tcp_input.c revision 1.29 1 /* $NetBSD: tcp_input.c,v 1.29 1997/07/23 21:26:49 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
36 */
37
38 /*
39 * TODO list for SYN cache stuff:
40 *
41 * (a) The definition of "struct syn_cache" says:
42 *
43 * This structure should not exceeed 32 bytes.
44 *
45 * but it's 40 bytes on the Alpha. Can reduce memory use one
46 * of two ways:
47 *
48 * (1) Use a dynamically-sized hash table, and handle
49 * collisions by rehashing. Then sc_next is unnecessary.
50 *
51 * (2) Allocate syn_cache structures in pages (or some other
52 * large chunk). This would probably be desirable for
53 * maintaining locality of reference anyway.
54 *
55 * If you do this, you can change sc_next to a page/index
56 * value, and make it a 32-bit (or maybe even 16-bit)
57 * integer, thus partly obviating the need for the previous
58 * hack.
59 *
60 * It's also worth noting this this is necessary for IPv6, as well,
61 * where we use 32 bytes just for the IP addresses, so eliminating
62 * wastage is going to become more important. (BTW, has anyone
63 * integreated these changes with one fo the IPv6 status that are
64 * available?)
65 *
66 * (b) Find room for a "state" field, which is needed to keep a
67 * compressed state for TIME_WAIT TCBs. It's been noted already
68 * that this is fairly important for very high-volume web and
69 * mail servers, which use a large number of short-lived
70 * connections.
71 */
72
73 #ifndef TUBA_INCLUDE
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/errno.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/tcp.h>
92 #include <netinet/tcp_fsm.h>
93 #include <netinet/tcp_seq.h>
94 #include <netinet/tcp_timer.h>
95 #include <netinet/tcp_var.h>
96 #include <netinet/tcpip.h>
97 #include <netinet/tcp_debug.h>
98
99 #include <machine/stdarg.h>
100
101 int tcprexmtthresh = 3;
102 struct tcpiphdr tcp_saveti;
103
104 extern u_long sb_max;
105
106 #endif /* TUBA_INCLUDE */
107 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
108
109 /* for modulo comparisons of timestamps */
110 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
111 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
112
113 /*
114 * Insert segment ti into reassembly queue of tcp with
115 * control block tp. Return TH_FIN if reassembly now includes
116 * a segment with FIN. The macro form does the common case inline
117 * (segment is the next to be received on an established connection,
118 * and the queue is empty), avoiding linkage into and removal
119 * from the queue and repetition of various conversions.
120 * Set DELACK for segments received in order, but ack immediately
121 * when segments are out of order (so fast retransmit can work).
122 */
123 #define TCP_REASS(tp, ti, m, so, flags) { \
124 if ((ti)->ti_seq == (tp)->rcv_nxt && \
125 (tp)->segq.lh_first == NULL && \
126 (tp)->t_state == TCPS_ESTABLISHED) { \
127 if ((ti)->ti_flags & TH_PUSH) \
128 tp->t_flags |= TF_ACKNOW; \
129 else \
130 tp->t_flags |= TF_DELACK; \
131 (tp)->rcv_nxt += (ti)->ti_len; \
132 flags = (ti)->ti_flags & TH_FIN; \
133 tcpstat.tcps_rcvpack++;\
134 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
135 sbappend(&(so)->so_rcv, (m)); \
136 sorwakeup(so); \
137 } else { \
138 (flags) = tcp_reass((tp), (ti), (m)); \
139 tp->t_flags |= TF_ACKNOW; \
140 } \
141 }
142 #ifndef TUBA_INCLUDE
143
144 int
145 tcp_reass(tp, ti, m)
146 register struct tcpcb *tp;
147 register struct tcpiphdr *ti;
148 struct mbuf *m;
149 {
150 register struct ipqent *p, *q, *nq, *tiqe;
151 struct socket *so = tp->t_inpcb->inp_socket;
152 int flags;
153
154 /*
155 * Call with ti==0 after become established to
156 * force pre-ESTABLISHED data up to user socket.
157 */
158 if (ti == 0)
159 goto present;
160
161 /*
162 * Allocate a new queue entry, before we throw away any data.
163 * If we can't, just drop the packet. XXX
164 */
165 MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
166 if (tiqe == NULL) {
167 tcpstat.tcps_rcvmemdrop++;
168 m_freem(m);
169 return (0);
170 }
171
172 /*
173 * Find a segment which begins after this one does.
174 */
175 for (p = NULL, q = tp->segq.lh_first; q != NULL;
176 p = q, q = q->ipqe_q.le_next)
177 if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
178 break;
179
180 /*
181 * If there is a preceding segment, it may provide some of
182 * our data already. If so, drop the data from the incoming
183 * segment. If it provides all of our data, drop us.
184 */
185 if (p != NULL) {
186 register struct tcpiphdr *phdr = p->ipqe_tcp;
187 register int i;
188
189 /* conversion to int (in i) handles seq wraparound */
190 i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
191 if (i > 0) {
192 if (i >= ti->ti_len) {
193 tcpstat.tcps_rcvduppack++;
194 tcpstat.tcps_rcvdupbyte += ti->ti_len;
195 m_freem(m);
196 FREE(tiqe, M_IPQ);
197 return (0);
198 }
199 m_adj(m, i);
200 ti->ti_len -= i;
201 ti->ti_seq += i;
202 }
203 }
204 tcpstat.tcps_rcvoopack++;
205 tcpstat.tcps_rcvoobyte += ti->ti_len;
206
207 /*
208 * While we overlap succeeding segments trim them or,
209 * if they are completely covered, dequeue them.
210 */
211 for (; q != NULL; q = nq) {
212 register struct tcpiphdr *qhdr = q->ipqe_tcp;
213 register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
214
215 if (i <= 0)
216 break;
217 if (i < qhdr->ti_len) {
218 qhdr->ti_seq += i;
219 qhdr->ti_len -= i;
220 m_adj(q->ipqe_m, i);
221 break;
222 }
223 nq = q->ipqe_q.le_next;
224 m_freem(q->ipqe_m);
225 LIST_REMOVE(q, ipqe_q);
226 FREE(q, M_IPQ);
227 }
228
229 /* Insert the new fragment queue entry into place. */
230 tiqe->ipqe_m = m;
231 tiqe->ipqe_tcp = ti;
232 if (p == NULL) {
233 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
234 } else {
235 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
236 }
237
238 present:
239 /*
240 * Present data to user, advancing rcv_nxt through
241 * completed sequence space.
242 */
243 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
244 return (0);
245 q = tp->segq.lh_first;
246 if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
247 return (0);
248 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
249 return (0);
250 do {
251 tp->rcv_nxt += q->ipqe_tcp->ti_len;
252 flags = q->ipqe_tcp->ti_flags & TH_FIN;
253
254 nq = q->ipqe_q.le_next;
255 LIST_REMOVE(q, ipqe_q);
256 if (so->so_state & SS_CANTRCVMORE)
257 m_freem(q->ipqe_m);
258 else
259 sbappend(&so->so_rcv, q->ipqe_m);
260 FREE(q, M_IPQ);
261 q = nq;
262 } while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
263 sorwakeup(so);
264 return (flags);
265 }
266
267 /*
268 * TCP input routine, follows pages 65-76 of the
269 * protocol specification dated September, 1981 very closely.
270 */
271 void
272 #if __STDC__
273 tcp_input(struct mbuf *m, ...)
274 #else
275 tcp_input(m, va_alist)
276 register struct mbuf *m;
277 #endif
278 {
279 register struct tcpiphdr *ti;
280 register struct inpcb *inp;
281 caddr_t optp = NULL;
282 int optlen = 0;
283 int len, tlen, off;
284 register struct tcpcb *tp = 0;
285 register int tiflags;
286 struct socket *so = NULL;
287 int todrop, acked, ourfinisacked, needoutput = 0;
288 short ostate = 0;
289 int iss = 0;
290 u_long tiwin;
291 struct tcp_opt_info opti;
292 int iphlen;
293 va_list ap;
294
295 va_start(ap, m);
296 iphlen = va_arg(ap, int);
297 va_end(ap);
298
299 tcpstat.tcps_rcvtotal++;
300
301 opti.ts_present = 0;
302 opti.maxseg = 0;
303
304 /*
305 * Get IP and TCP header together in first mbuf.
306 * Note: IP leaves IP header in first mbuf.
307 */
308 ti = mtod(m, struct tcpiphdr *);
309 if (iphlen > sizeof (struct ip))
310 ip_stripoptions(m, (struct mbuf *)0);
311 if (m->m_len < sizeof (struct tcpiphdr)) {
312 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
313 tcpstat.tcps_rcvshort++;
314 return;
315 }
316 ti = mtod(m, struct tcpiphdr *);
317 }
318
319 /*
320 * Checksum extended TCP header and data.
