tcp_input.c revision 1.288 1 /* $NetBSD: tcp_input.c,v 1.288 2008/07/03 15:35:28 ad Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 *
93 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
94 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
95 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
96 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
97 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
98 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
99 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
100 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
101 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
103 * POSSIBILITY OF SUCH DAMAGE.
104 */
105
106 /*
107 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108 * The Regents of the University of California. All rights reserved.
109 *
110 * Redistribution and use in source and binary forms, with or without
111 * modification, are permitted provided that the following conditions
112 * are met:
113 * 1. Redistributions of source code must retain the above copyright
114 * notice, this list of conditions and the following disclaimer.
115 * 2. Redistributions in binary form must reproduce the above copyright
116 * notice, this list of conditions and the following disclaimer in the
117 * documentation and/or other materials provided with the distribution.
118 * 3. Neither the name of the University nor the names of its contributors
119 * may be used to endorse or promote products derived from this software
120 * without specific prior written permission.
121 *
122 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132 * SUCH DAMAGE.
133 *
134 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
135 */
136
137 /*
138 * TODO list for SYN cache stuff:
139 *
140 * Find room for a "state" field, which is needed to keep a
141 * compressed state for TIME_WAIT TCBs. It's been noted already
142 * that this is fairly important for very high-volume web and
143 * mail servers, which use a large number of short-lived
144 * connections.
145 */
146
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.288 2008/07/03 15:35:28 ad Exp $");
149
150 #include "opt_inet.h"
151 #include "opt_ipsec.h"
152 #include "opt_inet_csum.h"
153 #include "opt_tcp_debug.h"
154
155 #include <sys/param.h>
156 #include <sys/systm.h>
157 #include <sys/malloc.h>
158 #include <sys/mbuf.h>
159 #include <sys/protosw.h>
160 #include <sys/socket.h>
161 #include <sys/socketvar.h>
162 #include <sys/errno.h>
163 #include <sys/syslog.h>
164 #include <sys/pool.h>
165 #include <sys/domain.h>
166 #include <sys/kernel.h>
167 #ifdef TCP_SIGNATURE
168 #include <sys/md5.h>
169 #endif
170 #include <sys/lwp.h> /* for lwp0 */
171
172 #include <net/if.h>
173 #include <net/route.h>
174 #include <net/if_types.h>
175
176 #include <netinet/in.h>
177 #include <netinet/in_systm.h>
178 #include <netinet/ip.h>
179 #include <netinet/in_pcb.h>
180 #include <netinet/in_var.h>
181 #include <netinet/ip_var.h>
182 #include <netinet/in_offload.h>
183
184 #ifdef INET6
185 #ifndef INET
186 #include <netinet/in.h>
187 #endif
188 #include <netinet/ip6.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_pcb.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_var.h>
193 #include <netinet/icmp6.h>
194 #include <netinet6/nd6.h>
195 #ifdef TCP_SIGNATURE
196 #include <netinet6/scope6_var.h>
197 #endif
198 #endif
199
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcp_private.h>
211 #include <netinet/tcpip.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214
215 #include <machine/stdarg.h>
216
217 #ifdef IPSEC
218 #include <netinet6/ipsec.h>
219 #include <netinet6/ipsec_private.h>
220 #include <netkey/key.h>
221 #endif /*IPSEC*/
222 #ifdef INET6
223 #include "faith.h"
224 #if defined(NFAITH) && NFAITH > 0
225 #include <net/if_faith.h>
226 #endif
227 #endif /* IPSEC */
228
229 #ifdef FAST_IPSEC
230 #include <netipsec/ipsec.h>
231 #include <netipsec/ipsec_var.h>
232 #include <netipsec/ipsec_private.h>
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif /* FAST_IPSEC*/
238
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
241
242 int tcp_do_autorcvbuf = 0;
243 int tcp_autorcvbuf_inc = 16 * 1024;
244 int tcp_autorcvbuf_max = 256 * 1024;
245
246 static int tcp_rst_ppslim_count = 0;
247 static struct timeval tcp_rst_ppslim_last;
248 static int tcp_ackdrop_ppslim_count = 0;
249 static struct timeval tcp_ackdrop_ppslim_last;
250
251 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
252
253 /* for modulo comparisons of timestamps */
254 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
255 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
256
257 /*
258 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
259 */
260 #ifdef INET6
261 static inline void
262 nd6_hint(struct tcpcb *tp)
263 {
264 struct rtentry *rt;
265
266 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
267 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
268 nd6_nud_hint(rt, NULL, 0);
269 }
270 #else
271 static inline void
272 nd6_hint(struct tcpcb *tp)
273 {
274 }
275 #endif
276
277 /*
278 * Compute ACK transmission behavior. Delay the ACK unless
279 * we have already delayed an ACK (must send an ACK every two segments).
280 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
281 * option is enabled.
282 */
283 static void
284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
285 {
286
287 if (tp->t_flags & TF_DELACK ||
288 (tcp_ack_on_push && th->th_flags & TH_PUSH))
289 tp->t_flags |= TF_ACKNOW;
290 else
291 TCP_SET_DELACK(tp);
292 }
293
294 static void
295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
296 {
297
298 /*
299 * If we had a pending ICMP message that refers to data that have
300 * just been acknowledged, disregard the recorded ICMP message.
301 */
302 if ((tp->t_flags & TF_PMTUD_PEND) &&
303 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
304 tp->t_flags &= ~TF_PMTUD_PEND;
305
306 /*
307 * Keep track of the largest chunk of data
308 * acknowledged since last PMTU update
309 */
310 if (tp->t_pmtud_mss_acked < acked)
311 tp->t_pmtud_mss_acked = acked;
312 }
313
314 /*
315 * Convert TCP protocol fields to host order for easier processing.
316 */
317 static void
318 tcp_fields_to_host(struct tcphdr *th)
319 {
320
321 NTOHL(th->th_seq);
322 NTOHL(th->th_ack);
323 NTOHS(th->th_win);
324 NTOHS(th->th_urp);
325 }
326
327 /*
328 * ... and reverse the above.
329 */
330 static void
331 tcp_fields_to_net(struct tcphdr *th)
332 {
333
334 HTONL(th->th_seq);
335 HTONL(th->th_ack);
336 HTONS(th->th_win);
337 HTONS(th->th_urp);
338 }
339
340 #ifdef TCP_CSUM_COUNTERS
341 #include <sys/device.h>
342
343 #if defined(INET)
344 extern struct evcnt tcp_hwcsum_ok;
345 extern struct evcnt tcp_hwcsum_bad;
346 extern struct evcnt tcp_hwcsum_data;
347 extern struct evcnt tcp_swcsum;
348 #endif /* defined(INET) */
349 #if defined(INET6)
350 extern struct evcnt tcp6_hwcsum_ok;
351 extern struct evcnt tcp6_hwcsum_bad;
352 extern struct evcnt tcp6_hwcsum_data;
353 extern struct evcnt tcp6_swcsum;
354 #endif /* defined(INET6) */
355
356 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
357
358 #else
359
360 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
361
362 #endif /* TCP_CSUM_COUNTERS */
363
364 #ifdef TCP_REASS_COUNTERS
365 #include <sys/device.h>
366
367 extern struct evcnt tcp_reass_;
368 extern struct evcnt tcp_reass_empty;
369 extern struct evcnt tcp_reass_iteration[8];
370 extern struct evcnt tcp_reass_prependfirst;
371 extern struct evcnt tcp_reass_prepend;
372 extern struct evcnt tcp_reass_insert;
373 extern struct evcnt tcp_reass_inserttail;
374 extern struct evcnt tcp_reass_append;
375 extern struct evcnt tcp_reass_appendtail;
376 extern struct evcnt tcp_reass_overlaptail;
377 extern struct evcnt tcp_reass_overlapfront;
378 extern struct evcnt tcp_reass_segdup;
379 extern struct evcnt tcp_reass_fragdup;
380
381 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
382
383 #else
384
385 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
386
387 #endif /* TCP_REASS_COUNTERS */
388
389 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
390 int *);
391 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
392 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
393
394 #ifdef INET
395 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
396 #endif
397 #ifdef INET6
398 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
399 #endif
400
401 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
402
403 #if defined(MBUFTRACE)
404 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
405 #endif /* defined(MBUFTRACE) */
406
407 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
408 NULL, IPL_VM);
409
410 struct ipqent *
411 tcpipqent_alloc(void)
412 {
413 struct ipqent *ipqe;
414 int s;
415
416 s = splvm();
417 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
418 splx(s);
419
420 return ipqe;
421 }
422
423 void
424 tcpipqent_free(struct ipqent *ipqe)
425 {
426 int s;
427
428 s = splvm();
429 pool_put(&tcpipqent_pool, ipqe);
430 splx(s);
431 }
432
433 static int
434 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
435 {
436 struct ipqent *p, *q, *nq, *tiqe = NULL;
437 struct socket *so = NULL;
438 int pkt_flags;
439 tcp_seq pkt_seq;
440 unsigned pkt_len;
441 u_long rcvpartdupbyte = 0;
442 u_long rcvoobyte;
443 #ifdef TCP_REASS_COUNTERS
444 u_int count = 0;
445 #endif
446 uint64_t *tcps;
447
448 if (tp->t_inpcb)
449 so = tp->t_inpcb->inp_socket;
450 #ifdef INET6
451 else if (tp->t_in6pcb)
452 so = tp->t_in6pcb->in6p_socket;
453 #endif
454
455 TCP_REASS_LOCK_CHECK(tp);
456
457 /*
458 * Call with th==0 after become established to
459 * force pre-ESTABLISHED data up to user socket.
460 */
461 if (th == 0)
462 goto present;
463
464 m_claimm(m, &tcp_reass_mowner);
465
466 rcvoobyte = *tlen;
467 /*
468 * Copy these to local variables because the tcpiphdr
469 * gets munged while we are collapsing mbufs.
470 */
471 pkt_seq = th->th_seq;
472 pkt_len = *tlen;
473 pkt_flags = th->th_flags;
474
475 TCP_REASS_COUNTER_INCR(&tcp_reass_);
476
477 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
478 /*
479 * When we miss a packet, the vast majority of time we get
480 * packets that follow it in order. So optimize for that.
481 */
482 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
483 p->ipqe_len += pkt_len;
484 p->ipqe_flags |= pkt_flags;
485 m_cat(p->ipre_mlast, m);
486 TRAVERSE(p->ipre_mlast);
487 m = NULL;
488 tiqe = p;
489 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
490 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
491 goto skip_replacement;
492 }
493 /*
494 * While we're here, if the pkt is completely beyond
495 * anything we have, just insert it at the tail.
496 */
497 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
498 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
499 goto insert_it;
500 }
501 }
502
503 q = TAILQ_FIRST(&tp->segq);
504
505 if (q != NULL) {
506 /*
507 * If this segment immediately precedes the first out-of-order
508 * block, simply slap the segment in front of it and (mostly)
509 * skip the complicated logic.
510 */
511 if (pkt_seq + pkt_len == q->ipqe_seq) {
512 q->ipqe_seq = pkt_seq;
513 q->ipqe_len += pkt_len;
514 q->ipqe_flags |= pkt_flags;
515 m_cat(m, q->ipqe_m);
516 q->ipqe_m = m;
517 q->ipre_mlast = m; /* last mbuf may have changed */
518 TRAVERSE(q->ipre_mlast);
519 tiqe = q;
520 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
521 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
522 goto skip_replacement;
523 }
524 } else {
525 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
526 }
527
528 /*
529 * Find a segment which begins after this one does.
530 */
531 for (p = NULL; q != NULL; q = nq) {
532 nq = TAILQ_NEXT(q, ipqe_q);
533 #ifdef TCP_REASS_COUNTERS
534 count++;
535 #endif
536 /*
537 * If the received segment is just right after this
538 * fragment, merge the two together and then check
539 * for further overlaps.
540 */
541 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
542 #ifdef TCPREASS_DEBUG
543 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
544 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
545 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
546 #endif
547 pkt_len += q->ipqe_len;
548 pkt_flags |= q->ipqe_flags;
549 pkt_seq = q->ipqe_seq;
550 m_cat(q->ipre_mlast, m);
551 TRAVERSE(q->ipre_mlast);
552 m = q->ipqe_m;
553 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
554 goto free_ipqe;
555 }
556 /*
557 * If the received segment is completely past this
558 * fragment, we need to go the next fragment.
559 */
560 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
561 p = q;
562 continue;
563 }
564 /*
565 * If the fragment is past the received segment,
566 * it (or any following) can't be concatenated.
567 */
568 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
569 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
570 break;
571 }
572
573 /*
574 * We've received all the data in this segment before.
575 * mark it as a duplicate and return.
576 */
577 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
578 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
579 tcps = TCP_STAT_GETREF();
580 tcps[TCP_STAT_RCVDUPPACK]++;
581 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
582 TCP_STAT_PUTREF();
583 tcp_new_dsack(tp, pkt_seq, pkt_len);
584 m_freem(m);
585 if (tiqe != NULL) {
586 tcpipqent_free(tiqe);
587 }
588 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
589 return (0);
590 }
591 /*
592 * Received segment completely overlaps this fragment
593 * so we drop the fragment (this keeps the temporal
594 * ordering of segments correct).
595 */
596 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
597 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
598 rcvpartdupbyte += q->ipqe_len;
599 m_freem(q->ipqe_m);
600 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
601 goto free_ipqe;
602 }
603 /*
604 * RX'ed segment extends past the end of the
605 * fragment. Drop the overlapping bytes. Then
606 * merge the fragment and segment then treat as
607 * a longer received packet.
608 */
609 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
610 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
611 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
612 #ifdef TCPREASS_DEBUG
613 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
614 tp, overlap,
615 pkt_seq, pkt_seq + pkt_len, pkt_len);
616 #endif
617 m_adj(m, overlap);
618 rcvpartdupbyte += overlap;
619 m_cat(q->ipre_mlast, m);
620 TRAVERSE(q->ipre_mlast);
621 m = q->ipqe_m;
622 pkt_seq = q->ipqe_seq;
623 pkt_len += q->ipqe_len - overlap;
624 rcvoobyte -= overlap;
625 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
626 goto free_ipqe;
627 }
628 /*
629 * RX'ed segment extends past the front of the
630 * fragment. Drop the overlapping bytes on the
631 * received packet. The packet will then be
632 * contatentated with this fragment a bit later.
633 */
634 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
635 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
636 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
637 #ifdef TCPREASS_DEBUG
638 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
639 tp, overlap,
640 pkt_seq, pkt_seq + pkt_len, pkt_len);
641 #endif
642 m_adj(m, -overlap);
643 pkt_len -= overlap;
644 rcvpartdupbyte += overlap;
645 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
646 rcvoobyte -= overlap;
647 }
648 /*
649 * If the received segment immediates precedes this
650 * fragment then tack the fragment onto this segment
651 * and reinsert the data.
652 */
653 if (q->ipqe_seq == pkt_seq + pkt_len) {
654 #ifdef TCPREASS_DEBUG
655 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
656 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
657 pkt_seq, pkt_seq + pkt_len, pkt_len);
658 #endif
659 pkt_len += q->ipqe_len;
660 pkt_flags |= q->ipqe_flags;
661 m_cat(m, q->ipqe_m);
662 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
663 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
664 tp->t_segqlen--;
665 KASSERT(tp->t_segqlen >= 0);
666 KASSERT(tp->t_segqlen != 0 ||
667 (TAILQ_EMPTY(&tp->segq) &&
668 TAILQ_EMPTY(&tp->timeq)));
669 if (tiqe == NULL) {
670 tiqe = q;
671 } else {
672 tcpipqent_free(q);
673 }
674 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
675 break;
676 }
677 /*
678 * If the fragment is before the segment, remember it.
679 * When this loop is terminated, p will contain the
680 * pointer to fragment that is right before the received
681 * segment.
682 */
683 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
684 p = q;
685
686 continue;
687
688 /*
689 * This is a common operation. It also will allow
690 * to save doing a malloc/free in most instances.
691 */
692 free_ipqe:
693 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
694 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
695 tp->t_segqlen--;
696 KASSERT(tp->t_segqlen >= 0);
697 KASSERT(tp->t_segqlen != 0 ||
698 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
699 if (tiqe == NULL) {
700 tiqe = q;
701 } else {
702 tcpipqent_free(q);
703 }
704 }
705
706 #ifdef TCP_REASS_COUNTERS
707 if (count > 7)
708 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
709 else if (count > 0)
710 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
711 #endif
712
713 insert_it:
714
715 /*
716 * Allocate a new queue entry since the received segment did not
717 * collapse onto any other out-of-order block; thus we are allocating
718 * a new block. If it had collapsed, tiqe would not be NULL and
719 * we would be reusing it.
