Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.289
      1 /*	$NetBSD: tcp_input.c,v 1.289 2008/07/04 18:22:21 ad Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Charles M. Hannum.
     81  * This code is derived from software contributed to The NetBSD Foundation
     82  * by Rui Paulo.
     83  *
     84  * Redistribution and use in source and binary forms, with or without
     85  * modification, are permitted provided that the following conditions
     86  * are met:
     87  * 1. Redistributions of source code must retain the above copyright
     88  *    notice, this list of conditions and the following disclaimer.
     89  * 2. Redistributions in binary form must reproduce the above copyright
     90  *    notice, this list of conditions and the following disclaimer in the
     91  *    documentation and/or other materials provided with the distribution.
     92  *
     93  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     94  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     95  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     96  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     97  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     98  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     99  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    100  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    101  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    103  * POSSIBILITY OF SUCH DAMAGE.
    104  */
    105 
    106 /*
    107  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    108  *	The Regents of the University of California.  All rights reserved.
    109  *
    110  * Redistribution and use in source and binary forms, with or without
    111  * modification, are permitted provided that the following conditions
    112  * are met:
    113  * 1. Redistributions of source code must retain the above copyright
    114  *    notice, this list of conditions and the following disclaimer.
    115  * 2. Redistributions in binary form must reproduce the above copyright
    116  *    notice, this list of conditions and the following disclaimer in the
    117  *    documentation and/or other materials provided with the distribution.
    118  * 3. Neither the name of the University nor the names of its contributors
    119  *    may be used to endorse or promote products derived from this software
    120  *    without specific prior written permission.
    121  *
    122  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    123  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    124  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    125  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    126  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    127  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    128  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    129  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    130  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    131  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    132  * SUCH DAMAGE.
    133  *
    134  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    135  */
    136 
    137 /*
    138  *	TODO list for SYN cache stuff:
    139  *
    140  *	Find room for a "state" field, which is needed to keep a
    141  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    142  *	that this is fairly important for very high-volume web and
    143  *	mail servers, which use a large number of short-lived
    144  *	connections.
    145  */
    146 
    147 #include <sys/cdefs.h>
    148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.289 2008/07/04 18:22:21 ad Exp $");
    149 
    150 #include "opt_inet.h"
    151 #include "opt_ipsec.h"
    152 #include "opt_inet_csum.h"
    153 #include "opt_tcp_debug.h"
    154 
    155 #include <sys/param.h>
    156 #include <sys/systm.h>
    157 #include <sys/malloc.h>
    158 #include <sys/mbuf.h>
    159 #include <sys/protosw.h>
    160 #include <sys/socket.h>
    161 #include <sys/socketvar.h>
    162 #include <sys/errno.h>
    163 #include <sys/syslog.h>
    164 #include <sys/pool.h>
    165 #include <sys/domain.h>
    166 #include <sys/kernel.h>
    167 #ifdef TCP_SIGNATURE
    168 #include <sys/md5.h>
    169 #endif
    170 #include <sys/lwp.h> /* for lwp0 */
    171 
    172 #include <net/if.h>
    173 #include <net/route.h>
    174 #include <net/if_types.h>
    175 
    176 #include <netinet/in.h>
    177 #include <netinet/in_systm.h>
    178 #include <netinet/ip.h>
    179 #include <netinet/in_pcb.h>
    180 #include <netinet/in_var.h>
    181 #include <netinet/ip_var.h>
    182 #include <netinet/in_offload.h>
    183 
    184 #ifdef INET6
    185 #ifndef INET
    186 #include <netinet/in.h>
    187 #endif
    188 #include <netinet/ip6.h>
    189 #include <netinet6/ip6_var.h>
    190 #include <netinet6/in6_pcb.h>
    191 #include <netinet6/ip6_var.h>
    192 #include <netinet6/in6_var.h>
    193 #include <netinet/icmp6.h>
    194 #include <netinet6/nd6.h>
    195 #ifdef TCP_SIGNATURE
    196 #include <netinet6/scope6_var.h>
    197 #endif
    198 #endif
    199 
    200 #ifndef INET6
    201 /* always need ip6.h for IP6_EXTHDR_GET */
    202 #include <netinet/ip6.h>
    203 #endif
    204 
    205 #include <netinet/tcp.h>
    206 #include <netinet/tcp_fsm.h>
    207 #include <netinet/tcp_seq.h>
    208 #include <netinet/tcp_timer.h>
    209 #include <netinet/tcp_var.h>
    210 #include <netinet/tcp_private.h>
    211 #include <netinet/tcpip.h>
    212 #include <netinet/tcp_congctl.h>
    213 #include <netinet/tcp_debug.h>
    214 
    215 #include <machine/stdarg.h>
    216 
    217 #ifdef IPSEC
    218 #include <netinet6/ipsec.h>
    219 #include <netinet6/ipsec_private.h>
    220 #include <netkey/key.h>
    221 #endif /*IPSEC*/
    222 #ifdef INET6
    223 #include "faith.h"
    224 #if defined(NFAITH) && NFAITH > 0
    225 #include <net/if_faith.h>
    226 #endif
    227 #endif	/* IPSEC */
    228 
    229 #ifdef FAST_IPSEC
    230 #include <netipsec/ipsec.h>
    231 #include <netipsec/ipsec_var.h>
    232 #include <netipsec/ipsec_private.h>
    233 #include <netipsec/key.h>
    234 #ifdef INET6
    235 #include <netipsec/ipsec6.h>
    236 #endif
    237 #endif	/* FAST_IPSEC*/
    238 
    239 int	tcprexmtthresh = 3;
    240 int	tcp_log_refused;
    241 
    242 int	tcp_do_autorcvbuf = 0;
    243 int	tcp_autorcvbuf_inc = 16 * 1024;
    244 int	tcp_autorcvbuf_max = 256 * 1024;
    245 
    246 static int tcp_rst_ppslim_count = 0;
    247 static struct timeval tcp_rst_ppslim_last;
    248 static int tcp_ackdrop_ppslim_count = 0;
    249 static struct timeval tcp_ackdrop_ppslim_last;
    250 
    251 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    252 
    253 /* for modulo comparisons of timestamps */
    254 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    255 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    256 
    257 /*
    258  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    259  */
    260 #ifdef INET6
    261 static inline void
    262 nd6_hint(struct tcpcb *tp)
    263 {
    264 	struct rtentry *rt;
    265 
    266 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    267 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    268 		nd6_nud_hint(rt, NULL, 0);
    269 }
    270 #else
    271 static inline void
    272 nd6_hint(struct tcpcb *tp)
    273 {
    274 }
    275 #endif
    276 
    277 /*
    278  * Compute ACK transmission behavior.  Delay the ACK unless
    279  * we have already delayed an ACK (must send an ACK every two segments).
    280  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    281  * option is enabled.
    282  */
    283 static void
    284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    285 {
    286 
    287 	if (tp->t_flags & TF_DELACK ||
    288 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    289 		tp->t_flags |= TF_ACKNOW;
    290 	else
    291 		TCP_SET_DELACK(tp);
    292 }
    293 
    294 static void
    295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    296 {
    297 
    298 	/*
    299 	 * If we had a pending ICMP message that refers to data that have
    300 	 * just been acknowledged, disregard the recorded ICMP message.
    301 	 */
    302 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    303 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    304 		tp->t_flags &= ~TF_PMTUD_PEND;
    305 
    306 	/*
    307 	 * Keep track of the largest chunk of data
    308 	 * acknowledged since last PMTU update
    309 	 */
    310 	if (tp->t_pmtud_mss_acked < acked)
    311 		tp->t_pmtud_mss_acked = acked;
    312 }
    313 
    314 /*
    315  * Convert TCP protocol fields to host order for easier processing.
    316  */
    317 static void
    318 tcp_fields_to_host(struct tcphdr *th)
    319 {
    320 
    321 	NTOHL(th->th_seq);
    322 	NTOHL(th->th_ack);
    323 	NTOHS(th->th_win);
    324 	NTOHS(th->th_urp);
    325 }
    326 
    327 /*
    328  * ... and reverse the above.
    329  */
    330 static void
    331 tcp_fields_to_net(struct tcphdr *th)
    332 {
    333 
    334 	HTONL(th->th_seq);
    335 	HTONL(th->th_ack);
    336 	HTONS(th->th_win);
    337 	HTONS(th->th_urp);
    338 }
    339 
    340 #ifdef TCP_CSUM_COUNTERS
    341 #include <sys/device.h>
    342 
    343 #if defined(INET)
    344 extern struct evcnt tcp_hwcsum_ok;
    345 extern struct evcnt tcp_hwcsum_bad;
    346 extern struct evcnt tcp_hwcsum_data;
    347 extern struct evcnt tcp_swcsum;
    348 #endif /* defined(INET) */
    349 #if defined(INET6)
    350 extern struct evcnt tcp6_hwcsum_ok;
    351 extern struct evcnt tcp6_hwcsum_bad;
    352 extern struct evcnt tcp6_hwcsum_data;
    353 extern struct evcnt tcp6_swcsum;
    354 #endif /* defined(INET6) */
    355 
    356 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    357 
    358 #else
    359 
    360 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    361 
    362 #endif /* TCP_CSUM_COUNTERS */
    363 
    364 #ifdef TCP_REASS_COUNTERS
    365 #include <sys/device.h>
    366 
    367 extern struct evcnt tcp_reass_;
    368 extern struct evcnt tcp_reass_empty;
    369 extern struct evcnt tcp_reass_iteration[8];
    370 extern struct evcnt tcp_reass_prependfirst;
    371 extern struct evcnt tcp_reass_prepend;
    372 extern struct evcnt tcp_reass_insert;
    373 extern struct evcnt tcp_reass_inserttail;
    374 extern struct evcnt tcp_reass_append;
    375 extern struct evcnt tcp_reass_appendtail;
    376 extern struct evcnt tcp_reass_overlaptail;
    377 extern struct evcnt tcp_reass_overlapfront;
    378 extern struct evcnt tcp_reass_segdup;
    379 extern struct evcnt tcp_reass_fragdup;
    380 
    381 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    382 
    383 #else
    384 
    385 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    386 
    387 #endif /* TCP_REASS_COUNTERS */
    388 
    389 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    390     int *);
    391 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    392     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    393 
    394 #ifdef INET
    395 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    396 #endif
    397 #ifdef INET6
    398 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    399 #endif
    400 
    401 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    402 
    403 #if defined(MBUFTRACE)
    404 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    405 #endif /* defined(MBUFTRACE) */
    406 
    407 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    408     NULL, IPL_VM);
    409 
    410 struct ipqent *
    411 tcpipqent_alloc(void)
    412 {
    413 	struct ipqent *ipqe;
    414 	int s;
    415 
    416 	s = splvm();
    417 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    418 	splx(s);
    419 
    420 	return ipqe;
    421 }
    422 
    423 void
    424 tcpipqent_free(struct ipqent *ipqe)
    425 {
    426 	int s;
    427 
    428 	s = splvm();
    429 	pool_put(&tcpipqent_pool, ipqe);
    430 	splx(s);
    431 }
    432 
    433 static int
    434 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    435 {
    436 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    437 	struct socket *so = NULL;
    438 	int pkt_flags;
    439 	tcp_seq pkt_seq;
    440 	unsigned pkt_len;
    441 	u_long rcvpartdupbyte = 0;
    442 	u_long rcvoobyte;
    443 #ifdef TCP_REASS_COUNTERS
    444 	u_int count = 0;
    445 #endif
    446 	uint64_t *tcps;
    447 
    448 	if (tp->t_inpcb)
    449 		so = tp->t_inpcb->inp_socket;
    450 #ifdef INET6
    451 	else if (tp->t_in6pcb)
    452 		so = tp->t_in6pcb->in6p_socket;
    453 #endif
    454 
    455 	TCP_REASS_LOCK_CHECK(tp);
    456 
    457 	/*
    458 	 * Call with th==0 after become established to
    459 	 * force pre-ESTABLISHED data up to user socket.
    460 	 */
    461 	if (th == 0)
    462 		goto present;
    463 
    464 	m_claimm(m, &tcp_reass_mowner);
    465 
    466 	rcvoobyte = *tlen;
    467 	/*
    468 	 * Copy these to local variables because the tcpiphdr
    469 	 * gets munged while we are collapsing mbufs.
    470 	 */
    471 	pkt_seq = th->th_seq;
    472 	pkt_len = *tlen;
    473 	pkt_flags = th->th_flags;
    474 
    475 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    476 
    477 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    478 		/*
    479 		 * When we miss a packet, the vast majority of time we get
    480 		 * packets that follow it in order.  So optimize for that.
    481 		 */
    482 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    483 			p->ipqe_len += pkt_len;
    484 			p->ipqe_flags |= pkt_flags;
    485 			m_cat(p->ipre_mlast, m);
    486 			TRAVERSE(p->ipre_mlast);
    487 			m = NULL;
    488 			tiqe = p;
    489 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    490 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    491 			goto skip_replacement;
    492 		}
    493 		/*
    494 		 * While we're here, if the pkt is completely beyond
    495 		 * anything we have, just insert it at the tail.
    496 		 */
    497 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    498 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    499 			goto insert_it;
    500 		}
    501 	}
    502 
    503 	q = TAILQ_FIRST(&tp->segq);
    504 
    505 	if (q != NULL) {
    506 		/*
    507 		 * If this segment immediately precedes the first out-of-order
    508 		 * block, simply slap the segment in front of it and (mostly)
    509 		 * skip the complicated logic.
    510 		 */
    511 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    512 			q->ipqe_seq = pkt_seq;
    513 			q->ipqe_len += pkt_len;
    514 			q->ipqe_flags |= pkt_flags;
    515 			m_cat(m, q->ipqe_m);
    516 			q->ipqe_m = m;
    517 			q->ipre_mlast = m; /* last mbuf may have changed */
    518 			TRAVERSE(q->ipre_mlast);
    519 			tiqe = q;
    520 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    521 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    522 			goto skip_replacement;
    523 		}
    524 	} else {
    525 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    526 	}
    527 
    528 	/*
    529 	 * Find a segment which begins after this one does.
    530 	 */
    531 	for (p = NULL; q != NULL; q = nq) {
    532 		nq = TAILQ_NEXT(q, ipqe_q);
    533 #ifdef TCP_REASS_COUNTERS
    534 		count++;
    535 #endif
    536 		/*
    537 		 * If the received segment is just right after this
    538 		 * fragment, merge the two together and then check
    539 		 * for further overlaps.
    540 		 */
    541 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    542 #ifdef TCPREASS_DEBUG
    543 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    544 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    545 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    546 #endif
    547 			pkt_len += q->ipqe_len;
    548 			pkt_flags |= q->ipqe_flags;
    549 			pkt_seq = q->ipqe_seq;
    550 			m_cat(q->ipre_mlast, m);
    551 			TRAVERSE(q->ipre_mlast);
    552 			m = q->ipqe_m;
    553 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    554 			goto free_ipqe;
    555 		}
    556 		/*
    557 		 * If the received segment is completely past this
    558 		 * fragment, we need to go the next fragment.
    559 		 */
    560 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    561 			p = q;
    562 			continue;
    563 		}
    564 		/*
    565 		 * If the fragment is past the received segment,
    566 		 * it (or any following) can't be concatenated.
    567 		 */
    568 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    569 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    570 			break;
    571 		}
    572 
    573 		/*
    574 		 * We've received all the data in this segment before.
    575 		 * mark it as a duplicate and return.
    576 		 */
    577 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    578 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    579 			tcps = TCP_STAT_GETREF();
    580 			tcps[TCP_STAT_RCVDUPPACK]++;
    581 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    582 			TCP_STAT_PUTREF();
    583 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    584 			m_freem(m);
    585 			if (tiqe != NULL) {
    586 				tcpipqent_free(tiqe);
    587 			}
    588 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    589 			return (0);
    590 		}
    591 		/*
    592 		 * Received segment completely overlaps this fragment
    593 		 * so we drop the fragment (this keeps the temporal
    594 		 * ordering of segments correct).
    595 		 */
    596 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    597 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    598 			rcvpartdupbyte += q->ipqe_len;
    599 			m_freem(q->ipqe_m);
    600 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    601 			goto free_ipqe;
    602 		}
    603 		/*
    604 		 * RX'ed segment extends past the end of the
    605 		 * fragment.  Drop the overlapping bytes.  Then
    606 		 * merge the fragment and segment then treat as
    607 		 * a longer received packet.
    608 		 */
    609 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    610 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    611 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    612 #ifdef TCPREASS_DEBUG
    613 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    614 			       tp, overlap,
    615 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    616 #endif
    617 			m_adj(m, overlap);
    618 			rcvpartdupbyte += overlap;
    619 			m_cat(q->ipre_mlast, m);
    620 			TRAVERSE(q->ipre_mlast);
    621 			m = q->ipqe_m;
    622 			pkt_seq = q->ipqe_seq;
    623 			pkt_len += q->ipqe_len - overlap;
    624 			rcvoobyte -= overlap;
    625 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    626 			goto free_ipqe;
    627 		}
    628 		/*
    629 		 * RX'ed segment extends past the front of the
    630 		 * fragment.  Drop the overlapping bytes on the
    631 		 * received packet.  The packet will then be
    632 		 * contatentated with this fragment a bit later.
    633 		 */
    634 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    635 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    636 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    637 #ifdef TCPREASS_DEBUG
    638 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    639 			       tp, overlap,
    640 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    641 #endif
    642 			m_adj(m, -overlap);
    643 			pkt_len -= overlap;
    644 			rcvpartdupbyte += overlap;
    645 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    646 			rcvoobyte -= overlap;
    647 		}
    648 		/*
    649 		 * If the received segment immediates precedes this
    650 		 * fragment then tack the fragment onto this segment
    651 		 * and reinsert the data.
    652 		 */
    653 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    654 #ifdef TCPREASS_DEBUG
    655 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    656 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    657 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    658 #endif
    659 			pkt_len += q->ipqe_len;
    660 			pkt_flags |= q->ipqe_flags;
    661 			m_cat(m, q->ipqe_m);
    662 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    663 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    664 			tp->t_segqlen--;
    665 			KASSERT(tp->t_segqlen >= 0);
    666 			KASSERT(tp->t_segqlen != 0 ||
    667 			    (TAILQ_EMPTY(&tp->segq) &&
    668 			    TAILQ_EMPTY(&tp->timeq)));
    669 			if (tiqe == NULL) {
    670 				tiqe = q;
    671 			} else {
    672 				tcpipqent_free(q);
    673 			}
    674 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    675 			break;
    676 		}
    677 		/*
    678 		 * If the fragment is before the segment, remember it.
