tcp_input.c revision 1.291 1 /* $NetBSD: tcp_input.c,v 1.291 2008/08/04 04:08:47 tls Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 *
93 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
94 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
95 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
96 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
97 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
98 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
99 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
100 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
101 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
103 * POSSIBILITY OF SUCH DAMAGE.
104 */
105
106 /*
107 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108 * The Regents of the University of California. All rights reserved.
109 *
110 * Redistribution and use in source and binary forms, with or without
111 * modification, are permitted provided that the following conditions
112 * are met:
113 * 1. Redistributions of source code must retain the above copyright
114 * notice, this list of conditions and the following disclaimer.
115 * 2. Redistributions in binary form must reproduce the above copyright
116 * notice, this list of conditions and the following disclaimer in the
117 * documentation and/or other materials provided with the distribution.
118 * 3. Neither the name of the University nor the names of its contributors
119 * may be used to endorse or promote products derived from this software
120 * without specific prior written permission.
121 *
122 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132 * SUCH DAMAGE.
133 *
134 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
135 */
136
137 /*
138 * TODO list for SYN cache stuff:
139 *
140 * Find room for a "state" field, which is needed to keep a
141 * compressed state for TIME_WAIT TCBs. It's been noted already
142 * that this is fairly important for very high-volume web and
143 * mail servers, which use a large number of short-lived
144 * connections.
145 */
146
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.291 2008/08/04 04:08:47 tls Exp $");
149
150 #include "opt_inet.h"
151 #include "opt_ipsec.h"
152 #include "opt_inet_csum.h"
153 #include "opt_tcp_debug.h"
154
155 #include <sys/param.h>
156 #include <sys/systm.h>
157 #include <sys/malloc.h>
158 #include <sys/mbuf.h>
159 #include <sys/protosw.h>
160 #include <sys/socket.h>
161 #include <sys/socketvar.h>
162 #include <sys/errno.h>
163 #include <sys/syslog.h>
164 #include <sys/pool.h>
165 #include <sys/domain.h>
166 #include <sys/kernel.h>
167 #ifdef TCP_SIGNATURE
168 #include <sys/md5.h>
169 #endif
170 #include <sys/lwp.h> /* for lwp0 */
171
172 #include <net/if.h>
173 #include <net/route.h>
174 #include <net/if_types.h>
175
176 #include <netinet/in.h>
177 #include <netinet/in_systm.h>
178 #include <netinet/ip.h>
179 #include <netinet/in_pcb.h>
180 #include <netinet/in_var.h>
181 #include <netinet/ip_var.h>
182 #include <netinet/in_offload.h>
183
184 #ifdef INET6
185 #ifndef INET
186 #include <netinet/in.h>
187 #endif
188 #include <netinet/ip6.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_pcb.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_var.h>
193 #include <netinet/icmp6.h>
194 #include <netinet6/nd6.h>
195 #ifdef TCP_SIGNATURE
196 #include <netinet6/scope6_var.h>
197 #endif
198 #endif
199
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcp_private.h>
211 #include <netinet/tcpip.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214
215 #include <machine/stdarg.h>
216
217 #ifdef IPSEC
218 #include <netinet6/ipsec.h>
219 #include <netinet6/ipsec_private.h>
220 #include <netkey/key.h>
221 #endif /*IPSEC*/
222 #ifdef INET6
223 #include "faith.h"
224 #if defined(NFAITH) && NFAITH > 0
225 #include <net/if_faith.h>
226 #endif
227 #endif /* IPSEC */
228
229 #ifdef FAST_IPSEC
230 #include <netipsec/ipsec.h>
231 #include <netipsec/ipsec_var.h>
232 #include <netipsec/ipsec_private.h>
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif /* FAST_IPSEC*/
238
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
241
242 int tcp_do_autorcvbuf = 0;
243 int tcp_autorcvbuf_inc = 16 * 1024;
244 int tcp_autorcvbuf_max = 256 * 1024;
245
246 static int tcp_rst_ppslim_count = 0;
247 static struct timeval tcp_rst_ppslim_last;
248 static int tcp_ackdrop_ppslim_count = 0;
249 static struct timeval tcp_ackdrop_ppslim_last;
250
251 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
252
253 /* for modulo comparisons of timestamps */
254 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
255 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
256
257 /*
258 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
259 */
260 #ifdef INET6
261 static inline void
262 nd6_hint(struct tcpcb *tp)
263 {
264 struct rtentry *rt;
265
266 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
267 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
268 nd6_nud_hint(rt, NULL, 0);
269 }
270 #else
271 static inline void
272 nd6_hint(struct tcpcb *tp)
273 {
274 }
275 #endif
276
277 /*
278 * Compute ACK transmission behavior. Delay the ACK unless
279 * we have already delayed an ACK (must send an ACK every two segments).
280 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
281 * option is enabled.
282 */
283 static void
284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
285 {
286
287 if (tp->t_flags & TF_DELACK ||
288 (tcp_ack_on_push && th->th_flags & TH_PUSH))
289 tp->t_flags |= TF_ACKNOW;
290 else
291 TCP_SET_DELACK(tp);
292 }
293
294 static void
295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
296 {
297
298 /*
299 * If we had a pending ICMP message that refers to data that have
300 * just been acknowledged, disregard the recorded ICMP message.
301 */
302 if ((tp->t_flags & TF_PMTUD_PEND) &&
303 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
304 tp->t_flags &= ~TF_PMTUD_PEND;
305
306 /*
307 * Keep track of the largest chunk of data
308 * acknowledged since last PMTU update
309 */
310 if (tp->t_pmtud_mss_acked < acked)
311 tp->t_pmtud_mss_acked = acked;
312 }
313
314 /*
315 * Convert TCP protocol fields to host order for easier processing.
316 */
317 static void
318 tcp_fields_to_host(struct tcphdr *th)
319 {
320
321 NTOHL(th->th_seq);
322 NTOHL(th->th_ack);
323 NTOHS(th->th_win);
324 NTOHS(th->th_urp);
325 }
326
327 /*
328 * ... and reverse the above.
329 */
330 static void
331 tcp_fields_to_net(struct tcphdr *th)
332 {
333
334 HTONL(th->th_seq);
335 HTONL(th->th_ack);
336 HTONS(th->th_win);
337 HTONS(th->th_urp);
338 }
339
340 #ifdef TCP_CSUM_COUNTERS
341 #include <sys/device.h>
342
343 #if defined(INET)
344 extern struct evcnt tcp_hwcsum_ok;
345 extern struct evcnt tcp_hwcsum_bad;
346 extern struct evcnt tcp_hwcsum_data;
347 extern struct evcnt tcp_swcsum;
348 #endif /* defined(INET) */
349 #if defined(INET6)
350 extern struct evcnt tcp6_hwcsum_ok;
351 extern struct evcnt tcp6_hwcsum_bad;
352 extern struct evcnt tcp6_hwcsum_data;
353 extern struct evcnt tcp6_swcsum;
354 #endif /* defined(INET6) */
355
356 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
357
358 #else
359
360 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
361
362 #endif /* TCP_CSUM_COUNTERS */
363
364 #ifdef TCP_REASS_COUNTERS
365 #include <sys/device.h>
366
367 extern struct evcnt tcp_reass_;
368 extern struct evcnt tcp_reass_empty;
369 extern struct evcnt tcp_reass_iteration[8];
370 extern struct evcnt tcp_reass_prependfirst;
371 extern struct evcnt tcp_reass_prepend;
372 extern struct evcnt tcp_reass_insert;
373 extern struct evcnt tcp_reass_inserttail;
374 extern struct evcnt tcp_reass_append;
375 extern struct evcnt tcp_reass_appendtail;
376 extern struct evcnt tcp_reass_overlaptail;
377 extern struct evcnt tcp_reass_overlapfront;
378 extern struct evcnt tcp_reass_segdup;
379 extern struct evcnt tcp_reass_fragdup;
380
381 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
382
383 #else
384
385 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
386
387 #endif /* TCP_REASS_COUNTERS */
388
389 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
390 int *);
391 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
392 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
393
394 #ifdef INET
395 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
396 #endif
397 #ifdef INET6
398 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
399 #endif
400
401 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
402
403 #if defined(MBUFTRACE)
404 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
405 #endif /* defined(MBUFTRACE) */
406
407 static POOL_INIT(tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
408 NULL, IPL_VM);
409
410 struct ipqent *
411 tcpipqent_alloc(void)
412 {
413 struct ipqent *ipqe;
414 int s;
415
416 s = splvm();
417 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
418 splx(s);
419
420 return ipqe;
421 }
422
423 void
424 tcpipqent_free(struct ipqent *ipqe)
425 {
426 int s;
427
428 s = splvm();
429 pool_put(&tcpipqent_pool, ipqe);
430 splx(s);
431 }
432
433 static int
434 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
435 {
436 struct ipqent *p, *q, *nq, *tiqe = NULL;
437 struct socket *so = NULL;
438 int pkt_flags;
439 tcp_seq pkt_seq;
440 unsigned pkt_len;
441 u_long rcvpartdupbyte = 0;
442 u_long rcvoobyte;
443 #ifdef TCP_REASS_COUNTERS
444 u_int count = 0;
445 #endif
446 uint64_t *tcps;
447
448 if (tp->t_inpcb)
449 so = tp->t_inpcb->inp_socket;
450 #ifdef INET6
451 else if (tp->t_in6pcb)
452 so = tp->t_in6pcb->in6p_socket;
453 #endif
454
455 TCP_REASS_LOCK_CHECK(tp);
456
457 /*
458 * Call with th==0 after become established to
459 * force pre-ESTABLISHED data up to user socket.
460 */
461 if (th == 0)
462 goto present;
463
464 m_claimm(m, &tcp_reass_mowner);
465
466 rcvoobyte = *tlen;
467 /*
468 * Copy these to local variables because the tcpiphdr
469 * gets munged while we are collapsing mbufs.
470 */
471 pkt_seq = th->th_seq;
472 pkt_len = *tlen;
473 pkt_flags = th->th_flags;
474
475 TCP_REASS_COUNTER_INCR(&tcp_reass_);
476
477 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
478 /*
479 * When we miss a packet, the vast majority of time we get
480 * packets that follow it in order. So optimize for that.
481 */
482 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
483 p->ipqe_len += pkt_len;
484 p->ipqe_flags |= pkt_flags;
485 m_cat(p->ipre_mlast, m);
486 TRAVERSE(p->ipre_mlast);
487 m = NULL;
488 tiqe = p;
489 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
490 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
491 goto skip_replacement;
492 }
493 /*
494 * While we're here, if the pkt is completely beyond
495 * anything we have, just insert it at the tail.
496 */
497 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
498 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
499 goto insert_it;
500 }
501 }
502
503 q = TAILQ_FIRST(&tp->segq);
504
505 if (q != NULL) {
506 /*
507 * If this segment immediately precedes the first out-of-order
508 * block, simply slap the segment in front of it and (mostly)
509 * skip the complicated logic.
510 */
511 if (pkt_seq + pkt_len == q->ipqe_seq) {
512 q->ipqe_seq = pkt_seq;
513 q->ipqe_len += pkt_len;
514 q->ipqe_flags |= pkt_flags;
515 m_cat(m, q->ipqe_m);
516 q->ipqe_m = m;
517 q->ipre_mlast = m; /* last mbuf may have changed */
518 TRAVERSE(q->ipre_mlast);
519 tiqe = q;
520 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
521 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
522 goto skip_replacement;
523 }
524 } else {
525 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
526 }
527
528 /*
529 * Find a segment which begins after this one does.
530 */
531 for (p = NULL; q != NULL; q = nq) {
532 nq = TAILQ_NEXT(q, ipqe_q);
533 #ifdef TCP_REASS_COUNTERS
534 count++;
535 #endif
536 /*
537 * If the received segment is just right after this
538 * fragment, merge the two together and then check
539 * for further overlaps.
540 */
541 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
542 #ifdef TCPREASS_DEBUG
543 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
544 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
545 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
546 #endif
547 pkt_len += q->ipqe_len;
548 pkt_flags |= q->ipqe_flags;
549 pkt_seq = q->ipqe_seq;
550 m_cat(q->ipre_mlast, m);
551 TRAVERSE(q->ipre_mlast);
552 m = q->ipqe_m;
553 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
554 goto free_ipqe;
555 }
556 /*
557 * If the received segment is completely past this
558 * fragment, we need to go the next fragment.
559 */
560 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
561 p = q;
562 continue;
563 }
564 /*
565 * If the fragment is past the received segment,
566 * it (or any following) can't be concatenated.
567 */
568 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
569 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
570 break;
571 }
572
573 /*
574 * We've received all the data in this segment before.
575 * mark it as a duplicate and return.
