 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2683 		 */
   2684 		case TCPS_TIME_WAIT:
   2685 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2686 			break;
   2687 		}
   2688 	}
   2689 #ifdef TCP_DEBUG
   2690 	if (so->so_options & SO_DEBUG)
   2691 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2692 #endif
   2693 
   2694 	/*
   2695 	 * Return any desired output.
   2696 	 */
   2697 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2698 		(void) tcp_output(tp);
   2699 	}
   2700 	if (tcp_saveti)
   2701 		m_freem(tcp_saveti);
   2702 	return;
   2703 
   2704 badsyn:
   2705 	/*
   2706 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2707 	 */
   2708 	tcpstat.tcps_badsyn++;
   2709 	tp = NULL;
   2710 	goto dropwithreset;
   2711 
   2712 dropafterack:
   2713 	/*
   2714 	 * Generate an ACK dropping incoming segment if it occupies
   2715 	 * sequence space, where the ACK reflects our state.
   2716 	 */
   2717 	if (tiflags & TH_RST)
   2718 		goto drop;
   2719 	goto dropafterack2;
   2720 
   2721 dropafterack_ratelim:
   2722 	/*
   2723 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2724 	 */
   2725 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2726 	    tcp_ackdrop_ppslim) == 0) {
   2727 		/* XXX stat */
   2728 		goto drop;
   2729 	}
   2730 	/* ...fall into dropafterack2... */
   2731 
   2732 dropafterack2:
   2733 	m_freem(m);
   2734 	tp->t_flags |= TF_ACKNOW;
   2735 	(void) tcp_output(tp);
   2736 	if (tcp_saveti)
   2737 		m_freem(tcp_saveti);
   2738 	return;
   2739 
   2740 dropwithreset_ratelim:
   2741 	/*
   2742 	 * We may want to rate-limit RSTs in certain situations,
   2743 	 * particularly if we are sending an RST in response to
   2744 	 * an attempt to connect to or otherwise communicate with
   2745 	 * a port for which we have no socket.
   2746 	 */
   2747 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2748 	    tcp_rst_ppslim) == 0) {
   2749 		/* XXX stat */
   2750 		goto drop;
   2751 	}
   2752 	/* ...fall into dropwithreset... */
   2753 
   2754 dropwithreset:
   2755 	/*
   2756 	 * Generate a RST, dropping incoming segment.
   2757 	 * Make ACK acceptable to originator of segment.
   2758 	 */
   2759 	if (tiflags & TH_RST)
   2760 		goto drop;
   2761 
   2762 	switch (af) {
   2763 #ifdef INET6
   2764 	case AF_INET6:
   2765 		/* For following calls to tcp_respond */
   2766 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2767 			goto drop;
   2768 		break;
   2769 #endif /* INET6 */
   2770 	case AF_INET:
   2771 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2772 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2773 			goto drop;
   2774 	}
   2775 
   2776 	if (tiflags & TH_ACK)
   2777 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2778 	else {
   2779 		if (tiflags & TH_SYN)
   2780 			tlen++;
   2781 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2782 		    TH_RST|TH_ACK);
   2783 	}
   2784 	if (tcp_saveti)
   2785 		m_freem(tcp_saveti);
   2786 	return;
   2787 
   2788 badcsum:
   2789 drop:
   2790 	/*
   2791 	 * Drop space held by incoming segment and return.
   2792 	 */
   2793 	if (tp) {
   2794 		if (tp->t_inpcb)
   2795 			so = tp->t_inpcb->inp_socket;
   2796 #ifdef INET6
   2797 		else if (tp->t_in6pcb)
   2798 			so = tp->t_in6pcb->in6p_socket;
   2799 #endif
   2800 		else
   2801 			so = NULL;
   2802 #ifdef TCP_DEBUG
   2803 		if (so && (so->so_options & SO_DEBUG) != 0)
   2804 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2805 #endif
   2806 	}
   2807 	if (tcp_saveti)
   2808 		m_freem(tcp_saveti);
   2809 	m_freem(m);
   2810 	return;
   2811 }
   2812 
   2813 #ifdef TCP_SIGNATURE
   2814 int
   2815 tcp_signature_apply(void *fstate, void *data, u_int len)
   2816 {
   2817 
   2818 	MD5Update(fstate, (u_char *)data, len);
   2819 	return (0);
   2820 }
   2821 
   2822 struct secasvar *
   2823 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   2824 {
   2825 	struct secasvar *sav;
   2826 #ifdef FAST_IPSEC
   2827 	union sockaddr_union dst;
   2828 #endif
   2829 	struct ip *ip;
   2830 	struct ip6_hdr *ip6;
   2831 
   2832 	ip = mtod(m, struct ip *);
   2833 	switch (ip->ip_v) {
   2834 	case 4:
   2835 		ip = mtod(m, struct ip *);
   2836 		ip6 = NULL;
   2837 		break;
   2838 	case 6:
   2839 		ip = NULL;
   2840 		ip6 = mtod(m, struct ip6_hdr *);
   2841 		break;
   2842 	default:
   2843 		return (NULL);
   2844 	}
   2845 
   2846 #ifdef FAST_IPSEC
   2847 	/* Extract the destination from the IP header in the mbuf. */
   2848 	bzero(&dst, sizeof(union sockaddr_union));
   2849 	if (ip !=NULL) {
   2850 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   2851 		dst.sa.sa_family = AF_INET;
   2852 		dst.sin.sin_addr = ip->ip_dst;
   2853 	} else {
   2854 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   2855 		dst.sa.sa_family = AF_INET6;
   2856 		dst.sin6.sin6_addr = ip6->ip6_dst;
   2857 	}
   2858 
   2859 	/*
   2860 	 * Look up an SADB entry which matches the address of the peer.