321 */
322 tlen = ((struct ip *)ti)->ip_len;
323 len = sizeof (struct ip) + tlen;
324 bzero(ti->ti_x1, sizeof ti->ti_x1);
325 ti->ti_len = (u_int16_t)tlen;
326 HTONS(ti->ti_len);
327 if ((ti->ti_sum = in_cksum(m, len)) != 0) {
328 tcpstat.tcps_rcvbadsum++;
329 goto drop;
330 }
331 #endif /* TUBA_INCLUDE */
332
333 /*
334 * Check that TCP offset makes sense,
335 * pull out TCP options and adjust length. XXX
336 */
337 off = ti->ti_off << 2;
338 if (off < sizeof (struct tcphdr) || off > tlen) {
339 tcpstat.tcps_rcvbadoff++;
340 goto drop;
341 }
342 tlen -= off;
343 ti->ti_len = tlen;
344 if (off > sizeof (struct tcphdr)) {
345 if (m->m_len < sizeof(struct ip) + off) {
346 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
347 tcpstat.tcps_rcvshort++;
348 return;
349 }
350 ti = mtod(m, struct tcpiphdr *);
351 }
352 optlen = off - sizeof (struct tcphdr);
353 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
354 /*
355 * Do quick retrieval of timestamp options ("options
356 * prediction?"). If timestamp is the only option and it's
357 * formatted as recommended in RFC 1323 appendix A, we
358 * quickly get the values now and not bother calling
359 * tcp_dooptions(), etc.
360 */
361 if ((optlen == TCPOLEN_TSTAMP_APPA ||
362 (optlen > TCPOLEN_TSTAMP_APPA &&
363 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
364 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
365 (ti->ti_flags & TH_SYN) == 0) {
366 opti.ts_present = 1;
367 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
368 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
369 optp = NULL; /* we've parsed the options */
370 }
371 }
372 tiflags = ti->ti_flags;
373
374 /*
375 * Convert TCP protocol specific fields to host format.
376 */
377 NTOHL(ti->ti_seq);
378 NTOHL(ti->ti_ack);
379 NTOHS(ti->ti_win);
380 NTOHS(ti->ti_urp);
381
382 /*
383 * Locate pcb for segment.
384 */
385 findpcb:
386 inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
387 ti->ti_dst, ti->ti_dport);
388 if (inp == 0) {
389 ++tcpstat.tcps_pcbhashmiss;
390 inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
391 if (inp == 0) {
392 ++tcpstat.tcps_noport;
393 goto dropwithreset;
394 }
395 }
396
397 /*
398 * If the state is CLOSED (i.e., TCB does not exist) then
399 * all data in the incoming segment is discarded.
400 * If the TCB exists but is in CLOSED state, it is embryonic,
401 * but should either do a listen or a connect soon.
402 */
403 tp = intotcpcb(inp);
404 if (tp == 0)
405 goto dropwithreset;
406 if (tp->t_state == TCPS_CLOSED)
407 goto drop;
408
409 /* Unscale the window into a 32-bit value. */
410 if ((tiflags & TH_SYN) == 0)
411 tiwin = ti->ti_win << tp->snd_scale;
412 else
413 tiwin = ti->ti_win;
414
415 so = inp->inp_socket;
416 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
417 if (so->so_options & SO_DEBUG) {
418 ostate = tp->t_state;
419 tcp_saveti = *ti;
420 }
421 if (so->so_options & SO_ACCEPTCONN) {
422 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
423 if (tiflags & TH_RST)
424 syn_cache_reset(ti);
425 else if (tiflags & TH_ACK) {
426 so = syn_cache_get(so, m);
427 if (so == NULL) {
428 /*
429 * We don't have a SYN for
430 * this ACK; send an RST.
431 */
432 tcpstat.tcps_badsyn++;
433 tp = NULL;
434 goto dropwithreset;
435 } else if (so ==
436 (struct socket *)(-1)) {
437 /*
438 * We were unable to create
439 * the connection. If the
440 * 3-way handshake was
441 * completeed, and RST has
442 * been sent to the peer.
443 * Since the mbuf might be
444 * in use for the reply,
445 * do not free it.
446 */
447 m = NULL;
448 } else {
449 /*
450 * We have created a
451 * full-blown connection.
452 */
453 inp = sotoinpcb(so);
454 tp = intotcpcb(inp);
455 tiwin <<= tp->snd_scale;
456 goto after_listen;
457 }
458 }
459 } else {
460 /*
461 * Received a SYN; create compressed
462 * TCP state for it.
463 */
464 if (so->so_qlen <= so->so_qlimit &&
465 syn_cache_add(so, m, optp, optlen, &opti))
466 m = NULL;
467 }
468 goto drop;
469 }
470 }
471
472 after_listen:
473 #ifdef DIAGNOSTIC
474 /*
475 * Should not happen now that all embryonic connections
476 * are handled with compressed state.
477 */
478 if (tp->t_state == TCPS_LISTEN)
479 panic("tcp_input: TCPS_LISTEN");
480 #endif
481
482 /*
483 * Segment received on connection.
484 * Reset idle time and keep-alive timer.
485 */
486 tp->t_idle = 0;
487 if (TCPS_HAVEESTABLISHED(tp->t_state))
488 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
489
490 /*
491 * Process options.
492 */
493 if (optp)
494 tcp_dooptions(tp, optp, optlen, ti, &opti);
495
496 /*
497 * Header prediction: check for the two common cases
498 * of a uni-directional data xfer. If the packet has
499 * no control flags, is in-sequence, the window didn't
500 * change and we're not retransmitting, it's a
501 * candidate. If the length is zero and the ack moved
502 * forward, we're the sender side of the xfer. Just
503 * free the data acked & wake any higher level process
504 * that was blocked waiting for space. If the length
505 * is non-zero and the ack didn't move, we're the
506 * receiver side. If we're getting packets in-order
507 * (the reassembly queue is empty), add the data to
508 * the socket buffer and note that we need a delayed ack.
509 */
510 if (tp->t_state == TCPS_ESTABLISHED &&
511 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
512 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
513 ti->ti_seq == tp->rcv_nxt &&
514 tiwin && tiwin == tp->snd_wnd &&
515 tp->snd_nxt == tp->snd_max) {
516
517 /*
518 * If last ACK falls within this segment's sequence numbers,
519 * record the timestamp.
520 */
521 if (opti.ts_present &&
522 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
523 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
524 tp->ts_recent_age = tcp_now;
525 tp->ts_recent = opti.ts_val;
526 }
527
528 if (ti->ti_len == 0) {
529 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
530 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
531 tp->snd_cwnd >= tp->snd_wnd &&
532 tp->t_dupacks < tcprexmtthresh) {
533 /*
534 * this is a pure ack for outstanding data.
535 */
536 ++tcpstat.tcps_predack;
537 if (opti.ts_present)
538 tcp_xmit_timer(tp,
539 tcp_now-opti.ts_ecr+1);
540 else if (tp->t_rtt &&
541 SEQ_GT(ti->ti_ack, tp->t_rtseq))
542 tcp_xmit_timer(tp, tp->t_rtt);
543 acked = ti->ti_ack - tp->snd_una;
544 tcpstat.tcps_rcvackpack++;
545 tcpstat.tcps_rcvackbyte += acked;
546 sbdrop(&so->so_snd, acked);
547 tp->snd_una = ti->ti_ack;
548 m_freem(m);
549
550 /*
551 * If all outstanding data are acked, stop
552 * retransmit timer, otherwise restart timer
553 * using current (possibly backed-off) value.
554 * If process is waiting for space,
555 * wakeup/selwakeup/signal. If data
556 * are ready to send, let tcp_output
557 * decide between more output or persist.
558 */
559 if (tp->snd_una == tp->snd_max)
560 tp->t_timer[TCPT_REXMT] = 0;
561 else if (tp->t_timer[TCPT_PERSIST] == 0)
562 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
563
564 if (sb_notify(&so->so_snd))
565 sowwakeup(so);
566 if (so->so_snd.sb_cc)
567 (void) tcp_output(tp);
568 return;
569 }
570 } else if (ti->ti_ack == tp->snd_una &&
571 tp->segq.lh_first == NULL &&
572 ti->ti_len <= sbspace(&so->so_rcv)) {
573 /*
574 * this is a pure, in-sequence data packet
575 * with nothing on the reassembly queue and
576 * we have enough buffer space to take it.
577 */
578 ++tcpstat.tcps_preddat;
579 tp->rcv_nxt += ti->ti_len;
580 tcpstat.tcps_rcvpack++;
581 tcpstat.tcps_rcvbyte += ti->ti_len;
582 /*
583 * Drop TCP, IP headers and TCP options then add data
584 * to socket buffer.
585 */
586 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
587 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
588 sbappend(&so->so_rcv, m);
589 sorwakeup(so);
590 if (ti->ti_flags & TH_PUSH)
591 tp->t_flags |= TF_ACKNOW;
592 else
593 tp->t_flags |= TF_DELACK;
594 return;
595 }
596 }
597
598 /*
599 * Drop TCP, IP headers and TCP options.
600 */
601 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
602 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
603
604 /*
605 * Calculate amount of space in receive window,
606 * and then do TCP input processing.
607 * Receive window is amount of space in rcv queue,
608 * but not less than advertised window.
609 */
610 { int win;
611
612 win = sbspace(&so->so_rcv);
613 if (win < 0)
614 win = 0;
615 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
616 }
617
618 switch (tp->t_state) {
619
620 /*
621 * If the state is SYN_SENT:
622 * if seg contains an ACK, but not for our SYN, drop the input.
623 * if seg contains a RST, then drop the connection.
624 * if seg does not contain SYN, then drop it.
