tcp_input.c revision 1.286 1 /* $NetBSD: tcp_input.c,v 1.286 2008/04/24 11:38:38 ad Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 * 3. All advertising materials mentioning features or use of this software
93 * must display the following acknowledgement:
94 * This product includes software developed by the NetBSD
95 * Foundation, Inc. and its contributors.
96 * 4. Neither the name of The NetBSD Foundation nor the names of its
97 * contributors may be used to endorse or promote products derived
98 * from this software without specific prior written permission.
99 *
100 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
101 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
102 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
103 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
104 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
105 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
106 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
107 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
108 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
109 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
110 * POSSIBILITY OF SUCH DAMAGE.
111 */
112
113 /*
114 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
115 * The Regents of the University of California. All rights reserved.
116 *
117 * Redistribution and use in source and binary forms, with or without
118 * modification, are permitted provided that the following conditions
119 * are met:
120 * 1. Redistributions of source code must retain the above copyright
121 * notice, this list of conditions and the following disclaimer.
122 * 2. Redistributions in binary form must reproduce the above copyright
123 * notice, this list of conditions and the following disclaimer in the
124 * documentation and/or other materials provided with the distribution.
125 * 3. Neither the name of the University nor the names of its contributors
126 * may be used to endorse or promote products derived from this software
127 * without specific prior written permission.
128 *
129 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
130 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
131 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
132 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
133 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
134 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
135 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
136 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
137 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
138 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
139 * SUCH DAMAGE.
140 *
141 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
142 */
143
144 /*
145 * TODO list for SYN cache stuff:
146 *
147 * Find room for a "state" field, which is needed to keep a
148 * compressed state for TIME_WAIT TCBs. It's been noted already
149 * that this is fairly important for very high-volume web and
150 * mail servers, which use a large number of short-lived
151 * connections.
152 */
153
154 #include <sys/cdefs.h>
155 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.286 2008/04/24 11:38:38 ad Exp $");
156
157 #include "opt_inet.h"
158 #include "opt_ipsec.h"
159 #include "opt_inet_csum.h"
160 #include "opt_tcp_debug.h"
161
162 #include <sys/param.h>
163 #include <sys/systm.h>
164 #include <sys/malloc.h>
165 #include <sys/mbuf.h>
166 #include <sys/protosw.h>
167 #include <sys/socket.h>
168 #include <sys/socketvar.h>
169 #include <sys/errno.h>
170 #include <sys/syslog.h>
171 #include <sys/pool.h>
172 #include <sys/domain.h>
173 #include <sys/kernel.h>
174 #ifdef TCP_SIGNATURE
175 #include <sys/md5.h>
176 #endif
177 #include <sys/lwp.h> /* for lwp0 */
178
179 #include <net/if.h>
180 #include <net/route.h>
181 #include <net/if_types.h>
182
183 #include <netinet/in.h>
184 #include <netinet/in_systm.h>
185 #include <netinet/ip.h>
186 #include <netinet/in_pcb.h>
187 #include <netinet/in_var.h>
188 #include <netinet/ip_var.h>
189 #include <netinet/in_offload.h>
190
191 #ifdef INET6
192 #ifndef INET
193 #include <netinet/in.h>
194 #endif
195 #include <netinet/ip6.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_pcb.h>
198 #include <netinet6/ip6_var.h>
199 #include <netinet6/in6_var.h>
200 #include <netinet/icmp6.h>
201 #include <netinet6/nd6.h>
202 #ifdef TCP_SIGNATURE
203 #include <netinet6/scope6_var.h>
204 #endif
205 #endif
206
207 #ifndef INET6
208 /* always need ip6.h for IP6_EXTHDR_GET */
209 #include <netinet/ip6.h>
210 #endif
211
212 #include <netinet/tcp.h>
213 #include <netinet/tcp_fsm.h>
214 #include <netinet/tcp_seq.h>
215 #include <netinet/tcp_timer.h>
216 #include <netinet/tcp_var.h>
217 #include <netinet/tcp_private.h>
218 #include <netinet/tcpip.h>
219 #include <netinet/tcp_congctl.h>
220 #include <netinet/tcp_debug.h>
221
222 #include <machine/stdarg.h>
223
224 #ifdef IPSEC
225 #include <netinet6/ipsec.h>
226 #include <netinet6/ipsec_private.h>
227 #include <netkey/key.h>
228 #endif /*IPSEC*/
229 #ifdef INET6
230 #include "faith.h"
231 #if defined(NFAITH) && NFAITH > 0
232 #include <net/if_faith.h>
233 #endif
234 #endif /* IPSEC */
235
236 #ifdef FAST_IPSEC
237 #include <netipsec/ipsec.h>
238 #include <netipsec/ipsec_var.h>
239 #include <netipsec/ipsec_private.h>
240 #include <netipsec/key.h>
241 #ifdef INET6
242 #include <netipsec/ipsec6.h>
243 #endif
244 #endif /* FAST_IPSEC*/
245
246 int tcprexmtthresh = 3;
247 int tcp_log_refused;
248
249 int tcp_do_autorcvbuf = 0;
250 int tcp_autorcvbuf_inc = 16 * 1024;
251 int tcp_autorcvbuf_max = 256 * 1024;
252
253 static int tcp_rst_ppslim_count = 0;
254 static struct timeval tcp_rst_ppslim_last;
255 static int tcp_ackdrop_ppslim_count = 0;
256 static struct timeval tcp_ackdrop_ppslim_last;
257
258 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
259
260 /* for modulo comparisons of timestamps */
261 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
262 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
263
264 /*
265 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
266 */
267 #ifdef INET6
268 static inline void
269 nd6_hint(struct tcpcb *tp)
270 {
271 struct rtentry *rt;
272
273 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
274 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
275 nd6_nud_hint(rt, NULL, 0);
276 }
277 #else
278 static inline void
279 nd6_hint(struct tcpcb *tp)
280 {
281 }
282 #endif
283
284 /*
285 * Compute ACK transmission behavior. Delay the ACK unless
286 * we have already delayed an ACK (must send an ACK every two segments).
287 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
288 * option is enabled.
289 */
290 static void
291 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
292 {
293
294 if (tp->t_flags & TF_DELACK ||
295 (tcp_ack_on_push && th->th_flags & TH_PUSH))
296 tp->t_flags |= TF_ACKNOW;
297 else
298 TCP_SET_DELACK(tp);
299 }
300
301 static void
302 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
303 {
304
305 /*
306 * If we had a pending ICMP message that refers to data that have
307 * just been acknowledged, disregard the recorded ICMP message.
308 */
309 if ((tp->t_flags & TF_PMTUD_PEND) &&
310 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
311 tp->t_flags &= ~TF_PMTUD_PEND;
312
313 /*
314 * Keep track of the largest chunk of data
315 * acknowledged since last PMTU update
316 */
317 if (tp->t_pmtud_mss_acked < acked)
318 tp->t_pmtud_mss_acked = acked;
319 }
320
321 /*
322 * Convert TCP protocol fields to host order for easier processing.
323 */
324 static void
325 tcp_fields_to_host(struct tcphdr *th)
326 {
327
328 NTOHL(th->th_seq);
329 NTOHL(th->th_ack);
330 NTOHS(th->th_win);
331 NTOHS(th->th_urp);
332 }
333
334 /*
335 * ... and reverse the above.
336 */
337 static void
338 tcp_fields_to_net(struct tcphdr *th)
339 {
340
341 HTONL(th->th_seq);
342 HTONL(th->th_ack);
343 HTONS(th->th_win);
344 HTONS(th->th_urp);
345 }
346
347 #ifdef TCP_CSUM_COUNTERS
348 #include <sys/device.h>
349
350 #if defined(INET)
351 extern struct evcnt tcp_hwcsum_ok;
352 extern struct evcnt tcp_hwcsum_bad;
353 extern struct evcnt tcp_hwcsum_data;
354 extern struct evcnt tcp_swcsum;
355 #endif /* defined(INET) */
356 #if defined(INET6)
357 extern struct evcnt tcp6_hwcsum_ok;
358 extern struct evcnt tcp6_hwcsum_bad;
359 extern struct evcnt tcp6_hwcsum_data;
360 extern struct evcnt tcp6_swcsum;
361 #endif /* defined(INET6) */
362
363 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
364
365 #else
366
367 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
368
369 #endif /* TCP_CSUM_COUNTERS */
370
371 #ifdef TCP_REASS_COUNTERS
372 #include <sys/device.h>
373
374 extern struct evcnt tcp_reass_;
375 extern struct evcnt tcp_reass_empty;
376 extern struct evcnt tcp_reass_iteration[8];
377 extern struct evcnt tcp_reass_prependfirst;
378 extern struct evcnt tcp_reass_prepend;
379 extern struct evcnt tcp_reass_insert;
380 extern struct evcnt tcp_reass_inserttail;
381 extern struct evcnt tcp_reass_append;
382 extern struct evcnt tcp_reass_appendtail;
383 extern struct evcnt tcp_reass_overlaptail;
384 extern struct evcnt tcp_reass_overlapfront;
385 extern struct evcnt tcp_reass_segdup;
386 extern struct evcnt tcp_reass_fragdup;
387
388 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
389
390 #else
391
392 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
393
394 #endif /* TCP_REASS_COUNTERS */
395
396 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
397 int *);
398 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
399 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
400
401 #ifdef INET
402 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
403 #endif
404 #ifdef INET6
405 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
406 #endif
407
408 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
409
410 #if defined(MBUFTRACE)
411 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
412 #endif /* defined(MBUFTRACE) */
413
414 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415 NULL, IPL_VM);
416
417 struct ipqent *
418 tcpipqent_alloc(void)
419 {
420 struct ipqent *ipqe;
421 int s;
422
423 s = splvm();
424 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
425 splx(s);
426
427 return ipqe;
428 }
429
430 void
431 tcpipqent_free(struct ipqent *ipqe)
432 {
433 int s;
434
435 s = splvm();
436 pool_put(&tcpipqent_pool, ipqe);
437 splx(s);
438 }
439
440 static int
441 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
442 {
443 struct ipqent *p, *q, *nq, *tiqe = NULL;
444 struct socket *so = NULL;
445 int pkt_flags;
446 tcp_seq pkt_seq;
447 unsigned pkt_len;
448 u_long rcvpartdupbyte = 0;
449 u_long rcvoobyte;
450 #ifdef TCP_REASS_COUNTERS
451 u_int count = 0;
452 #endif
453 uint64_t *tcps;
454
455 if (tp->t_inpcb)
456 so = tp->t_inpcb->inp_socket;
457 #ifdef INET6
458 else if (tp->t_in6pcb)
459 so = tp->t_in6pcb->in6p_socket;
460 #endif
461
462 TCP_REASS_LOCK_CHECK(tp);
463
464 /*
465 * Call with th==0 after become established to
466 * force pre-ESTABLISHED data up to user socket.
467 */
468 if (th == 0)
469 goto present;
470
471 m_claimm(m, &tcp_reass_mowner);
472
473 rcvoobyte = *tlen;
474 /*
475 * Copy these to local variables because the tcpiphdr
476 * gets munged while we are collapsing mbufs.
477 */
478 pkt_seq = th->th_seq;
479 pkt_len = *tlen;
480 pkt_flags = th->th_flags;
481
482 TCP_REASS_COUNTER_INCR(&tcp_reass_);
483
484 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
485 /*
486 * When we miss a packet, the vast majority of time we get
487 * packets that follow it in order. So optimize for that.
488 */
489 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
490 p->ipqe_len += pkt_len;
491 p->ipqe_flags |= pkt_flags;
492 m_cat(p->ipre_mlast, m);
493 TRAVERSE(p->ipre_mlast);
494 m = NULL;
495 tiqe = p;
496 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
497 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
498 goto skip_replacement;
499 }
500 /*
501 * While we're here, if the pkt is completely beyond
502 * anything we have, just insert it at the tail.
503 */
504 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
505 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
506 goto insert_it;
507 }
508 }
509
510 q = TAILQ_FIRST(&tp->segq);
511
512 if (q != NULL) {
513 /*
514 * If this segment immediately precedes the first out-of-order
515 * block, simply slap the segment in front of it and (mostly)
516 * skip the complicated logic.
517 */
518 if (pkt_seq + pkt_len == q->ipqe_seq) {
519 q->ipqe_seq = pkt_seq;
520 q->ipqe_len += pkt_len;
521 q->ipqe_flags |= pkt_flags;
522 m_cat(m, q->ipqe_m);
523 q->ipqe_m = m;
524 q->ipre_mlast = m; /* last mbuf may have changed */
525 TRAVERSE(q->ipre_mlast);
526 tiqe = q;
527 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
528 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
529 goto skip_replacement;
530 }
531 } else {
532 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
533 }
534
535 /*
536 * Find a segment which begins after this one does.
537 */
538 for (p = NULL; q != NULL; q = nq) {
539 nq = TAILQ_NEXT(q, ipqe_q);
540 #ifdef TCP_REASS_COUNTERS
541 count++;
542 #endif
543 /*
544 * If the received segment is just right after this
545 * fragment, merge the two together and then check
546 * for further overlaps.
547 */
548 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
549 #ifdef TCPREASS_DEBUG
550 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
551 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
552 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
553 #endif
554 pkt_len += q->ipqe_len;
555 pkt_flags |= q->ipqe_flags;
556 pkt_seq = q->ipqe_seq;
557 m_cat(q->ipre_mlast, m);
558 TRAVERSE(q->ipre_mlast);
559 m = q->ipqe_m;
560 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
561 goto free_ipqe;
562 }
563 /*
564 * If the received segment is completely past this
565 * fragment, we need to go the next fragment.
566 */
567 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 p = q;
569 continue;
570 }
571 /*
572 * If the fragment is past the received segment,
573 * it (or any following) can't be concatenated.
574 */
575 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
576 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
577 break;
578 }
579
580 /*
581 * We've received all the data in this segment before.
582 * mark it as a duplicate and return.
583 */
584 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
585 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
586 tcps = TCP_STAT_GETREF();
587 tcps[TCP_STAT_RCVDUPPACK]++;
588 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
589 TCP_STAT_PUTREF();
590 tcp_new_dsack(tp, pkt_seq, pkt_len);
591 m_freem(m);
592 if (tiqe != NULL) {
593 tcpipqent_free(tiqe);
594 }
595 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
596 return (0);
597 }
598 /*
599 * Received segment completely overlaps this fragment
600 * so we drop the fragment (this keeps the temporal
601 * ordering of segments correct).
602 */
603 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
604 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
605 rcvpartdupbyte += q->ipqe_len;
606 m_freem(q->ipqe_m);
607 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
608 goto free_ipqe;
609 }
610 /*
611 * RX'ed segment extends past the end of the
612 * fragment. Drop the overlapping bytes. Then
613 * merge the fragment and segment then treat as
614 * a longer received packet.
615 */
616 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
617 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
618 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
619 #ifdef TCPREASS_DEBUG
620 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
621 tp, overlap,
622 pkt_seq, pkt_seq + pkt_len, pkt_len);
623 #endif
624 m_adj(m, overlap);
625 rcvpartdupbyte += overlap;
626 m_cat(q->ipre_mlast, m);
627 TRAVERSE(q->ipre_mlast);
628 m = q->ipqe_m;
629 pkt_seq = q->ipqe_seq;
630 pkt_len += q->ipqe_len - overlap;
631 rcvoobyte -= overlap;
632 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
633 goto free_ipqe;
634 }
635 /*
636 * RX'ed segment extends past the front of the
637 * fragment. Drop the overlapping bytes on the
638 * received packet. The packet will then be
639 * contatentated with this fragment a bit later.
640 */
641 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
642 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
643 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
644 #ifdef TCPREASS_DEBUG
645 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
646 tp, overlap,
647 pkt_seq, pkt_seq + pkt_len, pkt_len);
648 #endif
649 m_adj(m, -overlap);
650 pkt_len -= overlap;
651 rcvpartdupbyte += overlap;
652 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
653 rcvoobyte -= overlap;
654 }
655 /*
656 * If the received segment immediates precedes this
657 * fragment then tack the fragment onto this segment
658 * and reinsert the data.
659 */
660 if (q->ipqe_seq == pkt_seq + pkt_len) {
661 #ifdef TCPREASS_DEBUG
662 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
663 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
664 pkt_seq, pkt_seq + pkt_len, pkt_len);
665 #endif
666 pkt_len += q->ipqe_len;
667 pkt_flags |= q->ipqe_flags;
668 m_cat(m, q->ipqe_m);
669 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
670 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
671 tp->t_segqlen--;
672 KASSERT(tp->t_segqlen >= 0);
673 KASSERT(tp->t_segqlen != 0 ||
674 (TAILQ_EMPTY(&tp->segq) &&
675 TAILQ_EMPTY(&tp->timeq)));
676 if (tiqe == NULL) {
677 tiqe = q;
678 } else {
679 tcpipqent_free(q);
680 }
681 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
682 break;
683 }
684 /*
685 * If the fragment is before the segment, remember it.