576 */
577 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
578 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
579 tcps = TCP_STAT_GETREF();
580 tcps[TCP_STAT_RCVDUPPACK]++;
581 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
582 TCP_STAT_PUTREF();
583 tcp_new_dsack(tp, pkt_seq, pkt_len);
584 m_freem(m);
585 if (tiqe != NULL) {
586 tcpipqent_free(tiqe);
587 }
588 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
589 return (0);
590 }
591 /*
592 * Received segment completely overlaps this fragment
593 * so we drop the fragment (this keeps the temporal
594 * ordering of segments correct).
595 */
596 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
597 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
598 rcvpartdupbyte += q->ipqe_len;
599 m_freem(q->ipqe_m);
600 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
601 goto free_ipqe;
602 }
603 /*
604 * RX'ed segment extends past the end of the
605 * fragment. Drop the overlapping bytes. Then
606 * merge the fragment and segment then treat as
607 * a longer received packet.
608 */
609 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
610 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
611 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
612 #ifdef TCPREASS_DEBUG
613 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
614 tp, overlap,
615 pkt_seq, pkt_seq + pkt_len, pkt_len);
616 #endif
617 m_adj(m, overlap);
618 rcvpartdupbyte += overlap;
619 m_cat(q->ipre_mlast, m);
620 TRAVERSE(q->ipre_mlast);
621 m = q->ipqe_m;
622 pkt_seq = q->ipqe_seq;
623 pkt_len += q->ipqe_len - overlap;
624 rcvoobyte -= overlap;
625 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
626 goto free_ipqe;
627 }
628 /*
629 * RX'ed segment extends past the front of the
630 * fragment. Drop the overlapping bytes on the
631 * received packet. The packet will then be
632 * contatentated with this fragment a bit later.
633 */
634 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
635 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
636 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
637 #ifdef TCPREASS_DEBUG
638 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
639 tp, overlap,
640 pkt_seq, pkt_seq + pkt_len, pkt_len);
641 #endif
642 m_adj(m, -overlap);
643 pkt_len -= overlap;
644 rcvpartdupbyte += overlap;
645 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
646 rcvoobyte -= overlap;
647 }
648 /*
649 * If the received segment immediates precedes this
650 * fragment then tack the fragment onto this segment
651 * and reinsert the data.
652 */
653 if (q->ipqe_seq == pkt_seq + pkt_len) {
654 #ifdef TCPREASS_DEBUG
655 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
656 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
657 pkt_seq, pkt_seq + pkt_len, pkt_len);
658 #endif
659 pkt_len += q->ipqe_len;
660 pkt_flags |= q->ipqe_flags;
661 m_cat(m, q->ipqe_m);
662 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
663 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
664 tp->t_segqlen--;
665 KASSERT(tp->t_segqlen >= 0);
666 KASSERT(tp->t_segqlen != 0 ||
667 (TAILQ_EMPTY(&tp->segq) &&
668 TAILQ_EMPTY(&tp->timeq)));
669 if (tiqe == NULL) {
670 tiqe = q;
671 } else {
672 tcpipqent_free(q);
673 }
674 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
675 break;
676 }
677 /*
678 * If the fragment is before the segment, remember it.
679 * When this loop is terminated, p will contain the
680 * pointer to fragment that is right before the received
681 * segment.
682 */
683 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
684 p = q;
685
686 continue;
687
688 /*
689 * This is a common operation. It also will allow
690 * to save doing a malloc/free in most instances.
691 */
692 free_ipqe:
693 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
694 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
695 tp->t_segqlen--;
696 KASSERT(tp->t_segqlen >= 0);
697 KASSERT(tp->t_segqlen != 0 ||
698 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
699 if (tiqe == NULL) {
700 tiqe = q;
701 } else {
702 tcpipqent_free(q);
703 }
704 }
705
706 #ifdef TCP_REASS_COUNTERS
707 if (count > 7)
708 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
709 else if (count > 0)
710 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
711 #endif
712
713 insert_it:
714
715 /*
716 * Allocate a new queue entry since the received segment did not
717 * collapse onto any other out-of-order block; thus we are allocating
718 * a new block. If it had collapsed, tiqe would not be NULL and
719 * we would be reusing it.
720 * XXX If we can't, just drop the packet. XXX
721 */
722 if (tiqe == NULL) {
723 tiqe = tcpipqent_alloc();
724 if (tiqe == NULL) {
725 TCP_STATINC(TCP_STAT_RCVMEMDROP);
726 m_freem(m);
727 return (0);
728 }
729 }
730
731 /*
732 * Update the counters.
733 */
734 tcps = TCP_STAT_GETREF();
735 tcps[TCP_STAT_RCVOOPACK]++;
736 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
737 if (rcvpartdupbyte) {
738 tcps[TCP_STAT_RCVPARTDUPPACK]++;
739 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
740 }
741 TCP_STAT_PUTREF();
742
743 /*
744 * Insert the new fragment queue entry into both queues.
745 */
746 tiqe->ipqe_m = m;
747 tiqe->ipre_mlast = m;
748 tiqe->ipqe_seq = pkt_seq;
749 tiqe->ipqe_len = pkt_len;
750 tiqe->ipqe_flags = pkt_flags;
751 if (p == NULL) {
752 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
753 #ifdef TCPREASS_DEBUG
754 if (tiqe->ipqe_seq != tp->rcv_nxt)
755 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
756 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
757 #endif
758 } else {
759 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
760 #ifdef TCPREASS_DEBUG
761 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
762 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
763 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
764 #endif
765 }
766 tp->t_segqlen++;
767
768 skip_replacement:
769
770 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
771
772 present:
773 /*
774 * Present data to user, advancing rcv_nxt through
775 * completed sequence space.
776 */
777 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
778 return (0);
779 q = TAILQ_FIRST(&tp->segq);
780 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
781 return (0);
782 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
783 return (0);
784
785 tp->rcv_nxt += q->ipqe_len;
786 pkt_flags = q->ipqe_flags & TH_FIN;
787 nd6_hint(tp);
788
789 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
790 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
791 tp->t_segqlen--;
792 KASSERT(tp->t_segqlen >= 0);
793 KASSERT(tp->t_segqlen != 0 ||
794 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
795 if (so->so_state & SS_CANTRCVMORE)
796 m_freem(q->ipqe_m);
797 else
798 sbappendstream(&so->so_rcv, q->ipqe_m);
799 tcpipqent_free(q);
800 sorwakeup(so);
801 return (pkt_flags);
802 }
803
804 #ifdef INET6
805 int
806 tcp6_input(struct mbuf **mp, int *offp, int proto)
807 {
808 struct mbuf *m = *mp;
809
810 /*
811 * draft-itojun-ipv6-tcp-to-anycast
812 * better place to put this in?
813 */
814 if (m->m_flags & M_ANYCAST6) {
815 struct ip6_hdr *ip6;
816 if (m->m_len < sizeof(struct ip6_hdr)) {
817 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
818 TCP_STATINC(TCP_STAT_RCVSHORT);
819 return IPPROTO_DONE;
820 }
821 }
822 ip6 = mtod(m, struct ip6_hdr *);
823 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
824 (char *)&ip6->ip6_dst - (char *)ip6);
825 return IPPROTO_DONE;
826 }
827
828 tcp_input(m, *offp, proto);
829 return IPPROTO_DONE;
830 }
831 #endif
832
833 #ifdef INET
834 static void
835 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
836 {
837 char src[4*sizeof "123"];
838 char dst[4*sizeof "123"];
839
840 if (ip) {
841 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
842 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
843 }
844 else {
845 strlcpy(src, "(unknown)", sizeof(src));
846 strlcpy(dst, "(unknown)", sizeof(dst));
847 }
848 log(LOG_INFO,
849 "Connection attempt to TCP %s:%d from %s:%d\n",
850 dst, ntohs(th->th_dport),
851 src, ntohs(th->th_sport));
852 }
853 #endif
854
855 #ifdef INET6
856 static void
857 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
858 {
859 char src[INET6_ADDRSTRLEN];
860 char dst[INET6_ADDRSTRLEN];
861
862 if (ip6) {
863 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
864 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
865 }
866 else {
867 strlcpy(src, "(unknown v6)", sizeof(src));
868 strlcpy(dst, "(unknown v6)", sizeof(dst));
869 }
870 log(LOG_INFO,
871 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
872 dst, ntohs(th->th_dport),
873 src, ntohs(th->th_sport));
874 }
875 #endif
876
877 /*
878 * Checksum extended TCP header and data.
879 */
880 int
881 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
882 int toff, int off, int tlen)
883 {
884
885 /*
886 * XXX it's better to record and check if this mbuf is
887 * already checked.
888 */
889
890 switch (af) {
891 #ifdef INET
892 case AF_INET:
893 switch (m->m_pkthdr.csum_flags &
894 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
895 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
896 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
897 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
898 goto badcsum;
899
900 case M_CSUM_TCPv4|M_CSUM_DATA: {
901 u_int32_t hw_csum = m->m_pkthdr.csum_data;
902
903 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
904 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
905 const struct ip *ip =
906 mtod(m, const struct ip *);
907
908 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
909 ip->ip_dst.s_addr,
910 htons(hw_csum + tlen + off + IPPROTO_TCP));
911 }
912 if ((hw_csum ^ 0xffff) != 0)
913 goto badcsum;
914 break;
915 }
916
917 case M_CSUM_TCPv4:
918 /* Checksum was okay. */
919 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
920 break;
921
922 default:
923 /*
924 * Must compute it ourselves. Maybe skip checksum
925 * on loopback interfaces.
926 */
927 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
928 IFF_LOOPBACK) ||
929 tcp_do_loopback_cksum)) {
930 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
931 if (in4_cksum(m, IPPROTO_TCP, toff,
932 tlen + off) != 0)
933 goto badcsum;
934 }
935 break;
936 }
937 break;
938 #endif /* INET4 */
939
940 #ifdef INET6
941 case AF_INET6:
942 switch (m->m_pkthdr.csum_flags &
943 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
944 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
945 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
946 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
947 goto badcsum;
948
949 #if 0 /* notyet */
950 case M_CSUM_TCPv6|M_CSUM_DATA:
951 #endif
952
953 case M_CSUM_TCPv6:
954 /* Checksum was okay. */
955 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
956 break;
957
958 default:
959 /*
960 * Must compute it ourselves. Maybe skip checksum
961 * on loopback interfaces.
962 */
963 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
964 tcp_do_loopback_cksum)) {
965 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
966 if (in6_cksum(m, IPPROTO_TCP, toff,
967 tlen + off) != 0)
968 goto badcsum;
969 }
970 }
971 break;
972 #endif /* INET6 */
973 }
974
975 return 0;
976
977 badcsum:
978 TCP_STATINC(TCP_STAT_RCVBADSUM);
979 return -1;
980 }
981
982 /*
983 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
984 */
985 void
986 tcp_input(struct mbuf *m, ...)
987 {
988 struct tcphdr *th;
989 struct ip *ip;
990 struct inpcb *inp;
991 #ifdef INET6
992 struct ip6_hdr *ip6;
993 struct in6pcb *in6p;
994 #endif
995 u_int8_t *optp = NULL;
996 int optlen = 0;
997 int len, tlen, toff, hdroptlen = 0;
998 struct tcpcb *tp = 0;
999 int tiflags;
1000 struct socket *so = NULL;
1001 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1002 #ifdef TCP_DEBUG
1003 short ostate = 0;
1004 #endif
1005 u_long tiwin;
1006 struct tcp_opt_info opti;
1007 int off, iphlen;
1008 va_list ap;
1009 int af; /* af on the wire */
1010 struct mbuf *tcp_saveti = NULL;
1011 uint32_t ts_rtt;
1012 uint8_t iptos;
1013 uint64_t *tcps;
1014
1015 MCLAIM(m, &tcp_rx_mowner);
1016 va_start(ap, m);
1017 toff = va_arg(ap, int);
1018 (void)va_arg(ap, int); /* ignore value, advance ap */
1019 va_end(ap);
1020
1021 TCP_STATINC(TCP_STAT_RCVTOTAL);
1022
1023 bzero(&opti, sizeof(opti));
1024 opti.ts_present = 0;
1025 opti.maxseg = 0;
1026
1027 /*
1028 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1029 *
1030 * TCP is, by definition, unicast, so we reject all
1031 * multicast outright.
1032 *
1033 * Note, there are additional src/dst address checks in
1034 * the AF-specific code below.
1035 */
1036 if (m->m_flags & (M_BCAST|M_MCAST)) {
1037 /* XXX stat */
1038 goto drop;
1039 }
1040 #ifdef INET6
1041 if (m->m_flags & M_ANYCAST6) {
1042 /* XXX stat */
1043 goto drop;
1044 }
1045 #endif
1046
1047 /*
1048 * Get IP and TCP header.
1049 * Note: IP leaves IP header in first mbuf.