    679 		 * When this loop is terminated, p will contain the
    680 		 * pointer to fragment that is right before the received
    681 		 * segment.
    682 		 */
    683 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    684 			p = q;
    685 
    686 		continue;
    687 
    688 		/*
    689 		 * This is a common operation.  It also will allow
    690 		 * to save doing a malloc/free in most instances.
    691 		 */
    692 	  free_ipqe:
    693 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    694 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    695 		tp->t_segqlen--;
    696 		KASSERT(tp->t_segqlen >= 0);
    697 		KASSERT(tp->t_segqlen != 0 ||
    698 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    699 		if (tiqe == NULL) {
    700 			tiqe = q;
    701 		} else {
    702 			tcpipqent_free(q);
    703 		}
    704 	}
    705 
    706 #ifdef TCP_REASS_COUNTERS
    707 	if (count > 7)
    708 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    709 	else if (count > 0)
    710 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    711 #endif
    712 
    713     insert_it:
    714 
    715 	/*
    716 	 * Allocate a new queue entry since the received segment did not
    717 	 * collapse onto any other out-of-order block; thus we are allocating
    718 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    719 	 * we would be reusing it.
    720 	 * XXX If we can't, just drop the packet.  XXX
    721 	 */
    722 	if (tiqe == NULL) {
    723 		tiqe = tcpipqent_alloc();
    724 		if (tiqe == NULL) {
    725 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    726 			m_freem(m);
    727 			return (0);
    728 		}
    729 	}
    730 
    731 	/*
    732 	 * Update the counters.
    733 	 */
    734 	tcps = TCP_STAT_GETREF();
    735 	tcps[TCP_STAT_RCVOOPACK]++;
    736 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    737 	if (rcvpartdupbyte) {
    738 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    739 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    740 	}
    741 	TCP_STAT_PUTREF();
    742 
    743 	/*
    744 	 * Insert the new fragment queue entry into both queues.
    745 	 */
    746 	tiqe->ipqe_m = m;
    747 	tiqe->ipre_mlast = m;
    748 	tiqe->ipqe_seq = pkt_seq;
    749 	tiqe->ipqe_len = pkt_len;
    750 	tiqe->ipqe_flags = pkt_flags;
    751 	if (p == NULL) {
    752 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    753 #ifdef TCPREASS_DEBUG
    754 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    755 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    756 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    757 #endif
    758 	} else {
    759 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    760 #ifdef TCPREASS_DEBUG
    761 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    762 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    763 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    764 #endif
    765 	}
    766 	tp->t_segqlen++;
    767 
    768 skip_replacement:
    769 
    770 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    771 
    772 present:
    773 	/*
    774 	 * Present data to user, advancing rcv_nxt through
    775 	 * completed sequence space.
    776 	 */
    777 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    778 		return (0);
    779 	q = TAILQ_FIRST(&tp->segq);
    780 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    781 		return (0);
    782 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    783 		return (0);
    784 
    785 	tp->rcv_nxt += q->ipqe_len;
    786 	pkt_flags = q->ipqe_flags & TH_FIN;
    787 	nd6_hint(tp);
    788 
    789 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    790 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    791 	tp->t_segqlen--;
    792 	KASSERT(tp->t_segqlen >= 0);
    793 	KASSERT(tp->t_segqlen != 0 ||
    794 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    795 	if (so->so_state & SS_CANTRCVMORE)
    796 		m_freem(q->ipqe_m);
    797 	else
    798 		sbappendstream(&so->so_rcv, q->ipqe_m);
    799 	tcpipqent_free(q);
    800 	sorwakeup(so);
    801 	return (pkt_flags);
    802 }
    803 
    804 #ifdef INET6
    805 int
    806 tcp6_input(struct mbuf **mp, int *offp, int proto)
    807 {
    808 	struct mbuf *m = *mp;
    809 
    810 	/*
    811 	 * draft-itojun-ipv6-tcp-to-anycast
    812 	 * better place to put this in?
    813 	 */
    814 	if (m->m_flags & M_ANYCAST6) {
    815 		struct ip6_hdr *ip6;
    816 		if (m->m_len < sizeof(struct ip6_hdr)) {
    817 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    818 				TCP_STATINC(TCP_STAT_RCVSHORT);
    819 				return IPPROTO_DONE;
    820 			}
    821 		}
    822 		ip6 = mtod(m, struct ip6_hdr *);
    823 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    824 		    (char *)&ip6->ip6_dst - (char *)ip6);
    825 		return IPPROTO_DONE;
    826 	}
    827 
    828 	tcp_input(m, *offp, proto);
    829 	return IPPROTO_DONE;
    830 }
    831 #endif
    832 
    833 #ifdef INET
    834 static void
    835 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    836 {
    837 	char src[4*sizeof "123"];
    838 	char dst[4*sizeof "123"];
    839 
    840 	if (ip) {
    841 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    842 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    843 	}
    844 	else {
    845 		strlcpy(src, "(unknown)", sizeof(src));
    846 		strlcpy(dst, "(unknown)", sizeof(dst));
    847 	}
    848 	log(LOG_INFO,
    849 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    850 	    dst, ntohs(th->th_dport),
    851 	    src, ntohs(th->th_sport));
    852 }
    853 #endif
    854 
    855 #ifdef INET6
    856 static void
    857 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    858 {
    859 	char src[INET6_ADDRSTRLEN];
    860 	char dst[INET6_ADDRSTRLEN];
    861 
    862 	if (ip6) {
    863 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    864 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    865 	}
    866 	else {
    867 		strlcpy(src, "(unknown v6)", sizeof(src));
    868 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    869 	}
    870 	log(LOG_INFO,
    871 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    872 	    dst, ntohs(th->th_dport),
    873 	    src, ntohs(th->th_sport));
    874 }
    875 #endif
    876 
    877 /*
    878  * Checksum extended TCP header and data.
    879  */
    880 int
    881 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    882     int toff, int off, int tlen)
    883 {
    884 
    885 	/*
    886 	 * XXX it's better to record and check if this mbuf is
    887 	 * already checked.
    888 	 */
    889 
    890 	switch (af) {
    891 #ifdef INET
    892 	case AF_INET:
    893 		switch (m->m_pkthdr.csum_flags &
    894 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    895 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    896 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    897 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    898 			goto badcsum;
    899 
    900 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    901 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    902 
    903 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    904 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    905 				const struct ip *ip =
    906 				    mtod(m, const struct ip *);
    907 
    908 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    909 				    ip->ip_dst.s_addr,
    910 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    911 			}
    912 			if ((hw_csum ^ 0xffff) != 0)
    913 				goto badcsum;
    914 			break;
    915 		}
    916 
    917 		case M_CSUM_TCPv4:
    918 			/* Checksum was okay. */
    919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    920 			break;
    921 
    922 		default:
    923 			/*
    924 			 * Must compute it ourselves.  Maybe skip checksum
    925 			 * on loopback interfaces.
    926 			 */
    927 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    928 					     IFF_LOOPBACK) ||
    929 					   tcp_do_loopback_cksum)) {
    930 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    931 				if (in4_cksum(m, IPPROTO_TCP, toff,
    932 					      tlen + off) != 0)
    933 					goto badcsum;
    934 			}
    935 			break;
    936 		}
    937 		break;
    938 #endif /* INET4 */
    939 
    940 #ifdef INET6
    941 	case AF_INET6:
    942 		switch (m->m_pkthdr.csum_flags &
    943 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    944 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    945 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    946 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    947 			goto badcsum;
    948 
    949 #if 0 /* notyet */
    950 		case M_CSUM_TCPv6|M_CSUM_DATA:
    951 #endif
    952 
    953 		case M_CSUM_TCPv6:
    954 			/* Checksum was okay. */
    955 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    956 			break;
    957 
    958 		default:
    959 			/*
    960 			 * Must compute it ourselves.  Maybe skip checksum
    961 			 * on loopback interfaces.
    962 			 */
    963 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    964 			    tcp_do_loopback_cksum)) {
    965 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    966 				if (in6_cksum(m, IPPROTO_TCP, toff,
    967 				    tlen + off) != 0)
    968 					goto badcsum;
    969 			}
    970 		}
    971 		break;
    972 #endif /* INET6 */
    973 	}
    974 
    975 	return 0;
    976 
    977 badcsum:
    978 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    979 	return -1;
    980 }
    981 
    982 /*
    983  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
    984  */
    985 void
    986 tcp_input(struct mbuf *m, ...)
    987 {
    988 	struct tcphdr *th;
    989 	struct ip *ip;
    990 	struct inpcb *inp;
    991 #ifdef INET6
    992 	struct ip6_hdr *ip6;
    993 	struct in6pcb *in6p;
    994 #endif
    995 	u_int8_t *optp = NULL;
    996 	int optlen = 0;
    997 	int len, tlen, toff, hdroptlen = 0;
    998 	struct tcpcb *tp = 0;
    999 	int tiflags;
   1000 	struct socket *so = NULL;
   1001 	int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
   1002 #ifdef TCP_DEBUG
   1003 	short ostate = 0;
   1004 #endif
   1005 	u_long tiwin;
   1006 	struct tcp_opt_info opti;
   1007 	int off, iphlen;
   1008 	va_list ap;
   1009 	int af;		/* af on the wire */
   1010 	struct mbuf *tcp_saveti = NULL;
   1011 	uint32_t ts_rtt;
   1012 	uint8_t iptos;
   1013 	uint64_t *tcps;
   1014 
   1015 	MCLAIM(m, &tcp_rx_mowner);
   1016 	va_start(ap, m);
   1017 	toff = va_arg(ap, int);
   1018 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1019 	va_end(ap);
   1020 
   1021 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1022 
   1023 	bzero(&opti, sizeof(opti));
   1024 	opti.ts_present = 0;
   1025 	opti.maxseg = 0;
   1026 
   1027 	/*
   1028 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1029 	 *
   1030 	 * TCP is, by definition, unicast, so we reject all
   1031 	 * multicast outright.
   1032 	 *
   1033 	 * Note, there are additional src/dst address checks in
   1034 	 * the AF-specific code below.
   1035 	 */
   1036 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1037 		/* XXX stat */
   1038 		goto drop;
   1039 	}
   1040 #ifdef INET6
   1041 	if (m->m_flags & M_ANYCAST6) {
   1042 		/* XXX stat */
   1043 		goto drop;
   1044 	}
   1045 #endif
   1046 
   1047 	/*
   1048 	 * Get IP and TCP header.
   1049 	 * Note: IP leaves IP header in first mbuf.
   1050 	 */
   1051 	ip = mtod(m, struct ip *);
   1052 #ifdef INET6
   1053 	ip6 = NULL;
   1054 #endif
   1055 	switch (ip->ip_v) {
   1056 #ifdef INET
   1057 	case 4:
   1058 		af = AF_INET;
   1059 		iphlen = sizeof(struct ip);
   1060 		ip = mtod(m, struct ip *);
   1061 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1062 			sizeof(struct tcphdr));
   1063 		if (th == NULL) {
   1064 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1065 			return;
   1066 		}
   1067 		/* We do the checksum after PCB lookup... */
   1068 		len = ntohs(ip->ip_len);
   1069 		tlen = len - toff;
   1070 		iptos = ip->ip_tos;
   1071 		break;
   1072 #endif
   1073 #ifdef INET6
   1074 	case 6:
   1075 		ip = NULL;
   1076 		iphlen = sizeof(struct ip6_hdr);
   1077 		af = AF_INET6;
   1078 		ip6 = mtod(m, struct ip6_hdr *);
   1079 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1080 			sizeof(struct tcphdr));
   1081 		if (th == NULL) {
   1082 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1083 			return;
   1084 		}
   1085 
   1086 		/* Be proactive about malicious use of IPv4 mapped address */
   1087 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1088 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1089 			/* XXX stat */
   1090 			goto drop;
   1091 		}
   1092 
   1093 		/*
   1094 		 * Be proactive about unspecified IPv6 address in source.
   1095 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1096 		 * unspecified IPv6 address can be used to confuse us.
   1097 		 *
   1098 		 * Note that packets with unspecified IPv6 destination is
   1099 		 * already dropped in ip6_input.
   1100 		 */
   1101 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1102 			/* XXX stat */
   1103 			goto drop;
   1104 		}
   1105 
   1106 		/*
   1107 		 * Make sure destination address is not multicast.
   1108 		 * Source address checked in ip6_input().
   1109 		 */
   1110 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1111 			/* XXX stat */
   1112 			goto drop;
   1113 		}
   1114 
   1115 		/* We do the checksum after PCB lookup... */
   1116 		len = m->m_pkthdr.len;
   1117 		tlen = len - toff;
   1118 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1119 		break;
   1120 #endif
   1121 	default:
   1122 		m_freem(m);
   1123 		return;
   1124 	}
   1125 
   1126 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1127 
   1128 	/*
   1129 	 * Check that TCP offset makes sense,
   1130 	 * pull out TCP options and adjust length.		XXX
   1131 	 */
   1132 	off = th->th_off << 2;
   1133 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1134 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1135 		goto drop;
   1136 	}
   1137 	tlen -= off;
   1138 
   1139 	/*
   1140 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1141 	 * length throughout the function.  Other functions can use
   1142 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1143 	 * rja
   1144 	 */
   1145 
   1146 	if (off > sizeof (struct tcphdr)) {
   1147 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1148 		if (th == NULL) {
   1149 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1150 			return;
   1151 		}
   1152 		/*
   1153 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1154 		 * (as they're before toff) and we don't need to update those.
   1155 		 */
   1156 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1157 		optlen = off - sizeof (struct tcphdr);
   1158 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1159 		/*
   1160 		 * Do quick retrieval of timestamp options ("options
   1161 		 * prediction?").  If timestamp is the only option and it's
   1162 		 * formatted as recommended in RFC 1323 appendix A, we
   1163 		 * quickly get the values now and not bother calling
   1164 		 * tcp_dooptions(), etc.
   1165 		 */
   1166 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1167 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1168 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1169 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1170 		     (th->th_flags & TH_SYN) == 0) {
   1171 			opti.ts_present = 1;
   1172 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1173 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1174 			optp = NULL;	/* we've parsed the options */
   1175 		}
   1176 	}
   1177 	tiflags = th->th_flags;
   1178 
   1179 	/*
   1180 	 * Locate pcb for segment.
   1181 	 */
   1182 findpcb:
   1183 	inp = NULL;
   1184 #ifdef INET6
   1185 	in6p = NULL;
   1186 #endif
   1187 	switch (af) {
   1188 #ifdef INET
   1189 	case AF_INET:
   1190 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1191 		    ip->ip_dst, th->th_dport);
   1192 		if (inp == 0) {
   1193 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1194 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1195 		}
   1196 #ifdef INET6
   1197 		if (inp == 0) {
   1198 			struct in6_addr s, d;
   1199 
   1200 			/* mapped addr case */
   1201 			bzero(&s, sizeof(s));
   1202 			s.s6_addr16[5] = htons(0xffff);
   1203 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1204 			bzero(&d, sizeof(d));
   1205 			d.s6_addr16[5] = htons(0xffff);
   1206 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1207 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1208 			    th->th_sport, &d, th->th_dport, 0);
   1209 			if (in6p == 0) {
   1210 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1211 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1212 				    th->th_dport, 0);
   1213 			}
   1214 		}
   1215 #endif
   1216 #ifndef INET6
   1217 		if (inp == 0)
   1218 #else
   1219 		if (inp == 0 && in6p == 0)
   1220 #endif
   1221 		{
   1222 			TCP_STATINC(TCP_STAT_NOPORT);
   1223 			if (tcp_log_refused &&
   1224 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1225 				tcp4_log_refused(ip, th);
   1226 			}
   1227 			tcp_fields_to_host(th);
   1228 			goto dropwithreset_ratelim;
   1229 		}
   1230 #if defined(IPSEC) || defined(FAST_IPSEC)
   1231 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1232 		    ipsec4_in_reject(m, inp)) {
   1233 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1234 			goto drop;
   1235 		}
   1236 #ifdef INET6
   1237 		else if (in6p &&
   1238 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1239 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1240 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1241 			goto drop;
   1242 		}
   1243 #endif
   1244 #endif /*IPSEC*/
   1245 		break;
   1246 #endif /*INET*/
   1247 #ifdef INET6
   1248 	case AF_INET6:
   1249 	    {
   1250 		int faith;
   1251 
   1252 #if defined(NFAITH) && NFAITH > 0
   1253 		faith = faithprefix(&ip6->ip6_dst);
   1254 #else
   1255 		faith = 0;
   1256 #endif
   1257 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1258 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
   1259 		if (in6p == NULL) {
   1260 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1261 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1262 				th->th_dport, faith);
   1263 		}
   1264 		if (in6p == NULL) {
   1265 			TCP_STATINC(TCP_STAT_NOPORT);
   1266 			if (tcp_log_refused &&
   1267 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1268 				tcp6_log_refused(ip6, th);
   1269 			}
   1270 			tcp_fields_to_host(th);
   1271 			goto dropwithreset_ratelim;
   1272 		}
   1273 #if defined(IPSEC) || defined(FAST_IPSEC)
   1274 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1275 		    ipsec6_in_reject(m, in6p)) {
   1276 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1277 			goto drop;
   1278 		}
   1279 #endif /*IPSEC*/
   1280 		break;
   1281 	    }
   1282 #endif
   1283 	}
   1284 
   1285 	/*
   1286 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1287 	 * all data in the incoming segment is discarded.
   1288 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1289 	 * but should either do a listen or a connect soon.
   1290 	 */
   1291 	tp = NULL;
   1292 	so = NULL;
   1293 	if (inp) {
   1294 		tp = intotcpcb(inp);
   1295 		so = inp->inp_socket;
   1296 	}
   1297 #ifdef INET6
   1298 	else if (in6p) {
   1299 		tp = in6totcpcb(in6p);
   1300 		so = in6p->in6p_socket;
   1301 	}
   1302 #endif
   1303 	if (tp == 0) {
   1304 		tcp_fields_to_host(th);
   1305 		goto dropwithreset_ratelim;
   1306 	}
   1307 	if (tp->t_state == TCPS_CLOSED)
   1308 		goto drop;
   1309 
   1310 	KASSERT(so->so_lock == softnet_lock);
   1311 	KASSERT(solocked(so));
   1312 
   1313 	/*
   1314 	 * Checksum extended TCP header and data.