686 * When this loop is terminated, p will contain the
687 * pointer to fragment that is right before the received
688 * segment.
689 */
690 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
691 p = q;
692
693 continue;
694
695 /*
696 * This is a common operation. It also will allow
697 * to save doing a malloc/free in most instances.
698 */
699 free_ipqe:
700 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
701 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
702 tp->t_segqlen--;
703 KASSERT(tp->t_segqlen >= 0);
704 KASSERT(tp->t_segqlen != 0 ||
705 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
706 if (tiqe == NULL) {
707 tiqe = q;
708 } else {
709 tcpipqent_free(q);
710 }
711 }
712
713 #ifdef TCP_REASS_COUNTERS
714 if (count > 7)
715 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
716 else if (count > 0)
717 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
718 #endif
719
720 insert_it:
721
722 /*
723 * Allocate a new queue entry since the received segment did not
724 * collapse onto any other out-of-order block; thus we are allocating
725 * a new block. If it had collapsed, tiqe would not be NULL and
726 * we would be reusing it.
727 * XXX If we can't, just drop the packet. XXX
728 */
729 if (tiqe == NULL) {
730 tiqe = tcpipqent_alloc();
731 if (tiqe == NULL) {
732 TCP_STATINC(TCP_STAT_RCVMEMDROP);
733 m_freem(m);
734 return (0);
735 }
736 }
737
738 /*
739 * Update the counters.
740 */
741 tcps = TCP_STAT_GETREF();
742 tcps[TCP_STAT_RCVOOPACK]++;
743 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
744 if (rcvpartdupbyte) {
745 tcps[TCP_STAT_RCVPARTDUPPACK]++;
746 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
747 }
748 TCP_STAT_PUTREF();
749
750 /*
751 * Insert the new fragment queue entry into both queues.
752 */
753 tiqe->ipqe_m = m;
754 tiqe->ipre_mlast = m;
755 tiqe->ipqe_seq = pkt_seq;
756 tiqe->ipqe_len = pkt_len;
757 tiqe->ipqe_flags = pkt_flags;
758 if (p == NULL) {
759 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
760 #ifdef TCPREASS_DEBUG
761 if (tiqe->ipqe_seq != tp->rcv_nxt)
762 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
763 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
764 #endif
765 } else {
766 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
767 #ifdef TCPREASS_DEBUG
768 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
769 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
770 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
771 #endif
772 }
773 tp->t_segqlen++;
774
775 skip_replacement:
776
777 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
778
779 present:
780 /*
781 * Present data to user, advancing rcv_nxt through
782 * completed sequence space.
783 */
784 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
785 return (0);
786 q = TAILQ_FIRST(&tp->segq);
787 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
788 return (0);
789 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
790 return (0);
791
792 tp->rcv_nxt += q->ipqe_len;
793 pkt_flags = q->ipqe_flags & TH_FIN;
794 nd6_hint(tp);
795
796 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
797 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
798 tp->t_segqlen--;
799 KASSERT(tp->t_segqlen >= 0);
800 KASSERT(tp->t_segqlen != 0 ||
801 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
802 if (so->so_state & SS_CANTRCVMORE)
803 m_freem(q->ipqe_m);
804 else
805 sbappendstream(&so->so_rcv, q->ipqe_m);
806 tcpipqent_free(q);
807 sorwakeup(so);
808 return (pkt_flags);
809 }
810
811 #ifdef INET6
812 int
813 tcp6_input(struct mbuf **mp, int *offp, int proto)
814 {
815 struct mbuf *m = *mp;
816
817 /*
818 * draft-itojun-ipv6-tcp-to-anycast
819 * better place to put this in?
820 */
821 if (m->m_flags & M_ANYCAST6) {
822 struct ip6_hdr *ip6;
823 if (m->m_len < sizeof(struct ip6_hdr)) {
824 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
825 TCP_STATINC(TCP_STAT_RCVSHORT);
826 return IPPROTO_DONE;
827 }
828 }
829 ip6 = mtod(m, struct ip6_hdr *);
830 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
831 (char *)&ip6->ip6_dst - (char *)ip6);
832 return IPPROTO_DONE;
833 }
834
835 tcp_input(m, *offp, proto);
836 return IPPROTO_DONE;
837 }
838 #endif
839
840 #ifdef INET
841 static void
842 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
843 {
844 char src[4*sizeof "123"];
845 char dst[4*sizeof "123"];
846
847 if (ip) {
848 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
849 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
850 }
851 else {
852 strlcpy(src, "(unknown)", sizeof(src));
853 strlcpy(dst, "(unknown)", sizeof(dst));
854 }
855 log(LOG_INFO,
856 "Connection attempt to TCP %s:%d from %s:%d\n",
857 dst, ntohs(th->th_dport),
858 src, ntohs(th->th_sport));
859 }
860 #endif
861
862 #ifdef INET6
863 static void
864 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
865 {
866 char src[INET6_ADDRSTRLEN];
867 char dst[INET6_ADDRSTRLEN];
868
869 if (ip6) {
870 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
871 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
872 }
873 else {
874 strlcpy(src, "(unknown v6)", sizeof(src));
875 strlcpy(dst, "(unknown v6)", sizeof(dst));
876 }
877 log(LOG_INFO,
878 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
879 dst, ntohs(th->th_dport),
880 src, ntohs(th->th_sport));
881 }
882 #endif
883
884 /*
885 * Checksum extended TCP header and data.
886 */
887 int
888 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
889 int toff, int off, int tlen)
890 {
891
892 /*
893 * XXX it's better to record and check if this mbuf is
894 * already checked.
895 */
896
897 switch (af) {
898 #ifdef INET
899 case AF_INET:
900 switch (m->m_pkthdr.csum_flags &
901 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
902 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
903 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
904 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
905 goto badcsum;
906
907 case M_CSUM_TCPv4|M_CSUM_DATA: {
908 u_int32_t hw_csum = m->m_pkthdr.csum_data;
909
910 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
911 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
912 const struct ip *ip =
913 mtod(m, const struct ip *);
914
915 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
916 ip->ip_dst.s_addr,
917 htons(hw_csum + tlen + off + IPPROTO_TCP));
918 }
919 if ((hw_csum ^ 0xffff) != 0)
920 goto badcsum;
921 break;
922 }
923
924 case M_CSUM_TCPv4:
925 /* Checksum was okay. */
926 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
927 break;
928
929 default:
930 /*
931 * Must compute it ourselves. Maybe skip checksum
932 * on loopback interfaces.
933 */
934 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
935 IFF_LOOPBACK) ||
936 tcp_do_loopback_cksum)) {
937 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
938 if (in4_cksum(m, IPPROTO_TCP, toff,
939 tlen + off) != 0)
940 goto badcsum;
941 }
942 break;
943 }
944 break;
945 #endif /* INET4 */
946
947 #ifdef INET6
948 case AF_INET6:
949 switch (m->m_pkthdr.csum_flags &
950 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
951 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
952 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
953 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
954 goto badcsum;
955
956 #if 0 /* notyet */
957 case M_CSUM_TCPv6|M_CSUM_DATA:
958 #endif
959
960 case M_CSUM_TCPv6:
961 /* Checksum was okay. */
962 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
963 break;
964
965 default:
966 /*
967 * Must compute it ourselves. Maybe skip checksum
968 * on loopback interfaces.
969 */
970 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
971 tcp_do_loopback_cksum)) {
972 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
973 if (in6_cksum(m, IPPROTO_TCP, toff,
974 tlen + off) != 0)
975 goto badcsum;
976 }
977 }
978 break;
979 #endif /* INET6 */
980 }
981
982 return 0;
983
984 badcsum:
985 TCP_STATINC(TCP_STAT_RCVBADSUM);
986 return -1;
987 }
988
989 /*
990 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
991 */
992 void
993 tcp_input(struct mbuf *m, ...)
994 {
995 struct tcphdr *th;
996 struct ip *ip;
997 struct inpcb *inp;
998 #ifdef INET6
999 struct ip6_hdr *ip6;
1000 struct in6pcb *in6p;
1001 #endif
1002 u_int8_t *optp = NULL;
1003 int optlen = 0;
1004 int len, tlen, toff, hdroptlen = 0;
1005 struct tcpcb *tp = 0;
1006 int tiflags;
1007 struct socket *so = NULL;
1008 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1009 #ifdef TCP_DEBUG
1010 short ostate = 0;
1011 #endif
1012 u_long tiwin;
1013 struct tcp_opt_info opti;
1014 int off, iphlen;
1015 va_list ap;
1016 int af; /* af on the wire */
1017 struct mbuf *tcp_saveti = NULL;
1018 uint32_t ts_rtt;
1019 uint8_t iptos;
1020 uint64_t *tcps;
1021
1022 MCLAIM(m, &tcp_rx_mowner);
1023 va_start(ap, m);
1024 toff = va_arg(ap, int);
1025 (void)va_arg(ap, int); /* ignore value, advance ap */
1026 va_end(ap);
1027
1028 TCP_STATINC(TCP_STAT_RCVTOTAL);
1029
1030 bzero(&opti, sizeof(opti));
1031 opti.ts_present = 0;
1032 opti.maxseg = 0;
1033
1034 /*
1035 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1036 *
1037 * TCP is, by definition, unicast, so we reject all
1038 * multicast outright.
1039 *
1040 * Note, there are additional src/dst address checks in
1041 * the AF-specific code below.
1042 */
1043 if (m->m_flags & (M_BCAST|M_MCAST)) {
1044 /* XXX stat */
1045 goto drop;
1046 }
1047 #ifdef INET6
1048 if (m->m_flags & M_ANYCAST6) {
1049 /* XXX stat */
1050 goto drop;
1051 }
1052 #endif
1053
1054 /*
1055 * Get IP and TCP header.
1056 * Note: IP leaves IP header in first mbuf.
1057 */
1058 ip = mtod(m, struct ip *);
1059 #ifdef INET6
1060 ip6 = NULL;
1061 #endif
1062 switch (ip->ip_v) {
1063 #ifdef INET
1064 case 4:
1065 af = AF_INET;
1066 iphlen = sizeof(struct ip);
1067 ip = mtod(m, struct ip *);
1068 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1069 sizeof(struct tcphdr));
1070 if (th == NULL) {
1071 TCP_STATINC(TCP_STAT_RCVSHORT);
1072 return;
1073 }
1074 /* We do the checksum after PCB lookup... */
1075 len = ntohs(ip->ip_len);
1076 tlen = len - toff;
1077 iptos = ip->ip_tos;
1078 break;
1079 #endif
1080 #ifdef INET6
1081 case 6:
1082 ip = NULL;
1083 iphlen = sizeof(struct ip6_hdr);
1084 af = AF_INET6;
1085 ip6 = mtod(m, struct ip6_hdr *);
1086 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1087 sizeof(struct tcphdr));
1088 if (th == NULL) {
1089 TCP_STATINC(TCP_STAT_RCVSHORT);
1090 return;
1091 }
1092
1093 /* Be proactive about malicious use of IPv4 mapped address */
1094 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1095 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1096 /* XXX stat */
1097 goto drop;
1098 }
1099
1100 /*
1101 * Be proactive about unspecified IPv6 address in source.
1102 * As we use all-zero to indicate unbounded/unconnected pcb,
1103 * unspecified IPv6 address can be used to confuse us.
1104 *
1105 * Note that packets with unspecified IPv6 destination is
1106 * already dropped in ip6_input.
1107 */
1108 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1109 /* XXX stat */
1110 goto drop;
1111 }
1112
1113 /*
1114 * Make sure destination address is not multicast.
1115 * Source address checked in ip6_input().
1116 */
1117 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1118 /* XXX stat */
1119 goto drop;
1120 }
1121
1122 /* We do the checksum after PCB lookup... */
1123 len = m->m_pkthdr.len;
1124 tlen = len - toff;
1125 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1126 break;
1127 #endif
1128 default:
1129 m_freem(m);
1130 return;
1131 }
1132
1133 KASSERT(TCP_HDR_ALIGNED_P(th));
1134
1135 /*
1136 * Check that TCP offset makes sense,
1137 * pull out TCP options and adjust length. XXX
1138 */
1139 off = th->th_off << 2;
1140 if (off < sizeof (struct tcphdr) || off > tlen) {
1141 TCP_STATINC(TCP_STAT_RCVBADOFF);
1142 goto drop;
1143 }
1144 tlen -= off;
1145
1146 /*
1147 * tcp_input() has been modified to use tlen to mean the TCP data
1148 * length throughout the function. Other functions can use
1149 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1150 * rja
1151 */
1152
1153 if (off > sizeof (struct tcphdr)) {
1154 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1155 if (th == NULL) {
1156 TCP_STATINC(TCP_STAT_RCVSHORT);
1157 return;
1158 }
1159 /*
1160 * NOTE: ip/ip6 will not be affected by m_pulldown()
1161 * (as they're before toff) and we don't need to update those.
1162 */
1163 KASSERT(TCP_HDR_ALIGNED_P(th));
1164 optlen = off - sizeof (struct tcphdr);
1165 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1166 /*
1167 * Do quick retrieval of timestamp options ("options
1168 * prediction?"). If timestamp is the only option and it's
1169 * formatted as recommended in RFC 1323 appendix A, we
1170 * quickly get the values now and not bother calling
1171 * tcp_dooptions(), etc.
1172 */
1173 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1174 (optlen > TCPOLEN_TSTAMP_APPA &&
1175 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1176 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1177 (th->th_flags & TH_SYN) == 0) {
1178 opti.ts_present = 1;
1179 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1180 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1181 optp = NULL; /* we've parsed the options */
1182 }
1183 }
1184 tiflags = th->th_flags;
1185
1186 /*
1187 * Locate pcb for segment.
1188 */
1189 findpcb:
1190 inp = NULL;
1191 #ifdef INET6
1192 in6p = NULL;
1193 #endif
1194 switch (af) {
1195 #ifdef INET
1196 case AF_INET:
1197 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1198 ip->ip_dst, th->th_dport);
1199 if (inp == 0) {
1200 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1201 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1202 }
1203 #ifdef INET6
1204 if (inp == 0) {
1205 struct in6_addr s, d;
1206
1207 /* mapped addr case */
1208 bzero(&s, sizeof(s));
1209 s.s6_addr16[5] = htons(0xffff);
1210 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1211 bzero(&d, sizeof(d));
1212 d.s6_addr16[5] = htons(0xffff);
1213 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1214 in6p = in6_pcblookup_connect(&tcbtable, &s,
1215 th->th_sport, &d, th->th_dport, 0);
1216 if (in6p == 0) {
1217 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1218 in6p = in6_pcblookup_bind(&tcbtable, &d,
1219 th->th_dport, 0);
1220 }
1221 }
1222 #endif
1223 #ifndef INET6
1224 if (inp == 0)
1225 #else
1226 if (inp == 0 && in6p == 0)
1227 #endif
1228 {
1229 TCP_STATINC(TCP_STAT_NOPORT);
1230 if (tcp_log_refused &&
1231 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1232 tcp4_log_refused(ip, th);
1233 }
1234 tcp_fields_to_host(th);
1235 goto dropwithreset_ratelim;
1236 }
1237 #if defined(IPSEC) || defined(FAST_IPSEC)
1238 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1239 ipsec4_in_reject(m, inp)) {
1240 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1241 goto drop;
1242 }
1243 #ifdef INET6
1244 else if (in6p &&
1245 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1246 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1247 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1248 goto drop;
1249 }
1250 #endif
1251 #endif /*IPSEC*/
1252 break;
1253 #endif /*INET*/
1254 #ifdef INET6
1255 case AF_INET6:
1256 {
1257 int faith;
1258
1259 #if defined(NFAITH) && NFAITH > 0
1260 faith = faithprefix(&ip6->ip6_dst);
1261 #else
1262 faith = 0;
1263 #endif
1264 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1265 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1266 if (in6p == NULL) {
1267 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1268 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1269 th->th_dport, faith);
1270 }
1271 if (in6p == NULL) {
1272 TCP_STATINC(TCP_STAT_NOPORT);
1273 if (tcp_log_refused &&
1274 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1275 tcp6_log_refused(ip6, th);
1276 }
1277 tcp_fields_to_host(th);
1278 goto dropwithreset_ratelim;
1279 }
1280 #if defined(IPSEC) || defined(FAST_IPSEC)
1281 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1282 ipsec6_in_reject(m, in6p)) {
1283 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1284 goto drop;
1285 }
1286 #endif /*IPSEC*/
1287 break;
1288 }
1289 #endif
1290 }
1291
1292 /*
1293 * If the state is CLOSED (i.e., TCB does not exist) then
1294 * all data in the incoming segment is discarded.
1295 * If the TCB exists but is in CLOSED state, it is embryonic,
1296 * but should either do a listen or a connect soon.