1050 */
1051 ip = mtod(m, struct ip *);
1052 #ifdef INET6
1053 ip6 = NULL;
1054 #endif
1055 switch (ip->ip_v) {
1056 #ifdef INET
1057 case 4:
1058 af = AF_INET;
1059 iphlen = sizeof(struct ip);
1060 ip = mtod(m, struct ip *);
1061 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1062 sizeof(struct tcphdr));
1063 if (th == NULL) {
1064 TCP_STATINC(TCP_STAT_RCVSHORT);
1065 return;
1066 }
1067 /* We do the checksum after PCB lookup... */
1068 len = ntohs(ip->ip_len);
1069 tlen = len - toff;
1070 iptos = ip->ip_tos;
1071 break;
1072 #endif
1073 #ifdef INET6
1074 case 6:
1075 ip = NULL;
1076 iphlen = sizeof(struct ip6_hdr);
1077 af = AF_INET6;
1078 ip6 = mtod(m, struct ip6_hdr *);
1079 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1080 sizeof(struct tcphdr));
1081 if (th == NULL) {
1082 TCP_STATINC(TCP_STAT_RCVSHORT);
1083 return;
1084 }
1085
1086 /* Be proactive about malicious use of IPv4 mapped address */
1087 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1088 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1089 /* XXX stat */
1090 goto drop;
1091 }
1092
1093 /*
1094 * Be proactive about unspecified IPv6 address in source.
1095 * As we use all-zero to indicate unbounded/unconnected pcb,
1096 * unspecified IPv6 address can be used to confuse us.
1097 *
1098 * Note that packets with unspecified IPv6 destination is
1099 * already dropped in ip6_input.
1100 */
1101 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1102 /* XXX stat */
1103 goto drop;
1104 }
1105
1106 /*
1107 * Make sure destination address is not multicast.
1108 * Source address checked in ip6_input().
1109 */
1110 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1111 /* XXX stat */
1112 goto drop;
1113 }
1114
1115 /* We do the checksum after PCB lookup... */
1116 len = m->m_pkthdr.len;
1117 tlen = len - toff;
1118 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1119 break;
1120 #endif
1121 default:
1122 m_freem(m);
1123 return;
1124 }
1125
1126 KASSERT(TCP_HDR_ALIGNED_P(th));
1127
1128 /*
1129 * Check that TCP offset makes sense,
1130 * pull out TCP options and adjust length. XXX
1131 */
1132 off = th->th_off << 2;
1133 if (off < sizeof (struct tcphdr) || off > tlen) {
1134 TCP_STATINC(TCP_STAT_RCVBADOFF);
1135 goto drop;
1136 }
1137 tlen -= off;
1138
1139 /*
1140 * tcp_input() has been modified to use tlen to mean the TCP data
1141 * length throughout the function. Other functions can use
1142 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1143 * rja
1144 */
1145
1146 if (off > sizeof (struct tcphdr)) {
1147 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1148 if (th == NULL) {
1149 TCP_STATINC(TCP_STAT_RCVSHORT);
1150 return;
1151 }
1152 /*
1153 * NOTE: ip/ip6 will not be affected by m_pulldown()
1154 * (as they're before toff) and we don't need to update those.
1155 */
1156 KASSERT(TCP_HDR_ALIGNED_P(th));
1157 optlen = off - sizeof (struct tcphdr);
1158 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1159 /*
1160 * Do quick retrieval of timestamp options ("options
1161 * prediction?"). If timestamp is the only option and it's
1162 * formatted as recommended in RFC 1323 appendix A, we
1163 * quickly get the values now and not bother calling
1164 * tcp_dooptions(), etc.
1165 */
1166 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1167 (optlen > TCPOLEN_TSTAMP_APPA &&
1168 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1169 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1170 (th->th_flags & TH_SYN) == 0) {
1171 opti.ts_present = 1;
1172 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1173 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1174 optp = NULL; /* we've parsed the options */
1175 }
1176 }
1177 tiflags = th->th_flags;
1178
1179 /*
1180 * Locate pcb for segment.
1181 */
1182 findpcb:
1183 inp = NULL;
1184 #ifdef INET6
1185 in6p = NULL;
1186 #endif
1187 switch (af) {
1188 #ifdef INET
1189 case AF_INET:
1190 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1191 ip->ip_dst, th->th_dport);
1192 if (inp == 0) {
1193 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1194 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1195 }
1196 #ifdef INET6
1197 if (inp == 0) {
1198 struct in6_addr s, d;
1199
1200 /* mapped addr case */
1201 bzero(&s, sizeof(s));
1202 s.s6_addr16[5] = htons(0xffff);
1203 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1204 bzero(&d, sizeof(d));
1205 d.s6_addr16[5] = htons(0xffff);
1206 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1207 in6p = in6_pcblookup_connect(&tcbtable, &s,
1208 th->th_sport, &d, th->th_dport, 0);
1209 if (in6p == 0) {
1210 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1211 in6p = in6_pcblookup_bind(&tcbtable, &d,
1212 th->th_dport, 0);
1213 }
1214 }
1215 #endif
1216 #ifndef INET6
1217 if (inp == 0)
1218 #else
1219 if (inp == 0 && in6p == 0)
1220 #endif
1221 {
1222 TCP_STATINC(TCP_STAT_NOPORT);
1223 if (tcp_log_refused &&
1224 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1225 tcp4_log_refused(ip, th);
1226 }
1227 tcp_fields_to_host(th);
1228 goto dropwithreset_ratelim;
1229 }
1230 #if defined(IPSEC) || defined(FAST_IPSEC)
1231 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1232 ipsec4_in_reject(m, inp)) {
1233 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1234 goto drop;
1235 }
1236 #ifdef INET6
1237 else if (in6p &&
1238 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1239 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1240 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1241 goto drop;
1242 }
1243 #endif
1244 #endif /*IPSEC*/
1245 break;
1246 #endif /*INET*/
1247 #ifdef INET6
1248 case AF_INET6:
1249 {
1250 int faith;
1251
1252 #if defined(NFAITH) && NFAITH > 0
1253 faith = faithprefix(&ip6->ip6_dst);
1254 #else
1255 faith = 0;
1256 #endif
1257 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1258 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1259 if (in6p == NULL) {
1260 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1261 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1262 th->th_dport, faith);
1263 }
1264 if (in6p == NULL) {
1265 TCP_STATINC(TCP_STAT_NOPORT);
1266 if (tcp_log_refused &&
1267 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1268 tcp6_log_refused(ip6, th);
1269 }
1270 tcp_fields_to_host(th);
1271 goto dropwithreset_ratelim;
1272 }
1273 #if defined(IPSEC) || defined(FAST_IPSEC)
1274 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1275 ipsec6_in_reject(m, in6p)) {
1276 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1277 goto drop;
1278 }
1279 #endif /*IPSEC*/
1280 break;
1281 }
1282 #endif
1283 }
1284
1285 /*
1286 * If the state is CLOSED (i.e., TCB does not exist) then
1287 * all data in the incoming segment is discarded.
1288 * If the TCB exists but is in CLOSED state, it is embryonic,
1289 * but should either do a listen or a connect soon.
1290 */
1291 tp = NULL;
1292 so = NULL;
1293 if (inp) {
1294 tp = intotcpcb(inp);
1295 so = inp->inp_socket;
1296 }
1297 #ifdef INET6
1298 else if (in6p) {
1299 tp = in6totcpcb(in6p);
1300 so = in6p->in6p_socket;
1301 }
1302 #endif
1303 if (tp == 0) {
1304 tcp_fields_to_host(th);
1305 goto dropwithreset_ratelim;
1306 }
1307 if (tp->t_state == TCPS_CLOSED)
1308 goto drop;
1309
1310 KASSERT(so->so_lock == softnet_lock);
1311 KASSERT(solocked(so));
1312
1313 /*
1314 * Checksum extended TCP header and data.
1315 */
1316 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1317 goto badcsum;
1318
1319 tcp_fields_to_host(th);
1320
1321 /* Unscale the window into a 32-bit value. */
1322 if ((tiflags & TH_SYN) == 0)
1323 tiwin = th->th_win << tp->snd_scale;
1324 else
1325 tiwin = th->th_win;
1326
1327 #ifdef INET6
1328 /* save packet options if user wanted */
1329 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1330 if (in6p->in6p_options) {
1331 m_freem(in6p->in6p_options);
1332 in6p->in6p_options = 0;
1333 }
1334 KASSERT(ip6 != NULL);
1335 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1336 }
1337 #endif
1338
1339 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1340 union syn_cache_sa src;
1341 union syn_cache_sa dst;
1342
1343 bzero(&src, sizeof(src));
1344 bzero(&dst, sizeof(dst));
1345 switch (af) {
1346 #ifdef INET
1347 case AF_INET:
1348 src.sin.sin_len = sizeof(struct sockaddr_in);
1349 src.sin.sin_family = AF_INET;
1350 src.sin.sin_addr = ip->ip_src;
1351 src.sin.sin_port = th->th_sport;
1352
1353 dst.sin.sin_len = sizeof(struct sockaddr_in);
1354 dst.sin.sin_family = AF_INET;
1355 dst.sin.sin_addr = ip->ip_dst;
1356 dst.sin.sin_port = th->th_dport;
1357 break;
1358 #endif
1359 #ifdef INET6
1360 case AF_INET6:
1361 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1362 src.sin6.sin6_family = AF_INET6;
1363 src.sin6.sin6_addr = ip6->ip6_src;
1364 src.sin6.sin6_port = th->th_sport;
1365
1366 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1367 dst.sin6.sin6_family = AF_INET6;
1368 dst.sin6.sin6_addr = ip6->ip6_dst;
1369 dst.sin6.sin6_port = th->th_dport;
1370 break;
1371 #endif /* INET6 */
1372 default:
1373 goto badsyn; /*sanity*/
1374 }
1375
1376 if (so->so_options & SO_DEBUG) {
1377 #ifdef TCP_DEBUG
1378 ostate = tp->t_state;
1379 #endif
1380
1381 tcp_saveti = NULL;
1382 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1383 goto nosave;
1384
1385 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1386 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1387 if (!tcp_saveti)
1388 goto nosave;
1389 } else {
1390 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1391 if (!tcp_saveti)
1392 goto nosave;
1393 MCLAIM(m, &tcp_mowner);
1394 tcp_saveti->m_len = iphlen;
1395 m_copydata(m, 0, iphlen,
1396 mtod(tcp_saveti, void *));
1397 }
1398
1399 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1400 m_freem(tcp_saveti);
1401 tcp_saveti = NULL;
1402 } else {
1403 tcp_saveti->m_len += sizeof(struct tcphdr);
1404 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1405 sizeof(struct tcphdr));
1406 }
1407 nosave:;
1408 }
1409 if (so->so_options & SO_ACCEPTCONN) {
1410 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1411 if (tiflags & TH_RST) {
1412 syn_cache_reset(&src.sa, &dst.sa, th);
1413 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1414 (TH_ACK|TH_SYN)) {
1415 /*
1416 * Received a SYN,ACK. This should
1417 * never happen while we are in
1418 * LISTEN. Send an RST.
1419 */
1420 goto badsyn;
1421 } else if (tiflags & TH_ACK) {
1422 so = syn_cache_get(&src.sa, &dst.sa,
1423 th, toff, tlen, so, m);
1424 if (so == NULL) {
1425 /*
1426 * We don't have a SYN for
1427 * this ACK; send an RST.
1428 */
1429 goto badsyn;
1430 } else if (so ==
1431 (struct socket *)(-1)) {
1432 /*
1433 * We were unable to create
1434 * the connection. If the
1435 * 3-way handshake was
1436 * completed, and RST has
1437 * been sent to the peer.
1438 * Since the mbuf might be
1439 * in use for the reply,
1440 * do not free it.
1441 */
1442 m = NULL;
1443 } else {
1444 /*
1445 * We have created a
1446 * full-blown connection.
1447 */
1448 tp = NULL;
1449 inp = NULL;
1450 #ifdef INET6
1451 in6p = NULL;
1452 #endif
1453 switch (so->so_proto->pr_domain->dom_family) {
1454 #ifdef INET
1455 case AF_INET:
1456 inp = sotoinpcb(so);
1457 tp = intotcpcb(inp);
1458 break;
1459 #endif
1460 #ifdef INET6
1461 case AF_INET6:
1462 in6p = sotoin6pcb(so);
1463 tp = in6totcpcb(in6p);
1464 break;
1465 #endif
1466 }
1467 if (tp == NULL)
1468 goto badsyn; /*XXX*/
1469 tiwin <<= tp->snd_scale;
1470 goto after_listen;
1471 }
1472 } else {
1473 /*
1474 * None of RST, SYN or ACK was set.
1475 * This is an invalid packet for a
1476 * TCB in LISTEN state. Send a RST.