625 * Otherwise this is an acceptable SYN segment
626 * initialize tp->rcv_nxt and tp->irs
627 * if seg contains ack then advance tp->snd_una
628 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
629 * arrange for segment to be acked (eventually)
630 * continue processing rest of data/controls, beginning with URG
631 */
632 case TCPS_SYN_SENT:
633 if ((tiflags & TH_ACK) &&
634 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
635 SEQ_GT(ti->ti_ack, tp->snd_max)))
636 goto dropwithreset;
637 if (tiflags & TH_RST) {
638 if (tiflags & TH_ACK)
639 tp = tcp_drop(tp, ECONNREFUSED);
640 goto drop;
641 }
642 if ((tiflags & TH_SYN) == 0)
643 goto drop;
644 if (tiflags & TH_ACK) {
645 tp->snd_una = ti->ti_ack;
646 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
647 tp->snd_nxt = tp->snd_una;
648 }
649 tp->t_timer[TCPT_REXMT] = 0;
650 tp->irs = ti->ti_seq;
651 tcp_rcvseqinit(tp);
652 tp->t_flags |= TF_ACKNOW;
653 tcp_mss(tp, opti.maxseg);
654 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
655 tcpstat.tcps_connects++;
656 soisconnected(so);
657 tp->t_state = TCPS_ESTABLISHED;
658 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
659 /* Do window scaling on this connection? */
660 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
661 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
662 tp->snd_scale = tp->requested_s_scale;
663 tp->rcv_scale = tp->request_r_scale;
664 }
665 (void) tcp_reass(tp, (struct tcpiphdr *)0,
666 (struct mbuf *)0);
667 /*
668 * if we didn't have to retransmit the SYN,
669 * use its rtt as our initial srtt & rtt var.
670 */
671 if (tp->t_rtt)
672 tcp_xmit_timer(tp, tp->t_rtt);
673 } else
674 tp->t_state = TCPS_SYN_RECEIVED;
675
676 /*
677 * Advance ti->ti_seq to correspond to first data byte.
678 * If data, trim to stay within window,
679 * dropping FIN if necessary.
680 */
681 ti->ti_seq++;
682 if (ti->ti_len > tp->rcv_wnd) {
683 todrop = ti->ti_len - tp->rcv_wnd;
684 m_adj(m, -todrop);
685 ti->ti_len = tp->rcv_wnd;
686 tiflags &= ~TH_FIN;
687 tcpstat.tcps_rcvpackafterwin++;
688 tcpstat.tcps_rcvbyteafterwin += todrop;
689 }
690 tp->snd_wl1 = ti->ti_seq - 1;
691 tp->rcv_up = ti->ti_seq;
692 goto step6;
693
694 /*
695 * If the state is SYN_RECEIVED:
696 * If seg contains an ACK, but not for our SYN, drop the input
697 * and generate an RST. See page 36, rfc793
698 */
699 case TCPS_SYN_RECEIVED:
700 if ((tiflags & TH_ACK) &&
701 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
702 SEQ_GT(ti->ti_ack, tp->snd_max)))
703 goto dropwithreset;
704 break;
705 }
706
707 /*
708 * States other than LISTEN or SYN_SENT.
709 * First check timestamp, if present.
710 * Then check that at least some bytes of segment are within
711 * receive window. If segment begins before rcv_nxt,
712 * drop leading data (and SYN); if nothing left, just ack.
713 *
714 * RFC 1323 PAWS: If we have a timestamp reply on this segment
715 * and it's less than ts_recent, drop it.
716 */
717 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
718 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
719
720 /* Check to see if ts_recent is over 24 days old. */
721 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
722 /*
723 * Invalidate ts_recent. If this segment updates
724 * ts_recent, the age will be reset later and ts_recent
725 * will get a valid value. If it does not, setting
726 * ts_recent to zero will at least satisfy the
727 * requirement that zero be placed in the timestamp
728 * echo reply when ts_recent isn't valid. The
729 * age isn't reset until we get a valid ts_recent
730 * because we don't want out-of-order segments to be
731 * dropped when ts_recent is old.
732 */
733 tp->ts_recent = 0;
734 } else {
735 tcpstat.tcps_rcvduppack++;
736 tcpstat.tcps_rcvdupbyte += ti->ti_len;
737 tcpstat.tcps_pawsdrop++;
738 goto dropafterack;
739 }
740 }
741
742 todrop = tp->rcv_nxt - ti->ti_seq;
743 if (todrop > 0) {
744 if (tiflags & TH_SYN) {
745 tiflags &= ~TH_SYN;
746 ti->ti_seq++;
747 if (ti->ti_urp > 1)
748 ti->ti_urp--;
749 else {
750 tiflags &= ~TH_URG;
751 ti->ti_urp = 0;
752 }
753 todrop--;
754 }
755 if (todrop >= ti->ti_len) {
756 /*
757 * Any valid FIN must be to the left of the
758 * window. At this point, FIN must be a
759 * duplicate or out-of-sequence, so drop it.
760 */
761 tiflags &= ~TH_FIN;
762 /*
763 * Send ACK to resynchronize, and drop any data,
764 * but keep on processing for RST or ACK.
765 */
766 tp->t_flags |= TF_ACKNOW;
767 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
768 tcpstat.tcps_rcvduppack++;
769 } else {
770 tcpstat.tcps_rcvpartduppack++;
771 tcpstat.tcps_rcvpartdupbyte += todrop;
772 }
773 m_adj(m, todrop);
774 ti->ti_seq += todrop;
775 ti->ti_len -= todrop;
776 if (ti->ti_urp > todrop)
777 ti->ti_urp -= todrop;
778 else {
779 tiflags &= ~TH_URG;
780 ti->ti_urp = 0;
781 }
782 }
783
784 /*
785 * If new data are received on a connection after the
786 * user processes are gone, then RST the other end.
787 */
788 if ((so->so_state & SS_NOFDREF) &&
789 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
790 tp = tcp_close(tp);
791 tcpstat.tcps_rcvafterclose++;
792 goto dropwithreset;
793 }
794
795 /*
796 * If segment ends after window, drop trailing data
797 * (and PUSH and FIN); if nothing left, just ACK.
798 */
799 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
800 if (todrop > 0) {
801 tcpstat.tcps_rcvpackafterwin++;
802 if (todrop >= ti->ti_len) {
803 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
804 /*
805 * If a new connection request is received
806 * while in TIME_WAIT, drop the old connection
807 * and start over if the sequence numbers
808 * are above the previous ones.
809 */
810 if (tiflags & TH_SYN &&
811 tp->t_state == TCPS_TIME_WAIT &&
812 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
813 iss = tp->rcv_nxt + TCP_ISSINCR;
814 tp = tcp_close(tp);
815 goto findpcb;
816 }
817 /*
818 * If window is closed can only take segments at
819 * window edge, and have to drop data and PUSH from
820 * incoming segments. Continue processing, but
821 * remember to ack. Otherwise, drop segment
822 * and ack.
823 */
824 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
825 tp->t_flags |= TF_ACKNOW;
826 tcpstat.tcps_rcvwinprobe++;
827 } else
828 goto dropafterack;
829 } else
830 tcpstat.tcps_rcvbyteafterwin += todrop;
831 m_adj(m, -todrop);
832 ti->ti_len -= todrop;
833 tiflags &= ~(TH_PUSH|TH_FIN);
834 }
835
836 /*
837 * If last ACK falls within this segment's sequence numbers,
838 * record its timestamp.
839 */
840 if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
841 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
842 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
843 tp->ts_recent_age = tcp_now;
844 tp->ts_recent = opti.ts_val;
845 }
846
847 /*
848 * If the RST bit is set examine the state:
849 * SYN_RECEIVED STATE:
850 * If passive open, return to LISTEN state.
851 * If active open, inform user that connection was refused.
852 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
853 * Inform user that connection was reset, and close tcb.
854 * CLOSING, LAST_ACK, TIME_WAIT STATES
855 * Close the tcb.
856 */
857 if (tiflags&TH_RST) switch (tp->t_state) {
858
859 case TCPS_SYN_RECEIVED:
860 so->so_error = ECONNREFUSED;
861 goto close;
862
863 case TCPS_ESTABLISHED:
864 case TCPS_FIN_WAIT_1:
865 case TCPS_FIN_WAIT_2:
866 case TCPS_CLOSE_WAIT:
867 so->so_error = ECONNRESET;
868 close:
869 tp->t_state = TCPS_CLOSED;
870 tcpstat.tcps_drops++;
871 tp = tcp_close(tp);
872 goto drop;
873
874 case TCPS_CLOSING:
875 case TCPS_LAST_ACK:
876 case TCPS_TIME_WAIT:
877 tp = tcp_close(tp);
878 goto drop;
879 }
880
881 /*
882 * If a SYN is in the window, then this is an
883 * error and we send an RST and drop the connection.
884 */
885 if (tiflags & TH_SYN) {
886 tp = tcp_drop(tp, ECONNRESET);
887 goto dropwithreset;
888 }
889
890 /*
891 * If the ACK bit is off we drop the segment and return.
892 */
893 if ((tiflags & TH_ACK) == 0)
894 goto drop;
895
896 /*
897 * Ack processing.
898 */
899 switch (tp->t_state) {
900
901 /*
902 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
903 * ESTABLISHED state and continue processing, otherwise
904 * send an RST.
905 */
906 case TCPS_SYN_RECEIVED:
907 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
908 SEQ_GT(ti->ti_ack, tp->snd_max))
909 goto dropwithreset;
910 tcpstat.tcps_connects++;
911 soisconnected(so);
912 tp->t_state = TCPS_ESTABLISHED;
913 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
914 /* Do window scaling? */
915 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
916 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
917 tp->snd_scale = tp->requested_s_scale;
918 tp->rcv_scale = tp->request_r_scale;
919 }
920 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
921 tp->snd_wl1 = ti->ti_seq - 1;
922 /* fall into ... */
923
924 /*
925 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
926 * ACKs. If the ack is in the range
927 * tp->snd_una < ti->ti_ack <= tp->snd_max
928 * then advance tp->snd_una to ti->ti_ack and drop
929 * data from the retransmission queue. If this ACK reflects
930 * more up to date window information we update our window information.