   1315 	 */
   1316 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1317 		goto badcsum;
   1318 
   1319 	tcp_fields_to_host(th);
   1320 
   1321 	/* Unscale the window into a 32-bit value. */
   1322 	if ((tiflags & TH_SYN) == 0)
   1323 		tiwin = th->th_win << tp->snd_scale;
   1324 	else
   1325 		tiwin = th->th_win;
   1326 
   1327 #ifdef INET6
   1328 	/* save packet options if user wanted */
   1329 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1330 		if (in6p->in6p_options) {
   1331 			m_freem(in6p->in6p_options);
   1332 			in6p->in6p_options = 0;
   1333 		}
   1334 		KASSERT(ip6 != NULL);
   1335 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1336 	}
   1337 #endif
   1338 
   1339 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1340 		union syn_cache_sa src;
   1341 		union syn_cache_sa dst;
   1342 
   1343 		bzero(&src, sizeof(src));
   1344 		bzero(&dst, sizeof(dst));
   1345 		switch (af) {
   1346 #ifdef INET
   1347 		case AF_INET:
   1348 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1349 			src.sin.sin_family = AF_INET;
   1350 			src.sin.sin_addr = ip->ip_src;
   1351 			src.sin.sin_port = th->th_sport;
   1352 
   1353 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1354 			dst.sin.sin_family = AF_INET;
   1355 			dst.sin.sin_addr = ip->ip_dst;
   1356 			dst.sin.sin_port = th->th_dport;
   1357 			break;
   1358 #endif
   1359 #ifdef INET6
   1360 		case AF_INET6:
   1361 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1362 			src.sin6.sin6_family = AF_INET6;
   1363 			src.sin6.sin6_addr = ip6->ip6_src;
   1364 			src.sin6.sin6_port = th->th_sport;
   1365 
   1366 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1367 			dst.sin6.sin6_family = AF_INET6;
   1368 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1369 			dst.sin6.sin6_port = th->th_dport;
   1370 			break;
   1371 #endif /* INET6 */
   1372 		default:
   1373 			goto badsyn;	/*sanity*/
   1374 		}
   1375 
   1376 		if (so->so_options & SO_DEBUG) {
   1377 #ifdef TCP_DEBUG
   1378 			ostate = tp->t_state;
   1379 #endif
   1380 
   1381 			tcp_saveti = NULL;
   1382 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1383 				goto nosave;
   1384 
   1385 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1386 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1387 				if (!tcp_saveti)
   1388 					goto nosave;
   1389 			} else {
   1390 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1391 				if (!tcp_saveti)
   1392 					goto nosave;
   1393 				MCLAIM(m, &tcp_mowner);
   1394 				tcp_saveti->m_len = iphlen;
   1395 				m_copydata(m, 0, iphlen,
   1396 				    mtod(tcp_saveti, void *));
   1397 			}
   1398 
   1399 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1400 				m_freem(tcp_saveti);
   1401 				tcp_saveti = NULL;
   1402 			} else {
   1403 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1404 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1405 				    sizeof(struct tcphdr));
   1406 			}
   1407 	nosave:;
   1408 		}
   1409 		if (so->so_options & SO_ACCEPTCONN) {
   1410 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1411 				if (tiflags & TH_RST) {
   1412 					syn_cache_reset(&src.sa, &dst.sa, th);
   1413 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1414 				    (TH_ACK|TH_SYN)) {
   1415 					/*
   1416 					 * Received a SYN,ACK.  This should
   1417 					 * never happen while we are in
   1418 					 * LISTEN.  Send an RST.
   1419 					 */
   1420 					goto badsyn;
   1421 				} else if (tiflags & TH_ACK) {
   1422 					so = syn_cache_get(&src.sa, &dst.sa,
   1423 						th, toff, tlen, so, m);
   1424 					if (so == NULL) {
   1425 						/*
   1426 						 * We don't have a SYN for
   1427 						 * this ACK; send an RST.
   1428 						 */
   1429 						goto badsyn;
   1430 					} else if (so ==
   1431 					    (struct socket *)(-1)) {
   1432 						/*
   1433 						 * We were unable to create
   1434 						 * the connection.  If the
   1435 						 * 3-way handshake was
   1436 						 * completed, and RST has
   1437 						 * been sent to the peer.
   1438 						 * Since the mbuf might be
   1439 						 * in use for the reply,
   1440 						 * do not free it.
   1441 						 */
   1442 						m = NULL;
   1443 					} else {
   1444 						/*
   1445 						 * We have created a
   1446 						 * full-blown connection.
   1447 						 */
   1448 						tp = NULL;
   1449 						inp = NULL;
   1450 #ifdef INET6
   1451 						in6p = NULL;
   1452 #endif
   1453 						switch (so->so_proto->pr_domain->dom_family) {
   1454 #ifdef INET
   1455 						case AF_INET:
   1456 							inp = sotoinpcb(so);
   1457 							tp = intotcpcb(inp);
   1458 							break;
   1459 #endif
   1460 #ifdef INET6
   1461 						case AF_INET6:
   1462 							in6p = sotoin6pcb(so);
   1463 							tp = in6totcpcb(in6p);
   1464 							break;
   1465 #endif
   1466 						}
   1467 						if (tp == NULL)
   1468 							goto badsyn;	/*XXX*/
   1469 						tiwin <<= tp->snd_scale;
   1470 						goto after_listen;
   1471 					}
   1472 				} else {
   1473 					/*
   1474 					 * None of RST, SYN or ACK was set.
   1475 					 * This is an invalid packet for a
   1476 					 * TCB in LISTEN state.  Send a RST.
   1477 					 */
   1478 					goto badsyn;
   1479 				}
   1480 			} else {
   1481 				/*
   1482 				 * Received a SYN.
   1483 				 *
   1484 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1485 				 */
   1486 				if (m->m_flags & (M_BCAST|M_MCAST))
   1487 					goto drop;
   1488 
   1489 				switch (af) {
   1490 #ifdef INET6
   1491 				case AF_INET6:
   1492 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1493 						goto drop;
   1494 					break;
   1495 #endif /* INET6 */
   1496 				case AF_INET:
   1497 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1498 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1499 						goto drop;
   1500 				break;
   1501 				}
   1502 
   1503 #ifdef INET6
   1504 				/*
   1505 				 * If deprecated address is forbidden, we do
   1506 				 * not accept SYN to deprecated interface
   1507 				 * address to prevent any new inbound
   1508 				 * connection from getting established.
   1509 				 * When we do not accept SYN, we send a TCP
   1510 				 * RST, with deprecated source address (instead
   1511 				 * of dropping it).  We compromise it as it is
   1512 				 * much better for peer to send a RST, and
   1513 				 * RST will be the final packet for the
   1514 				 * exchange.
   1515 				 *
   1516 				 * If we do not forbid deprecated addresses, we
   1517 				 * accept the SYN packet.  RFC2462 does not
   1518 				 * suggest dropping SYN in this case.
   1519 				 * If we decipher RFC2462 5.5.4, it says like
   1520 				 * this:
   1521 				 * 1. use of deprecated addr with existing
   1522 				 *    communication is okay - "SHOULD continue
   1523 				 *    to be used"
   1524 				 * 2. use of it with new communication:
   1525 				 *   (2a) "SHOULD NOT be used if alternate
   1526 				 *        address with sufficient scope is
   1527 				 *        available"
   1528 				 *   (2b) nothing mentioned otherwise.
   1529 				 * Here we fall into (2b) case as we have no
   1530 				 * choice in our source address selection - we
   1531 				 * must obey the peer.
   1532 				 *
   1533 				 * The wording in RFC2462 is confusing, and
   1534 				 * there are multiple description text for
   1535 				 * deprecated address handling - worse, they
   1536 				 * are not exactly the same.  I believe 5.5.4
   1537 				 * is the best one, so we follow 5.5.4.
   1538 				 */
   1539 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1540 					struct in6_ifaddr *ia6;
   1541 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1542 					    &ip6->ip6_dst)) &&
   1543 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1544 						tp = NULL;
   1545 						goto dropwithreset;
   1546 					}
   1547 				}
   1548 #endif
   1549 
   1550 #if defined(IPSEC) || defined(FAST_IPSEC)
   1551 				switch (af) {
   1552 #ifdef INET
   1553 				case AF_INET:
   1554 					if (ipsec4_in_reject_so(m, so)) {
   1555 						IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1556 						tp = NULL;
   1557 						goto dropwithreset;
   1558 					}
   1559 					break;
   1560 #endif
   1561 #ifdef INET6
   1562 				case AF_INET6:
   1563 					if (ipsec6_in_reject_so(m, so)) {
   1564 						IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1565 						tp = NULL;
   1566 						goto dropwithreset;
   1567 					}
   1568 					break;
   1569 #endif /*INET6*/
   1570 				}
   1571 #endif /*IPSEC*/
   1572 
   1573 				/*
   1574 				 * LISTEN socket received a SYN
   1575 				 * from itself?  This can't possibly
   1576 				 * be valid; drop the packet.
   1577 				 */
   1578 				if (th->th_sport == th->th_dport) {
   1579 					int i;
   1580 
   1581 					switch (af) {
   1582 #ifdef INET
   1583 					case AF_INET:
   1584 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1585 						break;
   1586 #endif
   1587 #ifdef INET6
   1588 					case AF_INET6:
   1589 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1590 						break;
   1591 #endif
   1592 					default:
   1593 						i = 1;
   1594 					}
   1595 					if (i) {
   1596 						TCP_STATINC(TCP_STAT_BADSYN);
   1597 						goto drop;
   1598 					}
   1599 				}
   1600 
   1601 				/*
   1602 				 * SYN looks ok; create compressed TCP
   1603 				 * state for it.
   1604 				 */
   1605 				if (so->so_qlen <= so->so_qlimit &&
   1606 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1607 						so, m, optp, optlen, &opti))
   1608 					m = NULL;
   1609 			}
   1610 			goto drop;
   1611 		}
   1612 	}
   1613 
   1614 after_listen:
   1615 #ifdef DIAGNOSTIC
   1616 	/*
   1617 	 * Should not happen now that all embryonic connections
   1618 	 * are handled with compressed state.
   1619 	 */
   1620 	if (tp->t_state == TCPS_LISTEN)
   1621 		panic("tcp_input: TCPS_LISTEN");
   1622 #endif
   1623 
   1624 	/*
   1625 	 * Segment received on connection.
   1626 	 * Reset idle time and keep-alive timer.
   1627 	 */
   1628 	tp->t_rcvtime = tcp_now;
   1629 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1630 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1631 
   1632 	/*
   1633 	 * Process options.
   1634 	 */
   1635 #ifdef TCP_SIGNATURE
   1636 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1637 #else
   1638 	if (optp)
   1639 #endif
   1640 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1641 			goto drop;
   1642 
   1643 	if (TCP_SACK_ENABLED(tp)) {
   1644 		tcp_del_sackholes(tp, th);
   1645 	}
   1646 
   1647 	if (TCP_ECN_ALLOWED(tp)) {
   1648 		switch (iptos & IPTOS_ECN_MASK) {
   1649 		case IPTOS_ECN_CE:
   1650 			tp->t_flags |= TF_ECN_SND_ECE;
   1651 			TCP_STATINC(TCP_STAT_ECN_CE);
   1652 			break;
   1653 		case IPTOS_ECN_ECT0:
   1654 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1655 			break;
   1656 		case IPTOS_ECN_ECT1:
   1657 			/* XXX: ignore for now -- rpaulo */
   1658 			break;
   1659 		}
   1660 
   1661 		if (tiflags & TH_CWR)
   1662 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1663 
   1664 		/*
   1665 		 * Congestion experienced.
   1666 		 * Ignore if we are already trying to recover.
   1667 		 */
   1668 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1669 			tp->t_congctl->cong_exp(tp);
   1670 	}
   1671 
   1672 	if (opti.ts_present && opti.ts_ecr) {
   1673 		/*
   1674 		 * Calculate the RTT from the returned time stamp and the
   1675 		 * connection's time base.  If the time stamp is later than
   1676 		 * the current time, or is extremely old, fall back to non-1323
   1677 		 * RTT calculation.  Since ts_ecr is unsigned, we can test both
   1678 		 * at the same time.
   1679 		 */
   1680 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1681 		if (ts_rtt > TCP_PAWS_IDLE)
   1682 			ts_rtt = 0;
   1683 	} else {
   1684 		ts_rtt = 0;
   1685 	}
   1686 
   1687 	/*
   1688 	 * Header prediction: check for the two common cases
   1689 	 * of a uni-directional data xfer.  If the packet has
   1690 	 * no control flags, is in-sequence, the window didn't
   1691 	 * change and we're not retransmitting, it's a
   1692 	 * candidate.  If the length is zero and the ack moved
   1693 	 * forward, we're the sender side of the xfer.  Just
   1694 	 * free the data acked & wake any higher level process
   1695 	 * that was blocked waiting for space.  If the length
   1696 	 * is non-zero and the ack didn't move, we're the
   1697 	 * receiver side.  If we're getting packets in-order
   1698 	 * (the reassembly queue is empty), add the data to
   1699 	 * the socket buffer and note that we need a delayed ack.
   1700 	 */
   1701 	if (tp->t_state == TCPS_ESTABLISHED &&
   1702 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1703 	        == TH_ACK &&
   1704 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1705 	    th->th_seq == tp->rcv_nxt &&
   1706 	    tiwin && tiwin == tp->snd_wnd &&
   1707 	    tp->snd_nxt == tp->snd_max) {
   1708 
   1709 		/*
   1710 		 * If last ACK falls within this segment's sequence numbers,
   1711 		 * record the timestamp.
   1712 		 * NOTE that the test is modified according to the latest
   1713 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1714 		 *
   1715 		 * note that we already know
   1716 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1717 		 */
   1718 		if (opti.ts_present &&
   1719 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1720 			tp->ts_recent_age = tcp_now;
   1721 			tp->ts_recent = opti.ts_val;
   1722 		}
   1723 
   1724 		if (tlen == 0) {
   1725 			/* Ack prediction. */
   1726 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1727 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1728 			    tp->snd_cwnd >= tp->snd_wnd &&
   1729 			    tp->t_partialacks < 0) {
   1730 				/*
   1731 				 * this is a pure ack for outstanding data.
   1732 				 */
   1733 				if (ts_rtt)
   1734 					tcp_xmit_timer(tp, ts_rtt);
   1735 				else if (tp->t_rtttime &&
   1736 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1737 					tcp_xmit_timer(tp,
   1738 					  tcp_now - tp->t_rtttime);
   1739 				acked = th->th_ack - tp->snd_una;
   1740 				tcps = TCP_STAT_GETREF();
   1741 				tcps[TCP_STAT_PREDACK]++;
   1742 				tcps[TCP_STAT_RCVACKPACK]++;
   1743 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   1744 				TCP_STAT_PUTREF();
   1745 				nd6_hint(tp);
   1746 
   1747 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1748 					tp->t_lastm = NULL;
   1749 				sbdrop(&so->so_snd, acked);
   1750 				tp->t_lastoff -= acked;
   1751 
   1752 				icmp_check(tp, th, acked);
   1753 
   1754 				tp->snd_una = th->th_ack;
   1755 				tp->snd_fack = tp->snd_una;
   1756 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1757 					tp->snd_high = tp->snd_una;
   1758 				m_freem(m);
   1759 
   1760 				/*
   1761 				 * If all outstanding data are acked, stop
   1762 				 * retransmit timer, otherwise restart timer
   1763 				 * using current (possibly backed-off) value.
   1764 				 * If process is waiting for space,
   1765 				 * wakeup/selnotify/signal.  If data
   1766 				 * are ready to send, let tcp_output
   1767 				 * decide between more output or persist.
   1768 				 */
   1769 				if (tp->snd_una == tp->snd_max)
   1770 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1771 				else if (TCP_TIMER_ISARMED(tp,
   1772 				    TCPT_PERSIST) == 0)
   1773 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1774 					    tp->t_rxtcur);
   1775 
   1776 				sowwakeup(so);
   1777 				if (so->so_snd.sb_cc)
   1778 					(void) tcp_output(tp);
   1779 				if (tcp_saveti)
   1780 					m_freem(tcp_saveti);
   1781 				return;
   1782 			}
   1783 		} else if (th->th_ack == tp->snd_una &&
   1784 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1785 		    tlen <= sbspace(&so->so_rcv)) {
   1786 			int newsize = 0;	/* automatic sockbuf scaling */
   1787 
   1788 			/*
   1789 			 * this is a pure, in-sequence data packet
   1790 			 * with nothing on the reassembly queue and
   1791 			 * we have enough buffer space to take it.
   1792 			 */
   1793 			tp->rcv_nxt += tlen;
   1794 			tcps = TCP_STAT_GETREF();
   1795 			tcps[TCP_STAT_PREDDAT]++;
   1796 			tcps[TCP_STAT_RCVPACK]++;
   1797 			tcps[TCP_STAT_RCVBYTE] += tlen;
   1798 			TCP_STAT_PUTREF();
   1799 			nd6_hint(tp);
   1800 
   1801 		/*
   1802 		 * Automatic sizing enables the performance of large buffers
   1803 		 * and most of the efficiency of small ones by only allocating
   1804 		 * space when it is needed.
   1805 		 *
   1806 		 * On the receive side the socket buffer memory is only rarely
   1807 		 * used to any significant extent.  This allows us to be much
   1808 		 * more aggressive in scaling the receive socket buffer.  For
   1809 		 * the case that the buffer space is actually used to a large
   1810 		 * extent and we run out of kernel memory we can simply drop
   1811 		 * the new segments; TCP on the sender will just retransmit it
   1812 		 * later.  Setting the buffer size too big may only consume too
   1813 		 * much kernel memory if the application doesn't read() from
   1814 		 * the socket or packet loss or reordering makes use of the
   1815 		 * reassembly queue.