720 * XXX If we can't, just drop the packet. XXX
721 */
722 if (tiqe == NULL) {
723 tiqe = tcpipqent_alloc();
724 if (tiqe == NULL) {
725 TCP_STATINC(TCP_STAT_RCVMEMDROP);
726 m_freem(m);
727 return (0);
728 }
729 }
730
731 /*
732 * Update the counters.
733 */
734 tcps = TCP_STAT_GETREF();
735 tcps[TCP_STAT_RCVOOPACK]++;
736 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
737 if (rcvpartdupbyte) {
738 tcps[TCP_STAT_RCVPARTDUPPACK]++;
739 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
740 }
741 TCP_STAT_PUTREF();
742
743 /*
744 * Insert the new fragment queue entry into both queues.
745 */
746 tiqe->ipqe_m = m;
747 tiqe->ipre_mlast = m;
748 tiqe->ipqe_seq = pkt_seq;
749 tiqe->ipqe_len = pkt_len;
750 tiqe->ipqe_flags = pkt_flags;
751 if (p == NULL) {
752 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
753 #ifdef TCPREASS_DEBUG
754 if (tiqe->ipqe_seq != tp->rcv_nxt)
755 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
756 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
757 #endif
758 } else {
759 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
760 #ifdef TCPREASS_DEBUG
761 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
762 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
763 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
764 #endif
765 }
766 tp->t_segqlen++;
767
768 skip_replacement:
769
770 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
771
772 present:
773 /*
774 * Present data to user, advancing rcv_nxt through
775 * completed sequence space.
776 */
777 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
778 return (0);
779 q = TAILQ_FIRST(&tp->segq);
780 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
781 return (0);
782 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
783 return (0);
784
785 tp->rcv_nxt += q->ipqe_len;
786 pkt_flags = q->ipqe_flags & TH_FIN;
787 nd6_hint(tp);
788
789 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
790 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
791 tp->t_segqlen--;
792 KASSERT(tp->t_segqlen >= 0);
793 KASSERT(tp->t_segqlen != 0 ||
794 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
795 if (so->so_state & SS_CANTRCVMORE)
796 m_freem(q->ipqe_m);
797 else
798 sbappendstream(&so->so_rcv, q->ipqe_m);
799 tcpipqent_free(q);
800 sorwakeup(so);
801 return (pkt_flags);
802 }
803
804 #ifdef INET6
805 int
806 tcp6_input(struct mbuf **mp, int *offp, int proto)
807 {
808 struct mbuf *m = *mp;
809
810 /*
811 * draft-itojun-ipv6-tcp-to-anycast
812 * better place to put this in?
813 */
814 if (m->m_flags & M_ANYCAST6) {
815 struct ip6_hdr *ip6;
816 if (m->m_len < sizeof(struct ip6_hdr)) {
817 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
818 TCP_STATINC(TCP_STAT_RCVSHORT);
819 return IPPROTO_DONE;
820 }
821 }
822 ip6 = mtod(m, struct ip6_hdr *);
823 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
824 (char *)&ip6->ip6_dst - (char *)ip6);
825 return IPPROTO_DONE;
826 }
827
828 tcp_input(m, *offp, proto);
829 return IPPROTO_DONE;
830 }
831 #endif
832
833 #ifdef INET
834 static void
835 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
836 {
837 char src[4*sizeof "123"];
838 char dst[4*sizeof "123"];
839
840 if (ip) {
841 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
842 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
843 }
844 else {
845 strlcpy(src, "(unknown)", sizeof(src));
846 strlcpy(dst, "(unknown)", sizeof(dst));
847 }
848 log(LOG_INFO,
849 "Connection attempt to TCP %s:%d from %s:%d\n",
850 dst, ntohs(th->th_dport),
851 src, ntohs(th->th_sport));
852 }
853 #endif
854
855 #ifdef INET6
856 static void
857 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
858 {
859 char src[INET6_ADDRSTRLEN];
860 char dst[INET6_ADDRSTRLEN];
861
862 if (ip6) {
863 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
864 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
865 }
866 else {
867 strlcpy(src, "(unknown v6)", sizeof(src));
868 strlcpy(dst, "(unknown v6)", sizeof(dst));
869 }
870 log(LOG_INFO,
871 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
872 dst, ntohs(th->th_dport),
873 src, ntohs(th->th_sport));
874 }
875 #endif
876
877 /*
878 * Checksum extended TCP header and data.
879 */
880 int
881 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
882 int toff, int off, int tlen)
883 {
884
885 /*
886 * XXX it's better to record and check if this mbuf is
887 * already checked.
888 */
889
890 switch (af) {
891 #ifdef INET
892 case AF_INET:
893 switch (m->m_pkthdr.csum_flags &
894 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
895 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
896 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
897 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
898 goto badcsum;
899
900 case M_CSUM_TCPv4|M_CSUM_DATA: {
901 u_int32_t hw_csum = m->m_pkthdr.csum_data;
902
903 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
904 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
905 const struct ip *ip =
906 mtod(m, const struct ip *);
907
908 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
909 ip->ip_dst.s_addr,
910 htons(hw_csum + tlen + off + IPPROTO_TCP));
911 }
912 if ((hw_csum ^ 0xffff) != 0)
913 goto badcsum;
914 break;
915 }
916
917 case M_CSUM_TCPv4:
918 /* Checksum was okay. */
919 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
920 break;
921
922 default:
923 /*
924 * Must compute it ourselves. Maybe skip checksum
925 * on loopback interfaces.
926 */
927 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
928 IFF_LOOPBACK) ||
929 tcp_do_loopback_cksum)) {
930 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
931 if (in4_cksum(m, IPPROTO_TCP, toff,
932 tlen + off) != 0)
933 goto badcsum;
934 }
935 break;
936 }
937 break;
938 #endif /* INET4 */
939
940 #ifdef INET6
941 case AF_INET6:
942 switch (m->m_pkthdr.csum_flags &
943 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
944 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
945 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
946 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
947 goto badcsum;
948
949 #if 0 /* notyet */
950 case M_CSUM_TCPv6|M_CSUM_DATA:
951 #endif
952
953 case M_CSUM_TCPv6:
954 /* Checksum was okay. */
955 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
956 break;
957
958 default:
959 /*
960 * Must compute it ourselves. Maybe skip checksum
961 * on loopback interfaces.
962 */
963 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
964 tcp_do_loopback_cksum)) {
965 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
966 if (in6_cksum(m, IPPROTO_TCP, toff,
967 tlen + off) != 0)
968 goto badcsum;
969 }
970 }
971 break;
972 #endif /* INET6 */
973 }
974
975 return 0;
976
977 badcsum:
978 TCP_STATINC(TCP_STAT_RCVBADSUM);
979 return -1;
980 }
981
982 /*
983 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
984 */
985 void
986 tcp_input(struct mbuf *m, ...)
987 {
988 struct tcphdr *th;
989 struct ip *ip;
990 struct inpcb *inp;
991 #ifdef INET6
992 struct ip6_hdr *ip6;
993 struct in6pcb *in6p;
994 #endif
995 u_int8_t *optp = NULL;
996 int optlen = 0;
997 int len, tlen, toff, hdroptlen = 0;
998 struct tcpcb *tp = 0;
999 int tiflags;
1000 struct socket *so = NULL;
1001 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1002 #ifdef TCP_DEBUG
1003 short ostate = 0;
1004 #endif
1005 u_long tiwin;
1006 struct tcp_opt_info opti;
1007 int off, iphlen;
1008 va_list ap;
1009 int af; /* af on the wire */
1010 struct mbuf *tcp_saveti = NULL;
1011 uint32_t ts_rtt;
1012 uint8_t iptos;
1013 uint64_t *tcps;
1014
1015 MCLAIM(m, &tcp_rx_mowner);
1016 va_start(ap, m);
1017 toff = va_arg(ap, int);
1018 (void)va_arg(ap, int); /* ignore value, advance ap */
1019 va_end(ap);
1020
1021 TCP_STATINC(TCP_STAT_RCVTOTAL);
1022
1023 bzero(&opti, sizeof(opti));
1024 opti.ts_present = 0;
1025 opti.maxseg = 0;
1026
1027 /*
1028 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1029 *
1030 * TCP is, by definition, unicast, so we reject all
1031 * multicast outright.
1032 *
1033 * Note, there are additional src/dst address checks in
1034 * the AF-specific code below.
1035 */
1036 if (m->m_flags & (M_BCAST|M_MCAST)) {
1037 /* XXX stat */
1038 goto drop;
1039 }
1040 #ifdef INET6
1041 if (m->m_flags & M_ANYCAST6) {
1042 /* XXX stat */
1043 goto drop;
1044 }
1045 #endif
1046
1047 /*
1048 * Get IP and TCP header.
1049 * Note: IP leaves IP header in first mbuf.
1050 */
1051 ip = mtod(m, struct ip *);
1052 #ifdef INET6
1053 ip6 = NULL;
1054 #endif
1055 switch (ip->ip_v) {
1056 #ifdef INET
1057 case 4:
1058 af = AF_INET;
1059 iphlen = sizeof(struct ip);
1060 ip = mtod(m, struct ip *);
1061 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1062 sizeof(struct tcphdr));
1063 if (th == NULL) {
1064 TCP_STATINC(TCP_STAT_RCVSHORT);
1065 return;
1066 }
1067 /* We do the checksum after PCB lookup... */
1068 len = ntohs(ip->ip_len);
1069 tlen = len - toff;
1070 iptos = ip->ip_tos;
1071 break;
1072 #endif
1073 #ifdef INET6
1074 case 6:
1075 ip = NULL;
1076 iphlen = sizeof(struct ip6_hdr);
1077 af = AF_INET6;
1078 ip6 = mtod(m, struct ip6_hdr *);
1079 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1080 sizeof(struct tcphdr));
1081 if (th == NULL) {
1082 TCP_STATINC(TCP_STAT_RCVSHORT);
1083 return;
1084 }
1085
1086 /* Be proactive about malicious use of IPv4 mapped address */
1087 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1088 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1089 /* XXX stat */
1090 goto drop;
1091 }
1092
1093 /*
1094 * Be proactive about unspecified IPv6 address in source.
1095 * As we use all-zero to indicate unbounded/unconnected pcb,
1096 * unspecified IPv6 address can be used to confuse us.
1097 *
1098 * Note that packets with unspecified IPv6 destination is
1099 * already dropped in ip6_input.
1100 */
1101 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1102 /* XXX stat */
1103 goto drop;
1104 }
1105
1106 /*
1107 * Make sure destination address is not multicast.
1108 * Source address checked in ip6_input().
1109 */
1110 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1111 /* XXX stat */
1112 goto drop;
1113 }
1114
1115 /* We do the checksum after PCB lookup... */
1116 len = m->m_pkthdr.len;
1117 tlen = len - toff;
1118 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1119 break;
1120 #endif
1121 default:
1122 m_freem(m);
1123 return;
1124 }
1125
1126 KASSERT(TCP_HDR_ALIGNED_P(th));
1127
1128 /*
1129 * Check that TCP offset makes sense,
1130 * pull out TCP options and adjust length. XXX
1131 */
1132 off = th->th_off << 2;
1133 if (off < sizeof (struct tcphdr) || off > tlen) {
1134 TCP_STATINC(TCP_STAT_RCVBADOFF);
1135 goto drop;
1136 }
1137 tlen -= off;
1138
1139 /*
1140 * tcp_input() has been modified to use tlen to mean the TCP data
1141 * length throughout the function. Other functions can use
1142 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1143 * rja
1144 */
1145
1146 if (off > sizeof (struct tcphdr)) {
1147 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1148 if (th == NULL) {
1149 TCP_STATINC(TCP_STAT_RCVSHORT);
1150 return;
1151 }
1152 /*
1153 * NOTE: ip/ip6 will not be affected by m_pulldown()
1154 * (as they're before toff) and we don't need to update those.
1155 */
1156 KASSERT(TCP_HDR_ALIGNED_P(th));
1157 optlen = off - sizeof (struct tcphdr);
1158 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1159 /*
1160 * Do quick retrieval of timestamp options ("options
1161 * prediction?"). If timestamp is the only option and it's
1162 * formatted as recommended in RFC 1323 appendix A, we
1163 * quickly get the values now and not bother calling
1164 * tcp_dooptions(), etc.
1165 */
1166 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1167 (optlen > TCPOLEN_TSTAMP_APPA &&
1168 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1169 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1170 (th->th_flags & TH_SYN) == 0) {
1171 opti.ts_present = 1;
1172 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1173 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1174 optp = NULL; /* we've parsed the options */
1175 }
1176 }
1177 tiflags = th->th_flags;
1178
1179 /*
1180 * Locate pcb for segment.
1181 */
1182 findpcb:
1183 inp = NULL;
1184 #ifdef INET6
1185 in6p = NULL;
1186 #endif
1187 switch (af) {
1188 #ifdef INET
1189 case AF_INET:
1190 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1191 ip->ip_dst, th->th_dport);
1192 if (inp == 0) {
1193 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1194 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1195 }
1196 #ifdef INET6
1197 if (inp == 0) {
1198 struct in6_addr s, d;
1199
1200 /* mapped addr case */
1201 bzero(&s, sizeof(s));
1202 s.s6_addr16[5] = htons(0xffff);
1203 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1204 bzero(&d, sizeof(d));
1205 d.s6_addr16[5] = htons(0xffff);
1206 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1207 in6p = in6_pcblookup_connect(&tcbtable, &s,
1208 th->th_sport, &d, th->th_dport, 0);
1209 if (in6p == 0) {
1210 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1211 in6p = in6_pcblookup_bind(&tcbtable, &d,
1212 th->th_dport, 0);
1213 }
1214 }
1215 #endif
1216 #ifndef INET6
1217 if (inp == 0)
1218 #else
1219 if (inp == 0 && in6p == 0)
1220 #endif
1221 {
1222 TCP_STATINC(TCP_STAT_NOPORT);
1223 if (tcp_log_refused &&
1224 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1225 tcp4_log_refused(ip, th);
1226 }
1227 tcp_fields_to_host(th);
1228 goto dropwithreset_ratelim;
1229 }
1230 #if defined(IPSEC) || defined(FAST_IPSEC)
1231 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1232 ipsec4_in_reject(m, inp)) {
1233 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1234 goto drop;
1235 }
1236 #ifdef INET6
1237 else if (in6p &&
1238 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1239 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1240 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1241 goto drop;
1242 }
1243 #endif
1244 #endif /*IPSEC*/
1245 break;
1246 #endif /*INET*/
1247 #ifdef INET6
1248 case AF_INET6:
1249 {
1250 int faith;
1251
1252 #if defined(NFAITH) && NFAITH > 0
1253 faith = faithprefix(&ip6->ip6_dst);
1254 #else
1255 faith = 0;
1256 #endif
1257 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1258 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1259 if (in6p == NULL) {
1260 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1261 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1262 th->th_dport, faith);
1263 }
1264 if (in6p == NULL) {
1265 TCP_STATINC(TCP_STAT_NOPORT);
1266 if (tcp_log_refused &&
1267 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1268 tcp6_log_refused(ip6, th);
1269 }
1270 tcp_fields_to_host(th);
1271 goto dropwithreset_ratelim;
1272 }
1273 #if defined(IPSEC) || defined(FAST_IPSEC)
1274 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1275 ipsec6_in_reject(m, in6p)) {
1276 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1277 goto drop;
1278 }
1279 #endif /*IPSEC*/
1280 break;
1281 }
1282 #endif
1283 }
1284
1285 /*
1286 * If the state is CLOSED (i.e., TCB does not exist) then
1287 * all data in the incoming segment is discarded.
1288 * If the TCB exists but is in CLOSED state, it is embryonic,
1289 * but should either do a listen or a connect soon.
1290 */
1291 tp = NULL;
1292 so = NULL;
1293 if (inp) {
1294 tp = intotcpcb(inp);
1295 so = inp->inp_socket;
1296 }
1297 #ifdef INET6
1298 else if (in6p) {
1299 tp = in6totcpcb(in6p);
1300 so = in6p->in6p_socket;
1301 }
1302 #endif
1303 if (tp == 0) {
1304 tcp_fields_to_host(th);
1305 goto dropwithreset_ratelim;
1306 }
1307 if (tp->t_state == TCPS_CLOSED)
1308 goto drop;
1309
1310 /*
1311 * Checksum extended TCP header and data.