931 */
932 case TCPS_ESTABLISHED:
933 case TCPS_FIN_WAIT_1:
934 case TCPS_FIN_WAIT_2:
935 case TCPS_CLOSE_WAIT:
936 case TCPS_CLOSING:
937 case TCPS_LAST_ACK:
938 case TCPS_TIME_WAIT:
939
940 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
941 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
942 tcpstat.tcps_rcvdupack++;
943 /*
944 * If we have outstanding data (other than
945 * a window probe), this is a completely
946 * duplicate ack (ie, window info didn't
947 * change), the ack is the biggest we've
948 * seen and we've seen exactly our rexmt
949 * threshhold of them, assume a packet
950 * has been dropped and retransmit it.
951 * Kludge snd_nxt & the congestion
952 * window so we send only this one
953 * packet.
954 *
955 * We know we're losing at the current
956 * window size so do congestion avoidance
957 * (set ssthresh to half the current window
958 * and pull our congestion window back to
959 * the new ssthresh).
960 *
961 * Dup acks mean that packets have left the
962 * network (they're now cached at the receiver)
963 * so bump cwnd by the amount in the receiver
964 * to keep a constant cwnd packets in the
965 * network.
966 */
967 if (tp->t_timer[TCPT_REXMT] == 0 ||
968 ti->ti_ack != tp->snd_una)
969 tp->t_dupacks = 0;
970 else if (++tp->t_dupacks == tcprexmtthresh) {
971 tcp_seq onxt = tp->snd_nxt;
972 u_int win =
973 min(tp->snd_wnd, tp->snd_cwnd) / 2 /
974 tp->t_maxseg;
975
976 if (win < 2)
977 win = 2;
978 tp->snd_ssthresh = win * tp->t_maxseg;
979 tp->t_timer[TCPT_REXMT] = 0;
980 tp->t_rtt = 0;
981 tp->snd_nxt = ti->ti_ack;
982 tp->snd_cwnd = tp->t_maxseg;
983 (void) tcp_output(tp);
984 tp->snd_cwnd = tp->snd_ssthresh +
985 tp->t_maxseg * tp->t_dupacks;
986 if (SEQ_GT(onxt, tp->snd_nxt))
987 tp->snd_nxt = onxt;
988 goto drop;
989 } else if (tp->t_dupacks > tcprexmtthresh) {
990 tp->snd_cwnd += tp->t_maxseg;
991 (void) tcp_output(tp);
992 goto drop;
993 }
994 } else
995 tp->t_dupacks = 0;
996 break;
997 }
998 /*
999 * If the congestion window was inflated to account
1000 * for the other side's cached packets, retract it.
1001 */
1002 if (tp->t_dupacks >= tcprexmtthresh &&
1003 tp->snd_cwnd > tp->snd_ssthresh)
1004 tp->snd_cwnd = tp->snd_ssthresh;
1005 tp->t_dupacks = 0;
1006 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1007 tcpstat.tcps_rcvacktoomuch++;
1008 goto dropafterack;
1009 }
1010 acked = ti->ti_ack - tp->snd_una;
1011 tcpstat.tcps_rcvackpack++;
1012 tcpstat.tcps_rcvackbyte += acked;
1013
1014 /*
1015 * If we have a timestamp reply, update smoothed
1016 * round trip time. If no timestamp is present but
1017 * transmit timer is running and timed sequence
1018 * number was acked, update smoothed round trip time.
1019 * Since we now have an rtt measurement, cancel the
1020 * timer backoff (cf., Phil Karn's retransmit alg.).
1021 * Recompute the initial retransmit timer.
1022 */
1023 if (opti.ts_present)
1024 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1025 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1026 tcp_xmit_timer(tp,tp->t_rtt);
1027
1028 /*
1029 * If all outstanding data is acked, stop retransmit
1030 * timer and remember to restart (more output or persist).
1031 * If there is more data to be acked, restart retransmit
1032 * timer, using current (possibly backed-off) value.
1033 */
1034 if (ti->ti_ack == tp->snd_max) {
1035 tp->t_timer[TCPT_REXMT] = 0;
1036 needoutput = 1;
1037 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1038 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1039 /*
1040 * When new data is acked, open the congestion window.
1041 * If the window gives us less than ssthresh packets
1042 * in flight, open exponentially (maxseg per packet).
1043 * Otherwise open linearly: maxseg per window
1044 * (maxseg^2 / cwnd per packet), plus a constant
1045 * fraction of a packet (maxseg/8) to help larger windows
1046 * open quickly enough.
1047 */
1048 {
1049 register u_int cw = tp->snd_cwnd;
1050 register u_int incr = tp->t_maxseg;
1051
1052 if (cw > tp->snd_ssthresh)
1053 incr = incr * incr / cw;
1054 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1055 }
1056 if (acked > so->so_snd.sb_cc) {
1057 tp->snd_wnd -= so->so_snd.sb_cc;
1058 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1059 ourfinisacked = 1;
1060 } else {
1061 sbdrop(&so->so_snd, acked);
1062 tp->snd_wnd -= acked;
1063 ourfinisacked = 0;
1064 }
1065 if (sb_notify(&so->so_snd))
1066 sowwakeup(so);
1067 tp->snd_una = ti->ti_ack;
1068 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1069 tp->snd_nxt = tp->snd_una;
1070
1071 switch (tp->t_state) {
1072
1073 /*
1074 * In FIN_WAIT_1 STATE in addition to the processing
1075 * for the ESTABLISHED state if our FIN is now acknowledged
1076 * then enter FIN_WAIT_2.
1077 */
1078 case TCPS_FIN_WAIT_1:
1079 if (ourfinisacked) {
1080 /*
1081 * If we can't receive any more
1082 * data, then closing user can proceed.
1083 * Starting the timer is contrary to the
1084 * specification, but if we don't get a FIN
1085 * we'll hang forever.
1086 */
1087 if (so->so_state & SS_CANTRCVMORE) {
1088 soisdisconnected(so);
1089 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1090 }
1091 tp->t_state = TCPS_FIN_WAIT_2;
1092 }
1093 break;
1094
1095 /*
1096 * In CLOSING STATE in addition to the processing for
1097 * the ESTABLISHED state if the ACK acknowledges our FIN
1098 * then enter the TIME-WAIT state, otherwise ignore
1099 * the segment.
1100 */
1101 case TCPS_CLOSING:
1102 if (ourfinisacked) {
1103 tp->t_state = TCPS_TIME_WAIT;
1104 tcp_canceltimers(tp);
1105 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1106 soisdisconnected(so);
1107 }
1108 break;
1109
1110 /*
1111 * In LAST_ACK, we may still be waiting for data to drain
1112 * and/or to be acked, as well as for the ack of our FIN.
1113 * If our FIN is now acknowledged, delete the TCB,
1114 * enter the closed state and return.
1115 */
1116 case TCPS_LAST_ACK:
1117 if (ourfinisacked) {
1118 tp = tcp_close(tp);
1119 goto drop;
1120 }
1121 break;
1122
1123 /*
1124 * In TIME_WAIT state the only thing that should arrive
1125 * is a retransmission of the remote FIN. Acknowledge
1126 * it and restart the finack timer.
1127 */
1128 case TCPS_TIME_WAIT:
1129 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1130 goto dropafterack;
1131 }
1132 }
1133
1134 step6:
1135 /*
1136 * Update window information.
1137 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1138 */
1139 if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1140 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1141 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1142 /* keep track of pure window updates */
1143 if (ti->ti_len == 0 &&
1144 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1145 tcpstat.tcps_rcvwinupd++;
1146 tp->snd_wnd = tiwin;
1147 tp->snd_wl1 = ti->ti_seq;
1148 tp->snd_wl2 = ti->ti_ack;
1149 if (tp->snd_wnd > tp->max_sndwnd)
1150 tp->max_sndwnd = tp->snd_wnd;
1151 needoutput = 1;
1152 }
1153
1154 /*
1155 * Process segments with URG.
1156 */
1157 if ((tiflags & TH_URG) && ti->ti_urp &&
1158 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1159 /*
1160 * This is a kludge, but if we receive and accept
1161 * random urgent pointers, we'll crash in
1162 * soreceive. It's hard to imagine someone
1163 * actually wanting to send this much urgent data.
1164 */
1165 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1166 ti->ti_urp = 0; /* XXX */
1167 tiflags &= ~TH_URG; /* XXX */
1168 goto dodata; /* XXX */
1169 }
1170 /*
1171 * If this segment advances the known urgent pointer,
1172 * then mark the data stream. This should not happen
1173 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1174 * a FIN has been received from the remote side.
1175 * In these states we ignore the URG.
1176 *
1177 * According to RFC961 (Assigned Protocols),
1178 * the urgent pointer points to the last octet
1179 * of urgent data. We continue, however,
1180 * to consider it to indicate the first octet
1181 * of data past the urgent section as the original
1182 * spec states (in one of two places).
1183 */
1184 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1185 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1186 so->so_oobmark = so->so_rcv.sb_cc +
1187 (tp->rcv_up - tp->rcv_nxt) - 1;
1188 if (so->so_oobmark == 0)
1189 so->so_state |= SS_RCVATMARK;
1190 sohasoutofband(so);
1191 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1192 }
1193 /*
1194 * Remove out of band data so doesn't get presented to user.
