tcp_input.c revision 1.284 1 /* $NetBSD: tcp_input.c,v 1.284 2008/04/12 05:58:22 thorpej Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 * 3. All advertising materials mentioning features or use of this software
93 * must display the following acknowledgement:
94 * This product includes software developed by the NetBSD
95 * Foundation, Inc. and its contributors.
96 * 4. Neither the name of The NetBSD Foundation nor the names of its
97 * contributors may be used to endorse or promote products derived
98 * from this software without specific prior written permission.
99 *
100 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
101 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
102 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
103 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
104 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
105 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
106 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
107 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
108 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
109 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
110 * POSSIBILITY OF SUCH DAMAGE.
111 */
112
113 /*
114 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
115 * The Regents of the University of California. All rights reserved.
116 *
117 * Redistribution and use in source and binary forms, with or without
118 * modification, are permitted provided that the following conditions
119 * are met:
120 * 1. Redistributions of source code must retain the above copyright
121 * notice, this list of conditions and the following disclaimer.
122 * 2. Redistributions in binary form must reproduce the above copyright
123 * notice, this list of conditions and the following disclaimer in the
124 * documentation and/or other materials provided with the distribution.
125 * 3. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.284 2008/04/12 05:58:22 thorpej Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 #ifdef TCP_SIGNATURE
175 #include <sys/md5.h>
176 #endif
177 #include <sys/lwp.h> /* for lwp0 */
178
179 #include <net/if.h>
180 #include <net/route.h>
181 #include <net/if_types.h>
182
183 #include <netinet/in.h>
184 #include <netinet/in_systm.h>
185 #include <netinet/ip.h>
186 #include <netinet/in_pcb.h>
187 #include <netinet/in_var.h>
188 #include <netinet/ip_var.h>
189 #include <netinet/in_offload.h>
190
191 #ifdef INET6
192 #ifndef INET
193 #include <netinet/in.h>
194 #endif
195 #include <netinet/ip6.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_pcb.h>
198 #include <netinet6/ip6_var.h>
199 #include <netinet6/in6_var.h>
200 #include <netinet/icmp6.h>
201 #include <netinet6/nd6.h>
202 #ifdef TCP_SIGNATURE
203 #include <netinet6/scope6_var.h>
204 #endif
205 #endif
206
207 #ifndef INET6
208 /* always need ip6.h for IP6_EXTHDR_GET */
209 #include <netinet/ip6.h>
210 #endif
211
212 #include <netinet/tcp.h>
213 #include <netinet/tcp_fsm.h>
214 #include <netinet/tcp_seq.h>
215 #include <netinet/tcp_timer.h>
216 #include <netinet/tcp_var.h>
217 #include <netinet/tcp_private.h>
218 #include <netinet/tcpip.h>
219 #include <netinet/tcp_congctl.h>
220 #include <netinet/tcp_debug.h>
221
222 #include <machine/stdarg.h>
223
224 #ifdef IPSEC
225 #include <netinet6/ipsec.h>
226 #include <netkey/key.h>
227 #endif /*IPSEC*/
228 #ifdef INET6
229 #include "faith.h"
230 #if defined(NFAITH) && NFAITH > 0
231 #include <net/if_faith.h>
232 #endif
233 #endif /* IPSEC */
234
235 #ifdef FAST_IPSEC
236 #include <netipsec/ipsec.h>
237 #include <netipsec/ipsec_var.h> /* XXX ipsecstat namespace */
238 #include <netipsec/key.h>
239 #ifdef INET6
240 #include <netipsec/ipsec6.h>
241 #endif
242 #endif /* FAST_IPSEC*/
243
244 int tcprexmtthresh = 3;
245 int tcp_log_refused;
246
247 int tcp_do_autorcvbuf = 0;
248 int tcp_autorcvbuf_inc = 16 * 1024;
249 int tcp_autorcvbuf_max = 256 * 1024;
250
251 static int tcp_rst_ppslim_count = 0;
252 static struct timeval tcp_rst_ppslim_last;
253 static int tcp_ackdrop_ppslim_count = 0;
254 static struct timeval tcp_ackdrop_ppslim_last;
255
256 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
257
258 /* for modulo comparisons of timestamps */
259 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
260 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
261
262 /*
263 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
264 */
265 #ifdef INET6
266 static inline void
267 nd6_hint(struct tcpcb *tp)
268 {
269 struct rtentry *rt;
270
271 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
272 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
273 nd6_nud_hint(rt, NULL, 0);
274 }
275 #else
276 static inline void
277 nd6_hint(struct tcpcb *tp)
278 {
279 }
280 #endif
281
282 /*
283 * Compute ACK transmission behavior. Delay the ACK unless
284 * we have already delayed an ACK (must send an ACK every two segments).
285 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
286 * option is enabled.
287 */
288 static void
289 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
290 {
291
292 if (tp->t_flags & TF_DELACK ||
293 (tcp_ack_on_push && th->th_flags & TH_PUSH))
294 tp->t_flags |= TF_ACKNOW;
295 else
296 TCP_SET_DELACK(tp);
297 }
298
299 static void
300 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
301 {
302
303 /*
304 * If we had a pending ICMP message that refers to data that have
305 * just been acknowledged, disregard the recorded ICMP message.
306 */
307 if ((tp->t_flags & TF_PMTUD_PEND) &&
308 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
309 tp->t_flags &= ~TF_PMTUD_PEND;
310
311 /*
312 * Keep track of the largest chunk of data
313 * acknowledged since last PMTU update
314 */
315 if (tp->t_pmtud_mss_acked < acked)
316 tp->t_pmtud_mss_acked = acked;
317 }
318
319 /*
320 * Convert TCP protocol fields to host order for easier processing.
321 */
322 static void
323 tcp_fields_to_host(struct tcphdr *th)
324 {
325
326 NTOHL(th->th_seq);
327 NTOHL(th->th_ack);
328 NTOHS(th->th_win);
329 NTOHS(th->th_urp);
330 }
331
332 /*
333 * ... and reverse the above.
334 */
335 static void
336 tcp_fields_to_net(struct tcphdr *th)
337 {
338
339 HTONL(th->th_seq);
340 HTONL(th->th_ack);
341 HTONS(th->th_win);
342 HTONS(th->th_urp);
343 }
344
345 #ifdef TCP_CSUM_COUNTERS
346 #include <sys/device.h>
347
348 #if defined(INET)
349 extern struct evcnt tcp_hwcsum_ok;
350 extern struct evcnt tcp_hwcsum_bad;
351 extern struct evcnt tcp_hwcsum_data;
352 extern struct evcnt tcp_swcsum;
353 #endif /* defined(INET) */
354 #if defined(INET6)
355 extern struct evcnt tcp6_hwcsum_ok;
356 extern struct evcnt tcp6_hwcsum_bad;
357 extern struct evcnt tcp6_hwcsum_data;
358 extern struct evcnt tcp6_swcsum;
359 #endif /* defined(INET6) */
360
361 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
362
363 #else
364
365 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
366
367 #endif /* TCP_CSUM_COUNTERS */
368
369 #ifdef TCP_REASS_COUNTERS
370 #include <sys/device.h>
371
372 extern struct evcnt tcp_reass_;
373 extern struct evcnt tcp_reass_empty;
374 extern struct evcnt tcp_reass_iteration[8];
375 extern struct evcnt tcp_reass_prependfirst;
376 extern struct evcnt tcp_reass_prepend;
377 extern struct evcnt tcp_reass_insert;
378 extern struct evcnt tcp_reass_inserttail;
379 extern struct evcnt tcp_reass_append;
380 extern struct evcnt tcp_reass_appendtail;
381 extern struct evcnt tcp_reass_overlaptail;
382 extern struct evcnt tcp_reass_overlapfront;
383 extern struct evcnt tcp_reass_segdup;
384 extern struct evcnt tcp_reass_fragdup;
385
386 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
387
388 #else
389
390 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
391
392 #endif /* TCP_REASS_COUNTERS */
393
394 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
395 int *);
396 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
397 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
398
399 #ifdef INET
400 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
401 #endif
402 #ifdef INET6
403 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
404 #endif
405
406 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
407
408 #if defined(MBUFTRACE)
409 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
410 #endif /* defined(MBUFTRACE) */
411
412 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
413 NULL, IPL_VM);
414
415 struct ipqent *
416 tcpipqent_alloc(void)
417 {
418 struct ipqent *ipqe;
419 int s;
420
421 s = splvm();
422 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
423 splx(s);
424
425 return ipqe;
426 }
427
428 void
429 tcpipqent_free(struct ipqent *ipqe)
430 {
431 int s;
432
433 s = splvm();
434 pool_put(&tcpipqent_pool, ipqe);
435 splx(s);
436 }
437
438 static int
439 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
440 {
441 struct ipqent *p, *q, *nq, *tiqe = NULL;
442 struct socket *so = NULL;
443 int pkt_flags;
444 tcp_seq pkt_seq;
445 unsigned pkt_len;
446 u_long rcvpartdupbyte = 0;
447 u_long rcvoobyte;
448 #ifdef TCP_REASS_COUNTERS
449 u_int count = 0;
450 #endif
451 uint64_t *tcps;
452
453 if (tp->t_inpcb)
454 so = tp->t_inpcb->inp_socket;
455 #ifdef INET6
456 else if (tp->t_in6pcb)
457 so = tp->t_in6pcb->in6p_socket;
458 #endif
459
460 TCP_REASS_LOCK_CHECK(tp);
461
462 /*
463 * Call with th==0 after become established to
464 * force pre-ESTABLISHED data up to user socket.
465 */
466 if (th == 0)
467 goto present;
468
469 m_claimm(m, &tcp_reass_mowner);
470
471 rcvoobyte = *tlen;
472 /*
473 * Copy these to local variables because the tcpiphdr
474 * gets munged while we are collapsing mbufs.
475 */
476 pkt_seq = th->th_seq;
477 pkt_len = *tlen;
478 pkt_flags = th->th_flags;
479
480 TCP_REASS_COUNTER_INCR(&tcp_reass_);
481
482 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
483 /*
484 * When we miss a packet, the vast majority of time we get
485 * packets that follow it in order. So optimize for that.
486 */
487 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
488 p->ipqe_len += pkt_len;
489 p->ipqe_flags |= pkt_flags;
490 m_cat(p->ipre_mlast, m);
491 TRAVERSE(p->ipre_mlast);
492 m = NULL;
493 tiqe = p;
494 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
495 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
496 goto skip_replacement;
497 }
498 /*
499 * While we're here, if the pkt is completely beyond
500 * anything we have, just insert it at the tail.
501 */
502 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
503 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
504 goto insert_it;
505 }
506 }
507
508 q = TAILQ_FIRST(&tp->segq);
509
510 if (q != NULL) {
511 /*
512 * If this segment immediately precedes the first out-of-order
513 * block, simply slap the segment in front of it and (mostly)
514 * skip the complicated logic.
515 */
516 if (pkt_seq + pkt_len == q->ipqe_seq) {
517 q->ipqe_seq = pkt_seq;
518 q->ipqe_len += pkt_len;
519 q->ipqe_flags |= pkt_flags;
520 m_cat(m, q->ipqe_m);
521 q->ipqe_m = m;
522 q->ipre_mlast = m; /* last mbuf may have changed */
523 TRAVERSE(q->ipre_mlast);
524 tiqe = q;
525 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
526 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
527 goto skip_replacement;
528 }
529 } else {
530 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
531 }
532
533 /*
534 * Find a segment which begins after this one does.
535 */
536 for (p = NULL; q != NULL; q = nq) {
537 nq = TAILQ_NEXT(q, ipqe_q);
538 #ifdef TCP_REASS_COUNTERS
539 count++;
540 #endif
541 /*
542 * If the received segment is just right after this
543 * fragment, merge the two together and then check
544 * for further overlaps.
545 */
546 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
547 #ifdef TCPREASS_DEBUG
548 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
549 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
550 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
551 #endif
552 pkt_len += q->ipqe_len;
553 pkt_flags |= q->ipqe_flags;
554 pkt_seq = q->ipqe_seq;
555 m_cat(q->ipre_mlast, m);
556 TRAVERSE(q->ipre_mlast);
557 m = q->ipqe_m;
558 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
559 goto free_ipqe;
560 }
561 /*
562 * If the received segment is completely past this
563 * fragment, we need to go the next fragment.
564 */
565 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
566 p = q;
567 continue;
568 }
569 /*
570 * If the fragment is past the received segment,
571 * it (or any following) can't be concatenated.
572 */
573 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
574 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
575 break;
576 }
577
578 /*
579 * We've received all the data in this segment before.
580 * mark it as a duplicate and return.
581 */
582 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
583 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
584 tcps = TCP_STAT_GETREF();
585 tcps[TCP_STAT_RCVDUPPACK]++;
586 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
587 TCP_STAT_PUTREF();
588 tcp_new_dsack(tp, pkt_seq, pkt_len);
589 m_freem(m);
590 if (tiqe != NULL) {
591 tcpipqent_free(tiqe);
592 }
593 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
594 return (0);
595 }
596 /*
597 * Received segment completely overlaps this fragment
598 * so we drop the fragment (this keeps the temporal
599 * ordering of segments correct).
600 */
601 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
602 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
603 rcvpartdupbyte += q->ipqe_len;
604 m_freem(q->ipqe_m);
605 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
606 goto free_ipqe;
607 }
608 /*
609 * RX'ed segment extends past the end of the
610 * fragment. Drop the overlapping bytes. Then
611 * merge the fragment and segment then treat as
612 * a longer received packet.
613 */
614 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
615 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
616 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
617 #ifdef TCPREASS_DEBUG
618 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
619 tp, overlap,
620 pkt_seq, pkt_seq + pkt_len, pkt_len);
621 #endif
622 m_adj(m, overlap);
623 rcvpartdupbyte += overlap;
624 m_cat(q->ipre_mlast, m);
625 TRAVERSE(q->ipre_mlast);
626 m = q->ipqe_m;
627 pkt_seq = q->ipqe_seq;
628 pkt_len += q->ipqe_len - overlap;
629 rcvoobyte -= overlap;
630 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
631 goto free_ipqe;
632 }
633 /*
634 * RX'ed segment extends past the front of the
635 * fragment. Drop the overlapping bytes on the
636 * received packet. The packet will then be
637 * contatentated with this fragment a bit later.
638 */
639 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
640 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
641 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
642 #ifdef TCPREASS_DEBUG
643 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
644 tp, overlap,
645 pkt_seq, pkt_seq + pkt_len, pkt_len);
646 #endif
647 m_adj(m, -overlap);
648 pkt_len -= overlap;
649 rcvpartdupbyte += overlap;
650 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
651 rcvoobyte -= overlap;
652 }
653 /*
654 * If the received segment immediates precedes this
655 * fragment then tack the fragment onto this segment
656 * and reinsert the data.
657 */
658 if (q->ipqe_seq == pkt_seq + pkt_len) {
659 #ifdef TCPREASS_DEBUG
660 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
661 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
662 pkt_seq, pkt_seq + pkt_len, pkt_len);
663 #endif
664 pkt_len += q->ipqe_len;
665 pkt_flags |= q->ipqe_flags;
666 m_cat(m, q->ipqe_m);
667 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
668 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
669 tp->t_segqlen--;
670 KASSERT(tp->t_segqlen >= 0);
671 KASSERT(tp->t_segqlen != 0 ||
672 (TAILQ_EMPTY(&tp->segq) &&
673 TAILQ_EMPTY(&tp->timeq)));
674 if (tiqe == NULL) {
675 tiqe = q;
676 } else {
677 tcpipqent_free(q);
678 }
679 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
680 break;
681 }
682 /*
683 * If the fragment is before the segment, remember it.
684 * When this loop is terminated, p will contain the
685 * pointer to fragment that is right before the received
686 * segment.
687 */
688 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
689 p = q;
690
691 continue;
692
693 /*
694 * This is a common operation. It also will allow
695 * to save doing a malloc/free in most instances.
696 */
697 free_ipqe:
698 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
699 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
700 tp->t_segqlen--;
701 KASSERT(tp->t_segqlen >= 0);
702 KASSERT(tp->t_segqlen != 0 ||
703 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
704 if (tiqe == NULL) {
705 tiqe = q;
706 } else {
707 tcpipqent_free(q);
708 }
709 }
710
711 #ifdef TCP_REASS_COUNTERS
712 if (count > 7)
713 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
714 else if (count > 0)
715 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
716 #endif
717
718 insert_it:
719
720 /*
721 * Allocate a new queue entry since the received segment did not
722 * collapse onto any other out-of-order block; thus we are allocating
723 * a new block. If it had collapsed, tiqe would not be NULL and
724 * we would be reusing it.