1297 */
1298 tp = NULL;
1299 so = NULL;
1300 if (inp) {
1301 tp = intotcpcb(inp);
1302 so = inp->inp_socket;
1303 }
1304 #ifdef INET6
1305 else if (in6p) {
1306 tp = in6totcpcb(in6p);
1307 so = in6p->in6p_socket;
1308 }
1309 #endif
1310 if (tp == 0) {
1311 tcp_fields_to_host(th);
1312 goto dropwithreset_ratelim;
1313 }
1314 if (tp->t_state == TCPS_CLOSED)
1315 goto drop;
1316
1317 /*
1318 * Checksum extended TCP header and data.
1319 */
1320 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1321 goto badcsum;
1322
1323 tcp_fields_to_host(th);
1324
1325 /* Unscale the window into a 32-bit value. */
1326 if ((tiflags & TH_SYN) == 0)
1327 tiwin = th->th_win << tp->snd_scale;
1328 else
1329 tiwin = th->th_win;
1330
1331 #ifdef INET6
1332 /* save packet options if user wanted */
1333 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1334 if (in6p->in6p_options) {
1335 m_freem(in6p->in6p_options);
1336 in6p->in6p_options = 0;
1337 }
1338 KASSERT(ip6 != NULL);
1339 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1340 }
1341 #endif
1342
1343 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1344 union syn_cache_sa src;
1345 union syn_cache_sa dst;
1346
1347 bzero(&src, sizeof(src));
1348 bzero(&dst, sizeof(dst));
1349 switch (af) {
1350 #ifdef INET
1351 case AF_INET:
1352 src.sin.sin_len = sizeof(struct sockaddr_in);
1353 src.sin.sin_family = AF_INET;
1354 src.sin.sin_addr = ip->ip_src;
1355 src.sin.sin_port = th->th_sport;
1356
1357 dst.sin.sin_len = sizeof(struct sockaddr_in);
1358 dst.sin.sin_family = AF_INET;
1359 dst.sin.sin_addr = ip->ip_dst;
1360 dst.sin.sin_port = th->th_dport;
1361 break;
1362 #endif
1363 #ifdef INET6
1364 case AF_INET6:
1365 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1366 src.sin6.sin6_family = AF_INET6;
1367 src.sin6.sin6_addr = ip6->ip6_src;
1368 src.sin6.sin6_port = th->th_sport;
1369
1370 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1371 dst.sin6.sin6_family = AF_INET6;
1372 dst.sin6.sin6_addr = ip6->ip6_dst;
1373 dst.sin6.sin6_port = th->th_dport;
1374 break;
1375 #endif /* INET6 */
1376 default:
1377 goto badsyn; /*sanity*/
1378 }
1379
1380 if (so->so_options & SO_DEBUG) {
1381 #ifdef TCP_DEBUG
1382 ostate = tp->t_state;
1383 #endif
1384
1385 tcp_saveti = NULL;
1386 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1387 goto nosave;
1388
1389 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1390 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1391 if (!tcp_saveti)
1392 goto nosave;
1393 } else {
1394 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1395 if (!tcp_saveti)
1396 goto nosave;
1397 MCLAIM(m, &tcp_mowner);
1398 tcp_saveti->m_len = iphlen;
1399 m_copydata(m, 0, iphlen,
1400 mtod(tcp_saveti, void *));
1401 }
1402
1403 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1404 m_freem(tcp_saveti);
1405 tcp_saveti = NULL;
1406 } else {
1407 tcp_saveti->m_len += sizeof(struct tcphdr);
1408 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1409 sizeof(struct tcphdr));
1410 }
1411 nosave:;
1412 }
1413 if (so->so_options & SO_ACCEPTCONN) {
1414 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1415 if (tiflags & TH_RST) {
1416 syn_cache_reset(&src.sa, &dst.sa, th);
1417 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1418 (TH_ACK|TH_SYN)) {
1419 /*
1420 * Received a SYN,ACK. This should
1421 * never happen while we are in
1422 * LISTEN. Send an RST.
1423 */
1424 goto badsyn;
1425 } else if (tiflags & TH_ACK) {
1426 so = syn_cache_get(&src.sa, &dst.sa,
1427 th, toff, tlen, so, m);
1428 if (so == NULL) {
1429 /*
1430 * We don't have a SYN for
1431 * this ACK; send an RST.
1432 */
1433 goto badsyn;
1434 } else if (so ==
1435 (struct socket *)(-1)) {
1436 /*
1437 * We were unable to create
1438 * the connection. If the
1439 * 3-way handshake was
1440 * completed, and RST has
1441 * been sent to the peer.
1442 * Since the mbuf might be
1443 * in use for the reply,
1444 * do not free it.
1445 */
1446 m = NULL;
1447 } else {
1448 /*
1449 * We have created a
1450 * full-blown connection.
1451 */
1452 tp = NULL;
1453 inp = NULL;
1454 #ifdef INET6
1455 in6p = NULL;
1456 #endif
1457 switch (so->so_proto->pr_domain->dom_family) {
1458 #ifdef INET
1459 case AF_INET:
1460 inp = sotoinpcb(so);
1461 tp = intotcpcb(inp);
1462 break;
1463 #endif
1464 #ifdef INET6
1465 case AF_INET6:
1466 in6p = sotoin6pcb(so);
1467 tp = in6totcpcb(in6p);
1468 break;
1469 #endif
1470 }
1471 if (tp == NULL)
1472 goto badsyn; /*XXX*/
1473 tiwin <<= tp->snd_scale;
1474 goto after_listen;
1475 }
1476 } else {
1477 /*
1478 * None of RST, SYN or ACK was set.
1479 * This is an invalid packet for a
1480 * TCB in LISTEN state. Send a RST.
1481 */
1482 goto badsyn;
1483 }
1484 } else {
1485 /*
1486 * Received a SYN.
1487 *
1488 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1489 */
1490 if (m->m_flags & (M_BCAST|M_MCAST))
1491 goto drop;
1492
1493 switch (af) {
1494 #ifdef INET6
1495 case AF_INET6:
1496 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1497 goto drop;
1498 break;
1499 #endif /* INET6 */
1500 case AF_INET:
1501 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1502 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1503 goto drop;
1504 break;
1505 }
1506
1507 #ifdef INET6
1508 /*
1509 * If deprecated address is forbidden, we do
1510 * not accept SYN to deprecated interface
1511 * address to prevent any new inbound
1512 * connection from getting established.
1513 * When we do not accept SYN, we send a TCP
1514 * RST, with deprecated source address (instead
1515 * of dropping it). We compromise it as it is
1516 * much better for peer to send a RST, and
1517 * RST will be the final packet for the
1518 * exchange.
1519 *
1520 * If we do not forbid deprecated addresses, we
1521 * accept the SYN packet. RFC2462 does not
1522 * suggest dropping SYN in this case.
1523 * If we decipher RFC2462 5.5.4, it says like
1524 * this:
1525 * 1. use of deprecated addr with existing
1526 * communication is okay - "SHOULD continue
1527 * to be used"
1528 * 2. use of it with new communication:
1529 * (2a) "SHOULD NOT be used if alternate
1530 * address with sufficient scope is
1531 * available"
1532 * (2b) nothing mentioned otherwise.
1533 * Here we fall into (2b) case as we have no
1534 * choice in our source address selection - we
1535 * must obey the peer.
1536 *
1537 * The wording in RFC2462 is confusing, and
1538 * there are multiple description text for
1539 * deprecated address handling - worse, they
1540 * are not exactly the same. I believe 5.5.4
1541 * is the best one, so we follow 5.5.4.
1542 */
1543 if (af == AF_INET6 && !ip6_use_deprecated) {
1544 struct in6_ifaddr *ia6;
1545 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1546 &ip6->ip6_dst)) &&
1547 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1548 tp = NULL;
1549 goto dropwithreset;
1550 }
1551 }
1552 #endif
1553
1554 #if defined(IPSEC) || defined(FAST_IPSEC)
1555 switch (af) {
1556 #ifdef INET
1557 case AF_INET:
1558 if (ipsec4_in_reject_so(m, so)) {
1559 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1560 tp = NULL;
1561 goto dropwithreset;
1562 }
1563 break;
1564 #endif
1565 #ifdef INET6
1566 case AF_INET6:
1567 if (ipsec6_in_reject_so(m, so)) {
1568 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1569 tp = NULL;
1570 goto dropwithreset;
1571 }
1572 break;
1573 #endif /*INET6*/
1574 }
1575 #endif /*IPSEC*/
1576
1577 /*
1578 * LISTEN socket received a SYN
1579 * from itself? This can't possibly
1580 * be valid; drop the packet.
1581 */
1582 if (th->th_sport == th->th_dport) {
1583 int i;
1584
1585 switch (af) {
1586 #ifdef INET
1587 case AF_INET:
1588 i = in_hosteq(ip->ip_src, ip->ip_dst);
1589 break;
1590 #endif
1591 #ifdef INET6
1592 case AF_INET6:
1593 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1594 break;
1595 #endif
1596 default:
1597 i = 1;
1598 }
1599 if (i) {
1600 TCP_STATINC(TCP_STAT_BADSYN);
1601 goto drop;
1602 }
1603 }
1604
1605 /*
1606 * SYN looks ok; create compressed TCP
1607 * state for it.
1608 */
1609 if (so->so_qlen <= so->so_qlimit &&
1610 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1611 so, m, optp, optlen, &opti))
1612 m = NULL;
1613 }
1614 goto drop;
1615 }
1616 }
1617
1618 after_listen:
1619 #ifdef DIAGNOSTIC
1620 /*
1621 * Should not happen now that all embryonic connections
1622 * are handled with compressed state.
1623 */
1624 if (tp->t_state == TCPS_LISTEN)
1625 panic("tcp_input: TCPS_LISTEN");
1626 #endif
1627
1628 /*
1629 * Segment received on connection.
1630 * Reset idle time and keep-alive timer.
1631 */
1632 tp->t_rcvtime = tcp_now;
1633 if (TCPS_HAVEESTABLISHED(tp->t_state))
1634 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1635
1636 /*
1637 * Process options.
1638 */
1639 #ifdef TCP_SIGNATURE
1640 if (optp || (tp->t_flags & TF_SIGNATURE))
1641 #else
1642 if (optp)
1643 #endif
1644 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1645 goto drop;
1646
1647 if (TCP_SACK_ENABLED(tp)) {
1648 tcp_del_sackholes(tp, th);
1649 }
1650
1651 if (TCP_ECN_ALLOWED(tp)) {
1652 switch (iptos & IPTOS_ECN_MASK) {
1653 case IPTOS_ECN_CE:
1654 tp->t_flags |= TF_ECN_SND_ECE;
1655 TCP_STATINC(TCP_STAT_ECN_CE);
1656 break;
1657 case IPTOS_ECN_ECT0:
1658 TCP_STATINC(TCP_STAT_ECN_ECT);
1659 break;
1660 case IPTOS_ECN_ECT1:
1661 /* XXX: ignore for now -- rpaulo */
1662 break;
1663 }
1664
1665 if (tiflags & TH_CWR)
1666 tp->t_flags &= ~TF_ECN_SND_ECE;
1667
1668 /*
1669 * Congestion experienced.
1670 * Ignore if we are already trying to recover.
1671 */
1672 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1673 tp->t_congctl->cong_exp(tp);
1674 }
1675
1676 if (opti.ts_present && opti.ts_ecr) {
1677 /*
1678 * Calculate the RTT from the returned time stamp and the
1679 * connection's time base. If the time stamp is later than
1680 * the current time, or is extremely old, fall back to non-1323
1681 * RTT calculation. Since ts_ecr is unsigned, we can test both
1682 * at the same time.
1683 */
1684 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1685 if (ts_rtt > TCP_PAWS_IDLE)
1686 ts_rtt = 0;
1687 } else {
1688 ts_rtt = 0;
1689 }
1690
1691 /*
1692 * Header prediction: check for the two common cases
1693 * of a uni-directional data xfer. If the packet has
1694 * no control flags, is in-sequence, the window didn't
1695 * change and we're not retransmitting, it's a
1696 * candidate. If the length is zero and the ack moved
1697 * forward, we're the sender side of the xfer. Just
1698 * free the data acked & wake any higher level process
1699 * that was blocked waiting for space. If the length
1700 * is non-zero and the ack didn't move, we're the
1701 * receiver side. If we're getting packets in-order
1702 * (the reassembly queue is empty), add the data to
1703 * the socket buffer and note that we need a delayed ack.
1704 */
1705 if (tp->t_state == TCPS_ESTABLISHED &&
1706 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1707 == TH_ACK &&
1708 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1709 th->th_seq == tp->rcv_nxt &&
1710 tiwin && tiwin == tp->snd_wnd &&
1711 tp->snd_nxt == tp->snd_max) {
1712
1713 /*
1714 * If last ACK falls within this segment's sequence numbers,
1715 * record the timestamp.
1716 * NOTE that the test is modified according to the latest
1717 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1718 *
1719 * note that we already know
1720 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1721 */
1722 if (opti.ts_present &&
1723 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1724 tp->ts_recent_age = tcp_now;
1725 tp->ts_recent = opti.ts_val;
1726 }
1727
1728 if (tlen == 0) {
1729 /* Ack prediction. */
1730 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1731 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1732 tp->snd_cwnd >= tp->snd_wnd &&
1733 tp->t_partialacks < 0) {
1734 /*
1735 * this is a pure ack for outstanding data.
1736 */
1737 if (ts_rtt)
1738 tcp_xmit_timer(tp, ts_rtt);
1739 else if (tp->t_rtttime &&
1740 SEQ_GT(th->th_ack, tp->t_rtseq))
1741 tcp_xmit_timer(tp,
1742 tcp_now - tp->t_rtttime);
1743 acked = th->th_ack - tp->snd_una;
1744 tcps = TCP_STAT_GETREF();
1745 tcps[TCP_STAT_PREDACK]++;
1746 tcps[TCP_STAT_RCVACKPACK]++;
1747 tcps[TCP_STAT_RCVACKBYTE] += acked;
1748 TCP_STAT_PUTREF();
1749 nd6_hint(tp);
1750
1751 if (acked > (tp->t_lastoff - tp->t_inoff))
1752 tp->t_lastm = NULL;
1753 sbdrop(&so->so_snd, acked);
1754 tp->t_lastoff -= acked;
1755
1756 icmp_check(tp, th, acked);
1757
1758 tp->snd_una = th->th_ack;
1759 tp->snd_fack = tp->snd_una;
1760 if (SEQ_LT(tp->snd_high, tp->snd_una))
1761 tp->snd_high = tp->snd_una;
1762 m_freem(m);
1763
1764 /*
1765 * If all outstanding data are acked, stop
1766 * retransmit timer, otherwise restart timer
1767 * using current (possibly backed-off) value.
1768 * If process is waiting for space,
1769 * wakeup/selnotify/signal. If data
1770 * are ready to send, let tcp_output
1771 * decide between more output or persist.
1772 */
1773 if (tp->snd_una == tp->snd_max)
1774 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1775 else if (TCP_TIMER_ISARMED(tp,
1776 TCPT_PERSIST) == 0)
1777 TCP_TIMER_ARM(tp, TCPT_REXMT,
1778 tp->t_rxtcur);
1779
1780 sowwakeup(so);
1781 if (so->so_snd.sb_cc)
1782 (void) tcp_output(tp);
1783 if (tcp_saveti)
1784 m_freem(tcp_saveti);
1785 return;
1786 }
1787 } else if (th->th_ack == tp->snd_una &&
1788 TAILQ_FIRST(&tp->segq) == NULL &&
1789 tlen <= sbspace(&so->so_rcv)) {
1790 int newsize = 0; /* automatic sockbuf scaling */
1791
1792 /*
1793 * this is a pure, in-sequence data packet
1794 * with nothing on the reassembly queue and
1795 * we have enough buffer space to take it.
1796 */
1797 tp->rcv_nxt += tlen;
1798 tcps = TCP_STAT_GETREF();
1799 tcps[TCP_STAT_PREDDAT]++;
1800 tcps[TCP_STAT_RCVPACK]++;
1801 tcps[TCP_STAT_RCVBYTE] += tlen;
1802 TCP_STAT_PUTREF();
1803 nd6_hint(tp);
1804
1805 /*
1806 * Automatic sizing enables the performance of large buffers
1807 * and most of the efficiency of small ones by only allocating
1808 * space when it is needed.
1809 *
1810 * On the receive side the socket buffer memory is only rarely
1811 * used to any significant extent. This allows us to be much
1812 * more aggressive in scaling the receive socket buffer. For
1813 * the case that the buffer space is actually used to a large
1814 * extent and we run out of kernel memory we can simply drop
1815 * the new segments; TCP on the sender will just retransmit it
1816 * later. Setting the buffer size too big may only consume too
1817 * much kernel memory if the application doesn't read() from
1818 * the socket or packet loss or reordering makes use of the
1819 * reassembly queue.
1820 *
1821 * The criteria to step up the receive buffer one notch are:
1822 * 1. the number of bytes received during the time it takes
1823 * one timestamp to be reflected back to us (the RTT);
1824 * 2. received bytes per RTT is within seven eighth of the
1825 * current socket buffer size;
1826 * 3. receive buffer size has not hit maximal automatic size;
1827 *
1828 * This algorithm does one step per RTT at most and only if
1829 * we receive a bulk stream w/o packet losses or reorderings.