   2861 	 */
   2862 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   2863 #else
   2864 	if (ip)
   2865 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
   2866 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   2867 		    htonl(TCP_SIG_SPI), 0, 0);
   2868 	else
   2869 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   2870 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   2871 		    htonl(TCP_SIG_SPI), 0, 0);
   2872 #endif
   2873 
   2874 	return (sav);	/* freesav must be performed by caller */
   2875 }
   2876 
   2877 int
   2878 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   2879     struct secasvar *sav, char *sig)
   2880 {
   2881 	MD5_CTX ctx;
   2882 	struct ip *ip;
   2883 	struct ipovly *ipovly;
   2884 	struct ip6_hdr *ip6;
   2885 	struct ippseudo ippseudo;
   2886 	struct ip6_hdr_pseudo ip6pseudo;
   2887 	struct tcphdr th0;
   2888 	int l, tcphdrlen;
   2889 
   2890 	if (sav == NULL)
   2891 		return (-1);
   2892 
   2893 	tcphdrlen = th->th_off * 4;
   2894 
   2895 	switch (mtod(m, struct ip *)->ip_v) {
   2896 	case 4:
   2897 		ip = mtod(m, struct ip *);
   2898 		ip6 = NULL;
   2899 		break;
   2900 	case 6:
   2901 		ip = NULL;
   2902 		ip6 = mtod(m, struct ip6_hdr *);
   2903 		break;
   2904 	default:
   2905 		return (-1);
   2906 	}
   2907 
   2908 	MD5Init(&ctx);
   2909 
   2910 	if (ip) {
   2911 		memset(&ippseudo, 0, sizeof(ippseudo));
   2912 		ipovly = (struct ipovly *)ip;
   2913 		ippseudo.ippseudo_src = ipovly->ih_src;
   2914 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   2915 		ippseudo.ippseudo_pad = 0;
   2916 		ippseudo.ippseudo_p = IPPROTO_TCP;
   2917 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   2918 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   2919 	} else {
   2920 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   2921 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   2922 		in6_clearscope(&ip6pseudo.ip6ph_src);
   2923 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   2924 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   2925 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   2926 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   2927 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   2928 	}
   2929 
   2930 	th0 = *th;
   2931 	th0.th_sum = 0;
   2932 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   2933 
   2934 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   2935 	if (l > 0)
   2936 		m_apply(m, thoff + tcphdrlen,
   2937 		    m->m_pkthdr.len - thoff - tcphdrlen,
   2938 		    tcp_signature_apply, &ctx);
   2939 
   2940 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   2941 	MD5Final(sig, &ctx);
   2942 
   2943 	return (0);
   2944 }
   2945 #endif
   2946 
   2947 static int
   2948 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   2949     struct tcphdr *th,
   2950     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   2951 {
   2952 	u_int16_t mss;
   2953 	int opt, optlen = 0;
   2954 #ifdef TCP_SIGNATURE
   2955 	void *sigp = NULL;
   2956 	char sigbuf[TCP_SIGLEN];
   2957 	struct secasvar *sav = NULL;
   2958 #endif
   2959 
   2960 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   2961 		opt = cp[0];
   2962 		if (opt == TCPOPT_EOL)
   2963 			break;
   2964 		if (opt == TCPOPT_NOP)
   2965 			optlen = 1;
   2966 		else {
   2967 			if (cnt < 2)
   2968 				break;
   2969 			optlen = cp[1];
   2970 			if (optlen < 2 || optlen > cnt)
   2971 				break;
   2972 		}
   2973 		switch (opt) {
   2974 
   2975 		default:
   2976 			continue;
   2977 
   2978 		case TCPOPT_MAXSEG:
   2979 			if (optlen != TCPOLEN_MAXSEG)
   2980 				continue;
   2981 			if (!(th->th_flags & TH_SYN))
   2982 				continue;
   2983 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2984 				continue;
   2985 			bcopy(cp + 2, &mss, sizeof(mss));
   2986 			oi->maxseg = ntohs(mss);
   2987 			break;
   2988 
   2989 		case TCPOPT_WINDOW:
   2990 			if (optlen != TCPOLEN_WINDOW)
   2991 				continue;
   2992 			if (!(th->th_flags & TH_SYN))
   2993 				continue;
   2994 			if (TCPS_HAVERCVDSYN(tp->t_state))
   2995 				continue;
   2996 			tp->t_flags |= TF_RCVD_SCALE;
   2997 			tp->requested_s_scale = cp[2];
   2998 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   2999 #if 0	/*XXX*/
   3000 				char *p;
   3001 
   3002 				if (ip)
   3003 					p = ntohl(ip->ip_src);
   3004 #ifdef INET6
   3005 				else if (ip6)
   3006 					p = ip6_sprintf(&ip6->ip6_src);
   3007 #endif
   3008 				else
   3009 					p = "(unknown)";
   3010 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3011 				    "assuming %d\n",
   3012 				    tp->requested_s_scale, p,
   3013 				    TCP_MAX_WINSHIFT);
   3014 #else
   3015 				log(LOG_ERR, "TCP: invalid wscale %d, "
   3016 				    "assuming %d\n",
   3017 				    tp->requested_s_scale,
   3018 				    TCP_MAX_WINSHIFT);
   3019 #endif
   3020 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3021 			}
   3022 			break;
   3023 
   3024 		case TCPOPT_TIMESTAMP:
   3025 			if (optlen != TCPOLEN_TIMESTAMP)
   3026 				continue;
   3027 			oi->ts_present = 1;
   3028 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3029 			NTOHL(oi->ts_val);
   3030 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3031 			NTOHL(oi->ts_ecr);
   3032 
   3033 			if (!(th->th_flags & TH_SYN))
   3034 				continue;
   3035 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3036 				continue;
   3037 			/*
   3038 			 * A timestamp received in a SYN makes
   3039 			 * it ok to send timestamp requests and replies.
   3040 			 */
   3041 			tp->t_flags |= TF_RCVD_TSTMP;
   3042 			tp->ts_recent = oi->ts_val;
   3043 			tp->ts_recent_age = tcp_now;
   3044                         break;
   3045 
   3046 		case TCPOPT_SACK_PERMITTED:
   3047 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3048 				continue;
   3049 			if (!(th->th_flags & TH_SYN))
   3050 				continue;
   3051 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3052 				continue;
   3053 			if (tcp_do_sack) {
   3054 				tp->t_flags |= TF_SACK_PERMIT;
   3055 				tp->t_flags |= TF_WILL_SACK;
   3056 			}
   3057 			break;
   3058 
   3059 		case TCPOPT_SACK:
   3060 			tcp_sack_option(tp, th, cp, optlen);
   3061 			break;
   3062 #ifdef TCP_SIGNATURE
   3063 		case TCPOPT_SIGNATURE:
   3064 			if (optlen != TCPOLEN_SIGNATURE)
   3065 				continue;
   3066 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
   3067 				return (-1);
   3068 
   3069 			sigp = sigbuf;
   3070 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3071 			tp->t_flags |= TF_SIGNATURE;
   3072 			break;
   3073 #endif
   3074 		}
   3075 	}
   3076 
   3077 #ifdef TCP_SIGNATURE
   3078 	if (tp->t_flags & TF_SIGNATURE) {
   3079 
   3080 		sav = tcp_signature_getsav(m, th);
   3081 
   3082 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3083 			return (-1);
   3084 	}
   3085 
   3086 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   3087 		if (sav == NULL)
   3088 			return (-1);
   3089 #ifdef FAST_IPSEC
   3090 		KEY_FREESAV(&sav);
   3091 #else
   3092 		key_freesav(sav);
   3093 #endif
   3094 		return (-1);
   3095 	}
   3096 
   3097 	if (sigp) {
   3098 		char sig[TCP_SIGLEN];
   3099 
   3100 		tcp_fields_to_net(th);
   3101 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3102 			tcp_fields_to_host(th);
   3103 			if (sav == NULL)
   3104 				return (-1);
   3105 #ifdef FAST_IPSEC
   3106 			KEY_FREESAV(&sav);
   3107 #else
   3108 			key_freesav(sav);
   3109 #endif
   3110 			return (-1);
   3111 		}
   3112 		tcp_fields_to_host(th);
   3113 
   3114 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
   3115 			tcpstat.tcps_badsig++;
   3116 			if (sav == NULL)
   3117 				return (-1);
   3118 #ifdef FAST_IPSEC
   3119 			KEY_FREESAV(&sav);
   3120 #else
   3121 			key_freesav(sav);
   3122 #endif
   3123 			return (-1);
   3124 		} else
   3125 			tcpstat.tcps_goodsig++;
   3126 
   3127 		key_sa_recordxfer(sav, m);
   3128 #ifdef FAST_IPSEC
   3129 		KEY_FREESAV(&sav);
   3130 #else
   3131 		key_freesav(sav);
   3132 #endif
   3133 	}
   3134 #endif
   3135 
   3136 	return (0);
   3137 }
   3138 
   3139 /*
   3140  * Pull out of band byte out of a segment so
   3141  * it doesn't appear in the user's data queue.