1477 */
1478 goto badsyn;
1479 }
1480 } else {
1481 /*
1482 * Received a SYN.
1483 *
1484 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1485 */
1486 if (m->m_flags & (M_BCAST|M_MCAST))
1487 goto drop;
1488
1489 switch (af) {
1490 #ifdef INET6
1491 case AF_INET6:
1492 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1493 goto drop;
1494 break;
1495 #endif /* INET6 */
1496 case AF_INET:
1497 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1498 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1499 goto drop;
1500 break;
1501 }
1502
1503 #ifdef INET6
1504 /*
1505 * If deprecated address is forbidden, we do
1506 * not accept SYN to deprecated interface
1507 * address to prevent any new inbound
1508 * connection from getting established.
1509 * When we do not accept SYN, we send a TCP
1510 * RST, with deprecated source address (instead
1511 * of dropping it). We compromise it as it is
1512 * much better for peer to send a RST, and
1513 * RST will be the final packet for the
1514 * exchange.
1515 *
1516 * If we do not forbid deprecated addresses, we
1517 * accept the SYN packet. RFC2462 does not
1518 * suggest dropping SYN in this case.
1519 * If we decipher RFC2462 5.5.4, it says like
1520 * this:
1521 * 1. use of deprecated addr with existing
1522 * communication is okay - "SHOULD continue
1523 * to be used"
1524 * 2. use of it with new communication:
1525 * (2a) "SHOULD NOT be used if alternate
1526 * address with sufficient scope is
1527 * available"
1528 * (2b) nothing mentioned otherwise.
1529 * Here we fall into (2b) case as we have no
1530 * choice in our source address selection - we
1531 * must obey the peer.
1532 *
1533 * The wording in RFC2462 is confusing, and
1534 * there are multiple description text for
1535 * deprecated address handling - worse, they
1536 * are not exactly the same. I believe 5.5.4
1537 * is the best one, so we follow 5.5.4.
1538 */
1539 if (af == AF_INET6 && !ip6_use_deprecated) {
1540 struct in6_ifaddr *ia6;
1541 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1542 &ip6->ip6_dst)) &&
1543 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1544 tp = NULL;
1545 goto dropwithreset;
1546 }
1547 }
1548 #endif
1549
1550 #if defined(IPSEC) || defined(FAST_IPSEC)
1551 switch (af) {
1552 #ifdef INET
1553 case AF_INET:
1554 if (ipsec4_in_reject_so(m, so)) {
1555 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1556 tp = NULL;
1557 goto dropwithreset;
1558 }
1559 break;
1560 #endif
1561 #ifdef INET6
1562 case AF_INET6:
1563 if (ipsec6_in_reject_so(m, so)) {
1564 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1565 tp = NULL;
1566 goto dropwithreset;
1567 }
1568 break;
1569 #endif /*INET6*/
1570 }
1571 #endif /*IPSEC*/
1572
1573 /*
1574 * LISTEN socket received a SYN
1575 * from itself? This can't possibly
1576 * be valid; drop the packet.
1577 */
1578 if (th->th_sport == th->th_dport) {
1579 int i;
1580
1581 switch (af) {
1582 #ifdef INET
1583 case AF_INET:
1584 i = in_hosteq(ip->ip_src, ip->ip_dst);
1585 break;
1586 #endif
1587 #ifdef INET6
1588 case AF_INET6:
1589 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1590 break;
1591 #endif
1592 default:
1593 i = 1;
1594 }
1595 if (i) {
1596 TCP_STATINC(TCP_STAT_BADSYN);
1597 goto drop;
1598 }
1599 }
1600
1601 /*
1602 * SYN looks ok; create compressed TCP
1603 * state for it.
1604 */
1605 if (so->so_qlen <= so->so_qlimit &&
1606 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1607 so, m, optp, optlen, &opti))
1608 m = NULL;
1609 }
1610 goto drop;
1611 }
1612 }
1613
1614 after_listen:
1615 #ifdef DIAGNOSTIC
1616 /*
1617 * Should not happen now that all embryonic connections
1618 * are handled with compressed state.
1619 */
1620 if (tp->t_state == TCPS_LISTEN)
1621 panic("tcp_input: TCPS_LISTEN");
1622 #endif
1623
1624 /*
1625 * Segment received on connection.
1626 * Reset idle time and keep-alive timer.
1627 */
1628 tp->t_rcvtime = tcp_now;
1629 if (TCPS_HAVEESTABLISHED(tp->t_state))
1630 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1631
1632 /*
1633 * Process options.
1634 */
1635 #ifdef TCP_SIGNATURE
1636 if (optp || (tp->t_flags & TF_SIGNATURE))
1637 #else
1638 if (optp)
1639 #endif
1640 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1641 goto drop;
1642
1643 if (TCP_SACK_ENABLED(tp)) {
1644 tcp_del_sackholes(tp, th);
1645 }
1646
1647 if (TCP_ECN_ALLOWED(tp)) {
1648 switch (iptos & IPTOS_ECN_MASK) {
1649 case IPTOS_ECN_CE:
1650 tp->t_flags |= TF_ECN_SND_ECE;
1651 TCP_STATINC(TCP_STAT_ECN_CE);
1652 break;
1653 case IPTOS_ECN_ECT0:
1654 TCP_STATINC(TCP_STAT_ECN_ECT);
1655 break;
1656 case IPTOS_ECN_ECT1:
1657 /* XXX: ignore for now -- rpaulo */
1658 break;
1659 }
1660
1661 if (tiflags & TH_CWR)
1662 tp->t_flags &= ~TF_ECN_SND_ECE;
1663
1664 /*
1665 * Congestion experienced.
1666 * Ignore if we are already trying to recover.
1667 */
1668 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1669 tp->t_congctl->cong_exp(tp);
1670 }
1671
1672 if (opti.ts_present && opti.ts_ecr) {
1673 /*
1674 * Calculate the RTT from the returned time stamp and the
1675 * connection's time base. If the time stamp is later than
1676 * the current time, or is extremely old, fall back to non-1323
1677 * RTT calculation. Since ts_ecr is unsigned, we can test both
1678 * at the same time.
1679 */
1680 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1681 if (ts_rtt > TCP_PAWS_IDLE)
1682 ts_rtt = 0;
1683 } else {
1684 ts_rtt = 0;
1685 }
1686
1687 /*
1688 * Header prediction: check for the two common cases
1689 * of a uni-directional data xfer. If the packet has
1690 * no control flags, is in-sequence, the window didn't
1691 * change and we're not retransmitting, it's a
1692 * candidate. If the length is zero and the ack moved
1693 * forward, we're the sender side of the xfer. Just
1694 * free the data acked & wake any higher level process
1695 * that was blocked waiting for space. If the length
1696 * is non-zero and the ack didn't move, we're the
1697 * receiver side. If we're getting packets in-order
1698 * (the reassembly queue is empty), add the data to
1699 * the socket buffer and note that we need a delayed ack.
1700 */
1701 if (tp->t_state == TCPS_ESTABLISHED &&
1702 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1703 == TH_ACK &&
1704 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1705 th->th_seq == tp->rcv_nxt &&
1706 tiwin && tiwin == tp->snd_wnd &&
1707 tp->snd_nxt == tp->snd_max) {
1708
1709 /*
1710 * If last ACK falls within this segment's sequence numbers,
1711 * record the timestamp.
1712 * NOTE that the test is modified according to the latest
1713 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1714 *
1715 * note that we already know
1716 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1717 */
1718 if (opti.ts_present &&
1719 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1720 tp->ts_recent_age = tcp_now;
1721 tp->ts_recent = opti.ts_val;
1722 }
1723
1724 if (tlen == 0) {
1725 /* Ack prediction. */
1726 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1727 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1728 tp->snd_cwnd >= tp->snd_wnd &&
1729 tp->t_partialacks < 0) {
1730 /*
1731 * this is a pure ack for outstanding data.
1732 */
1733 if (ts_rtt)
1734 tcp_xmit_timer(tp, ts_rtt);
1735 else if (tp->t_rtttime &&
1736 SEQ_GT(th->th_ack, tp->t_rtseq))
1737 tcp_xmit_timer(tp,
1738 tcp_now - tp->t_rtttime);
1739 acked = th->th_ack - tp->snd_una;
1740 tcps = TCP_STAT_GETREF();
1741 tcps[TCP_STAT_PREDACK]++;
1742 tcps[TCP_STAT_RCVACKPACK]++;
1743 tcps[TCP_STAT_RCVACKBYTE] += acked;
1744 TCP_STAT_PUTREF();
1745 nd6_hint(tp);
1746
1747 if (acked > (tp->t_lastoff - tp->t_inoff))
1748 tp->t_lastm = NULL;
1749 sbdrop(&so->so_snd, acked);
1750 tp->t_lastoff -= acked;
1751
1752 icmp_check(tp, th, acked);
1753
1754 tp->snd_una = th->th_ack;
1755 tp->snd_fack = tp->snd_una;
1756 if (SEQ_LT(tp->snd_high, tp->snd_una))
1757 tp->snd_high = tp->snd_una;
1758 m_freem(m);
1759
1760 /*
1761 * If all outstanding data are acked, stop
1762 * retransmit timer, otherwise restart timer
1763 * using current (possibly backed-off) value.
1764 * If process is waiting for space,
1765 * wakeup/selnotify/signal. If data
1766 * are ready to send, let tcp_output
1767 * decide between more output or persist.
1768 */
1769 if (tp->snd_una == tp->snd_max)
1770 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1771 else if (TCP_TIMER_ISARMED(tp,
1772 TCPT_PERSIST) == 0)
1773 TCP_TIMER_ARM(tp, TCPT_REXMT,
1774 tp->t_rxtcur);
1775
1776 sowwakeup(so);
1777 if (so->so_snd.sb_cc)
1778 (void) tcp_output(tp);
1779 if (tcp_saveti)
1780 m_freem(tcp_saveti);
1781 return;
1782 }
1783 } else if (th->th_ack == tp->snd_una &&
1784 TAILQ_FIRST(&tp->segq) == NULL &&
1785 tlen <= sbspace(&so->so_rcv)) {
1786 int newsize = 0; /* automatic sockbuf scaling */
1787
1788 /*
1789 * this is a pure, in-sequence data packet
1790 * with nothing on the reassembly queue and
1791 * we have enough buffer space to take it.
1792 */
1793 tp->rcv_nxt += tlen;
1794 tcps = TCP_STAT_GETREF();
1795 tcps[TCP_STAT_PREDDAT]++;
1796 tcps[TCP_STAT_RCVPACK]++;
1797 tcps[TCP_STAT_RCVBYTE] += tlen;
1798 TCP_STAT_PUTREF();
1799 nd6_hint(tp);
1800
1801 /*
1802 * Automatic sizing enables the performance of large buffers
1803 * and most of the efficiency of small ones by only allocating
1804 * space when it is needed.
1805 *
1806 * On the receive side the socket buffer memory is only rarely
1807 * used to any significant extent. This allows us to be much
1808 * more aggressive in scaling the receive socket buffer. For
1809 * the case that the buffer space is actually used to a large
1810 * extent and we run out of kernel memory we can simply drop
1811 * the new segments; TCP on the sender will just retransmit it
1812 * later. Setting the buffer size too big may only consume too
1813 * much kernel memory if the application doesn't read() from
1814 * the socket or packet loss or reordering makes use of the
1815 * reassembly queue.
1816 *
1817 * The criteria to step up the receive buffer one notch are:
1818 * 1. the number of bytes received during the time it takes
1819 * one timestamp to be reflected back to us (the RTT);
1820 * 2. received bytes per RTT is within seven eighth of the
1821 * current socket buffer size;
1822 * 3. receive buffer size has not hit maximal automatic size;
1823 *
1824 * This algorithm does one step per RTT at most and only if
1825 * we receive a bulk stream w/o packet losses or reorderings.
1826 * Shrinking the buffer during idle times is not necessary as
1827 * it doesn't consume any memory when idle.
1828 *
1829 * TODO: Only step up if the application is actually serving
1830 * the buffer to better manage the socket buffer resources.
1831 */
1832 if (tcp_do_autorcvbuf &&
1833 opti.ts_ecr &&
1834 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1835 if (opti.ts_ecr > tp->rfbuf_ts &&
1836 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1837 if (tp->rfbuf_cnt >
1838 (so->so_rcv.sb_hiwat / 8 * 7) &&
1839 so->so_rcv.sb_hiwat <
1840 tcp_autorcvbuf_max) {
1841 newsize =
1842 min(so->so_rcv.sb_hiwat +
1843 tcp_autorcvbuf_inc,
1844 tcp_autorcvbuf_max);
1845 }
1846 /* Start over with next RTT. */
1847 tp->rfbuf_ts = 0;
1848 tp->rfbuf_cnt = 0;
1849 } else
1850 tp->rfbuf_cnt += tlen; /* add up */
1851 }
1852
1853 /*
1854 * Drop TCP, IP headers and TCP options then add data
1855 * to socket buffer.