725 * XXX If we can't, just drop the packet. XXX
726 */
727 if (tiqe == NULL) {
728 tiqe = tcpipqent_alloc();
729 if (tiqe == NULL) {
730 TCP_STATINC(TCP_STAT_RCVMEMDROP);
731 m_freem(m);
732 return (0);
733 }
734 }
735
736 /*
737 * Update the counters.
738 */
739 tcps = TCP_STAT_GETREF();
740 tcps[TCP_STAT_RCVOOPACK]++;
741 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
742 if (rcvpartdupbyte) {
743 tcps[TCP_STAT_RCVPARTDUPPACK]++;
744 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
745 }
746 TCP_STAT_PUTREF();
747
748 /*
749 * Insert the new fragment queue entry into both queues.
750 */
751 tiqe->ipqe_m = m;
752 tiqe->ipre_mlast = m;
753 tiqe->ipqe_seq = pkt_seq;
754 tiqe->ipqe_len = pkt_len;
755 tiqe->ipqe_flags = pkt_flags;
756 if (p == NULL) {
757 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
758 #ifdef TCPREASS_DEBUG
759 if (tiqe->ipqe_seq != tp->rcv_nxt)
760 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
761 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
762 #endif
763 } else {
764 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
765 #ifdef TCPREASS_DEBUG
766 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
767 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
768 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
769 #endif
770 }
771 tp->t_segqlen++;
772
773 skip_replacement:
774
775 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
776
777 present:
778 /*
779 * Present data to user, advancing rcv_nxt through
780 * completed sequence space.
781 */
782 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
783 return (0);
784 q = TAILQ_FIRST(&tp->segq);
785 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
786 return (0);
787 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
788 return (0);
789
790 tp->rcv_nxt += q->ipqe_len;
791 pkt_flags = q->ipqe_flags & TH_FIN;
792 nd6_hint(tp);
793
794 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
795 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
796 tp->t_segqlen--;
797 KASSERT(tp->t_segqlen >= 0);
798 KASSERT(tp->t_segqlen != 0 ||
799 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
800 if (so->so_state & SS_CANTRCVMORE)
801 m_freem(q->ipqe_m);
802 else
803 sbappendstream(&so->so_rcv, q->ipqe_m);
804 tcpipqent_free(q);
805 sorwakeup(so);
806 return (pkt_flags);
807 }
808
809 #ifdef INET6
810 int
811 tcp6_input(struct mbuf **mp, int *offp, int proto)
812 {
813 struct mbuf *m = *mp;
814
815 /*
816 * draft-itojun-ipv6-tcp-to-anycast
817 * better place to put this in?
818 */
819 if (m->m_flags & M_ANYCAST6) {
820 struct ip6_hdr *ip6;
821 if (m->m_len < sizeof(struct ip6_hdr)) {
822 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
823 TCP_STATINC(TCP_STAT_RCVSHORT);
824 return IPPROTO_DONE;
825 }
826 }
827 ip6 = mtod(m, struct ip6_hdr *);
828 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
829 (char *)&ip6->ip6_dst - (char *)ip6);
830 return IPPROTO_DONE;
831 }
832
833 tcp_input(m, *offp, proto);
834 return IPPROTO_DONE;
835 }
836 #endif
837
838 #ifdef INET
839 static void
840 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
841 {
842 char src[4*sizeof "123"];
843 char dst[4*sizeof "123"];
844
845 if (ip) {
846 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
847 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
848 }
849 else {
850 strlcpy(src, "(unknown)", sizeof(src));
851 strlcpy(dst, "(unknown)", sizeof(dst));
852 }
853 log(LOG_INFO,
854 "Connection attempt to TCP %s:%d from %s:%d\n",
855 dst, ntohs(th->th_dport),
856 src, ntohs(th->th_sport));
857 }
858 #endif
859
860 #ifdef INET6
861 static void
862 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
863 {
864 char src[INET6_ADDRSTRLEN];
865 char dst[INET6_ADDRSTRLEN];
866
867 if (ip6) {
868 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
869 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
870 }
871 else {
872 strlcpy(src, "(unknown v6)", sizeof(src));
873 strlcpy(dst, "(unknown v6)", sizeof(dst));
874 }
875 log(LOG_INFO,
876 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
877 dst, ntohs(th->th_dport),
878 src, ntohs(th->th_sport));
879 }
880 #endif
881
882 /*
883 * Checksum extended TCP header and data.
884 */
885 int
886 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
887 int toff, int off, int tlen)
888 {
889
890 /*
891 * XXX it's better to record and check if this mbuf is
892 * already checked.
893 */
894
895 switch (af) {
896 #ifdef INET
897 case AF_INET:
898 switch (m->m_pkthdr.csum_flags &
899 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
900 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
901 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
902 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
903 goto badcsum;
904
905 case M_CSUM_TCPv4|M_CSUM_DATA: {
906 u_int32_t hw_csum = m->m_pkthdr.csum_data;
907
908 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
909 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
910 const struct ip *ip =
911 mtod(m, const struct ip *);
912
913 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
914 ip->ip_dst.s_addr,
915 htons(hw_csum + tlen + off + IPPROTO_TCP));
916 }
917 if ((hw_csum ^ 0xffff) != 0)
918 goto badcsum;
919 break;
920 }
921
922 case M_CSUM_TCPv4:
923 /* Checksum was okay. */
924 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
925 break;
926
927 default:
928 /*
929 * Must compute it ourselves. Maybe skip checksum
930 * on loopback interfaces.
931 */
932 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
933 IFF_LOOPBACK) ||
934 tcp_do_loopback_cksum)) {
935 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
936 if (in4_cksum(m, IPPROTO_TCP, toff,
937 tlen + off) != 0)
938 goto badcsum;
939 }
940 break;
941 }
942 break;
943 #endif /* INET4 */
944
945 #ifdef INET6
946 case AF_INET6:
947 switch (m->m_pkthdr.csum_flags &
948 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
949 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
950 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
951 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
952 goto badcsum;
953
954 #if 0 /* notyet */
955 case M_CSUM_TCPv6|M_CSUM_DATA:
956 #endif
957
958 case M_CSUM_TCPv6:
959 /* Checksum was okay. */
960 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
961 break;
962
963 default:
964 /*
965 * Must compute it ourselves. Maybe skip checksum
966 * on loopback interfaces.
967 */
968 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
969 tcp_do_loopback_cksum)) {
970 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
971 if (in6_cksum(m, IPPROTO_TCP, toff,
972 tlen + off) != 0)
973 goto badcsum;
974 }
975 }
976 break;
977 #endif /* INET6 */
978 }
979
980 return 0;
981
982 badcsum:
983 TCP_STATINC(TCP_STAT_RCVBADSUM);
984 return -1;
985 }
986
987 /*
988 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
989 */
990 void
991 tcp_input(struct mbuf *m, ...)
992 {
993 struct tcphdr *th;
994 struct ip *ip;
995 struct inpcb *inp;
996 #ifdef INET6
997 struct ip6_hdr *ip6;
998 struct in6pcb *in6p;
999 #endif
1000 u_int8_t *optp = NULL;
1001 int optlen = 0;
1002 int len, tlen, toff, hdroptlen = 0;
1003 struct tcpcb *tp = 0;
1004 int tiflags;
1005 struct socket *so = NULL;
1006 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1007 #ifdef TCP_DEBUG
1008 short ostate = 0;
1009 #endif
1010 u_long tiwin;
1011 struct tcp_opt_info opti;
1012 int off, iphlen;
1013 va_list ap;
1014 int af; /* af on the wire */
1015 struct mbuf *tcp_saveti = NULL;
1016 uint32_t ts_rtt;
1017 uint8_t iptos;
1018 uint64_t *tcps;
1019
1020 MCLAIM(m, &tcp_rx_mowner);
1021 va_start(ap, m);
1022 toff = va_arg(ap, int);
1023 (void)va_arg(ap, int); /* ignore value, advance ap */
1024 va_end(ap);
1025
1026 TCP_STATINC(TCP_STAT_RCVTOTAL);
1027
1028 bzero(&opti, sizeof(opti));
1029 opti.ts_present = 0;
1030 opti.maxseg = 0;
1031
1032 /*
1033 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1034 *
1035 * TCP is, by definition, unicast, so we reject all
1036 * multicast outright.
1037 *
1038 * Note, there are additional src/dst address checks in
1039 * the AF-specific code below.
1040 */
1041 if (m->m_flags & (M_BCAST|M_MCAST)) {
1042 /* XXX stat */
1043 goto drop;
1044 }
1045 #ifdef INET6
1046 if (m->m_flags & M_ANYCAST6) {
1047 /* XXX stat */
1048 goto drop;
1049 }
1050 #endif
1051
1052 /*
1053 * Get IP and TCP header.
1054 * Note: IP leaves IP header in first mbuf.
1055 */
1056 ip = mtod(m, struct ip *);
1057 #ifdef INET6
1058 ip6 = NULL;
1059 #endif
1060 switch (ip->ip_v) {
1061 #ifdef INET
1062 case 4:
1063 af = AF_INET;
1064 iphlen = sizeof(struct ip);
1065 ip = mtod(m, struct ip *);
1066 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1067 sizeof(struct tcphdr));
1068 if (th == NULL) {
1069 TCP_STATINC(TCP_STAT_RCVSHORT);
1070 return;
1071 }
1072 /* We do the checksum after PCB lookup... */
1073 len = ntohs(ip->ip_len);
1074 tlen = len - toff;
1075 iptos = ip->ip_tos;
1076 break;
1077 #endif
1078 #ifdef INET6
1079 case 6:
1080 ip = NULL;
1081 iphlen = sizeof(struct ip6_hdr);
1082 af = AF_INET6;
1083 ip6 = mtod(m, struct ip6_hdr *);
1084 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1085 sizeof(struct tcphdr));
1086 if (th == NULL) {
1087 TCP_STATINC(TCP_STAT_RCVSHORT);
1088 return;
1089 }
1090
1091 /* Be proactive about malicious use of IPv4 mapped address */
1092 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1093 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1094 /* XXX stat */
1095 goto drop;
1096 }
1097
1098 /*
1099 * Be proactive about unspecified IPv6 address in source.
1100 * As we use all-zero to indicate unbounded/unconnected pcb,
1101 * unspecified IPv6 address can be used to confuse us.
1102 *
1103 * Note that packets with unspecified IPv6 destination is
1104 * already dropped in ip6_input.
1105 */
1106 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1107 /* XXX stat */
1108 goto drop;
1109 }
1110
1111 /*
1112 * Make sure destination address is not multicast.
1113 * Source address checked in ip6_input().
1114 */
1115 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1116 /* XXX stat */
1117 goto drop;
1118 }
1119
1120 /* We do the checksum after PCB lookup... */
1121 len = m->m_pkthdr.len;
1122 tlen = len - toff;
1123 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1124 break;
1125 #endif
1126 default:
1127 m_freem(m);
1128 return;
1129 }
1130
1131 KASSERT(TCP_HDR_ALIGNED_P(th));
1132
1133 /*
1134 * Check that TCP offset makes sense,
1135 * pull out TCP options and adjust length. XXX
1136 */
1137 off = th->th_off << 2;
1138 if (off < sizeof (struct tcphdr) || off > tlen) {
1139 TCP_STATINC(TCP_STAT_RCVBADOFF);
1140 goto drop;
1141 }
1142 tlen -= off;
1143
1144 /*
1145 * tcp_input() has been modified to use tlen to mean the TCP data
1146 * length throughout the function. Other functions can use
1147 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1148 * rja
1149 */
1150
1151 if (off > sizeof (struct tcphdr)) {
1152 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1153 if (th == NULL) {
1154 TCP_STATINC(TCP_STAT_RCVSHORT);
1155 return;
1156 }
1157 /*
1158 * NOTE: ip/ip6 will not be affected by m_pulldown()
1159 * (as they're before toff) and we don't need to update those.
1160 */
1161 KASSERT(TCP_HDR_ALIGNED_P(th));
1162 optlen = off - sizeof (struct tcphdr);
1163 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1164 /*
1165 * Do quick retrieval of timestamp options ("options
1166 * prediction?"). If timestamp is the only option and it's
1167 * formatted as recommended in RFC 1323 appendix A, we
1168 * quickly get the values now and not bother calling
1169 * tcp_dooptions(), etc.
1170 */
1171 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1172 (optlen > TCPOLEN_TSTAMP_APPA &&
1173 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1174 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1175 (th->th_flags & TH_SYN) == 0) {
1176 opti.ts_present = 1;
1177 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1178 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1179 optp = NULL; /* we've parsed the options */
1180 }
1181 }
1182 tiflags = th->th_flags;
1183
1184 /*
1185 * Locate pcb for segment.
1186 */
1187 findpcb:
1188 inp = NULL;
1189 #ifdef INET6
1190 in6p = NULL;
1191 #endif
1192 switch (af) {
1193 #ifdef INET
1194 case AF_INET:
1195 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1196 ip->ip_dst, th->th_dport);
1197 if (inp == 0) {
1198 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1199 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1200 }
1201 #ifdef INET6
1202 if (inp == 0) {
1203 struct in6_addr s, d;
1204
1205 /* mapped addr case */
1206 bzero(&s, sizeof(s));
1207 s.s6_addr16[5] = htons(0xffff);
1208 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1209 bzero(&d, sizeof(d));
1210 d.s6_addr16[5] = htons(0xffff);
1211 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1212 in6p = in6_pcblookup_connect(&tcbtable, &s,
1213 th->th_sport, &d, th->th_dport, 0);
1214 if (in6p == 0) {
1215 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1216 in6p = in6_pcblookup_bind(&tcbtable, &d,
1217 th->th_dport, 0);
1218 }
1219 }
1220 #endif
1221 #ifndef INET6
1222 if (inp == 0)
1223 #else
1224 if (inp == 0 && in6p == 0)
1225 #endif
1226 {
1227 TCP_STATINC(TCP_STAT_NOPORT);
1228 if (tcp_log_refused &&
1229 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1230 tcp4_log_refused(ip, th);
1231 }
1232 tcp_fields_to_host(th);
1233 goto dropwithreset_ratelim;
1234 }
1235 #if defined(IPSEC) || defined(FAST_IPSEC)
1236 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1237 ipsec4_in_reject(m, inp)) {
1238 ipsecstat.in_polvio++;
1239 goto drop;
1240 }
1241 #ifdef INET6
1242 else if (in6p &&
1243 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1244 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1245 ipsecstat.in_polvio++;
1246 goto drop;
1247 }
1248 #endif
1249 #endif /*IPSEC*/
1250 break;
1251 #endif /*INET*/
1252 #ifdef INET6
1253 case AF_INET6:
1254 {
1255 int faith;
1256
1257 #if defined(NFAITH) && NFAITH > 0
1258 faith = faithprefix(&ip6->ip6_dst);
1259 #else
1260 faith = 0;
1261 #endif
1262 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1263 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1264 if (in6p == NULL) {
1265 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1266 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1267 th->th_dport, faith);
1268 }
1269 if (in6p == NULL) {
1270 TCP_STATINC(TCP_STAT_NOPORT);
1271 if (tcp_log_refused &&
1272 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1273 tcp6_log_refused(ip6, th);
1274 }
1275 tcp_fields_to_host(th);
1276 goto dropwithreset_ratelim;
1277 }
1278 #if defined(IPSEC) || defined(FAST_IPSEC)
1279 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1280 ipsec6_in_reject(m, in6p)) {
1281 ipsec6stat.in_polvio++;
1282 goto drop;
1283 }
1284 #endif /*IPSEC*/
1285 break;
1286 }
1287 #endif
1288 }
1289
1290 /*
1291 * If the state is CLOSED (i.e., TCB does not exist) then
1292 * all data in the incoming segment is discarded.
1293 * If the TCB exists but is in CLOSED state, it is embryonic,
1294 * but should either do a listen or a connect soon.
1295 */
1296 tp = NULL;
1297 so = NULL;
1298 if (inp) {
1299 tp = intotcpcb(inp);
1300 so = inp->inp_socket;
1301 }
1302 #ifdef INET6
1303 else if (in6p) {
1304 tp = in6totcpcb(in6p);
1305 so = in6p->in6p_socket;
1306 }
1307 #endif
1308 if (tp == 0) {
1309 tcp_fields_to_host(th);
1310 goto dropwithreset_ratelim;
1311 }
1312 if (tp->t_state == TCPS_CLOSED)
1313 goto drop;
1314
1315 /*
1316 * Checksum extended TCP header and data.