1830 * Shrinking the buffer during idle times is not necessary as
1831 * it doesn't consume any memory when idle.
1832 *
1833 * TODO: Only step up if the application is actually serving
1834 * the buffer to better manage the socket buffer resources.
1835 */
1836 if (tcp_do_autorcvbuf &&
1837 opti.ts_ecr &&
1838 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1839 if (opti.ts_ecr > tp->rfbuf_ts &&
1840 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1841 if (tp->rfbuf_cnt >
1842 (so->so_rcv.sb_hiwat / 8 * 7) &&
1843 so->so_rcv.sb_hiwat <
1844 tcp_autorcvbuf_max) {
1845 newsize =
1846 min(so->so_rcv.sb_hiwat +
1847 tcp_autorcvbuf_inc,
1848 tcp_autorcvbuf_max);
1849 }
1850 /* Start over with next RTT. */
1851 tp->rfbuf_ts = 0;
1852 tp->rfbuf_cnt = 0;
1853 } else
1854 tp->rfbuf_cnt += tlen; /* add up */
1855 }
1856
1857 /*
1858 * Drop TCP, IP headers and TCP options then add data
1859 * to socket buffer.
1860 */
1861 if (so->so_state & SS_CANTRCVMORE)
1862 m_freem(m);
1863 else {
1864 /*
1865 * Set new socket buffer size.
1866 * Give up when limit is reached.
1867 */
1868 if (newsize)
1869 if (!sbreserve(&so->so_rcv,
1870 newsize, so))
1871 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1872 m_adj(m, toff + off);
1873 sbappendstream(&so->so_rcv, m);
1874 }
1875 sorwakeup(so);
1876 tcp_setup_ack(tp, th);
1877 if (tp->t_flags & TF_ACKNOW)
1878 (void) tcp_output(tp);
1879 if (tcp_saveti)
1880 m_freem(tcp_saveti);
1881 return;
1882 }
1883 }
1884
1885 /*
1886 * Compute mbuf offset to TCP data segment.
1887 */
1888 hdroptlen = toff + off;
1889
1890 /*
1891 * Calculate amount of space in receive window,
1892 * and then do TCP input processing.
1893 * Receive window is amount of space in rcv queue,
1894 * but not less than advertised window.
1895 */
1896 { int win;
1897
1898 win = sbspace(&so->so_rcv);
1899 if (win < 0)
1900 win = 0;
1901 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1902 }
1903
1904 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1905 tp->rfbuf_ts = 0;
1906 tp->rfbuf_cnt = 0;
1907
1908 switch (tp->t_state) {
1909 /*
1910 * If the state is SYN_SENT:
1911 * if seg contains an ACK, but not for our SYN, drop the input.
1912 * if seg contains a RST, then drop the connection.
1913 * if seg does not contain SYN, then drop it.
1914 * Otherwise this is an acceptable SYN segment
1915 * initialize tp->rcv_nxt and tp->irs
1916 * if seg contains ack then advance tp->snd_una
1917 * if seg contains a ECE and ECN support is enabled, the stream
1918 * is ECN capable.
1919 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1920 * arrange for segment to be acked (eventually)
1921 * continue processing rest of data/controls, beginning with URG
1922 */
1923 case TCPS_SYN_SENT:
1924 if ((tiflags & TH_ACK) &&
1925 (SEQ_LEQ(th->th_ack, tp->iss) ||
1926 SEQ_GT(th->th_ack, tp->snd_max)))
1927 goto dropwithreset;
1928 if (tiflags & TH_RST) {
1929 if (tiflags & TH_ACK)
1930 tp = tcp_drop(tp, ECONNREFUSED);
1931 goto drop;
1932 }
1933 if ((tiflags & TH_SYN) == 0)
1934 goto drop;
1935 if (tiflags & TH_ACK) {
1936 tp->snd_una = th->th_ack;
1937 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1938 tp->snd_nxt = tp->snd_una;
1939 if (SEQ_LT(tp->snd_high, tp->snd_una))
1940 tp->snd_high = tp->snd_una;
1941 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1942
1943 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1944 tp->t_flags |= TF_ECN_PERMIT;
1945 TCP_STATINC(TCP_STAT_ECN_SHS);
1946 }
1947
1948 }
1949 tp->irs = th->th_seq;
1950 tcp_rcvseqinit(tp);
1951 tp->t_flags |= TF_ACKNOW;
1952 tcp_mss_from_peer(tp, opti.maxseg);
1953
1954 /*
1955 * Initialize the initial congestion window. If we
1956 * had to retransmit the SYN, we must initialize cwnd
1957 * to 1 segment (i.e. the Loss Window).
1958 */
1959 if (tp->t_flags & TF_SYN_REXMT)
1960 tp->snd_cwnd = tp->t_peermss;
1961 else {
1962 int ss = tcp_init_win;
1963 #ifdef INET
1964 if (inp != NULL && in_localaddr(inp->inp_faddr))
1965 ss = tcp_init_win_local;
1966 #endif
1967 #ifdef INET6
1968 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1969 ss = tcp_init_win_local;
1970 #endif
1971 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1972 }
1973
1974 tcp_rmx_rtt(tp);
1975 if (tiflags & TH_ACK) {
1976 TCP_STATINC(TCP_STAT_CONNECTS);
1977 soisconnected(so);
1978 tcp_established(tp);
1979 /* Do window scaling on this connection? */
1980 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1981 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1982 tp->snd_scale = tp->requested_s_scale;
1983 tp->rcv_scale = tp->request_r_scale;
1984 }
1985 TCP_REASS_LOCK(tp);
1986 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1987 TCP_REASS_UNLOCK(tp);
1988 /*
1989 * if we didn't have to retransmit the SYN,
1990 * use its rtt as our initial srtt & rtt var.
1991 */
1992 if (tp->t_rtttime)
1993 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1994 } else
1995 tp->t_state = TCPS_SYN_RECEIVED;
1996
1997 /*
1998 * Advance th->th_seq to correspond to first data byte.
1999 * If data, trim to stay within window,
2000 * dropping FIN if necessary.
2001 */
2002 th->th_seq++;
2003 if (tlen > tp->rcv_wnd) {
2004 todrop = tlen - tp->rcv_wnd;
2005 m_adj(m, -todrop);
2006 tlen = tp->rcv_wnd;
2007 tiflags &= ~TH_FIN;
2008 tcps = TCP_STAT_GETREF();
2009 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2010 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2011 TCP_STAT_PUTREF();
2012 }
2013 tp->snd_wl1 = th->th_seq - 1;
2014 tp->rcv_up = th->th_seq;
2015 goto step6;
2016
2017 /*
2018 * If the state is SYN_RECEIVED:
2019 * If seg contains an ACK, but not for our SYN, drop the input
2020 * and generate an RST. See page 36, rfc793
2021 */
2022 case TCPS_SYN_RECEIVED:
2023 if ((tiflags & TH_ACK) &&
2024 (SEQ_LEQ(th->th_ack, tp->iss) ||
2025 SEQ_GT(th->th_ack, tp->snd_max)))
2026 goto dropwithreset;
2027 break;
2028 }
2029
2030 /*
2031 * States other than LISTEN or SYN_SENT.
2032 * First check timestamp, if present.
2033 * Then check that at least some bytes of segment are within
2034 * receive window. If segment begins before rcv_nxt,
2035 * drop leading data (and SYN); if nothing left, just ack.
2036 *
2037 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2038 * and it's less than ts_recent, drop it.
2039 */
2040 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2041 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2042
2043 /* Check to see if ts_recent is over 24 days old. */
2044 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2045 /*
2046 * Invalidate ts_recent. If this segment updates
2047 * ts_recent, the age will be reset later and ts_recent
2048 * will get a valid value. If it does not, setting
2049 * ts_recent to zero will at least satisfy the
2050 * requirement that zero be placed in the timestamp
2051 * echo reply when ts_recent isn't valid. The
2052 * age isn't reset until we get a valid ts_recent
2053 * because we don't want out-of-order segments to be
2054 * dropped when ts_recent is old.
2055 */
2056 tp->ts_recent = 0;
2057 } else {
2058 tcps = TCP_STAT_GETREF();
2059 tcps[TCP_STAT_RCVDUPPACK]++;
2060 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2061 tcps[TCP_STAT_PAWSDROP]++;
2062 TCP_STAT_PUTREF();
2063 tcp_new_dsack(tp, th->th_seq, tlen);
2064 goto dropafterack;
2065 }
2066 }
2067
2068 todrop = tp->rcv_nxt - th->th_seq;
2069 dupseg = false;
2070 if (todrop > 0) {
2071 if (tiflags & TH_SYN) {
2072 tiflags &= ~TH_SYN;
2073 th->th_seq++;
2074 if (th->th_urp > 1)
2075 th->th_urp--;
2076 else {
2077 tiflags &= ~TH_URG;
2078 th->th_urp = 0;
2079 }
2080 todrop--;
2081 }
2082 if (todrop > tlen ||
2083 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2084 /*
2085 * Any valid FIN or RST must be to the left of the
2086 * window. At this point the FIN or RST must be a
2087 * duplicate or out of sequence; drop it.
2088 */
2089 if (tiflags & TH_RST)
2090 goto drop;
2091 tiflags &= ~(TH_FIN|TH_RST);
2092 /*
2093 * Send an ACK to resynchronize and drop any data.
2094 * But keep on processing for RST or ACK.
2095 */
2096 tp->t_flags |= TF_ACKNOW;
2097 todrop = tlen;
2098 dupseg = true;
2099 tcps = TCP_STAT_GETREF();
2100 tcps[TCP_STAT_RCVDUPPACK]++;
2101 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2102 TCP_STAT_PUTREF();
2103 } else if ((tiflags & TH_RST) &&
2104 th->th_seq != tp->last_ack_sent) {
2105 /*
2106 * Test for reset before adjusting the sequence
2107 * number for overlapping data.
2108 */
2109 goto dropafterack_ratelim;
2110 } else {
2111 tcps = TCP_STAT_GETREF();
2112 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2113 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2114 TCP_STAT_PUTREF();
2115 }
2116 tcp_new_dsack(tp, th->th_seq, todrop);
2117 hdroptlen += todrop; /*drop from head afterwards*/
2118 th->th_seq += todrop;
2119 tlen -= todrop;
2120 if (th->th_urp > todrop)
2121 th->th_urp -= todrop;
2122 else {
2123 tiflags &= ~TH_URG;
2124 th->th_urp = 0;
2125 }
2126 }
2127
2128 /*
2129 * If new data are received on a connection after the
2130 * user processes are gone, then RST the other end.
2131 */
2132 if ((so->so_state & SS_NOFDREF) &&
2133 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2134 tp = tcp_close(tp);
2135 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2136 goto dropwithreset;
2137 }
2138
2139 /*
2140 * If segment ends after window, drop trailing data
2141 * (and PUSH and FIN); if nothing left, just ACK.
2142 */
2143 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2144 if (todrop > 0) {
2145 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2146 if (todrop >= tlen) {
2147 /*
2148 * The segment actually starts after the window.
2149 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2150 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2151 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2152 */
2153 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2154 /*
2155 * If a new connection request is received
2156 * while in TIME_WAIT, drop the old connection
2157 * and start over if the sequence numbers
2158 * are above the previous ones.
2159 *
2160 * NOTE: We will checksum the packet again, and
2161 * so we need to put the header fields back into
2162 * network order!
2163 * XXX This kind of sucks, but we don't expect
2164 * XXX this to happen very often, so maybe it
2165 * XXX doesn't matter so much.
2166 */
2167 if (tiflags & TH_SYN &&
2168 tp->t_state == TCPS_TIME_WAIT &&
2169 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2170 tp = tcp_close(tp);
2171 tcp_fields_to_net(th);
2172 goto findpcb;
2173 }
2174 /*
2175 * If window is closed can only take segments at
2176 * window edge, and have to drop data and PUSH from
2177 * incoming segments. Continue processing, but
2178 * remember to ack. Otherwise, drop segment
2179 * and (if not RST) ack.
2180 */
2181 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2182 tp->t_flags |= TF_ACKNOW;
2183 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2184 } else
2185 goto dropafterack;
2186 } else
2187 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2188 m_adj(m, -todrop);
2189 tlen -= todrop;
2190 tiflags &= ~(TH_PUSH|TH_FIN);
2191 }
2192
2193 /*
2194 * If last ACK falls within this segment's sequence numbers,
2195 * record the timestamp.
2196 * NOTE:
2197 * 1) That the test incorporates suggestions from the latest
2198 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2199 * 2) That updating only on newer timestamps interferes with
2200 * our earlier PAWS tests, so this check should be solely
2201 * predicated on the sequence space of this segment.
2202 * 3) That we modify the segment boundary check to be
2203 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2204 * instead of RFC1323's
2205 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2206 * This modified check allows us to overcome RFC1323's
2207 * limitations as described in Stevens TCP/IP Illustrated
2208 * Vol. 2 p.869. In such cases, we can still calculate the
2209 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2210 */
2211 if (opti.ts_present &&
2212 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2213 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2214 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2215 tp->ts_recent_age = tcp_now;
2216 tp->ts_recent = opti.ts_val;
2217 }
2218
2219 /*
2220 * If the RST bit is set examine the state:
2221 * SYN_RECEIVED STATE:
2222 * If passive open, return to LISTEN state.
2223 * If active open, inform user that connection was refused.
2224 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2225 * Inform user that connection was reset, and close tcb.
2226 * CLOSING, LAST_ACK, TIME_WAIT STATES
2227 * Close the tcb.
2228 */
2229 if (tiflags & TH_RST) {
2230 if (th->th_seq != tp->last_ack_sent)
2231 goto dropafterack_ratelim;
2232
2233 switch (tp->t_state) {
2234 case TCPS_SYN_RECEIVED:
2235 so->so_error = ECONNREFUSED;
2236 goto close;
2237
2238 case TCPS_ESTABLISHED:
2239 case TCPS_FIN_WAIT_1:
2240 case TCPS_FIN_WAIT_2:
2241 case TCPS_CLOSE_WAIT:
2242 so->so_error = ECONNRESET;
2243 close:
2244 tp->t_state = TCPS_CLOSED;
2245 TCP_STATINC(TCP_STAT_DROPS);
2246 tp = tcp_close(tp);
2247 goto drop;
2248
2249 case TCPS_CLOSING:
2250 case TCPS_LAST_ACK:
2251 case TCPS_TIME_WAIT:
2252 tp = tcp_close(tp);
2253 goto drop;
2254 }
2255 }
2256
2257 /*
2258 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2259 * we must be in a synchronized state. RFC791 states (under RST
2260 * generation) that any unacceptable segment (an out-of-order SYN
2261 * qualifies) received in a synchronized state must elicit only an
2262 * empty acknowledgment segment ... and the connection remains in
2263 * the same state.
2264 */
2265 if (tiflags & TH_SYN) {
2266 if (tp->rcv_nxt == th->th_seq) {
2267 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2268 TH_ACK);
2269 if (tcp_saveti)
2270 m_freem(tcp_saveti);
2271 return;
2272 }
2273
2274 goto dropafterack_ratelim;
2275 }
2276
2277 /*
2278 * If the ACK bit is off we drop the segment and return.
2279 */
2280 if ((tiflags & TH_ACK) == 0) {
2281 if (tp->t_flags & TF_ACKNOW)
2282 goto dropafterack;
2283 else
2284 goto drop;
2285 }
2286
2287 /*
2288 * Ack processing.
2289 */
2290 switch (tp->t_state) {
2291
2292 /*
2293 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2294 * ESTABLISHED state and continue processing, otherwise
2295 * send an RST.
2296 */
2297 case TCPS_SYN_RECEIVED:
2298 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2299 SEQ_GT(th->th_ack, tp->snd_max))
2300 goto dropwithreset;
2301 TCP_STATINC(TCP_STAT_CONNECTS);
2302 soisconnected(so);
2303 tcp_established(tp);
2304 /* Do window scaling? */
2305 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2306 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2307 tp->snd_scale = tp->requested_s_scale;
2308 tp->rcv_scale = tp->request_r_scale;
2309 }
2310 TCP_REASS_LOCK(tp);
2311 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2312 TCP_REASS_UNLOCK(tp);
2313 tp->snd_wl1 = th->th_seq - 1;
2314 /* fall into ... */
2315
2316 /*
2317 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2318 * ACKs. If the ack is in the range
2319 * tp->snd_una < th->th_ack <= tp->snd_max
2320 * then advance tp->snd_una to th->th_ack and drop
2321 * data from the retransmission queue. If this ACK reflects
2322 * more up to date window information we update our window information.