1856 */
1857 if (so->so_state & SS_CANTRCVMORE)
1858 m_freem(m);
1859 else {
1860 /*
1861 * Set new socket buffer size.
1862 * Give up when limit is reached.
1863 */
1864 if (newsize)
1865 if (!sbreserve(&so->so_rcv,
1866 newsize, so))
1867 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1868 m_adj(m, toff + off);
1869 sbappendstream(&so->so_rcv, m);
1870 }
1871 sorwakeup(so);
1872 tcp_setup_ack(tp, th);
1873 if (tp->t_flags & TF_ACKNOW)
1874 (void) tcp_output(tp);
1875 if (tcp_saveti)
1876 m_freem(tcp_saveti);
1877 return;
1878 }
1879 }
1880
1881 /*
1882 * Compute mbuf offset to TCP data segment.
1883 */
1884 hdroptlen = toff + off;
1885
1886 /*
1887 * Calculate amount of space in receive window,
1888 * and then do TCP input processing.
1889 * Receive window is amount of space in rcv queue,
1890 * but not less than advertised window.
1891 */
1892 { int win;
1893
1894 win = sbspace(&so->so_rcv);
1895 if (win < 0)
1896 win = 0;
1897 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1898 }
1899
1900 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1901 tp->rfbuf_ts = 0;
1902 tp->rfbuf_cnt = 0;
1903
1904 switch (tp->t_state) {
1905 /*
1906 * If the state is SYN_SENT:
1907 * if seg contains an ACK, but not for our SYN, drop the input.
1908 * if seg contains a RST, then drop the connection.
1909 * if seg does not contain SYN, then drop it.
1910 * Otherwise this is an acceptable SYN segment
1911 * initialize tp->rcv_nxt and tp->irs
1912 * if seg contains ack then advance tp->snd_una
1913 * if seg contains a ECE and ECN support is enabled, the stream
1914 * is ECN capable.
1915 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1916 * arrange for segment to be acked (eventually)
1917 * continue processing rest of data/controls, beginning with URG
1918 */
1919 case TCPS_SYN_SENT:
1920 if ((tiflags & TH_ACK) &&
1921 (SEQ_LEQ(th->th_ack, tp->iss) ||
1922 SEQ_GT(th->th_ack, tp->snd_max)))
1923 goto dropwithreset;
1924 if (tiflags & TH_RST) {
1925 if (tiflags & TH_ACK)
1926 tp = tcp_drop(tp, ECONNREFUSED);
1927 goto drop;
1928 }
1929 if ((tiflags & TH_SYN) == 0)
1930 goto drop;
1931 if (tiflags & TH_ACK) {
1932 tp->snd_una = th->th_ack;
1933 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1934 tp->snd_nxt = tp->snd_una;
1935 if (SEQ_LT(tp->snd_high, tp->snd_una))
1936 tp->snd_high = tp->snd_una;
1937 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1938
1939 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1940 tp->t_flags |= TF_ECN_PERMIT;
1941 TCP_STATINC(TCP_STAT_ECN_SHS);
1942 }
1943
1944 }
1945 tp->irs = th->th_seq;
1946 tcp_rcvseqinit(tp);
1947 tp->t_flags |= TF_ACKNOW;
1948 tcp_mss_from_peer(tp, opti.maxseg);
1949
1950 /*
1951 * Initialize the initial congestion window. If we
1952 * had to retransmit the SYN, we must initialize cwnd
1953 * to 1 segment (i.e. the Loss Window).
1954 */
1955 if (tp->t_flags & TF_SYN_REXMT)
1956 tp->snd_cwnd = tp->t_peermss;
1957 else {
1958 int ss = tcp_init_win;
1959 #ifdef INET
1960 if (inp != NULL && in_localaddr(inp->inp_faddr))
1961 ss = tcp_init_win_local;
1962 #endif
1963 #ifdef INET6
1964 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1965 ss = tcp_init_win_local;
1966 #endif
1967 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1968 }
1969
1970 tcp_rmx_rtt(tp);
1971 if (tiflags & TH_ACK) {
1972 TCP_STATINC(TCP_STAT_CONNECTS);
1973 soisconnected(so);
1974 tcp_established(tp);
1975 /* Do window scaling on this connection? */
1976 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1977 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1978 tp->snd_scale = tp->requested_s_scale;
1979 tp->rcv_scale = tp->request_r_scale;
1980 }
1981 TCP_REASS_LOCK(tp);
1982 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1983 TCP_REASS_UNLOCK(tp);
1984 /*
1985 * if we didn't have to retransmit the SYN,
1986 * use its rtt as our initial srtt & rtt var.
1987 */
1988 if (tp->t_rtttime)
1989 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
1990 } else
1991 tp->t_state = TCPS_SYN_RECEIVED;
1992
1993 /*
1994 * Advance th->th_seq to correspond to first data byte.
1995 * If data, trim to stay within window,
1996 * dropping FIN if necessary.
1997 */
1998 th->th_seq++;
1999 if (tlen > tp->rcv_wnd) {
2000 todrop = tlen - tp->rcv_wnd;
2001 m_adj(m, -todrop);
2002 tlen = tp->rcv_wnd;
2003 tiflags &= ~TH_FIN;
2004 tcps = TCP_STAT_GETREF();
2005 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2006 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2007 TCP_STAT_PUTREF();
2008 }
2009 tp->snd_wl1 = th->th_seq - 1;
2010 tp->rcv_up = th->th_seq;
2011 goto step6;
2012
2013 /*
2014 * If the state is SYN_RECEIVED:
2015 * If seg contains an ACK, but not for our SYN, drop the input
2016 * and generate an RST. See page 36, rfc793
2017 */
2018 case TCPS_SYN_RECEIVED:
2019 if ((tiflags & TH_ACK) &&
2020 (SEQ_LEQ(th->th_ack, tp->iss) ||
2021 SEQ_GT(th->th_ack, tp->snd_max)))
2022 goto dropwithreset;
2023 break;
2024 }
2025
2026 /*
2027 * States other than LISTEN or SYN_SENT.
2028 * First check timestamp, if present.
2029 * Then check that at least some bytes of segment are within
2030 * receive window. If segment begins before rcv_nxt,
2031 * drop leading data (and SYN); if nothing left, just ack.
2032 *
2033 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2034 * and it's less than ts_recent, drop it.
2035 */
2036 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2037 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2038
2039 /* Check to see if ts_recent is over 24 days old. */
2040 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2041 /*
2042 * Invalidate ts_recent. If this segment updates
2043 * ts_recent, the age will be reset later and ts_recent
2044 * will get a valid value. If it does not, setting
2045 * ts_recent to zero will at least satisfy the
2046 * requirement that zero be placed in the timestamp
2047 * echo reply when ts_recent isn't valid. The
2048 * age isn't reset until we get a valid ts_recent
2049 * because we don't want out-of-order segments to be
2050 * dropped when ts_recent is old.
2051 */
2052 tp->ts_recent = 0;
2053 } else {
2054 tcps = TCP_STAT_GETREF();
2055 tcps[TCP_STAT_RCVDUPPACK]++;
2056 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2057 tcps[TCP_STAT_PAWSDROP]++;
2058 TCP_STAT_PUTREF();
2059 tcp_new_dsack(tp, th->th_seq, tlen);
2060 goto dropafterack;
2061 }
2062 }
2063
2064 todrop = tp->rcv_nxt - th->th_seq;
2065 dupseg = false;
2066 if (todrop > 0) {
2067 if (tiflags & TH_SYN) {
2068 tiflags &= ~TH_SYN;
2069 th->th_seq++;
2070 if (th->th_urp > 1)
2071 th->th_urp--;
2072 else {
2073 tiflags &= ~TH_URG;
2074 th->th_urp = 0;
2075 }
2076 todrop--;
2077 }
2078 if (todrop > tlen ||
2079 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2080 /*
2081 * Any valid FIN or RST must be to the left of the
2082 * window. At this point the FIN or RST must be a
2083 * duplicate or out of sequence; drop it.
2084 */
2085 if (tiflags & TH_RST)
2086 goto drop;
2087 tiflags &= ~(TH_FIN|TH_RST);
2088 /*
2089 * Send an ACK to resynchronize and drop any data.
2090 * But keep on processing for RST or ACK.
2091 */
2092 tp->t_flags |= TF_ACKNOW;
2093 todrop = tlen;
2094 dupseg = true;
2095 tcps = TCP_STAT_GETREF();
2096 tcps[TCP_STAT_RCVDUPPACK]++;
2097 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2098 TCP_STAT_PUTREF();
2099 } else if ((tiflags & TH_RST) &&
2100 th->th_seq != tp->last_ack_sent) {
2101 /*
2102 * Test for reset before adjusting the sequence
2103 * number for overlapping data.
2104 */
2105 goto dropafterack_ratelim;
2106 } else {
2107 tcps = TCP_STAT_GETREF();
2108 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2109 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2110 TCP_STAT_PUTREF();
2111 }
2112 tcp_new_dsack(tp, th->th_seq, todrop);
2113 hdroptlen += todrop; /*drop from head afterwards*/
2114 th->th_seq += todrop;
2115 tlen -= todrop;
2116 if (th->th_urp > todrop)
2117 th->th_urp -= todrop;
2118 else {
2119 tiflags &= ~TH_URG;
2120 th->th_urp = 0;
2121 }
2122 }
2123
2124 /*
2125 * If new data are received on a connection after the
2126 * user processes are gone, then RST the other end.
2127 */
2128 if ((so->so_state & SS_NOFDREF) &&
2129 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2130 tp = tcp_close(tp);
2131 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2132 goto dropwithreset;
2133 }
2134
2135 /*
2136 * If segment ends after window, drop trailing data
2137 * (and PUSH and FIN); if nothing left, just ACK.
2138 */
2139 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2140 if (todrop > 0) {
2141 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2142 if (todrop >= tlen) {
2143 /*
2144 * The segment actually starts after the window.
2145 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2146 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2147 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2148 */
2149 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2150 /*
2151 * If a new connection request is received
2152 * while in TIME_WAIT, drop the old connection
2153 * and start over if the sequence numbers
2154 * are above the previous ones.
2155 *
2156 * NOTE: We will checksum the packet again, and
2157 * so we need to put the header fields back into
2158 * network order!
2159 * XXX This kind of sucks, but we don't expect
2160 * XXX this to happen very often, so maybe it
2161 * XXX doesn't matter so much.
2162 */
2163 if (tiflags & TH_SYN &&
2164 tp->t_state == TCPS_TIME_WAIT &&
2165 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2166 tp = tcp_close(tp);
2167 tcp_fields_to_net(th);
2168 goto findpcb;
2169 }
2170 /*
2171 * If window is closed can only take segments at
2172 * window edge, and have to drop data and PUSH from
2173 * incoming segments. Continue processing, but
2174 * remember to ack. Otherwise, drop segment
2175 * and (if not RST) ack.
2176 */
2177 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2178 tp->t_flags |= TF_ACKNOW;
2179 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2180 } else
2181 goto dropafterack;
2182 } else
2183 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2184 m_adj(m, -todrop);
2185 tlen -= todrop;
2186 tiflags &= ~(TH_PUSH|TH_FIN);
2187 }
2188
2189 /*
2190 * If last ACK falls within this segment's sequence numbers,
2191 * record the timestamp.
2192 * NOTE:
2193 * 1) That the test incorporates suggestions from the latest
2194 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2195 * 2) That updating only on newer timestamps interferes with
2196 * our earlier PAWS tests, so this check should be solely
2197 * predicated on the sequence space of this segment.
2198 * 3) That we modify the segment boundary check to be
2199 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2200 * instead of RFC1323's
2201 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2202 * This modified check allows us to overcome RFC1323's
2203 * limitations as described in Stevens TCP/IP Illustrated
2204 * Vol. 2 p.869. In such cases, we can still calculate the
2205 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2206 */
2207 if (opti.ts_present &&
2208 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2209 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2210 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2211 tp->ts_recent_age = tcp_now;
2212 tp->ts_recent = opti.ts_val;
2213 }
2214
2215 /*
2216 * If the RST bit is set examine the state:
2217 * SYN_RECEIVED STATE:
2218 * If passive open, return to LISTEN state.
2219 * If active open, inform user that connection was refused.
2220 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2221 * Inform user that connection was reset, and close tcb.
2222 * CLOSING, LAST_ACK, TIME_WAIT STATES
2223 * Close the tcb.