1317 */
1318 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1319 goto badcsum;
1320
1321 tcp_fields_to_host(th);
1322
1323 /* Unscale the window into a 32-bit value. */
1324 if ((tiflags & TH_SYN) == 0)
1325 tiwin = th->th_win << tp->snd_scale;
1326 else
1327 tiwin = th->th_win;
1328
1329 #ifdef INET6
1330 /* save packet options if user wanted */
1331 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1332 if (in6p->in6p_options) {
1333 m_freem(in6p->in6p_options);
1334 in6p->in6p_options = 0;
1335 }
1336 KASSERT(ip6 != NULL);
1337 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1338 }
1339 #endif
1340
1341 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1342 union syn_cache_sa src;
1343 union syn_cache_sa dst;
1344
1345 bzero(&src, sizeof(src));
1346 bzero(&dst, sizeof(dst));
1347 switch (af) {
1348 #ifdef INET
1349 case AF_INET:
1350 src.sin.sin_len = sizeof(struct sockaddr_in);
1351 src.sin.sin_family = AF_INET;
1352 src.sin.sin_addr = ip->ip_src;
1353 src.sin.sin_port = th->th_sport;
1354
1355 dst.sin.sin_len = sizeof(struct sockaddr_in);
1356 dst.sin.sin_family = AF_INET;
1357 dst.sin.sin_addr = ip->ip_dst;
1358 dst.sin.sin_port = th->th_dport;
1359 break;
1360 #endif
1361 #ifdef INET6
1362 case AF_INET6:
1363 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1364 src.sin6.sin6_family = AF_INET6;
1365 src.sin6.sin6_addr = ip6->ip6_src;
1366 src.sin6.sin6_port = th->th_sport;
1367
1368 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1369 dst.sin6.sin6_family = AF_INET6;
1370 dst.sin6.sin6_addr = ip6->ip6_dst;
1371 dst.sin6.sin6_port = th->th_dport;
1372 break;
1373 #endif /* INET6 */
1374 default:
1375 goto badsyn; /*sanity*/
1376 }
1377
1378 if (so->so_options & SO_DEBUG) {
1379 #ifdef TCP_DEBUG
1380 ostate = tp->t_state;
1381 #endif
1382
1383 tcp_saveti = NULL;
1384 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1385 goto nosave;
1386
1387 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1388 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1389 if (!tcp_saveti)
1390 goto nosave;
1391 } else {
1392 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1393 if (!tcp_saveti)
1394 goto nosave;
1395 MCLAIM(m, &tcp_mowner);
1396 tcp_saveti->m_len = iphlen;
1397 m_copydata(m, 0, iphlen,
1398 mtod(tcp_saveti, void *));
1399 }
1400
1401 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1402 m_freem(tcp_saveti);
1403 tcp_saveti = NULL;
1404 } else {
1405 tcp_saveti->m_len += sizeof(struct tcphdr);
1406 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1407 sizeof(struct tcphdr));
1408 }
1409 nosave:;
1410 }
1411 if (so->so_options & SO_ACCEPTCONN) {
1412 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1413 if (tiflags & TH_RST) {
1414 syn_cache_reset(&src.sa, &dst.sa, th);
1415 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1416 (TH_ACK|TH_SYN)) {
1417 /*
1418 * Received a SYN,ACK. This should
1419 * never happen while we are in
1420 * LISTEN. Send an RST.
1421 */
1422 goto badsyn;
1423 } else if (tiflags & TH_ACK) {
1424 so = syn_cache_get(&src.sa, &dst.sa,
1425 th, toff, tlen, so, m);
1426 if (so == NULL) {
1427 /*
1428 * We don't have a SYN for
1429 * this ACK; send an RST.
1430 */
1431 goto badsyn;
1432 } else if (so ==
1433 (struct socket *)(-1)) {
1434 /*
1435 * We were unable to create
1436 * the connection. If the
1437 * 3-way handshake was
1438 * completed, and RST has
1439 * been sent to the peer.
1440 * Since the mbuf might be
1441 * in use for the reply,
1442 * do not free it.
1443 */
1444 m = NULL;
1445 } else {
1446 /*
1447 * We have created a
1448 * full-blown connection.
1449 */
1450 tp = NULL;
1451 inp = NULL;
1452 #ifdef INET6
1453 in6p = NULL;
1454 #endif
1455 switch (so->so_proto->pr_domain->dom_family) {
1456 #ifdef INET
1457 case AF_INET:
1458 inp = sotoinpcb(so);
1459 tp = intotcpcb(inp);
1460 break;
1461 #endif
1462 #ifdef INET6
1463 case AF_INET6:
1464 in6p = sotoin6pcb(so);
1465 tp = in6totcpcb(in6p);
1466 break;
1467 #endif
1468 }
1469 if (tp == NULL)
1470 goto badsyn; /*XXX*/
1471 tiwin <<= tp->snd_scale;
1472 goto after_listen;
1473 }
1474 } else {
1475 /*
1476 * None of RST, SYN or ACK was set.
1477 * This is an invalid packet for a
1478 * TCB in LISTEN state. Send a RST.
1479 */
1480 goto badsyn;
1481 }
1482 } else {
1483 /*
1484 * Received a SYN.
1485 *
1486 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1487 */
1488 if (m->m_flags & (M_BCAST|M_MCAST))
1489 goto drop;
1490
1491 switch (af) {
1492 #ifdef INET6
1493 case AF_INET6:
1494 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1495 goto drop;
1496 break;
1497 #endif /* INET6 */
1498 case AF_INET:
1499 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1500 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1501 goto drop;
1502 break;
1503 }
1504
1505 #ifdef INET6
1506 /*
1507 * If deprecated address is forbidden, we do
1508 * not accept SYN to deprecated interface
1509 * address to prevent any new inbound
1510 * connection from getting established.
1511 * When we do not accept SYN, we send a TCP
1512 * RST, with deprecated source address (instead
1513 * of dropping it). We compromise it as it is
1514 * much better for peer to send a RST, and
1515 * RST will be the final packet for the
1516 * exchange.
1517 *
1518 * If we do not forbid deprecated addresses, we
1519 * accept the SYN packet. RFC2462 does not
1520 * suggest dropping SYN in this case.
1521 * If we decipher RFC2462 5.5.4, it says like
1522 * this:
1523 * 1. use of deprecated addr with existing
1524 * communication is okay - "SHOULD continue
1525 * to be used"
1526 * 2. use of it with new communication:
1527 * (2a) "SHOULD NOT be used if alternate
1528 * address with sufficient scope is
1529 * available"
1530 * (2b) nothing mentioned otherwise.
1531 * Here we fall into (2b) case as we have no
1532 * choice in our source address selection - we
1533 * must obey the peer.
1534 *
1535 * The wording in RFC2462 is confusing, and
1536 * there are multiple description text for
1537 * deprecated address handling - worse, they
1538 * are not exactly the same. I believe 5.5.4
1539 * is the best one, so we follow 5.5.4.
1540 */
1541 if (af == AF_INET6 && !ip6_use_deprecated) {
1542 struct in6_ifaddr *ia6;
1543 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1544 &ip6->ip6_dst)) &&
1545 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1546 tp = NULL;
1547 goto dropwithreset;
1548 }
1549 }
1550 #endif
1551
1552 #if defined(IPSEC) || defined(FAST_IPSEC)
1553 switch (af) {
1554 #ifdef INET
1555 case AF_INET:
1556 if (ipsec4_in_reject_so(m, so)) {
1557 ipsecstat.in_polvio++;
1558 tp = NULL;
1559 goto dropwithreset;
1560 }
1561 break;
1562 #endif
1563 #ifdef INET6
1564 case AF_INET6:
1565 if (ipsec6_in_reject_so(m, so)) {
1566 ipsec6stat.in_polvio++;
1567 tp = NULL;
1568 goto dropwithreset;
1569 }
1570 break;
1571 #endif /*INET6*/
1572 }
1573 #endif /*IPSEC*/
1574
1575 /*
1576 * LISTEN socket received a SYN
1577 * from itself? This can't possibly
1578 * be valid; drop the packet.
1579 */
1580 if (th->th_sport == th->th_dport) {
1581 int i;
1582
1583 switch (af) {
1584 #ifdef INET
1585 case AF_INET:
1586 i = in_hosteq(ip->ip_src, ip->ip_dst);
1587 break;
1588 #endif
1589 #ifdef INET6
1590 case AF_INET6:
1591 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1592 break;
1593 #endif
1594 default:
1595 i = 1;
1596 }
1597 if (i) {
1598 TCP_STATINC(TCP_STAT_BADSYN);
1599 goto drop;
1600 }
1601 }
1602
1603 /*
1604 * SYN looks ok; create compressed TCP
1605 * state for it.
1606 */
1607 if (so->so_qlen <= so->so_qlimit &&
1608 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1609 so, m, optp, optlen, &opti))
1610 m = NULL;
1611 }
1612 goto drop;
1613 }
1614 }
1615
1616 after_listen:
1617 #ifdef DIAGNOSTIC
1618 /*
1619 * Should not happen now that all embryonic connections
1620 * are handled with compressed state.
1621 */
1622 if (tp->t_state == TCPS_LISTEN)
1623 panic("tcp_input: TCPS_LISTEN");
1624 #endif
1625
1626 /*
1627 * Segment received on connection.
1628 * Reset idle time and keep-alive timer.
1629 */
1630 tp->t_rcvtime = tcp_now;
1631 if (TCPS_HAVEESTABLISHED(tp->t_state))
1632 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1633
1634 /*
1635 * Process options.
1636 */
1637 #ifdef TCP_SIGNATURE
1638 if (optp || (tp->t_flags & TF_SIGNATURE))
1639 #else
1640 if (optp)
1641 #endif
1642 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1643 goto drop;
1644
1645 if (TCP_SACK_ENABLED(tp)) {
1646 tcp_del_sackholes(tp, th);
1647 }
1648
1649 if (TCP_ECN_ALLOWED(tp)) {
1650 switch (iptos & IPTOS_ECN_MASK) {
1651 case IPTOS_ECN_CE:
1652 tp->t_flags |= TF_ECN_SND_ECE;
1653 TCP_STATINC(TCP_STAT_ECN_CE);
1654 break;
1655 case IPTOS_ECN_ECT0:
1656 TCP_STATINC(TCP_STAT_ECN_ECT);
1657 break;
1658 case IPTOS_ECN_ECT1:
1659 /* XXX: ignore for now -- rpaulo */
1660 break;
1661 }
1662
1663 if (tiflags & TH_CWR)
1664 tp->t_flags &= ~TF_ECN_SND_ECE;
1665
1666 /*
1667 * Congestion experienced.
1668 * Ignore if we are already trying to recover.
1669 */
1670 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1671 tp->t_congctl->cong_exp(tp);
1672 }
1673
1674 if (opti.ts_present && opti.ts_ecr) {
1675 /*
1676 * Calculate the RTT from the returned time stamp and the
1677 * connection's time base. If the time stamp is later than
1678 * the current time, or is extremely old, fall back to non-1323
1679 * RTT calculation. Since ts_ecr is unsigned, we can test both
1680 * at the same time.
1681 */
1682 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1683 if (ts_rtt > TCP_PAWS_IDLE)
1684 ts_rtt = 0;
1685 } else {
1686 ts_rtt = 0;
1687 }
1688
1689 /*
1690 * Header prediction: check for the two common cases
1691 * of a uni-directional data xfer. If the packet has
1692 * no control flags, is in-sequence, the window didn't
1693 * change and we're not retransmitting, it's a
1694 * candidate. If the length is zero and the ack moved
1695 * forward, we're the sender side of the xfer. Just
1696 * free the data acked & wake any higher level process
1697 * that was blocked waiting for space. If the length
1698 * is non-zero and the ack didn't move, we're the
1699 * receiver side. If we're getting packets in-order
1700 * (the reassembly queue is empty), add the data to
1701 * the socket buffer and note that we need a delayed ack.
1702 */
1703 if (tp->t_state == TCPS_ESTABLISHED &&
1704 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1705 == TH_ACK &&
1706 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1707 th->th_seq == tp->rcv_nxt &&
1708 tiwin && tiwin == tp->snd_wnd &&
1709 tp->snd_nxt == tp->snd_max) {
1710
1711 /*
1712 * If last ACK falls within this segment's sequence numbers,
1713 * record the timestamp.
1714 * NOTE that the test is modified according to the latest
1715 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1716 *
1717 * note that we already know
1718 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1719 */
1720 if (opti.ts_present &&
1721 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1722 tp->ts_recent_age = tcp_now;
1723 tp->ts_recent = opti.ts_val;
1724 }
1725
1726 if (tlen == 0) {
1727 /* Ack prediction. */
1728 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1729 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1730 tp->snd_cwnd >= tp->snd_wnd &&
1731 tp->t_partialacks < 0) {
1732 /*
1733 * this is a pure ack for outstanding data.
1734 */
1735 if (ts_rtt)
1736 tcp_xmit_timer(tp, ts_rtt);
1737 else if (tp->t_rtttime &&
1738 SEQ_GT(th->th_ack, tp->t_rtseq))
1739 tcp_xmit_timer(tp,
1740 tcp_now - tp->t_rtttime);
1741 acked = th->th_ack - tp->snd_una;
1742 tcps = TCP_STAT_GETREF();
1743 tcps[TCP_STAT_PREDACK]++;
1744 tcps[TCP_STAT_RCVACKPACK]++;
1745 tcps[TCP_STAT_RCVACKBYTE] += acked;
1746 TCP_STAT_PUTREF();
1747 nd6_hint(tp);
1748
1749 if (acked > (tp->t_lastoff - tp->t_inoff))
1750 tp->t_lastm = NULL;
1751 sbdrop(&so->so_snd, acked);
1752 tp->t_lastoff -= acked;
1753
1754 icmp_check(tp, th, acked);
1755
1756 tp->snd_una = th->th_ack;
1757 tp->snd_fack = tp->snd_una;
1758 if (SEQ_LT(tp->snd_high, tp->snd_una))
1759 tp->snd_high = tp->snd_una;
1760 m_freem(m);
1761
1762 /*
1763 * If all outstanding data are acked, stop
1764 * retransmit timer, otherwise restart timer
1765 * using current (possibly backed-off) value.
1766 * If process is waiting for space,
1767 * wakeup/selnotify/signal. If data
1768 * are ready to send, let tcp_output
1769 * decide between more output or persist.
1770 */
1771 if (tp->snd_una == tp->snd_max)
1772 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1773 else if (TCP_TIMER_ISARMED(tp,
1774 TCPT_PERSIST) == 0)
1775 TCP_TIMER_ARM(tp, TCPT_REXMT,
1776 tp->t_rxtcur);
1777
1778 sowwakeup(so);
1779 if (so->so_snd.sb_cc)
1780 (void) tcp_output(tp);
1781 if (tcp_saveti)
1782 m_freem(tcp_saveti);
1783 return;
1784 }
1785 } else if (th->th_ack == tp->snd_una &&
1786 TAILQ_FIRST(&tp->segq) == NULL &&
1787 tlen <= sbspace(&so->so_rcv)) {
1788 int newsize = 0; /* automatic sockbuf scaling */
1789
1790 /*
1791 * this is a pure, in-sequence data packet
1792 * with nothing on the reassembly queue and
1793 * we have enough buffer space to take it.
1794 */
1795 tp->rcv_nxt += tlen;
1796 tcps = TCP_STAT_GETREF();
1797 tcps[TCP_STAT_PREDDAT]++;
1798 tcps[TCP_STAT_RCVPACK]++;
1799 tcps[TCP_STAT_RCVBYTE] += tlen;
1800 TCP_STAT_PUTREF();
1801 nd6_hint(tp);
1802
1803 /*
1804 * Automatic sizing enables the performance of large buffers
1805 * and most of the efficiency of small ones by only allocating
1806 * space when it is needed.
1807 *
1808 * On the receive side the socket buffer memory is only rarely
1809 * used to any significant extent. This allows us to be much
1810 * more aggressive in scaling the receive socket buffer. For
1811 * the case that the buffer space is actually used to a large
1812 * extent and we run out of kernel memory we can simply drop
1813 * the new segments; TCP on the sender will just retransmit it
1814 * later. Setting the buffer size too big may only consume too
1815 * much kernel memory if the application doesn't read() from
1816 * the socket or packet loss or reordering makes use of the
1817 * reassembly queue.
1818 *
1819 * The criteria to step up the receive buffer one notch are:
1820 * 1. the number of bytes received during the time it takes
1821 * one timestamp to be reflected back to us (the RTT);
1822 * 2. received bytes per RTT is within seven eighth of the
1823 * current socket buffer size;
1824 * 3. receive buffer size has not hit maximal automatic size;
1825 *
1826 * This algorithm does one step per RTT at most and only if
1827 * we receive a bulk stream w/o packet losses or reorderings.
1828 * Shrinking the buffer during idle times is not necessary as
1829 * it doesn't consume any memory when idle.
1830 *
1831 * TODO: Only step up if the application is actually serving
1832 * the buffer to better manage the socket buffer resources.