2323 */
2324 case TCPS_ESTABLISHED:
2325 case TCPS_FIN_WAIT_1:
2326 case TCPS_FIN_WAIT_2:
2327 case TCPS_CLOSE_WAIT:
2328 case TCPS_CLOSING:
2329 case TCPS_LAST_ACK:
2330 case TCPS_TIME_WAIT:
2331
2332 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2333 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2334 TCP_STATINC(TCP_STAT_RCVDUPPACK);
2335 /*
2336 * If we have outstanding data (other than
2337 * a window probe), this is a completely
2338 * duplicate ack (ie, window info didn't
2339 * change), the ack is the biggest we've
2340 * seen and we've seen exactly our rexmt
2341 * threshhold of them, assume a packet
2342 * has been dropped and retransmit it.
2343 * Kludge snd_nxt & the congestion
2344 * window so we send only this one
2345 * packet.
2346 */
2347 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2348 th->th_ack != tp->snd_una)
2349 tp->t_dupacks = 0;
2350 else if (tp->t_partialacks < 0 &&
2351 (++tp->t_dupacks == tcprexmtthresh ||
2352 TCP_FACK_FASTRECOV(tp))) {
2353 /*
2354 * Do the fast retransmit, and adjust
2355 * congestion control paramenters.
2356 */
2357 if (tp->t_congctl->fast_retransmit(tp, th)) {
2358 /* False fast retransmit */
2359 break;
2360 } else
2361 goto drop;
2362 } else if (tp->t_dupacks > tcprexmtthresh) {
2363 tp->snd_cwnd += tp->t_segsz;
2364 (void) tcp_output(tp);
2365 goto drop;
2366 }
2367 } else {
2368 /*
2369 * If the ack appears to be very old, only
2370 * allow data that is in-sequence. This
2371 * makes it somewhat more difficult to insert
2372 * forged data by guessing sequence numbers.
2373 * Sent an ack to try to update the send
2374 * sequence number on the other side.
2375 */
2376 if (tlen && th->th_seq != tp->rcv_nxt &&
2377 SEQ_LT(th->th_ack,
2378 tp->snd_una - tp->max_sndwnd))
2379 goto dropafterack;
2380 }
2381 break;
2382 }
2383 /*
2384 * If the congestion window was inflated to account
2385 * for the other side's cached packets, retract it.
2386 */
2387 /* XXX: make SACK have his own congestion control
2388 * struct -- rpaulo */
2389 if (TCP_SACK_ENABLED(tp))
2390 tcp_sack_newack(tp, th);
2391 else
2392 tp->t_congctl->fast_retransmit_newack(tp, th);
2393 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2394 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2395 goto dropafterack;
2396 }
2397 acked = th->th_ack - tp->snd_una;
2398 tcps = TCP_STAT_GETREF();
2399 tcps[TCP_STAT_RCVACKPACK]++;
2400 tcps[TCP_STAT_RCVACKBYTE] += acked;
2401 TCP_STAT_PUTREF();
2402
2403 /*
2404 * If we have a timestamp reply, update smoothed
2405 * round trip time. If no timestamp is present but
2406 * transmit timer is running and timed sequence
2407 * number was acked, update smoothed round trip time.
2408 * Since we now have an rtt measurement, cancel the
2409 * timer backoff (cf., Phil Karn's retransmit alg.).
2410 * Recompute the initial retransmit timer.
2411 */
2412 if (ts_rtt)
2413 tcp_xmit_timer(tp, ts_rtt);
2414 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2415 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2416
2417 /*
2418 * If all outstanding data is acked, stop retransmit
2419 * timer and remember to restart (more output or persist).
2420 * If there is more data to be acked, restart retransmit
2421 * timer, using current (possibly backed-off) value.
2422 */
2423 if (th->th_ack == tp->snd_max) {
2424 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2425 needoutput = 1;
2426 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2427 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2428
2429 /*
2430 * New data has been acked, adjust the congestion window.
2431 */
2432 tp->t_congctl->newack(tp, th);
2433
2434 nd6_hint(tp);
2435 if (acked > so->so_snd.sb_cc) {
2436 tp->snd_wnd -= so->so_snd.sb_cc;
2437 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2438 ourfinisacked = 1;
2439 } else {
2440 if (acked > (tp->t_lastoff - tp->t_inoff))
2441 tp->t_lastm = NULL;
2442 sbdrop(&so->so_snd, acked);
2443 tp->t_lastoff -= acked;
2444 tp->snd_wnd -= acked;
2445 ourfinisacked = 0;
2446 }
2447 sowwakeup(so);
2448
2449 icmp_check(tp, th, acked);
2450
2451 tp->snd_una = th->th_ack;
2452 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2453 tp->snd_fack = tp->snd_una;
2454 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2455 tp->snd_nxt = tp->snd_una;
2456 if (SEQ_LT(tp->snd_high, tp->snd_una))
2457 tp->snd_high = tp->snd_una;
2458
2459 switch (tp->t_state) {
2460
2461 /*
2462 * In FIN_WAIT_1 STATE in addition to the processing
2463 * for the ESTABLISHED state if our FIN is now acknowledged
2464 * then enter FIN_WAIT_2.
2465 */
2466 case TCPS_FIN_WAIT_1:
2467 if (ourfinisacked) {
2468 /*
2469 * If we can't receive any more
2470 * data, then closing user can proceed.
2471 * Starting the timer is contrary to the
2472 * specification, but if we don't get a FIN
2473 * we'll hang forever.
2474 */
2475 if (so->so_state & SS_CANTRCVMORE) {
2476 soisdisconnected(so);
2477 if (tp->t_maxidle > 0)
2478 TCP_TIMER_ARM(tp, TCPT_2MSL,
2479 tp->t_maxidle);
2480 }
2481 tp->t_state = TCPS_FIN_WAIT_2;
2482 }
2483 break;
2484
2485 /*
2486 * In CLOSING STATE in addition to the processing for
2487 * the ESTABLISHED state if the ACK acknowledges our FIN
2488 * then enter the TIME-WAIT state, otherwise ignore
2489 * the segment.
2490 */
2491 case TCPS_CLOSING:
2492 if (ourfinisacked) {
2493 tp->t_state = TCPS_TIME_WAIT;
2494 tcp_canceltimers(tp);
2495 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2496 soisdisconnected(so);
2497 }
2498 break;
2499
2500 /*
2501 * In LAST_ACK, we may still be waiting for data to drain
2502 * and/or to be acked, as well as for the ack of our FIN.
2503 * If our FIN is now acknowledged, delete the TCB,
2504 * enter the closed state and return.
2505 */
2506 case TCPS_LAST_ACK:
2507 if (ourfinisacked) {
2508 tp = tcp_close(tp);
2509 goto drop;
2510 }
2511 break;
2512
2513 /*
2514 * In TIME_WAIT state the only thing that should arrive
2515 * is a retransmission of the remote FIN. Acknowledge
2516 * it and restart the finack timer.
2517 */
2518 case TCPS_TIME_WAIT:
2519 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2520 goto dropafterack;
2521 }
2522 }
2523
2524 step6:
2525 /*
2526 * Update window information.
2527 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2528 */
2529 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2530 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2531 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2532 /* keep track of pure window updates */
2533 if (tlen == 0 &&
2534 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2535 TCP_STATINC(TCP_STAT_RCVWINUPD);
2536 tp->snd_wnd = tiwin;
2537 tp->snd_wl1 = th->th_seq;
2538 tp->snd_wl2 = th->th_ack;
2539 if (tp->snd_wnd > tp->max_sndwnd)
2540 tp->max_sndwnd = tp->snd_wnd;
2541 needoutput = 1;
2542 }
2543
2544 /*
2545 * Process segments with URG.
2546 */
2547 if ((tiflags & TH_URG) && th->th_urp &&
2548 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2549 /*
2550 * This is a kludge, but if we receive and accept
2551 * random urgent pointers, we'll crash in
2552 * soreceive. It's hard to imagine someone
2553 * actually wanting to send this much urgent data.
2554 */
2555 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2556 th->th_urp = 0; /* XXX */
2557 tiflags &= ~TH_URG; /* XXX */
2558 goto dodata; /* XXX */
2559 }
2560 /*
2561 * If this segment advances the known urgent pointer,
2562 * then mark the data stream. This should not happen
2563 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2564 * a FIN has been received from the remote side.
2565 * In these states we ignore the URG.
2566 *
2567 * According to RFC961 (Assigned Protocols),
2568 * the urgent pointer points to the last octet
2569 * of urgent data. We continue, however,
2570 * to consider it to indicate the first octet
2571 * of data past the urgent section as the original
2572 * spec states (in one of two places).
2573 */
2574 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2575 tp->rcv_up = th->th_seq + th->th_urp;
2576 so->so_oobmark = so->so_rcv.sb_cc +
2577 (tp->rcv_up - tp->rcv_nxt) - 1;
2578 if (so->so_oobmark == 0)
2579 so->so_state |= SS_RCVATMARK;
2580 sohasoutofband(so);
2581 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2582 }
2583 /*
2584 * Remove out of band data so doesn't get presented to user.
2585 * This can happen independent of advancing the URG pointer,
2586 * but if two URG's are pending at once, some out-of-band
2587 * data may creep in... ick.
2588 */
2589 if (th->th_urp <= (u_int16_t) tlen
2590 #ifdef SO_OOBINLINE
2591 && (so->so_options & SO_OOBINLINE) == 0
2592 #endif
2593 )
2594 tcp_pulloutofband(so, th, m, hdroptlen);
2595 } else
2596 /*
2597 * If no out of band data is expected,
2598 * pull receive urgent pointer along
2599 * with the receive window.
2600 */
2601 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2602 tp->rcv_up = tp->rcv_nxt;
2603 dodata: /* XXX */
2604
2605 /*
2606 * Process the segment text, merging it into the TCP sequencing queue,
2607 * and arranging for acknowledgement of receipt if necessary.
2608 * This process logically involves adjusting tp->rcv_wnd as data
2609 * is presented to the user (this happens in tcp_usrreq.c,
2610 * case PRU_RCVD). If a FIN has already been received on this
2611 * connection then we just ignore the text.
2612 */
2613 if ((tlen || (tiflags & TH_FIN)) &&
2614 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2615 /*
2616 * Insert segment ti into reassembly queue of tcp with
2617 * control block tp. Return TH_FIN if reassembly now includes
2618 * a segment with FIN. The macro form does the common case
2619 * inline (segment is the next to be received on an
2620 * established connection, and the queue is empty),
2621 * avoiding linkage into and removal from the queue and
2622 * repetition of various conversions.
2623 * Set DELACK for segments received in order, but ack
2624 * immediately when segments are out of order
2625 * (so fast retransmit can work).
2626 */
2627 /* NOTE: this was TCP_REASS() macro, but used only once */
2628 TCP_REASS_LOCK(tp);
2629 if (th->th_seq == tp->rcv_nxt &&
2630 TAILQ_FIRST(&tp->segq) == NULL &&
2631 tp->t_state == TCPS_ESTABLISHED) {
2632 tcp_setup_ack(tp, th);
2633 tp->rcv_nxt += tlen;
2634 tiflags = th->th_flags & TH_FIN;
2635 tcps = TCP_STAT_GETREF();
2636 tcps[TCP_STAT_RCVPACK]++;
2637 tcps[TCP_STAT_RCVBYTE] += tlen;
2638 TCP_STAT_PUTREF();
2639 nd6_hint(tp);
2640 if (so->so_state & SS_CANTRCVMORE)
2641 m_freem(m);
2642 else {
2643 m_adj(m, hdroptlen);
2644 sbappendstream(&(so)->so_rcv, m);
2645 }
2646 sorwakeup(so);
2647 } else {
2648 m_adj(m, hdroptlen);
2649 tiflags = tcp_reass(tp, th, m, &tlen);
2650 tp->t_flags |= TF_ACKNOW;
2651 }
2652 TCP_REASS_UNLOCK(tp);
2653
2654 /*
2655 * Note the amount of data that peer has sent into
2656 * our window, in order to estimate the sender's
2657 * buffer size.
2658 */
2659 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2660 } else {
2661 m_freem(m);
2662 m = NULL;
2663 tiflags &= ~TH_FIN;
2664 }
2665
2666 /*
2667 * If FIN is received ACK the FIN and let the user know
2668 * that the connection is closing. Ignore a FIN received before
2669 * the connection is fully established.
2670 */
2671 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2672 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2673 socantrcvmore(so);
2674 tp->t_flags |= TF_ACKNOW;
2675 tp->rcv_nxt++;
2676 }
2677 switch (tp->t_state) {
2678
2679 /*
2680 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2681 */
2682 case TCPS_ESTABLISHED:
2683 tp->t_state = TCPS_CLOSE_WAIT;
2684 break;
2685
2686 /*
2687 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2688 * enter the CLOSING state.
2689 */
2690 case TCPS_FIN_WAIT_1:
2691 tp->t_state = TCPS_CLOSING;
2692 break;
2693
2694 /*
2695 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2696 * starting the time-wait timer, turning off the other
2697 * standard timers.
2698 */
2699 case TCPS_FIN_WAIT_2:
2700 tp->t_state = TCPS_TIME_WAIT;
2701 tcp_canceltimers(tp);
2702 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2703 soisdisconnected(so);
2704 break;
2705
2706 /*
2707 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2708 */
2709 case TCPS_TIME_WAIT:
2710 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2711 break;
2712 }
2713 }
2714 #ifdef TCP_DEBUG
2715 if (so->so_options & SO_DEBUG)
2716 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2717 #endif
2718
2719 /*
2720 * Return any desired output.
2721 */
2722 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2723 (void) tcp_output(tp);
2724 }
2725 if (tcp_saveti)
2726 m_freem(tcp_saveti);
2727 return;
2728
2729 badsyn:
2730 /*
2731 * Received a bad SYN. Increment counters and dropwithreset.
2732 */
2733 TCP_STATINC(TCP_STAT_BADSYN);
2734 tp = NULL;
2735 goto dropwithreset;
2736
2737 dropafterack:
2738 /*
2739 * Generate an ACK dropping incoming segment if it occupies
2740 * sequence space, where the ACK reflects our state.
2741 */
2742 if (tiflags & TH_RST)
2743 goto drop;
2744 goto dropafterack2;
2745
2746 dropafterack_ratelim:
2747 /*
2748 * We may want to rate-limit ACKs against SYN/RST attack.
2749 */
2750 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2751 tcp_ackdrop_ppslim) == 0) {
2752 /* XXX stat */
2753 goto drop;
2754 }
2755 /* ...fall into dropafterack2... */
2756
2757 dropafterack2:
2758 m_freem(m);
2759 tp->t_flags |= TF_ACKNOW;
2760 (void) tcp_output(tp);
2761 if (tcp_saveti)
2762 m_freem(tcp_saveti);
2763 return;
2764
2765 dropwithreset_ratelim:
2766 /*
2767 * We may want to rate-limit RSTs in certain situations,
2768 * particularly if we are sending an RST in response to
2769 * an attempt to connect to or otherwise communicate with
2770 * a port for which we have no socket.
2771 */
2772 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2773 tcp_rst_ppslim) == 0) {
2774 /* XXX stat */
2775 goto drop;
2776 }
2777 /* ...fall into dropwithreset... */
2778
2779 dropwithreset:
2780 /*
2781 * Generate a RST, dropping incoming segment.
2782 * Make ACK acceptable to originator of segment.
2783 */
2784 if (tiflags & TH_RST)
2785 goto drop;
2786
2787 switch (af) {
2788 #ifdef INET6
2789 case AF_INET6:
2790 /* For following calls to tcp_respond */
2791 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2792 goto drop;
2793 break;
2794 #endif /* INET6 */
2795 case AF_INET:
2796 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2797 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2798 goto drop;
2799 }
2800
2801 if (tiflags & TH_ACK)
2802 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2803 else {
2804 if (tiflags & TH_SYN)
2805 tlen++;
2806 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2807 TH_RST|TH_ACK);
2808 }
2809 if (tcp_saveti)
2810 m_freem(tcp_saveti);
2811 return;
2812
2813 badcsum:
2814 drop:
2815 /*
2816 * Drop space held by incoming segment and return.
2817 */
2818 if (tp) {
2819 if (tp->t_inpcb)
2820 so = tp->t_inpcb->inp_socket;
2821 #ifdef INET6
2822 else if (tp->t_in6pcb)
2823 so = tp->t_in6pcb->in6p_socket;
2824 #endif
2825 else
2826 so = NULL;
2827 #ifdef TCP_DEBUG
2828 if (so && (so->so_options & SO_DEBUG) != 0)
2829 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2830 #endif
2831 }
2832 if (tcp_saveti)
2833 m_freem(tcp_saveti);
2834 m_freem(m);
2835 return;
2836 }
2837
2838 #ifdef TCP_SIGNATURE
2839 int
2840 tcp_signature_apply(void *fstate, void *data, u_int len)
2841 {
2842
2843 MD5Update(fstate, (u_char *)data, len);
2844 return (0);
2845 }
2846
2847 struct secasvar *
2848 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2849 {
2850 struct secasvar *sav;
2851 #ifdef FAST_IPSEC
2852 union sockaddr_union dst;
2853 #endif
2854 struct ip *ip;
2855 struct ip6_hdr *ip6;
2856
2857 ip = mtod(m, struct ip *);
2858 switch (ip->ip_v) {
2859 case 4:
2860 ip = mtod(m, struct ip *);
2861 ip6 = NULL;
2862 break;
2863 case 6:
2864 ip = NULL;
2865 ip6 = mtod(m, struct ip6_hdr *);
2866 break;
2867 default:
2868 return (NULL);
2869 }
2870
2871 #ifdef FAST_IPSEC
2872 /* Extract the destination from the IP header in the mbuf. */
2873 bzero(&dst, sizeof(union sockaddr_union));
2874 if (ip !=NULL) {
2875 dst.sa.sa_len = sizeof(struct sockaddr_in);
2876 dst.sa.sa_family = AF_INET;
2877 dst.sin.sin_addr = ip->ip_dst;
2878 } else {
2879 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2880 dst.sa.sa_family = AF_INET6;
2881 dst.sin6.sin6_addr = ip6->ip6_dst;
2882 }
2883
2884 /*
2885 * Look up an SADB entry which matches the address of the peer.