   1816 		 *
   1817 		 * The criteria to step up the receive buffer one notch are:
   1818 		 *  1. the number of bytes received during the time it takes
   1819 		 *     one timestamp to be reflected back to us (the RTT);
   1820 		 *  2. received bytes per RTT is within seven eighth of the
   1821 		 *     current socket buffer size;
   1822 		 *  3. receive buffer size has not hit maximal automatic size;
   1823 		 *
   1824 		 * This algorithm does one step per RTT at most and only if
   1825 		 * we receive a bulk stream w/o packet losses or reorderings.
   1826 		 * Shrinking the buffer during idle times is not necessary as
   1827 		 * it doesn't consume any memory when idle.
   1828 		 *
   1829 		 * TODO: Only step up if the application is actually serving
   1830 		 * the buffer to better manage the socket buffer resources.
   1831 		 */
   1832 			if (tcp_do_autorcvbuf &&
   1833 			    opti.ts_ecr &&
   1834 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   1835 				if (opti.ts_ecr > tp->rfbuf_ts &&
   1836 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   1837 					if (tp->rfbuf_cnt >
   1838 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   1839 					    so->so_rcv.sb_hiwat <
   1840 					    tcp_autorcvbuf_max) {
   1841 						newsize =
   1842 						    min(so->so_rcv.sb_hiwat +
   1843 						    tcp_autorcvbuf_inc,
   1844 						    tcp_autorcvbuf_max);
   1845 					}
   1846 					/* Start over with next RTT. */
   1847 					tp->rfbuf_ts = 0;
   1848 					tp->rfbuf_cnt = 0;
   1849 				} else
   1850 					tp->rfbuf_cnt += tlen;	/* add up */
   1851 			}
   1852 
   1853 			/*
   1854 			 * Drop TCP, IP headers and TCP options then add data
   1855 			 * to socket buffer.
   1856 			 */
   1857 			if (so->so_state & SS_CANTRCVMORE)
   1858 				m_freem(m);
   1859 			else {
   1860 				/*
   1861 				 * Set new socket buffer size.
   1862 				 * Give up when limit is reached.
   1863 				 */
   1864 				if (newsize)
   1865 					if (!sbreserve(&so->so_rcv,
   1866 					    newsize, so))
   1867 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1868 				m_adj(m, toff + off);
   1869 				sbappendstream(&so->so_rcv, m);
   1870 			}
   1871 			sorwakeup(so);
   1872 			tcp_setup_ack(tp, th);
   1873 			if (tp->t_flags & TF_ACKNOW)
   1874 				(void) tcp_output(tp);
   1875 			if (tcp_saveti)
   1876 				m_freem(tcp_saveti);
   1877 			return;
   1878 		}
   1879 	}
   1880 
   1881 	/*
   1882 	 * Compute mbuf offset to TCP data segment.
   1883 	 */
   1884 	hdroptlen = toff + off;
   1885 
   1886 	/*
   1887 	 * Calculate amount of space in receive window,
   1888 	 * and then do TCP input processing.
   1889 	 * Receive window is amount of space in rcv queue,
   1890 	 * but not less than advertised window.
   1891 	 */
   1892 	{ int win;
   1893 
   1894 	win = sbspace(&so->so_rcv);
   1895 	if (win < 0)
   1896 		win = 0;
   1897 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1898 	}
   1899 
   1900 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   1901 	tp->rfbuf_ts = 0;
   1902 	tp->rfbuf_cnt = 0;
   1903 
   1904 	switch (tp->t_state) {
   1905 	/*
   1906 	 * If the state is SYN_SENT:
   1907 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1908 	 *	if seg contains a RST, then drop the connection.
   1909 	 *	if seg does not contain SYN, then drop it.
   1910 	 * Otherwise this is an acceptable SYN segment
   1911 	 *	initialize tp->rcv_nxt and tp->irs
   1912 	 *	if seg contains ack then advance tp->snd_una
   1913 	 *	if seg contains a ECE and ECN support is enabled, the stream
   1914 	 *	    is ECN capable.
   1915 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1916 	 *	arrange for segment to be acked (eventually)
   1917 	 *	continue processing rest of data/controls, beginning with URG
   1918 	 */
   1919 	case TCPS_SYN_SENT:
   1920 		if ((tiflags & TH_ACK) &&
   1921 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1922 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1923 			goto dropwithreset;
   1924 		if (tiflags & TH_RST) {
   1925 			if (tiflags & TH_ACK)
   1926 				tp = tcp_drop(tp, ECONNREFUSED);
   1927 			goto drop;
   1928 		}
   1929 		if ((tiflags & TH_SYN) == 0)
   1930 			goto drop;
   1931 		if (tiflags & TH_ACK) {
   1932 			tp->snd_una = th->th_ack;
   1933 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1934 				tp->snd_nxt = tp->snd_una;
   1935 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   1936 				tp->snd_high = tp->snd_una;
   1937 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1938 
   1939 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   1940 				tp->t_flags |= TF_ECN_PERMIT;
   1941 				TCP_STATINC(TCP_STAT_ECN_SHS);
   1942 			}
   1943 
   1944 		}
   1945 		tp->irs = th->th_seq;
   1946 		tcp_rcvseqinit(tp);
   1947 		tp->t_flags |= TF_ACKNOW;
   1948 		tcp_mss_from_peer(tp, opti.maxseg);
   1949 
   1950 		/*
   1951 		 * Initialize the initial congestion window.  If we
   1952 		 * had to retransmit the SYN, we must initialize cwnd
   1953 		 * to 1 segment (i.e. the Loss Window).
   1954 		 */
   1955 		if (tp->t_flags & TF_SYN_REXMT)
   1956 			tp->snd_cwnd = tp->t_peermss;
   1957 		else {
   1958 			int ss = tcp_init_win;
   1959 #ifdef INET
   1960 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1961 				ss = tcp_init_win_local;
   1962 #endif
   1963 #ifdef INET6
   1964 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1965 				ss = tcp_init_win_local;
   1966 #endif
   1967 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1968 		}
   1969 
   1970 		tcp_rmx_rtt(tp);
   1971 		if (tiflags & TH_ACK) {
   1972 			TCP_STATINC(TCP_STAT_CONNECTS);
   1973 			soisconnected(so);
   1974 			tcp_established(tp);
   1975 			/* Do window scaling on this connection? */
   1976 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   1977 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   1978 				tp->snd_scale = tp->requested_s_scale;
   1979 				tp->rcv_scale = tp->request_r_scale;
   1980 			}
   1981 			TCP_REASS_LOCK(tp);
   1982 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   1983 			TCP_REASS_UNLOCK(tp);
   1984 			/*
   1985 			 * if we didn't have to retransmit the SYN,
   1986 			 * use its rtt as our initial srtt & rtt var.
   1987 			 */
   1988 			if (tp->t_rtttime)
   1989 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   1990 		} else
   1991 			tp->t_state = TCPS_SYN_RECEIVED;
   1992 
   1993 		/*
   1994 		 * Advance th->th_seq to correspond to first data byte.
   1995 		 * If data, trim to stay within window,
   1996 		 * dropping FIN if necessary.
   1997 		 */
   1998 		th->th_seq++;
   1999 		if (tlen > tp->rcv_wnd) {
   2000 			todrop = tlen - tp->rcv_wnd;
   2001 			m_adj(m, -todrop);
   2002 			tlen = tp->rcv_wnd;
   2003 			tiflags &= ~TH_FIN;
   2004 			tcps = TCP_STAT_GETREF();
   2005 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2006 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2007 			TCP_STAT_PUTREF();
   2008 		}
   2009 		tp->snd_wl1 = th->th_seq - 1;
   2010 		tp->rcv_up = th->th_seq;
   2011 		goto step6;
   2012 
   2013 	/*
   2014 	 * If the state is SYN_RECEIVED:
   2015 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2016 	 *	and generate an RST.  See page 36, rfc793
   2017 	 */
   2018 	case TCPS_SYN_RECEIVED:
   2019 		if ((tiflags & TH_ACK) &&
   2020 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2021 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2022 			goto dropwithreset;
   2023 		break;
   2024 	}
   2025 
   2026 	/*
   2027 	 * States other than LISTEN or SYN_SENT.
   2028 	 * First check timestamp, if present.
   2029 	 * Then check that at least some bytes of segment are within
   2030 	 * receive window.  If segment begins before rcv_nxt,
   2031 	 * drop leading data (and SYN); if nothing left, just ack.
   2032 	 *
   2033 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2034 	 * and it's less than ts_recent, drop it.
   2035 	 */
   2036 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2037 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2038 
   2039 		/* Check to see if ts_recent is over 24 days old.  */
   2040 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2041 			/*
   2042 			 * Invalidate ts_recent.  If this segment updates
   2043 			 * ts_recent, the age will be reset later and ts_recent
   2044 			 * will get a valid value.  If it does not, setting
   2045 			 * ts_recent to zero will at least satisfy the
   2046 			 * requirement that zero be placed in the timestamp
   2047 			 * echo reply when ts_recent isn't valid.  The
   2048 			 * age isn't reset until we get a valid ts_recent
   2049 			 * because we don't want out-of-order segments to be
   2050 			 * dropped when ts_recent is old.
   2051 			 */
   2052 			tp->ts_recent = 0;
   2053 		} else {
   2054 			tcps = TCP_STAT_GETREF();
   2055 			tcps[TCP_STAT_RCVDUPPACK]++;
   2056 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2057 			tcps[TCP_STAT_PAWSDROP]++;
   2058 			TCP_STAT_PUTREF();
   2059 			tcp_new_dsack(tp, th->th_seq, tlen);
   2060 			goto dropafterack;
   2061 		}
   2062 	}
   2063 
   2064 	todrop = tp->rcv_nxt - th->th_seq;
   2065 	dupseg = false;
   2066 	if (todrop > 0) {
   2067 		if (tiflags & TH_SYN) {
   2068 			tiflags &= ~TH_SYN;
   2069 			th->th_seq++;
   2070 			if (th->th_urp > 1)
   2071 				th->th_urp--;
   2072 			else {
   2073 				tiflags &= ~TH_URG;
   2074 				th->th_urp = 0;
   2075 			}
   2076 			todrop--;
   2077 		}
   2078 		if (todrop > tlen ||
   2079 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2080 			/*
   2081 			 * Any valid FIN or RST must be to the left of the
   2082 			 * window.  At this point the FIN or RST must be a
   2083 			 * duplicate or out of sequence; drop it.
   2084 			 */
   2085 			if (tiflags & TH_RST)
   2086 				goto drop;
   2087 			tiflags &= ~(TH_FIN|TH_RST);
   2088 			/*
   2089 			 * Send an ACK to resynchronize and drop any data.
   2090 			 * But keep on processing for RST or ACK.
   2091 			 */
   2092 			tp->t_flags |= TF_ACKNOW;
   2093 			todrop = tlen;
   2094 			dupseg = true;
   2095 			tcps = TCP_STAT_GETREF();
   2096 			tcps[TCP_STAT_RCVDUPPACK]++;
   2097 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2098 			TCP_STAT_PUTREF();
   2099 		} else if ((tiflags & TH_RST) &&
   2100 			   th->th_seq != tp->last_ack_sent) {
   2101 			/*
   2102 			 * Test for reset before adjusting the sequence
   2103 			 * number for overlapping data.
   2104 			 */
   2105 			goto dropafterack_ratelim;
   2106 		} else {
   2107 			tcps = TCP_STAT_GETREF();
   2108 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2109 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2110 			TCP_STAT_PUTREF();
   2111 		}
   2112 		tcp_new_dsack(tp, th->th_seq, todrop);
   2113 		hdroptlen += todrop;	/*drop from head afterwards*/
   2114 		th->th_seq += todrop;
   2115 		tlen -= todrop;
   2116 		if (th->th_urp > todrop)
   2117 			th->th_urp -= todrop;
   2118 		else {
   2119 			tiflags &= ~TH_URG;
   2120 			th->th_urp = 0;
   2121 		}
   2122 	}
   2123 
   2124 	/*
   2125 	 * If new data are received on a connection after the
   2126 	 * user processes are gone, then RST the other end.
   2127 	 */
   2128 	if ((so->so_state & SS_NOFDREF) &&
   2129 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2130 		tp = tcp_close(tp);
   2131 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2132 		goto dropwithreset;
   2133 	}
   2134 
   2135 	/*
   2136 	 * If segment ends after window, drop trailing data
   2137 	 * (and PUSH and FIN); if nothing left, just ACK.
   2138 	 */
   2139 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2140 	if (todrop > 0) {
   2141 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2142 		if (todrop >= tlen) {
   2143 			/*
   2144 			 * The segment actually starts after the window.
   2145 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2146 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2147 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2148 			 */
   2149 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2150 			/*
   2151 			 * If a new connection request is received
   2152 			 * while in TIME_WAIT, drop the old connection
   2153 			 * and start over if the sequence numbers
   2154 			 * are above the previous ones.
   2155 			 *
   2156 			 * NOTE: We will checksum the packet again, and
   2157 			 * so we need to put the header fields back into
   2158 			 * network order!
   2159 			 * XXX This kind of sucks, but we don't expect
   2160 			 * XXX this to happen very often, so maybe it
   2161 			 * XXX doesn't matter so much.
   2162 			 */
   2163 			if (tiflags & TH_SYN &&
   2164 			    tp->t_state == TCPS_TIME_WAIT &&
   2165 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2166 				tp = tcp_close(tp);
   2167 				tcp_fields_to_net(th);
   2168 				goto findpcb;
   2169 			}
   2170 			/*
   2171 			 * If window is closed can only take segments at
   2172 			 * window edge, and have to drop data and PUSH from
   2173 			 * incoming segments.  Continue processing, but
   2174 			 * remember to ack.  Otherwise, drop segment
   2175 			 * and (if not RST) ack.
   2176 			 */
   2177 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2178 				tp->t_flags |= TF_ACKNOW;
   2179 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2180 			} else
   2181 				goto dropafterack;
   2182 		} else
   2183 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2184 		m_adj(m, -todrop);
   2185 		tlen -= todrop;
   2186 		tiflags &= ~(TH_PUSH|TH_FIN);
   2187 	}
   2188 
   2189 	/*
   2190 	 * If last ACK falls within this segment's sequence numbers,
   2191 	 *  record the timestamp.
   2192 	 * NOTE:
   2193 	 * 1) That the test incorporates suggestions from the latest
   2194 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2195 	 * 2) That updating only on newer timestamps interferes with
   2196 	 *    our earlier PAWS tests, so this check should be solely
   2197 	 *    predicated on the sequence space of this segment.
   2198 	 * 3) That we modify the segment boundary check to be
   2199 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2200 	 *    instead of RFC1323's
   2201 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2202 	 *    This modified check allows us to overcome RFC1323's
   2203 	 *    limitations as described in Stevens TCP/IP Illustrated
   2204 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2205 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2206 	 */
   2207 	if (opti.ts_present &&
   2208 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2209 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2210 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2211 		tp->ts_recent_age = tcp_now;
   2212 		tp->ts_recent = opti.ts_val;
   2213 	}
   2214 
   2215 	/*
   2216 	 * If the RST bit is set examine the state:
   2217 	 *    SYN_RECEIVED STATE:
   2218 	 *	If passive open, return to LISTEN state.
   2219 	 *	If active open, inform user that connection was refused.
   2220 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2221 	 *	Inform user that connection was reset, and close tcb.
   2222 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2223 	 *	Close the tcb.
   2224 	 */
   2225 	if (tiflags & TH_RST) {
   2226 		if (th->th_seq != tp->last_ack_sent)
   2227 			goto dropafterack_ratelim;
   2228 
   2229 		switch (tp->t_state) {
   2230 		case TCPS_SYN_RECEIVED:
   2231 			so->so_error = ECONNREFUSED;
   2232 			goto close;
   2233 
   2234 		case TCPS_ESTABLISHED:
   2235 		case TCPS_FIN_WAIT_1:
   2236 		case TCPS_FIN_WAIT_2:
   2237 		case TCPS_CLOSE_WAIT:
   2238 			so->so_error = ECONNRESET;
   2239 		close:
   2240 			tp->t_state = TCPS_CLOSED;
   2241 			TCP_STATINC(TCP_STAT_DROPS);
   2242 			tp = tcp_close(tp);
   2243 			goto drop;
   2244 
   2245 		case TCPS_CLOSING:
   2246 		case TCPS_LAST_ACK:
   2247 		case TCPS_TIME_WAIT:
   2248 			tp = tcp_close(tp);
   2249 			goto drop;
   2250 		}
   2251 	}
   2252 
   2253 	/*
   2254 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2255 	 * we must be in a synchronized state.  RFC791 states (under RST
   2256 	 * generation) that any unacceptable segment (an out-of-order SYN
   2257 	 * qualifies) received in a synchronized state must elicit only an
   2258 	 * empty acknowledgment segment ... and the connection remains in
   2259 	 * the same state.
   2260 	 */
   2261 	if (tiflags & TH_SYN) {
   2262 		if (tp->rcv_nxt == th->th_seq) {
   2263 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2264 			    TH_ACK);
   2265 			if (tcp_saveti)
   2266 				m_freem(tcp_saveti);
   2267 			return;
   2268 		}
   2269 
   2270 		goto dropafterack_ratelim;
   2271 	}
   2272 
   2273 	/*
   2274 	 * If the ACK bit is off we drop the segment and return.
   2275 	 */
   2276 	if ((tiflags & TH_ACK) == 0) {
   2277 		if (tp->t_flags & TF_ACKNOW)
   2278 			goto dropafterack;
   2279 		else
   2280 			goto drop;
   2281 	}
   2282 
   2283 	/*
   2284 	 * Ack processing.
   2285 	 */
   2286 	switch (tp->t_state) {
   2287 
   2288 	/*
   2289 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2290 	 * ESTABLISHED state and continue processing, otherwise
   2291 	 * send an RST.
   2292 	 */
   2293 	case TCPS_SYN_RECEIVED:
   2294 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2295 		    SEQ_GT(th->th_ack, tp->snd_max))
   2296 			goto dropwithreset;
   2297 		TCP_STATINC(TCP_STAT_CONNECTS);
   2298 		soisconnected(so);
   2299 		tcp_established(tp);
   2300 		/* Do window scaling? */
   2301 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2302 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2303 			tp->snd_scale = tp->requested_s_scale;
   2304 			tp->rcv_scale = tp->request_r_scale;
   2305 		}
   2306 		TCP_REASS_LOCK(tp);
   2307 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2308 		TCP_REASS_UNLOCK(tp);
   2309 		tp->snd_wl1 = th->th_seq - 1;
   2310 		/* fall into ... */
   2311 
   2312 	/*
   2313 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2314 	 * ACKs.  If the ack is in the range
   2315 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2316 	 * then advance tp->snd_una to th->th_ack and drop
   2317 	 * data from the retransmission queue.  If this ACK reflects
   2318 	 * more up to date window information we update our window information.