1833 */
1834 if (tcp_do_autorcvbuf &&
1835 opti.ts_ecr &&
1836 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1837 if (opti.ts_ecr > tp->rfbuf_ts &&
1838 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1839 if (tp->rfbuf_cnt >
1840 (so->so_rcv.sb_hiwat / 8 * 7) &&
1841 so->so_rcv.sb_hiwat <
1842 tcp_autorcvbuf_max) {
1843 newsize =
1844 min(so->so_rcv.sb_hiwat +
1845 tcp_autorcvbuf_inc,
1846 tcp_autorcvbuf_max);
1847 }
1848 /* Start over with next RTT. */
1849 tp->rfbuf_ts = 0;
1850 tp->rfbuf_cnt = 0;
1851 } else
1852 tp->rfbuf_cnt += tlen; /* add up */
1853 }
1854
1855 /*
1856 * Drop TCP, IP headers and TCP options then add data
1857 * to socket buffer.
1858 */
1859 if (so->so_state & SS_CANTRCVMORE)
1860 m_freem(m);
1861 else {
1862 /*
1863 * Set new socket buffer size.
1864 * Give up when limit is reached.
1865 */
1866 if (newsize)
1867 if (!sbreserve(&so->so_rcv,
1868 newsize, so))
1869 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1870 m_adj(m, toff + off);
1871 sbappendstream(&so->so_rcv, m);
1872 }
1873 sorwakeup(so);
1874 tcp_setup_ack(tp, th);
1875 if (tp->t_flags & TF_ACKNOW)
1876 (void) tcp_output(tp);
1877 if (tcp_saveti)
1878 m_freem(tcp_saveti);
1879 return;
1880 }
1881 }
1882
1883 /*
1884 * Compute mbuf offset to TCP data segment.
1885 */
1886 hdroptlen = toff + off;
1887
1888 /*
1889 * Calculate amount of space in receive window,
1890 * and then do TCP input processing.
1891 * Receive window is amount of space in rcv queue,
1892 * but not less than advertised window.
1893 */
1894 { int win;
1895
1896 win = sbspace(&so->so_rcv);
1897 if (win < 0)
1898 win = 0;
1899 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1900 }
1901
1902 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1903 tp->rfbuf_ts = 0;
1904 tp->rfbuf_cnt = 0;
1905
1906 switch (tp->t_state) {
1907 /*
1908 * If the state is SYN_SENT:
1909 * if seg contains an ACK, but not for our SYN, drop the input.
1910 * if seg contains a RST, then drop the connection.
1911 * if seg does not contain SYN, then drop it.
1912 * Otherwise this is an acceptable SYN segment
1913 * initialize tp->rcv_nxt and tp->irs
1914 * if seg contains ack then advance tp->snd_una
1915 * if seg contains a ECE and ECN support is enabled, the stream
1916 * is ECN capable.
1917 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1918 * arrange for segment to be acked (eventually)
1919 * continue processing rest of data/controls, beginning with URG
1920 */
1921 case TCPS_SYN_SENT:
1922 if ((tiflags & TH_ACK) &&
1923 (SEQ_LEQ(th->th_ack, tp->iss) ||
1924 SEQ_GT(th->th_ack, tp->snd_max)))
1925 goto dropwithreset;
1926 if (tiflags & TH_RST) {
1927 if (tiflags & TH_ACK)
1928 tp = tcp_drop(tp, ECONNREFUSED);
1929 goto drop;
1930 }
1931 if ((tiflags & TH_SYN) == 0)
1932 goto drop;
1933 if (tiflags & TH_ACK) {
1934 tp->snd_una = th->th_ack;
1935 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1936 tp->snd_nxt = tp->snd_una;
1937 if (SEQ_LT(tp->snd_high, tp->snd_una))
1938 tp->snd_high = tp->snd_una;
1939 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1940
1941 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1942 tp->t_flags |= TF_ECN_PERMIT;
1943 TCP_STATINC(TCP_STAT_ECN_SHS);
1944 }
1945
1946 }
1947 tp->irs = th->th_seq;
1948 tcp_rcvseqinit(tp);
1949 tp->t_flags |= TF_ACKNOW;
1950 tcp_mss_from_peer(tp, opti.maxseg);
1951
1952 /*
1953 * Initialize the initial congestion window. If we
1954 * had to retransmit the SYN, we must initialize cwnd
1955 * to 1 segment (i.e. the Loss Window).
1956 */
1957 if (tp->t_flags & TF_SYN_REXMT)
1958 tp->snd_cwnd = tp->t_peermss;
1959 else {
1960 int ss = tcp_init_win;
1961 #ifdef INET
1962 if (inp != NULL && in_localaddr(inp->inp_faddr))
1963 ss = tcp_init_win_local;
1964 #endif
1965 #ifdef INET6
1966 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1967 ss = tcp_init_win_local;
1968 #endif
1969 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1970 }
1971
1972 tcp_rmx_rtt(tp);
1973 if (tiflags & TH_ACK) {
1974 TCP_STATINC(TCP_STAT_CONNECTS);
1975 soisconnected(so);
1976 tcp_established(tp);
1977 /* Do window scaling on this connection? */
1978 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1979 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1980 tp->snd_scale = tp->requested_s_scale;
1981 tp->rcv_scale = tp->request_r_scale;
1982 }
1983 TCP_REASS_LOCK(tp);
1984 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1985 TCP_REASS_UNLOCK(tp);
1986 /*
1987 * if we didn't have to retransmit the SYN,
1988 * use its rtt as our initial srtt & rtt var.
1989 */
1990 if (tp->t_rtttime)
1991 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1992 } else
1993 tp->t_state = TCPS_SYN_RECEIVED;
1994
1995 /*
1996 * Advance th->th_seq to correspond to first data byte.
1997 * If data, trim to stay within window,
1998 * dropping FIN if necessary.
1999 */
2000 th->th_seq++;
2001 if (tlen > tp->rcv_wnd) {
2002 todrop = tlen - tp->rcv_wnd;
2003 m_adj(m, -todrop);
2004 tlen = tp->rcv_wnd;
2005 tiflags &= ~TH_FIN;
2006 tcps = TCP_STAT_GETREF();
2007 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2008 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2009 TCP_STAT_PUTREF();
2010 }
2011 tp->snd_wl1 = th->th_seq - 1;
2012 tp->rcv_up = th->th_seq;
2013 goto step6;
2014
2015 /*
2016 * If the state is SYN_RECEIVED:
2017 * If seg contains an ACK, but not for our SYN, drop the input
2018 * and generate an RST. See page 36, rfc793
2019 */
2020 case TCPS_SYN_RECEIVED:
2021 if ((tiflags & TH_ACK) &&
2022 (SEQ_LEQ(th->th_ack, tp->iss) ||
2023 SEQ_GT(th->th_ack, tp->snd_max)))
2024 goto dropwithreset;
2025 break;
2026 }
2027
2028 /*
2029 * States other than LISTEN or SYN_SENT.
2030 * First check timestamp, if present.
2031 * Then check that at least some bytes of segment are within
2032 * receive window. If segment begins before rcv_nxt,
2033 * drop leading data (and SYN); if nothing left, just ack.
2034 *
2035 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2036 * and it's less than ts_recent, drop it.
2037 */
2038 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2039 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2040
2041 /* Check to see if ts_recent is over 24 days old. */
2042 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2043 /*
2044 * Invalidate ts_recent. If this segment updates
2045 * ts_recent, the age will be reset later and ts_recent
2046 * will get a valid value. If it does not, setting
2047 * ts_recent to zero will at least satisfy the
2048 * requirement that zero be placed in the timestamp
2049 * echo reply when ts_recent isn't valid. The
2050 * age isn't reset until we get a valid ts_recent
2051 * because we don't want out-of-order segments to be
2052 * dropped when ts_recent is old.
2053 */
2054 tp->ts_recent = 0;
2055 } else {
2056 tcps = TCP_STAT_GETREF();
2057 tcps[TCP_STAT_RCVDUPPACK]++;
2058 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2059 tcps[TCP_STAT_PAWSDROP]++;
2060 TCP_STAT_PUTREF();
2061 tcp_new_dsack(tp, th->th_seq, tlen);
2062 goto dropafterack;
2063 }
2064 }
2065
2066 todrop = tp->rcv_nxt - th->th_seq;
2067 dupseg = false;
2068 if (todrop > 0) {
2069 if (tiflags & TH_SYN) {
2070 tiflags &= ~TH_SYN;
2071 th->th_seq++;
2072 if (th->th_urp > 1)
2073 th->th_urp--;
2074 else {
2075 tiflags &= ~TH_URG;
2076 th->th_urp = 0;
2077 }
2078 todrop--;
2079 }
2080 if (todrop > tlen ||
2081 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2082 /*
2083 * Any valid FIN or RST must be to the left of the
2084 * window. At this point the FIN or RST must be a
2085 * duplicate or out of sequence; drop it.
2086 */
2087 if (tiflags & TH_RST)
2088 goto drop;
2089 tiflags &= ~(TH_FIN|TH_RST);
2090 /*
2091 * Send an ACK to resynchronize and drop any data.
2092 * But keep on processing for RST or ACK.
2093 */
2094 tp->t_flags |= TF_ACKNOW;
2095 todrop = tlen;
2096 dupseg = true;
2097 tcps = TCP_STAT_GETREF();
2098 tcps[TCP_STAT_RCVDUPPACK]++;
2099 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2100 TCP_STAT_PUTREF();
2101 } else if ((tiflags & TH_RST) &&
2102 th->th_seq != tp->last_ack_sent) {
2103 /*
2104 * Test for reset before adjusting the sequence
2105 * number for overlapping data.
2106 */
2107 goto dropafterack_ratelim;
2108 } else {
2109 tcps = TCP_STAT_GETREF();
2110 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2111 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2112 TCP_STAT_PUTREF();
2113 }
2114 tcp_new_dsack(tp, th->th_seq, todrop);
2115 hdroptlen += todrop; /*drop from head afterwards*/
2116 th->th_seq += todrop;
2117 tlen -= todrop;
2118 if (th->th_urp > todrop)
2119 th->th_urp -= todrop;
2120 else {
2121 tiflags &= ~TH_URG;
2122 th->th_urp = 0;
2123 }
2124 }
2125
2126 /*
2127 * If new data are received on a connection after the
2128 * user processes are gone, then RST the other end.
2129 */
2130 if ((so->so_state & SS_NOFDREF) &&
2131 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2132 tp = tcp_close(tp);
2133 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2134 goto dropwithreset;
2135 }
2136
2137 /*
2138 * If segment ends after window, drop trailing data
2139 * (and PUSH and FIN); if nothing left, just ACK.
2140 */
2141 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2142 if (todrop > 0) {
2143 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2144 if (todrop >= tlen) {
2145 /*
2146 * The segment actually starts after the window.
2147 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2148 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2149 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2150 */
2151 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2152 /*
2153 * If a new connection request is received
2154 * while in TIME_WAIT, drop the old connection
2155 * and start over if the sequence numbers
2156 * are above the previous ones.
2157 *
2158 * NOTE: We will checksum the packet again, and
2159 * so we need to put the header fields back into
2160 * network order!
2161 * XXX This kind of sucks, but we don't expect
2162 * XXX this to happen very often, so maybe it
2163 * XXX doesn't matter so much.
2164 */
2165 if (tiflags & TH_SYN &&
2166 tp->t_state == TCPS_TIME_WAIT &&
2167 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2168 tp = tcp_close(tp);
2169 tcp_fields_to_net(th);
2170 goto findpcb;
2171 }
2172 /*
2173 * If window is closed can only take segments at
2174 * window edge, and have to drop data and PUSH from
2175 * incoming segments. Continue processing, but
2176 * remember to ack. Otherwise, drop segment
2177 * and (if not RST) ack.
2178 */
2179 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2180 tp->t_flags |= TF_ACKNOW;
2181 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2182 } else
2183 goto dropafterack;
2184 } else
2185 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2186 m_adj(m, -todrop);
2187 tlen -= todrop;
2188 tiflags &= ~(TH_PUSH|TH_FIN);
2189 }
2190
2191 /*
2192 * If last ACK falls within this segment's sequence numbers,
2193 * record the timestamp.
2194 * NOTE:
2195 * 1) That the test incorporates suggestions from the latest
2196 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2197 * 2) That updating only on newer timestamps interferes with
2198 * our earlier PAWS tests, so this check should be solely
2199 * predicated on the sequence space of this segment.
2200 * 3) That we modify the segment boundary check to be
2201 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2202 * instead of RFC1323's
2203 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2204 * This modified check allows us to overcome RFC1323's
2205 * limitations as described in Stevens TCP/IP Illustrated
2206 * Vol. 2 p.869. In such cases, we can still calculate the
2207 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2208 */
2209 if (opti.ts_present &&
2210 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2211 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2212 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2213 tp->ts_recent_age = tcp_now;
2214 tp->ts_recent = opti.ts_val;
2215 }
2216
2217 /*
2218 * If the RST bit is set examine the state:
2219 * SYN_RECEIVED STATE:
2220 * If passive open, return to LISTEN state.
2221 * If active open, inform user that connection was refused.
2222 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2223 * Inform user that connection was reset, and close tcb.
2224 * CLOSING, LAST_ACK, TIME_WAIT STATES
2225 * Close the tcb.
2226 */
2227 if (tiflags & TH_RST) {
2228 if (th->th_seq != tp->last_ack_sent)
2229 goto dropafterack_ratelim;
2230
2231 switch (tp->t_state) {
2232 case TCPS_SYN_RECEIVED:
2233 so->so_error = ECONNREFUSED;
2234 goto close;
2235
2236 case TCPS_ESTABLISHED:
2237 case TCPS_FIN_WAIT_1:
2238 case TCPS_FIN_WAIT_2:
2239 case TCPS_CLOSE_WAIT:
2240 so->so_error = ECONNRESET;
2241 close:
2242 tp->t_state = TCPS_CLOSED;
2243 TCP_STATINC(TCP_STAT_DROPS);
2244 tp = tcp_close(tp);
2245 goto drop;
2246
2247 case TCPS_CLOSING:
2248 case TCPS_LAST_ACK:
2249 case TCPS_TIME_WAIT:
2250 tp = tcp_close(tp);
2251 goto drop;
2252 }
2253 }
2254
2255 /*
2256 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2257 * we must be in a synchronized state. RFC791 states (under RST
2258 * generation) that any unacceptable segment (an out-of-order SYN
2259 * qualifies) received in a synchronized state must elicit only an
2260 * empty acknowledgment segment ... and the connection remains in
2261 * the same state.
2262 */
2263 if (tiflags & TH_SYN) {
2264 if (tp->rcv_nxt == th->th_seq) {
2265 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2266 TH_ACK);
2267 if (tcp_saveti)
2268 m_freem(tcp_saveti);
2269 return;
2270 }
2271
2272 goto dropafterack_ratelim;
2273 }
2274
2275 /*
2276 * If the ACK bit is off we drop the segment and return.
2277 */
2278 if ((tiflags & TH_ACK) == 0) {
2279 if (tp->t_flags & TF_ACKNOW)
2280 goto dropafterack;
2281 else
2282 goto drop;
2283 }
2284
2285 /*
2286 * Ack processing.
2287 */
2288 switch (tp->t_state) {
2289
2290 /*
2291 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2292 * ESTABLISHED state and continue processing, otherwise
2293 * send an RST.
2294 */
2295 case TCPS_SYN_RECEIVED:
2296 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2297 SEQ_GT(th->th_ack, tp->snd_max))
2298 goto dropwithreset;
2299 TCP_STATINC(TCP_STAT_CONNECTS);
2300 soisconnected(so);
2301 tcp_established(tp);
2302 /* Do window scaling? */
2303 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2304 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2305 tp->snd_scale = tp->requested_s_scale;
2306 tp->rcv_scale = tp->request_r_scale;
2307 }
2308 TCP_REASS_LOCK(tp);
2309 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2310 TCP_REASS_UNLOCK(tp);
2311 tp->snd_wl1 = th->th_seq - 1;
2312 /* fall into ... */
2313
2314 /*
2315 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2316 * ACKs. If the ack is in the range
2317 * tp->snd_una < th->th_ack <= tp->snd_max
2318 * then advance tp->snd_una to th->th_ack and drop
2319 * data from the retransmission queue. If this ACK reflects
2320 * more up to date window information we update our window information.
2321 */
2322 case TCPS_ESTABLISHED:
2323 case TCPS_FIN_WAIT_1:
2324 case TCPS_FIN_WAIT_2:
2325 case TCPS_CLOSE_WAIT:
2326 case TCPS_CLOSING:
2327 case TCPS_LAST_ACK:
2328 case TCPS_TIME_WAIT:
2329
2330 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2331 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2332 TCP_STATINC(TCP_STAT_RCVDUPPACK);
2333 /*
2334 * If we have outstanding data (other than
2335 * a window probe), this is a completely
2336 * duplicate ack (ie, window info didn't
2337 * change), the ack is the biggest we've
2338 * seen and we've seen exactly our rexmt
2339 * threshhold of them, assume a packet
2340 * has been dropped and retransmit it.