2224 */
2225 if (tiflags & TH_RST) {
2226 if (th->th_seq != tp->last_ack_sent)
2227 goto dropafterack_ratelim;
2228
2229 switch (tp->t_state) {
2230 case TCPS_SYN_RECEIVED:
2231 so->so_error = ECONNREFUSED;
2232 goto close;
2233
2234 case TCPS_ESTABLISHED:
2235 case TCPS_FIN_WAIT_1:
2236 case TCPS_FIN_WAIT_2:
2237 case TCPS_CLOSE_WAIT:
2238 so->so_error = ECONNRESET;
2239 close:
2240 tp->t_state = TCPS_CLOSED;
2241 TCP_STATINC(TCP_STAT_DROPS);
2242 tp = tcp_close(tp);
2243 goto drop;
2244
2245 case TCPS_CLOSING:
2246 case TCPS_LAST_ACK:
2247 case TCPS_TIME_WAIT:
2248 tp = tcp_close(tp);
2249 goto drop;
2250 }
2251 }
2252
2253 /*
2254 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2255 * we must be in a synchronized state. RFC791 states (under RST
2256 * generation) that any unacceptable segment (an out-of-order SYN
2257 * qualifies) received in a synchronized state must elicit only an
2258 * empty acknowledgment segment ... and the connection remains in
2259 * the same state.
2260 */
2261 if (tiflags & TH_SYN) {
2262 if (tp->rcv_nxt == th->th_seq) {
2263 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2264 TH_ACK);
2265 if (tcp_saveti)
2266 m_freem(tcp_saveti);
2267 return;
2268 }
2269
2270 goto dropafterack_ratelim;
2271 }
2272
2273 /*
2274 * If the ACK bit is off we drop the segment and return.
2275 */
2276 if ((tiflags & TH_ACK) == 0) {
2277 if (tp->t_flags & TF_ACKNOW)
2278 goto dropafterack;
2279 else
2280 goto drop;
2281 }
2282
2283 /*
2284 * Ack processing.
2285 */
2286 switch (tp->t_state) {
2287
2288 /*
2289 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2290 * ESTABLISHED state and continue processing, otherwise
2291 * send an RST.
2292 */
2293 case TCPS_SYN_RECEIVED:
2294 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2295 SEQ_GT(th->th_ack, tp->snd_max))
2296 goto dropwithreset;
2297 TCP_STATINC(TCP_STAT_CONNECTS);
2298 soisconnected(so);
2299 tcp_established(tp);
2300 /* Do window scaling? */
2301 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2302 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2303 tp->snd_scale = tp->requested_s_scale;
2304 tp->rcv_scale = tp->request_r_scale;
2305 }
2306 TCP_REASS_LOCK(tp);
2307 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2308 TCP_REASS_UNLOCK(tp);
2309 tp->snd_wl1 = th->th_seq - 1;
2310 /* fall into ... */
2311
2312 /*
2313 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2314 * ACKs. If the ack is in the range
2315 * tp->snd_una < th->th_ack <= tp->snd_max
2316 * then advance tp->snd_una to th->th_ack and drop
2317 * data from the retransmission queue. If this ACK reflects
2318 * more up to date window information we update our window information.
2319 */
2320 case TCPS_ESTABLISHED:
2321 case TCPS_FIN_WAIT_1:
2322 case TCPS_FIN_WAIT_2:
2323 case TCPS_CLOSE_WAIT:
2324 case TCPS_CLOSING:
2325 case TCPS_LAST_ACK:
2326 case TCPS_TIME_WAIT:
2327
2328 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2329 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2330 TCP_STATINC(TCP_STAT_RCVDUPPACK);
2331 /*
2332 * If we have outstanding data (other than
2333 * a window probe), this is a completely
2334 * duplicate ack (ie, window info didn't
2335 * change), the ack is the biggest we've
2336 * seen and we've seen exactly our rexmt
2337 * threshhold of them, assume a packet
2338 * has been dropped and retransmit it.
2339 * Kludge snd_nxt & the congestion
2340 * window so we send only this one
2341 * packet.
2342 */
2343 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2344 th->th_ack != tp->snd_una)
2345 tp->t_dupacks = 0;
2346 else if (tp->t_partialacks < 0 &&
2347 (++tp->t_dupacks == tcprexmtthresh ||
2348 TCP_FACK_FASTRECOV(tp))) {
2349 /*
2350 * Do the fast retransmit, and adjust
2351 * congestion control paramenters.
2352 */
2353 if (tp->t_congctl->fast_retransmit(tp, th)) {
2354 /* False fast retransmit */
2355 break;
2356 } else
2357 goto drop;
2358 } else if (tp->t_dupacks > tcprexmtthresh) {
2359 tp->snd_cwnd += tp->t_segsz;
2360 (void) tcp_output(tp);
2361 goto drop;
2362 }
2363 } else {
2364 /*
2365 * If the ack appears to be very old, only
2366 * allow data that is in-sequence. This
2367 * makes it somewhat more difficult to insert
2368 * forged data by guessing sequence numbers.
2369 * Sent an ack to try to update the send
2370 * sequence number on the other side.
2371 */
2372 if (tlen && th->th_seq != tp->rcv_nxt &&
2373 SEQ_LT(th->th_ack,
2374 tp->snd_una - tp->max_sndwnd))
2375 goto dropafterack;
2376 }
2377 break;
2378 }
2379 /*
2380 * If the congestion window was inflated to account
2381 * for the other side's cached packets, retract it.
2382 */
2383 /* XXX: make SACK have his own congestion control
2384 * struct -- rpaulo */
2385 if (TCP_SACK_ENABLED(tp))
2386 tcp_sack_newack(tp, th);
2387 else
2388 tp->t_congctl->fast_retransmit_newack(tp, th);
2389 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2390 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2391 goto dropafterack;
2392 }
2393 acked = th->th_ack - tp->snd_una;
2394 tcps = TCP_STAT_GETREF();
2395 tcps[TCP_STAT_RCVACKPACK]++;
2396 tcps[TCP_STAT_RCVACKBYTE] += acked;
2397 TCP_STAT_PUTREF();
2398
2399 /*
2400 * If we have a timestamp reply, update smoothed
2401 * round trip time. If no timestamp is present but
2402 * transmit timer is running and timed sequence
2403 * number was acked, update smoothed round trip time.
2404 * Since we now have an rtt measurement, cancel the
2405 * timer backoff (cf., Phil Karn's retransmit alg.).
2406 * Recompute the initial retransmit timer.
2407 */
2408 if (ts_rtt)
2409 tcp_xmit_timer(tp, ts_rtt);
2410 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2411 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2412
2413 /*
2414 * If all outstanding data is acked, stop retransmit
2415 * timer and remember to restart (more output or persist).
2416 * If there is more data to be acked, restart retransmit
2417 * timer, using current (possibly backed-off) value.
2418 */
2419 if (th->th_ack == tp->snd_max) {
2420 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2421 needoutput = 1;
2422 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2423 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2424
2425 /*
2426 * New data has been acked, adjust the congestion window.
2427 */
2428 tp->t_congctl->newack(tp, th);
2429
2430 nd6_hint(tp);
2431 if (acked > so->so_snd.sb_cc) {
2432 tp->snd_wnd -= so->so_snd.sb_cc;
2433 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2434 ourfinisacked = 1;
2435 } else {
2436 if (acked > (tp->t_lastoff - tp->t_inoff))
2437 tp->t_lastm = NULL;
2438 sbdrop(&so->so_snd, acked);
2439 tp->t_lastoff -= acked;
2440 tp->snd_wnd -= acked;
2441 ourfinisacked = 0;
2442 }
2443 sowwakeup(so);
2444
2445 icmp_check(tp, th, acked);
2446
2447 tp->snd_una = th->th_ack;
2448 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2449 tp->snd_fack = tp->snd_una;
2450 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2451 tp->snd_nxt = tp->snd_una;
2452 if (SEQ_LT(tp->snd_high, tp->snd_una))
2453 tp->snd_high = tp->snd_una;
2454
2455 switch (tp->t_state) {
2456
2457 /*
2458 * In FIN_WAIT_1 STATE in addition to the processing
2459 * for the ESTABLISHED state if our FIN is now acknowledged
2460 * then enter FIN_WAIT_2.
2461 */
2462 case TCPS_FIN_WAIT_1:
2463 if (ourfinisacked) {
2464 /*
2465 * If we can't receive any more
2466 * data, then closing user can proceed.
2467 * Starting the timer is contrary to the
2468 * specification, but if we don't get a FIN
2469 * we'll hang forever.
2470 */
2471 if (so->so_state & SS_CANTRCVMORE) {
2472 soisdisconnected(so);
2473 if (tp->t_maxidle > 0)
2474 TCP_TIMER_ARM(tp, TCPT_2MSL,
2475 tp->t_maxidle);
2476 }
2477 tp->t_state = TCPS_FIN_WAIT_2;
2478 }
2479 break;
2480
2481 /*
2482 * In CLOSING STATE in addition to the processing for
2483 * the ESTABLISHED state if the ACK acknowledges our FIN
2484 * then enter the TIME-WAIT state, otherwise ignore
2485 * the segment.
2486 */
2487 case TCPS_CLOSING:
2488 if (ourfinisacked) {
2489 tp->t_state = TCPS_TIME_WAIT;
2490 tcp_canceltimers(tp);
2491 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2492 soisdisconnected(so);
2493 }
2494 break;
2495
2496 /*
2497 * In LAST_ACK, we may still be waiting for data to drain
2498 * and/or to be acked, as well as for the ack of our FIN.
2499 * If our FIN is now acknowledged, delete the TCB,
2500 * enter the closed state and return.
2501 */
2502 case TCPS_LAST_ACK:
2503 if (ourfinisacked) {
2504 tp = tcp_close(tp);
2505 goto drop;
2506 }
2507 break;
2508
2509 /*
2510 * In TIME_WAIT state the only thing that should arrive
2511 * is a retransmission of the remote FIN. Acknowledge
2512 * it and restart the finack timer.
2513 */
2514 case TCPS_TIME_WAIT:
2515 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2516 goto dropafterack;
2517 }
2518 }
2519
2520 step6:
2521 /*
2522 * Update window information.
2523 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2524 */
2525 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2526 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2527 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2528 /* keep track of pure window updates */
2529 if (tlen == 0 &&
2530 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2531 TCP_STATINC(TCP_STAT_RCVWINUPD);
2532 tp->snd_wnd = tiwin;
2533 tp->snd_wl1 = th->th_seq;
2534 tp->snd_wl2 = th->th_ack;
2535 if (tp->snd_wnd > tp->max_sndwnd)
2536 tp->max_sndwnd = tp->snd_wnd;
2537 needoutput = 1;
2538 }
2539
2540 /*
2541 * Process segments with URG.
2542 */
2543 if ((tiflags & TH_URG) && th->th_urp &&
2544 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2545 /*
2546 * This is a kludge, but if we receive and accept
2547 * random urgent pointers, we'll crash in
2548 * soreceive. It's hard to imagine someone
2549 * actually wanting to send this much urgent data.
2550 */
2551 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2552 th->th_urp = 0; /* XXX */
2553 tiflags &= ~TH_URG; /* XXX */
2554 goto dodata; /* XXX */
2555 }
2556 /*
2557 * If this segment advances the known urgent pointer,
2558 * then mark the data stream. This should not happen
2559 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2560 * a FIN has been received from the remote side.
2561 * In these states we ignore the URG.
2562 *
2563 * According to RFC961 (Assigned Protocols),
2564 * the urgent pointer points to the last octet
2565 * of urgent data. We continue, however,
2566 * to consider it to indicate the first octet
2567 * of data past the urgent section as the original
2568 * spec states (in one of two places).
2569 */
2570 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2571 tp->rcv_up = th->th_seq + th->th_urp;
2572 so->so_oobmark = so->so_rcv.sb_cc +
2573 (tp->rcv_up - tp->rcv_nxt) - 1;
2574 if (so->so_oobmark == 0)
2575 so->so_state |= SS_RCVATMARK;
2576 sohasoutofband(so);
2577 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2578 }
2579 /*
2580 * Remove out of band data so doesn't get presented to user.
2581 * This can happen independent of advancing the URG pointer,
2582 * but if two URG's are pending at once, some out-of-band
2583 * data may creep in... ick.
2584 */
2585 if (th->th_urp <= (u_int16_t) tlen
2586 #ifdef SO_OOBINLINE
2587 && (so->so_options & SO_OOBINLINE) == 0
2588 #endif
2589 )
2590 tcp_pulloutofband(so, th, m, hdroptlen);
2591 } else
2592 /*
2593 * If no out of band data is expected,
2594 * pull receive urgent pointer along
2595 * with the receive window.
2596 */
2597 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2598 tp->rcv_up = tp->rcv_nxt;
2599 dodata: /* XXX */
2600
2601 /*
2602 * Process the segment text, merging it into the TCP sequencing queue,
2603 * and arranging for acknowledgement of receipt if necessary.