   2319 	 */
   2320 	case TCPS_ESTABLISHED:
   2321 	case TCPS_FIN_WAIT_1:
   2322 	case TCPS_FIN_WAIT_2:
   2323 	case TCPS_CLOSE_WAIT:
   2324 	case TCPS_CLOSING:
   2325 	case TCPS_LAST_ACK:
   2326 	case TCPS_TIME_WAIT:
   2327 
   2328 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2329 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2330 				TCP_STATINC(TCP_STAT_RCVDUPPACK);
   2331 				/*
   2332 				 * If we have outstanding data (other than
   2333 				 * a window probe), this is a completely
   2334 				 * duplicate ack (ie, window info didn't
   2335 				 * change), the ack is the biggest we've
   2336 				 * seen and we've seen exactly our rexmt
   2337 				 * threshhold of them, assume a packet
   2338 				 * has been dropped and retransmit it.
   2339 				 * Kludge snd_nxt & the congestion
   2340 				 * window so we send only this one
   2341 				 * packet.
   2342 				 */
   2343 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2344 				    th->th_ack != tp->snd_una)
   2345 					tp->t_dupacks = 0;
   2346 				else if (tp->t_partialacks < 0 &&
   2347 					 (++tp->t_dupacks == tcprexmtthresh ||
   2348 					 TCP_FACK_FASTRECOV(tp))) {
   2349 					/*
   2350 					 * Do the fast retransmit, and adjust
   2351 					 * congestion control paramenters.
   2352 					 */
   2353 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2354 						/* False fast retransmit */
   2355 						break;
   2356 					} else
   2357 						goto drop;
   2358 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2359 					tp->snd_cwnd += tp->t_segsz;
   2360 					(void) tcp_output(tp);
   2361 					goto drop;
   2362 				}
   2363 			} else {
   2364 				/*
   2365 				 * If the ack appears to be very old, only
   2366 				 * allow data that is in-sequence.  This
   2367 				 * makes it somewhat more difficult to insert
   2368 				 * forged data by guessing sequence numbers.
   2369 				 * Sent an ack to try to update the send
   2370 				 * sequence number on the other side.
   2371 				 */
   2372 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2373 				    SEQ_LT(th->th_ack,
   2374 				    tp->snd_una - tp->max_sndwnd))
   2375 					goto dropafterack;
   2376 			}
   2377 			break;
   2378 		}
   2379 		/*
   2380 		 * If the congestion window was inflated to account
   2381 		 * for the other side's cached packets, retract it.
   2382 		 */
   2383 		/* XXX: make SACK have his own congestion control
   2384 		 * struct -- rpaulo */
   2385 		if (TCP_SACK_ENABLED(tp))
   2386 			tcp_sack_newack(tp, th);
   2387 		else
   2388 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2389 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2390 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2391 			goto dropafterack;
   2392 		}
   2393 		acked = th->th_ack - tp->snd_una;
   2394 		tcps = TCP_STAT_GETREF();
   2395 		tcps[TCP_STAT_RCVACKPACK]++;
   2396 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2397 		TCP_STAT_PUTREF();
   2398 
   2399 		/*
   2400 		 * If we have a timestamp reply, update smoothed
   2401 		 * round trip time.  If no timestamp is present but
   2402 		 * transmit timer is running and timed sequence
   2403 		 * number was acked, update smoothed round trip time.
   2404 		 * Since we now have an rtt measurement, cancel the
   2405 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2406 		 * Recompute the initial retransmit timer.
   2407 		 */
   2408 		if (ts_rtt)
   2409 			tcp_xmit_timer(tp, ts_rtt);
   2410 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2411 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2412 
   2413 		/*
   2414 		 * If all outstanding data is acked, stop retransmit
   2415 		 * timer and remember to restart (more output or persist).
   2416 		 * If there is more data to be acked, restart retransmit
   2417 		 * timer, using current (possibly backed-off) value.
   2418 		 */
   2419 		if (th->th_ack == tp->snd_max) {
   2420 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2421 			needoutput = 1;
   2422 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2423 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2424 
   2425 		/*
   2426 		 * New data has been acked, adjust the congestion window.
   2427 		 */
   2428 		tp->t_congctl->newack(tp, th);
   2429 
   2430 		nd6_hint(tp);
   2431 		if (acked > so->so_snd.sb_cc) {
   2432 			tp->snd_wnd -= so->so_snd.sb_cc;
   2433 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2434 			ourfinisacked = 1;
   2435 		} else {
   2436 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2437 				tp->t_lastm = NULL;
   2438 			sbdrop(&so->so_snd, acked);
   2439 			tp->t_lastoff -= acked;
   2440 			tp->snd_wnd -= acked;
   2441 			ourfinisacked = 0;
   2442 		}
   2443 		sowwakeup(so);
   2444 
   2445 		icmp_check(tp, th, acked);
   2446 
   2447 		tp->snd_una = th->th_ack;
   2448 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2449 			tp->snd_fack = tp->snd_una;
   2450 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2451 			tp->snd_nxt = tp->snd_una;
   2452 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2453 			tp->snd_high = tp->snd_una;
   2454 
   2455 		switch (tp->t_state) {
   2456 
   2457 		/*
   2458 		 * In FIN_WAIT_1 STATE in addition to the processing
   2459 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2460 		 * then enter FIN_WAIT_2.
   2461 		 */
   2462 		case TCPS_FIN_WAIT_1:
   2463 			if (ourfinisacked) {
   2464 				/*
   2465 				 * If we can't receive any more
   2466 				 * data, then closing user can proceed.
   2467 				 * Starting the timer is contrary to the
   2468 				 * specification, but if we don't get a FIN
   2469 				 * we'll hang forever.
   2470 				 */
   2471 				if (so->so_state & SS_CANTRCVMORE) {
   2472 					soisdisconnected(so);
   2473 					if (tp->t_maxidle > 0)
   2474 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2475 						    tp->t_maxidle);
   2476 				}
   2477 				tp->t_state = TCPS_FIN_WAIT_2;
   2478 			}
   2479 			break;
   2480 
   2481 	 	/*
   2482 		 * In CLOSING STATE in addition to the processing for
   2483 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2484 		 * then enter the TIME-WAIT state, otherwise ignore
   2485 		 * the segment.
   2486 		 */
   2487 		case TCPS_CLOSING:
   2488 			if (ourfinisacked) {
   2489 				tp->t_state = TCPS_TIME_WAIT;
   2490 				tcp_canceltimers(tp);
   2491 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2492 				soisdisconnected(so);
   2493 			}
   2494 			break;
   2495 
   2496 		/*
   2497 		 * In LAST_ACK, we may still be waiting for data to drain
   2498 		 * and/or to be acked, as well as for the ack of our FIN.
   2499 		 * If our FIN is now acknowledged, delete the TCB,
   2500 		 * enter the closed state and return.
   2501 		 */
   2502 		case TCPS_LAST_ACK:
   2503 			if (ourfinisacked) {
   2504 				tp = tcp_close(tp);
   2505 				goto drop;
   2506 			}
   2507 			break;
   2508 
   2509 		/*
   2510 		 * In TIME_WAIT state the only thing that should arrive
   2511 		 * is a retransmission of the remote FIN.  Acknowledge
   2512 		 * it and restart the finack timer.
   2513 		 */
   2514 		case TCPS_TIME_WAIT:
   2515 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2516 			goto dropafterack;
   2517 		}
   2518 	}
   2519 
   2520 step6:
   2521 	/*
   2522 	 * Update window information.
   2523 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2524 	 */
   2525 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2526 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2527 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2528 		/* keep track of pure window updates */
   2529 		if (tlen == 0 &&
   2530 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2531 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2532 		tp->snd_wnd = tiwin;
   2533 		tp->snd_wl1 = th->th_seq;
   2534 		tp->snd_wl2 = th->th_ack;
   2535 		if (tp->snd_wnd > tp->max_sndwnd)
   2536 			tp->max_sndwnd = tp->snd_wnd;
   2537 		needoutput = 1;
   2538 	}
   2539 
   2540 	/*
   2541 	 * Process segments with URG.
   2542 	 */
   2543 	if ((tiflags & TH_URG) && th->th_urp &&
   2544 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2545 		/*
   2546 		 * This is a kludge, but if we receive and accept
   2547 		 * random urgent pointers, we'll crash in
   2548 		 * soreceive.  It's hard to imagine someone
   2549 		 * actually wanting to send this much urgent data.
   2550 		 */
   2551 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2552 			th->th_urp = 0;			/* XXX */
   2553 			tiflags &= ~TH_URG;		/* XXX */
   2554 			goto dodata;			/* XXX */
   2555 		}
   2556 		/*
   2557 		 * If this segment advances the known urgent pointer,
   2558 		 * then mark the data stream.  This should not happen
   2559 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2560 		 * a FIN has been received from the remote side.
   2561 		 * In these states we ignore the URG.
   2562 		 *
   2563 		 * According to RFC961 (Assigned Protocols),
   2564 		 * the urgent pointer points to the last octet
   2565 		 * of urgent data.  We continue, however,
   2566 		 * to consider it to indicate the first octet
   2567 		 * of data past the urgent section as the original
   2568 		 * spec states (in one of two places).
   2569 		 */
   2570 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2571 			tp->rcv_up = th->th_seq + th->th_urp;
   2572 			so->so_oobmark = so->so_rcv.sb_cc +
   2573 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2574 			if (so->so_oobmark == 0)
   2575 				so->so_state |= SS_RCVATMARK;
   2576 			sohasoutofband(so);
   2577 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2578 		}
   2579 		/*
   2580 		 * Remove out of band data so doesn't get presented to user.
   2581 		 * This can happen independent of advancing the URG pointer,
   2582 		 * but if two URG's are pending at once, some out-of-band
   2583 		 * data may creep in... ick.
   2584 		 */
   2585 		if (th->th_urp <= (u_int16_t) tlen
   2586 #ifdef SO_OOBINLINE
   2587 		     && (so->so_options & SO_OOBINLINE) == 0
   2588 #endif
   2589 		     )
   2590 			tcp_pulloutofband(so, th, m, hdroptlen);
   2591 	} else
   2592 		/*
   2593 		 * If no out of band data is expected,
   2594 		 * pull receive urgent pointer along
   2595 		 * with the receive window.
   2596 		 */
   2597 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2598 			tp->rcv_up = tp->rcv_nxt;
   2599 dodata:							/* XXX */
   2600 
   2601 	/*
   2602 	 * Process the segment text, merging it into the TCP sequencing queue,
   2603 	 * and arranging for acknowledgement of receipt if necessary.
   2604 	 * This process logically involves adjusting tp->rcv_wnd as data
   2605 	 * is presented to the user (this happens in tcp_usrreq.c,
   2606 	 * case PRU_RCVD).  If a FIN has already been received on this
   2607 	 * connection then we just ignore the text.
   2608 	 */
   2609 	if ((tlen || (tiflags & TH_FIN)) &&
   2610 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2611 		/*
   2612 		 * Insert segment ti into reassembly queue of tcp with
   2613 		 * control block tp.  Return TH_FIN if reassembly now includes
   2614 		 * a segment with FIN.  The macro form does the common case
   2615 		 * inline (segment is the next to be received on an
   2616 		 * established connection, and the queue is empty),
   2617 		 * avoiding linkage into and removal from the queue and
   2618 		 * repetition of various conversions.
   2619 		 * Set DELACK for segments received in order, but ack
   2620 		 * immediately when segments are out of order
   2621 		 * (so fast retransmit can work).
   2622 		 */
   2623 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2624 		TCP_REASS_LOCK(tp);
   2625 		if (th->th_seq == tp->rcv_nxt &&
   2626 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2627 		    tp->t_state == TCPS_ESTABLISHED) {
   2628 			tcp_setup_ack(tp, th);
   2629 			tp->rcv_nxt += tlen;
   2630 			tiflags = th->th_flags & TH_FIN;
   2631 			tcps = TCP_STAT_GETREF();
   2632 			tcps[TCP_STAT_RCVPACK]++;
   2633 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2634 			TCP_STAT_PUTREF();
   2635 			nd6_hint(tp);
   2636 			if (so->so_state & SS_CANTRCVMORE)
   2637 				m_freem(m);
   2638 			else {
   2639 				m_adj(m, hdroptlen);
   2640 				sbappendstream(&(so)->so_rcv, m);
   2641 			}
   2642 			sorwakeup(so);
   2643 		} else {
   2644 			m_adj(m, hdroptlen);
   2645 			tiflags = tcp_reass(tp, th, m, &tlen);
   2646 			tp->t_flags |= TF_ACKNOW;
   2647 		}
   2648 		TCP_REASS_UNLOCK(tp);
   2649 
   2650 		/*
   2651 		 * Note the amount of data that peer has sent into
   2652 		 * our window, in order to estimate the sender's
   2653 		 * buffer size.
   2654 		 */
   2655 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2656 	} else {
   2657 		m_freem(m);
   2658 		m = NULL;
   2659 		tiflags &= ~TH_FIN;
   2660 	}
   2661 
   2662 	/*
   2663 	 * If FIN is received ACK the FIN and let the user know
   2664 	 * that the connection is closing.  Ignore a FIN received before
   2665 	 * the connection is fully established.
   2666 	 */
   2667 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2668 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2669 			socantrcvmore(so);
   2670 			tp->t_flags |= TF_ACKNOW;
   2671 			tp->rcv_nxt++;
   2672 		}
   2673 		switch (tp->t_state) {
   2674 
   2675 	 	/*
   2676 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2677 		 */
   2678 		case TCPS_ESTABLISHED:
   2679 			tp->t_state = TCPS_CLOSE_WAIT;
   2680 			break;
   2681 
   2682 	 	/*
   2683 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2684 		 * enter the CLOSING state.
   2685 		 */
   2686 		case TCPS_FIN_WAIT_1:
   2687 			tp->t_state = TCPS_CLOSING;
   2688 			break;
   2689 
   2690 	 	/*
   2691 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2692 		 * starting the time-wait timer, turning off the other
   2693 		 * standard timers.
   2694 		 */
   2695 		case TCPS_FIN_WAIT_2:
   2696 			tp->t_state = TCPS_TIME_WAIT;
   2697 			tcp_canceltimers(tp);
   2698 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2699 			soisdisconnected(so);
   2700 			break;
   2701 
   2702 		/*
   2703 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2704 		 */
   2705 		case TCPS_TIME_WAIT:
   2706 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
   2707 			break;
   2708 		}
   2709 	}
   2710 #ifdef TCP_DEBUG
   2711 	if (so->so_options & SO_DEBUG)
   2712 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2713 #endif
   2714 
   2715 	/*
   2716 	 * Return any desired output.
   2717 	 */
   2718 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2719 		(void) tcp_output(tp);
   2720 	}
   2721 	if (tcp_saveti)
   2722 		m_freem(tcp_saveti);
   2723 	return;
   2724 
   2725 badsyn:
   2726 	/*
   2727 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2728 	 */
   2729 	TCP_STATINC(TCP_STAT_BADSYN);
   2730 	tp = NULL;
   2731 	goto dropwithreset;
   2732 
   2733 dropafterack:
   2734 	/*
   2735 	 * Generate an ACK dropping incoming segment if it occupies
   2736 	 * sequence space, where the ACK reflects our state.
   2737 	 */
   2738 	if (tiflags & TH_RST)
   2739 		goto drop;
   2740 	goto dropafterack2;
   2741 
   2742 dropafterack_ratelim:
   2743 	/*
   2744 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2745 	 */
   2746 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2747 	    tcp_ackdrop_ppslim) == 0) {
   2748 		/* XXX stat */
   2749 		goto drop;
   2750 	}
   2751 	/* ...fall into dropafterack2... */
   2752 
   2753 dropafterack2:
   2754 	m_freem(m);
   2755 	tp->t_flags |= TF_ACKNOW;
   2756 	(void) tcp_output(tp);
   2757 	if (tcp_saveti)
   2758 		m_freem(tcp_saveti);
   2759 	return;
   2760 
   2761 dropwithreset_ratelim:
   2762 	/*
   2763 	 * We may want to rate-limit RSTs in certain situations,
   2764 	 * particularly if we are sending an RST in response to
   2765 	 * an attempt to connect to or otherwise communicate with
   2766 	 * a port for which we have no socket.
   2767 	 */
   2768 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2769 	    tcp_rst_ppslim) == 0) {
   2770 		/* XXX stat */
   2771 		goto drop;
   2772 	}
   2773 	/* ...fall into dropwithreset... */
   2774 
   2775 dropwithreset:
   2776 	/*
   2777 	 * Generate a RST, dropping incoming segment.
   2778 	 * Make ACK acceptable to originator of segment.
   2779 	 */
   2780 	if (tiflags & TH_RST)
   2781 		goto drop;
   2782 
   2783 	switch (af) {
   2784 #ifdef INET6
   2785 	case AF_INET6:
   2786 		/* For following calls to tcp_respond */
   2787 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2788 			goto drop;
   2789 		break;
   2790 #endif /* INET6 */
   2791 	case AF_INET:
   2792 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2793 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2794 			goto drop;
   2795 	}
   2796 
   2797 	if (tiflags & TH_ACK)
   2798 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2799 	else {
   2800 		if (tiflags & TH_SYN)
   2801 			tlen++;
   2802 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2803 		    TH_RST|TH_ACK);
   2804 	}
   2805 	if (tcp_saveti)
   2806 		m_freem(tcp_saveti);
   2807 	return;
   2808 
   2809 badcsum:
   2810 drop:
   2811 	/*
   2812 	 * Drop space held by incoming segment and return.