   3142  * It is still reflected in the segment length for
   3143  * sequencing purposes.
   3144  */
   3145 void
   3146 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3147     struct mbuf *m, int off)
   3148 {
   3149 	int cnt = off + th->th_urp - 1;
   3150 
   3151 	while (cnt >= 0) {
   3152 		if (m->m_len > cnt) {
   3153 			char *cp = mtod(m, char *) + cnt;
   3154 			struct tcpcb *tp = sototcpcb(so);
   3155 
   3156 			tp->t_iobc = *cp;
   3157 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3158 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3159 			m->m_len--;
   3160 			return;
   3161 		}
   3162 		cnt -= m->m_len;
   3163 		m = m->m_next;
   3164 		if (m == 0)
   3165 			break;
   3166 	}
   3167 	panic("tcp_pulloutofband");
   3168 }
   3169 
   3170 /*
   3171  * Collect new round-trip time estimate
   3172  * and update averages and current timeout.
   3173  */
   3174 void
   3175 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3176 {
   3177 	int32_t delta;
   3178 
   3179 	tcpstat.tcps_rttupdated++;
   3180 	if (tp->t_srtt != 0) {
   3181 		/*
   3182 		 * srtt is stored as fixed point with 3 bits after the
   3183 		 * binary point (i.e., scaled by 8).  The following magic
   3184 		 * is equivalent to the smoothing algorithm in rfc793 with
   3185 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   3186 		 * point).  Adjust rtt to origin 0.
   3187 		 */
   3188 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3189 		if ((tp->t_srtt += delta) <= 0)
   3190 			tp->t_srtt = 1 << 2;
   3191 		/*
   3192 		 * We accumulate a smoothed rtt variance (actually, a
   3193 		 * smoothed mean difference), then set the retransmit
   3194 		 * timer to smoothed rtt + 4 times the smoothed variance.
   3195 		 * rttvar is stored as fixed point with 2 bits after the
   3196 		 * binary point (scaled by 4).  The following is
   3197 		 * equivalent to rfc793 smoothing with an alpha of .75
   3198 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   3199 		 * rfc793's wired-in beta.
   3200 		 */
   3201 		if (delta < 0)
   3202 			delta = -delta;
   3203 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3204 		if ((tp->t_rttvar += delta) <= 0)
   3205 			tp->t_rttvar = 1 << 2;
   3206 	} else {
   3207 		/*
   3208 		 * No rtt measurement yet - use the unsmoothed rtt.
   3209 		 * Set the variance to half the rtt (so our first
   3210 		 * retransmit happens at 3*rtt).
   3211 		 */
   3212 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3213 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3214 	}
   3215 	tp->t_rtttime = 0;
   3216 	tp->t_rxtshift = 0;
   3217 
   3218 	/*
   3219 	 * the retransmit should happen at rtt + 4 * rttvar.
   3220 	 * Because of the way we do the smoothing, srtt and rttvar
   3221 	 * will each average +1/2 tick of bias.  When we compute
   3222 	 * the retransmit timer, we want 1/2 tick of rounding and
   3223 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3224 	 * firing of the timer.  The bias will give us exactly the
   3225 	 * 1.5 tick we need.  But, because the bias is
   3226 	 * statistical, we have to test that we don't drop below
   3227 	 * the minimum feasible timer (which is 2 ticks).
   3228 	 */
   3229 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3230 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3231 
   3232 	/*
   3233 	 * We received an ack for a packet that wasn't retransmitted;
   3234 	 * it is probably safe to discard any error indications we've
   3235 	 * received recently.  This isn't quite right, but close enough
   3236 	 * for now (a route might have failed after we sent a segment,
   3237 	 * and the return path might not be symmetrical).
   3238 	 */
   3239 	tp->t_softerror = 0;
   3240 }
   3241 
   3242 
   3243 /*
   3244  * TCP compressed state engine.  Currently used to hold compressed
   3245  * state for SYN_RECEIVED.
   3246  */
   3247 
   3248 u_long	syn_cache_count;
   3249 u_int32_t syn_hash1, syn_hash2;
   3250 
   3251 #define SYN_HASH(sa, sp, dp) \
   3252 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3253 				     ((u_int32_t)(sp)))^syn_hash2)))
   3254 #ifndef INET6
   3255 #define	SYN_HASHALL(hash, src, dst) \
   3256 do {									\
   3257 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3258 		((const struct sockaddr_in *)(src))->sin_port,		\
   3259 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3260 } while (/*CONSTCOND*/ 0)
   3261 #else
   3262 #define SYN_HASH6(sa, sp, dp) \
   3263 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3264 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3265 	 & 0x7fffffff)
   3266 
   3267 #define SYN_HASHALL(hash, src, dst) \
   3268 do {									\
   3269 	switch ((src)->sa_family) {					\
   3270 	case AF_INET:							\
   3271 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3272 			((const struct sockaddr_in *)(src))->sin_port,	\
   3273 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3274 		break;							\
   3275 	case AF_INET6:							\
   3276 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3277 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3278 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3279 		break;							\
   3280 	default:							\
   3281 		hash = 0;						\
   3282 	}								\
   3283 } while (/*CONSTCOND*/0)
   3284 #endif /* INET6 */
   3285 
   3286 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
   3287     IPL_SOFTNET);
   3288 
   3289 /*
   3290  * We don't estimate RTT with SYNs, so each packet starts with the default
   3291  * RTT and each timer step has a fixed timeout value.
   3292  */
   3293 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3294 do {									\
   3295 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3296 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3297 	    TCPTV_REXMTMAX);						\
   3298 	callout_reset(&(sc)->sc_timer,					\
   3299 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3300 } while (/*CONSTCOND*/0)
   3301 
   3302 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3303 
   3304 static inline void
   3305 syn_cache_rm(struct syn_cache *sc)
   3306 {
   3307 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3308 	    sc, sc_bucketq);
   3309 	sc->sc_tp = NULL;
   3310 	LIST_REMOVE(sc, sc_tpq);
   3311 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3312 	callout_stop(&sc->sc_timer);
   3313 	syn_cache_count--;
   3314 }
   3315 
   3316 static inline void
   3317 syn_cache_put(struct syn_cache *sc)
   3318 {
   3319 	if (sc->sc_ipopts)
   3320 		(void) m_free(sc->sc_ipopts);
   3321 	rtcache_free(&sc->sc_route);
   3322 	if (callout_invoking(&sc->sc_timer))
   3323 		sc->sc_flags |= SCF_DEAD;
   3324 	else {
   3325 		callout_destroy(&sc->sc_timer);
   3326 		pool_put(&syn_cache_pool, sc);
   3327 	}
   3328 }
   3329 
   3330 void
   3331 syn_cache_init(void)
   3332 {
   3333 	int i;
   3334 
   3335 	/* Initialize the hash buckets. */
   3336 	for (i = 0; i < tcp_syn_cache_size; i++)
   3337 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3338 }
   3339 
   3340 void
   3341 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3342 {
   3343 	struct syn_cache_head *scp;
   3344 	struct syn_cache *sc2;
   3345 	int s;
   3346 
   3347 	/*
   3348 	 * If there are no entries in the hash table, reinitialize
   3349 	 * the hash secrets.
   3350 	 */
   3351 	if (syn_cache_count == 0) {
   3352 		syn_hash1 = arc4random();
   3353 		syn_hash2 = arc4random();
   3354 	}
   3355 
   3356 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3357 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3358 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3359 
   3360 	/*
   3361 	 * Make sure that we don't overflow the per-bucket
   3362 	 * limit or the total cache size limit.