2886 */
2887 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2888 #else
2889 if (ip)
2890 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2891 (void *)&ip->ip_dst, IPPROTO_TCP,
2892 htonl(TCP_SIG_SPI), 0, 0);
2893 else
2894 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2895 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2896 htonl(TCP_SIG_SPI), 0, 0);
2897 #endif
2898
2899 return (sav); /* freesav must be performed by caller */
2900 }
2901
2902 int
2903 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2904 struct secasvar *sav, char *sig)
2905 {
2906 MD5_CTX ctx;
2907 struct ip *ip;
2908 struct ipovly *ipovly;
2909 struct ip6_hdr *ip6;
2910 struct ippseudo ippseudo;
2911 struct ip6_hdr_pseudo ip6pseudo;
2912 struct tcphdr th0;
2913 int l, tcphdrlen;
2914
2915 if (sav == NULL)
2916 return (-1);
2917
2918 tcphdrlen = th->th_off * 4;
2919
2920 switch (mtod(m, struct ip *)->ip_v) {
2921 case 4:
2922 ip = mtod(m, struct ip *);
2923 ip6 = NULL;
2924 break;
2925 case 6:
2926 ip = NULL;
2927 ip6 = mtod(m, struct ip6_hdr *);
2928 break;
2929 default:
2930 return (-1);
2931 }
2932
2933 MD5Init(&ctx);
2934
2935 if (ip) {
2936 memset(&ippseudo, 0, sizeof(ippseudo));
2937 ipovly = (struct ipovly *)ip;
2938 ippseudo.ippseudo_src = ipovly->ih_src;
2939 ippseudo.ippseudo_dst = ipovly->ih_dst;
2940 ippseudo.ippseudo_pad = 0;
2941 ippseudo.ippseudo_p = IPPROTO_TCP;
2942 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2943 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2944 } else {
2945 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2946 ip6pseudo.ip6ph_src = ip6->ip6_src;
2947 in6_clearscope(&ip6pseudo.ip6ph_src);
2948 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2949 in6_clearscope(&ip6pseudo.ip6ph_dst);
2950 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2951 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2952 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2953 }
2954
2955 th0 = *th;
2956 th0.th_sum = 0;
2957 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2958
2959 l = m->m_pkthdr.len - thoff - tcphdrlen;
2960 if (l > 0)
2961 m_apply(m, thoff + tcphdrlen,
2962 m->m_pkthdr.len - thoff - tcphdrlen,
2963 tcp_signature_apply, &ctx);
2964
2965 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2966 MD5Final(sig, &ctx);
2967
2968 return (0);
2969 }
2970 #endif
2971
2972 static int
2973 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2974 struct tcphdr *th,
2975 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2976 {
2977 u_int16_t mss;
2978 int opt, optlen = 0;
2979 #ifdef TCP_SIGNATURE
2980 void *sigp = NULL;
2981 char sigbuf[TCP_SIGLEN];
2982 struct secasvar *sav = NULL;
2983 #endif
2984
2985 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2986 opt = cp[0];
2987 if (opt == TCPOPT_EOL)
2988 break;
2989 if (opt == TCPOPT_NOP)
2990 optlen = 1;
2991 else {
2992 if (cnt < 2)
2993 break;
2994 optlen = cp[1];
2995 if (optlen < 2 || optlen > cnt)
2996 break;
2997 }
2998 switch (opt) {
2999
3000 default:
3001 continue;
3002
3003 case TCPOPT_MAXSEG:
3004 if (optlen != TCPOLEN_MAXSEG)
3005 continue;
3006 if (!(th->th_flags & TH_SYN))
3007 continue;
3008 if (TCPS_HAVERCVDSYN(tp->t_state))
3009 continue;
3010 bcopy(cp + 2, &mss, sizeof(mss));
3011 oi->maxseg = ntohs(mss);
3012 break;
3013
3014 case TCPOPT_WINDOW:
3015 if (optlen != TCPOLEN_WINDOW)
3016 continue;
3017 if (!(th->th_flags & TH_SYN))
3018 continue;
3019 if (TCPS_HAVERCVDSYN(tp->t_state))
3020 continue;
3021 tp->t_flags |= TF_RCVD_SCALE;
3022 tp->requested_s_scale = cp[2];
3023 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3024 #if 0 /*XXX*/
3025 char *p;
3026
3027 if (ip)
3028 p = ntohl(ip->ip_src);
3029 #ifdef INET6
3030 else if (ip6)
3031 p = ip6_sprintf(&ip6->ip6_src);
3032 #endif
3033 else
3034 p = "(unknown)";
3035 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3036 "assuming %d\n",
3037 tp->requested_s_scale, p,
3038 TCP_MAX_WINSHIFT);
3039 #else
3040 log(LOG_ERR, "TCP: invalid wscale %d, "
3041 "assuming %d\n",
3042 tp->requested_s_scale,
3043 TCP_MAX_WINSHIFT);
3044 #endif
3045 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3046 }
3047 break;
3048
3049 case TCPOPT_TIMESTAMP:
3050 if (optlen != TCPOLEN_TIMESTAMP)
3051 continue;
3052 oi->ts_present = 1;
3053 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3054 NTOHL(oi->ts_val);
3055 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3056 NTOHL(oi->ts_ecr);
3057
3058 if (!(th->th_flags & TH_SYN))
3059 continue;
3060 if (TCPS_HAVERCVDSYN(tp->t_state))
3061 continue;
3062 /*
3063 * A timestamp received in a SYN makes
3064 * it ok to send timestamp requests and replies.
3065 */
3066 tp->t_flags |= TF_RCVD_TSTMP;
3067 tp->ts_recent = oi->ts_val;
3068 tp->ts_recent_age = tcp_now;
3069 break;
3070
3071 case TCPOPT_SACK_PERMITTED:
3072 if (optlen != TCPOLEN_SACK_PERMITTED)
3073 continue;
3074 if (!(th->th_flags & TH_SYN))
3075 continue;
3076 if (TCPS_HAVERCVDSYN(tp->t_state))
3077 continue;
3078 if (tcp_do_sack) {
3079 tp->t_flags |= TF_SACK_PERMIT;
3080 tp->t_flags |= TF_WILL_SACK;
3081 }
3082 break;
3083
3084 case TCPOPT_SACK:
3085 tcp_sack_option(tp, th, cp, optlen);
3086 break;
3087 #ifdef TCP_SIGNATURE
3088 case TCPOPT_SIGNATURE:
3089 if (optlen != TCPOLEN_SIGNATURE)
3090 continue;
3091 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3092 return (-1);
3093
3094 sigp = sigbuf;
3095 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3096 tp->t_flags |= TF_SIGNATURE;
3097 break;
3098 #endif
3099 }
3100 }
3101
3102 #ifdef TCP_SIGNATURE
3103 if (tp->t_flags & TF_SIGNATURE) {
3104
3105 sav = tcp_signature_getsav(m, th);
3106
3107 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3108 return (-1);
3109 }
3110
3111 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3112 if (sav == NULL)
3113 return (-1);
3114 #ifdef FAST_IPSEC
3115 KEY_FREESAV(&sav);
3116 #else
3117 key_freesav(sav);
3118 #endif
3119 return (-1);
3120 }
3121
3122 if (sigp) {
3123 char sig[TCP_SIGLEN];
3124
3125 tcp_fields_to_net(th);
3126 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3127 tcp_fields_to_host(th);
3128 if (sav == NULL)
3129 return (-1);
3130 #ifdef FAST_IPSEC
3131 KEY_FREESAV(&sav);
3132 #else
3133 key_freesav(sav);
3134 #endif
3135 return (-1);
3136 }
3137 tcp_fields_to_host(th);
3138
3139 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3140 TCP_STATINC(TCP_STAT_BADSIG);
3141 if (sav == NULL)
3142 return (-1);
3143 #ifdef FAST_IPSEC
3144 KEY_FREESAV(&sav);
3145 #else
3146 key_freesav(sav);
3147 #endif
3148 return (-1);
3149 } else
3150 TCP_STATINC(TCP_STAT_GOODSIG);
3151
3152 key_sa_recordxfer(sav, m);
3153 #ifdef FAST_IPSEC
3154 KEY_FREESAV(&sav);
3155 #else
3156 key_freesav(sav);
3157 #endif
3158 }
3159 #endif
3160
3161 return (0);
3162 }
3163
3164 /*
3165 * Pull out of band byte out of a segment so
3166 * it doesn't appear in the user's data queue.
3167 * It is still reflected in the segment length for
3168 * sequencing purposes.
3169 */
3170 void
3171 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3172 struct mbuf *m, int off)
3173 {
3174 int cnt = off + th->th_urp - 1;
3175
3176 while (cnt >= 0) {
3177 if (m->m_len > cnt) {
3178 char *cp = mtod(m, char *) + cnt;
3179 struct tcpcb *tp = sototcpcb(so);
3180
3181 tp->t_iobc = *cp;
3182 tp->t_oobflags |= TCPOOB_HAVEDATA;
3183 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3184 m->m_len--;
3185 return;
3186 }
3187 cnt -= m->m_len;
3188 m = m->m_next;
3189 if (m == 0)
3190 break;
3191 }
3192 panic("tcp_pulloutofband");
3193 }
3194
3195 /*
3196 * Collect new round-trip time estimate
3197 * and update averages and current timeout.
3198 */
3199 void
3200 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3201 {
3202 int32_t delta;
3203
3204 TCP_STATINC(TCP_STAT_RTTUPDATED);
3205 if (tp->t_srtt != 0) {
3206 /*
3207 * srtt is stored as fixed point with 3 bits after the
3208 * binary point (i.e., scaled by 8). The following magic
3209 * is equivalent to the smoothing algorithm in rfc793 with
3210 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3211 * point). Adjust rtt to origin 0.
3212 */
3213 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3214 if ((tp->t_srtt += delta) <= 0)
3215 tp->t_srtt = 1 << 2;
3216 /*
3217 * We accumulate a smoothed rtt variance (actually, a
3218 * smoothed mean difference), then set the retransmit
3219 * timer to smoothed rtt + 4 times the smoothed variance.
3220 * rttvar is stored as fixed point with 2 bits after the
3221 * binary point (scaled by 4). The following is
3222 * equivalent to rfc793 smoothing with an alpha of .75
3223 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3224 * rfc793's wired-in beta.
3225 */
3226 if (delta < 0)
3227 delta = -delta;
3228 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3229 if ((tp->t_rttvar += delta) <= 0)
3230 tp->t_rttvar = 1 << 2;
3231 } else {
3232 /*
3233 * No rtt measurement yet - use the unsmoothed rtt.
3234 * Set the variance to half the rtt (so our first
3235 * retransmit happens at 3*rtt).
3236 */
3237 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3238 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3239 }
3240 tp->t_rtttime = 0;
3241 tp->t_rxtshift = 0;
3242
3243 /*
3244 * the retransmit should happen at rtt + 4 * rttvar.
3245 * Because of the way we do the smoothing, srtt and rttvar
3246 * will each average +1/2 tick of bias. When we compute
3247 * the retransmit timer, we want 1/2 tick of rounding and
3248 * 1 extra tick because of +-1/2 tick uncertainty in the
3249 * firing of the timer. The bias will give us exactly the
3250 * 1.5 tick we need. But, because the bias is
3251 * statistical, we have to test that we don't drop below
3252 * the minimum feasible timer (which is 2 ticks).
3253 */
3254 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3255 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3256
3257 /*
3258 * We received an ack for a packet that wasn't retransmitted;
3259 * it is probably safe to discard any error indications we've
3260 * received recently. This isn't quite right, but close enough
3261 * for now (a route might have failed after we sent a segment,
3262 * and the return path might not be symmetrical).
3263 */
3264 tp->t_softerror = 0;
3265 }
3266
3267
3268 /*
3269 * TCP compressed state engine. Currently used to hold compressed
3270 * state for SYN_RECEIVED.
3271 */
3272
3273 u_long syn_cache_count;
3274 u_int32_t syn_hash1, syn_hash2;
3275
3276 #define SYN_HASH(sa, sp, dp) \
3277 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3278 ((u_int32_t)(sp)))^syn_hash2)))
3279 #ifndef INET6
3280 #define SYN_HASHALL(hash, src, dst) \
3281 do { \
3282 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3283 ((const struct sockaddr_in *)(src))->sin_port, \
3284 ((const struct sockaddr_in *)(dst))->sin_port); \
3285 } while (/*CONSTCOND*/ 0)
3286 #else
3287 #define SYN_HASH6(sa, sp, dp) \
3288 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3289 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3290 & 0x7fffffff)
3291
3292 #define SYN_HASHALL(hash, src, dst) \
3293 do { \
3294 switch ((src)->sa_family) { \
3295 case AF_INET: \
3296 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3297 ((const struct sockaddr_in *)(src))->sin_port, \
3298 ((const struct sockaddr_in *)(dst))->sin_port); \
3299 break; \
3300 case AF_INET6: \
3301 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3302 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3303 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3304 break; \
3305 default: \
3306 hash = 0; \
3307 } \
3308 } while (/*CONSTCOND*/0)
3309 #endif /* INET6 */
3310
3311 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3312 IPL_SOFTNET);
3313
3314 /*
3315 * We don't estimate RTT with SYNs, so each packet starts with the default
3316 * RTT and each timer step has a fixed timeout value.
3317 */
3318 #define SYN_CACHE_TIMER_ARM(sc) \
3319 do { \
3320 TCPT_RANGESET((sc)->sc_rxtcur, \
3321 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3322 TCPTV_REXMTMAX); \
3323 callout_reset(&(sc)->sc_timer, \
3324 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3325 } while (/*CONSTCOND*/0)
3326
3327 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3328
3329 static inline void
3330 syn_cache_rm(struct syn_cache *sc)
3331 {
3332 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3333 sc, sc_bucketq);
3334 sc->sc_tp = NULL;
3335 LIST_REMOVE(sc, sc_tpq);
3336 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3337 callout_stop(&sc->sc_timer);
3338 syn_cache_count--;
3339 }
3340
3341 static inline void
3342 syn_cache_put(struct syn_cache *sc)
3343 {
3344 if (sc->sc_ipopts)
3345 (void) m_free(sc->sc_ipopts);
3346 rtcache_free(&sc->sc_route);
3347 if (callout_invoking(&sc->sc_timer))
3348 sc->sc_flags |= SCF_DEAD;
3349 else {
3350 callout_destroy(&sc->sc_timer);
3351 pool_put(&syn_cache_pool, sc);
3352 }
3353 }
3354
3355 void
3356 syn_cache_init(void)
3357 {
3358 int i;
3359
3360 /* Initialize the hash buckets. */
3361 for (i = 0; i < tcp_syn_cache_size; i++)
3362 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3363 }
3364
3365 void
3366 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3367 {
3368 struct syn_cache_head *scp;
3369 struct syn_cache *sc2;
3370 int s;
3371
3372 /*
3373 * If there are no entries in the hash table, reinitialize
3374 * the hash secrets.
3375 */
3376 if (syn_cache_count == 0) {
3377 syn_hash1 = arc4random();
3378 syn_hash2 = arc4random();
3379 }
3380
3381 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3382 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3383 scp = &tcp_syn_cache[sc->sc_bucketidx];
3384
3385 /*
3386 * Make sure that we don't overflow the per-bucket
3387 * limit or the total cache size limit.
3388 */
3389 s = splsoftnet();
3390 if (scp->sch_length >= tcp_syn_bucket_limit) {
3391 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3392 /*
3393 * The bucket is full. Toss the oldest element in the
3394 * bucket. This will be the first entry in the bucket.
3395 */
3396 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3397 #ifdef DIAGNOSTIC
3398 /*
3399 * This should never happen; we should always find an
3400 * entry in our bucket.
3401 */
3402 if (sc2 == NULL)
3403 panic("syn_cache_insert: bucketoverflow: impossible");
3404 #endif
3405 syn_cache_rm(sc2);
3406 syn_cache_put(sc2); /* calls pool_put but see spl above */
3407 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3408 struct syn_cache_head *scp2, *sce;
3409
3410 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3411 /*
3412 * The cache is full. Toss the oldest entry in the
3413 * first non-empty bucket we can find.