   2813 	 */
   2814 	if (tp) {
   2815 		if (tp->t_inpcb)
   2816 			so = tp->t_inpcb->inp_socket;
   2817 #ifdef INET6
   2818 		else if (tp->t_in6pcb)
   2819 			so = tp->t_in6pcb->in6p_socket;
   2820 #endif
   2821 		else
   2822 			so = NULL;
   2823 #ifdef TCP_DEBUG
   2824 		if (so && (so->so_options & SO_DEBUG) != 0)
   2825 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2826 #endif
   2827 	}
   2828 	if (tcp_saveti)
   2829 		m_freem(tcp_saveti);
   2830 	m_freem(m);
   2831 	return;
   2832 }
   2833 
   2834 #ifdef TCP_SIGNATURE
   2835 int
   2836 tcp_signature_apply(void *fstate, void *data, u_int len)
   2837 {
   2838 
   2839 	MD5Update(fstate, (u_char *)data, len);
   2840 	return (0);
   2841 }
   2842 
   2843 struct secasvar *
   2844 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   2845 {
   2846 	struct secasvar *sav;
   2847 #ifdef FAST_IPSEC
   2848 	union sockaddr_union dst;
   2849 #endif
   2850 	struct ip *ip;
   2851 	struct ip6_hdr *ip6;
   2852 
   2853 	ip = mtod(m, struct ip *);
   2854 	switch (ip->ip_v) {
   2855 	case 4:
   2856 		ip = mtod(m, struct ip *);
   2857 		ip6 = NULL;
   2858 		break;
   2859 	case 6:
   2860 		ip = NULL;
   2861 		ip6 = mtod(m, struct ip6_hdr *);
   2862 		break;
   2863 	default:
   2864 		return (NULL);
   2865 	}
   2866 
   2867 #ifdef FAST_IPSEC
   2868 	/* Extract the destination from the IP header in the mbuf. */
   2869 	bzero(&dst, sizeof(union sockaddr_union));
   2870 	if (ip !=NULL) {
   2871 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   2872 		dst.sa.sa_family = AF_INET;
   2873 		dst.sin.sin_addr = ip->ip_dst;
   2874 	} else {
   2875 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   2876 		dst.sa.sa_family = AF_INET6;
   2877 		dst.sin6.sin6_addr = ip6->ip6_dst;
   2878 	}
   2879 
   2880 	/*
   2881 	 * Look up an SADB entry which matches the address of the peer.
   2882 	 */
   2883 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   2884 #else
   2885 	if (ip)
   2886 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
   2887 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   2888 		    htonl(TCP_SIG_SPI), 0, 0);
   2889 	else
   2890 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   2891 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   2892 		    htonl(TCP_SIG_SPI), 0, 0);
   2893 #endif
   2894 
   2895 	return (sav);	/* freesav must be performed by caller */
   2896 }
   2897 
   2898 int
   2899 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   2900     struct secasvar *sav, char *sig)
   2901 {
   2902 	MD5_CTX ctx;
   2903 	struct ip *ip;
   2904 	struct ipovly *ipovly;
   2905 	struct ip6_hdr *ip6;
   2906 	struct ippseudo ippseudo;
   2907 	struct ip6_hdr_pseudo ip6pseudo;
   2908 	struct tcphdr th0;
   2909 	int l, tcphdrlen;
   2910 
   2911 	if (sav == NULL)
   2912 		return (-1);
   2913 
   2914 	tcphdrlen = th->th_off * 4;
   2915 
   2916 	switch (mtod(m, struct ip *)->ip_v) {
   2917 	case 4:
   2918 		ip = mtod(m, struct ip *);
   2919 		ip6 = NULL;
   2920 		break;
   2921 	case 6:
   2922 		ip = NULL;
   2923 		ip6 = mtod(m, struct ip6_hdr *);
   2924 		break;
   2925 	default:
   2926 		return (-1);
   2927 	}
   2928 
   2929 	MD5Init(&ctx);
   2930 
   2931 	if (ip) {
   2932 		memset(&ippseudo, 0, sizeof(ippseudo));
   2933 		ipovly = (struct ipovly *)ip;
   2934 		ippseudo.ippseudo_src = ipovly->ih_src;
   2935 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   2936 		ippseudo.ippseudo_pad = 0;
   2937 		ippseudo.ippseudo_p = IPPROTO_TCP;
   2938 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   2939 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   2940 	} else {
   2941 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   2942 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   2943 		in6_clearscope(&ip6pseudo.ip6ph_src);
   2944 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   2945 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   2946 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   2947 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   2948 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   2949 	}
   2950 
   2951 	th0 = *th;
   2952 	th0.th_sum = 0;
   2953 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   2954 
   2955 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   2956 	if (l > 0)
   2957 		m_apply(m, thoff + tcphdrlen,
   2958 		    m->m_pkthdr.len - thoff - tcphdrlen,
   2959 		    tcp_signature_apply, &ctx);
   2960 
   2961 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   2962 	MD5Final(sig, &ctx);
   2963 
   2964 	return (0);
   2965 }
   2966 #endif
   2967 
   2968 static int
   2969 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   2970     struct tcphdr *th,
   2971     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   2972 {
   2973 	u_int16_t mss;
   2974 	int opt, optlen = 0;
   2975 #ifdef TCP_SIGNATURE
   2976 	void *sigp = NULL;
   2977 	char sigbuf[TCP_SIGLEN];
   2978 	struct secasvar *sav = NULL;
   2979 #endif
   2980 
   2981 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   2982 		opt = cp[0];
   2983 		if (opt == TCPOPT_EOL)
   2984 			break;
   2985 		if (opt == TCPOPT_NOP)
   2986 			optlen = 1;
   2987 		else {
   2988 			if (cnt < 2)
   2989 				break;
   2990 			optlen = cp[1];
   2991 			if (optlen < 2 || optlen > cnt)
   2992 				break;
   2993 		}
   2994 		switch (opt) {
   2995 
   2996 		default:
   2997 			continue;
   2998 
   2999 		case TCPOPT_MAXSEG:
   3000 			if (optlen != TCPOLEN_MAXSEG)
   3001 				continue;
   3002 			if (!(th->th_flags & TH_SYN))
   3003 				continue;
   3004 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3005 				continue;
   3006 			bcopy(cp + 2, &mss, sizeof(mss));
   3007 			oi->maxseg = ntohs(mss);
   3008 			break;
   3009 
   3010 		case TCPOPT_WINDOW:
   3011 			if (optlen != TCPOLEN_WINDOW)
   3012 				continue;
   3013 			if (!(th->th_flags & TH_SYN))
   3014 				continue;
   3015 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3016 				continue;
   3017 			tp->t_flags |= TF_RCVD_SCALE;
   3018 			tp->requested_s_scale = cp[2];
   3019 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3020 #if 0	/*XXX*/
   3021 				char *p;
   3022 
   3023 				if (ip)
   3024 					p = ntohl(ip->ip_src);
   3025 #ifdef INET6
   3026 				else if (ip6)
   3027 					p = ip6_sprintf(&ip6->ip6_src);
   3028 #endif
   3029 				else
   3030 					p = "(unknown)";
   3031 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3032 				    "assuming %d\n",
   3033 				    tp->requested_s_scale, p,
   3034 				    TCP_MAX_WINSHIFT);
   3035 #else
   3036 				log(LOG_ERR, "TCP: invalid wscale %d, "
   3037 				    "assuming %d\n",
   3038 				    tp->requested_s_scale,
   3039 				    TCP_MAX_WINSHIFT);
   3040 #endif
   3041 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3042 			}
   3043 			break;
   3044 
   3045 		case TCPOPT_TIMESTAMP:
   3046 			if (optlen != TCPOLEN_TIMESTAMP)
   3047 				continue;
   3048 			oi->ts_present = 1;
   3049 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3050 			NTOHL(oi->ts_val);
   3051 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3052 			NTOHL(oi->ts_ecr);
   3053 
   3054 			if (!(th->th_flags & TH_SYN))
   3055 				continue;
   3056 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3057 				continue;
   3058 			/*
   3059 			 * A timestamp received in a SYN makes
   3060 			 * it ok to send timestamp requests and replies.
   3061 			 */
   3062 			tp->t_flags |= TF_RCVD_TSTMP;
   3063 			tp->ts_recent = oi->ts_val;
   3064 			tp->ts_recent_age = tcp_now;
   3065                         break;
   3066 
   3067 		case TCPOPT_SACK_PERMITTED:
   3068 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3069 				continue;
   3070 			if (!(th->th_flags & TH_SYN))
   3071 				continue;
   3072 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3073 				continue;
   3074 			if (tcp_do_sack) {
   3075 				tp->t_flags |= TF_SACK_PERMIT;
   3076 				tp->t_flags |= TF_WILL_SACK;
   3077 			}
   3078 			break;
   3079 
   3080 		case TCPOPT_SACK:
   3081 			tcp_sack_option(tp, th, cp, optlen);
   3082 			break;
   3083 #ifdef TCP_SIGNATURE
   3084 		case TCPOPT_SIGNATURE:
   3085 			if (optlen != TCPOLEN_SIGNATURE)
   3086 				continue;
   3087 			if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
   3088 				return (-1);
   3089 
   3090 			sigp = sigbuf;
   3091 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3092 			tp->t_flags |= TF_SIGNATURE;
   3093 			break;
   3094 #endif
   3095 		}
   3096 	}
   3097 
   3098 #ifdef TCP_SIGNATURE
   3099 	if (tp->t_flags & TF_SIGNATURE) {
   3100 
   3101 		sav = tcp_signature_getsav(m, th);
   3102 
   3103 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3104 			return (-1);
   3105 	}
   3106 
   3107 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   3108 		if (sav == NULL)
   3109 			return (-1);
   3110 #ifdef FAST_IPSEC
   3111 		KEY_FREESAV(&sav);
   3112 #else
   3113 		key_freesav(sav);
   3114 #endif
   3115 		return (-1);
   3116 	}
   3117 
   3118 	if (sigp) {
   3119 		char sig[TCP_SIGLEN];
   3120 
   3121 		tcp_fields_to_net(th);
   3122 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3123 			tcp_fields_to_host(th);
   3124 			if (sav == NULL)
   3125 				return (-1);
   3126 #ifdef FAST_IPSEC
   3127 			KEY_FREESAV(&sav);
   3128 #else
   3129 			key_freesav(sav);
   3130 #endif
   3131 			return (-1);
   3132 		}
   3133 		tcp_fields_to_host(th);
   3134 
   3135 		if (bcmp(sig, sigp, TCP_SIGLEN)) {
   3136 			TCP_STATINC(TCP_STAT_BADSIG);
   3137 			if (sav == NULL)
   3138 				return (-1);
   3139 #ifdef FAST_IPSEC
   3140 			KEY_FREESAV(&sav);
   3141 #else
   3142 			key_freesav(sav);
   3143 #endif
   3144 			return (-1);
   3145 		} else
   3146 			TCP_STATINC(TCP_STAT_GOODSIG);
   3147 
   3148 		key_sa_recordxfer(sav, m);
   3149 #ifdef FAST_IPSEC
   3150 		KEY_FREESAV(&sav);
   3151 #else
   3152 		key_freesav(sav);
   3153 #endif
   3154 	}
   3155 #endif
   3156 
   3157 	return (0);
   3158 }
   3159 
   3160 /*
   3161  * Pull out of band byte out of a segment so
   3162  * it doesn't appear in the user's data queue.
   3163  * It is still reflected in the segment length for
   3164  * sequencing purposes.
   3165  */
   3166 void
   3167 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3168     struct mbuf *m, int off)
   3169 {
   3170 	int cnt = off + th->th_urp - 1;
   3171 
   3172 	while (cnt >= 0) {
   3173 		if (m->m_len > cnt) {
   3174 			char *cp = mtod(m, char *) + cnt;
   3175 			struct tcpcb *tp = sototcpcb(so);
   3176 
   3177 			tp->t_iobc = *cp;
   3178 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3179 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3180 			m->m_len--;
   3181 			return;
   3182 		}
   3183 		cnt -= m->m_len;
   3184 		m = m->m_next;
   3185 		if (m == 0)
   3186 			break;
   3187 	}
   3188 	panic("tcp_pulloutofband");
   3189 }
   3190 
   3191 /*
   3192  * Collect new round-trip time estimate
   3193  * and update averages and current timeout.
   3194  */
   3195 void
   3196 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3197 {
   3198 	int32_t delta;
   3199 
   3200 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3201 	if (tp->t_srtt != 0) {
   3202 		/*
   3203 		 * srtt is stored as fixed point with 3 bits after the
   3204 		 * binary point (i.e., scaled by 8).  The following magic
   3205 		 * is equivalent to the smoothing algorithm in rfc793 with
   3206 		 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
   3207 		 * point).  Adjust rtt to origin 0.
   3208 		 */
   3209 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3210 		if ((tp->t_srtt += delta) <= 0)
   3211 			tp->t_srtt = 1 << 2;
   3212 		/*
   3213 		 * We accumulate a smoothed rtt variance (actually, a
   3214 		 * smoothed mean difference), then set the retransmit
   3215 		 * timer to smoothed rtt + 4 times the smoothed variance.
   3216 		 * rttvar is stored as fixed point with 2 bits after the
   3217 		 * binary point (scaled by 4).  The following is
   3218 		 * equivalent to rfc793 smoothing with an alpha of .75
   3219 		 * (rttvar = rttvar*3/4 + |delta| / 4).  This replaces
   3220 		 * rfc793's wired-in beta.
   3221 		 */
   3222 		if (delta < 0)
   3223 			delta = -delta;
   3224 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3225 		if ((tp->t_rttvar += delta) <= 0)
   3226 			tp->t_rttvar = 1 << 2;
   3227 	} else {
   3228 		/*
   3229 		 * No rtt measurement yet - use the unsmoothed rtt.
   3230 		 * Set the variance to half the rtt (so our first
   3231 		 * retransmit happens at 3*rtt).
   3232 		 */
   3233 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3234 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3235 	}
   3236 	tp->t_rtttime = 0;
   3237 	tp->t_rxtshift = 0;
   3238 
   3239 	/*
   3240 	 * the retransmit should happen at rtt + 4 * rttvar.
   3241 	 * Because of the way we do the smoothing, srtt and rttvar
   3242 	 * will each average +1/2 tick of bias.  When we compute
   3243 	 * the retransmit timer, we want 1/2 tick of rounding and
   3244 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3245 	 * firing of the timer.  The bias will give us exactly the
   3246 	 * 1.5 tick we need.  But, because the bias is
   3247 	 * statistical, we have to test that we don't drop below
   3248 	 * the minimum feasible timer (which is 2 ticks).
   3249 	 */
   3250 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3251 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3252 
   3253 	/*
   3254 	 * We received an ack for a packet that wasn't retransmitted;
   3255 	 * it is probably safe to discard any error indications we've
   3256 	 * received recently.  This isn't quite right, but close enough
   3257 	 * for now (a route might have failed after we sent a segment,
   3258 	 * and the return path might not be symmetrical).
   3259 	 */
   3260 	tp->t_softerror = 0;
   3261 }
   3262 
   3263 
   3264 /*
   3265  * TCP compressed state engine.  Currently used to hold compressed
   3266  * state for SYN_RECEIVED.
   3267  */
   3268 
   3269 u_long	syn_cache_count;
   3270 u_int32_t syn_hash1, syn_hash2;
   3271 
   3272 #define SYN_HASH(sa, sp, dp) \
   3273 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3274 				     ((u_int32_t)(sp)))^syn_hash2)))
   3275 #ifndef INET6
   3276 #define	SYN_HASHALL(hash, src, dst) \
   3277 do {									\
   3278 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3279 		((const struct sockaddr_in *)(src))->sin_port,		\
   3280 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3281 } while (/*CONSTCOND*/ 0)
   3282 #else
   3283 #define SYN_HASH6(sa, sp, dp) \
   3284 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3285 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3286 	 & 0x7fffffff)
   3287 
   3288 #define SYN_HASHALL(hash, src, dst) \
   3289 do {									\
   3290 	switch ((src)->sa_family) {					\
   3291 	case AF_INET:							\
   3292 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3293 			((const struct sockaddr_in *)(src))->sin_port,	\
   3294 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3295 		break;							\
   3296 	case AF_INET6:							\
   3297 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3298 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3299 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3300 		break;							\
   3301 	default:							\
   3302 		hash = 0;						\
   3303 	}								\
   3304 } while (/*CONSTCOND*/0)
   3305 #endif /* INET6 */
   3306 
   3307 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
   3308     IPL_SOFTNET);
   3309 
   3310 /*
   3311  * We don't estimate RTT with SYNs, so each packet starts with the default
   3312  * RTT and each timer step has a fixed timeout value.
   3313  */
   3314 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3315 do {									\
   3316 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3317 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3318 	    TCPTV_REXMTMAX);						\
   3319 	callout_reset(&(sc)->sc_timer,					\
   3320 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3321 } while (/*CONSTCOND*/0)
   3322 
   3323 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3324 
   3325 static inline void
   3326 syn_cache_rm(struct syn_cache *sc)
   3327 {
   3328 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3329 	    sc, sc_bucketq);
   3330 	sc->sc_tp = NULL;
   3331 	LIST_REMOVE(sc, sc_tpq);
   3332 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3333 	callout_stop(&sc->sc_timer);
   3334 	syn_cache_count--;
   3335 }
   3336 
   3337 static inline void
   3338 syn_cache_put(struct syn_cache *sc)
   3339 {
   3340 	if (sc->sc_ipopts)
   3341 		(void) m_free(sc->sc_ipopts);
   3342 	rtcache_free(&sc->sc_route);
   3343 	if (callout_invoking(&sc->sc_timer))
   3344 		sc->sc_flags |= SCF_DEAD;
   3345 	else {
   3346 		callout_destroy(&sc->sc_timer);
   3347 		pool_put(&syn_cache_pool, sc);
   3348 	}
   3349 }
   3350 
   3351 void
   3352 syn_cache_init(void)
   3353 {
   3354 	int i;
   3355 
   3356 	/* Initialize the hash buckets. */
   3357 	for (i = 0; i < tcp_syn_cache_size; i++)
   3358 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3359 }
   3360 
   3361 void
   3362 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3363 {
   3364 	struct syn_cache_head *scp;
   3365 	struct syn_cache *sc2;
   3366 	int s;
   3367 
   3368 	/*
   3369 	 * If there are no entries in the hash table, reinitialize
   3370 	 * the hash secrets.
   3371 	 */
   3372 	if (syn_cache_count == 0) {
   3373 		syn_hash1 = arc4random();
   3374 		syn_hash2 = arc4random();
   3375 	}
   3376 
   3377 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3378 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3379 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3380 
   3381 	/*
   3382 	 * Make sure that we don't overflow the per-bucket
   3383 	 * limit or the total cache size limit.