1195 * This can happen independent of advancing the URG pointer,
1196 * but if two URG's are pending at once, some out-of-band
1197 * data may creep in... ick.
1198 */
1199 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1200 #ifdef SO_OOBINLINE
1201 && (so->so_options & SO_OOBINLINE) == 0
1202 #endif
1203 )
1204 tcp_pulloutofband(so, ti, m);
1205 } else
1206 /*
1207 * If no out of band data is expected,
1208 * pull receive urgent pointer along
1209 * with the receive window.
1210 */
1211 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1212 tp->rcv_up = tp->rcv_nxt;
1213 dodata: /* XXX */
1214
1215 /*
1216 * Process the segment text, merging it into the TCP sequencing queue,
1217 * and arranging for acknowledgment of receipt if necessary.
1218 * This process logically involves adjusting tp->rcv_wnd as data
1219 * is presented to the user (this happens in tcp_usrreq.c,
1220 * case PRU_RCVD). If a FIN has already been received on this
1221 * connection then we just ignore the text.
1222 */
1223 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1224 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1225 TCP_REASS(tp, ti, m, so, tiflags);
1226 /*
1227 * Note the amount of data that peer has sent into
1228 * our window, in order to estimate the sender's
1229 * buffer size.
1230 */
1231 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1232 } else {
1233 m_freem(m);
1234 tiflags &= ~TH_FIN;
1235 }
1236
1237 /*
1238 * If FIN is received ACK the FIN and let the user know
1239 * that the connection is closing. Ignore a FIN received before
1240 * the connection is fully established.
1241 */
1242 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1243 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1244 socantrcvmore(so);
1245 tp->t_flags |= TF_ACKNOW;
1246 tp->rcv_nxt++;
1247 }
1248 switch (tp->t_state) {
1249
1250 /*
1251 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1252 */
1253 case TCPS_ESTABLISHED:
1254 tp->t_state = TCPS_CLOSE_WAIT;
1255 break;
1256
1257 /*
1258 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1259 * enter the CLOSING state.
1260 */
1261 case TCPS_FIN_WAIT_1:
1262 tp->t_state = TCPS_CLOSING;
1263 break;
1264
1265 /*
1266 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1267 * starting the time-wait timer, turning off the other
1268 * standard timers.
1269 */
1270 case TCPS_FIN_WAIT_2:
1271 tp->t_state = TCPS_TIME_WAIT;
1272 tcp_canceltimers(tp);
1273 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1274 soisdisconnected(so);
1275 break;
1276
1277 /*
1278 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1279 */
1280 case TCPS_TIME_WAIT:
1281 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1282 break;
1283 }
1284 }
1285 if (so->so_options & SO_DEBUG)
1286 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1287
1288 /*
1289 * Return any desired output.
1290 */
1291 if (needoutput || (tp->t_flags & TF_ACKNOW))
1292 (void) tcp_output(tp);
1293 return;
1294
1295 dropafterack:
1296 /*
1297 * Generate an ACK dropping incoming segment if it occupies
1298 * sequence space, where the ACK reflects our state.
1299 */
1300 if (tiflags & TH_RST)
1301 goto drop;
1302 m_freem(m);
1303 tp->t_flags |= TF_ACKNOW;
1304 (void) tcp_output(tp);
1305 return;
1306
1307 dropwithreset:
1308 /*
1309 * Generate a RST, dropping incoming segment.
1310 * Make ACK acceptable to originator of segment.
1311 * Don't bother to respond if destination was broadcast/multicast.
1312 */
1313 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1314 IN_MULTICAST(ti->ti_dst.s_addr))
1315 goto drop;
1316 if (tiflags & TH_ACK)
1317 (void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1318 else {
1319 if (tiflags & TH_SYN)
1320 ti->ti_len++;
1321 (void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1322 TH_RST|TH_ACK);
1323 }
1324 return;
1325
1326 drop:
1327 /*
1328 * Drop space held by incoming segment and return.
1329 */
1330 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1331 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1332 m_freem(m);
1333 return;
1334 #ifndef TUBA_INCLUDE
1335 }
1336
1337 void
1338 tcp_dooptions(tp, cp, cnt, ti, oi)
1339 struct tcpcb *tp;
1340 u_char *cp;
1341 int cnt;
1342 struct tcpiphdr *ti;
1343 struct tcp_opt_info *oi;
1344 {
1345 u_int16_t mss;
1346 int opt, optlen;
1347
1348 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1349 opt = cp[0];
1350 if (opt == TCPOPT_EOL)
1351 break;
1352 if (opt == TCPOPT_NOP)
1353 optlen = 1;
1354 else {
1355 optlen = cp[1];
1356 if (optlen <= 0)
1357 break;
1358 }
1359 switch (opt) {
1360
1361 default:
1362 continue;
1363
1364 case TCPOPT_MAXSEG:
1365 if (optlen != TCPOLEN_MAXSEG)
1366 continue;
1367 if (!(ti->ti_flags & TH_SYN))
1368 continue;
1369 bcopy(cp + 2, &mss, sizeof(mss));
1370 oi->maxseg = ntohs(mss);
1371 break;
1372
1373 case TCPOPT_WINDOW:
1374 if (optlen != TCPOLEN_WINDOW)
1375 continue;
1376 if (!(ti->ti_flags & TH_SYN))
1377 continue;
1378 tp->t_flags |= TF_RCVD_SCALE;
1379 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1380 break;
1381
1382 case TCPOPT_TIMESTAMP:
1383 if (optlen != TCPOLEN_TIMESTAMP)
1384 continue;
1385 oi -> ts_present = 1;
1386 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1387 NTOHL(oi->ts_val);
1388 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1389 NTOHL(oi->ts_ecr);
1390
1391 /*
1392 * A timestamp received in a SYN makes
1393 * it ok to send timestamp requests and replies.
1394 */
1395 if (ti->ti_flags & TH_SYN) {
1396 tp->t_flags |= TF_RCVD_TSTMP;
1397 tp->ts_recent = oi->ts_val;
1398 tp->ts_recent_age = tcp_now;
1399 }
1400 break;
1401 }
1402 }
1403 }
1404
1405 /*
1406 * Pull out of band byte out of a segment so
1407 * it doesn't appear in the user's data queue.
1408 * It is still reflected in the segment length for
1409 * sequencing purposes.
1410 */
1411 void
1412 tcp_pulloutofband(so, ti, m)
1413 struct socket *so;
1414 struct tcpiphdr *ti;
1415 register struct mbuf *m;
1416 {
1417 int cnt = ti->ti_urp - 1;
1418
1419 while (cnt >= 0) {
1420 if (m->m_len > cnt) {
1421 char *cp = mtod(m, caddr_t) + cnt;
1422 struct tcpcb *tp = sototcpcb(so);
1423
1424 tp->t_iobc = *cp;
1425 tp->t_oobflags |= TCPOOB_HAVEDATA;
1426 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1427 m->m_len--;
1428 return;
1429 }
1430 cnt -= m->m_len;
1431 m = m->m_next;
1432 if (m == 0)
1433 break;
1434 }
1435 panic("tcp_pulloutofband");
1436 }
1437
1438 /*
1439 * Collect new round-trip time estimate
1440 * and update averages and current timeout.
1441 */
1442 void
1443 tcp_xmit_timer(tp, rtt)
1444 register struct tcpcb *tp;
1445 short rtt;
1446 {
1447 register short delta;
1448
1449 tcpstat.tcps_rttupdated++;
1450 --rtt;
1451 if (tp->t_srtt != 0) {
1452 /*
1453 * srtt is stored as fixed point with 3 bits after the
1454 * binary point (i.e., scaled by 8). The following magic
1455 * is equivalent to the smoothing algorithm in rfc793 with
1456 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1457 * point). Adjust rtt to origin 0.
1458 */
1459 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1460 if ((tp->t_srtt += delta) <= 0)
1461 tp->t_srtt = 1 << 2;
1462 /*
1463 * We accumulate a smoothed rtt variance (actually, a
1464 * smoothed mean difference), then set the retransmit
1465 * timer to smoothed rtt + 4 times the smoothed variance.
1466 * rttvar is stored as fixed point with 2 bits after the
1467 * binary point (scaled by 4). The following is
1468 * equivalent to rfc793 smoothing with an alpha of .75
1469 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1470 * rfc793's wired-in beta.
1471 */
1472 if (delta < 0)
1473 delta = -delta;
1474 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1475 if ((tp->t_rttvar += delta) <= 0)
1476 tp->t_rttvar = 1 << 2;
1477 } else {
1478 /*
1479 * No rtt measurement yet - use the unsmoothed rtt.
1480 * Set the variance to half the rtt (so our first
1481 * retransmit happens at 3*rtt).
1482 */
1483 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1484 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1485 }
1486 tp->t_rtt = 0;
1487 tp->t_rxtshift = 0;
1488
1489 /*
1490 * the retransmit should happen at rtt + 4 * rttvar.
1491 * Because of the way we do the smoothing, srtt and rttvar
1492 * will each average +1/2 tick of bias. When we compute
1493 * the retransmit timer, we want 1/2 tick of rounding and
1494 * 1 extra tick because of +-1/2 tick uncertainty in the
1495 * firing of the timer. The bias will give us exactly the
1496 * 1.5 tick we need. But, because the bias is
1497 * statistical, we have to test that we don't drop below
1498 * the minimum feasible timer (which is 2 ticks).