2604 * This process logically involves adjusting tp->rcv_wnd as data
2605 * is presented to the user (this happens in tcp_usrreq.c,
2606 * case PRU_RCVD). If a FIN has already been received on this
2607 * connection then we just ignore the text.
2608 */
2609 if ((tlen || (tiflags & TH_FIN)) &&
2610 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2611 /*
2612 * Insert segment ti into reassembly queue of tcp with
2613 * control block tp. Return TH_FIN if reassembly now includes
2614 * a segment with FIN. The macro form does the common case
2615 * inline (segment is the next to be received on an
2616 * established connection, and the queue is empty),
2617 * avoiding linkage into and removal from the queue and
2618 * repetition of various conversions.
2619 * Set DELACK for segments received in order, but ack
2620 * immediately when segments are out of order
2621 * (so fast retransmit can work).
2622 */
2623 /* NOTE: this was TCP_REASS() macro, but used only once */
2624 TCP_REASS_LOCK(tp);
2625 if (th->th_seq == tp->rcv_nxt &&
2626 TAILQ_FIRST(&tp->segq) == NULL &&
2627 tp->t_state == TCPS_ESTABLISHED) {
2628 tcp_setup_ack(tp, th);
2629 tp->rcv_nxt += tlen;
2630 tiflags = th->th_flags & TH_FIN;
2631 tcps = TCP_STAT_GETREF();
2632 tcps[TCP_STAT_RCVPACK]++;
2633 tcps[TCP_STAT_RCVBYTE] += tlen;
2634 TCP_STAT_PUTREF();
2635 nd6_hint(tp);
2636 if (so->so_state & SS_CANTRCVMORE)
2637 m_freem(m);
2638 else {
2639 m_adj(m, hdroptlen);
2640 sbappendstream(&(so)->so_rcv, m);
2641 }
2642 TCP_REASS_UNLOCK(tp);
2643 sorwakeup(so);
2644 } else {
2645 m_adj(m, hdroptlen);
2646 tiflags = tcp_reass(tp, th, m, &tlen);
2647 tp->t_flags |= TF_ACKNOW;
2648 TCP_REASS_UNLOCK(tp);
2649 }
2650
2651 /*
2652 * Note the amount of data that peer has sent into
2653 * our window, in order to estimate the sender's
2654 * buffer size.
2655 */
2656 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2657 } else {
2658 m_freem(m);
2659 m = NULL;
2660 tiflags &= ~TH_FIN;
2661 }
2662
2663 /*
2664 * If FIN is received ACK the FIN and let the user know
2665 * that the connection is closing. Ignore a FIN received before
2666 * the connection is fully established.
2667 */
2668 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2669 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2670 socantrcvmore(so);
2671 tp->t_flags |= TF_ACKNOW;
2672 tp->rcv_nxt++;
2673 }
2674 switch (tp->t_state) {
2675
2676 /*
2677 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2678 */
2679 case TCPS_ESTABLISHED:
2680 tp->t_state = TCPS_CLOSE_WAIT;
2681 break;
2682
2683 /*
2684 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2685 * enter the CLOSING state.
2686 */
2687 case TCPS_FIN_WAIT_1:
2688 tp->t_state = TCPS_CLOSING;
2689 break;
2690
2691 /*
2692 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2693 * starting the time-wait timer, turning off the other
2694 * standard timers.
2695 */
2696 case TCPS_FIN_WAIT_2:
2697 tp->t_state = TCPS_TIME_WAIT;
2698 tcp_canceltimers(tp);
2699 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2700 soisdisconnected(so);
2701 break;
2702
2703 /*
2704 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2705 */
2706 case TCPS_TIME_WAIT:
2707 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * TCPTV_MSL);
2708 break;
2709 }
2710 }
2711 #ifdef TCP_DEBUG
2712 if (so->so_options & SO_DEBUG)
2713 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2714 #endif
2715
2716 /*
2717 * Return any desired output.
2718 */
2719 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2720 (void) tcp_output(tp);
2721 }
2722 if (tcp_saveti)
2723 m_freem(tcp_saveti);
2724 return;
2725
2726 badsyn:
2727 /*
2728 * Received a bad SYN. Increment counters and dropwithreset.
2729 */
2730 TCP_STATINC(TCP_STAT_BADSYN);
2731 tp = NULL;
2732 goto dropwithreset;
2733
2734 dropafterack:
2735 /*
2736 * Generate an ACK dropping incoming segment if it occupies
2737 * sequence space, where the ACK reflects our state.
2738 */
2739 if (tiflags & TH_RST)
2740 goto drop;
2741 goto dropafterack2;
2742
2743 dropafterack_ratelim:
2744 /*
2745 * We may want to rate-limit ACKs against SYN/RST attack.
2746 */
2747 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2748 tcp_ackdrop_ppslim) == 0) {
2749 /* XXX stat */
2750 goto drop;
2751 }
2752 /* ...fall into dropafterack2... */
2753
2754 dropafterack2:
2755 m_freem(m);
2756 tp->t_flags |= TF_ACKNOW;
2757 (void) tcp_output(tp);
2758 if (tcp_saveti)
2759 m_freem(tcp_saveti);
2760 return;
2761
2762 dropwithreset_ratelim:
2763 /*
2764 * We may want to rate-limit RSTs in certain situations,
2765 * particularly if we are sending an RST in response to
2766 * an attempt to connect to or otherwise communicate with
2767 * a port for which we have no socket.
2768 */
2769 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2770 tcp_rst_ppslim) == 0) {
2771 /* XXX stat */
2772 goto drop;
2773 }
2774 /* ...fall into dropwithreset... */
2775
2776 dropwithreset:
2777 /*
2778 * Generate a RST, dropping incoming segment.
2779 * Make ACK acceptable to originator of segment.
2780 */
2781 if (tiflags & TH_RST)
2782 goto drop;
2783
2784 switch (af) {
2785 #ifdef INET6
2786 case AF_INET6:
2787 /* For following calls to tcp_respond */
2788 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2789 goto drop;
2790 break;
2791 #endif /* INET6 */
2792 case AF_INET:
2793 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2794 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2795 goto drop;
2796 }
2797
2798 if (tiflags & TH_ACK)
2799 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2800 else {
2801 if (tiflags & TH_SYN)
2802 tlen++;
2803 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2804 TH_RST|TH_ACK);
2805 }
2806 if (tcp_saveti)
2807 m_freem(tcp_saveti);
2808 return;
2809
2810 badcsum:
2811 drop:
2812 /*
2813 * Drop space held by incoming segment and return.
2814 */
2815 if (tp) {
2816 if (tp->t_inpcb)
2817 so = tp->t_inpcb->inp_socket;
2818 #ifdef INET6
2819 else if (tp->t_in6pcb)
2820 so = tp->t_in6pcb->in6p_socket;
2821 #endif
2822 else
2823 so = NULL;
2824 #ifdef TCP_DEBUG
2825 if (so && (so->so_options & SO_DEBUG) != 0)
2826 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2827 #endif
2828 }
2829 if (tcp_saveti)
2830 m_freem(tcp_saveti);
2831 m_freem(m);
2832 return;
2833 }
2834
2835 #ifdef TCP_SIGNATURE
2836 int
2837 tcp_signature_apply(void *fstate, void *data, u_int len)
2838 {
2839
2840 MD5Update(fstate, (u_char *)data, len);
2841 return (0);
2842 }
2843
2844 struct secasvar *
2845 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2846 {
2847 struct secasvar *sav;
2848 #ifdef FAST_IPSEC
2849 union sockaddr_union dst;
2850 #endif
2851 struct ip *ip;
2852 struct ip6_hdr *ip6;
2853
2854 ip = mtod(m, struct ip *);
2855 switch (ip->ip_v) {
2856 case 4:
2857 ip = mtod(m, struct ip *);
2858 ip6 = NULL;
2859 break;
2860 case 6:
2861 ip = NULL;
2862 ip6 = mtod(m, struct ip6_hdr *);
2863 break;
2864 default:
2865 return (NULL);
2866 }
2867
2868 #ifdef FAST_IPSEC
2869 /* Extract the destination from the IP header in the mbuf. */
2870 bzero(&dst, sizeof(union sockaddr_union));
2871 if (ip !=NULL) {
2872 dst.sa.sa_len = sizeof(struct sockaddr_in);
2873 dst.sa.sa_family = AF_INET;
2874 dst.sin.sin_addr = ip->ip_dst;
2875 } else {
2876 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2877 dst.sa.sa_family = AF_INET6;
2878 dst.sin6.sin6_addr = ip6->ip6_dst;
2879 }
2880
2881 /*
2882 * Look up an SADB entry which matches the address of the peer.
2883 */
2884 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2885 #else
2886 if (ip)
2887 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2888 (void *)&ip->ip_dst, IPPROTO_TCP,
2889 htonl(TCP_SIG_SPI), 0, 0);
2890 else
2891 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2892 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2893 htonl(TCP_SIG_SPI), 0, 0);
2894 #endif
2895
2896 return (sav); /* freesav must be performed by caller */
2897 }
2898
2899 int
2900 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2901 struct secasvar *sav, char *sig)
2902 {
2903 MD5_CTX ctx;
2904 struct ip *ip;
2905 struct ipovly *ipovly;
2906 struct ip6_hdr *ip6;
2907 struct ippseudo ippseudo;
2908 struct ip6_hdr_pseudo ip6pseudo;
2909 struct tcphdr th0;
2910 int l, tcphdrlen;
2911
2912 if (sav == NULL)
2913 return (-1);
2914
2915 tcphdrlen = th->th_off * 4;
2916
2917 switch (mtod(m, struct ip *)->ip_v) {
2918 case 4:
2919 ip = mtod(m, struct ip *);
2920 ip6 = NULL;
2921 break;
2922 case 6:
2923 ip = NULL;
2924 ip6 = mtod(m, struct ip6_hdr *);
2925 break;
2926 default:
2927 return (-1);
2928 }
2929
2930 MD5Init(&ctx);
2931
2932 if (ip) {
2933 memset(&ippseudo, 0, sizeof(ippseudo));
2934 ipovly = (struct ipovly *)ip;
2935 ippseudo.ippseudo_src = ipovly->ih_src;
2936 ippseudo.ippseudo_dst = ipovly->ih_dst;
2937 ippseudo.ippseudo_pad = 0;
2938 ippseudo.ippseudo_p = IPPROTO_TCP;
2939 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2940 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2941 } else {
2942 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2943 ip6pseudo.ip6ph_src = ip6->ip6_src;
2944 in6_clearscope(&ip6pseudo.ip6ph_src);
2945 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2946 in6_clearscope(&ip6pseudo.ip6ph_dst);
2947 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2948 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2949 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2950 }
2951
2952 th0 = *th;
2953 th0.th_sum = 0;
2954 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2955
2956 l = m->m_pkthdr.len - thoff - tcphdrlen;
2957 if (l > 0)
2958 m_apply(m, thoff + tcphdrlen,
2959 m->m_pkthdr.len - thoff - tcphdrlen,
2960 tcp_signature_apply, &ctx);
2961
2962 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2963 MD5Final(sig, &ctx);
2964
2965 return (0);
2966 }
2967 #endif
2968
2969 static int
2970 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2971 struct tcphdr *th,
2972 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2973 {
2974 u_int16_t mss;
2975 int opt, optlen = 0;
2976 #ifdef TCP_SIGNATURE
2977 void *sigp = NULL;
2978 char sigbuf[TCP_SIGLEN];
2979 struct secasvar *sav = NULL;
2980 #endif
2981
2982 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
2983 opt = cp[0];
2984 if (opt == TCPOPT_EOL)
2985 break;
2986 if (opt == TCPOPT_NOP)
2987 optlen = 1;
2988 else {
2989 if (cnt < 2)
2990 break;
2991 optlen = cp[1];
2992 if (optlen < 2 || optlen > cnt)
2993 break;
2994 }
2995 switch (opt) {
2996
2997 default:
2998 continue;
2999
3000 case TCPOPT_MAXSEG:
3001 if (optlen != TCPOLEN_MAXSEG)
3002 continue;
3003 if (!(th->th_flags & TH_SYN))
3004 continue;
3005 if (TCPS_HAVERCVDSYN(tp->t_state))
3006 continue;
3007 bcopy(cp + 2, &mss, sizeof(mss));
3008 oi->maxseg = ntohs(mss);
3009 break;
3010
3011 case TCPOPT_WINDOW:
3012 if (optlen != TCPOLEN_WINDOW)
3013 continue;
3014 if (!(th->th_flags & TH_SYN))
3015 continue;
3016 if (TCPS_HAVERCVDSYN(tp->t_state))
3017 continue;
3018 tp->t_flags |= TF_RCVD_SCALE;
3019 tp->requested_s_scale = cp[2];
3020 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3021 #if 0 /*XXX*/
3022 char *p;
3023
3024 if (ip)
3025 p = ntohl(ip->ip_src);
3026 #ifdef INET6
3027 else if (ip6)
3028 p = ip6_sprintf(&ip6->ip6_src);
3029 #endif
3030 else
3031 p = "(unknown)";
3032 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3033 "assuming %d\n",
3034 tp->requested_s_scale, p,
3035 TCP_MAX_WINSHIFT);
3036 #else
3037 log(LOG_ERR, "TCP: invalid wscale %d, "
3038 "assuming %d\n",
3039 tp->requested_s_scale,
3040 TCP_MAX_WINSHIFT);
3041 #endif
3042 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3043 }
3044 break;
3045
3046 case TCPOPT_TIMESTAMP:
3047 if (optlen != TCPOLEN_TIMESTAMP)
3048 continue;
3049 oi->ts_present = 1;
3050 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3051 NTOHL(oi->ts_val);
3052 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3053 NTOHL(oi->ts_ecr);
3054
3055 if (!(th->th_flags & TH_SYN))
3056 continue;
3057 if (TCPS_HAVERCVDSYN(tp->t_state))
3058 continue;
3059 /*
3060 * A timestamp received in a SYN makes
3061 * it ok to send timestamp requests and replies.