1312 */
1313 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1314 goto badcsum;
1315
1316 tcp_fields_to_host(th);
1317
1318 /* Unscale the window into a 32-bit value. */
1319 if ((tiflags & TH_SYN) == 0)
1320 tiwin = th->th_win << tp->snd_scale;
1321 else
1322 tiwin = th->th_win;
1323
1324 #ifdef INET6
1325 /* save packet options if user wanted */
1326 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1327 if (in6p->in6p_options) {
1328 m_freem(in6p->in6p_options);
1329 in6p->in6p_options = 0;
1330 }
1331 KASSERT(ip6 != NULL);
1332 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1333 }
1334 #endif
1335
1336 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1337 union syn_cache_sa src;
1338 union syn_cache_sa dst;
1339
1340 bzero(&src, sizeof(src));
1341 bzero(&dst, sizeof(dst));
1342 switch (af) {
1343 #ifdef INET
1344 case AF_INET:
1345 src.sin.sin_len = sizeof(struct sockaddr_in);
1346 src.sin.sin_family = AF_INET;
1347 src.sin.sin_addr = ip->ip_src;
1348 src.sin.sin_port = th->th_sport;
1349
1350 dst.sin.sin_len = sizeof(struct sockaddr_in);
1351 dst.sin.sin_family = AF_INET;
1352 dst.sin.sin_addr = ip->ip_dst;
1353 dst.sin.sin_port = th->th_dport;
1354 break;
1355 #endif
1356 #ifdef INET6
1357 case AF_INET6:
1358 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1359 src.sin6.sin6_family = AF_INET6;
1360 src.sin6.sin6_addr = ip6->ip6_src;
1361 src.sin6.sin6_port = th->th_sport;
1362
1363 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1364 dst.sin6.sin6_family = AF_INET6;
1365 dst.sin6.sin6_addr = ip6->ip6_dst;
1366 dst.sin6.sin6_port = th->th_dport;
1367 break;
1368 #endif /* INET6 */
1369 default:
1370 goto badsyn; /*sanity*/
1371 }
1372
1373 if (so->so_options & SO_DEBUG) {
1374 #ifdef TCP_DEBUG
1375 ostate = tp->t_state;
1376 #endif
1377
1378 tcp_saveti = NULL;
1379 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1380 goto nosave;
1381
1382 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1383 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1384 if (!tcp_saveti)
1385 goto nosave;
1386 } else {
1387 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1388 if (!tcp_saveti)
1389 goto nosave;
1390 MCLAIM(m, &tcp_mowner);
1391 tcp_saveti->m_len = iphlen;
1392 m_copydata(m, 0, iphlen,
1393 mtod(tcp_saveti, void *));
1394 }
1395
1396 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1397 m_freem(tcp_saveti);
1398 tcp_saveti = NULL;
1399 } else {
1400 tcp_saveti->m_len += sizeof(struct tcphdr);
1401 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1402 sizeof(struct tcphdr));
1403 }
1404 nosave:;
1405 }
1406 if (so->so_options & SO_ACCEPTCONN) {
1407 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1408 if (tiflags & TH_RST) {
1409 syn_cache_reset(&src.sa, &dst.sa, th);
1410 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1411 (TH_ACK|TH_SYN)) {
1412 /*
1413 * Received a SYN,ACK. This should
1414 * never happen while we are in
1415 * LISTEN. Send an RST.
1416 */
1417 goto badsyn;
1418 } else if (tiflags & TH_ACK) {
1419 so = syn_cache_get(&src.sa, &dst.sa,
1420 th, toff, tlen, so, m);
1421 if (so == NULL) {
1422 /*
1423 * We don't have a SYN for
1424 * this ACK; send an RST.
1425 */
1426 goto badsyn;
1427 } else if (so ==
1428 (struct socket *)(-1)) {
1429 /*
1430 * We were unable to create
1431 * the connection. If the
1432 * 3-way handshake was
1433 * completed, and RST has
1434 * been sent to the peer.
1435 * Since the mbuf might be
1436 * in use for the reply,
1437 * do not free it.
1438 */
1439 m = NULL;
1440 } else {
1441 /*
1442 * We have created a
1443 * full-blown connection.
1444 */
1445 tp = NULL;
1446 inp = NULL;
1447 #ifdef INET6
1448 in6p = NULL;
1449 #endif
1450 switch (so->so_proto->pr_domain->dom_family) {
1451 #ifdef INET
1452 case AF_INET:
1453 inp = sotoinpcb(so);
1454 tp = intotcpcb(inp);
1455 break;
1456 #endif
1457 #ifdef INET6
1458 case AF_INET6:
1459 in6p = sotoin6pcb(so);
1460 tp = in6totcpcb(in6p);
1461 break;
1462 #endif
1463 }
1464 if (tp == NULL)
1465 goto badsyn; /*XXX*/
1466 tiwin <<= tp->snd_scale;
1467 goto after_listen;
1468 }
1469 } else {
1470 /*
1471 * None of RST, SYN or ACK was set.
1472 * This is an invalid packet for a
1473 * TCB in LISTEN state. Send a RST.
1474 */
1475 goto badsyn;
1476 }
1477 } else {
1478 /*
1479 * Received a SYN.
1480 *
1481 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1482 */
1483 if (m->m_flags & (M_BCAST|M_MCAST))
1484 goto drop;
1485
1486 switch (af) {
1487 #ifdef INET6
1488 case AF_INET6:
1489 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1490 goto drop;
1491 break;
1492 #endif /* INET6 */
1493 case AF_INET:
1494 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1495 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1496 goto drop;
1497 break;
1498 }
1499
1500 #ifdef INET6
1501 /*
1502 * If deprecated address is forbidden, we do
1503 * not accept SYN to deprecated interface
1504 * address to prevent any new inbound
1505 * connection from getting established.
1506 * When we do not accept SYN, we send a TCP
1507 * RST, with deprecated source address (instead
1508 * of dropping it). We compromise it as it is
1509 * much better for peer to send a RST, and
1510 * RST will be the final packet for the
1511 * exchange.
1512 *
1513 * If we do not forbid deprecated addresses, we
1514 * accept the SYN packet. RFC2462 does not
1515 * suggest dropping SYN in this case.
1516 * If we decipher RFC2462 5.5.4, it says like
1517 * this:
1518 * 1. use of deprecated addr with existing
1519 * communication is okay - "SHOULD continue
1520 * to be used"
1521 * 2. use of it with new communication:
1522 * (2a) "SHOULD NOT be used if alternate
1523 * address with sufficient scope is
1524 * available"
1525 * (2b) nothing mentioned otherwise.
1526 * Here we fall into (2b) case as we have no
1527 * choice in our source address selection - we
1528 * must obey the peer.
1529 *
1530 * The wording in RFC2462 is confusing, and
1531 * there are multiple description text for
1532 * deprecated address handling - worse, they
1533 * are not exactly the same. I believe 5.5.4
1534 * is the best one, so we follow 5.5.4.
1535 */
1536 if (af == AF_INET6 && !ip6_use_deprecated) {
1537 struct in6_ifaddr *ia6;
1538 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1539 &ip6->ip6_dst)) &&
1540 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1541 tp = NULL;
1542 goto dropwithreset;
1543 }
1544 }
1545 #endif
1546
1547 #if defined(IPSEC) || defined(FAST_IPSEC)
1548 switch (af) {
1549 #ifdef INET
1550 case AF_INET:
1551 if (ipsec4_in_reject_so(m, so)) {
1552 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1553 tp = NULL;
1554 goto dropwithreset;
1555 }
1556 break;
1557 #endif
1558 #ifdef INET6
1559 case AF_INET6:
1560 if (ipsec6_in_reject_so(m, so)) {
1561 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1562 tp = NULL;
1563 goto dropwithreset;
1564 }
1565 break;
1566 #endif /*INET6*/
1567 }
1568 #endif /*IPSEC*/
1569
1570 /*
1571 * LISTEN socket received a SYN
1572 * from itself? This can't possibly
1573 * be valid; drop the packet.
1574 */
1575 if (th->th_sport == th->th_dport) {
1576 int i;
1577
1578 switch (af) {
1579 #ifdef INET
1580 case AF_INET:
1581 i = in_hosteq(ip->ip_src, ip->ip_dst);
1582 break;
1583 #endif
1584 #ifdef INET6
1585 case AF_INET6:
1586 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1587 break;
1588 #endif
1589 default:
1590 i = 1;
1591 }
1592 if (i) {
1593 TCP_STATINC(TCP_STAT_BADSYN);
1594 goto drop;
1595 }
1596 }
1597
1598 /*
1599 * SYN looks ok; create compressed TCP
1600 * state for it.
1601 */
1602 if (so->so_qlen <= so->so_qlimit &&
1603 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1604 so, m, optp, optlen, &opti))
1605 m = NULL;
1606 }
1607 goto drop;
1608 }
1609 }
1610
1611 after_listen:
1612 #ifdef DIAGNOSTIC
1613 /*
1614 * Should not happen now that all embryonic connections
1615 * are handled with compressed state.
1616 */
1617 if (tp->t_state == TCPS_LISTEN)
1618 panic("tcp_input: TCPS_LISTEN");
1619 #endif
1620
1621 /*
1622 * Segment received on connection.
1623 * Reset idle time and keep-alive timer.
1624 */
1625 tp->t_rcvtime = tcp_now;
1626 if (TCPS_HAVEESTABLISHED(tp->t_state))
1627 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1628
1629 /*
1630 * Process options.
1631 */
1632 #ifdef TCP_SIGNATURE
1633 if (optp || (tp->t_flags & TF_SIGNATURE))
1634 #else
1635 if (optp)
1636 #endif
1637 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1638 goto drop;
1639
1640 if (TCP_SACK_ENABLED(tp)) {
1641 tcp_del_sackholes(tp, th);
1642 }
1643
1644 if (TCP_ECN_ALLOWED(tp)) {
1645 switch (iptos & IPTOS_ECN_MASK) {
1646 case IPTOS_ECN_CE:
1647 tp->t_flags |= TF_ECN_SND_ECE;
1648 TCP_STATINC(TCP_STAT_ECN_CE);
1649 break;
1650 case IPTOS_ECN_ECT0:
1651 TCP_STATINC(TCP_STAT_ECN_ECT);
1652 break;
1653 case IPTOS_ECN_ECT1:
1654 /* XXX: ignore for now -- rpaulo */
1655 break;
1656 }
1657
1658 if (tiflags & TH_CWR)
1659 tp->t_flags &= ~TF_ECN_SND_ECE;
1660
1661 /*
1662 * Congestion experienced.
1663 * Ignore if we are already trying to recover.
1664 */
1665 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1666 tp->t_congctl->cong_exp(tp);
1667 }
1668
1669 if (opti.ts_present && opti.ts_ecr) {
1670 /*
1671 * Calculate the RTT from the returned time stamp and the
1672 * connection's time base. If the time stamp is later than
1673 * the current time, or is extremely old, fall back to non-1323
1674 * RTT calculation. Since ts_ecr is unsigned, we can test both
1675 * at the same time.
1676 */
1677 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1678 if (ts_rtt > TCP_PAWS_IDLE)
1679 ts_rtt = 0;
1680 } else {
1681 ts_rtt = 0;
1682 }
1683
1684 /*
1685 * Header prediction: check for the two common cases
1686 * of a uni-directional data xfer. If the packet has
1687 * no control flags, is in-sequence, the window didn't
1688 * change and we're not retransmitting, it's a
1689 * candidate. If the length is zero and the ack moved
1690 * forward, we're the sender side of the xfer. Just
1691 * free the data acked & wake any higher level process
1692 * that was blocked waiting for space. If the length
1693 * is non-zero and the ack didn't move, we're the
1694 * receiver side. If we're getting packets in-order
1695 * (the reassembly queue is empty), add the data to
1696 * the socket buffer and note that we need a delayed ack.
1697 */
1698 if (tp->t_state == TCPS_ESTABLISHED &&
1699 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1700 == TH_ACK &&
1701 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1702 th->th_seq == tp->rcv_nxt &&
1703 tiwin && tiwin == tp->snd_wnd &&
1704 tp->snd_nxt == tp->snd_max) {
1705
1706 /*
1707 * If last ACK falls within this segment's sequence numbers,
1708 * record the timestamp.
1709 * NOTE that the test is modified according to the latest
1710 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1711 *
1712 * note that we already know
1713 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1714 */
1715 if (opti.ts_present &&
1716 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1717 tp->ts_recent_age = tcp_now;
1718 tp->ts_recent = opti.ts_val;
1719 }
1720
1721 if (tlen == 0) {
1722 /* Ack prediction. */
1723 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1724 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1725 tp->snd_cwnd >= tp->snd_wnd &&
1726 tp->t_partialacks < 0) {
1727 /*
1728 * this is a pure ack for outstanding data.
1729 */
1730 if (ts_rtt)
1731 tcp_xmit_timer(tp, ts_rtt);
1732 else if (tp->t_rtttime &&
1733 SEQ_GT(th->th_ack, tp->t_rtseq))
1734 tcp_xmit_timer(tp,
1735 tcp_now - tp->t_rtttime);
1736 acked = th->th_ack - tp->snd_una;
1737 tcps = TCP_STAT_GETREF();
1738 tcps[TCP_STAT_PREDACK]++;
1739 tcps[TCP_STAT_RCVACKPACK]++;
1740 tcps[TCP_STAT_RCVACKBYTE] += acked;
1741 TCP_STAT_PUTREF();
1742 nd6_hint(tp);
1743
1744 if (acked > (tp->t_lastoff - tp->t_inoff))
1745 tp->t_lastm = NULL;
1746 sbdrop(&so->so_snd, acked);
1747 tp->t_lastoff -= acked;
1748
1749 icmp_check(tp, th, acked);
1750
1751 tp->snd_una = th->th_ack;
1752 tp->snd_fack = tp->snd_una;
1753 if (SEQ_LT(tp->snd_high, tp->snd_una))
1754 tp->snd_high = tp->snd_una;
1755 m_freem(m);
1756
1757 /*
1758 * If all outstanding data are acked, stop
1759 * retransmit timer, otherwise restart timer
1760 * using current (possibly backed-off) value.
1761 * If process is waiting for space,
1762 * wakeup/selnotify/signal. If data
1763 * are ready to send, let tcp_output
1764 * decide between more output or persist.
1765 */
1766 if (tp->snd_una == tp->snd_max)
1767 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1768 else if (TCP_TIMER_ISARMED(tp,
1769 TCPT_PERSIST) == 0)
1770 TCP_TIMER_ARM(tp, TCPT_REXMT,
1771 tp->t_rxtcur);
1772
1773 sowwakeup(so);
1774 if (so->so_snd.sb_cc)
1775 (void) tcp_output(tp);
1776 if (tcp_saveti)
1777 m_freem(tcp_saveti);
1778 return;
1779 }
1780 } else if (th->th_ack == tp->snd_una &&
1781 TAILQ_FIRST(&tp->segq) == NULL &&
1782 tlen <= sbspace(&so->so_rcv)) {
1783 int newsize = 0; /* automatic sockbuf scaling */
1784
1785 /*
1786 * this is a pure, in-sequence data packet
1787 * with nothing on the reassembly queue and
1788 * we have enough buffer space to take it.
1789 */
1790 tp->rcv_nxt += tlen;
1791 tcps = TCP_STAT_GETREF();
1792 tcps[TCP_STAT_PREDDAT]++;
1793 tcps[TCP_STAT_RCVPACK]++;
1794 tcps[TCP_STAT_RCVBYTE] += tlen;
1795 TCP_STAT_PUTREF();
1796 nd6_hint(tp);
1797
1798 /*
1799 * Automatic sizing enables the performance of large buffers
1800 * and most of the efficiency of small ones by only allocating
1801 * space when it is needed.
1802 *
1803 * On the receive side the socket buffer memory is only rarely
1804 * used to any significant extent. This allows us to be much
1805 * more aggressive in scaling the receive socket buffer. For
1806 * the case that the buffer space is actually used to a large
1807 * extent and we run out of kernel memory we can simply drop
1808 * the new segments; TCP on the sender will just retransmit it
1809 * later. Setting the buffer size too big may only consume too
1810 * much kernel memory if the application doesn't read() from
1811 * the socket or packet loss or reordering makes use of the
1812 * reassembly queue.
1813 *
1814 * The criteria to step up the receive buffer one notch are:
1815 * 1. the number of bytes received during the time it takes
1816 * one timestamp to be reflected back to us (the RTT);
1817 * 2. received bytes per RTT is within seven eighth of the
1818 * current socket buffer size;
1819 * 3. receive buffer size has not hit maximal automatic size;
1820 *
1821 * This algorithm does one step per RTT at most and only if
1822 * we receive a bulk stream w/o packet losses or reorderings.
1823 * Shrinking the buffer during idle times is not necessary as
1824 * it doesn't consume any memory when idle.
1825 *
1826 * TODO: Only step up if the application is actually serving
1827 * the buffer to better manage the socket buffer resources.