3414 *
3415 * XXX We would really like to toss the oldest
3416 * entry in the cache, but we hope that this
3417 * condition doesn't happen very often.
3418 */
3419 scp2 = scp;
3420 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3421 sce = &tcp_syn_cache[tcp_syn_cache_size];
3422 for (++scp2; scp2 != scp; scp2++) {
3423 if (scp2 >= sce)
3424 scp2 = &tcp_syn_cache[0];
3425 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3426 break;
3427 }
3428 #ifdef DIAGNOSTIC
3429 /*
3430 * This should never happen; we should always find a
3431 * non-empty bucket.
3432 */
3433 if (scp2 == scp)
3434 panic("syn_cache_insert: cacheoverflow: "
3435 "impossible");
3436 #endif
3437 }
3438 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3439 syn_cache_rm(sc2);
3440 syn_cache_put(sc2); /* calls pool_put but see spl above */
3441 }
3442
3443 /*
3444 * Initialize the entry's timer.
3445 */
3446 sc->sc_rxttot = 0;
3447 sc->sc_rxtshift = 0;
3448 SYN_CACHE_TIMER_ARM(sc);
3449
3450 /* Link it from tcpcb entry */
3451 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3452
3453 /* Put it into the bucket. */
3454 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3455 scp->sch_length++;
3456 syn_cache_count++;
3457
3458 TCP_STATINC(TCP_STAT_SC_ADDED);
3459 splx(s);
3460 }
3461
3462 /*
3463 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3464 * If we have retransmitted an entry the maximum number of times, expire
3465 * that entry.
3466 */
3467 void
3468 syn_cache_timer(void *arg)
3469 {
3470 struct syn_cache *sc = arg;
3471
3472 mutex_enter(softnet_lock);
3473 KERNEL_LOCK(1, NULL);
3474 callout_ack(&sc->sc_timer);
3475
3476 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3477 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3478 callout_destroy(&sc->sc_timer);
3479 pool_put(&syn_cache_pool, sc);
3480 KERNEL_UNLOCK_ONE(NULL);
3481 mutex_exit(softnet_lock);
3482 return;
3483 }
3484
3485 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3486 /* Drop it -- too many retransmissions. */
3487 goto dropit;
3488 }
3489
3490 /*
3491 * Compute the total amount of time this entry has
3492 * been on a queue. If this entry has been on longer
3493 * than the keep alive timer would allow, expire it.
3494 */
3495 sc->sc_rxttot += sc->sc_rxtcur;
3496 if (sc->sc_rxttot >= tcp_keepinit)
3497 goto dropit;
3498
3499 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3500 (void) syn_cache_respond(sc, NULL);
3501
3502 /* Advance the timer back-off. */
3503 sc->sc_rxtshift++;
3504 SYN_CACHE_TIMER_ARM(sc);
3505
3506 KERNEL_UNLOCK_ONE(NULL);
3507 mutex_exit(softnet_lock);
3508 return;
3509
3510 dropit:
3511 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3512 syn_cache_rm(sc);
3513 syn_cache_put(sc); /* calls pool_put but see spl above */
3514 KERNEL_UNLOCK_ONE(NULL);
3515 mutex_exit(softnet_lock);
3516 }
3517
3518 /*
3519 * Remove syn cache created by the specified tcb entry,
3520 * because this does not make sense to keep them
3521 * (if there's no tcb entry, syn cache entry will never be used)
3522 */
3523 void
3524 syn_cache_cleanup(struct tcpcb *tp)
3525 {
3526 struct syn_cache *sc, *nsc;
3527 int s;
3528
3529 s = splsoftnet();
3530
3531 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3532 nsc = LIST_NEXT(sc, sc_tpq);
3533
3534 #ifdef DIAGNOSTIC
3535 if (sc->sc_tp != tp)
3536 panic("invalid sc_tp in syn_cache_cleanup");
3537 #endif
3538 syn_cache_rm(sc);
3539 syn_cache_put(sc); /* calls pool_put but see spl above */
3540 }
3541 /* just for safety */
3542 LIST_INIT(&tp->t_sc);
3543
3544 splx(s);
3545 }
3546
3547 /*
3548 * Find an entry in the syn cache.
3549 */
3550 struct syn_cache *
3551 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3552 struct syn_cache_head **headp)
3553 {
3554 struct syn_cache *sc;
3555 struct syn_cache_head *scp;
3556 u_int32_t hash;
3557 int s;
3558
3559 SYN_HASHALL(hash, src, dst);
3560
3561 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3562 *headp = scp;
3563 s = splsoftnet();
3564 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3565 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3566 if (sc->sc_hash != hash)
3567 continue;
3568 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3569 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3570 splx(s);
3571 return (sc);
3572 }
3573 }
3574 splx(s);
3575 return (NULL);
3576 }
3577
3578 /*
3579 * This function gets called when we receive an ACK for a
3580 * socket in the LISTEN state. We look up the connection
3581 * in the syn cache, and if its there, we pull it out of
3582 * the cache and turn it into a full-blown connection in
3583 * the SYN-RECEIVED state.
3584 *
3585 * The return values may not be immediately obvious, and their effects
3586 * can be subtle, so here they are:
3587 *
3588 * NULL SYN was not found in cache; caller should drop the
3589 * packet and send an RST.
3590 *
3591 * -1 We were unable to create the new connection, and are
3592 * aborting it. An ACK,RST is being sent to the peer
3593 * (unless we got screwey sequence numbners; see below),
3594 * because the 3-way handshake has been completed. Caller
3595 * should not free the mbuf, since we may be using it. If
3596 * we are not, we will free it.
3597 *
3598 * Otherwise, the return value is a pointer to the new socket
3599 * associated with the connection.
3600 */
3601 struct socket *
3602 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3603 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3604 struct socket *so, struct mbuf *m)
3605 {
3606 struct syn_cache *sc;
3607 struct syn_cache_head *scp;
3608 struct inpcb *inp = NULL;
3609 #ifdef INET6
3610 struct in6pcb *in6p = NULL;
3611 #endif
3612 struct tcpcb *tp = 0;
3613 struct mbuf *am;
3614 int s;
3615 struct socket *oso;
3616
3617 s = splsoftnet();
3618 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3619 splx(s);
3620 return (NULL);
3621 }
3622
3623 /*
3624 * Verify the sequence and ack numbers. Try getting the correct
3625 * response again.
3626 */
3627 if ((th->th_ack != sc->sc_iss + 1) ||
3628 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3629 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3630 (void) syn_cache_respond(sc, m);
3631 splx(s);
3632 return ((struct socket *)(-1));
3633 }
3634
3635 /* Remove this cache entry */
3636 syn_cache_rm(sc);
3637 splx(s);
3638
3639 /*
3640 * Ok, create the full blown connection, and set things up
3641 * as they would have been set up if we had created the
3642 * connection when the SYN arrived. If we can't create
3643 * the connection, abort it.
3644 */
3645 /*
3646 * inp still has the OLD in_pcb stuff, set the
3647 * v6-related flags on the new guy, too. This is
3648 * done particularly for the case where an AF_INET6
3649 * socket is bound only to a port, and a v4 connection
3650 * comes in on that port.
3651 * we also copy the flowinfo from the original pcb
3652 * to the new one.
3653 */
3654 oso = so;
3655 so = sonewconn(so, SS_ISCONNECTED);
3656 if (so == NULL)
3657 goto resetandabort;
3658
3659 switch (so->so_proto->pr_domain->dom_family) {
3660 #ifdef INET
3661 case AF_INET:
3662 inp = sotoinpcb(so);
3663 break;
3664 #endif
3665 #ifdef INET6
3666 case AF_INET6:
3667 in6p = sotoin6pcb(so);
3668 break;
3669 #endif
3670 }
3671 switch (src->sa_family) {
3672 #ifdef INET
3673 case AF_INET:
3674 if (inp) {
3675 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3676 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3677 inp->inp_options = ip_srcroute();
3678 in_pcbstate(inp, INP_BOUND);
3679 if (inp->inp_options == NULL) {
3680 inp->inp_options = sc->sc_ipopts;
3681 sc->sc_ipopts = NULL;
3682 }
3683 }
3684 #ifdef INET6
3685 else if (in6p) {
3686 /* IPv4 packet to AF_INET6 socket */
3687 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3688 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3689 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3690 &in6p->in6p_laddr.s6_addr32[3],
3691 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3692 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3693 in6totcpcb(in6p)->t_family = AF_INET;
3694 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3695 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3696 else
3697 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3698 in6_pcbstate(in6p, IN6P_BOUND);
3699 }
3700 #endif
3701 break;
3702 #endif
3703 #ifdef INET6
3704 case AF_INET6:
3705 if (in6p) {
3706 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3707 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3708 in6_pcbstate(in6p, IN6P_BOUND);
3709 }
3710 break;
3711 #endif
3712 }
3713 #ifdef INET6
3714 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3715 struct in6pcb *oin6p = sotoin6pcb(oso);
3716 /* inherit socket options from the listening socket */
3717 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3718 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3719 m_freem(in6p->in6p_options);
3720 in6p->in6p_options = 0;
3721 }
3722 ip6_savecontrol(in6p, &in6p->in6p_options,
3723 mtod(m, struct ip6_hdr *), m);
3724 }
3725 #endif
3726
3727 #if defined(IPSEC) || defined(FAST_IPSEC)
3728 /*
3729 * we make a copy of policy, instead of sharing the policy,
3730 * for better behavior in terms of SA lookup and dead SA removal.
3731 */
3732 if (inp) {
3733 /* copy old policy into new socket's */
3734 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3735 printf("tcp_input: could not copy policy\n");
3736 }
3737 #ifdef INET6
3738 else if (in6p) {
3739 /* copy old policy into new socket's */
3740 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3741 in6p->in6p_sp))
3742 printf("tcp_input: could not copy policy\n");
3743 }
3744 #endif
3745 #endif
3746
3747 /*
3748 * Give the new socket our cached route reference.
3749 */
3750 if (inp) {
3751 rtcache_copy(&inp->inp_route, &sc->sc_route);
3752 rtcache_free(&sc->sc_route);
3753 }
3754 #ifdef INET6
3755 else {
3756 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3757 rtcache_free(&sc->sc_route);
3758 }
3759 #endif
3760
3761 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3762 if (am == NULL)
3763 goto resetandabort;
3764 MCLAIM(am, &tcp_mowner);
3765 am->m_len = src->sa_len;
3766 bcopy(src, mtod(am, void *), src->sa_len);
3767 if (inp) {
3768 if (in_pcbconnect(inp, am, &lwp0)) {
3769 (void) m_free(am);
3770 goto resetandabort;
3771 }
3772 }
3773 #ifdef INET6
3774 else if (in6p) {
3775 if (src->sa_family == AF_INET) {
3776 /* IPv4 packet to AF_INET6 socket */
3777 struct sockaddr_in6 *sin6;
3778 sin6 = mtod(am, struct sockaddr_in6 *);
3779 am->m_len = sizeof(*sin6);
3780 bzero(sin6, sizeof(*sin6));
3781 sin6->sin6_family = AF_INET6;
3782 sin6->sin6_len = sizeof(*sin6);
3783 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3784 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3785 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3786 &sin6->sin6_addr.s6_addr32[3],
3787 sizeof(sin6->sin6_addr.s6_addr32[3]));
3788 }
3789 if (in6_pcbconnect(in6p, am, NULL)) {
3790 (void) m_free(am);
3791 goto resetandabort;
3792 }
3793 }
3794 #endif
3795 else {
3796 (void) m_free(am);
3797 goto resetandabort;
3798 }
3799 (void) m_free(am);
3800
3801 if (inp)
3802 tp = intotcpcb(inp);
3803 #ifdef INET6
3804 else if (in6p)
3805 tp = in6totcpcb(in6p);
3806 #endif
3807 else
3808 tp = NULL;
3809 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3810 if (sc->sc_request_r_scale != 15) {
3811 tp->requested_s_scale = sc->sc_requested_s_scale;
3812 tp->request_r_scale = sc->sc_request_r_scale;
3813 tp->snd_scale = sc->sc_requested_s_scale;
3814 tp->rcv_scale = sc->sc_request_r_scale;
3815 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3816 }
3817 if (sc->sc_flags & SCF_TIMESTAMP)
3818 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3819 tp->ts_timebase = sc->sc_timebase;
3820
3821 tp->t_template = tcp_template(tp);
3822 if (tp->t_template == 0) {
3823 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3824 so = NULL;
3825 m_freem(m);
3826 goto abort;
3827 }
3828
3829 tp->iss = sc->sc_iss;
3830 tp->irs = sc->sc_irs;
3831 tcp_sendseqinit(tp);
3832 tcp_rcvseqinit(tp);
3833 tp->t_state = TCPS_SYN_RECEIVED;
3834 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3835 TCP_STATINC(TCP_STAT_ACCEPTS);
3836
3837 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3838 tp->t_flags |= TF_WILL_SACK;
3839
3840 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3841 tp->t_flags |= TF_ECN_PERMIT;
3842
3843 #ifdef TCP_SIGNATURE
3844 if (sc->sc_flags & SCF_SIGNATURE)
3845 tp->t_flags |= TF_SIGNATURE;
3846 #endif
3847
3848 /* Initialize tp->t_ourmss before we deal with the peer's! */
3849 tp->t_ourmss = sc->sc_ourmaxseg;
3850 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3851
3852 /*
3853 * Initialize the initial congestion window. If we
3854 * had to retransmit the SYN,ACK, we must initialize cwnd
3855 * to 1 segment (i.e. the Loss Window).
3856 */
3857 if (sc->sc_rxtshift)
3858 tp->snd_cwnd = tp->t_peermss;
3859 else {
3860 int ss = tcp_init_win;
3861 #ifdef INET
3862 if (inp != NULL && in_localaddr(inp->inp_faddr))
3863 ss = tcp_init_win_local;
3864 #endif
3865 #ifdef INET6
3866 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3867 ss = tcp_init_win_local;
3868 #endif
3869 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3870 }
3871
3872 tcp_rmx_rtt(tp);
3873 tp->snd_wl1 = sc->sc_irs;
3874 tp->rcv_up = sc->sc_irs + 1;
3875
3876 /*
3877 * This is what whould have happened in tcp_output() when
3878 * the SYN,ACK was sent.
3879 */
3880 tp->snd_up = tp->snd_una;
3881 tp->snd_max = tp->snd_nxt = tp->iss+1;
3882 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3883 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3884 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3885 tp->last_ack_sent = tp->rcv_nxt;
3886 tp->t_partialacks = -1;
3887 tp->t_dupacks = 0;
3888
3889 TCP_STATINC(TCP_STAT_SC_COMPLETED);
3890 s = splsoftnet();
3891 syn_cache_put(sc);
3892 splx(s);
3893 return (so);
3894
3895 resetandabort:
3896 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3897 abort:
3898 if (so != NULL)
3899 (void) soabort(so);
3900 s = splsoftnet();
3901 syn_cache_put(sc);
3902 splx(s);
3903 TCP_STATINC(TCP_STAT_SC_ABORTED);
3904 return ((struct socket *)(-1));
3905 }
3906
3907 /*
3908 * This function is called when we get a RST for a
3909 * non-existent connection, so that we can see if the
3910 * connection is in the syn cache. If it is, zap it.
3911 */
3912
3913 void
3914 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3915 {
3916 struct syn_cache *sc;
3917 struct syn_cache_head *scp;
3918 int s = splsoftnet();
3919
3920 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3921 splx(s);
3922 return;
3923 }
3924 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3925 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3926 splx(s);
3927 return;
3928 }
3929 syn_cache_rm(sc);
3930 TCP_STATINC(TCP_STAT_SC_RESET);
3931 syn_cache_put(sc); /* calls pool_put but see spl above */
3932 splx(s);
3933 }
3934
3935 void
3936 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3937 struct tcphdr *th)
3938 {
3939 struct syn_cache *sc;
3940 struct syn_cache_head *scp;
3941 int s;
3942
3943 s = splsoftnet();
3944 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3945 splx(s);
3946 return;
3947 }
3948 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3949 if (ntohl (th->th_seq) != sc->sc_iss) {
3950 splx(s);
3951 return;
3952 }
3953
3954 /*
3955 * If we've retransmitted 3 times and this is our second error,
3956 * we remove the entry. Otherwise, we allow it to continue on.
3957 * This prevents us from incorrectly nuking an entry during a
3958 * spurious network outage.
3959 *
3960 * See tcp_notify().
3961 */
3962 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3963 sc->sc_flags |= SCF_UNREACH;
3964 splx(s);
3965 return;
3966 }
3967
3968 syn_cache_rm(sc);
3969 TCP_STATINC(TCP_STAT_SC_UNREACH);
3970 syn_cache_put(sc); /* calls pool_put but see spl above */
3971 splx(s);
3972 }
3973
3974 /*
3975 * Given a LISTEN socket and an inbound SYN request, add
3976 * this to the syn cache, and send back a segment:
3977 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3978 * to the source.