1499 */
1500 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1501 rtt + 2, TCPTV_REXMTMAX);
1502
1503 /*
1504 * We received an ack for a packet that wasn't retransmitted;
1505 * it is probably safe to discard any error indications we've
1506 * received recently. This isn't quite right, but close enough
1507 * for now (a route might have failed after we sent a segment,
1508 * and the return path might not be symmetrical).
1509 */
1510 tp->t_softerror = 0;
1511 }
1512
1513 /*
1514 * Determine a reasonable value for maxseg size.
1515 * If the route is known, check route for mtu.
1516 * If none, use an mss that can be handled on the outgoing
1517 * interface without forcing IP to fragment; if bigger than
1518 * an mbuf cluster (MCLBYTES), round down to nearest multiple of MCLBYTES
1519 * to utilize large mbufs. If no route is found, route has no mtu,
1520 * or the destination isn't local, use a default, hopefully conservative
1521 * size (usually 512 or the default IP max size, but no more than the mtu
1522 * of the interface), as we can't discover anything about intervening
1523 * gateways or networks. We also initialize the congestion/slow start
1524 * window to be a single segment if the destination isn't local.
1525 * While looking at the routing entry, we also initialize other path-dependent
1526 * parameters from pre-set or cached values in the routing entry.
1527 */
1528 int
1529 tcp_mss(tp, offer)
1530 register struct tcpcb *tp;
1531 u_int offer;
1532 {
1533 struct route *ro;
1534 register struct rtentry *rt;
1535 struct ifnet *ifp;
1536 register int rtt, mss;
1537 u_long bufsize;
1538 struct inpcb *inp;
1539 struct socket *so;
1540 extern int tcp_mssdflt;
1541
1542 inp = tp->t_inpcb;
1543 ro = &inp->inp_route;
1544
1545 if ((rt = ro->ro_rt) == (struct rtentry *)0) {
1546 /* No route yet, so try to acquire one */
1547 if (!in_nullhost(inp->inp_faddr)) {
1548 ro->ro_dst.sa_family = AF_INET;
1549 ro->ro_dst.sa_len = sizeof(ro->ro_dst);
1550 satosin(&ro->ro_dst)->sin_addr = inp->inp_faddr;
1551 rtalloc(ro);
1552 }
1553 if ((rt = ro->ro_rt) == (struct rtentry *)0)
1554 return (tcp_mssdflt);
1555 }
1556 ifp = rt->rt_ifp;
1557 so = inp->inp_socket;
1558
1559 #ifdef RTV_MTU /* if route characteristics exist ... */
1560 /*
1561 * While we're here, check if there's an initial rtt
1562 * or rttvar. Convert from the route-table units
1563 * to scaled multiples of the slow timeout timer.
1564 */
1565 if (tp->t_srtt == 0 && (rtt = rt->rt_rmx.rmx_rtt)) {
1566 /*
1567 * XXX the lock bit for MTU indicates that the value
1568 * is also a minimum value; this is subject to time.
1569 */
1570 if (rt->rt_rmx.rmx_locks & RTV_RTT)
1571 tp->t_rttmin = rtt / (RTM_RTTUNIT / PR_SLOWHZ);
1572 tp->t_srtt = rtt /
1573 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTT_SHIFT + 2));
1574 if (rt->rt_rmx.rmx_rttvar)
1575 tp->t_rttvar = rt->rt_rmx.rmx_rttvar /
1576 ((RTM_RTTUNIT / PR_SLOWHZ) >> (TCP_RTTVAR_SHIFT + 2));
1577 else
1578 /* default variation is +- 1 rtt */
1579 tp->t_rttvar =
1580 tp->t_srtt >> (TCP_RTT_SHIFT - TCP_RTTVAR_SHIFT);
1581 TCPT_RANGESET(tp->t_rxtcur,
1582 ((tp->t_srtt >> 2) + tp->t_rttvar) >> (1 + 2),
1583 tp->t_rttmin, TCPTV_REXMTMAX);
1584 }
1585 /*
1586 * if there's an mtu associated with the route, use it
1587 */
1588 if (rt->rt_rmx.rmx_mtu)
1589 mss = rt->rt_rmx.rmx_mtu - sizeof(struct tcpiphdr);
1590 else
1591 #endif /* RTV_MTU */
1592 {
1593 mss = ifp->if_mtu - sizeof(struct tcpiphdr);
1594 #if (MCLBYTES & (MCLBYTES - 1)) == 0
1595 if (mss > MCLBYTES)
1596 mss &= ~(MCLBYTES-1);
1597 #else
1598 if (mss > MCLBYTES)
1599 mss = mss / MCLBYTES * MCLBYTES;
1600 #endif
1601 if (!in_localaddr(inp->inp_faddr))
1602 mss = min(mss, tcp_mssdflt);
1603 }
1604 /*
1605 * The current mss, t_maxseg, is initialized to the default value.
1606 * If we compute a smaller value, reduce the current mss.
1607 * If we compute a larger value, return it for use in sending
1608 * a max seg size option, but don't store it for use
1609 * unless we received an offer at least that large from peer.
1610 * However, do not accept offers under 32 bytes.
1611 */
1612 if (offer)
1613 mss = min(mss, offer);
1614 mss = max(mss, 32); /* sanity */
1615 if (mss < tp->t_maxseg || offer != 0) {
1616 /*
1617 * If there's a pipesize, change the socket buffer
1618 * to that size. Make the socket buffers an integral
1619 * number of mss units; if the mss is larger than
1620 * the socket buffer, decrease the mss.
1621 */
1622 #ifdef RTV_SPIPE
1623 if ((bufsize = rt->rt_rmx.rmx_sendpipe) == 0)
1624 #endif
1625 bufsize = so->so_snd.sb_hiwat;
1626 if (bufsize < mss)
1627 mss = bufsize;
1628 else {
1629 bufsize = roundup(bufsize, mss);
1630 if (bufsize > sb_max)
1631 bufsize = sb_max;
1632 (void)sbreserve(&so->so_snd, bufsize);
1633 }
1634 tp->t_maxseg = mss;
1635
1636 #ifdef RTV_RPIPE
1637 if ((bufsize = rt->rt_rmx.rmx_recvpipe) == 0)
1638 #endif
1639 bufsize = so->so_rcv.sb_hiwat;
1640 if (bufsize > mss) {
1641 bufsize = roundup(bufsize, mss);
1642 if (bufsize > sb_max)
1643 bufsize = sb_max;
1644 (void)sbreserve(&so->so_rcv, bufsize);
1645 }
1646 }
1647 tp->snd_cwnd = mss;
1648
1649 #ifdef RTV_SSTHRESH
1650 if (rt->rt_rmx.rmx_ssthresh) {
1651 /*
1652 * There's some sort of gateway or interface
1653 * buffer limit on the path. Use this to set
1654 * the slow start threshhold, but set the
1655 * threshold to no less than 2*mss.
1656 */
1657 tp->snd_ssthresh = max(2 * mss, rt->rt_rmx.rmx_ssthresh);
1658 }
1659 #endif /* RTV_MTU */
1660 return (mss);
1661 }
1662
1663 /*
1664 * TCP compressed state engine. Currently used to hold compressed
1665 * state for SYN_RECEIVED.
1666 */
1667
1668 u_long syn_cache_count;
1669 u_int32_t syn_hash1, syn_hash2;
1670
1671 #define SYN_HASH(sa, sp, dp) \
1672 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1673 ((u_int32_t)(sp)))^syn_hash2)) \
1674 & 0x7fffffff)
1675
1676 #define eptosp(ep, e, s) ((struct s *)((char *)(ep) - \
1677 ((char *)(&((struct s *)0)->e) - (char *)0)))
1678
1679 #define SYN_CACHE_RM(sc, p, scp) { \
1680 *(p) = (sc)->sc_next; \
1681 if ((sc)->sc_next) \
1682 (sc)->sc_next->sc_timer += (sc)->sc_timer; \
1683 else { \
1684 (scp)->sch_timer_sum -= (sc)->sc_timer; \
1685 if ((scp)->sch_timer_sum <= 0) \
1686 (scp)->sch_timer_sum = -1; \
1687 /* If need be, fix up the last pointer */ \
1688 if ((scp)->sch_first) \
1689 (scp)->sch_last = eptosp(p, sc_next, syn_cache); \
1690 } \
1691 (scp)->sch_length--; \
1692 syn_cache_count--; \
1693 }
1694
1695 extern int tcp_syn_bucket_limit;
1696 extern int tcp_syn_cache_limit;
1697
1698 void
1699 syn_cache_insert(sc, prevp, headp)
1700 struct syn_cache *sc;
1701 struct syn_cache ***prevp;
1702 struct syn_cache_head **headp;
1703 {
1704 struct syn_cache_head *scp, *scp2, *sce;
1705 struct syn_cache *sc2;
1706 static u_int timeo_val;
1707 int s;
1708
1709 /* Initialize the hash secrets when adding the first entry */
1710 if (syn_cache_count == 0) {
1711 struct timeval tv;
1712 microtime(&tv);
1713 syn_hash1 = random() ^ (u_long)≻
1714 syn_hash2 = random() ^ tv.tv_usec;
1715 }
1716
1717 sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1718 sc->sc_next = NULL;
1719 scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1720 *headp = scp;
1721
1722 /*
1723 * Make sure that we don't overflow the per-bucket
1724 * limit or the total cache size limit.