1828 */
1829 if (tcp_do_autorcvbuf &&
1830 opti.ts_ecr &&
1831 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1832 if (opti.ts_ecr > tp->rfbuf_ts &&
1833 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1834 if (tp->rfbuf_cnt >
1835 (so->so_rcv.sb_hiwat / 8 * 7) &&
1836 so->so_rcv.sb_hiwat <
1837 tcp_autorcvbuf_max) {
1838 newsize =
1839 min(so->so_rcv.sb_hiwat +
1840 tcp_autorcvbuf_inc,
1841 tcp_autorcvbuf_max);
1842 }
1843 /* Start over with next RTT. */
1844 tp->rfbuf_ts = 0;
1845 tp->rfbuf_cnt = 0;
1846 } else
1847 tp->rfbuf_cnt += tlen; /* add up */
1848 }
1849
1850 /*
1851 * Drop TCP, IP headers and TCP options then add data
1852 * to socket buffer.
1853 */
1854 if (so->so_state & SS_CANTRCVMORE)
1855 m_freem(m);
1856 else {
1857 /*
1858 * Set new socket buffer size.
1859 * Give up when limit is reached.
1860 */
1861 if (newsize)
1862 if (!sbreserve(&so->so_rcv,
1863 newsize, so))
1864 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1865 m_adj(m, toff + off);
1866 sbappendstream(&so->so_rcv, m);
1867 }
1868 sorwakeup(so);
1869 tcp_setup_ack(tp, th);
1870 if (tp->t_flags & TF_ACKNOW)
1871 (void) tcp_output(tp);
1872 if (tcp_saveti)
1873 m_freem(tcp_saveti);
1874 return;
1875 }
1876 }
1877
1878 /*
1879 * Compute mbuf offset to TCP data segment.
1880 */
1881 hdroptlen = toff + off;
1882
1883 /*
1884 * Calculate amount of space in receive window,
1885 * and then do TCP input processing.
1886 * Receive window is amount of space in rcv queue,
1887 * but not less than advertised window.
1888 */
1889 { int win;
1890
1891 win = sbspace(&so->so_rcv);
1892 if (win < 0)
1893 win = 0;
1894 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1895 }
1896
1897 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1898 tp->rfbuf_ts = 0;
1899 tp->rfbuf_cnt = 0;
1900
1901 switch (tp->t_state) {
1902 /*
1903 * If the state is SYN_SENT:
1904 * if seg contains an ACK, but not for our SYN, drop the input.
1905 * if seg contains a RST, then drop the connection.
1906 * if seg does not contain SYN, then drop it.
1907 * Otherwise this is an acceptable SYN segment
1908 * initialize tp->rcv_nxt and tp->irs
1909 * if seg contains ack then advance tp->snd_una
1910 * if seg contains a ECE and ECN support is enabled, the stream
1911 * is ECN capable.
1912 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1913 * arrange for segment to be acked (eventually)
1914 * continue processing rest of data/controls, beginning with URG
1915 */
1916 case TCPS_SYN_SENT:
1917 if ((tiflags & TH_ACK) &&
1918 (SEQ_LEQ(th->th_ack, tp->iss) ||
1919 SEQ_GT(th->th_ack, tp->snd_max)))
1920 goto dropwithreset;
1921 if (tiflags & TH_RST) {
1922 if (tiflags & TH_ACK)
1923 tp = tcp_drop(tp, ECONNREFUSED);
1924 goto drop;
1925 }
1926 if ((tiflags & TH_SYN) == 0)
1927 goto drop;
1928 if (tiflags & TH_ACK) {
1929 tp->snd_una = th->th_ack;
1930 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1931 tp->snd_nxt = tp->snd_una;
1932 if (SEQ_LT(tp->snd_high, tp->snd_una))
1933 tp->snd_high = tp->snd_una;
1934 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1935
1936 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1937 tp->t_flags |= TF_ECN_PERMIT;
1938 TCP_STATINC(TCP_STAT_ECN_SHS);
1939 }
1940
1941 }
1942 tp->irs = th->th_seq;
1943 tcp_rcvseqinit(tp);
1944 tp->t_flags |= TF_ACKNOW;
1945 tcp_mss_from_peer(tp, opti.maxseg);
1946
1947 /*
1948 * Initialize the initial congestion window. If we
1949 * had to retransmit the SYN, we must initialize cwnd
1950 * to 1 segment (i.e. the Loss Window).
1951 */
1952 if (tp->t_flags & TF_SYN_REXMT)
1953 tp->snd_cwnd = tp->t_peermss;
1954 else {
1955 int ss = tcp_init_win;
1956 #ifdef INET
1957 if (inp != NULL && in_localaddr(inp->inp_faddr))
1958 ss = tcp_init_win_local;
1959 #endif
1960 #ifdef INET6
1961 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1962 ss = tcp_init_win_local;
1963 #endif
1964 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1965 }
1966
1967 tcp_rmx_rtt(tp);
1968 if (tiflags & TH_ACK) {
1969 TCP_STATINC(TCP_STAT_CONNECTS);
1970 soisconnected(so);
1971 tcp_established(tp);
1972 /* Do window scaling on this connection? */
1973 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1974 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1975 tp->snd_scale = tp->requested_s_scale;
1976 tp->rcv_scale = tp->request_r_scale;
1977 }
1978 TCP_REASS_LOCK(tp);
1979 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1980 TCP_REASS_UNLOCK(tp);
1981 /*
1982 * if we didn't have to retransmit the SYN,
1983 * use its rtt as our initial srtt & rtt var.
1984 */
1985 if (tp->t_rtttime)
1986 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1987 } else
1988 tp->t_state = TCPS_SYN_RECEIVED;
1989
1990 /*
1991 * Advance th->th_seq to correspond to first data byte.
1992 * If data, trim to stay within window,
1993 * dropping FIN if necessary.
1994 */
1995 th->th_seq++;
1996 if (tlen > tp->rcv_wnd) {
1997 todrop = tlen - tp->rcv_wnd;
1998 m_adj(m, -todrop);
1999 tlen = tp->rcv_wnd;
2000 tiflags &= ~TH_FIN;
2001 tcps = TCP_STAT_GETREF();
2002 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2003 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2004 TCP_STAT_PUTREF();
2005 }
2006 tp->snd_wl1 = th->th_seq - 1;
2007 tp->rcv_up = th->th_seq;
2008 goto step6;
2009
2010 /*
2011 * If the state is SYN_RECEIVED:
2012 * If seg contains an ACK, but not for our SYN, drop the input
2013 * and generate an RST. See page 36, rfc793
2014 */
2015 case TCPS_SYN_RECEIVED:
2016 if ((tiflags & TH_ACK) &&
2017 (SEQ_LEQ(th->th_ack, tp->iss) ||
2018 SEQ_GT(th->th_ack, tp->snd_max)))
2019 goto dropwithreset;
2020 break;
2021 }
2022
2023 /*
2024 * States other than LISTEN or SYN_SENT.
2025 * First check timestamp, if present.
2026 * Then check that at least some bytes of segment are within
2027 * receive window. If segment begins before rcv_nxt,
2028 * drop leading data (and SYN); if nothing left, just ack.
2029 *
2030 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2031 * and it's less than ts_recent, drop it.
2032 */
2033 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2034 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2035
2036 /* Check to see if ts_recent is over 24 days old. */
2037 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2038 /*
2039 * Invalidate ts_recent. If this segment updates
2040 * ts_recent, the age will be reset later and ts_recent
2041 * will get a valid value. If it does not, setting
2042 * ts_recent to zero will at least satisfy the
2043 * requirement that zero be placed in the timestamp
2044 * echo reply when ts_recent isn't valid. The
2045 * age isn't reset until we get a valid ts_recent
2046 * because we don't want out-of-order segments to be
2047 * dropped when ts_recent is old.
2048 */
2049 tp->ts_recent = 0;
2050 } else {
2051 tcps = TCP_STAT_GETREF();
2052 tcps[TCP_STAT_RCVDUPPACK]++;
2053 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2054 tcps[TCP_STAT_PAWSDROP]++;
2055 TCP_STAT_PUTREF();
2056 tcp_new_dsack(tp, th->th_seq, tlen);
2057 goto dropafterack;
2058 }
2059 }
2060
2061 todrop = tp->rcv_nxt - th->th_seq;
2062 dupseg = false;
2063 if (todrop > 0) {
2064 if (tiflags & TH_SYN) {
2065 tiflags &= ~TH_SYN;
2066 th->th_seq++;
2067 if (th->th_urp > 1)
2068 th->th_urp--;
2069 else {
2070 tiflags &= ~TH_URG;
2071 th->th_urp = 0;
2072 }
2073 todrop--;
2074 }
2075 if (todrop > tlen ||
2076 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2077 /*
2078 * Any valid FIN or RST must be to the left of the
2079 * window. At this point the FIN or RST must be a
2080 * duplicate or out of sequence; drop it.
2081 */
2082 if (tiflags & TH_RST)
2083 goto drop;
2084 tiflags &= ~(TH_FIN|TH_RST);
2085 /*
2086 * Send an ACK to resynchronize and drop any data.
2087 * But keep on processing for RST or ACK.
2088 */
2089 tp->t_flags |= TF_ACKNOW;
2090 todrop = tlen;
2091 dupseg = true;
2092 tcps = TCP_STAT_GETREF();
2093 tcps[TCP_STAT_RCVDUPPACK]++;
2094 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2095 TCP_STAT_PUTREF();
2096 } else if ((tiflags & TH_RST) &&
2097 th->th_seq != tp->last_ack_sent) {
2098 /*
2099 * Test for reset before adjusting the sequence
2100 * number for overlapping data.
2101 */
2102 goto dropafterack_ratelim;
2103 } else {
2104 tcps = TCP_STAT_GETREF();
2105 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2106 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2107 TCP_STAT_PUTREF();
2108 }
2109 tcp_new_dsack(tp, th->th_seq, todrop);
2110 hdroptlen += todrop; /*drop from head afterwards*/
2111 th->th_seq += todrop;
2112 tlen -= todrop;
2113 if (th->th_urp > todrop)
2114 th->th_urp -= todrop;
2115 else {
2116 tiflags &= ~TH_URG;
2117 th->th_urp = 0;
2118 }
2119 }
2120
2121 /*
2122 * If new data are received on a connection after the
2123 * user processes are gone, then RST the other end.
2124 */
2125 if ((so->so_state & SS_NOFDREF) &&
2126 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2127 tp = tcp_close(tp);
2128 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2129 goto dropwithreset;
2130 }
2131
2132 /*
2133 * If segment ends after window, drop trailing data
2134 * (and PUSH and FIN); if nothing left, just ACK.
2135 */
2136 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2137 if (todrop > 0) {
2138 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2139 if (todrop >= tlen) {
2140 /*
2141 * The segment actually starts after the window.
2142 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2143 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2144 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2145 */
2146 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2147 /*
2148 * If a new connection request is received
2149 * while in TIME_WAIT, drop the old connection
2150 * and start over if the sequence numbers
2151 * are above the previous ones.
2152 *
2153 * NOTE: We will checksum the packet again, and
2154 * so we need to put the header fields back into
2155 * network order!
2156 * XXX This kind of sucks, but we don't expect
2157 * XXX this to happen very often, so maybe it
2158 * XXX doesn't matter so much.
2159 */
2160 if (tiflags & TH_SYN &&
2161 tp->t_state == TCPS_TIME_WAIT &&
2162 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2163 tp = tcp_close(tp);
2164 tcp_fields_to_net(th);
2165 goto findpcb;
2166 }
2167 /*
2168 * If window is closed can only take segments at
2169 * window edge, and have to drop data and PUSH from
2170 * incoming segments. Continue processing, but
2171 * remember to ack. Otherwise, drop segment
2172 * and (if not RST) ack.
2173 */
2174 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2175 tp->t_flags |= TF_ACKNOW;
2176 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2177 } else
2178 goto dropafterack;
2179 } else
2180 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2181 m_adj(m, -todrop);
2182 tlen -= todrop;
2183 tiflags &= ~(TH_PUSH|TH_FIN);
2184 }
2185
2186 /*
2187 * If last ACK falls within this segment's sequence numbers,
2188 * record the timestamp.
2189 * NOTE:
2190 * 1) That the test incorporates suggestions from the latest
2191 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2192 * 2) That updating only on newer timestamps interferes with
2193 * our earlier PAWS tests, so this check should be solely
2194 * predicated on the sequence space of this segment.
2195 * 3) That we modify the segment boundary check to be
2196 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2197 * instead of RFC1323's
2198 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2199 * This modified check allows us to overcome RFC1323's
2200 * limitations as described in Stevens TCP/IP Illustrated
2201 * Vol. 2 p.869. In such cases, we can still calculate the
2202 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2203 */
2204 if (opti.ts_present &&
2205 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2206 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2207 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2208 tp->ts_recent_age = tcp_now;
2209 tp->ts_recent = opti.ts_val;
2210 }
2211
2212 /*
2213 * If the RST bit is set examine the state:
2214 * SYN_RECEIVED STATE:
2215 * If passive open, return to LISTEN state.
2216 * If active open, inform user that connection was refused.
2217 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2218 * Inform user that connection was reset, and close tcb.
2219 * CLOSING, LAST_ACK, TIME_WAIT STATES
2220 * Close the tcb.
2221 */
2222 if (tiflags & TH_RST) {
2223 if (th->th_seq != tp->last_ack_sent)
2224 goto dropafterack_ratelim;
2225
2226 switch (tp->t_state) {
2227 case TCPS_SYN_RECEIVED:
2228 so->so_error = ECONNREFUSED;
2229 goto close;
2230
2231 case TCPS_ESTABLISHED:
2232 case TCPS_FIN_WAIT_1:
2233 case TCPS_FIN_WAIT_2:
2234 case TCPS_CLOSE_WAIT:
2235 so->so_error = ECONNRESET;
2236 close:
2237 tp->t_state = TCPS_CLOSED;
2238 TCP_STATINC(TCP_STAT_DROPS);
2239 tp = tcp_close(tp);
2240 goto drop;
2241
2242 case TCPS_CLOSING:
2243 case TCPS_LAST_ACK:
2244 case TCPS_TIME_WAIT:
2245 tp = tcp_close(tp);
2246 goto drop;
2247 }
2248 }
2249
2250 /*
2251 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2252 * we must be in a synchronized state. RFC791 states (under RST
2253 * generation) that any unacceptable segment (an out-of-order SYN
2254 * qualifies) received in a synchronized state must elicit only an
2255 * empty acknowledgment segment ... and the connection remains in
2256 * the same state.
2257 */
2258 if (tiflags & TH_SYN) {
2259 if (tp->rcv_nxt == th->th_seq) {
2260 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2261 TH_ACK);
2262 if (tcp_saveti)
2263 m_freem(tcp_saveti);
2264 return;
2265 }
2266
2267 goto dropafterack_ratelim;
2268 }
2269
2270 /*
2271 * If the ACK bit is off we drop the segment and return.
2272 */
2273 if ((tiflags & TH_ACK) == 0) {
2274 if (tp->t_flags & TF_ACKNOW)
2275 goto dropafterack;
2276 else
2277 goto drop;
2278 }
2279
2280 /*
2281 * Ack processing.
2282 */
2283 switch (tp->t_state) {
2284
2285 /*
2286 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2287 * ESTABLISHED state and continue processing, otherwise
2288 * send an RST.
2289 */
2290 case TCPS_SYN_RECEIVED:
2291 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2292 SEQ_GT(th->th_ack, tp->snd_max))
2293 goto dropwithreset;
2294 TCP_STATINC(TCP_STAT_CONNECTS);
2295 soisconnected(so);
2296 tcp_established(tp);
2297 /* Do window scaling? */
2298 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2299 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2300 tp->snd_scale = tp->requested_s_scale;
2301 tp->rcv_scale = tp->request_r_scale;
2302 }
2303 TCP_REASS_LOCK(tp);
2304 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2305 TCP_REASS_UNLOCK(tp);
2306 tp->snd_wl1 = th->th_seq - 1;
2307 /* fall into ... */
2308
2309 /*
2310 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2311 * ACKs. If the ack is in the range
2312 * tp->snd_una < th->th_ack <= tp->snd_max
2313 * then advance tp->snd_una to th->th_ack and drop
2314 * data from the retransmission queue. If this ACK reflects
2315 * more up to date window information we update our window information.
2316 */
2317 case TCPS_ESTABLISHED:
2318 case TCPS_FIN_WAIT_1:
2319 case TCPS_FIN_WAIT_2:
2320 case TCPS_CLOSE_WAIT:
2321 case TCPS_CLOSING:
2322 case TCPS_LAST_ACK:
2323 case TCPS_TIME_WAIT:
2324
2325 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2326 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2327 TCP_STATINC(TCP_STAT_RCVDUPPACK);
2328 /*
2329 * If we have outstanding data (other than
2330 * a window probe), this is a completely
2331 * duplicate ack (ie, window info didn't
2332 * change), the ack is the biggest we've
2333 * seen and we've seen exactly our rexmt
2334 * threshhold of them, assume a packet
2335 * has been dropped and retransmit it.
2336 * Kludge snd_nxt & the congestion
2337 * window so we send only this one
2338 * packet.