3979 *
3980 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3981 * Doing so would require that we hold onto the data and deliver it
3982 * to the application. However, if we are the target of a SYN-flood
3983 * DoS attack, an attacker could send data which would eventually
3984 * consume all available buffer space if it were ACKed. By not ACKing
3985 * the data, we avoid this DoS scenario.
3986 */
3987
3988 int
3989 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3990 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3991 int optlen, struct tcp_opt_info *oi)
3992 {
3993 struct tcpcb tb, *tp;
3994 long win;
3995 struct syn_cache *sc;
3996 struct syn_cache_head *scp;
3997 struct mbuf *ipopts;
3998 struct tcp_opt_info opti;
3999 int s;
4000
4001 tp = sototcpcb(so);
4002
4003 bzero(&opti, sizeof(opti));
4004
4005 /*
4006 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4007 *
4008 * Note this check is performed in tcp_input() very early on.
4009 */
4010
4011 /*
4012 * Initialize some local state.
4013 */
4014 win = sbspace(&so->so_rcv);
4015 if (win > TCP_MAXWIN)
4016 win = TCP_MAXWIN;
4017
4018 switch (src->sa_family) {
4019 #ifdef INET
4020 case AF_INET:
4021 /*
4022 * Remember the IP options, if any.
4023 */
4024 ipopts = ip_srcroute();
4025 break;
4026 #endif
4027 default:
4028 ipopts = NULL;
4029 }
4030
4031 #ifdef TCP_SIGNATURE
4032 if (optp || (tp->t_flags & TF_SIGNATURE))
4033 #else
4034 if (optp)
4035 #endif
4036 {
4037 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4038 #ifdef TCP_SIGNATURE
4039 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4040 #endif
4041 tb.t_state = TCPS_LISTEN;
4042 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4043 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4044 return (0);
4045 } else
4046 tb.t_flags = 0;
4047
4048 /*
4049 * See if we already have an entry for this connection.
4050 * If we do, resend the SYN,ACK. We do not count this
4051 * as a retransmission (XXX though maybe we should).
4052 */
4053 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4054 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4055 if (ipopts) {
4056 /*
4057 * If we were remembering a previous source route,
4058 * forget it and use the new one we've been given.
4059 */
4060 if (sc->sc_ipopts)
4061 (void) m_free(sc->sc_ipopts);
4062 sc->sc_ipopts = ipopts;
4063 }
4064 sc->sc_timestamp = tb.ts_recent;
4065 if (syn_cache_respond(sc, m) == 0) {
4066 uint64_t *tcps = TCP_STAT_GETREF();
4067 tcps[TCP_STAT_SNDACKS]++;
4068 tcps[TCP_STAT_SNDTOTAL]++;
4069 TCP_STAT_PUTREF();
4070 }
4071 return (1);
4072 }
4073
4074 s = splsoftnet();
4075 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4076 splx(s);
4077 if (sc == NULL) {
4078 if (ipopts)
4079 (void) m_free(ipopts);
4080 return (0);
4081 }
4082
4083 /*
4084 * Fill in the cache, and put the necessary IP and TCP
4085 * options into the reply.
4086 */
4087 bzero(sc, sizeof(struct syn_cache));
4088 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4089 bcopy(src, &sc->sc_src, src->sa_len);
4090 bcopy(dst, &sc->sc_dst, dst->sa_len);
4091 sc->sc_flags = 0;
4092 sc->sc_ipopts = ipopts;
4093 sc->sc_irs = th->th_seq;
4094 switch (src->sa_family) {
4095 #ifdef INET
4096 case AF_INET:
4097 {
4098 struct sockaddr_in *srcin = (void *) src;
4099 struct sockaddr_in *dstin = (void *) dst;
4100
4101 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4102 &srcin->sin_addr, dstin->sin_port,
4103 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4104 break;
4105 }
4106 #endif /* INET */
4107 #ifdef INET6
4108 case AF_INET6:
4109 {
4110 struct sockaddr_in6 *srcin6 = (void *) src;
4111 struct sockaddr_in6 *dstin6 = (void *) dst;
4112
4113 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4114 &srcin6->sin6_addr, dstin6->sin6_port,
4115 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4116 break;
4117 }
4118 #endif /* INET6 */
4119 }
4120 sc->sc_peermaxseg = oi->maxseg;
4121 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4122 m->m_pkthdr.rcvif : NULL,
4123 sc->sc_src.sa.sa_family);
4124 sc->sc_win = win;
4125 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4126 sc->sc_timestamp = tb.ts_recent;
4127 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4128 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4129 sc->sc_flags |= SCF_TIMESTAMP;
4130 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4131 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4132 sc->sc_requested_s_scale = tb.requested_s_scale;
4133 sc->sc_request_r_scale = 0;
4134 /*
4135 * Pick the smallest possible scaling factor that
4136 * will still allow us to scale up to sb_max.
4137 *
4138 * We do this because there are broken firewalls that
4139 * will corrupt the window scale option, leading to
4140 * the other endpoint believing that our advertised
4141 * window is unscaled. At scale factors larger than
4142 * 5 the unscaled window will drop below 1500 bytes,
4143 * leading to serious problems when traversing these
4144 * broken firewalls.
4145 *
4146 * With the default sbmax of 256K, a scale factor
4147 * of 3 will be chosen by this algorithm. Those who
4148 * choose a larger sbmax should watch out
4149 * for the compatiblity problems mentioned above.
4150 *
4151 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4152 * or <SYN,ACK>) segment itself is never scaled.
4153 */
4154 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4155 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4156 sc->sc_request_r_scale++;
4157 } else {
4158 sc->sc_requested_s_scale = 15;
4159 sc->sc_request_r_scale = 15;
4160 }
4161 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4162 sc->sc_flags |= SCF_SACK_PERMIT;
4163
4164 /*
4165 * ECN setup packet recieved.
4166 */
4167 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4168 sc->sc_flags |= SCF_ECN_PERMIT;
4169
4170 #ifdef TCP_SIGNATURE
4171 if (tb.t_flags & TF_SIGNATURE)
4172 sc->sc_flags |= SCF_SIGNATURE;
4173 #endif
4174 sc->sc_tp = tp;
4175 if (syn_cache_respond(sc, m) == 0) {
4176 uint64_t *tcps = TCP_STAT_GETREF();
4177 tcps[TCP_STAT_SNDACKS]++;
4178 tcps[TCP_STAT_SNDTOTAL]++;
4179 TCP_STAT_PUTREF();
4180 syn_cache_insert(sc, tp);
4181 } else {
4182 s = splsoftnet();
4183 syn_cache_put(sc);
4184 splx(s);
4185 TCP_STATINC(TCP_STAT_SC_DROPPED);
4186 }
4187 return (1);
4188 }
4189
4190 int
4191 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4192 {
4193 #ifdef INET6
4194 struct rtentry *rt;
4195 #endif
4196 struct route *ro;
4197 u_int8_t *optp;
4198 int optlen, error;
4199 u_int16_t tlen;
4200 struct ip *ip = NULL;
4201 #ifdef INET6
4202 struct ip6_hdr *ip6 = NULL;
4203 #endif
4204 struct tcpcb *tp = NULL;
4205 struct tcphdr *th;
4206 u_int hlen;
4207 struct socket *so;
4208
4209 ro = &sc->sc_route;
4210 switch (sc->sc_src.sa.sa_family) {
4211 case AF_INET:
4212 hlen = sizeof(struct ip);
4213 break;
4214 #ifdef INET6
4215 case AF_INET6:
4216 hlen = sizeof(struct ip6_hdr);
4217 break;
4218 #endif
4219 default:
4220 if (m)
4221 m_freem(m);
4222 return (EAFNOSUPPORT);
4223 }
4224
4225 /* Compute the size of the TCP options. */
4226 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4227 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4228 #ifdef TCP_SIGNATURE
4229 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4230 #endif
4231 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4232
4233 tlen = hlen + sizeof(struct tcphdr) + optlen;
4234
4235 /*
4236 * Create the IP+TCP header from scratch.
4237 */
4238 if (m)
4239 m_freem(m);
4240 #ifdef DIAGNOSTIC
4241 if (max_linkhdr + tlen > MCLBYTES)
4242 return (ENOBUFS);
4243 #endif
4244 MGETHDR(m, M_DONTWAIT, MT_DATA);
4245 if (m && tlen > MHLEN) {
4246 MCLGET(m, M_DONTWAIT);
4247 if ((m->m_flags & M_EXT) == 0) {
4248 m_freem(m);
4249 m = NULL;
4250 }
4251 }
4252 if (m == NULL)
4253 return (ENOBUFS);
4254 MCLAIM(m, &tcp_tx_mowner);
4255
4256 /* Fixup the mbuf. */
4257 m->m_data += max_linkhdr;
4258 m->m_len = m->m_pkthdr.len = tlen;
4259 if (sc->sc_tp) {
4260 tp = sc->sc_tp;
4261 if (tp->t_inpcb)
4262 so = tp->t_inpcb->inp_socket;
4263 #ifdef INET6
4264 else if (tp->t_in6pcb)
4265 so = tp->t_in6pcb->in6p_socket;
4266 #endif
4267 else
4268 so = NULL;
4269 } else
4270 so = NULL;
4271 m->m_pkthdr.rcvif = NULL;
4272 memset(mtod(m, u_char *), 0, tlen);
4273
4274 switch (sc->sc_src.sa.sa_family) {
4275 case AF_INET:
4276 ip = mtod(m, struct ip *);
4277 ip->ip_v = 4;
4278 ip->ip_dst = sc->sc_src.sin.sin_addr;
4279 ip->ip_src = sc->sc_dst.sin.sin_addr;
4280 ip->ip_p = IPPROTO_TCP;
4281 th = (struct tcphdr *)(ip + 1);
4282 th->th_dport = sc->sc_src.sin.sin_port;
4283 th->th_sport = sc->sc_dst.sin.sin_port;
4284 break;
4285 #ifdef INET6
4286 case AF_INET6:
4287 ip6 = mtod(m, struct ip6_hdr *);
4288 ip6->ip6_vfc = IPV6_VERSION;
4289 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4290 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4291 ip6->ip6_nxt = IPPROTO_TCP;
4292 /* ip6_plen will be updated in ip6_output() */
4293 th = (struct tcphdr *)(ip6 + 1);
4294 th->th_dport = sc->sc_src.sin6.sin6_port;
4295 th->th_sport = sc->sc_dst.sin6.sin6_port;
4296 break;
4297 #endif
4298 default:
4299 th = NULL;
4300 }
4301
4302 th->th_seq = htonl(sc->sc_iss);
4303 th->th_ack = htonl(sc->sc_irs + 1);
4304 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4305 th->th_flags = TH_SYN|TH_ACK;
4306 th->th_win = htons(sc->sc_win);
4307 /* th_sum already 0 */
4308 /* th_urp already 0 */
4309
4310 /* Tack on the TCP options. */
4311 optp = (u_int8_t *)(th + 1);
4312 *optp++ = TCPOPT_MAXSEG;
4313 *optp++ = 4;
4314 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4315 *optp++ = sc->sc_ourmaxseg & 0xff;
4316
4317 if (sc->sc_request_r_scale != 15) {
4318 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4319 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4320 sc->sc_request_r_scale);
4321 optp += 4;
4322 }
4323
4324 if (sc->sc_flags & SCF_TIMESTAMP) {
4325 u_int32_t *lp = (u_int32_t *)(optp);
4326 /* Form timestamp option as shown in appendix A of RFC 1323. */
4327 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4328 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4329 *lp = htonl(sc->sc_timestamp);
4330 optp += TCPOLEN_TSTAMP_APPA;
4331 }
4332
4333 if (sc->sc_flags & SCF_SACK_PERMIT) {
4334 u_int8_t *p = optp;
4335
4336 /* Let the peer know that we will SACK. */
4337 p[0] = TCPOPT_SACK_PERMITTED;
4338 p[1] = 2;
4339 p[2] = TCPOPT_NOP;
4340 p[3] = TCPOPT_NOP;
4341 optp += 4;
4342 }
4343
4344 /*
4345 * Send ECN SYN-ACK setup packet.
4346 * Routes can be asymetric, so, even if we receive a packet
4347 * with ECE and CWR set, we must not assume no one will block
4348 * the ECE packet we are about to send.
4349 */
4350 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4351 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4352 th->th_flags |= TH_ECE;
4353 TCP_STATINC(TCP_STAT_ECN_SHS);
4354
4355 /*
4356 * draft-ietf-tcpm-ecnsyn-00.txt
4357 *
4358 * "[...] a TCP node MAY respond to an ECN-setup
4359 * SYN packet by setting ECT in the responding
4360 * ECN-setup SYN/ACK packet, indicating to routers
4361 * that the SYN/ACK packet is ECN-Capable.
4362 * This allows a congested router along the path
4363 * to mark the packet instead of dropping the
4364 * packet as an indication of congestion."
4365 *
4366 * "[...] There can be a great benefit in setting
4367 * an ECN-capable codepoint in SYN/ACK packets [...]
4368 * Congestion is most likely to occur in
4369 * the server-to-client direction. As a result,
4370 * setting an ECN-capable codepoint in SYN/ACK
4371 * packets can reduce the occurence of three-second
4372 * retransmit timeouts resulting from the drop
4373 * of SYN/ACK packets."
4374 *
4375 * Page 4 and 6, January 2006.
4376 */
4377
4378 switch (sc->sc_src.sa.sa_family) {
4379 #ifdef INET
4380 case AF_INET:
4381 ip->ip_tos |= IPTOS_ECN_ECT0;
4382 break;
4383 #endif
4384 #ifdef INET6
4385 case AF_INET6:
4386 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4387 break;
4388 #endif
4389 }
4390 TCP_STATINC(TCP_STAT_ECN_ECT);
4391 }
4392
4393 #ifdef TCP_SIGNATURE
4394 if (sc->sc_flags & SCF_SIGNATURE) {
4395 struct secasvar *sav;
4396 u_int8_t *sigp;
4397
4398 sav = tcp_signature_getsav(m, th);
4399
4400 if (sav == NULL) {
4401 if (m)
4402 m_freem(m);
4403 return (EPERM);
4404 }
4405
4406 *optp++ = TCPOPT_SIGNATURE;
4407 *optp++ = TCPOLEN_SIGNATURE;
4408 sigp = optp;
4409 bzero(optp, TCP_SIGLEN);
4410 optp += TCP_SIGLEN;
4411 *optp++ = TCPOPT_NOP;
4412 *optp++ = TCPOPT_EOL;
4413
4414 (void)tcp_signature(m, th, hlen, sav, sigp);
4415
4416 key_sa_recordxfer(sav, m);
4417 #ifdef FAST_IPSEC
4418 KEY_FREESAV(&sav);
4419 #else
4420 key_freesav(sav);
4421 #endif
4422 }
4423 #endif
4424
4425 /* Compute the packet's checksum. */
4426 switch (sc->sc_src.sa.sa_family) {
4427 case AF_INET:
4428 ip->ip_len = htons(tlen - hlen);
4429 th->th_sum = 0;
4430 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4431 break;
4432 #ifdef INET6
4433 case AF_INET6:
4434 ip6->ip6_plen = htons(tlen - hlen);
4435 th->th_sum = 0;
4436 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4437 break;
4438 #endif
4439 }
4440
4441 /*
4442 * Fill in some straggling IP bits. Note the stack expects
4443 * ip_len to be in host order, for convenience.
4444 */
4445 switch (sc->sc_src.sa.sa_family) {
4446 #ifdef INET
4447 case AF_INET:
4448 ip->ip_len = htons(tlen);
4449 ip->ip_ttl = ip_defttl;
4450 /* XXX tos? */
4451 break;
4452 #endif
4453 #ifdef INET6
4454 case AF_INET6:
4455 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4456 ip6->ip6_vfc |= IPV6_VERSION;
4457 ip6->ip6_plen = htons(tlen - hlen);
4458 /* ip6_hlim will be initialized afterwards */
4459 /* XXX flowlabel? */
4460 break;
4461 #endif
4462 }
4463
4464 /* XXX use IPsec policy on listening socket, on SYN ACK */
4465 tp = sc->sc_tp;
4466
4467 switch (sc->sc_src.sa.sa_family) {
4468 #ifdef INET
4469 case AF_INET:
4470 error = ip_output(m, sc->sc_ipopts, ro,
4471 (ip_mtudisc ? IP_MTUDISC : 0),
4472 (struct ip_moptions *)NULL, so);
4473 break;
4474 #endif
4475 #ifdef INET6
4476 case AF_INET6:
4477 ip6->ip6_hlim = in6_selecthlim(NULL,
4478 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4479 : NULL);
4480
4481 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4482 break;
4483 #endif
4484 default:
4485 error = EAFNOSUPPORT;
4486 break;
4487 }
4488 return (error);
4489 }
4490