1725 */
1726 s = splsoftnet();
1727 if (scp->sch_length >= tcp_syn_bucket_limit) {
1728 tcpstat.tcps_sc_bucketoverflow++;
1729 sc2 = scp->sch_first;
1730 scp->sch_first = sc2->sc_next;
1731 FREE(sc2, M_PCB);
1732 } else if (syn_cache_count >= tcp_syn_cache_limit) {
1733 tcpstat.tcps_sc_overflowed++;
1734 /*
1735 * The cache is full. Toss the first (i.e, oldest)
1736 * element in this bucket.
1737 */
1738 scp2 = scp;
1739 if (scp2->sch_first == NULL) {
1740 sce = &tcp_syn_cache[tcp_syn_cache_size];
1741 for (++scp2; scp2 != scp; scp2++) {
1742 if (scp2 >= sce)
1743 scp2 = &tcp_syn_cache[0];
1744 if (scp2->sch_first)
1745 break;
1746 }
1747 }
1748 sc2 = scp2->sch_first;
1749 if (sc2 == NULL) {
1750 FREE(sc, M_PCB);
1751 return;
1752 }
1753 if ((scp2->sch_first = sc2->sc_next) == NULL)
1754 scp2->sch_last = NULL;
1755 else
1756 sc2->sc_next->sc_timer += sc2->sc_timer;
1757 FREE(sc2, M_PCB);
1758 } else {
1759 scp->sch_length++;
1760 syn_cache_count++;
1761 }
1762 tcpstat.tcps_sc_added++;
1763
1764 /*
1765 * Put it into the bucket.
1766 */
1767 if (scp->sch_first == NULL)
1768 *prevp = &scp->sch_first;
1769 else {
1770 *prevp = &scp->sch_last->sc_next;
1771 tcpstat.tcps_sc_collisions++;
1772 }
1773 **prevp = sc;
1774 scp->sch_last = sc;
1775
1776 /*
1777 * If the timeout value has changed
1778 * 1) force it to fit in a u_char
1779 * 2) Run the timer routine to truncate all
1780 * existing entries to the new timeout value.
1781 */
1782 if (timeo_val != tcp_syn_cache_timeo) {
1783 tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX);
1784 if (timeo_val > tcp_syn_cache_timeo)
1785 syn_cache_timer(timeo_val - tcp_syn_cache_timeo);
1786 timeo_val = tcp_syn_cache_timeo;
1787 }
1788 if (scp->sch_timer_sum > 0)
1789 sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum;
1790 else if (scp->sch_timer_sum == 0) {
1791 /* When the bucket timer is 0, it is not in the cache queue. */
1792 scp->sch_headq = tcp_syn_cache_first;
1793 tcp_syn_cache_first = scp;
1794 sc->sc_timer = tcp_syn_cache_timeo;
1795 }
1796 scp->sch_timer_sum = tcp_syn_cache_timeo;
1797 splx(s);
1798 }
1799
1800 /*
1801 * Walk down the cache list, decrementing the timer of
1802 * the first element on each entry. If the timer goes
1803 * to zero, remove it and all successive entries with
1804 * a zero timer.
1805 */
1806 void
1807 syn_cache_timer(interval)
1808 int interval;
1809 {
1810 struct syn_cache_head *scp, **pscp;
1811 struct syn_cache *sc, *scn;
1812 int n, s;
1813
1814 pscp = &tcp_syn_cache_first;
1815 scp = tcp_syn_cache_first;
1816 s = splsoftnet();
1817 while (scp) {
1818 /*
1819 * Remove any empty hash buckets
1820 * from the cache queue.
1821 */
1822 if ((sc = scp->sch_first) == NULL) {
1823 *pscp = scp->sch_headq;
1824 scp->sch_headq = NULL;
1825 scp->sch_timer_sum = 0;
1826 scp->sch_first = scp->sch_last = NULL;
1827 scp->sch_length = 0;
1828 scp = *pscp;
1829 continue;
1830 }
1831
1832 scp->sch_timer_sum -= interval;
1833 if (scp->sch_timer_sum <= 0)
1834 scp->sch_timer_sum = -1;
1835 n = interval;
1836 while (sc->sc_timer <= n) {
1837 n -= sc->sc_timer;
1838 scn = sc->sc_next;
1839 tcpstat.tcps_sc_timed_out++;
1840 syn_cache_count--;
1841 FREE(sc, M_PCB);
1842 scp->sch_length--;
1843 if ((sc = scn) == NULL)
1844 break;
1845 }
1846 if ((scp->sch_first = sc) != NULL) {
1847 sc->sc_timer -= n;
1848 pscp = &scp->sch_headq;
1849 scp = scp->sch_headq;
1850 }
1851 }
1852 splx(s);
1853 }
1854
1855 /*
1856 * Find an entry in the syn cache.
1857 */
1858 struct syn_cache *
1859 syn_cache_lookup(ti, prevp, headp)
1860 struct tcpiphdr *ti;
1861 struct syn_cache ***prevp;
1862 struct syn_cache_head **headp;
1863 {
1864 struct syn_cache *sc, **prev;
1865 struct syn_cache_head *head;
1866 u_int32_t hash;
1867 int s;
1868
1869 hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
1870
1871 head = &tcp_syn_cache[hash % tcp_syn_cache_size];
1872 *headp = head;
1873 prev = &head->sch_first;
1874 s = splsoftnet();
1875 for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) {
1876 if (sc->sc_hash != hash)
1877 continue;
1878 if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
1879 sc->sc_sport == ti->ti_sport &&
1880 sc->sc_dport == ti->ti_dport &&
1881 sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
1882 *prevp = prev;
1883 splx(s);
1884 return (sc);
1885 }
1886 }
1887 splx(s);
1888 return (NULL);
1889 }
1890
1891 /*
1892 * This function gets called when we receive an ACK for a
1893 * socket in the LISTEN state. We look up the connection
1894 * in the syn cache, and if its there, we pull it out of
1895 * the cache and turn it into a full-blown connection in
1896 * the SYN-RECEIVED state.
1897 *
1898 * The return values may not be immediately obvious, and their effects
1899 * can be subtle, so here they are:
1900 *
1901 * NULL SYN was not found in cache; caller should drop the
1902 * packet and send an RST.
1903 *
1904 * -1 We were unable to create the new connection, and are
1905 * aborting it. An ACK,RST is being sent to the peer
1906 * (unless we got screwey sequence numbners; see below),
1907 * because the 3-way handshake has been completed. Caller
1908 * should not free the mbuf, since we may be using it. If
1909 * we are not, we will free it.
1910 *
1911 * Otherwise, the return value is a pointer to the new socket
1912 * associated with the connection.
1913 */
1914 struct socket *
1915 syn_cache_get(so, m)
1916 struct socket *so;
1917 struct mbuf *m;
1918 {
1919 struct syn_cache *sc, **sc_prev;
1920 struct syn_cache_head *head;
1921 register struct inpcb *inp;
1922 register struct tcpcb *tp = 0;
1923 register struct tcpiphdr *ti;
1924 struct sockaddr_in *sin;
1925 struct mbuf *am;
1926 long win;
1927 int s;
1928
1929 ti = mtod(m, struct tcpiphdr *);
1930 s = splsoftnet();
1931 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1932 splx(s);
1933 return (NULL);
1934 }
1935
1936 win = sbspace(&so->so_rcv);
1937 if (win > TCP_MAXWIN)
1938 win = TCP_MAXWIN;
1939
1940 /*
1941 * Verify the sequence and ack numbers.
1942 */
1943 if ((ti->ti_ack != sc->sc_iss + 1) ||
1944 SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
1945 SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
1946 (void) syn_cache_respond(sc, m, ti, win, 0);
1947 splx(s);
1948 return ((struct socket *)(-1));
1949 }
1950
1951 /* Remove this cache entry */
1952 SYN_CACHE_RM(sc, sc_prev, head);
1953 splx(s);
1954
1955 /*
1956 * Ok, create the full blown connection, and set things up
1957 * as they would have been set up if we had created the
1958 * connection when the SYN arrived. If we can't create
1959 * the connection, abort it.
1960 */
1961 so = sonewconn(so, SS_ISCONNECTED);
1962 if (so == NULL)
1963 goto resetandabort;
1964
1965 inp = sotoinpcb(so);
1966 inp->inp_laddr = sc->sc_dst;
1967 inp->inp_lport = sc->sc_dport;
1968 in_pcbstate(inp, INP_BOUND);
1969 #if BSD>=43
1970 inp->inp_options = ip_srcroute();
1971 #endif
1972
1973 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
1974 if (am == NULL) {
1975 m_freem(m);
1976 goto resetandabort;
1977 }
1978 am->m_len = sizeof(struct sockaddr_in);
1979 sin = mtod(am, struct sockaddr_in *);
1980 sin->sin_family = AF_INET;
1981 sin->sin_len = sizeof(*sin);
1982 sin->sin_addr = sc->sc_src;
1983 sin->sin_port = sc->sc_sport;
1984 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1985 if (in_pcbconnect(inp, am)) {
1986 (void) m_free(am);
1987 m_freem(m);
1988 goto resetandabort;
1989 }
1990 (void) m_free(am);
1991
1992 tp = intotcpcb(inp);
1993 if (sc->sc_request_r_scale != 15) {
1994 tp->requested_s_scale = sc->sc_requested_s_scale;
1995 tp->request_r_scale = sc->sc_request_r_scale;
1996 tp->snd_scale = sc->sc_requested_s_scale;
1997 tp->rcv_scale = sc->sc_request_r_scale;
1998 tp->t_flags |= TF_RCVD_SCALE;
1999 }
2000 if (sc->sc_tstmp)
2001 tp->t_flags |= TF_RCVD_TSTMP;
2002
2003 tp->t_template = tcp_template(tp);
2004 if (tp->t_template == 0) {
2005 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
2006 so = NULL;
2007 m_freem(m);
2008 goto abort;
2009 }
2010
2011 tp->iss = sc->sc_iss;
2012 tp->irs = sc->sc_irs;
2013 tcp_sendseqinit(tp);
2014 tcp_rcvseqinit(tp);
2015 tp->t_state = TCPS_SYN_RECEIVED;
2016 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
2017 tcpstat.tcps_accepts++;
2018
2019 tcp_mss(tp, sc->sc_peermaxseg);
2020 tp->snd_wl1 = sc->sc_irs;
2021 tp->rcv_up = sc->sc_irs + 1;
2022
2023 /*
2024 * This is what whould have happened in tcp_ouput() when
2025 * the SYN,ACK was sent.