2339 */
2340 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2341 th->th_ack != tp->snd_una)
2342 tp->t_dupacks = 0;
2343 else if (tp->t_partialacks < 0 &&
2344 (++tp->t_dupacks == tcprexmtthresh ||
2345 TCP_FACK_FASTRECOV(tp))) {
2346 /*
2347 * Do the fast retransmit, and adjust
2348 * congestion control paramenters.
2349 */
2350 if (tp->t_congctl->fast_retransmit(tp, th)) {
2351 /* False fast retransmit */
2352 break;
2353 } else
2354 goto drop;
2355 } else if (tp->t_dupacks > tcprexmtthresh) {
2356 tp->snd_cwnd += tp->t_segsz;
2357 (void) tcp_output(tp);
2358 goto drop;
2359 }
2360 } else {
2361 /*
2362 * If the ack appears to be very old, only
2363 * allow data that is in-sequence. This
2364 * makes it somewhat more difficult to insert
2365 * forged data by guessing sequence numbers.
2366 * Sent an ack to try to update the send
2367 * sequence number on the other side.
2368 */
2369 if (tlen && th->th_seq != tp->rcv_nxt &&
2370 SEQ_LT(th->th_ack,
2371 tp->snd_una - tp->max_sndwnd))
2372 goto dropafterack;
2373 }
2374 break;
2375 }
2376 /*
2377 * If the congestion window was inflated to account
2378 * for the other side's cached packets, retract it.
2379 */
2380 /* XXX: make SACK have his own congestion control
2381 * struct -- rpaulo */
2382 if (TCP_SACK_ENABLED(tp))
2383 tcp_sack_newack(tp, th);
2384 else
2385 tp->t_congctl->fast_retransmit_newack(tp, th);
2386 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2387 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2388 goto dropafterack;
2389 }
2390 acked = th->th_ack - tp->snd_una;
2391 tcps = TCP_STAT_GETREF();
2392 tcps[TCP_STAT_RCVACKPACK]++;
2393 tcps[TCP_STAT_RCVACKBYTE] += acked;
2394 TCP_STAT_PUTREF();
2395
2396 /*
2397 * If we have a timestamp reply, update smoothed
2398 * round trip time. If no timestamp is present but
2399 * transmit timer is running and timed sequence
2400 * number was acked, update smoothed round trip time.
2401 * Since we now have an rtt measurement, cancel the
2402 * timer backoff (cf., Phil Karn's retransmit alg.).
2403 * Recompute the initial retransmit timer.
2404 */
2405 if (ts_rtt)
2406 tcp_xmit_timer(tp, ts_rtt);
2407 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2408 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2409
2410 /*
2411 * If all outstanding data is acked, stop retransmit
2412 * timer and remember to restart (more output or persist).
2413 * If there is more data to be acked, restart retransmit
2414 * timer, using current (possibly backed-off) value.
2415 */
2416 if (th->th_ack == tp->snd_max) {
2417 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2418 needoutput = 1;
2419 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2420 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2421
2422 /*
2423 * New data has been acked, adjust the congestion window.
2424 */
2425 tp->t_congctl->newack(tp, th);
2426
2427 nd6_hint(tp);
2428 if (acked > so->so_snd.sb_cc) {
2429 tp->snd_wnd -= so->so_snd.sb_cc;
2430 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2431 ourfinisacked = 1;
2432 } else {
2433 if (acked > (tp->t_lastoff - tp->t_inoff))
2434 tp->t_lastm = NULL;
2435 sbdrop(&so->so_snd, acked);
2436 tp->t_lastoff -= acked;
2437 tp->snd_wnd -= acked;
2438 ourfinisacked = 0;
2439 }
2440 sowwakeup(so);
2441
2442 icmp_check(tp, th, acked);
2443
2444 tp->snd_una = th->th_ack;
2445 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2446 tp->snd_fack = tp->snd_una;
2447 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2448 tp->snd_nxt = tp->snd_una;
2449 if (SEQ_LT(tp->snd_high, tp->snd_una))
2450 tp->snd_high = tp->snd_una;
2451
2452 switch (tp->t_state) {
2453
2454 /*
2455 * In FIN_WAIT_1 STATE in addition to the processing
2456 * for the ESTABLISHED state if our FIN is now acknowledged
2457 * then enter FIN_WAIT_2.
2458 */
2459 case TCPS_FIN_WAIT_1:
2460 if (ourfinisacked) {
2461 /*
2462 * If we can't receive any more
2463 * data, then closing user can proceed.
2464 * Starting the timer is contrary to the
2465 * specification, but if we don't get a FIN
2466 * we'll hang forever.
2467 */
2468 if (so->so_state & SS_CANTRCVMORE) {
2469 soisdisconnected(so);
2470 if (tp->t_maxidle > 0)
2471 TCP_TIMER_ARM(tp, TCPT_2MSL,
2472 tp->t_maxidle);
2473 }
2474 tp->t_state = TCPS_FIN_WAIT_2;
2475 }
2476 break;
2477
2478 /*
2479 * In CLOSING STATE in addition to the processing for
2480 * the ESTABLISHED state if the ACK acknowledges our FIN
2481 * then enter the TIME-WAIT state, otherwise ignore
2482 * the segment.
2483 */
2484 case TCPS_CLOSING:
2485 if (ourfinisacked) {
2486 tp->t_state = TCPS_TIME_WAIT;
2487 tcp_canceltimers(tp);
2488 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2489 soisdisconnected(so);
2490 }
2491 break;
2492
2493 /*
2494 * In LAST_ACK, we may still be waiting for data to drain
2495 * and/or to be acked, as well as for the ack of our FIN.
2496 * If our FIN is now acknowledged, delete the TCB,
2497 * enter the closed state and return.
2498 */
2499 case TCPS_LAST_ACK:
2500 if (ourfinisacked) {
2501 tp = tcp_close(tp);
2502 goto drop;
2503 }
2504 break;
2505
2506 /*
2507 * In TIME_WAIT state the only thing that should arrive
2508 * is a retransmission of the remote FIN. Acknowledge
2509 * it and restart the finack timer.
2510 */
2511 case TCPS_TIME_WAIT:
2512 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2513 goto dropafterack;
2514 }
2515 }
2516
2517 step6:
2518 /*
2519 * Update window information.
2520 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2521 */
2522 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2523 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2524 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2525 /* keep track of pure window updates */
2526 if (tlen == 0 &&
2527 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2528 TCP_STATINC(TCP_STAT_RCVWINUPD);
2529 tp->snd_wnd = tiwin;
2530 tp->snd_wl1 = th->th_seq;
2531 tp->snd_wl2 = th->th_ack;
2532 if (tp->snd_wnd > tp->max_sndwnd)
2533 tp->max_sndwnd = tp->snd_wnd;
2534 needoutput = 1;
2535 }
2536
2537 /*
2538 * Process segments with URG.
2539 */
2540 if ((tiflags & TH_URG) && th->th_urp &&
2541 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2542 /*
2543 * This is a kludge, but if we receive and accept
2544 * random urgent pointers, we'll crash in
2545 * soreceive. It's hard to imagine someone
2546 * actually wanting to send this much urgent data.
2547 */
2548 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2549 th->th_urp = 0; /* XXX */
2550 tiflags &= ~TH_URG; /* XXX */
2551 goto dodata; /* XXX */
2552 }
2553 /*
2554 * If this segment advances the known urgent pointer,
2555 * then mark the data stream. This should not happen
2556 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2557 * a FIN has been received from the remote side.
2558 * In these states we ignore the URG.
2559 *
2560 * According to RFC961 (Assigned Protocols),
2561 * the urgent pointer points to the last octet
2562 * of urgent data. We continue, however,
2563 * to consider it to indicate the first octet
2564 * of data past the urgent section as the original
2565 * spec states (in one of two places).
2566 */
2567 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2568 tp->rcv_up = th->th_seq + th->th_urp;
2569 so->so_oobmark = so->so_rcv.sb_cc +
2570 (tp->rcv_up - tp->rcv_nxt) - 1;
2571 if (so->so_oobmark == 0)
2572 so->so_state |= SS_RCVATMARK;
2573 sohasoutofband(so);
2574 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2575 }
2576 /*
2577 * Remove out of band data so doesn't get presented to user.
2578 * This can happen independent of advancing the URG pointer,
2579 * but if two URG's are pending at once, some out-of-band
2580 * data may creep in... ick.
2581 */
2582 if (th->th_urp <= (u_int16_t) tlen
2583 #ifdef SO_OOBINLINE
2584 && (so->so_options & SO_OOBINLINE) == 0
2585 #endif
2586 )
2587 tcp_pulloutofband(so, th, m, hdroptlen);
2588 } else
2589 /*
2590 * If no out of band data is expected,
2591 * pull receive urgent pointer along
2592 * with the receive window.
2593 */
2594 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2595 tp->rcv_up = tp->rcv_nxt;
2596 dodata: /* XXX */
2597
2598 /*
2599 * Process the segment text, merging it into the TCP sequencing queue,
2600 * and arranging for acknowledgement of receipt if necessary.
2601 * This process logically involves adjusting tp->rcv_wnd as data
2602 * is presented to the user (this happens in tcp_usrreq.c,
2603 * case PRU_RCVD). If a FIN has already been received on this
2604 * connection then we just ignore the text.
2605 */
2606 if ((tlen || (tiflags & TH_FIN)) &&
2607 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2608 /*
2609 * Insert segment ti into reassembly queue of tcp with
2610 * control block tp. Return TH_FIN if reassembly now includes
2611 * a segment with FIN. The macro form does the common case
2612 * inline (segment is the next to be received on an
2613 * established connection, and the queue is empty),
2614 * avoiding linkage into and removal from the queue and
2615 * repetition of various conversions.
2616 * Set DELACK for segments received in order, but ack
2617 * immediately when segments are out of order
2618 * (so fast retransmit can work).
2619 */
2620 /* NOTE: this was TCP_REASS() macro, but used only once */
2621 TCP_REASS_LOCK(tp);
2622 if (th->th_seq == tp->rcv_nxt &&
2623 TAILQ_FIRST(&tp->segq) == NULL &&
2624 tp->t_state == TCPS_ESTABLISHED) {
2625 tcp_setup_ack(tp, th);
2626 tp->rcv_nxt += tlen;
2627 tiflags = th->th_flags & TH_FIN;
2628 tcps = TCP_STAT_GETREF();
2629 tcps[TCP_STAT_RCVPACK]++;
2630 tcps[TCP_STAT_RCVBYTE] += tlen;
2631 TCP_STAT_PUTREF();
2632 nd6_hint(tp);
2633 if (so->so_state & SS_CANTRCVMORE)
2634 m_freem(m);
2635 else {
2636 m_adj(m, hdroptlen);
2637 sbappendstream(&(so)->so_rcv, m);
2638 }
2639 sorwakeup(so);
2640 } else {
2641 m_adj(m, hdroptlen);
2642 tiflags = tcp_reass(tp, th, m, &tlen);
2643 tp->t_flags |= TF_ACKNOW;
2644 }
2645 TCP_REASS_UNLOCK(tp);
2646
2647 /*
2648 * Note the amount of data that peer has sent into
2649 * our window, in order to estimate the sender's
2650 * buffer size.
2651 */
2652 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2653 } else {
2654 m_freem(m);
2655 m = NULL;
2656 tiflags &= ~TH_FIN;
2657 }
2658
2659 /*
2660 * If FIN is received ACK the FIN and let the user know
2661 * that the connection is closing. Ignore a FIN received before
2662 * the connection is fully established.
2663 */
2664 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2665 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2666 socantrcvmore(so);
2667 tp->t_flags |= TF_ACKNOW;
2668 tp->rcv_nxt++;
2669 }
2670 switch (tp->t_state) {
2671
2672 /*
2673 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2674 */
2675 case TCPS_ESTABLISHED:
2676 tp->t_state = TCPS_CLOSE_WAIT;
2677 break;
2678
2679 /*
2680 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2681 * enter the CLOSING state.
2682 */
2683 case TCPS_FIN_WAIT_1:
2684 tp->t_state = TCPS_CLOSING;
2685 break;
2686
2687 /*
2688 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2689 * starting the time-wait timer, turning off the other
2690 * standard timers.
2691 */
2692 case TCPS_FIN_WAIT_2:
2693 tp->t_state = TCPS_TIME_WAIT;
2694 tcp_canceltimers(tp);
2695 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2696 soisdisconnected(so);
2697 break;
2698
2699 /*
2700 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2701 */
2702 case TCPS_TIME_WAIT:
2703 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2704 break;
2705 }
2706 }
2707 #ifdef TCP_DEBUG
2708 if (so->so_options & SO_DEBUG)
2709 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2710 #endif
2711
2712 /*
2713 * Return any desired output.
2714 */
2715 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2716 (void) tcp_output(tp);
2717 }
2718 if (tcp_saveti)
2719 m_freem(tcp_saveti);
2720 return;
2721
2722 badsyn:
2723 /*
2724 * Received a bad SYN. Increment counters and dropwithreset.
2725 */
2726 TCP_STATINC(TCP_STAT_BADSYN);
2727 tp = NULL;
2728 goto dropwithreset;
2729
2730 dropafterack:
2731 /*
2732 * Generate an ACK dropping incoming segment if it occupies
2733 * sequence space, where the ACK reflects our state.
2734 */
2735 if (tiflags & TH_RST)
2736 goto drop;
2737 goto dropafterack2;
2738
2739 dropafterack_ratelim:
2740 /*
2741 * We may want to rate-limit ACKs against SYN/RST attack.
2742 */
2743 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2744 tcp_ackdrop_ppslim) == 0) {
2745 /* XXX stat */
2746 goto drop;
2747 }
2748 /* ...fall into dropafterack2... */
2749
2750 dropafterack2:
2751 m_freem(m);
2752 tp->t_flags |= TF_ACKNOW;
2753 (void) tcp_output(tp);
2754 if (tcp_saveti)
2755 m_freem(tcp_saveti);
2756 return;
2757
2758 dropwithreset_ratelim:
2759 /*
2760 * We may want to rate-limit RSTs in certain situations,
2761 * particularly if we are sending an RST in response to
2762 * an attempt to connect to or otherwise communicate with
2763 * a port for which we have no socket.
2764 */
2765 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2766 tcp_rst_ppslim) == 0) {
2767 /* XXX stat */
2768 goto drop;
2769 }
2770 /* ...fall into dropwithreset... */
2771
2772 dropwithreset:
2773 /*
2774 * Generate a RST, dropping incoming segment.
2775 * Make ACK acceptable to originator of segment.
2776 */
2777 if (tiflags & TH_RST)
2778 goto drop;
2779
2780 switch (af) {
2781 #ifdef INET6
2782 case AF_INET6:
2783 /* For following calls to tcp_respond */
2784 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2785 goto drop;
2786 break;
2787 #endif /* INET6 */
2788 case AF_INET:
2789 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2790 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2791 goto drop;
2792 }
2793
2794 if (tiflags & TH_ACK)
2795 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2796 else {
2797 if (tiflags & TH_SYN)
2798 tlen++;
2799 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2800 TH_RST|TH_ACK);
2801 }
2802 if (tcp_saveti)
2803 m_freem(tcp_saveti);
2804 return;
2805
2806 badcsum:
2807 drop:
2808 /*
2809 * Drop space held by incoming segment and return.
2810 */
2811 if (tp) {
2812 if (tp->t_inpcb)
2813 so = tp->t_inpcb->inp_socket;
2814 #ifdef INET6
2815 else if (tp->t_in6pcb)
2816 so = tp->t_in6pcb->in6p_socket;
2817 #endif
2818 else
2819 so = NULL;
2820 #ifdef TCP_DEBUG
2821 if (so && (so->so_options & SO_DEBUG) != 0)
2822 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2823 #endif
2824 }
2825 if (tcp_saveti)
2826 m_freem(tcp_saveti);
2827 m_freem(m);
2828 return;
2829 }
2830
2831 #ifdef TCP_SIGNATURE
2832 int
2833 tcp_signature_apply(void *fstate, void *data, u_int len)
2834 {
2835
2836 MD5Update(fstate, (u_char *)data, len);
2837 return (0);
2838 }
2839
2840 struct secasvar *
2841 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2842 {
2843 struct secasvar *sav;
2844 #ifdef FAST_IPSEC
2845 union sockaddr_union dst;
2846 #endif
2847 struct ip *ip;
2848 struct ip6_hdr *ip6;
2849
2850 ip = mtod(m, struct ip *);
2851 switch (ip->ip_v) {
2852 case 4:
2853 ip = mtod(m, struct ip *);
2854 ip6 = NULL;
2855 break;
2856 case 6:
2857 ip = NULL;
2858 ip6 = mtod(m, struct ip6_hdr *);
2859 break;
2860 default:
2861 return (NULL);
2862 }
2863
2864 #ifdef FAST_IPSEC
2865 /* Extract the destination from the IP header in the mbuf. */
2866 bzero(&dst, sizeof(union sockaddr_union));
2867 if (ip !=NULL) {
2868 dst.sa.sa_len = sizeof(struct sockaddr_in);
2869 dst.sa.sa_family = AF_INET;
2870 dst.sin.sin_addr = ip->ip_dst;
2871 } else {
2872 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2873 dst.sa.sa_family = AF_INET6;
2874 dst.sin6.sin6_addr = ip6->ip6_dst;
2875 }
2876
2877 /*
2878 * Look up an SADB entry which matches the address of the peer.