2341 * Kludge snd_nxt & the congestion
2342 * window so we send only this one
2343 * packet.
2344 */
2345 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2346 th->th_ack != tp->snd_una)
2347 tp->t_dupacks = 0;
2348 else if (tp->t_partialacks < 0 &&
2349 (++tp->t_dupacks == tcprexmtthresh ||
2350 TCP_FACK_FASTRECOV(tp))) {
2351 /*
2352 * Do the fast retransmit, and adjust
2353 * congestion control paramenters.
2354 */
2355 if (tp->t_congctl->fast_retransmit(tp, th)) {
2356 /* False fast retransmit */
2357 break;
2358 } else
2359 goto drop;
2360 } else if (tp->t_dupacks > tcprexmtthresh) {
2361 tp->snd_cwnd += tp->t_segsz;
2362 (void) tcp_output(tp);
2363 goto drop;
2364 }
2365 } else {
2366 /*
2367 * If the ack appears to be very old, only
2368 * allow data that is in-sequence. This
2369 * makes it somewhat more difficult to insert
2370 * forged data by guessing sequence numbers.
2371 * Sent an ack to try to update the send
2372 * sequence number on the other side.
2373 */
2374 if (tlen && th->th_seq != tp->rcv_nxt &&
2375 SEQ_LT(th->th_ack,
2376 tp->snd_una - tp->max_sndwnd))
2377 goto dropafterack;
2378 }
2379 break;
2380 }
2381 /*
2382 * If the congestion window was inflated to account
2383 * for the other side's cached packets, retract it.
2384 */
2385 /* XXX: make SACK have his own congestion control
2386 * struct -- rpaulo */
2387 if (TCP_SACK_ENABLED(tp))
2388 tcp_sack_newack(tp, th);
2389 else
2390 tp->t_congctl->fast_retransmit_newack(tp, th);
2391 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2392 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2393 goto dropafterack;
2394 }
2395 acked = th->th_ack - tp->snd_una;
2396 tcps = TCP_STAT_GETREF();
2397 tcps[TCP_STAT_RCVACKPACK]++;
2398 tcps[TCP_STAT_RCVACKBYTE] += acked;
2399 TCP_STAT_PUTREF();
2400
2401 /*
2402 * If we have a timestamp reply, update smoothed
2403 * round trip time. If no timestamp is present but
2404 * transmit timer is running and timed sequence
2405 * number was acked, update smoothed round trip time.
2406 * Since we now have an rtt measurement, cancel the
2407 * timer backoff (cf., Phil Karn's retransmit alg.).
2408 * Recompute the initial retransmit timer.
2409 */
2410 if (ts_rtt)
2411 tcp_xmit_timer(tp, ts_rtt);
2412 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2413 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2414
2415 /*
2416 * If all outstanding data is acked, stop retransmit
2417 * timer and remember to restart (more output or persist).
2418 * If there is more data to be acked, restart retransmit
2419 * timer, using current (possibly backed-off) value.
2420 */
2421 if (th->th_ack == tp->snd_max) {
2422 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2423 needoutput = 1;
2424 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2425 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2426
2427 /*
2428 * New data has been acked, adjust the congestion window.
2429 */
2430 tp->t_congctl->newack(tp, th);
2431
2432 nd6_hint(tp);
2433 if (acked > so->so_snd.sb_cc) {
2434 tp->snd_wnd -= so->so_snd.sb_cc;
2435 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2436 ourfinisacked = 1;
2437 } else {
2438 if (acked > (tp->t_lastoff - tp->t_inoff))
2439 tp->t_lastm = NULL;
2440 sbdrop(&so->so_snd, acked);
2441 tp->t_lastoff -= acked;
2442 tp->snd_wnd -= acked;
2443 ourfinisacked = 0;
2444 }
2445 sowwakeup(so);
2446
2447 icmp_check(tp, th, acked);
2448
2449 tp->snd_una = th->th_ack;
2450 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2451 tp->snd_fack = tp->snd_una;
2452 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2453 tp->snd_nxt = tp->snd_una;
2454 if (SEQ_LT(tp->snd_high, tp->snd_una))
2455 tp->snd_high = tp->snd_una;
2456
2457 switch (tp->t_state) {
2458
2459 /*
2460 * In FIN_WAIT_1 STATE in addition to the processing
2461 * for the ESTABLISHED state if our FIN is now acknowledged
2462 * then enter FIN_WAIT_2.
2463 */
2464 case TCPS_FIN_WAIT_1:
2465 if (ourfinisacked) {
2466 /*
2467 * If we can't receive any more
2468 * data, then closing user can proceed.
2469 * Starting the timer is contrary to the
2470 * specification, but if we don't get a FIN
2471 * we'll hang forever.
2472 */
2473 if (so->so_state & SS_CANTRCVMORE) {
2474 soisdisconnected(so);
2475 if (tp->t_maxidle > 0)
2476 TCP_TIMER_ARM(tp, TCPT_2MSL,
2477 tp->t_maxidle);
2478 }
2479 tp->t_state = TCPS_FIN_WAIT_2;
2480 }
2481 break;
2482
2483 /*
2484 * In CLOSING STATE in addition to the processing for
2485 * the ESTABLISHED state if the ACK acknowledges our FIN
2486 * then enter the TIME-WAIT state, otherwise ignore
2487 * the segment.
2488 */
2489 case TCPS_CLOSING:
2490 if (ourfinisacked) {
2491 tp->t_state = TCPS_TIME_WAIT;
2492 tcp_canceltimers(tp);
2493 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2494 soisdisconnected(so);
2495 }
2496 break;
2497
2498 /*
2499 * In LAST_ACK, we may still be waiting for data to drain
2500 * and/or to be acked, as well as for the ack of our FIN.
2501 * If our FIN is now acknowledged, delete the TCB,
2502 * enter the closed state and return.
2503 */
2504 case TCPS_LAST_ACK:
2505 if (ourfinisacked) {
2506 tp = tcp_close(tp);
2507 goto drop;
2508 }
2509 break;
2510
2511 /*
2512 * In TIME_WAIT state the only thing that should arrive
2513 * is a retransmission of the remote FIN. Acknowledge
2514 * it and restart the finack timer.
2515 */
2516 case TCPS_TIME_WAIT:
2517 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2518 goto dropafterack;
2519 }
2520 }
2521
2522 step6:
2523 /*
2524 * Update window information.
2525 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2526 */
2527 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2528 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2529 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2530 /* keep track of pure window updates */
2531 if (tlen == 0 &&
2532 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2533 TCP_STATINC(TCP_STAT_RCVWINUPD);
2534 tp->snd_wnd = tiwin;
2535 tp->snd_wl1 = th->th_seq;
2536 tp->snd_wl2 = th->th_ack;
2537 if (tp->snd_wnd > tp->max_sndwnd)
2538 tp->max_sndwnd = tp->snd_wnd;
2539 needoutput = 1;
2540 }
2541
2542 /*
2543 * Process segments with URG.
2544 */
2545 if ((tiflags & TH_URG) && th->th_urp &&
2546 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2547 /*
2548 * This is a kludge, but if we receive and accept
2549 * random urgent pointers, we'll crash in
2550 * soreceive. It's hard to imagine someone
2551 * actually wanting to send this much urgent data.
2552 */
2553 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2554 th->th_urp = 0; /* XXX */
2555 tiflags &= ~TH_URG; /* XXX */
2556 goto dodata; /* XXX */
2557 }
2558 /*
2559 * If this segment advances the known urgent pointer,
2560 * then mark the data stream. This should not happen
2561 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2562 * a FIN has been received from the remote side.
2563 * In these states we ignore the URG.
2564 *
2565 * According to RFC961 (Assigned Protocols),
2566 * the urgent pointer points to the last octet
2567 * of urgent data. We continue, however,
2568 * to consider it to indicate the first octet
2569 * of data past the urgent section as the original
2570 * spec states (in one of two places).
2571 */
2572 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2573 tp->rcv_up = th->th_seq + th->th_urp;
2574 so->so_oobmark = so->so_rcv.sb_cc +
2575 (tp->rcv_up - tp->rcv_nxt) - 1;
2576 if (so->so_oobmark == 0)
2577 so->so_state |= SS_RCVATMARK;
2578 sohasoutofband(so);
2579 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2580 }
2581 /*
2582 * Remove out of band data so doesn't get presented to user.
2583 * This can happen independent of advancing the URG pointer,
2584 * but if two URG's are pending at once, some out-of-band
2585 * data may creep in... ick.
2586 */
2587 if (th->th_urp <= (u_int16_t) tlen
2588 #ifdef SO_OOBINLINE
2589 && (so->so_options & SO_OOBINLINE) == 0
2590 #endif
2591 )
2592 tcp_pulloutofband(so, th, m, hdroptlen);
2593 } else
2594 /*
2595 * If no out of band data is expected,
2596 * pull receive urgent pointer along
2597 * with the receive window.
2598 */
2599 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2600 tp->rcv_up = tp->rcv_nxt;
2601 dodata: /* XXX */
2602
2603 /*
2604 * Process the segment text, merging it into the TCP sequencing queue,
2605 * and arranging for acknowledgement of receipt if necessary.
2606 * This process logically involves adjusting tp->rcv_wnd as data
2607 * is presented to the user (this happens in tcp_usrreq.c,
2608 * case PRU_RCVD). If a FIN has already been received on this
2609 * connection then we just ignore the text.
2610 */
2611 if ((tlen || (tiflags & TH_FIN)) &&
2612 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2613 /*
2614 * Insert segment ti into reassembly queue of tcp with
2615 * control block tp. Return TH_FIN if reassembly now includes
2616 * a segment with FIN. The macro form does the common case
2617 * inline (segment is the next to be received on an
2618 * established connection, and the queue is empty),
2619 * avoiding linkage into and removal from the queue and
2620 * repetition of various conversions.
2621 * Set DELACK for segments received in order, but ack
2622 * immediately when segments are out of order
2623 * (so fast retransmit can work).
2624 */
2625 /* NOTE: this was TCP_REASS() macro, but used only once */
2626 TCP_REASS_LOCK(tp);
2627 if (th->th_seq == tp->rcv_nxt &&
2628 TAILQ_FIRST(&tp->segq) == NULL &&
2629 tp->t_state == TCPS_ESTABLISHED) {
2630 tcp_setup_ack(tp, th);
2631 tp->rcv_nxt += tlen;
2632 tiflags = th->th_flags & TH_FIN;
2633 tcps = TCP_STAT_GETREF();
2634 tcps[TCP_STAT_RCVPACK]++;
2635 tcps[TCP_STAT_RCVBYTE] += tlen;
2636 TCP_STAT_PUTREF();
2637 nd6_hint(tp);
2638 if (so->so_state & SS_CANTRCVMORE)
2639 m_freem(m);
2640 else {
2641 m_adj(m, hdroptlen);
2642 sbappendstream(&(so)->so_rcv, m);
2643 }
2644 sorwakeup(so);
2645 } else {
2646 m_adj(m, hdroptlen);
2647 tiflags = tcp_reass(tp, th, m, &tlen);
2648 tp->t_flags |= TF_ACKNOW;
2649 }
2650 TCP_REASS_UNLOCK(tp);
2651
2652 /*
2653 * Note the amount of data that peer has sent into
2654 * our window, in order to estimate the sender's
2655 * buffer size.
2656 */
2657 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2658 } else {
2659 m_freem(m);
2660 m = NULL;
2661 tiflags &= ~TH_FIN;
2662 }
2663
2664 /*
2665 * If FIN is received ACK the FIN and let the user know
2666 * that the connection is closing. Ignore a FIN received before
2667 * the connection is fully established.
2668 */
2669 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2670 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2671 socantrcvmore(so);
2672 tp->t_flags |= TF_ACKNOW;
2673 tp->rcv_nxt++;
2674 }
2675 switch (tp->t_state) {
2676
2677 /*
2678 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2679 */
2680 case TCPS_ESTABLISHED:
2681 tp->t_state = TCPS_CLOSE_WAIT;
2682 break;
2683
2684 /*
2685 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2686 * enter the CLOSING state.
2687 */
2688 case TCPS_FIN_WAIT_1:
2689 tp->t_state = TCPS_CLOSING;
2690 break;
2691
2692 /*
2693 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2694 * starting the time-wait timer, turning off the other
2695 * standard timers.
2696 */
2697 case TCPS_FIN_WAIT_2:
2698 tp->t_state = TCPS_TIME_WAIT;
2699 tcp_canceltimers(tp);
2700 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2701 soisdisconnected(so);
2702 break;
2703
2704 /*
2705 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2706 */
2707 case TCPS_TIME_WAIT:
2708 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2709 break;
2710 }
2711 }
2712 #ifdef TCP_DEBUG
2713 if (so->so_options & SO_DEBUG)
2714 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2715 #endif
2716
2717 /*
2718 * Return any desired output.
2719 */
2720 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2721 (void) tcp_output(tp);
2722 }
2723 if (tcp_saveti)
2724 m_freem(tcp_saveti);
2725 return;
2726
2727 badsyn:
2728 /*
2729 * Received a bad SYN. Increment counters and dropwithreset.
2730 */
2731 TCP_STATINC(TCP_STAT_BADSYN);
2732 tp = NULL;
2733 goto dropwithreset;
2734
2735 dropafterack:
2736 /*
2737 * Generate an ACK dropping incoming segment if it occupies
2738 * sequence space, where the ACK reflects our state.
2739 */
2740 if (tiflags & TH_RST)
2741 goto drop;
2742 goto dropafterack2;
2743
2744 dropafterack_ratelim:
2745 /*
2746 * We may want to rate-limit ACKs against SYN/RST attack.
2747 */
2748 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2749 tcp_ackdrop_ppslim) == 0) {
2750 /* XXX stat */
2751 goto drop;
2752 }
2753 /* ...fall into dropafterack2... */
2754
2755 dropafterack2:
2756 m_freem(m);
2757 tp->t_flags |= TF_ACKNOW;
2758 (void) tcp_output(tp);
2759 if (tcp_saveti)
2760 m_freem(tcp_saveti);
2761 return;
2762
2763 dropwithreset_ratelim:
2764 /*
2765 * We may want to rate-limit RSTs in certain situations,
2766 * particularly if we are sending an RST in response to
2767 * an attempt to connect to or otherwise communicate with
2768 * a port for which we have no socket.
2769 */
2770 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2771 tcp_rst_ppslim) == 0) {
2772 /* XXX stat */
2773 goto drop;
2774 }
2775 /* ...fall into dropwithreset... */
2776
2777 dropwithreset:
2778 /*
2779 * Generate a RST, dropping incoming segment.
2780 * Make ACK acceptable to originator of segment.
2781 */
2782 if (tiflags & TH_RST)
2783 goto drop;
2784
2785 switch (af) {
2786 #ifdef INET6
2787 case AF_INET6:
2788 /* For following calls to tcp_respond */
2789 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2790 goto drop;
2791 break;
2792 #endif /* INET6 */
2793 case AF_INET:
2794 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2795 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2796 goto drop;
2797 }
2798
2799 if (tiflags & TH_ACK)
2800 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2801 else {
2802 if (tiflags & TH_SYN)
2803 tlen++;
2804 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2805 TH_RST|TH_ACK);
2806 }
2807 if (tcp_saveti)
2808 m_freem(tcp_saveti);
2809 return;
2810
2811 badcsum:
2812 drop:
2813 /*
2814 * Drop space held by incoming segment and return.
2815 */
2816 if (tp) {
2817 if (tp->t_inpcb)
2818 so = tp->t_inpcb->inp_socket;
2819 #ifdef INET6
2820 else if (tp->t_in6pcb)
2821 so = tp->t_in6pcb->in6p_socket;
2822 #endif
2823 else
2824 so = NULL;
2825 #ifdef TCP_DEBUG
2826 if (so && (so->so_options & SO_DEBUG) != 0)
2827 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2828 #endif
2829 }
2830 if (tcp_saveti)
2831 m_freem(tcp_saveti);
2832 m_freem(m);
2833 return;
2834 }
2835
2836 #ifdef TCP_SIGNATURE
2837 int
2838 tcp_signature_apply(void *fstate, void *data, u_int len)
2839 {
2840
2841 MD5Update(fstate, (u_char *)data, len);
2842 return (0);
2843 }
2844
2845 struct secasvar *
2846 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2847 {
2848 struct secasvar *sav;
2849 #ifdef FAST_IPSEC
2850 union sockaddr_union dst;
2851 #endif
2852 struct ip *ip;
2853 struct ip6_hdr *ip6;
2854
2855 ip = mtod(m, struct ip *);
2856 switch (ip->ip_v) {
2857 case 4:
2858 ip = mtod(m, struct ip *);
2859 ip6 = NULL;
2860 break;
2861 case 6:
2862 ip = NULL;
2863 ip6 = mtod(m, struct ip6_hdr *);
2864 break;
2865 default:
2866 return (NULL);
2867 }
2868
2869 #ifdef FAST_IPSEC
2870 /* Extract the destination from the IP header in the mbuf. */
2871 bzero(&dst, sizeof(union sockaddr_union));
2872 if (ip !=NULL) {
2873 dst.sa.sa_len = sizeof(struct sockaddr_in);
2874 dst.sa.sa_family = AF_INET;
2875 dst.sin.sin_addr = ip->ip_dst;
2876 } else {
2877 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2878 dst.sa.sa_family = AF_INET6;
2879 dst.sin6.sin6_addr = ip6->ip6_dst;
2880 }
2881
2882 /*
2883 * Look up an SADB entry which matches the address of the peer.