   3363 	 */
   3364 	s = splsoftnet();
   3365 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3366 		tcpstat.tcps_sc_bucketoverflow++;
   3367 		/*
   3368 		 * The bucket is full.  Toss the oldest element in the
   3369 		 * bucket.  This will be the first entry in the bucket.
   3370 		 */
   3371 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3372 #ifdef DIAGNOSTIC
   3373 		/*
   3374 		 * This should never happen; we should always find an
   3375 		 * entry in our bucket.
   3376 		 */
   3377 		if (sc2 == NULL)
   3378 			panic("syn_cache_insert: bucketoverflow: impossible");
   3379 #endif
   3380 		syn_cache_rm(sc2);
   3381 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3382 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3383 		struct syn_cache_head *scp2, *sce;
   3384 
   3385 		tcpstat.tcps_sc_overflowed++;
   3386 		/*
   3387 		 * The cache is full.  Toss the oldest entry in the
   3388 		 * first non-empty bucket we can find.
   3389 		 *
   3390 		 * XXX We would really like to toss the oldest
   3391 		 * entry in the cache, but we hope that this
   3392 		 * condition doesn't happen very often.
   3393 		 */
   3394 		scp2 = scp;
   3395 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3396 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3397 			for (++scp2; scp2 != scp; scp2++) {
   3398 				if (scp2 >= sce)
   3399 					scp2 = &tcp_syn_cache[0];
   3400 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3401 					break;
   3402 			}
   3403 #ifdef DIAGNOSTIC
   3404 			/*
   3405 			 * This should never happen; we should always find a
   3406 			 * non-empty bucket.
   3407 			 */
   3408 			if (scp2 == scp)
   3409 				panic("syn_cache_insert: cacheoverflow: "
   3410 				    "impossible");
   3411 #endif
   3412 		}
   3413 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3414 		syn_cache_rm(sc2);
   3415 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3416 	}
   3417 
   3418 	/*
   3419 	 * Initialize the entry's timer.
   3420 	 */
   3421 	sc->sc_rxttot = 0;
   3422 	sc->sc_rxtshift = 0;
   3423 	SYN_CACHE_TIMER_ARM(sc);
   3424 
   3425 	/* Link it from tcpcb entry */
   3426 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3427 
   3428 	/* Put it into the bucket. */
   3429 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3430 	scp->sch_length++;
   3431 	syn_cache_count++;
   3432 
   3433 	tcpstat.tcps_sc_added++;
   3434 	splx(s);
   3435 }
   3436 
   3437 /*
   3438  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3439  * If we have retransmitted an entry the maximum number of times, expire
   3440  * that entry.
   3441  */
   3442 void
   3443 syn_cache_timer(void *arg)
   3444 {
   3445 	struct syn_cache *sc = arg;
   3446 	int s;
   3447 
   3448 	s = splsoftnet();
   3449 	callout_ack(&sc->sc_timer);
   3450 
   3451 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3452 		tcpstat.tcps_sc_delayed_free++;
   3453 		callout_destroy(&sc->sc_timer);
   3454 		pool_put(&syn_cache_pool, sc);
   3455 		splx(s);
   3456 		return;
   3457 	}
   3458 
   3459 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3460 		/* Drop it -- too many retransmissions. */
   3461 		goto dropit;
   3462 	}
   3463 
   3464 	/*
   3465 	 * Compute the total amount of time this entry has
   3466 	 * been on a queue.  If this entry has been on longer
   3467 	 * than the keep alive timer would allow, expire it.
   3468 	 */
   3469 	sc->sc_rxttot += sc->sc_rxtcur;
   3470 	if (sc->sc_rxttot >= tcp_keepinit)
   3471 		goto dropit;
   3472 
   3473 	tcpstat.tcps_sc_retransmitted++;
   3474 	(void) syn_cache_respond(sc, NULL);
   3475 
   3476 	/* Advance the timer back-off. */
   3477 	sc->sc_rxtshift++;
   3478 	SYN_CACHE_TIMER_ARM(sc);
   3479 
   3480 	splx(s);
   3481 	return;
   3482 
   3483  dropit:
   3484 	tcpstat.tcps_sc_timed_out++;
   3485 	syn_cache_rm(sc);
   3486 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   3487 	splx(s);
   3488 }
   3489 
   3490 /*
   3491  * Remove syn cache created by the specified tcb entry,
   3492  * because this does not make sense to keep them
   3493  * (if there's no tcb entry, syn cache entry will never be used)
   3494  */
   3495 void
   3496 syn_cache_cleanup(struct tcpcb *tp)
   3497 {
   3498 	struct syn_cache *sc, *nsc;
   3499 	int s;
   3500 
   3501 	s = splsoftnet();
   3502 
   3503 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3504 		nsc = LIST_NEXT(sc, sc_tpq);
   3505 
   3506 #ifdef DIAGNOSTIC
   3507 		if (sc->sc_tp != tp)
   3508 			panic("invalid sc_tp in syn_cache_cleanup");
   3509 #endif
   3510 		syn_cache_rm(sc);
   3511 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3512 	}
   3513 	/* just for safety */
   3514 	LIST_INIT(&tp->t_sc);
   3515 
   3516 	splx(s);
   3517 }
   3518 
   3519 /*
   3520  * Find an entry in the syn cache.
   3521  */
   3522 struct syn_cache *
   3523 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3524     struct syn_cache_head **headp)
   3525 {
   3526 	struct syn_cache *sc;
   3527 	struct syn_cache_head *scp;
   3528 	u_int32_t hash;
   3529 	int s;
   3530 
   3531 	SYN_HASHALL(hash, src, dst);
   3532 
   3533 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3534 	*headp = scp;
   3535 	s = splsoftnet();
   3536 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3537 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3538 		if (sc->sc_hash != hash)
   3539 			continue;
   3540 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3541 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3542 			splx(s);
   3543 			return (sc);
   3544 		}
   3545 	}
   3546 	splx(s);
   3547 	return (NULL);
   3548 }
   3549 
   3550 /*
   3551  * This function gets called when we receive an ACK for a
   3552  * socket in the LISTEN state.  We look up the connection
   3553  * in the syn cache, and if its there, we pull it out of
   3554  * the cache and turn it into a full-blown connection in
   3555  * the SYN-RECEIVED state.
   3556  *
   3557  * The return values may not be immediately obvious, and their effects
   3558  * can be subtle, so here they are:
   3559  *
   3560  *	NULL	SYN was not found in cache; caller should drop the
   3561  *		packet and send an RST.
   3562  *
   3563  *	-1	We were unable to create the new connection, and are
   3564  *		aborting it.  An ACK,RST is being sent to the peer
   3565  *		(unless we got screwey sequence numbners; see below),
   3566  *		because the 3-way handshake has been completed.  Caller
   3567  *		should not free the mbuf, since we may be using it.  If
   3568  *		we are not, we will free it.
   3569  *
   3570  *	Otherwise, the return value is a pointer to the new socket
   3571  *	associated with the connection.