2879 */
2880 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2881 #else
2882 if (ip)
2883 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2884 (void *)&ip->ip_dst, IPPROTO_TCP,
2885 htonl(TCP_SIG_SPI), 0, 0);
2886 else
2887 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2888 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2889 htonl(TCP_SIG_SPI), 0, 0);
2890 #endif
2891
2892 return (sav); /* freesav must be performed by caller */
2893 }
2894
2895 int
2896 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2897 struct secasvar *sav, char *sig)
2898 {
2899 MD5_CTX ctx;
2900 struct ip *ip;
2901 struct ipovly *ipovly;
2902 struct ip6_hdr *ip6;
2903 struct ippseudo ippseudo;
2904 struct ip6_hdr_pseudo ip6pseudo;
2905 struct tcphdr th0;
2906 int l, tcphdrlen;
2907
2908 if (sav == NULL)
2909 return (-1);
2910
2911 tcphdrlen = th->th_off * 4;
2912
2913 switch (mtod(m, struct ip *)->ip_v) {
2914 case 4:
2915 ip = mtod(m, struct ip *);
2916 ip6 = NULL;
2917 break;
2918 case 6:
2919 ip = NULL;
2920 ip6 = mtod(m, struct ip6_hdr *);
2921 break;
2922 default:
2923 return (-1);
2924 }
2925
2926 MD5Init(&ctx);
2927
2928 if (ip) {
2929 memset(&ippseudo, 0, sizeof(ippseudo));
2930 ipovly = (struct ipovly *)ip;
2931 ippseudo.ippseudo_src = ipovly->ih_src;
2932 ippseudo.ippseudo_dst = ipovly->ih_dst;
2933 ippseudo.ippseudo_pad = 0;
2934 ippseudo.ippseudo_p = IPPROTO_TCP;
2935 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2936 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2937 } else {
2938 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2939 ip6pseudo.ip6ph_src = ip6->ip6_src;
2940 in6_clearscope(&ip6pseudo.ip6ph_src);
2941 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2942 in6_clearscope(&ip6pseudo.ip6ph_dst);
2943 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2944 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2945 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2946 }
2947
2948 th0 = *th;
2949 th0.th_sum = 0;
2950 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2951
2952 l = m->m_pkthdr.len - thoff - tcphdrlen;
2953 if (l > 0)
2954 m_apply(m, thoff + tcphdrlen,
2955 m->m_pkthdr.len - thoff - tcphdrlen,
2956 tcp_signature_apply, &ctx);
2957
2958 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2959 MD5Final(sig, &ctx);
2960
2961 return (0);
2962 }
2963 #endif
2964
2965 static int
2966 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2967 struct tcphdr *th,
2968 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2969 {
2970 u_int16_t mss;
2971 int opt, optlen = 0;
2972 #ifdef TCP_SIGNATURE
2973 void *sigp = NULL;
2974 char sigbuf[TCP_SIGLEN];
2975 struct secasvar *sav = NULL;
2976 #endif
2977
2978 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2979 opt = cp[0];
2980 if (opt == TCPOPT_EOL)
2981 break;
2982 if (opt == TCPOPT_NOP)
2983 optlen = 1;
2984 else {
2985 if (cnt < 2)
2986 break;
2987 optlen = cp[1];
2988 if (optlen < 2 || optlen > cnt)
2989 break;
2990 }
2991 switch (opt) {
2992
2993 default:
2994 continue;
2995
2996 case TCPOPT_MAXSEG:
2997 if (optlen != TCPOLEN_MAXSEG)
2998 continue;
2999 if (!(th->th_flags & TH_SYN))
3000 continue;
3001 if (TCPS_HAVERCVDSYN(tp->t_state))
3002 continue;
3003 bcopy(cp + 2, &mss, sizeof(mss));
3004 oi->maxseg = ntohs(mss);
3005 break;
3006
3007 case TCPOPT_WINDOW:
3008 if (optlen != TCPOLEN_WINDOW)
3009 continue;
3010 if (!(th->th_flags & TH_SYN))
3011 continue;
3012 if (TCPS_HAVERCVDSYN(tp->t_state))
3013 continue;
3014 tp->t_flags |= TF_RCVD_SCALE;
3015 tp->requested_s_scale = cp[2];
3016 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3017 #if 0 /*XXX*/
3018 char *p;
3019
3020 if (ip)
3021 p = ntohl(ip->ip_src);
3022 #ifdef INET6
3023 else if (ip6)
3024 p = ip6_sprintf(&ip6->ip6_src);
3025 #endif
3026 else
3027 p = "(unknown)";
3028 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3029 "assuming %d\n",
3030 tp->requested_s_scale, p,
3031 TCP_MAX_WINSHIFT);
3032 #else
3033 log(LOG_ERR, "TCP: invalid wscale %d, "
3034 "assuming %d\n",
3035 tp->requested_s_scale,
3036 TCP_MAX_WINSHIFT);
3037 #endif
3038 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3039 }
3040 break;
3041
3042 case TCPOPT_TIMESTAMP:
3043 if (optlen != TCPOLEN_TIMESTAMP)
3044 continue;
3045 oi->ts_present = 1;
3046 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3047 NTOHL(oi->ts_val);
3048 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3049 NTOHL(oi->ts_ecr);
3050
3051 if (!(th->th_flags & TH_SYN))
3052 continue;
3053 if (TCPS_HAVERCVDSYN(tp->t_state))
3054 continue;
3055 /*
3056 * A timestamp received in a SYN makes
3057 * it ok to send timestamp requests and replies.
3058 */
3059 tp->t_flags |= TF_RCVD_TSTMP;
3060 tp->ts_recent = oi->ts_val;
3061 tp->ts_recent_age = tcp_now;
3062 break;
3063
3064 case TCPOPT_SACK_PERMITTED:
3065 if (optlen != TCPOLEN_SACK_PERMITTED)
3066 continue;
3067 if (!(th->th_flags & TH_SYN))
3068 continue;
3069 if (TCPS_HAVERCVDSYN(tp->t_state))
3070 continue;
3071 if (tcp_do_sack) {
3072 tp->t_flags |= TF_SACK_PERMIT;
3073 tp->t_flags |= TF_WILL_SACK;
3074 }
3075 break;
3076
3077 case TCPOPT_SACK:
3078 tcp_sack_option(tp, th, cp, optlen);
3079 break;
3080 #ifdef TCP_SIGNATURE
3081 case TCPOPT_SIGNATURE:
3082 if (optlen != TCPOLEN_SIGNATURE)
3083 continue;
3084 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3085 return (-1);
3086
3087 sigp = sigbuf;
3088 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3089 tp->t_flags |= TF_SIGNATURE;
3090 break;
3091 #endif
3092 }
3093 }
3094
3095 #ifdef TCP_SIGNATURE
3096 if (tp->t_flags & TF_SIGNATURE) {
3097
3098 sav = tcp_signature_getsav(m, th);
3099
3100 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3101 return (-1);
3102 }
3103
3104 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3105 if (sav == NULL)
3106 return (-1);
3107 #ifdef FAST_IPSEC
3108 KEY_FREESAV(&sav);
3109 #else
3110 key_freesav(sav);
3111 #endif
3112 return (-1);
3113 }
3114
3115 if (sigp) {
3116 char sig[TCP_SIGLEN];
3117
3118 tcp_fields_to_net(th);
3119 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3120 tcp_fields_to_host(th);
3121 if (sav == NULL)
3122 return (-1);
3123 #ifdef FAST_IPSEC
3124 KEY_FREESAV(&sav);
3125 #else
3126 key_freesav(sav);
3127 #endif
3128 return (-1);
3129 }
3130 tcp_fields_to_host(th);
3131
3132 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3133 TCP_STATINC(TCP_STAT_BADSIG);
3134 if (sav == NULL)
3135 return (-1);
3136 #ifdef FAST_IPSEC
3137 KEY_FREESAV(&sav);
3138 #else
3139 key_freesav(sav);
3140 #endif
3141 return (-1);
3142 } else
3143 TCP_STATINC(TCP_STAT_GOODSIG);
3144
3145 key_sa_recordxfer(sav, m);
3146 #ifdef FAST_IPSEC
3147 KEY_FREESAV(&sav);
3148 #else
3149 key_freesav(sav);
3150 #endif
3151 }
3152 #endif
3153
3154 return (0);
3155 }
3156
3157 /*
3158 * Pull out of band byte out of a segment so
3159 * it doesn't appear in the user's data queue.
3160 * It is still reflected in the segment length for
3161 * sequencing purposes.
3162 */
3163 void
3164 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3165 struct mbuf *m, int off)
3166 {
3167 int cnt = off + th->th_urp - 1;
3168
3169 while (cnt >= 0) {
3170 if (m->m_len > cnt) {
3171 char *cp = mtod(m, char *) + cnt;
3172 struct tcpcb *tp = sototcpcb(so);
3173
3174 tp->t_iobc = *cp;
3175 tp->t_oobflags |= TCPOOB_HAVEDATA;
3176 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3177 m->m_len--;
3178 return;
3179 }
3180 cnt -= m->m_len;
3181 m = m->m_next;
3182 if (m == 0)
3183 break;
3184 }
3185 panic("tcp_pulloutofband");
3186 }
3187
3188 /*
3189 * Collect new round-trip time estimate
3190 * and update averages and current timeout.
3191 */
3192 void
3193 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3194 {
3195 int32_t delta;
3196
3197 TCP_STATINC(TCP_STAT_RTTUPDATED);
3198 if (tp->t_srtt != 0) {
3199 /*
3200 * srtt is stored as fixed point with 3 bits after the
3201 * binary point (i.e., scaled by 8). The following magic
3202 * is equivalent to the smoothing algorithm in rfc793 with
3203 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3204 * point). Adjust rtt to origin 0.
3205 */
3206 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3207 if ((tp->t_srtt += delta) <= 0)
3208 tp->t_srtt = 1 << 2;
3209 /*
3210 * We accumulate a smoothed rtt variance (actually, a
3211 * smoothed mean difference), then set the retransmit
3212 * timer to smoothed rtt + 4 times the smoothed variance.
3213 * rttvar is stored as fixed point with 2 bits after the
3214 * binary point (scaled by 4). The following is
3215 * equivalent to rfc793 smoothing with an alpha of .75
3216 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3217 * rfc793's wired-in beta.
3218 */
3219 if (delta < 0)
3220 delta = -delta;
3221 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3222 if ((tp->t_rttvar += delta) <= 0)
3223 tp->t_rttvar = 1 << 2;
3224 } else {
3225 /*
3226 * No rtt measurement yet - use the unsmoothed rtt.
3227 * Set the variance to half the rtt (so our first
3228 * retransmit happens at 3*rtt).
3229 */
3230 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3231 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3232 }
3233 tp->t_rtttime = 0;
3234 tp->t_rxtshift = 0;
3235
3236 /*
3237 * the retransmit should happen at rtt + 4 * rttvar.
3238 * Because of the way we do the smoothing, srtt and rttvar
3239 * will each average +1/2 tick of bias. When we compute
3240 * the retransmit timer, we want 1/2 tick of rounding and
3241 * 1 extra tick because of +-1/2 tick uncertainty in the
3242 * firing of the timer. The bias will give us exactly the
3243 * 1.5 tick we need. But, because the bias is
3244 * statistical, we have to test that we don't drop below
3245 * the minimum feasible timer (which is 2 ticks).
3246 */
3247 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3248 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3249
3250 /*
3251 * We received an ack for a packet that wasn't retransmitted;
3252 * it is probably safe to discard any error indications we've
3253 * received recently. This isn't quite right, but close enough
3254 * for now (a route might have failed after we sent a segment,
3255 * and the return path might not be symmetrical).
3256 */
3257 tp->t_softerror = 0;
3258 }
3259
3260
3261 /*
3262 * TCP compressed state engine. Currently used to hold compressed
3263 * state for SYN_RECEIVED.
3264 */
3265
3266 u_long syn_cache_count;
3267 u_int32_t syn_hash1, syn_hash2;
3268
3269 #define SYN_HASH(sa, sp, dp) \
3270 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3271 ((u_int32_t)(sp)))^syn_hash2)))
3272 #ifndef INET6
3273 #define SYN_HASHALL(hash, src, dst) \
3274 do { \
3275 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3276 ((const struct sockaddr_in *)(src))->sin_port, \
3277 ((const struct sockaddr_in *)(dst))->sin_port); \
3278 } while (/*CONSTCOND*/ 0)
3279 #else
3280 #define SYN_HASH6(sa, sp, dp) \
3281 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3282 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3283 & 0x7fffffff)
3284
3285 #define SYN_HASHALL(hash, src, dst) \
3286 do { \
3287 switch ((src)->sa_family) { \
3288 case AF_INET: \
3289 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3290 ((const struct sockaddr_in *)(src))->sin_port, \
3291 ((const struct sockaddr_in *)(dst))->sin_port); \
3292 break; \
3293 case AF_INET6: \
3294 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3295 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3296 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3297 break; \
3298 default: \
3299 hash = 0; \
3300 } \
3301 } while (/*CONSTCOND*/0)
3302 #endif /* INET6 */
3303
3304 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3305 IPL_SOFTNET);
3306
3307 /*
3308 * We don't estimate RTT with SYNs, so each packet starts with the default
3309 * RTT and each timer step has a fixed timeout value.
3310 */
3311 #define SYN_CACHE_TIMER_ARM(sc) \
3312 do { \
3313 TCPT_RANGESET((sc)->sc_rxtcur, \
3314 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3315 TCPTV_REXMTMAX); \
3316 callout_reset(&(sc)->sc_timer, \
3317 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3318 } while (/*CONSTCOND*/0)
3319
3320 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3321
3322 static inline void
3323 syn_cache_rm(struct syn_cache *sc)
3324 {
3325 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3326 sc, sc_bucketq);
3327 sc->sc_tp = NULL;
3328 LIST_REMOVE(sc, sc_tpq);
3329 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3330 callout_stop(&sc->sc_timer);
3331 syn_cache_count--;
3332 }
3333
3334 static inline void
3335 syn_cache_put(struct syn_cache *sc)
3336 {
3337 if (sc->sc_ipopts)
3338 (void) m_free(sc->sc_ipopts);
3339 rtcache_free(&sc->sc_route);
3340 if (callout_invoking(&sc->sc_timer))
3341 sc->sc_flags |= SCF_DEAD;
3342 else {
3343 callout_destroy(&sc->sc_timer);
3344 pool_put(&syn_cache_pool, sc);
3345 }
3346 }
3347
3348 void
3349 syn_cache_init(void)
3350 {
3351 int i;
3352
3353 /* Initialize the hash buckets. */
3354 for (i = 0; i < tcp_syn_cache_size; i++)
3355 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3356 }
3357
3358 void
3359 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3360 {
3361 struct syn_cache_head *scp;
3362 struct syn_cache *sc2;
3363 int s;
3364
3365 /*
3366 * If there are no entries in the hash table, reinitialize
3367 * the hash secrets.
3368 */
3369 if (syn_cache_count == 0) {
3370 syn_hash1 = arc4random();
3371 syn_hash2 = arc4random();
3372 }
3373
3374 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3375 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3376 scp = &tcp_syn_cache[sc->sc_bucketidx];
3377
3378 /*
3379 * Make sure that we don't overflow the per-bucket
3380 * limit or the total cache size limit.
3381 */
3382 s = splsoftnet();
3383 if (scp->sch_length >= tcp_syn_bucket_limit) {
3384 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3385 /*
3386 * The bucket is full. Toss the oldest element in the
3387 * bucket. This will be the first entry in the bucket.
3388 */
3389 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3390 #ifdef DIAGNOSTIC
3391 /*
3392 * This should never happen; we should always find an
3393 * entry in our bucket.
3394 */
3395 if (sc2 == NULL)
3396 panic("syn_cache_insert: bucketoverflow: impossible");
3397 #endif
3398 syn_cache_rm(sc2);
3399 syn_cache_put(sc2); /* calls pool_put but see spl above */
3400 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3401 struct syn_cache_head *scp2, *sce;
3402
3403 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3404 /*
3405 * The cache is full. Toss the oldest entry in the
3406 * first non-empty bucket we can find.
3407 *
3408 * XXX We would really like to toss the oldest
3409 * entry in the cache, but we hope that this
3410 * condition doesn't happen very often.