2884 */
2885 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2886 #else
2887 if (ip)
2888 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2889 (void *)&ip->ip_dst, IPPROTO_TCP,
2890 htonl(TCP_SIG_SPI), 0, 0);
2891 else
2892 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2893 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2894 htonl(TCP_SIG_SPI), 0, 0);
2895 #endif
2896
2897 return (sav); /* freesav must be performed by caller */
2898 }
2899
2900 int
2901 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2902 struct secasvar *sav, char *sig)
2903 {
2904 MD5_CTX ctx;
2905 struct ip *ip;
2906 struct ipovly *ipovly;
2907 struct ip6_hdr *ip6;
2908 struct ippseudo ippseudo;
2909 struct ip6_hdr_pseudo ip6pseudo;
2910 struct tcphdr th0;
2911 int l, tcphdrlen;
2912
2913 if (sav == NULL)
2914 return (-1);
2915
2916 tcphdrlen = th->th_off * 4;
2917
2918 switch (mtod(m, struct ip *)->ip_v) {
2919 case 4:
2920 ip = mtod(m, struct ip *);
2921 ip6 = NULL;
2922 break;
2923 case 6:
2924 ip = NULL;
2925 ip6 = mtod(m, struct ip6_hdr *);
2926 break;
2927 default:
2928 return (-1);
2929 }
2930
2931 MD5Init(&ctx);
2932
2933 if (ip) {
2934 memset(&ippseudo, 0, sizeof(ippseudo));
2935 ipovly = (struct ipovly *)ip;
2936 ippseudo.ippseudo_src = ipovly->ih_src;
2937 ippseudo.ippseudo_dst = ipovly->ih_dst;
2938 ippseudo.ippseudo_pad = 0;
2939 ippseudo.ippseudo_p = IPPROTO_TCP;
2940 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2941 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2942 } else {
2943 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2944 ip6pseudo.ip6ph_src = ip6->ip6_src;
2945 in6_clearscope(&ip6pseudo.ip6ph_src);
2946 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2947 in6_clearscope(&ip6pseudo.ip6ph_dst);
2948 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2949 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2950 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2951 }
2952
2953 th0 = *th;
2954 th0.th_sum = 0;
2955 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2956
2957 l = m->m_pkthdr.len - thoff - tcphdrlen;
2958 if (l > 0)
2959 m_apply(m, thoff + tcphdrlen,
2960 m->m_pkthdr.len - thoff - tcphdrlen,
2961 tcp_signature_apply, &ctx);
2962
2963 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2964 MD5Final(sig, &ctx);
2965
2966 return (0);
2967 }
2968 #endif
2969
2970 static int
2971 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2972 struct tcphdr *th,
2973 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2974 {
2975 u_int16_t mss;
2976 int opt, optlen = 0;
2977 #ifdef TCP_SIGNATURE
2978 void *sigp = NULL;
2979 char sigbuf[TCP_SIGLEN];
2980 struct secasvar *sav = NULL;
2981 #endif
2982
2983 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2984 opt = cp[0];
2985 if (opt == TCPOPT_EOL)
2986 break;
2987 if (opt == TCPOPT_NOP)
2988 optlen = 1;
2989 else {
2990 if (cnt < 2)
2991 break;
2992 optlen = cp[1];
2993 if (optlen < 2 || optlen > cnt)
2994 break;
2995 }
2996 switch (opt) {
2997
2998 default:
2999 continue;
3000
3001 case TCPOPT_MAXSEG:
3002 if (optlen != TCPOLEN_MAXSEG)
3003 continue;
3004 if (!(th->th_flags & TH_SYN))
3005 continue;
3006 if (TCPS_HAVERCVDSYN(tp->t_state))
3007 continue;
3008 bcopy(cp + 2, &mss, sizeof(mss));
3009 oi->maxseg = ntohs(mss);
3010 break;
3011
3012 case TCPOPT_WINDOW:
3013 if (optlen != TCPOLEN_WINDOW)
3014 continue;
3015 if (!(th->th_flags & TH_SYN))
3016 continue;
3017 if (TCPS_HAVERCVDSYN(tp->t_state))
3018 continue;
3019 tp->t_flags |= TF_RCVD_SCALE;
3020 tp->requested_s_scale = cp[2];
3021 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3022 #if 0 /*XXX*/
3023 char *p;
3024
3025 if (ip)
3026 p = ntohl(ip->ip_src);
3027 #ifdef INET6
3028 else if (ip6)
3029 p = ip6_sprintf(&ip6->ip6_src);
3030 #endif
3031 else
3032 p = "(unknown)";
3033 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3034 "assuming %d\n",
3035 tp->requested_s_scale, p,
3036 TCP_MAX_WINSHIFT);
3037 #else
3038 log(LOG_ERR, "TCP: invalid wscale %d, "
3039 "assuming %d\n",
3040 tp->requested_s_scale,
3041 TCP_MAX_WINSHIFT);
3042 #endif
3043 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3044 }
3045 break;
3046
3047 case TCPOPT_TIMESTAMP:
3048 if (optlen != TCPOLEN_TIMESTAMP)
3049 continue;
3050 oi->ts_present = 1;
3051 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3052 NTOHL(oi->ts_val);
3053 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3054 NTOHL(oi->ts_ecr);
3055
3056 if (!(th->th_flags & TH_SYN))
3057 continue;
3058 if (TCPS_HAVERCVDSYN(tp->t_state))
3059 continue;
3060 /*
3061 * A timestamp received in a SYN makes
3062 * it ok to send timestamp requests and replies.
3063 */
3064 tp->t_flags |= TF_RCVD_TSTMP;
3065 tp->ts_recent = oi->ts_val;
3066 tp->ts_recent_age = tcp_now;
3067 break;
3068
3069 case TCPOPT_SACK_PERMITTED:
3070 if (optlen != TCPOLEN_SACK_PERMITTED)
3071 continue;
3072 if (!(th->th_flags & TH_SYN))
3073 continue;
3074 if (TCPS_HAVERCVDSYN(tp->t_state))
3075 continue;
3076 if (tcp_do_sack) {
3077 tp->t_flags |= TF_SACK_PERMIT;
3078 tp->t_flags |= TF_WILL_SACK;
3079 }
3080 break;
3081
3082 case TCPOPT_SACK:
3083 tcp_sack_option(tp, th, cp, optlen);
3084 break;
3085 #ifdef TCP_SIGNATURE
3086 case TCPOPT_SIGNATURE:
3087 if (optlen != TCPOLEN_SIGNATURE)
3088 continue;
3089 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3090 return (-1);
3091
3092 sigp = sigbuf;
3093 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3094 tp->t_flags |= TF_SIGNATURE;
3095 break;
3096 #endif
3097 }
3098 }
3099
3100 #ifdef TCP_SIGNATURE
3101 if (tp->t_flags & TF_SIGNATURE) {
3102
3103 sav = tcp_signature_getsav(m, th);
3104
3105 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3106 return (-1);
3107 }
3108
3109 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3110 if (sav == NULL)
3111 return (-1);
3112 #ifdef FAST_IPSEC
3113 KEY_FREESAV(&sav);
3114 #else
3115 key_freesav(sav);
3116 #endif
3117 return (-1);
3118 }
3119
3120 if (sigp) {
3121 char sig[TCP_SIGLEN];
3122
3123 tcp_fields_to_net(th);
3124 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3125 tcp_fields_to_host(th);
3126 if (sav == NULL)
3127 return (-1);
3128 #ifdef FAST_IPSEC
3129 KEY_FREESAV(&sav);
3130 #else
3131 key_freesav(sav);
3132 #endif
3133 return (-1);
3134 }
3135 tcp_fields_to_host(th);
3136
3137 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3138 TCP_STATINC(TCP_STAT_BADSIG);
3139 if (sav == NULL)
3140 return (-1);
3141 #ifdef FAST_IPSEC
3142 KEY_FREESAV(&sav);
3143 #else
3144 key_freesav(sav);
3145 #endif
3146 return (-1);
3147 } else
3148 TCP_STATINC(TCP_STAT_GOODSIG);
3149
3150 key_sa_recordxfer(sav, m);
3151 #ifdef FAST_IPSEC
3152 KEY_FREESAV(&sav);
3153 #else
3154 key_freesav(sav);
3155 #endif
3156 }
3157 #endif
3158
3159 return (0);
3160 }
3161
3162 /*
3163 * Pull out of band byte out of a segment so
3164 * it doesn't appear in the user's data queue.
3165 * It is still reflected in the segment length for
3166 * sequencing purposes.
3167 */
3168 void
3169 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3170 struct mbuf *m, int off)
3171 {
3172 int cnt = off + th->th_urp - 1;
3173
3174 while (cnt >= 0) {
3175 if (m->m_len > cnt) {
3176 char *cp = mtod(m, char *) + cnt;
3177 struct tcpcb *tp = sototcpcb(so);
3178
3179 tp->t_iobc = *cp;
3180 tp->t_oobflags |= TCPOOB_HAVEDATA;
3181 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3182 m->m_len--;
3183 return;
3184 }
3185 cnt -= m->m_len;
3186 m = m->m_next;
3187 if (m == 0)
3188 break;
3189 }
3190 panic("tcp_pulloutofband");
3191 }
3192
3193 /*
3194 * Collect new round-trip time estimate
3195 * and update averages and current timeout.
3196 */
3197 void
3198 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3199 {
3200 int32_t delta;
3201
3202 TCP_STATINC(TCP_STAT_RTTUPDATED);
3203 if (tp->t_srtt != 0) {
3204 /*
3205 * srtt is stored as fixed point with 3 bits after the
3206 * binary point (i.e., scaled by 8). The following magic
3207 * is equivalent to the smoothing algorithm in rfc793 with
3208 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3209 * point). Adjust rtt to origin 0.
3210 */
3211 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3212 if ((tp->t_srtt += delta) <= 0)
3213 tp->t_srtt = 1 << 2;
3214 /*
3215 * We accumulate a smoothed rtt variance (actually, a
3216 * smoothed mean difference), then set the retransmit
3217 * timer to smoothed rtt + 4 times the smoothed variance.
3218 * rttvar is stored as fixed point with 2 bits after the
3219 * binary point (scaled by 4). The following is
3220 * equivalent to rfc793 smoothing with an alpha of .75
3221 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3222 * rfc793's wired-in beta.
3223 */
3224 if (delta < 0)
3225 delta = -delta;
3226 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3227 if ((tp->t_rttvar += delta) <= 0)
3228 tp->t_rttvar = 1 << 2;
3229 } else {
3230 /*
3231 * No rtt measurement yet - use the unsmoothed rtt.
3232 * Set the variance to half the rtt (so our first
3233 * retransmit happens at 3*rtt).
3234 */
3235 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3236 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3237 }
3238 tp->t_rtttime = 0;
3239 tp->t_rxtshift = 0;
3240
3241 /*
3242 * the retransmit should happen at rtt + 4 * rttvar.
3243 * Because of the way we do the smoothing, srtt and rttvar
3244 * will each average +1/2 tick of bias. When we compute
3245 * the retransmit timer, we want 1/2 tick of rounding and
3246 * 1 extra tick because of +-1/2 tick uncertainty in the
3247 * firing of the timer. The bias will give us exactly the
3248 * 1.5 tick we need. But, because the bias is
3249 * statistical, we have to test that we don't drop below
3250 * the minimum feasible timer (which is 2 ticks).
3251 */
3252 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3253 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3254
3255 /*
3256 * We received an ack for a packet that wasn't retransmitted;
3257 * it is probably safe to discard any error indications we've
3258 * received recently. This isn't quite right, but close enough
3259 * for now (a route might have failed after we sent a segment,
3260 * and the return path might not be symmetrical).
3261 */
3262 tp->t_softerror = 0;
3263 }
3264
3265
3266 /*
3267 * TCP compressed state engine. Currently used to hold compressed
3268 * state for SYN_RECEIVED.
3269 */
3270
3271 u_long syn_cache_count;
3272 u_int32_t syn_hash1, syn_hash2;
3273
3274 #define SYN_HASH(sa, sp, dp) \
3275 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3276 ((u_int32_t)(sp)))^syn_hash2)))
3277 #ifndef INET6
3278 #define SYN_HASHALL(hash, src, dst) \
3279 do { \
3280 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3281 ((const struct sockaddr_in *)(src))->sin_port, \
3282 ((const struct sockaddr_in *)(dst))->sin_port); \
3283 } while (/*CONSTCOND*/ 0)
3284 #else
3285 #define SYN_HASH6(sa, sp, dp) \
3286 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3287 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3288 & 0x7fffffff)
3289
3290 #define SYN_HASHALL(hash, src, dst) \
3291 do { \
3292 switch ((src)->sa_family) { \
3293 case AF_INET: \
3294 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3295 ((const struct sockaddr_in *)(src))->sin_port, \
3296 ((const struct sockaddr_in *)(dst))->sin_port); \
3297 break; \
3298 case AF_INET6: \
3299 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3300 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3301 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3302 break; \
3303 default: \
3304 hash = 0; \
3305 } \
3306 } while (/*CONSTCOND*/0)
3307 #endif /* INET6 */
3308
3309 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3310 IPL_SOFTNET);
3311
3312 /*
3313 * We don't estimate RTT with SYNs, so each packet starts with the default
3314 * RTT and each timer step has a fixed timeout value.
3315 */
3316 #define SYN_CACHE_TIMER_ARM(sc) \
3317 do { \
3318 TCPT_RANGESET((sc)->sc_rxtcur, \
3319 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3320 TCPTV_REXMTMAX); \
3321 callout_reset(&(sc)->sc_timer, \
3322 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3323 } while (/*CONSTCOND*/0)
3324
3325 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3326
3327 static inline void
3328 syn_cache_rm(struct syn_cache *sc)
3329 {
3330 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3331 sc, sc_bucketq);
3332 sc->sc_tp = NULL;
3333 LIST_REMOVE(sc, sc_tpq);
3334 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3335 callout_stop(&sc->sc_timer);
3336 syn_cache_count--;
3337 }
3338
3339 static inline void
3340 syn_cache_put(struct syn_cache *sc)
3341 {
3342 if (sc->sc_ipopts)
3343 (void) m_free(sc->sc_ipopts);
3344 rtcache_free(&sc->sc_route);
3345 if (callout_invoking(&sc->sc_timer))
3346 sc->sc_flags |= SCF_DEAD;
3347 else {
3348 callout_destroy(&sc->sc_timer);
3349 pool_put(&syn_cache_pool, sc);
3350 }
3351 }
3352
3353 void
3354 syn_cache_init(void)
3355 {
3356 int i;
3357
3358 /* Initialize the hash buckets. */
3359 for (i = 0; i < tcp_syn_cache_size; i++)
3360 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3361 }
3362
3363 void
3364 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3365 {
3366 struct syn_cache_head *scp;
3367 struct syn_cache *sc2;
3368 int s;
3369
3370 /*
3371 * If there are no entries in the hash table, reinitialize
3372 * the hash secrets.
3373 */
3374 if (syn_cache_count == 0) {
3375 syn_hash1 = arc4random();
3376 syn_hash2 = arc4random();
3377 }
3378
3379 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3380 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3381 scp = &tcp_syn_cache[sc->sc_bucketidx];
3382
3383 /*
3384 * Make sure that we don't overflow the per-bucket
3385 * limit or the total cache size limit.
3386 */
3387 s = splsoftnet();
3388 if (scp->sch_length >= tcp_syn_bucket_limit) {
3389 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3390 /*
3391 * The bucket is full. Toss the oldest element in the
3392 * bucket. This will be the first entry in the bucket.
3393 */
3394 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3395 #ifdef DIAGNOSTIC
3396 /*
3397 * This should never happen; we should always find an
3398 * entry in our bucket.
3399 */
3400 if (sc2 == NULL)
3401 panic("syn_cache_insert: bucketoverflow: impossible");
3402 #endif
3403 syn_cache_rm(sc2);
3404 syn_cache_put(sc2); /* calls pool_put but see spl above */
3405 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3406 struct syn_cache_head *scp2, *sce;
3407
3408 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3409 /*
3410 * The cache is full. Toss the oldest entry in the
3411 * first non-empty bucket we can find.