   3572  */
   3573 struct socket *
   3574 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3575     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3576     struct socket *so, struct mbuf *m)
   3577 {
   3578 	struct syn_cache *sc;
   3579 	struct syn_cache_head *scp;
   3580 	struct inpcb *inp = NULL;
   3581 #ifdef INET6
   3582 	struct in6pcb *in6p = NULL;
   3583 #endif
   3584 	struct tcpcb *tp = 0;
   3585 	struct mbuf *am;
   3586 	int s;
   3587 	struct socket *oso;
   3588 
   3589 	s = splsoftnet();
   3590 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3591 		splx(s);
   3592 		return (NULL);
   3593 	}
   3594 
   3595 	/*
   3596 	 * Verify the sequence and ack numbers.  Try getting the correct
   3597 	 * response again.
   3598 	 */
   3599 	if ((th->th_ack != sc->sc_iss + 1) ||
   3600 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3601 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3602 		(void) syn_cache_respond(sc, m);
   3603 		splx(s);
   3604 		return ((struct socket *)(-1));
   3605 	}
   3606 
   3607 	/* Remove this cache entry */
   3608 	syn_cache_rm(sc);
   3609 	splx(s);
   3610 
   3611 	/*
   3612 	 * Ok, create the full blown connection, and set things up
   3613 	 * as they would have been set up if we had created the
   3614 	 * connection when the SYN arrived.  If we can't create
   3615 	 * the connection, abort it.
   3616 	 */
   3617 	/*
   3618 	 * inp still has the OLD in_pcb stuff, set the
   3619 	 * v6-related flags on the new guy, too.   This is
   3620 	 * done particularly for the case where an AF_INET6
   3621 	 * socket is bound only to a port, and a v4 connection
   3622 	 * comes in on that port.
   3623 	 * we also copy the flowinfo from the original pcb
   3624 	 * to the new one.
   3625 	 */
   3626 	oso = so;
   3627 	so = sonewconn(so, SS_ISCONNECTED);
   3628 	if (so == NULL)
   3629 		goto resetandabort;
   3630 
   3631 	switch (so->so_proto->pr_domain->dom_family) {
   3632 #ifdef INET
   3633 	case AF_INET:
   3634 		inp = sotoinpcb(so);
   3635 		break;
   3636 #endif
   3637 #ifdef INET6
   3638 	case AF_INET6:
   3639 		in6p = sotoin6pcb(so);
   3640 		break;
   3641 #endif
   3642 	}
   3643 	switch (src->sa_family) {
   3644 #ifdef INET
   3645 	case AF_INET:
   3646 		if (inp) {
   3647 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3648 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3649 			inp->inp_options = ip_srcroute();
   3650 			in_pcbstate(inp, INP_BOUND);
   3651 			if (inp->inp_options == NULL) {
   3652 				inp->inp_options = sc->sc_ipopts;
   3653 				sc->sc_ipopts = NULL;
   3654 			}
   3655 		}
   3656 #ifdef INET6
   3657 		else if (in6p) {
   3658 			/* IPv4 packet to AF_INET6 socket */
   3659 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3660 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3661 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3662 				&in6p->in6p_laddr.s6_addr32[3],
   3663 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3664 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3665 			in6totcpcb(in6p)->t_family = AF_INET;
   3666 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3667 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3668 			else
   3669 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3670 			in6_pcbstate(in6p, IN6P_BOUND);
   3671 		}
   3672 #endif
   3673 		break;
   3674 #endif
   3675 #ifdef INET6
   3676 	case AF_INET6:
   3677 		if (in6p) {
   3678 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3679 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3680 			in6_pcbstate(in6p, IN6P_BOUND);
   3681 		}
   3682 		break;
   3683 #endif
   3684 	}
   3685 #ifdef INET6
   3686 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3687 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3688 		/* inherit socket options from the listening socket */
   3689 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3690 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3691 			m_freem(in6p->in6p_options);
   3692 			in6p->in6p_options = 0;
   3693 		}
   3694 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3695 			mtod(m, struct ip6_hdr *), m);
   3696 	}
   3697 #endif
   3698 
   3699 #if defined(IPSEC) || defined(FAST_IPSEC)
   3700 	/*
   3701 	 * we make a copy of policy, instead of sharing the policy,
   3702 	 * for better behavior in terms of SA lookup and dead SA removal.
   3703 	 */
   3704 	if (inp) {
   3705 		/* copy old policy into new socket's */
   3706 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3707 			printf("tcp_input: could not copy policy\n");
   3708 	}
   3709 #ifdef INET6
   3710 	else if (in6p) {
   3711 		/* copy old policy into new socket's */
   3712 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3713 		    in6p->in6p_sp))
   3714 			printf("tcp_input: could not copy policy\n");
   3715 	}
   3716 #endif
   3717 #endif
   3718 
   3719 	/*
   3720 	 * Give the new socket our cached route reference.
   3721 	 */
   3722 	if (inp) {
   3723 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   3724 		rtcache_free(&sc->sc_route);
   3725 	}
   3726 #ifdef INET6
   3727 	else {
   3728 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   3729 		rtcache_free(&sc->sc_route);
   3730 	}
   3731 #endif
   3732 
   3733 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3734 	if (am == NULL)
   3735 		goto resetandabort;
   3736 	MCLAIM(am, &tcp_mowner);
   3737 	am->m_len = src->sa_len;
   3738 	bcopy(src, mtod(am, void *), src->sa_len);
   3739 	if (inp) {
   3740 		if (in_pcbconnect(inp, am, &lwp0)) {
   3741 			(void) m_free(am);
   3742 			goto resetandabort;
   3743 		}
   3744 	}
   3745 #ifdef INET6
   3746 	else if (in6p) {
   3747 		if (src->sa_family == AF_INET) {
   3748 			/* IPv4 packet to AF_INET6 socket */
   3749 			struct sockaddr_in6 *sin6;
   3750 			sin6 = mtod(am, struct sockaddr_in6 *);
   3751 			am->m_len = sizeof(*sin6);
   3752 			bzero(sin6, sizeof(*sin6));
   3753 			sin6->sin6_family = AF_INET6;
   3754 			sin6->sin6_len = sizeof(*sin6);
   3755 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3756 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3757 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3758 				&sin6->sin6_addr.s6_addr32[3],
   3759 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3760 		}
   3761 		if (in6_pcbconnect(in6p, am, NULL)) {
   3762 			(void) m_free(am);
   3763 			goto resetandabort;
   3764 		}
   3765 	}
   3766 #endif
   3767 	else {
   3768 		(void) m_free(am);
   3769 		goto resetandabort;
   3770 	}
   3771 	(void) m_free(am);
   3772 
   3773 	if (inp)
   3774 		tp = intotcpcb(inp);
   3775 #ifdef INET6
   3776 	else if (in6p)
   3777 		tp = in6totcpcb(in6p);
   3778 #endif
   3779 	else
   3780 		tp = NULL;
   3781 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3782 	if (sc->sc_request_r_scale != 15) {
   3783 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3784 		tp->request_r_scale = sc->sc_request_r_scale;
   3785 		tp->snd_scale = sc->sc_requested_s_scale;
   3786 		tp->rcv_scale = sc->sc_request_r_scale;
   3787 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3788 	}
   3789 	if (sc->sc_flags & SCF_TIMESTAMP)
   3790 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3791 	tp->ts_timebase = sc->sc_timebase;
   3792 
   3793 	tp->t_template = tcp_template(tp);
   3794 	if (tp->t_template == 0) {
   3795 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3796 		so = NULL;
   3797 		m_freem(m);
   3798 		goto abort;
   3799 	}
   3800 
   3801 	tp->iss = sc->sc_iss;
   3802 	tp->irs = sc->sc_irs;
   3803 	tcp_sendseqinit(tp);
   3804 	tcp_rcvseqinit(tp);
   3805 	tp->t_state = TCPS_SYN_RECEIVED;
   3806 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   3807 	tcpstat.tcps_accepts++;
   3808 
   3809 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3810 		tp->t_flags |= TF_WILL_SACK;
   3811 
   3812 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   3813 		tp->t_flags |= TF_ECN_PERMIT;
   3814 
   3815 #ifdef TCP_SIGNATURE
   3816 	if (sc->sc_flags & SCF_SIGNATURE)
   3817 		tp->t_flags |= TF_SIGNATURE;
   3818 #endif
   3819 
   3820 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3821 	tp->t_ourmss = sc->sc_ourmaxseg;
   3822 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3823 
   3824 	/*
   3825 	 * Initialize the initial congestion window.  If we
   3826 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3827 	 * to 1 segment (i.e. the Loss Window).