2026 */
2027 tp->snd_up = tp->snd_una;
2028 tp->snd_max = tp->snd_nxt = tp->iss+1;
2029 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
2030 if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
2031 tp->rcv_adv = tp->rcv_nxt + win;
2032 tp->last_ack_sent = tp->rcv_nxt;
2033
2034 tcpstat.tcps_sc_completed++;
2035 FREE(sc, M_PCB);
2036 return (so);
2037
2038 resetandabort:
2039 (void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
2040 (tcp_seq)0, TH_RST|TH_ACK);
2041 abort:
2042 if (so != NULL)
2043 (void) soabort(so);
2044 FREE(sc, M_PCB);
2045 tcpstat.tcps_sc_aborted++;
2046 return ((struct socket *)(-1));
2047 }
2048
2049 /*
2050 * This function is called when we get a RST for a
2051 * non-existant connection, so that we can see if the
2052 * connection is in the syn cache. If it is, zap it.
2053 */
2054
2055 void
2056 syn_cache_reset(ti)
2057 register struct tcpiphdr *ti;
2058 {
2059 struct syn_cache *sc, **sc_prev;
2060 struct syn_cache_head *head;
2061 int s = splsoftnet();
2062
2063 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
2064 splx(s);
2065 return;
2066 }
2067 if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
2068 SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
2069 splx(s);
2070 return;
2071 }
2072 SYN_CACHE_RM(sc, sc_prev, head);
2073 splx(s);
2074 tcpstat.tcps_sc_reset++;
2075 FREE(sc, M_PCB);
2076 }
2077
2078 void
2079 syn_cache_unreach(ip, th)
2080 struct ip *ip;
2081 struct tcphdr *th;
2082 {
2083 struct syn_cache *sc, **sc_prev;
2084 struct syn_cache_head *head;
2085 struct tcpiphdr ti2;
2086 int s;
2087
2088 ti2.ti_src.s_addr = ip->ip_dst.s_addr;
2089 ti2.ti_dst.s_addr = ip->ip_src.s_addr;
2090 ti2.ti_sport = th->th_dport;
2091 ti2.ti_dport = th->th_sport;
2092
2093 s = splsoftnet();
2094 if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) {
2095 splx(s);
2096 return;
2097 }
2098 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
2099 if (ntohl (th->th_seq) != sc->sc_iss) {
2100 splx(s);
2101 return;
2102 }
2103 SYN_CACHE_RM(sc, sc_prev, head);
2104 splx(s);
2105 tcpstat.tcps_sc_unreach++;
2106 FREE(sc, M_PCB);
2107 }
2108
2109 /*
2110 * Given a LISTEN socket and an inbound SYN request, add
2111 * this to the syn cache, and send back a segment:
2112 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
2113 * to the source.
2114 */
2115
2116 int
2117 syn_cache_add(so, m, optp, optlen, oi)
2118 struct socket *so;
2119 struct mbuf *m;
2120 u_char *optp;
2121 int optlen;
2122 struct tcp_opt_info *oi;
2123 {
2124 register struct tcpiphdr *ti;
2125 struct tcpcb tb;
2126 long win;
2127 struct syn_cache *sc, **sc_prev;
2128 struct syn_cache_head *scp;
2129 extern int tcp_do_rfc1323;
2130
2131 ti = mtod(m, struct tcpiphdr *);
2132
2133 /*
2134 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2135 * in_broadcast() should never return true on a received
2136 * packet with M_BCAST not set.
2137 */
2138 if (m->m_flags & (M_BCAST|M_MCAST) ||
2139 IN_MULTICAST(ti->ti_src.s_addr) ||
2140 IN_MULTICAST(ti->ti_dst.s_addr))
2141 return (0);
2142
2143 /*
2144 * Initialize some local state.
2145 */
2146 win = sbspace(&so->so_rcv);
2147 if (win > TCP_MAXWIN)
2148 win = TCP_MAXWIN;
2149
2150 if (optp) {
2151 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2152 tcp_dooptions(&tb, optp, optlen, ti, oi);
2153 } else
2154 tb.t_flags = 0;
2155
2156 /*
2157 * See if we already have an entry for this connection.
2158 */
2159 if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) {
2160 tcpstat.tcps_sc_dupesyn++;
2161 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2162 tcpstat.tcps_sndacks++;
2163 tcpstat.tcps_sndtotal++;
2164 }
2165 return (1);
2166 }
2167
2168 MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT);
2169 if (sc == NULL)
2170 return (0);
2171 /*
2172 * Fill in the cache, and put the necessary TCP
2173 * options into the reply.
2174 */
2175 sc->sc_src.s_addr = ti->ti_src.s_addr;
2176 sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2177 sc->sc_sport = ti->ti_sport;
2178 sc->sc_dport = ti->ti_dport;
2179 sc->sc_irs = ti->ti_seq;
2180 sc->sc_iss = tcp_iss;
2181 tcp_iss += TCP_ISSINCR/2;
2182 sc->sc_peermaxseg = oi->maxseg;
2183 sc->sc_tstmp = (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP)) ? 1 : 0;
2184 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2185 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2186 sc->sc_requested_s_scale = tb.requested_s_scale;
2187 sc->sc_request_r_scale = 0;
2188 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2189 TCP_MAXWIN << sc->sc_request_r_scale <
2190 so->so_rcv.sb_hiwat)
2191 sc->sc_request_r_scale++;
2192 } else {
2193 sc->sc_requested_s_scale = 15;
2194 sc->sc_request_r_scale = 15;
2195 }
2196 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2197 syn_cache_insert(sc, &sc_prev, &scp);
2198 tcpstat.tcps_sndacks++;
2199 tcpstat.tcps_sndtotal++;
2200 } else {
2201 FREE(sc, M_PCB);
2202 tcpstat.tcps_sc_dropped++;
2203 }
2204 return (1);
2205 }
2206
2207 int
2208 syn_cache_respond(sc, m, ti, win, ts)
2209 struct syn_cache *sc;
2210 struct mbuf *m;
2211 register struct tcpiphdr *ti;
2212 long win;
2213 u_long ts;
2214 {
2215 u_int8_t *optp;
2216 int optlen;
2217 u_int16_t mss;
2218 extern unsigned long in_maxmtu;
2219 extern int tcp_mssdflt;
2220
2221 mss = in_maxmtu - sizeof(struct tcpiphdr);
2222 if (!in_localaddr(ti->ti_dst))
2223 mss = min(mss, tcp_mssdflt);
2224
2225 /*
2226 * Tack on the TCP options. If there isn't enough trailing
2227 * space for them, move up the fixed header to make space.
2228 */
2229 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2230 (sc->sc_tstmp ? TCPOLEN_TSTAMP_APPA : 0);
2231 if (optlen > M_TRAILINGSPACE(m)) {
2232 if (M_LEADINGSPACE(m) >= optlen) {
2233 m->m_data -= optlen;
2234 m->m_len += optlen;
2235 } else {
2236 struct mbuf *m0 = m;
2237 if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
2238 m_freem(m0);
2239 return (ENOBUFS);
2240 }
2241 MH_ALIGN(m, sizeof(*ti) + optlen);
2242 m->m_next = m0; /* this gets freed below */
2243 }
2244 ovbcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
2245 ti = mtod(m, struct tcpiphdr *);
2246 }
2247
2248 optp = (u_int8_t *)(ti + 1);
2249 optp[0] = TCPOPT_MAXSEG;
2250 optp[1] = 4;
2251 optp[2] = (mss >> 8) & 0xff;
2252 optp[3] = mss & 0xff;
2253 optlen = 4;
2254
2255 if (sc->sc_request_r_scale != 15) {
2256 *((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
2257 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2258 sc->sc_request_r_scale);
2259 optlen += 4;
2260 }
2261
2262 if (sc->sc_tstmp) {
2263 u_int32_t *lp = (u_int32_t *)(optp + optlen);
2264 /* Form timestamp option as shown in appendix A of RFC 1323. */
2265 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
2266 *lp++ = htonl(tcp_now);
2267 *lp = htonl(ts);
2268 optlen += TCPOLEN_TSTAMP_APPA;
2269 }
2270
2271 /*
2272 * Toss any trailing mbufs. No need to worry about
2273 * m_len and m_pkthdr.len, since tcp_respond() will
2274 * unconditionally set them.
2275 */
2276 if (m->m_next) {
2277 m_freem(m->m_next);
2278 m->m_next = NULL;
2279 }
2280
2281 /*
2282 * Fill in the fields that tcp_respond() will not touch, and
2283 * then send the response.
2284 */
2285 ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2286 ti->ti_win = htons(win);
2287 return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
2288 TH_SYN|TH_ACK));
2289 }
2290 #endif /* TUBA_INCLUDE */
2291