3411 */
3412 scp2 = scp;
3413 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3414 sce = &tcp_syn_cache[tcp_syn_cache_size];
3415 for (++scp2; scp2 != scp; scp2++) {
3416 if (scp2 >= sce)
3417 scp2 = &tcp_syn_cache[0];
3418 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3419 break;
3420 }
3421 #ifdef DIAGNOSTIC
3422 /*
3423 * This should never happen; we should always find a
3424 * non-empty bucket.
3425 */
3426 if (scp2 == scp)
3427 panic("syn_cache_insert: cacheoverflow: "
3428 "impossible");
3429 #endif
3430 }
3431 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3432 syn_cache_rm(sc2);
3433 syn_cache_put(sc2); /* calls pool_put but see spl above */
3434 }
3435
3436 /*
3437 * Initialize the entry's timer.
3438 */
3439 sc->sc_rxttot = 0;
3440 sc->sc_rxtshift = 0;
3441 SYN_CACHE_TIMER_ARM(sc);
3442
3443 /* Link it from tcpcb entry */
3444 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3445
3446 /* Put it into the bucket. */
3447 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3448 scp->sch_length++;
3449 syn_cache_count++;
3450
3451 TCP_STATINC(TCP_STAT_SC_ADDED);
3452 splx(s);
3453 }
3454
3455 /*
3456 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3457 * If we have retransmitted an entry the maximum number of times, expire
3458 * that entry.
3459 */
3460 void
3461 syn_cache_timer(void *arg)
3462 {
3463 struct syn_cache *sc = arg;
3464
3465 mutex_enter(softnet_lock);
3466 KERNEL_LOCK(1, NULL);
3467 callout_ack(&sc->sc_timer);
3468
3469 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3470 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3471 callout_destroy(&sc->sc_timer);
3472 pool_put(&syn_cache_pool, sc);
3473 KERNEL_UNLOCK_ONE(NULL);
3474 mutex_exit(softnet_lock);
3475 return;
3476 }
3477
3478 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3479 /* Drop it -- too many retransmissions. */
3480 goto dropit;
3481 }
3482
3483 /*
3484 * Compute the total amount of time this entry has
3485 * been on a queue. If this entry has been on longer
3486 * than the keep alive timer would allow, expire it.
3487 */
3488 sc->sc_rxttot += sc->sc_rxtcur;
3489 if (sc->sc_rxttot >= tcp_keepinit)
3490 goto dropit;
3491
3492 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3493 (void) syn_cache_respond(sc, NULL);
3494
3495 /* Advance the timer back-off. */
3496 sc->sc_rxtshift++;
3497 SYN_CACHE_TIMER_ARM(sc);
3498
3499 KERNEL_UNLOCK_ONE(NULL);
3500 mutex_exit(softnet_lock);
3501 return;
3502
3503 dropit:
3504 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3505 syn_cache_rm(sc);
3506 syn_cache_put(sc); /* calls pool_put but see spl above */
3507 KERNEL_UNLOCK_ONE(NULL);
3508 mutex_exit(softnet_lock);
3509 }
3510
3511 /*
3512 * Remove syn cache created by the specified tcb entry,
3513 * because this does not make sense to keep them
3514 * (if there's no tcb entry, syn cache entry will never be used)
3515 */
3516 void
3517 syn_cache_cleanup(struct tcpcb *tp)
3518 {
3519 struct syn_cache *sc, *nsc;
3520 int s;
3521
3522 s = splsoftnet();
3523
3524 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3525 nsc = LIST_NEXT(sc, sc_tpq);
3526
3527 #ifdef DIAGNOSTIC
3528 if (sc->sc_tp != tp)
3529 panic("invalid sc_tp in syn_cache_cleanup");
3530 #endif
3531 syn_cache_rm(sc);
3532 syn_cache_put(sc); /* calls pool_put but see spl above */
3533 }
3534 /* just for safety */
3535 LIST_INIT(&tp->t_sc);
3536
3537 splx(s);
3538 }
3539
3540 /*
3541 * Find an entry in the syn cache.
3542 */
3543 struct syn_cache *
3544 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3545 struct syn_cache_head **headp)
3546 {
3547 struct syn_cache *sc;
3548 struct syn_cache_head *scp;
3549 u_int32_t hash;
3550 int s;
3551
3552 SYN_HASHALL(hash, src, dst);
3553
3554 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3555 *headp = scp;
3556 s = splsoftnet();
3557 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3558 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3559 if (sc->sc_hash != hash)
3560 continue;
3561 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3562 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3563 splx(s);
3564 return (sc);
3565 }
3566 }
3567 splx(s);
3568 return (NULL);
3569 }
3570
3571 /*
3572 * This function gets called when we receive an ACK for a
3573 * socket in the LISTEN state. We look up the connection
3574 * in the syn cache, and if its there, we pull it out of
3575 * the cache and turn it into a full-blown connection in
3576 * the SYN-RECEIVED state.
3577 *
3578 * The return values may not be immediately obvious, and their effects
3579 * can be subtle, so here they are:
3580 *
3581 * NULL SYN was not found in cache; caller should drop the
3582 * packet and send an RST.
3583 *
3584 * -1 We were unable to create the new connection, and are
3585 * aborting it. An ACK,RST is being sent to the peer
3586 * (unless we got screwey sequence numbners; see below),
3587 * because the 3-way handshake has been completed. Caller
3588 * should not free the mbuf, since we may be using it. If
3589 * we are not, we will free it.
3590 *
3591 * Otherwise, the return value is a pointer to the new socket
3592 * associated with the connection.
3593 */
3594 struct socket *
3595 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3596 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3597 struct socket *so, struct mbuf *m)
3598 {
3599 struct syn_cache *sc;
3600 struct syn_cache_head *scp;
3601 struct inpcb *inp = NULL;
3602 #ifdef INET6
3603 struct in6pcb *in6p = NULL;
3604 #endif
3605 struct tcpcb *tp = 0;
3606 struct mbuf *am;
3607 int s;
3608 struct socket *oso;
3609
3610 s = splsoftnet();
3611 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3612 splx(s);
3613 return (NULL);
3614 }
3615
3616 /*
3617 * Verify the sequence and ack numbers. Try getting the correct
3618 * response again.
3619 */
3620 if ((th->th_ack != sc->sc_iss + 1) ||
3621 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3622 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3623 (void) syn_cache_respond(sc, m);
3624 splx(s);
3625 return ((struct socket *)(-1));
3626 }
3627
3628 /* Remove this cache entry */
3629 syn_cache_rm(sc);
3630 splx(s);
3631
3632 /*
3633 * Ok, create the full blown connection, and set things up
3634 * as they would have been set up if we had created the
3635 * connection when the SYN arrived. If we can't create
3636 * the connection, abort it.
3637 */
3638 /*
3639 * inp still has the OLD in_pcb stuff, set the
3640 * v6-related flags on the new guy, too. This is
3641 * done particularly for the case where an AF_INET6
3642 * socket is bound only to a port, and a v4 connection
3643 * comes in on that port.
3644 * we also copy the flowinfo from the original pcb
3645 * to the new one.
3646 */
3647 oso = so;
3648 so = sonewconn(so, SS_ISCONNECTED);
3649 if (so == NULL)
3650 goto resetandabort;
3651
3652 switch (so->so_proto->pr_domain->dom_family) {
3653 #ifdef INET
3654 case AF_INET:
3655 inp = sotoinpcb(so);
3656 break;
3657 #endif
3658 #ifdef INET6
3659 case AF_INET6:
3660 in6p = sotoin6pcb(so);
3661 break;
3662 #endif
3663 }
3664 switch (src->sa_family) {
3665 #ifdef INET
3666 case AF_INET:
3667 if (inp) {
3668 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3669 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3670 inp->inp_options = ip_srcroute();
3671 in_pcbstate(inp, INP_BOUND);
3672 if (inp->inp_options == NULL) {
3673 inp->inp_options = sc->sc_ipopts;
3674 sc->sc_ipopts = NULL;
3675 }
3676 }
3677 #ifdef INET6
3678 else if (in6p) {
3679 /* IPv4 packet to AF_INET6 socket */
3680 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3681 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3682 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3683 &in6p->in6p_laddr.s6_addr32[3],
3684 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3685 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3686 in6totcpcb(in6p)->t_family = AF_INET;
3687 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3688 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3689 else
3690 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3691 in6_pcbstate(in6p, IN6P_BOUND);
3692 }
3693 #endif
3694 break;
3695 #endif
3696 #ifdef INET6
3697 case AF_INET6:
3698 if (in6p) {
3699 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3700 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3701 in6_pcbstate(in6p, IN6P_BOUND);
3702 }
3703 break;
3704 #endif
3705 }
3706 #ifdef INET6
3707 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3708 struct in6pcb *oin6p = sotoin6pcb(oso);
3709 /* inherit socket options from the listening socket */
3710 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3711 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3712 m_freem(in6p->in6p_options);
3713 in6p->in6p_options = 0;
3714 }
3715 ip6_savecontrol(in6p, &in6p->in6p_options,
3716 mtod(m, struct ip6_hdr *), m);
3717 }
3718 #endif
3719
3720 #if defined(IPSEC) || defined(FAST_IPSEC)
3721 /*
3722 * we make a copy of policy, instead of sharing the policy,
3723 * for better behavior in terms of SA lookup and dead SA removal.
3724 */
3725 if (inp) {
3726 /* copy old policy into new socket's */
3727 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3728 printf("tcp_input: could not copy policy\n");
3729 }
3730 #ifdef INET6
3731 else if (in6p) {
3732 /* copy old policy into new socket's */
3733 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3734 in6p->in6p_sp))
3735 printf("tcp_input: could not copy policy\n");
3736 }
3737 #endif
3738 #endif
3739
3740 /*
3741 * Give the new socket our cached route reference.
3742 */
3743 if (inp) {
3744 rtcache_copy(&inp->inp_route, &sc->sc_route);
3745 rtcache_free(&sc->sc_route);
3746 }
3747 #ifdef INET6
3748 else {
3749 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3750 rtcache_free(&sc->sc_route);
3751 }
3752 #endif
3753
3754 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3755 if (am == NULL)
3756 goto resetandabort;
3757 MCLAIM(am, &tcp_mowner);
3758 am->m_len = src->sa_len;
3759 bcopy(src, mtod(am, void *), src->sa_len);
3760 if (inp) {
3761 if (in_pcbconnect(inp, am, &lwp0)) {
3762 (void) m_free(am);
3763 goto resetandabort;
3764 }
3765 }
3766 #ifdef INET6
3767 else if (in6p) {
3768 if (src->sa_family == AF_INET) {
3769 /* IPv4 packet to AF_INET6 socket */
3770 struct sockaddr_in6 *sin6;
3771 sin6 = mtod(am, struct sockaddr_in6 *);
3772 am->m_len = sizeof(*sin6);
3773 bzero(sin6, sizeof(*sin6));
3774 sin6->sin6_family = AF_INET6;
3775 sin6->sin6_len = sizeof(*sin6);
3776 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3777 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3778 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3779 &sin6->sin6_addr.s6_addr32[3],
3780 sizeof(sin6->sin6_addr.s6_addr32[3]));
3781 }
3782 if (in6_pcbconnect(in6p, am, NULL)) {
3783 (void) m_free(am);
3784 goto resetandabort;
3785 }
3786 }
3787 #endif
3788 else {
3789 (void) m_free(am);
3790 goto resetandabort;
3791 }
3792 (void) m_free(am);
3793
3794 if (inp)
3795 tp = intotcpcb(inp);
3796 #ifdef INET6
3797 else if (in6p)
3798 tp = in6totcpcb(in6p);
3799 #endif
3800 else
3801 tp = NULL;
3802 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3803 if (sc->sc_request_r_scale != 15) {
3804 tp->requested_s_scale = sc->sc_requested_s_scale;
3805 tp->request_r_scale = sc->sc_request_r_scale;
3806 tp->snd_scale = sc->sc_requested_s_scale;
3807 tp->rcv_scale = sc->sc_request_r_scale;
3808 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3809 }
3810 if (sc->sc_flags & SCF_TIMESTAMP)
3811 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3812 tp->ts_timebase = sc->sc_timebase;
3813
3814 tp->t_template = tcp_template(tp);
3815 if (tp->t_template == 0) {
3816 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3817 so = NULL;
3818 m_freem(m);
3819 goto abort;
3820 }
3821
3822 tp->iss = sc->sc_iss;
3823 tp->irs = sc->sc_irs;
3824 tcp_sendseqinit(tp);
3825 tcp_rcvseqinit(tp);
3826 tp->t_state = TCPS_SYN_RECEIVED;
3827 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3828 TCP_STATINC(TCP_STAT_ACCEPTS);
3829
3830 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3831 tp->t_flags |= TF_WILL_SACK;
3832
3833 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3834 tp->t_flags |= TF_ECN_PERMIT;
3835
3836 #ifdef TCP_SIGNATURE
3837 if (sc->sc_flags & SCF_SIGNATURE)
3838 tp->t_flags |= TF_SIGNATURE;
3839 #endif
3840
3841 /* Initialize tp->t_ourmss before we deal with the peer's! */
3842 tp->t_ourmss = sc->sc_ourmaxseg;
3843 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3844
3845 /*
3846 * Initialize the initial congestion window. If we
3847 * had to retransmit the SYN,ACK, we must initialize cwnd
3848 * to 1 segment (i.e. the Loss Window).
3849 */
3850 if (sc->sc_rxtshift)
3851 tp->snd_cwnd = tp->t_peermss;
3852 else {
3853 int ss = tcp_init_win;
3854 #ifdef INET
3855 if (inp != NULL && in_localaddr(inp->inp_faddr))
3856 ss = tcp_init_win_local;
3857 #endif
3858 #ifdef INET6
3859 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3860 ss = tcp_init_win_local;
3861 #endif
3862 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3863 }
3864
3865 tcp_rmx_rtt(tp);
3866 tp->snd_wl1 = sc->sc_irs;
3867 tp->rcv_up = sc->sc_irs + 1;
3868
3869 /*
3870 * This is what whould have happened in tcp_output() when
3871 * the SYN,ACK was sent.
3872 */
3873 tp->snd_up = tp->snd_una;
3874 tp->snd_max = tp->snd_nxt = tp->iss+1;
3875 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3876 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3877 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3878 tp->last_ack_sent = tp->rcv_nxt;
3879 tp->t_partialacks = -1;
3880 tp->t_dupacks = 0;
3881
3882 TCP_STATINC(TCP_STAT_SC_COMPLETED);
3883 s = splsoftnet();
3884 syn_cache_put(sc);
3885 splx(s);
3886 return (so);
3887
3888 resetandabort:
3889 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3890 abort:
3891 if (so != NULL) {
3892 (void) soqremque(so, 1);
3893 (void) soabort(so);
3894 }
3895 s = splsoftnet();
3896 syn_cache_put(sc);
3897 splx(s);
3898 TCP_STATINC(TCP_STAT_SC_ABORTED);
3899 return ((struct socket *)(-1));
3900 }
3901
3902 /*
3903 * This function is called when we get a RST for a
3904 * non-existent connection, so that we can see if the
3905 * connection is in the syn cache. If it is, zap it.
3906 */
3907
3908 void
3909 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3910 {
3911 struct syn_cache *sc;
3912 struct syn_cache_head *scp;
3913 int s = splsoftnet();
3914
3915 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3916 splx(s);
3917 return;
3918 }
3919 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3920 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3921 splx(s);
3922 return;
3923 }
3924 syn_cache_rm(sc);
3925 TCP_STATINC(TCP_STAT_SC_RESET);
3926 syn_cache_put(sc); /* calls pool_put but see spl above */
3927 splx(s);
3928 }
3929
3930 void
3931 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3932 struct tcphdr *th)
3933 {
3934 struct syn_cache *sc;
3935 struct syn_cache_head *scp;
3936 int s;
3937
3938 s = splsoftnet();
3939 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3940 splx(s);
3941 return;
3942 }
3943 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3944 if (ntohl (th->th_seq) != sc->sc_iss) {
3945 splx(s);
3946 return;
3947 }
3948
3949 /*
3950 * If we've retransmitted 3 times and this is our second error,
3951 * we remove the entry. Otherwise, we allow it to continue on.
3952 * This prevents us from incorrectly nuking an entry during a
3953 * spurious network outage.
3954 *
3955 * See tcp_notify().
3956 */
3957 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3958 sc->sc_flags |= SCF_UNREACH;
3959 splx(s);
3960 return;
3961 }
3962
3963 syn_cache_rm(sc);
3964 TCP_STATINC(TCP_STAT_SC_UNREACH);
3965 syn_cache_put(sc); /* calls pool_put but see spl above */
3966 splx(s);
3967 }
3968
3969 /*
3970 * Given a LISTEN socket and an inbound SYN request, add
3971 * this to the syn cache, and send back a segment:
3972 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3973 * to the source.