3412 *
3413 * XXX We would really like to toss the oldest
3414 * entry in the cache, but we hope that this
3415 * condition doesn't happen very often.
3416 */
3417 scp2 = scp;
3418 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3419 sce = &tcp_syn_cache[tcp_syn_cache_size];
3420 for (++scp2; scp2 != scp; scp2++) {
3421 if (scp2 >= sce)
3422 scp2 = &tcp_syn_cache[0];
3423 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3424 break;
3425 }
3426 #ifdef DIAGNOSTIC
3427 /*
3428 * This should never happen; we should always find a
3429 * non-empty bucket.
3430 */
3431 if (scp2 == scp)
3432 panic("syn_cache_insert: cacheoverflow: "
3433 "impossible");
3434 #endif
3435 }
3436 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3437 syn_cache_rm(sc2);
3438 syn_cache_put(sc2); /* calls pool_put but see spl above */
3439 }
3440
3441 /*
3442 * Initialize the entry's timer.
3443 */
3444 sc->sc_rxttot = 0;
3445 sc->sc_rxtshift = 0;
3446 SYN_CACHE_TIMER_ARM(sc);
3447
3448 /* Link it from tcpcb entry */
3449 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3450
3451 /* Put it into the bucket. */
3452 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3453 scp->sch_length++;
3454 syn_cache_count++;
3455
3456 TCP_STATINC(TCP_STAT_SC_ADDED);
3457 splx(s);
3458 }
3459
3460 /*
3461 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3462 * If we have retransmitted an entry the maximum number of times, expire
3463 * that entry.
3464 */
3465 void
3466 syn_cache_timer(void *arg)
3467 {
3468 struct syn_cache *sc = arg;
3469 int s;
3470
3471 s = splsoftnet();
3472 callout_ack(&sc->sc_timer);
3473
3474 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3475 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3476 callout_destroy(&sc->sc_timer);
3477 pool_put(&syn_cache_pool, sc);
3478 splx(s);
3479 return;
3480 }
3481
3482 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3483 /* Drop it -- too many retransmissions. */
3484 goto dropit;
3485 }
3486
3487 /*
3488 * Compute the total amount of time this entry has
3489 * been on a queue. If this entry has been on longer
3490 * than the keep alive timer would allow, expire it.
3491 */
3492 sc->sc_rxttot += sc->sc_rxtcur;
3493 if (sc->sc_rxttot >= tcp_keepinit)
3494 goto dropit;
3495
3496 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3497 (void) syn_cache_respond(sc, NULL);
3498
3499 /* Advance the timer back-off. */
3500 sc->sc_rxtshift++;
3501 SYN_CACHE_TIMER_ARM(sc);
3502
3503 splx(s);
3504 return;
3505
3506 dropit:
3507 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3508 syn_cache_rm(sc);
3509 syn_cache_put(sc); /* calls pool_put but see spl above */
3510 splx(s);
3511 }
3512
3513 /*
3514 * Remove syn cache created by the specified tcb entry,
3515 * because this does not make sense to keep them
3516 * (if there's no tcb entry, syn cache entry will never be used)
3517 */
3518 void
3519 syn_cache_cleanup(struct tcpcb *tp)
3520 {
3521 struct syn_cache *sc, *nsc;
3522 int s;
3523
3524 s = splsoftnet();
3525
3526 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3527 nsc = LIST_NEXT(sc, sc_tpq);
3528
3529 #ifdef DIAGNOSTIC
3530 if (sc->sc_tp != tp)
3531 panic("invalid sc_tp in syn_cache_cleanup");
3532 #endif
3533 syn_cache_rm(sc);
3534 syn_cache_put(sc); /* calls pool_put but see spl above */
3535 }
3536 /* just for safety */
3537 LIST_INIT(&tp->t_sc);
3538
3539 splx(s);
3540 }
3541
3542 /*
3543 * Find an entry in the syn cache.
3544 */
3545 struct syn_cache *
3546 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3547 struct syn_cache_head **headp)
3548 {
3549 struct syn_cache *sc;
3550 struct syn_cache_head *scp;
3551 u_int32_t hash;
3552 int s;
3553
3554 SYN_HASHALL(hash, src, dst);
3555
3556 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3557 *headp = scp;
3558 s = splsoftnet();
3559 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3560 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3561 if (sc->sc_hash != hash)
3562 continue;
3563 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3564 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3565 splx(s);
3566 return (sc);
3567 }
3568 }
3569 splx(s);
3570 return (NULL);
3571 }
3572
3573 /*
3574 * This function gets called when we receive an ACK for a
3575 * socket in the LISTEN state. We look up the connection
3576 * in the syn cache, and if its there, we pull it out of
3577 * the cache and turn it into a full-blown connection in
3578 * the SYN-RECEIVED state.
3579 *
3580 * The return values may not be immediately obvious, and their effects
3581 * can be subtle, so here they are:
3582 *
3583 * NULL SYN was not found in cache; caller should drop the
3584 * packet and send an RST.
3585 *
3586 * -1 We were unable to create the new connection, and are
3587 * aborting it. An ACK,RST is being sent to the peer
3588 * (unless we got screwey sequence numbners; see below),
3589 * because the 3-way handshake has been completed. Caller
3590 * should not free the mbuf, since we may be using it. If
3591 * we are not, we will free it.
3592 *
3593 * Otherwise, the return value is a pointer to the new socket
3594 * associated with the connection.
3595 */
3596 struct socket *
3597 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3598 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3599 struct socket *so, struct mbuf *m)
3600 {
3601 struct syn_cache *sc;
3602 struct syn_cache_head *scp;
3603 struct inpcb *inp = NULL;
3604 #ifdef INET6
3605 struct in6pcb *in6p = NULL;
3606 #endif
3607 struct tcpcb *tp = 0;
3608 struct mbuf *am;
3609 int s;
3610 struct socket *oso;
3611
3612 s = splsoftnet();
3613 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3614 splx(s);
3615 return (NULL);
3616 }
3617
3618 /*
3619 * Verify the sequence and ack numbers. Try getting the correct
3620 * response again.
3621 */
3622 if ((th->th_ack != sc->sc_iss + 1) ||
3623 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3624 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3625 (void) syn_cache_respond(sc, m);
3626 splx(s);
3627 return ((struct socket *)(-1));
3628 }
3629
3630 /* Remove this cache entry */
3631 syn_cache_rm(sc);
3632 splx(s);
3633
3634 /*
3635 * Ok, create the full blown connection, and set things up
3636 * as they would have been set up if we had created the
3637 * connection when the SYN arrived. If we can't create
3638 * the connection, abort it.
3639 */
3640 /*
3641 * inp still has the OLD in_pcb stuff, set the
3642 * v6-related flags on the new guy, too. This is
3643 * done particularly for the case where an AF_INET6
3644 * socket is bound only to a port, and a v4 connection
3645 * comes in on that port.
3646 * we also copy the flowinfo from the original pcb
3647 * to the new one.
3648 */
3649 oso = so;
3650 so = sonewconn(so, SS_ISCONNECTED);
3651 if (so == NULL)
3652 goto resetandabort;
3653
3654 switch (so->so_proto->pr_domain->dom_family) {
3655 #ifdef INET
3656 case AF_INET:
3657 inp = sotoinpcb(so);
3658 break;
3659 #endif
3660 #ifdef INET6
3661 case AF_INET6:
3662 in6p = sotoin6pcb(so);
3663 break;
3664 #endif
3665 }
3666 switch (src->sa_family) {
3667 #ifdef INET
3668 case AF_INET:
3669 if (inp) {
3670 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3671 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3672 inp->inp_options = ip_srcroute();
3673 in_pcbstate(inp, INP_BOUND);
3674 if (inp->inp_options == NULL) {
3675 inp->inp_options = sc->sc_ipopts;
3676 sc->sc_ipopts = NULL;
3677 }
3678 }
3679 #ifdef INET6
3680 else if (in6p) {
3681 /* IPv4 packet to AF_INET6 socket */
3682 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3683 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3684 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3685 &in6p->in6p_laddr.s6_addr32[3],
3686 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3687 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3688 in6totcpcb(in6p)->t_family = AF_INET;
3689 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3690 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3691 else
3692 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3693 in6_pcbstate(in6p, IN6P_BOUND);
3694 }
3695 #endif
3696 break;
3697 #endif
3698 #ifdef INET6
3699 case AF_INET6:
3700 if (in6p) {
3701 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3702 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3703 in6_pcbstate(in6p, IN6P_BOUND);
3704 }
3705 break;
3706 #endif
3707 }
3708 #ifdef INET6
3709 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3710 struct in6pcb *oin6p = sotoin6pcb(oso);
3711 /* inherit socket options from the listening socket */
3712 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3713 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3714 m_freem(in6p->in6p_options);
3715 in6p->in6p_options = 0;
3716 }
3717 ip6_savecontrol(in6p, &in6p->in6p_options,
3718 mtod(m, struct ip6_hdr *), m);
3719 }
3720 #endif
3721
3722 #if defined(IPSEC) || defined(FAST_IPSEC)
3723 /*
3724 * we make a copy of policy, instead of sharing the policy,
3725 * for better behavior in terms of SA lookup and dead SA removal.
3726 */
3727 if (inp) {
3728 /* copy old policy into new socket's */
3729 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3730 printf("tcp_input: could not copy policy\n");
3731 }
3732 #ifdef INET6
3733 else if (in6p) {
3734 /* copy old policy into new socket's */
3735 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3736 in6p->in6p_sp))
3737 printf("tcp_input: could not copy policy\n");
3738 }
3739 #endif
3740 #endif
3741
3742 /*
3743 * Give the new socket our cached route reference.
3744 */
3745 if (inp) {
3746 rtcache_copy(&inp->inp_route, &sc->sc_route);
3747 rtcache_free(&sc->sc_route);
3748 }
3749 #ifdef INET6
3750 else {
3751 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3752 rtcache_free(&sc->sc_route);
3753 }
3754 #endif
3755
3756 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3757 if (am == NULL)
3758 goto resetandabort;
3759 MCLAIM(am, &tcp_mowner);
3760 am->m_len = src->sa_len;
3761 bcopy(src, mtod(am, void *), src->sa_len);
3762 if (inp) {
3763 if (in_pcbconnect(inp, am, &lwp0)) {
3764 (void) m_free(am);
3765 goto resetandabort;
3766 }
3767 }
3768 #ifdef INET6
3769 else if (in6p) {
3770 if (src->sa_family == AF_INET) {
3771 /* IPv4 packet to AF_INET6 socket */
3772 struct sockaddr_in6 *sin6;
3773 sin6 = mtod(am, struct sockaddr_in6 *);
3774 am->m_len = sizeof(*sin6);
3775 bzero(sin6, sizeof(*sin6));
3776 sin6->sin6_family = AF_INET6;
3777 sin6->sin6_len = sizeof(*sin6);
3778 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3779 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3780 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3781 &sin6->sin6_addr.s6_addr32[3],
3782 sizeof(sin6->sin6_addr.s6_addr32[3]));
3783 }
3784 if (in6_pcbconnect(in6p, am, NULL)) {
3785 (void) m_free(am);
3786 goto resetandabort;
3787 }
3788 }
3789 #endif
3790 else {
3791 (void) m_free(am);
3792 goto resetandabort;
3793 }
3794 (void) m_free(am);
3795
3796 if (inp)
3797 tp = intotcpcb(inp);
3798 #ifdef INET6
3799 else if (in6p)
3800 tp = in6totcpcb(in6p);
3801 #endif
3802 else
3803 tp = NULL;
3804 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3805 if (sc->sc_request_r_scale != 15) {
3806 tp->requested_s_scale = sc->sc_requested_s_scale;
3807 tp->request_r_scale = sc->sc_request_r_scale;
3808 tp->snd_scale = sc->sc_requested_s_scale;
3809 tp->rcv_scale = sc->sc_request_r_scale;
3810 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3811 }
3812 if (sc->sc_flags & SCF_TIMESTAMP)
3813 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3814 tp->ts_timebase = sc->sc_timebase;
3815
3816 tp->t_template = tcp_template(tp);
3817 if (tp->t_template == 0) {
3818 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3819 so = NULL;
3820 m_freem(m);
3821 goto abort;
3822 }
3823
3824 tp->iss = sc->sc_iss;
3825 tp->irs = sc->sc_irs;
3826 tcp_sendseqinit(tp);
3827 tcp_rcvseqinit(tp);
3828 tp->t_state = TCPS_SYN_RECEIVED;
3829 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3830 TCP_STATINC(TCP_STAT_ACCEPTS);
3831
3832 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3833 tp->t_flags |= TF_WILL_SACK;
3834
3835 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3836 tp->t_flags |= TF_ECN_PERMIT;
3837
3838 #ifdef TCP_SIGNATURE
3839 if (sc->sc_flags & SCF_SIGNATURE)
3840 tp->t_flags |= TF_SIGNATURE;
3841 #endif
3842
3843 /* Initialize tp->t_ourmss before we deal with the peer's! */
3844 tp->t_ourmss = sc->sc_ourmaxseg;
3845 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3846
3847 /*
3848 * Initialize the initial congestion window. If we
3849 * had to retransmit the SYN,ACK, we must initialize cwnd
3850 * to 1 segment (i.e. the Loss Window).
3851 */
3852 if (sc->sc_rxtshift)
3853 tp->snd_cwnd = tp->t_peermss;
3854 else {
3855 int ss = tcp_init_win;
3856 #ifdef INET
3857 if (inp != NULL && in_localaddr(inp->inp_faddr))
3858 ss = tcp_init_win_local;
3859 #endif
3860 #ifdef INET6
3861 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3862 ss = tcp_init_win_local;
3863 #endif
3864 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3865 }
3866
3867 tcp_rmx_rtt(tp);
3868 tp->snd_wl1 = sc->sc_irs;
3869 tp->rcv_up = sc->sc_irs + 1;
3870
3871 /*
3872 * This is what whould have happened in tcp_output() when
3873 * the SYN,ACK was sent.
3874 */
3875 tp->snd_up = tp->snd_una;
3876 tp->snd_max = tp->snd_nxt = tp->iss+1;
3877 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3878 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3879 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3880 tp->last_ack_sent = tp->rcv_nxt;
3881 tp->t_partialacks = -1;
3882 tp->t_dupacks = 0;
3883
3884 TCP_STATINC(TCP_STAT_SC_COMPLETED);
3885 s = splsoftnet();
3886 syn_cache_put(sc);
3887 splx(s);
3888 return (so);
3889
3890 resetandabort:
3891 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3892 abort:
3893 if (so != NULL)
3894 (void) soabort(so);
3895 s = splsoftnet();
3896 syn_cache_put(sc);
3897 splx(s);
3898 TCP_STATINC(TCP_STAT_SC_ABORTED);
3899 return ((struct socket *)(-1));
3900 }
3901
3902 /*
3903 * This function is called when we get a RST for a
3904 * non-existent connection, so that we can see if the
3905 * connection is in the syn cache. If it is, zap it.
3906 */
3907
3908 void
3909 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3910 {
3911 struct syn_cache *sc;
3912 struct syn_cache_head *scp;
3913 int s = splsoftnet();
3914
3915 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3916 splx(s);
3917 return;
3918 }
3919 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3920 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3921 splx(s);
3922 return;
3923 }
3924 syn_cache_rm(sc);
3925 TCP_STATINC(TCP_STAT_SC_RESET);
3926 syn_cache_put(sc); /* calls pool_put but see spl above */
3927 splx(s);
3928 }
3929
3930 void
3931 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3932 struct tcphdr *th)
3933 {
3934 struct syn_cache *sc;
3935 struct syn_cache_head *scp;
3936 int s;
3937
3938 s = splsoftnet();
3939 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3940 splx(s);
3941 return;
3942 }
3943 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3944 if (ntohl (th->th_seq) != sc->sc_iss) {
3945 splx(s);
3946 return;
3947 }
3948
3949 /*
3950 * If we've retransmitted 3 times and this is our second error,
3951 * we remove the entry. Otherwise, we allow it to continue on.
3952 * This prevents us from incorrectly nuking an entry during a
3953 * spurious network outage.
3954 *
3955 * See tcp_notify().
3956 */
3957 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3958 sc->sc_flags |= SCF_UNREACH;
3959 splx(s);
3960 return;
3961 }
3962
3963 syn_cache_rm(sc);
3964 TCP_STATINC(TCP_STAT_SC_UNREACH);
3965 syn_cache_put(sc); /* calls pool_put but see spl above */
3966 splx(s);
3967 }
3968
3969 /*
3970 * Given a LISTEN socket and an inbound SYN request, add
3971 * this to the syn cache, and send back a segment:
3972 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3973 * to the source.