   3828 	 */
   3829 	if (sc->sc_rxtshift)
   3830 		tp->snd_cwnd = tp->t_peermss;
   3831 	else {
   3832 		int ss = tcp_init_win;
   3833 #ifdef INET
   3834 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3835 			ss = tcp_init_win_local;
   3836 #endif
   3837 #ifdef INET6
   3838 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3839 			ss = tcp_init_win_local;
   3840 #endif
   3841 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3842 	}
   3843 
   3844 	tcp_rmx_rtt(tp);
   3845 	tp->snd_wl1 = sc->sc_irs;
   3846 	tp->rcv_up = sc->sc_irs + 1;
   3847 
   3848 	/*
   3849 	 * This is what whould have happened in tcp_output() when
   3850 	 * the SYN,ACK was sent.
   3851 	 */
   3852 	tp->snd_up = tp->snd_una;
   3853 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3854 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3855 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3856 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3857 	tp->last_ack_sent = tp->rcv_nxt;
   3858 	tp->t_partialacks = -1;
   3859 	tp->t_dupacks = 0;
   3860 
   3861 	tcpstat.tcps_sc_completed++;
   3862 	s = splsoftnet();
   3863 	syn_cache_put(sc);
   3864 	splx(s);
   3865 	return (so);
   3866 
   3867 resetandabort:
   3868 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3869 abort:
   3870 	if (so != NULL)
   3871 		(void) soabort(so);
   3872 	s = splsoftnet();
   3873 	syn_cache_put(sc);
   3874 	splx(s);
   3875 	tcpstat.tcps_sc_aborted++;
   3876 	return ((struct socket *)(-1));
   3877 }
   3878 
   3879 /*
   3880  * This function is called when we get a RST for a
   3881  * non-existent connection, so that we can see if the
   3882  * connection is in the syn cache.  If it is, zap it.
   3883  */
   3884 
   3885 void
   3886 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   3887 {
   3888 	struct syn_cache *sc;
   3889 	struct syn_cache_head *scp;
   3890 	int s = splsoftnet();
   3891 
   3892 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3893 		splx(s);
   3894 		return;
   3895 	}
   3896 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3897 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3898 		splx(s);
   3899 		return;
   3900 	}
   3901 	syn_cache_rm(sc);
   3902 	tcpstat.tcps_sc_reset++;
   3903 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   3904 	splx(s);
   3905 }
   3906 
   3907 void
   3908 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   3909     struct tcphdr *th)
   3910 {
   3911 	struct syn_cache *sc;
   3912 	struct syn_cache_head *scp;
   3913 	int s;
   3914 
   3915 	s = splsoftnet();
   3916 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3917 		splx(s);
   3918 		return;
   3919 	}
   3920 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3921 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3922 		splx(s);
   3923 		return;
   3924 	}
   3925 
   3926 	/*
   3927 	 * If we've retransmitted 3 times and this is our second error,
   3928 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3929 	 * This prevents us from incorrectly nuking an entry during a
   3930 	 * spurious network outage.
   3931 	 *
   3932 	 * See tcp_notify().
   3933 	 */
   3934 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3935 		sc->sc_flags |= SCF_UNREACH;
   3936 		splx(s);
   3937 		return;
   3938 	}
   3939 
   3940 	syn_cache_rm(sc);
   3941 	tcpstat.tcps_sc_unreach++;
   3942 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   3943 	splx(s);
   3944 }
   3945 
   3946 /*
   3947  * Given a LISTEN socket and an inbound SYN request, add
   3948  * this to the syn cache, and send back a segment:
   3949  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3950  * to the source.
   3951  *
   3952  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3953  * Doing so would require that we hold onto the data and deliver it
   3954  * to the application.  However, if we are the target of a SYN-flood
   3955  * DoS attack, an attacker could send data which would eventually
   3956  * consume all available buffer space if it were ACKed.  By not ACKing
   3957  * the data, we avoid this DoS scenario.
   3958  */
   3959 
   3960 int
   3961 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   3962     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   3963     int optlen, struct tcp_opt_info *oi)
   3964 {
   3965 	struct tcpcb tb, *tp;
   3966 	long win;
   3967 	struct syn_cache *sc;
   3968 	struct syn_cache_head *scp;
   3969 	struct mbuf *ipopts;
   3970 	struct tcp_opt_info opti;
   3971 	int s;
   3972 
   3973 	tp = sototcpcb(so);
   3974 
   3975 	bzero(&opti, sizeof(opti));
   3976 
   3977 	/*
   3978 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   3979 	 *
   3980 	 * Note this check is performed in tcp_input() very early on.
   3981 	 */
   3982 
   3983 	/*
   3984 	 * Initialize some local state.
   3985 	 */
   3986 	win = sbspace(&so->so_rcv);
   3987 	if (win > TCP_MAXWIN)
   3988 		win = TCP_MAXWIN;
   3989 
   3990 	switch (src->sa_family) {
   3991 #ifdef INET
   3992 	case AF_INET:
   3993 		/*
   3994 		 * Remember the IP options, if any.
   3995 		 */
   3996 		ipopts = ip_srcroute();
   3997 		break;
   3998 #endif
   3999 	default:
   4000 		ipopts = NULL;
   4001 	}
   4002 
   4003 #ifdef TCP_SIGNATURE
   4004 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4005 #else
   4006 	if (optp)
   4007 #endif
   4008 	{
   4009 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4010 #ifdef TCP_SIGNATURE
   4011 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4012 #endif
   4013 		tb.t_state = TCPS_LISTEN;
   4014 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4015 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4016 			return (0);
   4017 	} else
   4018 		tb.t_flags = 0;
   4019 
   4020 	/*
   4021 	 * See if we already have an entry for this connection.
   4022 	 * If we do, resend the SYN,ACK.  We do not count this
   4023 	 * as a retransmission (XXX though maybe we should).
   4024 	 */
   4025 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4026 		tcpstat.tcps_sc_dupesyn++;
   4027 		if (ipopts) {
   4028 			/*
   4029 			 * If we were remembering a previous source route,
   4030 			 * forget it and use the new one we've been given.