3974 *
3975 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3976 * Doing so would require that we hold onto the data and deliver it
3977 * to the application. However, if we are the target of a SYN-flood
3978 * DoS attack, an attacker could send data which would eventually
3979 * consume all available buffer space if it were ACKed. By not ACKing
3980 * the data, we avoid this DoS scenario.
3981 */
3982
3983 int
3984 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3985 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3986 int optlen, struct tcp_opt_info *oi)
3987 {
3988 struct tcpcb tb, *tp;
3989 long win;
3990 struct syn_cache *sc;
3991 struct syn_cache_head *scp;
3992 struct mbuf *ipopts;
3993 struct tcp_opt_info opti;
3994 int s;
3995
3996 tp = sototcpcb(so);
3997
3998 bzero(&opti, sizeof(opti));
3999
4000 /*
4001 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4002 *
4003 * Note this check is performed in tcp_input() very early on.
4004 */
4005
4006 /*
4007 * Initialize some local state.
4008 */
4009 win = sbspace(&so->so_rcv);
4010 if (win > TCP_MAXWIN)
4011 win = TCP_MAXWIN;
4012
4013 switch (src->sa_family) {
4014 #ifdef INET
4015 case AF_INET:
4016 /*
4017 * Remember the IP options, if any.
4018 */
4019 ipopts = ip_srcroute();
4020 break;
4021 #endif
4022 default:
4023 ipopts = NULL;
4024 }
4025
4026 #ifdef TCP_SIGNATURE
4027 if (optp || (tp->t_flags & TF_SIGNATURE))
4028 #else
4029 if (optp)
4030 #endif
4031 {
4032 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4033 #ifdef TCP_SIGNATURE
4034 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4035 #endif
4036 tb.t_state = TCPS_LISTEN;
4037 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4038 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4039 return (0);
4040 } else
4041 tb.t_flags = 0;
4042
4043 /*
4044 * See if we already have an entry for this connection.
4045 * If we do, resend the SYN,ACK. We do not count this
4046 * as a retransmission (XXX though maybe we should).
4047 */
4048 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4049 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4050 if (ipopts) {
4051 /*
4052 * If we were remembering a previous source route,
4053 * forget it and use the new one we've been given.
4054 */
4055 if (sc->sc_ipopts)
4056 (void) m_free(sc->sc_ipopts);
4057 sc->sc_ipopts = ipopts;
4058 }
4059 sc->sc_timestamp = tb.ts_recent;
4060 if (syn_cache_respond(sc, m) == 0) {
4061 uint64_t *tcps = TCP_STAT_GETREF();
4062 tcps[TCP_STAT_SNDACKS]++;
4063 tcps[TCP_STAT_SNDTOTAL]++;
4064 TCP_STAT_PUTREF();
4065 }
4066 return (1);
4067 }
4068
4069 s = splsoftnet();
4070 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4071 splx(s);
4072 if (sc == NULL) {
4073 if (ipopts)
4074 (void) m_free(ipopts);
4075 return (0);
4076 }
4077
4078 /*
4079 * Fill in the cache, and put the necessary IP and TCP
4080 * options into the reply.
4081 */
4082 bzero(sc, sizeof(struct syn_cache));
4083 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4084 bcopy(src, &sc->sc_src, src->sa_len);
4085 bcopy(dst, &sc->sc_dst, dst->sa_len);
4086 sc->sc_flags = 0;
4087 sc->sc_ipopts = ipopts;
4088 sc->sc_irs = th->th_seq;
4089 switch (src->sa_family) {
4090 #ifdef INET
4091 case AF_INET:
4092 {
4093 struct sockaddr_in *srcin = (void *) src;
4094 struct sockaddr_in *dstin = (void *) dst;
4095
4096 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4097 &srcin->sin_addr, dstin->sin_port,
4098 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4099 break;
4100 }
4101 #endif /* INET */
4102 #ifdef INET6
4103 case AF_INET6:
4104 {
4105 struct sockaddr_in6 *srcin6 = (void *) src;
4106 struct sockaddr_in6 *dstin6 = (void *) dst;
4107
4108 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4109 &srcin6->sin6_addr, dstin6->sin6_port,
4110 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4111 break;
4112 }
4113 #endif /* INET6 */
4114 }
4115 sc->sc_peermaxseg = oi->maxseg;
4116 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4117 m->m_pkthdr.rcvif : NULL,
4118 sc->sc_src.sa.sa_family);
4119 sc->sc_win = win;
4120 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4121 sc->sc_timestamp = tb.ts_recent;
4122 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4123 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4124 sc->sc_flags |= SCF_TIMESTAMP;
4125 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4126 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4127 sc->sc_requested_s_scale = tb.requested_s_scale;
4128 sc->sc_request_r_scale = 0;
4129 /*
4130 * Pick the smallest possible scaling factor that
4131 * will still allow us to scale up to sb_max.
4132 *
4133 * We do this because there are broken firewalls that
4134 * will corrupt the window scale option, leading to
4135 * the other endpoint believing that our advertised
4136 * window is unscaled. At scale factors larger than
4137 * 5 the unscaled window will drop below 1500 bytes,
4138 * leading to serious problems when traversing these
4139 * broken firewalls.
4140 *
4141 * With the default sbmax of 256K, a scale factor
4142 * of 3 will be chosen by this algorithm. Those who
4143 * choose a larger sbmax should watch out
4144 * for the compatiblity problems mentioned above.
4145 *
4146 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4147 * or <SYN,ACK>) segment itself is never scaled.
4148 */
4149 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4150 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4151 sc->sc_request_r_scale++;
4152 } else {
4153 sc->sc_requested_s_scale = 15;
4154 sc->sc_request_r_scale = 15;
4155 }
4156 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4157 sc->sc_flags |= SCF_SACK_PERMIT;
4158
4159 /*
4160 * ECN setup packet recieved.
4161 */
4162 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4163 sc->sc_flags |= SCF_ECN_PERMIT;
4164
4165 #ifdef TCP_SIGNATURE
4166 if (tb.t_flags & TF_SIGNATURE)
4167 sc->sc_flags |= SCF_SIGNATURE;
4168 #endif
4169 sc->sc_tp = tp;
4170 if (syn_cache_respond(sc, m) == 0) {
4171 uint64_t *tcps = TCP_STAT_GETREF();
4172 tcps[TCP_STAT_SNDACKS]++;
4173 tcps[TCP_STAT_SNDTOTAL]++;
4174 TCP_STAT_PUTREF();
4175 syn_cache_insert(sc, tp);
4176 } else {
4177 s = splsoftnet();
4178 syn_cache_put(sc);
4179 splx(s);
4180 TCP_STATINC(TCP_STAT_SC_DROPPED);
4181 }
4182 return (1);
4183 }
4184
4185 int
4186 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4187 {
4188 #ifdef INET6
4189 struct rtentry *rt;
4190 #endif
4191 struct route *ro;
4192 u_int8_t *optp;
4193 int optlen, error;
4194 u_int16_t tlen;
4195 struct ip *ip = NULL;
4196 #ifdef INET6
4197 struct ip6_hdr *ip6 = NULL;
4198 #endif
4199 struct tcpcb *tp = NULL;
4200 struct tcphdr *th;
4201 u_int hlen;
4202 struct socket *so;
4203
4204 ro = &sc->sc_route;
4205 switch (sc->sc_src.sa.sa_family) {
4206 case AF_INET:
4207 hlen = sizeof(struct ip);
4208 break;
4209 #ifdef INET6
4210 case AF_INET6:
4211 hlen = sizeof(struct ip6_hdr);
4212 break;
4213 #endif
4214 default:
4215 if (m)
4216 m_freem(m);
4217 return (EAFNOSUPPORT);
4218 }
4219
4220 /* Compute the size of the TCP options. */
4221 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4222 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4223 #ifdef TCP_SIGNATURE
4224 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4225 #endif
4226 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4227
4228 tlen = hlen + sizeof(struct tcphdr) + optlen;
4229
4230 /*
4231 * Create the IP+TCP header from scratch.
4232 */
4233 if (m)
4234 m_freem(m);
4235 #ifdef DIAGNOSTIC
4236 if (max_linkhdr + tlen > MCLBYTES)
4237 return (ENOBUFS);
4238 #endif
4239 MGETHDR(m, M_DONTWAIT, MT_DATA);
4240 if (m && tlen > MHLEN) {
4241 MCLGET(m, M_DONTWAIT);
4242 if ((m->m_flags & M_EXT) == 0) {
4243 m_freem(m);
4244 m = NULL;
4245 }
4246 }
4247 if (m == NULL)
4248 return (ENOBUFS);
4249 MCLAIM(m, &tcp_tx_mowner);
4250
4251 /* Fixup the mbuf. */
4252 m->m_data += max_linkhdr;
4253 m->m_len = m->m_pkthdr.len = tlen;
4254 if (sc->sc_tp) {
4255 tp = sc->sc_tp;
4256 if (tp->t_inpcb)
4257 so = tp->t_inpcb->inp_socket;
4258 #ifdef INET6
4259 else if (tp->t_in6pcb)
4260 so = tp->t_in6pcb->in6p_socket;
4261 #endif
4262 else
4263 so = NULL;
4264 } else
4265 so = NULL;
4266 m->m_pkthdr.rcvif = NULL;
4267 memset(mtod(m, u_char *), 0, tlen);
4268
4269 switch (sc->sc_src.sa.sa_family) {
4270 case AF_INET:
4271 ip = mtod(m, struct ip *);
4272 ip->ip_v = 4;
4273 ip->ip_dst = sc->sc_src.sin.sin_addr;
4274 ip->ip_src = sc->sc_dst.sin.sin_addr;
4275 ip->ip_p = IPPROTO_TCP;
4276 th = (struct tcphdr *)(ip + 1);
4277 th->th_dport = sc->sc_src.sin.sin_port;
4278 th->th_sport = sc->sc_dst.sin.sin_port;
4279 break;
4280 #ifdef INET6
4281 case AF_INET6:
4282 ip6 = mtod(m, struct ip6_hdr *);
4283 ip6->ip6_vfc = IPV6_VERSION;
4284 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4285 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4286 ip6->ip6_nxt = IPPROTO_TCP;
4287 /* ip6_plen will be updated in ip6_output() */
4288 th = (struct tcphdr *)(ip6 + 1);
4289 th->th_dport = sc->sc_src.sin6.sin6_port;
4290 th->th_sport = sc->sc_dst.sin6.sin6_port;
4291 break;
4292 #endif
4293 default:
4294 th = NULL;
4295 }
4296
4297 th->th_seq = htonl(sc->sc_iss);
4298 th->th_ack = htonl(sc->sc_irs + 1);
4299 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4300 th->th_flags = TH_SYN|TH_ACK;
4301 th->th_win = htons(sc->sc_win);
4302 /* th_sum already 0 */
4303 /* th_urp already 0 */
4304
4305 /* Tack on the TCP options. */
4306 optp = (u_int8_t *)(th + 1);
4307 *optp++ = TCPOPT_MAXSEG;
4308 *optp++ = 4;
4309 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4310 *optp++ = sc->sc_ourmaxseg & 0xff;
4311
4312 if (sc->sc_request_r_scale != 15) {
4313 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4314 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4315 sc->sc_request_r_scale);
4316 optp += 4;
4317 }
4318
4319 if (sc->sc_flags & SCF_TIMESTAMP) {
4320 u_int32_t *lp = (u_int32_t *)(optp);
4321 /* Form timestamp option as shown in appendix A of RFC 1323. */
4322 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4323 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4324 *lp = htonl(sc->sc_timestamp);
4325 optp += TCPOLEN_TSTAMP_APPA;
4326 }
4327
4328 if (sc->sc_flags & SCF_SACK_PERMIT) {
4329 u_int8_t *p = optp;
4330
4331 /* Let the peer know that we will SACK. */
4332 p[0] = TCPOPT_SACK_PERMITTED;
4333 p[1] = 2;
4334 p[2] = TCPOPT_NOP;
4335 p[3] = TCPOPT_NOP;
4336 optp += 4;
4337 }
4338
4339 /*
4340 * Send ECN SYN-ACK setup packet.
4341 * Routes can be asymetric, so, even if we receive a packet
4342 * with ECE and CWR set, we must not assume no one will block
4343 * the ECE packet we are about to send.
4344 */
4345 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4346 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4347 th->th_flags |= TH_ECE;
4348 TCP_STATINC(TCP_STAT_ECN_SHS);
4349
4350 /*
4351 * draft-ietf-tcpm-ecnsyn-00.txt
4352 *
4353 * "[...] a TCP node MAY respond to an ECN-setup
4354 * SYN packet by setting ECT in the responding
4355 * ECN-setup SYN/ACK packet, indicating to routers
4356 * that the SYN/ACK packet is ECN-Capable.
4357 * This allows a congested router along the path
4358 * to mark the packet instead of dropping the
4359 * packet as an indication of congestion."
4360 *
4361 * "[...] There can be a great benefit in setting
4362 * an ECN-capable codepoint in SYN/ACK packets [...]
4363 * Congestion is most likely to occur in
4364 * the server-to-client direction. As a result,
4365 * setting an ECN-capable codepoint in SYN/ACK
4366 * packets can reduce the occurence of three-second
4367 * retransmit timeouts resulting from the drop
4368 * of SYN/ACK packets."
4369 *
4370 * Page 4 and 6, January 2006.
4371 */
4372
4373 switch (sc->sc_src.sa.sa_family) {
4374 #ifdef INET
4375 case AF_INET:
4376 ip->ip_tos |= IPTOS_ECN_ECT0;
4377 break;
4378 #endif
4379 #ifdef INET6
4380 case AF_INET6:
4381 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4382 break;
4383 #endif
4384 }
4385 TCP_STATINC(TCP_STAT_ECN_ECT);
4386 }
4387
4388 #ifdef TCP_SIGNATURE
4389 if (sc->sc_flags & SCF_SIGNATURE) {
4390 struct secasvar *sav;
4391 u_int8_t *sigp;
4392
4393 sav = tcp_signature_getsav(m, th);
4394
4395 if (sav == NULL) {
4396 if (m)
4397 m_freem(m);
4398 return (EPERM);
4399 }
4400
4401 *optp++ = TCPOPT_SIGNATURE;
4402 *optp++ = TCPOLEN_SIGNATURE;
4403 sigp = optp;
4404 bzero(optp, TCP_SIGLEN);
4405 optp += TCP_SIGLEN;
4406 *optp++ = TCPOPT_NOP;
4407 *optp++ = TCPOPT_EOL;
4408
4409 (void)tcp_signature(m, th, hlen, sav, sigp);
4410
4411 key_sa_recordxfer(sav, m);
4412 #ifdef FAST_IPSEC
4413 KEY_FREESAV(&sav);
4414 #else
4415 key_freesav(sav);
4416 #endif
4417 }
4418 #endif
4419
4420 /* Compute the packet's checksum. */
4421 switch (sc->sc_src.sa.sa_family) {
4422 case AF_INET:
4423 ip->ip_len = htons(tlen - hlen);
4424 th->th_sum = 0;
4425 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4426 break;
4427 #ifdef INET6
4428 case AF_INET6:
4429 ip6->ip6_plen = htons(tlen - hlen);
4430 th->th_sum = 0;
4431 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4432 break;
4433 #endif
4434 }
4435
4436 /*
4437 * Fill in some straggling IP bits. Note the stack expects
4438 * ip_len to be in host order, for convenience.
4439 */
4440 switch (sc->sc_src.sa.sa_family) {
4441 #ifdef INET
4442 case AF_INET:
4443 ip->ip_len = htons(tlen);
4444 ip->ip_ttl = ip_defttl;
4445 /* XXX tos? */
4446 break;
4447 #endif
4448 #ifdef INET6
4449 case AF_INET6:
4450 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4451 ip6->ip6_vfc |= IPV6_VERSION;
4452 ip6->ip6_plen = htons(tlen - hlen);
4453 /* ip6_hlim will be initialized afterwards */
4454 /* XXX flowlabel? */
4455 break;
4456 #endif
4457 }
4458
4459 /* XXX use IPsec policy on listening socket, on SYN ACK */
4460 tp = sc->sc_tp;
4461
4462 switch (sc->sc_src.sa.sa_family) {
4463 #ifdef INET
4464 case AF_INET:
4465 error = ip_output(m, sc->sc_ipopts, ro,
4466 (ip_mtudisc ? IP_MTUDISC : 0),
4467 (struct ip_moptions *)NULL, so);
4468 break;
4469 #endif
4470 #ifdef INET6
4471 case AF_INET6:
4472 ip6->ip6_hlim = in6_selecthlim(NULL,
4473 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4474 : NULL);
4475
4476 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4477 break;
4478 #endif
4479 default:
4480 error = EAFNOSUPPORT;
4481 break;
4482 }
4483 return (error);
4484 }
4485