   3384 	 */
   3385 	s = splsoftnet();
   3386 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3387 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3388 		/*
   3389 		 * The bucket is full.  Toss the oldest element in the
   3390 		 * bucket.  This will be the first entry in the bucket.
   3391 		 */
   3392 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3393 #ifdef DIAGNOSTIC
   3394 		/*
   3395 		 * This should never happen; we should always find an
   3396 		 * entry in our bucket.
   3397 		 */
   3398 		if (sc2 == NULL)
   3399 			panic("syn_cache_insert: bucketoverflow: impossible");
   3400 #endif
   3401 		syn_cache_rm(sc2);
   3402 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3403 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3404 		struct syn_cache_head *scp2, *sce;
   3405 
   3406 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3407 		/*
   3408 		 * The cache is full.  Toss the oldest entry in the
   3409 		 * first non-empty bucket we can find.
   3410 		 *
   3411 		 * XXX We would really like to toss the oldest
   3412 		 * entry in the cache, but we hope that this
   3413 		 * condition doesn't happen very often.
   3414 		 */
   3415 		scp2 = scp;
   3416 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3417 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3418 			for (++scp2; scp2 != scp; scp2++) {
   3419 				if (scp2 >= sce)
   3420 					scp2 = &tcp_syn_cache[0];
   3421 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3422 					break;
   3423 			}
   3424 #ifdef DIAGNOSTIC
   3425 			/*
   3426 			 * This should never happen; we should always find a
   3427 			 * non-empty bucket.
   3428 			 */
   3429 			if (scp2 == scp)
   3430 				panic("syn_cache_insert: cacheoverflow: "
   3431 				    "impossible");
   3432 #endif
   3433 		}
   3434 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3435 		syn_cache_rm(sc2);
   3436 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3437 	}
   3438 
   3439 	/*
   3440 	 * Initialize the entry's timer.
   3441 	 */
   3442 	sc->sc_rxttot = 0;
   3443 	sc->sc_rxtshift = 0;
   3444 	SYN_CACHE_TIMER_ARM(sc);
   3445 
   3446 	/* Link it from tcpcb entry */
   3447 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3448 
   3449 	/* Put it into the bucket. */
   3450 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3451 	scp->sch_length++;
   3452 	syn_cache_count++;
   3453 
   3454 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3455 	splx(s);
   3456 }
   3457 
   3458 /*
   3459  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3460  * If we have retransmitted an entry the maximum number of times, expire
   3461  * that entry.
   3462  */
   3463 void
   3464 syn_cache_timer(void *arg)
   3465 {
   3466 	struct syn_cache *sc = arg;
   3467 
   3468 	mutex_enter(softnet_lock);
   3469 	KERNEL_LOCK(1, NULL);
   3470 	callout_ack(&sc->sc_timer);
   3471 
   3472 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3473 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3474 		callout_destroy(&sc->sc_timer);
   3475 		pool_put(&syn_cache_pool, sc);
   3476 		KERNEL_UNLOCK_ONE(NULL);
   3477 		mutex_exit(softnet_lock);
   3478 		return;
   3479 	}
   3480 
   3481 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3482 		/* Drop it -- too many retransmissions. */
   3483 		goto dropit;
   3484 	}
   3485 
   3486 	/*
   3487 	 * Compute the total amount of time this entry has
   3488 	 * been on a queue.  If this entry has been on longer
   3489 	 * than the keep alive timer would allow, expire it.
   3490 	 */
   3491 	sc->sc_rxttot += sc->sc_rxtcur;
   3492 	if (sc->sc_rxttot >= tcp_keepinit)
   3493 		goto dropit;
   3494 
   3495 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3496 	(void) syn_cache_respond(sc, NULL);
   3497 
   3498 	/* Advance the timer back-off. */
   3499 	sc->sc_rxtshift++;
   3500 	SYN_CACHE_TIMER_ARM(sc);
   3501 
   3502 	KERNEL_UNLOCK_ONE(NULL);
   3503 	mutex_exit(softnet_lock);
   3504 	return;
   3505 
   3506  dropit:
   3507 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3508 	syn_cache_rm(sc);
   3509 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   3510 	KERNEL_UNLOCK_ONE(NULL);
   3511 	mutex_exit(softnet_lock);
   3512 }
   3513 
   3514 /*
   3515  * Remove syn cache created by the specified tcb entry,
   3516  * because this does not make sense to keep them
   3517  * (if there's no tcb entry, syn cache entry will never be used)
   3518  */
   3519 void
   3520 syn_cache_cleanup(struct tcpcb *tp)
   3521 {
   3522 	struct syn_cache *sc, *nsc;
   3523 	int s;
   3524 
   3525 	s = splsoftnet();
   3526 
   3527 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3528 		nsc = LIST_NEXT(sc, sc_tpq);
   3529 
   3530 #ifdef DIAGNOSTIC
   3531 		if (sc->sc_tp != tp)
   3532 			panic("invalid sc_tp in syn_cache_cleanup");
   3533 #endif
   3534 		syn_cache_rm(sc);
   3535 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3536 	}
   3537 	/* just for safety */
   3538 	LIST_INIT(&tp->t_sc);
   3539 
   3540 	splx(s);
   3541 }
   3542 
   3543 /*
   3544  * Find an entry in the syn cache.
   3545  */
   3546 struct syn_cache *
   3547 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3548     struct syn_cache_head **headp)
   3549 {
   3550 	struct syn_cache *sc;
   3551 	struct syn_cache_head *scp;
   3552 	u_int32_t hash;
   3553 	int s;
   3554 
   3555 	SYN_HASHALL(hash, src, dst);
   3556 
   3557 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3558 	*headp = scp;
   3559 	s = splsoftnet();
   3560 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3561 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3562 		if (sc->sc_hash != hash)
   3563 			continue;
   3564 		if (!bcmp(&sc->sc_src, src, src->sa_len) &&
   3565 		    !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3566 			splx(s);
   3567 			return (sc);
   3568 		}
   3569 	}
   3570 	splx(s);
   3571 	return (NULL);
   3572 }
   3573 
   3574 /*
   3575  * This function gets called when we receive an ACK for a
   3576  * socket in the LISTEN state.  We look up the connection
   3577  * in the syn cache, and if its there, we pull it out of
   3578  * the cache and turn it into a full-blown connection in
   3579  * the SYN-RECEIVED state.
   3580  *
   3581  * The return values may not be immediately obvious, and their effects
   3582  * can be subtle, so here they are:
   3583  *
   3584  *	NULL	SYN was not found in cache; caller should drop the
   3585  *		packet and send an RST.
   3586  *
   3587  *	-1	We were unable to create the new connection, and are
   3588  *		aborting it.  An ACK,RST is being sent to the peer
   3589  *		(unless we got screwey sequence numbners; see below),
   3590  *		because the 3-way handshake has been completed.  Caller
   3591  *		should not free the mbuf, since we may be using it.  If
   3592  *		we are not, we will free it.
   3593  *
   3594  *	Otherwise, the return value is a pointer to the new socket
   3595  *	associated with the connection.
   3596  */
   3597 struct socket *
   3598 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3599     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3600     struct socket *so, struct mbuf *m)
   3601 {
   3602 	struct syn_cache *sc;
   3603 	struct syn_cache_head *scp;
   3604 	struct inpcb *inp = NULL;
   3605 #ifdef INET6
   3606 	struct in6pcb *in6p = NULL;
   3607 #endif
   3608 	struct tcpcb *tp = 0;
   3609 	struct mbuf *am;
   3610 	int s;
   3611 	struct socket *oso;
   3612 
   3613 	s = splsoftnet();
   3614 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3615 		splx(s);
   3616 		return (NULL);
   3617 	}
   3618 
   3619 	/*
   3620 	 * Verify the sequence and ack numbers.  Try getting the correct
   3621 	 * response again.
   3622 	 */
   3623 	if ((th->th_ack != sc->sc_iss + 1) ||
   3624 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3625 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3626 		(void) syn_cache_respond(sc, m);
   3627 		splx(s);
   3628 		return ((struct socket *)(-1));
   3629 	}
   3630 
   3631 	/* Remove this cache entry */
   3632 	syn_cache_rm(sc);
   3633 	splx(s);
   3634 
   3635 	/*
   3636 	 * Ok, create the full blown connection, and set things up
   3637 	 * as they would have been set up if we had created the
   3638 	 * connection when the SYN arrived.  If we can't create
   3639 	 * the connection, abort it.
   3640 	 */
   3641 	/*
   3642 	 * inp still has the OLD in_pcb stuff, set the
   3643 	 * v6-related flags on the new guy, too.   This is
   3644 	 * done particularly for the case where an AF_INET6
   3645 	 * socket is bound only to a port, and a v4 connection
   3646 	 * comes in on that port.
   3647 	 * we also copy the flowinfo from the original pcb
   3648 	 * to the new one.
   3649 	 */
   3650 	oso = so;
   3651 	so = sonewconn(so, SS_ISCONNECTED);
   3652 	if (so == NULL)
   3653 		goto resetandabort;
   3654 
   3655 	switch (so->so_proto->pr_domain->dom_family) {
   3656 #ifdef INET
   3657 	case AF_INET:
   3658 		inp = sotoinpcb(so);
   3659 		break;
   3660 #endif
   3661 #ifdef INET6
   3662 	case AF_INET6:
   3663 		in6p = sotoin6pcb(so);
   3664 		break;
   3665 #endif
   3666 	}
   3667 	switch (src->sa_family) {
   3668 #ifdef INET
   3669 	case AF_INET:
   3670 		if (inp) {
   3671 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3672 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3673 			inp->inp_options = ip_srcroute();
   3674 			in_pcbstate(inp, INP_BOUND);
   3675 			if (inp->inp_options == NULL) {
   3676 				inp->inp_options = sc->sc_ipopts;
   3677 				sc->sc_ipopts = NULL;
   3678 			}
   3679 		}
   3680 #ifdef INET6
   3681 		else if (in6p) {
   3682 			/* IPv4 packet to AF_INET6 socket */
   3683 			bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
   3684 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3685 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3686 				&in6p->in6p_laddr.s6_addr32[3],
   3687 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3688 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3689 			in6totcpcb(in6p)->t_family = AF_INET;
   3690 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3691 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3692 			else
   3693 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3694 			in6_pcbstate(in6p, IN6P_BOUND);
   3695 		}
   3696 #endif
   3697 		break;
   3698 #endif
   3699 #ifdef INET6
   3700 	case AF_INET6:
   3701 		if (in6p) {
   3702 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3703 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3704 			in6_pcbstate(in6p, IN6P_BOUND);
   3705 		}
   3706 		break;
   3707 #endif
   3708 	}
   3709 #ifdef INET6
   3710 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3711 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3712 		/* inherit socket options from the listening socket */
   3713 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3714 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3715 			m_freem(in6p->in6p_options);
   3716 			in6p->in6p_options = 0;
   3717 		}
   3718 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3719 			mtod(m, struct ip6_hdr *), m);
   3720 	}
   3721 #endif
   3722 
   3723 #if defined(IPSEC) || defined(FAST_IPSEC)
   3724 	/*
   3725 	 * we make a copy of policy, instead of sharing the policy,
   3726 	 * for better behavior in terms of SA lookup and dead SA removal.
   3727 	 */
   3728 	if (inp) {
   3729 		/* copy old policy into new socket's */
   3730 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3731 			printf("tcp_input: could not copy policy\n");
   3732 	}
   3733 #ifdef INET6
   3734 	else if (in6p) {
   3735 		/* copy old policy into new socket's */
   3736 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3737 		    in6p->in6p_sp))
   3738 			printf("tcp_input: could not copy policy\n");
   3739 	}
   3740 #endif
   3741 #endif
   3742 
   3743 	/*
   3744 	 * Give the new socket our cached route reference.
   3745 	 */
   3746 	if (inp) {
   3747 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   3748 		rtcache_free(&sc->sc_route);
   3749 	}
   3750 #ifdef INET6
   3751 	else {
   3752 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   3753 		rtcache_free(&sc->sc_route);
   3754 	}
   3755 #endif
   3756 
   3757 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3758 	if (am == NULL)
   3759 		goto resetandabort;
   3760 	MCLAIM(am, &tcp_mowner);
   3761 	am->m_len = src->sa_len;
   3762 	bcopy(src, mtod(am, void *), src->sa_len);
   3763 	if (inp) {
   3764 		if (in_pcbconnect(inp, am, &lwp0)) {
   3765 			(void) m_free(am);
   3766 			goto resetandabort;
   3767 		}
   3768 	}
   3769 #ifdef INET6
   3770 	else if (in6p) {
   3771 		if (src->sa_family == AF_INET) {
   3772 			/* IPv4 packet to AF_INET6 socket */
   3773 			struct sockaddr_in6 *sin6;
   3774 			sin6 = mtod(am, struct sockaddr_in6 *);
   3775 			am->m_len = sizeof(*sin6);
   3776 			bzero(sin6, sizeof(*sin6));
   3777 			sin6->sin6_family = AF_INET6;
   3778 			sin6->sin6_len = sizeof(*sin6);
   3779 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3780 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3781 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3782 				&sin6->sin6_addr.s6_addr32[3],
   3783 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3784 		}
   3785 		if (in6_pcbconnect(in6p, am, NULL)) {
   3786 			(void) m_free(am);
   3787 			goto resetandabort;
   3788 		}
   3789 	}
   3790 #endif
   3791 	else {
   3792 		(void) m_free(am);
   3793 		goto resetandabort;
   3794 	}
   3795 	(void) m_free(am);
   3796 
   3797 	if (inp)
   3798 		tp = intotcpcb(inp);
   3799 #ifdef INET6
   3800 	else if (in6p)
   3801 		tp = in6totcpcb(in6p);
   3802 #endif
   3803 	else
   3804 		tp = NULL;
   3805 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3806 	if (sc->sc_request_r_scale != 15) {
   3807 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3808 		tp->request_r_scale = sc->sc_request_r_scale;
   3809 		tp->snd_scale = sc->sc_requested_s_scale;
   3810 		tp->rcv_scale = sc->sc_request_r_scale;
   3811 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3812 	}
   3813 	if (sc->sc_flags & SCF_TIMESTAMP)
   3814 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3815 	tp->ts_timebase = sc->sc_timebase;
   3816 
   3817 	tp->t_template = tcp_template(tp);
   3818 	if (tp->t_template == 0) {
   3819 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3820 		so = NULL;
   3821 		m_freem(m);
   3822 		goto abort;
   3823 	}
   3824 
   3825 	tp->iss = sc->sc_iss;
   3826 	tp->irs = sc->sc_irs;
   3827 	tcp_sendseqinit(tp);
   3828 	tcp_rcvseqinit(tp);
   3829 	tp->t_state = TCPS_SYN_RECEIVED;
   3830 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   3831 	TCP_STATINC(TCP_STAT_ACCEPTS);
   3832 
   3833 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3834 		tp->t_flags |= TF_WILL_SACK;
   3835 
   3836 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   3837 		tp->t_flags |= TF_ECN_PERMIT;
   3838 
   3839 #ifdef TCP_SIGNATURE
   3840 	if (sc->sc_flags & SCF_SIGNATURE)
   3841 		tp->t_flags |= TF_SIGNATURE;
   3842 #endif
   3843 
   3844 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3845 	tp->t_ourmss = sc->sc_ourmaxseg;
   3846 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3847 
   3848 	/*
   3849 	 * Initialize the initial congestion window.  If we
   3850 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3851 	 * to 1 segment (i.e. the Loss Window).
   3852 	 */
   3853 	if (sc->sc_rxtshift)
   3854 		tp->snd_cwnd = tp->t_peermss;
   3855 	else {
   3856 		int ss = tcp_init_win;
   3857 #ifdef INET
   3858 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3859 			ss = tcp_init_win_local;
   3860 #endif
   3861 #ifdef INET6
   3862 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3863 			ss = tcp_init_win_local;
   3864 #endif
   3865 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3866 	}
   3867 
   3868 	tcp_rmx_rtt(tp);
   3869 	tp->snd_wl1 = sc->sc_irs;
   3870 	tp->rcv_up = sc->sc_irs + 1;
   3871 
   3872 	/*
   3873 	 * This is what whould have happened in tcp_output() when
   3874 	 * the SYN,ACK was sent.
   3875 	 */
   3876 	tp->snd_up = tp->snd_una;
   3877 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3878 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3879 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3880 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3881 	tp->last_ack_sent = tp->rcv_nxt;
   3882 	tp->t_partialacks = -1;
   3883 	tp->t_dupacks = 0;
   3884 
   3885 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   3886 	s = splsoftnet();
   3887 	syn_cache_put(sc);
   3888 	splx(s);
   3889 	return (so);
   3890 
   3891 resetandabort:
   3892 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3893 abort:
   3894 	if (so != NULL) {
   3895 		(void) soqremque(so, 1);
   3896 		(void) soabort(so);
   3897 	}
   3898 	s = splsoftnet();
   3899 	syn_cache_put(sc);
   3900 	splx(s);
   3901 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   3902 	return ((struct socket *)(-1));
   3903 }
   3904 
   3905 /*
   3906  * This function is called when we get a RST for a
   3907  * non-existent connection, so that we can see if the
   3908  * connection is in the syn cache.  If it is, zap it.
   3909  */
   3910 
   3911 void
   3912 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   3913 {
   3914 	struct syn_cache *sc;
   3915 	struct syn_cache_head *scp;
   3916 	int s = splsoftnet();
   3917 
   3918 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3919 		splx(s);
   3920 		return;
   3921 	}
   3922 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3923 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3924 		splx(s);
   3925 		return;
   3926 	}
   3927 	syn_cache_rm(sc);
   3928 	TCP_STATINC(TCP_STAT_SC_RESET);
   3929 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   3930 	splx(s);
   3931 }
   3932 
   3933 void
   3934 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   3935     struct tcphdr *th)
   3936 {
   3937 	struct syn_cache *sc;
   3938 	struct syn_cache_head *scp;
   3939 	int s;
   3940 
   3941 	s = splsoftnet();
   3942 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3943 		splx(s);
   3944 		return;
   3945 	}
   3946 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   3947 	if (ntohl (th->th_seq) != sc->sc_iss) {
   3948 		splx(s);
   3949 		return;
   3950 	}
   3951 
   3952 	/*
   3953 	 * If we've retransmitted 3 times and this is our second error,
   3954 	 * we remove the entry.  Otherwise, we allow it to continue on.