   4031 			 */
   4032 			if (sc->sc_ipopts)
   4033 				(void) m_free(sc->sc_ipopts);
   4034 			sc->sc_ipopts = ipopts;
   4035 		}
   4036 		sc->sc_timestamp = tb.ts_recent;
   4037 		if (syn_cache_respond(sc, m) == 0) {
   4038 			tcpstat.tcps_sndacks++;
   4039 			tcpstat.tcps_sndtotal++;
   4040 		}
   4041 		return (1);
   4042 	}
   4043 
   4044 	s = splsoftnet();
   4045 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4046 	splx(s);
   4047 	if (sc == NULL) {
   4048 		if (ipopts)
   4049 			(void) m_free(ipopts);
   4050 		return (0);
   4051 	}
   4052 
   4053 	/*
   4054 	 * Fill in the cache, and put the necessary IP and TCP
   4055 	 * options into the reply.
   4056 	 */
   4057 	bzero(sc, sizeof(struct syn_cache));
   4058 	callout_init(&sc->sc_timer, 0);
   4059 	bcopy(src, &sc->sc_src, src->sa_len);
   4060 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4061 	sc->sc_flags = 0;
   4062 	sc->sc_ipopts = ipopts;
   4063 	sc->sc_irs = th->th_seq;
   4064 	switch (src->sa_family) {
   4065 #ifdef INET
   4066 	case AF_INET:
   4067 	    {
   4068 		struct sockaddr_in *srcin = (void *) src;
   4069 		struct sockaddr_in *dstin = (void *) dst;
   4070 
   4071 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4072 		    &srcin->sin_addr, dstin->sin_port,
   4073 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4074 		break;
   4075 	    }
   4076 #endif /* INET */
   4077 #ifdef INET6
   4078 	case AF_INET6:
   4079 	    {
   4080 		struct sockaddr_in6 *srcin6 = (void *) src;
   4081 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4082 
   4083 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4084 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4085 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4086 		break;
   4087 	    }
   4088 #endif /* INET6 */
   4089 	}
   4090 	sc->sc_peermaxseg = oi->maxseg;
   4091 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4092 						m->m_pkthdr.rcvif : NULL,
   4093 						sc->sc_src.sa.sa_family);
   4094 	sc->sc_win = win;
   4095 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4096 	sc->sc_timestamp = tb.ts_recent;
   4097 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4098 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4099 		sc->sc_flags |= SCF_TIMESTAMP;
   4100 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4101 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4102 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4103 		sc->sc_request_r_scale = 0;
   4104 		/*
   4105 		 * Pick the smallest possible scaling factor that
   4106 		 * will still allow us to scale up to sb_max.
   4107 		 *
   4108 		 * We do this because there are broken firewalls that
   4109 		 * will corrupt the window scale option, leading to
   4110 		 * the other endpoint believing that our advertised
   4111 		 * window is unscaled.  At scale factors larger than
   4112 		 * 5 the unscaled window will drop below 1500 bytes,
   4113 		 * leading to serious problems when traversing these
   4114 		 * broken firewalls.
   4115 		 *
   4116 		 * With the default sbmax of 256K, a scale factor
   4117 		 * of 3 will be chosen by this algorithm.  Those who
   4118 		 * choose a larger sbmax should watch out
   4119 		 * for the compatiblity problems mentioned above.
   4120 		 *
   4121 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4122 		 * or <SYN,ACK>) segment itself is never scaled.
   4123 		 */
   4124 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4125 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4126 			sc->sc_request_r_scale++;
   4127 	} else {
   4128 		sc->sc_requested_s_scale = 15;
   4129 		sc->sc_request_r_scale = 15;
   4130 	}
   4131 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4132 		sc->sc_flags |= SCF_SACK_PERMIT;
   4133 
   4134 	/*
   4135 	 * ECN setup packet recieved.
   4136 	 */
   4137 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4138 		sc->sc_flags |= SCF_ECN_PERMIT;
   4139 
   4140 #ifdef TCP_SIGNATURE
   4141 	if (tb.t_flags & TF_SIGNATURE)
   4142 		sc->sc_flags |= SCF_SIGNATURE;
   4143 #endif
   4144 	sc->sc_tp = tp;
   4145 	if (syn_cache_respond(sc, m) == 0) {
   4146 		syn_cache_insert(sc, tp);
   4147 		tcpstat.tcps_sndacks++;
   4148 		tcpstat.tcps_sndtotal++;
   4149 	} else {
   4150 		s = splsoftnet();
   4151 		syn_cache_put(sc);
   4152 		splx(s);
   4153 		tcpstat.tcps_sc_dropped++;
   4154 	}
   4155 	return (1);
   4156 }
   4157 
   4158 int
   4159 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4160 {
   4161 #ifdef INET6
   4162 	struct rtentry *rt;
   4163 #endif
   4164 	struct route *ro;
   4165 	u_int8_t *optp;
   4166 	int optlen, error;
   4167 	u_int16_t tlen;
   4168 	struct ip *ip = NULL;
   4169 #ifdef INET6
   4170 	struct ip6_hdr *ip6 = NULL;
   4171 #endif
   4172 	struct tcpcb *tp = NULL;
   4173 	struct tcphdr *th;
   4174 	u_int hlen;
   4175 	struct socket *so;
   4176 
   4177 	ro = &sc->sc_route;
   4178 	switch (sc->sc_src.sa.sa_family) {
   4179 	case AF_INET:
   4180 		hlen = sizeof(struct ip);
   4181 		break;
   4182 #ifdef INET6
   4183 	case AF_INET6:
   4184 		hlen = sizeof(struct ip6_hdr);
   4185 		break;
   4186 #endif
   4187 	default:
   4188 		if (m)
   4189 			m_freem(m);
   4190 		return (EAFNOSUPPORT);
   4191 	}
   4192 
   4193 	/* Compute the size of the TCP options. */
   4194 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4195 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4196 #ifdef TCP_SIGNATURE
   4197 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4198 #endif
   4199 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4200 
   4201 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4202 
   4203 	/*
   4204 	 * Create the IP+TCP header from scratch.