3974 *
3975 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3976 * Doing so would require that we hold onto the data and deliver it
3977 * to the application. However, if we are the target of a SYN-flood
3978 * DoS attack, an attacker could send data which would eventually
3979 * consume all available buffer space if it were ACKed. By not ACKing
3980 * the data, we avoid this DoS scenario.
3981 */
3982
3983 int
3984 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3985 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3986 int optlen, struct tcp_opt_info *oi)
3987 {
3988 struct tcpcb tb, *tp;
3989 long win;
3990 struct syn_cache *sc;
3991 struct syn_cache_head *scp;
3992 struct mbuf *ipopts;
3993 struct tcp_opt_info opti;
3994 int s;
3995
3996 tp = sototcpcb(so);
3997
3998 bzero(&opti, sizeof(opti));
3999
4000 /*
4001 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4002 *
4003 * Note this check is performed in tcp_input() very early on.
4004 */
4005
4006 /*
4007 * Initialize some local state.
4008 */
4009 win = sbspace(&so->so_rcv);
4010 if (win > TCP_MAXWIN)
4011 win = TCP_MAXWIN;
4012
4013 switch (src->sa_family) {
4014 #ifdef INET
4015 case AF_INET:
4016 /*
4017 * Remember the IP options, if any.
4018 */
4019 ipopts = ip_srcroute();
4020 break;
4021 #endif
4022 default:
4023 ipopts = NULL;
4024 }
4025
4026 #ifdef TCP_SIGNATURE
4027 if (optp || (tp->t_flags & TF_SIGNATURE))
4028 #else
4029 if (optp)
4030 #endif
4031 {
4032 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4033 #ifdef TCP_SIGNATURE
4034 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4035 #endif
4036 tb.t_state = TCPS_LISTEN;
4037 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4038 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4039 return (0);
4040 } else
4041 tb.t_flags = 0;
4042
4043 /*
4044 * See if we already have an entry for this connection.
4045 * If we do, resend the SYN,ACK. We do not count this
4046 * as a retransmission (XXX though maybe we should).
4047 */
4048 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4049 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4050 if (ipopts) {
4051 /*
4052 * If we were remembering a previous source route,
4053 * forget it and use the new one we've been given.
4054 */
4055 if (sc->sc_ipopts)
4056 (void) m_free(sc->sc_ipopts);
4057 sc->sc_ipopts = ipopts;
4058 }
4059 sc->sc_timestamp = tb.ts_recent;
4060 if (syn_cache_respond(sc, m) == 0) {
4061 uint64_t *tcps = TCP_STAT_GETREF();
4062 tcps[TCP_STAT_SNDACKS]++;
4063 tcps[TCP_STAT_SNDTOTAL]++;
4064 TCP_STAT_PUTREF();
4065 }
4066 return (1);
4067 }
4068
4069 s = splsoftnet();
4070 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4071 splx(s);
4072 if (sc == NULL) {
4073 if (ipopts)
4074 (void) m_free(ipopts);
4075 return (0);
4076 }
4077
4078 /*
4079 * Fill in the cache, and put the necessary IP and TCP
4080 * options into the reply.
4081 */
4082 bzero(sc, sizeof(struct syn_cache));
4083 callout_init(&sc->sc_timer, 0);
4084 bcopy(src, &sc->sc_src, src->sa_len);
4085 bcopy(dst, &sc->sc_dst, dst->sa_len);
4086 sc->sc_flags = 0;
4087 sc->sc_ipopts = ipopts;
4088 sc->sc_irs = th->th_seq;
4089 switch (src->sa_family) {
4090 #ifdef INET
4091 case AF_INET:
4092 {
4093 struct sockaddr_in *srcin = (void *) src;
4094 struct sockaddr_in *dstin = (void *) dst;
4095
4096 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4097 &srcin->sin_addr, dstin->sin_port,
4098 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4099 break;
4100 }
4101 #endif /* INET */
4102 #ifdef INET6
4103 case AF_INET6:
4104 {
4105 struct sockaddr_in6 *srcin6 = (void *) src;
4106 struct sockaddr_in6 *dstin6 = (void *) dst;
4107
4108 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4109 &srcin6->sin6_addr, dstin6->sin6_port,
4110 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4111 break;
4112 }
4113 #endif /* INET6 */
4114 }
4115 sc->sc_peermaxseg = oi->maxseg;
4116 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4117 m->m_pkthdr.rcvif : NULL,
4118 sc->sc_src.sa.sa_family);
4119 sc->sc_win = win;
4120 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4121 sc->sc_timestamp = tb.ts_recent;
4122 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4123 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4124 sc->sc_flags |= SCF_TIMESTAMP;
4125 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4126 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4127 sc->sc_requested_s_scale = tb.requested_s_scale;
4128 sc->sc_request_r_scale = 0;
4129 /*
4130 * Pick the smallest possible scaling factor that
4131 * will still allow us to scale up to sb_max.
4132 *
4133 * We do this because there are broken firewalls that
4134 * will corrupt the window scale option, leading to
4135 * the other endpoint believing that our advertised
4136 * window is unscaled. At scale factors larger than
4137 * 5 the unscaled window will drop below 1500 bytes,
4138 * leading to serious problems when traversing these
4139 * broken firewalls.
4140 *
4141 * With the default sbmax of 256K, a scale factor
4142 * of 3 will be chosen by this algorithm. Those who
4143 * choose a larger sbmax should watch out
4144 * for the compatiblity problems mentioned above.
4145 *
4146 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4147 * or <SYN,ACK>) segment itself is never scaled.
4148 */
4149 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4150 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4151 sc->sc_request_r_scale++;
4152 } else {
4153 sc->sc_requested_s_scale = 15;
4154 sc->sc_request_r_scale = 15;
4155 }
4156 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4157 sc->sc_flags |= SCF_SACK_PERMIT;
4158
4159 /*
4160 * ECN setup packet recieved.
4161 */
4162 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4163 sc->sc_flags |= SCF_ECN_PERMIT;
4164
4165 #ifdef TCP_SIGNATURE
4166 if (tb.t_flags & TF_SIGNATURE)
4167 sc->sc_flags |= SCF_SIGNATURE;
4168 #endif
4169 sc->sc_tp = tp;
4170 if (syn_cache_respond(sc, m) == 0) {
4171 uint64_t *tcps = TCP_STAT_GETREF();
4172 tcps[TCP_STAT_SNDACKS]++;
4173 tcps[TCP_STAT_SNDTOTAL]++;
4174 TCP_STAT_PUTREF();
4175 syn_cache_insert(sc, tp);
4176 } else {
4177 s = splsoftnet();
4178 syn_cache_put(sc);
4179 splx(s);
4180 TCP_STATINC(TCP_STAT_SC_DROPPED);
4181 }
4182 return (1);
4183 }
4184
4185 int
4186 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4187 {
4188 #ifdef INET6
4189 struct rtentry *rt;
4190 #endif
4191 struct route *ro;
4192 u_int8_t *optp;
4193 int optlen, error;
4194 u_int16_t tlen;
4195 struct ip *ip = NULL;
4196 #ifdef INET6
4197 struct ip6_hdr *ip6 = NULL;
4198 #endif
4199 struct tcpcb *tp = NULL;
4200 struct tcphdr *th;
4201 u_int hlen;
4202 struct socket *so;
4203
4204 ro = &sc->sc_route;
4205 switch (sc->sc_src.sa.sa_family) {
4206 case AF_INET:
4207 hlen = sizeof(struct ip);
4208 break;
4209 #ifdef INET6
4210 case AF_INET6:
4211 hlen = sizeof(struct ip6_hdr);
4212 break;
4213 #endif
4214 default:
4215 if (m)
4216 m_freem(m);
4217 return (EAFNOSUPPORT);
4218 }
4219
4220 /* Compute the size of the TCP options. */
4221 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4222 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4223 #ifdef TCP_SIGNATURE
4224 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4225 #endif
4226 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4227
4228 tlen = hlen + sizeof(struct tcphdr) + optlen;
4229
4230 /*
4231 * Create the IP+TCP header from scratch.
4232 */
4233 if (m)
4234 m_freem(m);
4235 #ifdef DIAGNOSTIC
4236 if (max_linkhdr + tlen > MCLBYTES)
4237 return (ENOBUFS);
4238 #endif
4239 MGETHDR(m, M_DONTWAIT, MT_DATA);
4240 if (m && tlen > MHLEN) {
4241 MCLGET(m, M_DONTWAIT);
4242 if ((m->m_flags & M_EXT) == 0) {
4243 m_freem(m);
4244 m = NULL;
4245 }
4246 }
4247 if (m == NULL)
4248 return (ENOBUFS);
4249 MCLAIM(m, &tcp_tx_mowner);
4250
4251 /* Fixup the mbuf. */
4252 m->m_data += max_linkhdr;
4253 m->m_len = m->m_pkthdr.len = tlen;
4254 if (sc->sc_tp) {
4255 tp = sc->sc_tp;
4256 if (tp->t_inpcb)
4257 so = tp->t_inpcb->inp_socket;
4258 #ifdef INET6
4259 else if (tp->t_in6pcb)
4260 so = tp->t_in6pcb->in6p_socket;
4261 #endif
4262 else
4263 so = NULL;
4264 } else
4265 so = NULL;
4266 m->m_pkthdr.rcvif = NULL;
4267 memset(mtod(m, u_char *), 0, tlen);
4268
4269 switch (sc->sc_src.sa.sa_family) {
4270 case AF_INET:
4271 ip = mtod(m, struct ip *);
4272 ip->ip_v = 4;
4273 ip->ip_dst = sc->sc_src.sin.sin_addr;
4274 ip->ip_src = sc->sc_dst.sin.sin_addr;
4275 ip->ip_p = IPPROTO_TCP;
4276 th = (struct tcphdr *)(ip + 1);
4277 th->th_dport = sc->sc_src.sin.sin_port;
4278 th->th_sport = sc->sc_dst.sin.sin_port;
4279 break;
4280 #ifdef INET6
4281 case AF_INET6:
4282 ip6 = mtod(m, struct ip6_hdr *);
4283 ip6->ip6_vfc = IPV6_VERSION;
4284 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4285 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4286 ip6->ip6_nxt = IPPROTO_TCP;
4287 /* ip6_plen will be updated in ip6_output() */
4288 th = (struct tcphdr *)(ip6 + 1);
4289 th->th_dport = sc->sc_src.sin6.sin6_port;
4290 th->th_sport = sc->sc_dst.sin6.sin6_port;
4291 break;
4292 #endif
4293 default:
4294 th = NULL;
4295 }
4296
4297 th->th_seq = htonl(sc->sc_iss);
4298 th->th_ack = htonl(sc->sc_irs + 1);
4299 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4300 th->th_flags = TH_SYN|TH_ACK;
4301 th->th_win = htons(sc->sc_win);
4302 /* th_sum already 0 */
4303 /* th_urp already 0 */
4304
4305 /* Tack on the TCP options. */
4306 optp = (u_int8_t *)(th + 1);
4307 *optp++ = TCPOPT_MAXSEG;
4308 *optp++ = 4;
4309 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4310 *optp++ = sc->sc_ourmaxseg & 0xff;
4311
4312 if (sc->sc_request_r_scale != 15) {
4313 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4314 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4315 sc->sc_request_r_scale);
4316 optp += 4;
4317 }
4318
4319 if (sc->sc_flags & SCF_TIMESTAMP) {
4320 u_int32_t *lp = (u_int32_t *)(optp);
4321 /* Form timestamp option as shown in appendix A of RFC 1323. */
4322 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4323 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4324 *lp = htonl(sc->sc_timestamp);
4325 optp += TCPOLEN_TSTAMP_APPA;
4326 }
4327
4328 if (sc->sc_flags & SCF_SACK_PERMIT) {
4329 u_int8_t *p = optp;
4330
4331 /* Let the peer know that we will SACK. */
4332 p[0] = TCPOPT_SACK_PERMITTED;
4333 p[1] = 2;
4334 p[2] = TCPOPT_NOP;
4335 p[3] = TCPOPT_NOP;
4336 optp += 4;
4337 }
4338
4339 /*
4340 * Send ECN SYN-ACK setup packet.
4341 * Routes can be asymetric, so, even if we receive a packet
4342 * with ECE and CWR set, we must not assume no one will block
4343 * the ECE packet we are about to send.
4344 */
4345 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4346 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4347 th->th_flags |= TH_ECE;
4348 TCP_STATINC(TCP_STAT_ECN_SHS);
4349
4350 /*
4351 * draft-ietf-tcpm-ecnsyn-00.txt
4352 *
4353 * "[...] a TCP node MAY respond to an ECN-setup
4354 * SYN packet by setting ECT in the responding
4355 * ECN-setup SYN/ACK packet, indicating to routers
4356 * that the SYN/ACK packet is ECN-Capable.
4357 * This allows a congested router along the path
4358 * to mark the packet instead of dropping the
4359 * packet as an indication of congestion."
4360 *
4361 * "[...] There can be a great benefit in setting
4362 * an ECN-capable codepoint in SYN/ACK packets [...]
4363 * Congestion is most likely to occur in
4364 * the server-to-client direction. As a result,
4365 * setting an ECN-capable codepoint in SYN/ACK
4366 * packets can reduce the occurence of three-second
4367 * retransmit timeouts resulting from the drop
4368 * of SYN/ACK packets."
4369 *
4370 * Page 4 and 6, January 2006.
4371 */
4372
4373 switch (sc->sc_src.sa.sa_family) {
4374 #ifdef INET
4375 case AF_INET:
4376 ip->ip_tos |= IPTOS_ECN_ECT0;
4377 break;
4378 #endif
4379 #ifdef INET6
4380 case AF_INET6:
4381 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4382 break;
4383 #endif
4384 }
4385 TCP_STATINC(TCP_STAT_ECN_ECT);
4386 }
4387
4388 #ifdef TCP_SIGNATURE
4389 if (sc->sc_flags & SCF_SIGNATURE) {
4390 struct secasvar *sav;
4391 u_int8_t *sigp;
4392
4393 sav = tcp_signature_getsav(m, th);
4394
4395 if (sav == NULL) {
4396 if (m)
4397 m_freem(m);
4398 return (EPERM);
4399 }
4400
4401 *optp++ = TCPOPT_SIGNATURE;
4402 *optp++ = TCPOLEN_SIGNATURE;
4403 sigp = optp;
4404 bzero(optp, TCP_SIGLEN);
4405 optp += TCP_SIGLEN;
4406 *optp++ = TCPOPT_NOP;
4407 *optp++ = TCPOPT_EOL;
4408
4409 (void)tcp_signature(m, th, hlen, sav, sigp);
4410
4411 key_sa_recordxfer(sav, m);
4412 #ifdef FAST_IPSEC
4413 KEY_FREESAV(&sav);
4414 #else
4415 key_freesav(sav);
4416 #endif
4417 }
4418 #endif
4419
4420 /* Compute the packet's checksum. */
4421 switch (sc->sc_src.sa.sa_family) {
4422 case AF_INET:
4423 ip->ip_len = htons(tlen - hlen);
4424 th->th_sum = 0;
4425 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4426 break;
4427 #ifdef INET6
4428 case AF_INET6:
4429 ip6->ip6_plen = htons(tlen - hlen);
4430 th->th_sum = 0;
4431 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4432 break;
4433 #endif
4434 }
4435
4436 /*
4437 * Fill in some straggling IP bits. Note the stack expects
4438 * ip_len to be in host order, for convenience.
4439 */
4440 switch (sc->sc_src.sa.sa_family) {
4441 #ifdef INET
4442 case AF_INET:
4443 ip->ip_len = htons(tlen);
4444 ip->ip_ttl = ip_defttl;
4445 /* XXX tos? */
4446 break;
4447 #endif
4448 #ifdef INET6
4449 case AF_INET6:
4450 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4451 ip6->ip6_vfc |= IPV6_VERSION;
4452 ip6->ip6_plen = htons(tlen - hlen);
4453 /* ip6_hlim will be initialized afterwards */
4454 /* XXX flowlabel? */
4455 break;
4456 #endif
4457 }
4458
4459 /* XXX use IPsec policy on listening socket, on SYN ACK */
4460 tp = sc->sc_tp;
4461
4462 switch (sc->sc_src.sa.sa_family) {
4463 #ifdef INET
4464 case AF_INET:
4465 error = ip_output(m, sc->sc_ipopts, ro,
4466 (ip_mtudisc ? IP_MTUDISC : 0),
4467 (struct ip_moptions *)NULL, so);
4468 break;
4469 #endif
4470 #ifdef INET6
4471 case AF_INET6:
4472 ip6->ip6_hlim = in6_selecthlim(NULL,
4473 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4474 : NULL);
4475
4476 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4477 break;
4478 #endif
4479 default:
4480 error = EAFNOSUPPORT;
4481 break;
4482 }
4483 return (error);
4484 }
4485