   3955 	 * This prevents us from incorrectly nuking an entry during a
   3956 	 * spurious network outage.
   3957 	 *
   3958 	 * See tcp_notify().
   3959 	 */
   3960 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   3961 		sc->sc_flags |= SCF_UNREACH;
   3962 		splx(s);
   3963 		return;
   3964 	}
   3965 
   3966 	syn_cache_rm(sc);
   3967 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   3968 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   3969 	splx(s);
   3970 }
   3971 
   3972 /*
   3973  * Given a LISTEN socket and an inbound SYN request, add
   3974  * this to the syn cache, and send back a segment:
   3975  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   3976  * to the source.
   3977  *
   3978  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   3979  * Doing so would require that we hold onto the data and deliver it
   3980  * to the application.  However, if we are the target of a SYN-flood
   3981  * DoS attack, an attacker could send data which would eventually
   3982  * consume all available buffer space if it were ACKed.  By not ACKing
   3983  * the data, we avoid this DoS scenario.
   3984  */
   3985 
   3986 int
   3987 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   3988     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   3989     int optlen, struct tcp_opt_info *oi)
   3990 {
   3991 	struct tcpcb tb, *tp;
   3992 	long win;
   3993 	struct syn_cache *sc;
   3994 	struct syn_cache_head *scp;
   3995 	struct mbuf *ipopts;
   3996 	struct tcp_opt_info opti;
   3997 	int s;
   3998 
   3999 	tp = sototcpcb(so);
   4000 
   4001 	bzero(&opti, sizeof(opti));
   4002 
   4003 	/*
   4004 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4005 	 *
   4006 	 * Note this check is performed in tcp_input() very early on.
   4007 	 */
   4008 
   4009 	/*
   4010 	 * Initialize some local state.
   4011 	 */
   4012 	win = sbspace(&so->so_rcv);
   4013 	if (win > TCP_MAXWIN)
   4014 		win = TCP_MAXWIN;
   4015 
   4016 	switch (src->sa_family) {
   4017 #ifdef INET
   4018 	case AF_INET:
   4019 		/*
   4020 		 * Remember the IP options, if any.
   4021 		 */
   4022 		ipopts = ip_srcroute();
   4023 		break;
   4024 #endif
   4025 	default:
   4026 		ipopts = NULL;
   4027 	}
   4028 
   4029 #ifdef TCP_SIGNATURE
   4030 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4031 #else
   4032 	if (optp)
   4033 #endif
   4034 	{
   4035 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4036 #ifdef TCP_SIGNATURE
   4037 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4038 #endif
   4039 		tb.t_state = TCPS_LISTEN;
   4040 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4041 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4042 			return (0);
   4043 	} else
   4044 		tb.t_flags = 0;
   4045 
   4046 	/*
   4047 	 * See if we already have an entry for this connection.
   4048 	 * If we do, resend the SYN,ACK.  We do not count this
   4049 	 * as a retransmission (XXX though maybe we should).
   4050 	 */
   4051 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4052 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4053 		if (ipopts) {
   4054 			/*
   4055 			 * If we were remembering a previous source route,
   4056 			 * forget it and use the new one we've been given.
   4057 			 */
   4058 			if (sc->sc_ipopts)
   4059 				(void) m_free(sc->sc_ipopts);
   4060 			sc->sc_ipopts = ipopts;
   4061 		}
   4062 		sc->sc_timestamp = tb.ts_recent;
   4063 		if (syn_cache_respond(sc, m) == 0) {
   4064 			uint64_t *tcps = TCP_STAT_GETREF();
   4065 			tcps[TCP_STAT_SNDACKS]++;
   4066 			tcps[TCP_STAT_SNDTOTAL]++;
   4067 			TCP_STAT_PUTREF();
   4068 		}
   4069 		return (1);
   4070 	}
   4071 
   4072 	s = splsoftnet();
   4073 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4074 	splx(s);
   4075 	if (sc == NULL) {
   4076 		if (ipopts)
   4077 			(void) m_free(ipopts);
   4078 		return (0);
   4079 	}
   4080 
   4081 	/*
   4082 	 * Fill in the cache, and put the necessary IP and TCP
   4083 	 * options into the reply.
   4084 	 */
   4085 	bzero(sc, sizeof(struct syn_cache));
   4086 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4087 	bcopy(src, &sc->sc_src, src->sa_len);
   4088 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4089 	sc->sc_flags = 0;
   4090 	sc->sc_ipopts = ipopts;
   4091 	sc->sc_irs = th->th_seq;
   4092 	switch (src->sa_family) {
   4093 #ifdef INET
   4094 	case AF_INET:
   4095 	    {
   4096 		struct sockaddr_in *srcin = (void *) src;
   4097 		struct sockaddr_in *dstin = (void *) dst;
   4098 
   4099 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4100 		    &srcin->sin_addr, dstin->sin_port,
   4101 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4102 		break;
   4103 	    }
   4104 #endif /* INET */
   4105 #ifdef INET6
   4106 	case AF_INET6:
   4107 	    {
   4108 		struct sockaddr_in6 *srcin6 = (void *) src;
   4109 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4110 
   4111 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4112 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4113 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4114 		break;
   4115 	    }
   4116 #endif /* INET6 */
   4117 	}
   4118 	sc->sc_peermaxseg = oi->maxseg;
   4119 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4120 						m->m_pkthdr.rcvif : NULL,
   4121 						sc->sc_src.sa.sa_family);
   4122 	sc->sc_win = win;
   4123 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4124 	sc->sc_timestamp = tb.ts_recent;
   4125 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4126 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4127 		sc->sc_flags |= SCF_TIMESTAMP;
   4128 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4129 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4130 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4131 		sc->sc_request_r_scale = 0;
   4132 		/*
   4133 		 * Pick the smallest possible scaling factor that
   4134 		 * will still allow us to scale up to sb_max.
   4135 		 *
   4136 		 * We do this because there are broken firewalls that
   4137 		 * will corrupt the window scale option, leading to
   4138 		 * the other endpoint believing that our advertised
   4139 		 * window is unscaled.  At scale factors larger than
   4140 		 * 5 the unscaled window will drop below 1500 bytes,
   4141 		 * leading to serious problems when traversing these
   4142 		 * broken firewalls.
   4143 		 *
   4144 		 * With the default sbmax of 256K, a scale factor
   4145 		 * of 3 will be chosen by this algorithm.  Those who
   4146 		 * choose a larger sbmax should watch out
   4147 		 * for the compatiblity problems mentioned above.
   4148 		 *
   4149 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4150 		 * or <SYN,ACK>) segment itself is never scaled.
   4151 		 */
   4152 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4153 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4154 			sc->sc_request_r_scale++;
   4155 	} else {
   4156 		sc->sc_requested_s_scale = 15;
   4157 		sc->sc_request_r_scale = 15;
   4158 	}
   4159 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4160 		sc->sc_flags |= SCF_SACK_PERMIT;
   4161 
   4162 	/*
   4163 	 * ECN setup packet recieved.
   4164 	 */
   4165 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4166 		sc->sc_flags |= SCF_ECN_PERMIT;
   4167 
   4168 #ifdef TCP_SIGNATURE
   4169 	if (tb.t_flags & TF_SIGNATURE)
   4170 		sc->sc_flags |= SCF_SIGNATURE;
   4171 #endif
   4172 	sc->sc_tp = tp;
   4173 	if (syn_cache_respond(sc, m) == 0) {
   4174 		uint64_t *tcps = TCP_STAT_GETREF();
   4175 		tcps[TCP_STAT_SNDACKS]++;
   4176 		tcps[TCP_STAT_SNDTOTAL]++;
   4177 		TCP_STAT_PUTREF();
   4178 		syn_cache_insert(sc, tp);
   4179 	} else {
   4180 		s = splsoftnet();
   4181 		syn_cache_put(sc);
   4182 		splx(s);
   4183 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4184 	}
   4185 	return (1);
   4186 }
   4187 
   4188 int
   4189 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4190 {
   4191 #ifdef INET6
   4192 	struct rtentry *rt;
   4193 #endif
   4194 	struct route *ro;
   4195 	u_int8_t *optp;
   4196 	int optlen, error;
   4197 	u_int16_t tlen;
   4198 	struct ip *ip = NULL;
   4199 #ifdef INET6
   4200 	struct ip6_hdr *ip6 = NULL;
   4201 #endif
   4202 	struct tcpcb *tp = NULL;
   4203 	struct tcphdr *th;
   4204 	u_int hlen;
   4205 	struct socket *so;
   4206 
   4207 	ro = &sc->sc_route;
   4208 	switch (sc->sc_src.sa.sa_family) {
   4209 	case AF_INET:
   4210 		hlen = sizeof(struct ip);
   4211 		break;
   4212 #ifdef INET6
   4213 	case AF_INET6:
   4214 		hlen = sizeof(struct ip6_hdr);
   4215 		break;
   4216 #endif
   4217 	default:
   4218 		if (m)
   4219 			m_freem(m);
   4220 		return (EAFNOSUPPORT);
   4221 	}
   4222 
   4223 	/* Compute the size of the TCP options. */
   4224 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4225 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4226 #ifdef TCP_SIGNATURE
   4227 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4228 #endif
   4229 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4230 
   4231 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4232 
   4233 	/*
   4234 	 * Create the IP+TCP header from scratch.
   4235 	 */
   4236 	if (m)
   4237 		m_freem(m);
   4238 #ifdef DIAGNOSTIC
   4239 	if (max_linkhdr + tlen > MCLBYTES)
   4240 		return (ENOBUFS);
   4241 #endif
   4242 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4243 	if (m && tlen > MHLEN) {
   4244 		MCLGET(m, M_DONTWAIT);
   4245 		if ((m->m_flags & M_EXT) == 0) {
   4246 			m_freem(m);
   4247 			m = NULL;
   4248 		}
   4249 	}
   4250 	if (m == NULL)
   4251 		return (ENOBUFS);
   4252 	MCLAIM(m, &tcp_tx_mowner);
   4253 
   4254 	/* Fixup the mbuf. */
   4255 	m->m_data += max_linkhdr;
   4256 	m->m_len = m->m_pkthdr.len = tlen;
   4257 	if (sc->sc_tp) {
   4258 		tp = sc->sc_tp;
   4259 		if (tp->t_inpcb)
   4260 			so = tp->t_inpcb->inp_socket;
   4261 #ifdef INET6
   4262 		else if (tp->t_in6pcb)
   4263 			so = tp->t_in6pcb->in6p_socket;
   4264 #endif
   4265 		else
   4266 			so = NULL;
   4267 	} else
   4268 		so = NULL;
   4269 	m->m_pkthdr.rcvif = NULL;
   4270 	memset(mtod(m, u_char *), 0, tlen);
   4271 
   4272 	switch (sc->sc_src.sa.sa_family) {
   4273 	case AF_INET:
   4274 		ip = mtod(m, struct ip *);
   4275 		ip->ip_v = 4;
   4276 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4277 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4278 		ip->ip_p = IPPROTO_TCP;
   4279 		th = (struct tcphdr *)(ip + 1);
   4280 		th->th_dport = sc->sc_src.sin.sin_port;
   4281 		th->th_sport = sc->sc_dst.sin.sin_port;
   4282 		break;
   4283 #ifdef INET6
   4284 	case AF_INET6:
   4285 		ip6 = mtod(m, struct ip6_hdr *);
   4286 		ip6->ip6_vfc = IPV6_VERSION;
   4287 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4288 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4289 		ip6->ip6_nxt = IPPROTO_TCP;
   4290 		/* ip6_plen will be updated in ip6_output() */
   4291 		th = (struct tcphdr *)(ip6 + 1);
   4292 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4293 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4294 		break;
   4295 #endif
   4296 	default:
   4297 		th = NULL;
   4298 	}
   4299 
   4300 	th->th_seq = htonl(sc->sc_iss);
   4301 	th->th_ack = htonl(sc->sc_irs + 1);
   4302 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4303 	th->th_flags = TH_SYN|TH_ACK;
   4304 	th->th_win = htons(sc->sc_win);
   4305 	/* th_sum already 0 */
   4306 	/* th_urp already 0 */
   4307 
   4308 	/* Tack on the TCP options. */
   4309 	optp = (u_int8_t *)(th + 1);
   4310 	*optp++ = TCPOPT_MAXSEG;
   4311 	*optp++ = 4;
   4312 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4313 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4314 
   4315 	if (sc->sc_request_r_scale != 15) {
   4316 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4317 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4318 		    sc->sc_request_r_scale);
   4319 		optp += 4;
   4320 	}
   4321 
   4322 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4323 		u_int32_t *lp = (u_int32_t *)(optp);
   4324 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4325 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4326 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4327 		*lp   = htonl(sc->sc_timestamp);
   4328 		optp += TCPOLEN_TSTAMP_APPA;
   4329 	}
   4330 
   4331 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4332 		u_int8_t *p = optp;
   4333 
   4334 		/* Let the peer know that we will SACK. */
   4335 		p[0] = TCPOPT_SACK_PERMITTED;
   4336 		p[1] = 2;
   4337 		p[2] = TCPOPT_NOP;
   4338 		p[3] = TCPOPT_NOP;
   4339 		optp += 4;
   4340 	}
   4341 
   4342 	/*
   4343 	 * Send ECN SYN-ACK setup packet.
   4344 	 * Routes can be asymetric, so, even if we receive a packet
   4345 	 * with ECE and CWR set, we must not assume no one will block
   4346 	 * the ECE packet we are about to send.
   4347 	 */
   4348 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4349 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4350 		th->th_flags |= TH_ECE;
   4351 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4352 
   4353 		/*
   4354 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4355 		 *
   4356 		 * "[...] a TCP node MAY respond to an ECN-setup
   4357 		 * SYN packet by setting ECT in the responding
   4358 		 * ECN-setup SYN/ACK packet, indicating to routers
   4359 		 * that the SYN/ACK packet is ECN-Capable.
   4360 		 * This allows a congested router along the path
   4361 		 * to mark the packet instead of dropping the
   4362 		 * packet as an indication of congestion."
   4363 		 *
   4364 		 * "[...] There can be a great benefit in setting
   4365 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4366 		 * Congestion is  most likely to occur in
   4367 		 * the server-to-client direction.  As a result,
   4368 		 * setting an ECN-capable codepoint in SYN/ACK
   4369 		 * packets can reduce the occurence of three-second
   4370 		 * retransmit timeouts resulting from the drop
   4371 		 * of SYN/ACK packets."
   4372 		 *
   4373 		 * Page 4 and 6, January 2006.
   4374 		 */
   4375 
   4376 		switch (sc->sc_src.sa.sa_family) {
   4377 #ifdef INET
   4378 		case AF_INET:
   4379 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4380 			break;
   4381 #endif
   4382 #ifdef INET6
   4383 		case AF_INET6:
   4384 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4385 			break;
   4386 #endif
   4387 		}
   4388 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4389 	}
   4390 
   4391 #ifdef TCP_SIGNATURE
   4392 	if (sc->sc_flags & SCF_SIGNATURE) {
   4393 		struct secasvar *sav;
   4394 		u_int8_t *sigp;
   4395 
   4396 		sav = tcp_signature_getsav(m, th);
   4397 
   4398 		if (sav == NULL) {
   4399 			if (m)
   4400 				m_freem(m);
   4401 			return (EPERM);
   4402 		}
   4403 
   4404 		*optp++ = TCPOPT_SIGNATURE;
   4405 		*optp++ = TCPOLEN_SIGNATURE;
   4406 		sigp = optp;
   4407 		bzero(optp, TCP_SIGLEN);
   4408 		optp += TCP_SIGLEN;
   4409 		*optp++ = TCPOPT_NOP;
   4410 		*optp++ = TCPOPT_EOL;
   4411 
   4412 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4413 
   4414 		key_sa_recordxfer(sav, m);
   4415 #ifdef FAST_IPSEC
   4416 		KEY_FREESAV(&sav);
   4417 #else
   4418 		key_freesav(sav);
   4419 #endif
   4420 	}
   4421 #endif
   4422 
   4423 	/* Compute the packet's checksum. */
   4424 	switch (sc->sc_src.sa.sa_family) {
   4425 	case AF_INET:
   4426 		ip->ip_len = htons(tlen - hlen);
   4427 		th->th_sum = 0;
   4428 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4429 		break;
   4430 #ifdef INET6
   4431 	case AF_INET6:
   4432 		ip6->ip6_plen = htons(tlen - hlen);
   4433 		th->th_sum = 0;
   4434 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4435 		break;
   4436 #endif
   4437 	}
   4438 
   4439 	/*
   4440 	 * Fill in some straggling IP bits.  Note the stack expects
   4441 	 * ip_len to be in host order, for convenience.
   4442 	 */
   4443 	switch (sc->sc_src.sa.sa_family) {
   4444 #ifdef INET
   4445 	case AF_INET:
   4446 		ip->ip_len = htons(tlen);
   4447 		ip->ip_ttl = ip_defttl;
   4448 		/* XXX tos? */
   4449 		break;
   4450 #endif
   4451 #ifdef INET6
   4452 	case AF_INET6:
   4453 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4454 		ip6->ip6_vfc |= IPV6_VERSION;
   4455 		ip6->ip6_plen = htons(tlen - hlen);
   4456 		/* ip6_hlim will be initialized afterwards */
   4457 		/* XXX flowlabel? */
   4458 		break;
   4459 #endif
   4460 	}
   4461 
   4462 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4463 	tp = sc->sc_tp;
   4464 
   4465 	switch (sc->sc_src.sa.sa_family) {
   4466 #ifdef INET
   4467 	case AF_INET:
   4468 		error = ip_output(m, sc->sc_ipopts, ro,
   4469 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4470 		    (struct ip_moptions *)NULL, so);
   4471 		break;
   4472 #endif
   4473 #ifdef INET6
   4474 	case AF_INET6:
   4475 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4476 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
   4477 				                                    : NULL);
   4478 
   4479 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4480 		break;
   4481 #endif
   4482 	default:
   4483 		error = EAFNOSUPPORT;
   4484 		break;
   4485 	}
   4486 	return (error);
   4487 }
   4488