   4205 	 */
   4206 	if (m)
   4207 		m_freem(m);
   4208 #ifdef DIAGNOSTIC
   4209 	if (max_linkhdr + tlen > MCLBYTES)
   4210 		return (ENOBUFS);
   4211 #endif
   4212 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4213 	if (m && tlen > MHLEN) {
   4214 		MCLGET(m, M_DONTWAIT);
   4215 		if ((m->m_flags & M_EXT) == 0) {
   4216 			m_freem(m);
   4217 			m = NULL;
   4218 		}
   4219 	}
   4220 	if (m == NULL)
   4221 		return (ENOBUFS);
   4222 	MCLAIM(m, &tcp_tx_mowner);
   4223 
   4224 	/* Fixup the mbuf. */
   4225 	m->m_data += max_linkhdr;
   4226 	m->m_len = m->m_pkthdr.len = tlen;
   4227 	if (sc->sc_tp) {
   4228 		tp = sc->sc_tp;
   4229 		if (tp->t_inpcb)
   4230 			so = tp->t_inpcb->inp_socket;
   4231 #ifdef INET6
   4232 		else if (tp->t_in6pcb)
   4233 			so = tp->t_in6pcb->in6p_socket;
   4234 #endif
   4235 		else
   4236 			so = NULL;
   4237 	} else
   4238 		so = NULL;
   4239 	m->m_pkthdr.rcvif = NULL;
   4240 	memset(mtod(m, u_char *), 0, tlen);
   4241 
   4242 	switch (sc->sc_src.sa.sa_family) {
   4243 	case AF_INET:
   4244 		ip = mtod(m, struct ip *);
   4245 		ip->ip_v = 4;
   4246 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4247 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4248 		ip->ip_p = IPPROTO_TCP;
   4249 		th = (struct tcphdr *)(ip + 1);
   4250 		th->th_dport = sc->sc_src.sin.sin_port;
   4251 		th->th_sport = sc->sc_dst.sin.sin_port;
   4252 		break;
   4253 #ifdef INET6
   4254 	case AF_INET6:
   4255 		ip6 = mtod(m, struct ip6_hdr *);
   4256 		ip6->ip6_vfc = IPV6_VERSION;
   4257 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4258 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4259 		ip6->ip6_nxt = IPPROTO_TCP;
   4260 		/* ip6_plen will be updated in ip6_output() */
   4261 		th = (struct tcphdr *)(ip6 + 1);
   4262 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4263 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4264 		break;
   4265 #endif
   4266 	default:
   4267 		th = NULL;
   4268 	}
   4269 
   4270 	th->th_seq = htonl(sc->sc_iss);
   4271 	th->th_ack = htonl(sc->sc_irs + 1);
   4272 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4273 	th->th_flags = TH_SYN|TH_ACK;
   4274 	th->th_win = htons(sc->sc_win);
   4275 	/* th_sum already 0 */
   4276 	/* th_urp already 0 */
   4277 
   4278 	/* Tack on the TCP options. */
   4279 	optp = (u_int8_t *)(th + 1);
   4280 	*optp++ = TCPOPT_MAXSEG;
   4281 	*optp++ = 4;
   4282 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4283 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4284 
   4285 	if (sc->sc_request_r_scale != 15) {
   4286 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4287 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4288 		    sc->sc_request_r_scale);
   4289 		optp += 4;
   4290 	}
   4291 
   4292 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4293 		u_int32_t *lp = (u_int32_t *)(optp);
   4294 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4295 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4296 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4297 		*lp   = htonl(sc->sc_timestamp);
   4298 		optp += TCPOLEN_TSTAMP_APPA;
   4299 	}
   4300 
   4301 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4302 		u_int8_t *p = optp;
   4303 
   4304 		/* Let the peer know that we will SACK. */
   4305 		p[0] = TCPOPT_SACK_PERMITTED;
   4306 		p[1] = 2;
   4307 		p[2] = TCPOPT_NOP;
   4308 		p[3] = TCPOPT_NOP;
   4309 		optp += 4;
   4310 	}
   4311 
   4312 	/*
   4313 	 * Send ECN SYN-ACK setup packet.
   4314 	 * Routes can be asymetric, so, even if we receive a packet
   4315 	 * with ECE and CWR set, we must not assume no one will block
   4316 	 * the ECE packet we are about to send.
   4317 	 */
   4318 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4319 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4320 		th->th_flags |= TH_ECE;
   4321 		tcpstat.tcps_ecn_shs++;
   4322 
   4323 		/*
   4324 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4325 		 *
   4326 		 * "[...] a TCP node MAY respond to an ECN-setup
   4327 		 * SYN packet by setting ECT in the responding
   4328 		 * ECN-setup SYN/ACK packet, indicating to routers
   4329 		 * that the SYN/ACK packet is ECN-Capable.
   4330 		 * This allows a congested router along the path
   4331 		 * to mark the packet instead of dropping the
   4332 		 * packet as an indication of congestion."
   4333 		 *
   4334 		 * "[...] There can be a great benefit in setting
   4335 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4336 		 * Congestion is  most likely to occur in
   4337 		 * the server-to-client direction.  As a result,
   4338 		 * setting an ECN-capable codepoint in SYN/ACK
   4339 		 * packets can reduce the occurence of three-second
   4340 		 * retransmit timeouts resulting from the drop
   4341 		 * of SYN/ACK packets."
   4342 		 *
   4343 		 * Page 4 and 6, January 2006.
   4344 		 */
   4345 
   4346 		switch (sc->sc_src.sa.sa_family) {
   4347 #ifdef INET
   4348 		case AF_INET:
   4349 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4350 			break;
   4351 #endif
   4352 #ifdef INET6
   4353 		case AF_INET6:
   4354 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4355 			break;
   4356 #endif
   4357 		}
   4358 		tcpstat.tcps_ecn_ect++;
   4359 	}
   4360 
   4361 #ifdef TCP_SIGNATURE
   4362 	if (sc->sc_flags & SCF_SIGNATURE) {
   4363 		struct secasvar *sav;
   4364 		u_int8_t *sigp;
   4365 
   4366 		sav = tcp_signature_getsav(m, th);
   4367 
   4368 		if (sav == NULL) {
   4369 			if (m)
   4370 				m_freem(m);
   4371 			return (EPERM);
   4372 		}
   4373 
   4374 		*optp++ = TCPOPT_SIGNATURE;
   4375 		*optp++ = TCPOLEN_SIGNATURE;
   4376 		sigp = optp;
   4377 		bzero(optp, TCP_SIGLEN);
   4378 		optp += TCP_SIGLEN;
   4379 		*optp++ = TCPOPT_NOP;
   4380 		*optp++ = TCPOPT_EOL;
   4381 
   4382 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4383 
   4384 		key_sa_recordxfer(sav, m);
   4385 #ifdef FAST_IPSEC
   4386 		KEY_FREESAV(&sav);
   4387 #else
   4388 		key_freesav(sav);
   4389 #endif
   4390 	}
   4391 #endif
   4392 
   4393 	/* Compute the packet's checksum. */
   4394 	switch (sc->sc_src.sa.sa_family) {
   4395 	case AF_INET:
   4396 		ip->ip_len = htons(tlen - hlen);
   4397 		th->th_sum = 0;
   4398 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4399 		break;
   4400 #ifdef INET6
   4401 	case AF_INET6:
   4402 		ip6->ip6_plen = htons(tlen - hlen);
   4403 		th->th_sum = 0;
   4404 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4405 		break;
   4406 #endif
   4407 	}
   4408 
   4409 	/*
   4410 	 * Fill in some straggling IP bits.  Note the stack expects
   4411 	 * ip_len to be in host order, for convenience.
   4412 	 */
   4413 	switch (sc->sc_src.sa.sa_family) {
   4414 #ifdef INET
   4415 	case AF_INET:
   4416 		ip->ip_len = htons(tlen);
   4417 		ip->ip_ttl = ip_defttl;
   4418 		/* XXX tos? */
   4419 		break;
   4420 #endif
   4421 #ifdef INET6
   4422 	case AF_INET6:
   4423 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4424 		ip6->ip6_vfc |= IPV6_VERSION;
   4425 		ip6->ip6_plen = htons(tlen - hlen);
   4426 		/* ip6_hlim will be initialized afterwards */
   4427 		/* XXX flowlabel? */
   4428 		break;
   4429 #endif
   4430 	}
   4431 
   4432 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4433 	tp = sc->sc_tp;
   4434 
   4435 	switch (sc->sc_src.sa.sa_family) {
   4436 #ifdef INET
   4437 	case AF_INET:
   4438 		error = ip_output(m, sc->sc_ipopts, ro,
   4439 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4440 		    (struct ip_moptions *)NULL, so);
   4441 		break;
   4442 #endif
   4443 #ifdef INET6
   4444 	case AF_INET6:
   4445 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4446 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
   4447 				                                    : NULL);
   4448 
   4449 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4450 		break;
   4451 #endif
   4452 	default:
   4453 		error = EAFNOSUPPORT;
   4454 		break;
   4455 	}
   4456 	return (error);
   4457 }
   4458