3062 */
3063 tp->t_flags |= TF_RCVD_TSTMP;
3064 tp->ts_recent = oi->ts_val;
3065 tp->ts_recent_age = tcp_now;
3066 break;
3067
3068 case TCPOPT_SACK_PERMITTED:
3069 if (optlen != TCPOLEN_SACK_PERMITTED)
3070 continue;
3071 if (!(th->th_flags & TH_SYN))
3072 continue;
3073 if (TCPS_HAVERCVDSYN(tp->t_state))
3074 continue;
3075 if (tcp_do_sack) {
3076 tp->t_flags |= TF_SACK_PERMIT;
3077 tp->t_flags |= TF_WILL_SACK;
3078 }
3079 break;
3080
3081 case TCPOPT_SACK:
3082 tcp_sack_option(tp, th, cp, optlen);
3083 break;
3084 #ifdef TCP_SIGNATURE
3085 case TCPOPT_SIGNATURE:
3086 if (optlen != TCPOLEN_SIGNATURE)
3087 continue;
3088 if (sigp && bcmp(sigp, cp + 2, TCP_SIGLEN))
3089 return (-1);
3090
3091 sigp = sigbuf;
3092 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3093 tp->t_flags |= TF_SIGNATURE;
3094 break;
3095 #endif
3096 }
3097 }
3098
3099 #ifdef TCP_SIGNATURE
3100 if (tp->t_flags & TF_SIGNATURE) {
3101
3102 sav = tcp_signature_getsav(m, th);
3103
3104 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3105 return (-1);
3106 }
3107
3108 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3109 if (sav == NULL)
3110 return (-1);
3111 #ifdef FAST_IPSEC
3112 KEY_FREESAV(&sav);
3113 #else
3114 key_freesav(sav);
3115 #endif
3116 return (-1);
3117 }
3118
3119 if (sigp) {
3120 char sig[TCP_SIGLEN];
3121
3122 tcp_fields_to_net(th);
3123 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3124 tcp_fields_to_host(th);
3125 if (sav == NULL)
3126 return (-1);
3127 #ifdef FAST_IPSEC
3128 KEY_FREESAV(&sav);
3129 #else
3130 key_freesav(sav);
3131 #endif
3132 return (-1);
3133 }
3134 tcp_fields_to_host(th);
3135
3136 if (bcmp(sig, sigp, TCP_SIGLEN)) {
3137 TCP_STATINC(TCP_STAT_BADSIG);
3138 if (sav == NULL)
3139 return (-1);
3140 #ifdef FAST_IPSEC
3141 KEY_FREESAV(&sav);
3142 #else
3143 key_freesav(sav);
3144 #endif
3145 return (-1);
3146 } else
3147 TCP_STATINC(TCP_STAT_GOODSIG);
3148
3149 key_sa_recordxfer(sav, m);
3150 #ifdef FAST_IPSEC
3151 KEY_FREESAV(&sav);
3152 #else
3153 key_freesav(sav);
3154 #endif
3155 }
3156 #endif
3157
3158 return (0);
3159 }
3160
3161 /*
3162 * Pull out of band byte out of a segment so
3163 * it doesn't appear in the user's data queue.
3164 * It is still reflected in the segment length for
3165 * sequencing purposes.
3166 */
3167 void
3168 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3169 struct mbuf *m, int off)
3170 {
3171 int cnt = off + th->th_urp - 1;
3172
3173 while (cnt >= 0) {
3174 if (m->m_len > cnt) {
3175 char *cp = mtod(m, char *) + cnt;
3176 struct tcpcb *tp = sototcpcb(so);
3177
3178 tp->t_iobc = *cp;
3179 tp->t_oobflags |= TCPOOB_HAVEDATA;
3180 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3181 m->m_len--;
3182 return;
3183 }
3184 cnt -= m->m_len;
3185 m = m->m_next;
3186 if (m == 0)
3187 break;
3188 }
3189 panic("tcp_pulloutofband");
3190 }
3191
3192 /*
3193 * Collect new round-trip time estimate
3194 * and update averages and current timeout.
3195 */
3196 void
3197 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3198 {
3199 int32_t delta;
3200
3201 TCP_STATINC(TCP_STAT_RTTUPDATED);
3202 if (tp->t_srtt != 0) {
3203 /*
3204 * srtt is stored as fixed point with 3 bits after the
3205 * binary point (i.e., scaled by 8). The following magic
3206 * is equivalent to the smoothing algorithm in rfc793 with
3207 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3208 * point). Adjust rtt to origin 0.
3209 */
3210 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3211 if ((tp->t_srtt += delta) <= 0)
3212 tp->t_srtt = 1 << 2;
3213 /*
3214 * We accumulate a smoothed rtt variance (actually, a
3215 * smoothed mean difference), then set the retransmit
3216 * timer to smoothed rtt + 4 times the smoothed variance.
3217 * rttvar is stored as fixed point with 2 bits after the
3218 * binary point (scaled by 4). The following is
3219 * equivalent to rfc793 smoothing with an alpha of .75
3220 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3221 * rfc793's wired-in beta.
3222 */
3223 if (delta < 0)
3224 delta = -delta;
3225 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3226 if ((tp->t_rttvar += delta) <= 0)
3227 tp->t_rttvar = 1 << 2;
3228 } else {
3229 /*
3230 * No rtt measurement yet - use the unsmoothed rtt.
3231 * Set the variance to half the rtt (so our first
3232 * retransmit happens at 3*rtt).
3233 */
3234 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3235 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3236 }
3237 tp->t_rtttime = 0;
3238 tp->t_rxtshift = 0;
3239
3240 /*
3241 * the retransmit should happen at rtt + 4 * rttvar.
3242 * Because of the way we do the smoothing, srtt and rttvar
3243 * will each average +1/2 tick of bias. When we compute
3244 * the retransmit timer, we want 1/2 tick of rounding and
3245 * 1 extra tick because of +-1/2 tick uncertainty in the
3246 * firing of the timer. The bias will give us exactly the
3247 * 1.5 tick we need. But, because the bias is
3248 * statistical, we have to test that we don't drop below
3249 * the minimum feasible timer (which is 2 ticks).
3250 */
3251 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3252 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3253
3254 /*
3255 * We received an ack for a packet that wasn't retransmitted;
3256 * it is probably safe to discard any error indications we've
3257 * received recently. This isn't quite right, but close enough
3258 * for now (a route might have failed after we sent a segment,
3259 * and the return path might not be symmetrical).
3260 */
3261 tp->t_softerror = 0;
3262 }
3263
3264
3265 /*
3266 * TCP compressed state engine. Currently used to hold compressed
3267 * state for SYN_RECEIVED.
3268 */
3269
3270 u_long syn_cache_count;
3271 u_int32_t syn_hash1, syn_hash2;
3272
3273 #define SYN_HASH(sa, sp, dp) \
3274 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3275 ((u_int32_t)(sp)))^syn_hash2)))
3276 #ifndef INET6
3277 #define SYN_HASHALL(hash, src, dst) \
3278 do { \
3279 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3280 ((const struct sockaddr_in *)(src))->sin_port, \
3281 ((const struct sockaddr_in *)(dst))->sin_port); \
3282 } while (/*CONSTCOND*/ 0)
3283 #else
3284 #define SYN_HASH6(sa, sp, dp) \
3285 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3286 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3287 & 0x7fffffff)
3288
3289 #define SYN_HASHALL(hash, src, dst) \
3290 do { \
3291 switch ((src)->sa_family) { \
3292 case AF_INET: \
3293 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3294 ((const struct sockaddr_in *)(src))->sin_port, \
3295 ((const struct sockaddr_in *)(dst))->sin_port); \
3296 break; \
3297 case AF_INET6: \
3298 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3299 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3300 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3301 break; \
3302 default: \
3303 hash = 0; \
3304 } \
3305 } while (/*CONSTCOND*/0)
3306 #endif /* INET6 */
3307
3308 POOL_INIT(syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0, "synpl", NULL,
3309 IPL_SOFTNET);
3310
3311 /*
3312 * We don't estimate RTT with SYNs, so each packet starts with the default
3313 * RTT and each timer step has a fixed timeout value.
3314 */
3315 #define SYN_CACHE_TIMER_ARM(sc) \
3316 do { \
3317 TCPT_RANGESET((sc)->sc_rxtcur, \
3318 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3319 TCPTV_REXMTMAX); \
3320 callout_reset(&(sc)->sc_timer, \
3321 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3322 } while (/*CONSTCOND*/0)
3323
3324 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3325
3326 static inline void
3327 syn_cache_rm(struct syn_cache *sc)
3328 {
3329 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3330 sc, sc_bucketq);
3331 sc->sc_tp = NULL;
3332 LIST_REMOVE(sc, sc_tpq);
3333 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3334 callout_stop(&sc->sc_timer);
3335 syn_cache_count--;
3336 }
3337
3338 static inline void
3339 syn_cache_put(struct syn_cache *sc)
3340 {
3341 if (sc->sc_ipopts)
3342 (void) m_free(sc->sc_ipopts);
3343 rtcache_free(&sc->sc_route);
3344 if (callout_invoking(&sc->sc_timer))
3345 sc->sc_flags |= SCF_DEAD;
3346 else {
3347 callout_destroy(&sc->sc_timer);
3348 pool_put(&syn_cache_pool, sc);
3349 }
3350 }
3351
3352 void
3353 syn_cache_init(void)
3354 {
3355 int i;
3356
3357 /* Initialize the hash buckets. */
3358 for (i = 0; i < tcp_syn_cache_size; i++)
3359 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3360 }
3361
3362 void
3363 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3364 {
3365 struct syn_cache_head *scp;
3366 struct syn_cache *sc2;
3367 int s;
3368
3369 /*
3370 * If there are no entries in the hash table, reinitialize
3371 * the hash secrets.
3372 */
3373 if (syn_cache_count == 0) {
3374 syn_hash1 = arc4random();
3375 syn_hash2 = arc4random();
3376 }
3377
3378 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3379 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3380 scp = &tcp_syn_cache[sc->sc_bucketidx];
3381
3382 /*
3383 * Make sure that we don't overflow the per-bucket
3384 * limit or the total cache size limit.
3385 */
3386 s = splsoftnet();
3387 if (scp->sch_length >= tcp_syn_bucket_limit) {
3388 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3389 /*
3390 * The bucket is full. Toss the oldest element in the
3391 * bucket. This will be the first entry in the bucket.
3392 */
3393 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3394 #ifdef DIAGNOSTIC
3395 /*
3396 * This should never happen; we should always find an
3397 * entry in our bucket.
3398 */
3399 if (sc2 == NULL)
3400 panic("syn_cache_insert: bucketoverflow: impossible");
3401 #endif
3402 syn_cache_rm(sc2);
3403 syn_cache_put(sc2); /* calls pool_put but see spl above */
3404 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3405 struct syn_cache_head *scp2, *sce;
3406
3407 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3408 /*
3409 * The cache is full. Toss the oldest entry in the
3410 * first non-empty bucket we can find.
3411 *
3412 * XXX We would really like to toss the oldest
3413 * entry in the cache, but we hope that this
3414 * condition doesn't happen very often.
3415 */
3416 scp2 = scp;
3417 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3418 sce = &tcp_syn_cache[tcp_syn_cache_size];
3419 for (++scp2; scp2 != scp; scp2++) {
3420 if (scp2 >= sce)
3421 scp2 = &tcp_syn_cache[0];
3422 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3423 break;
3424 }
3425 #ifdef DIAGNOSTIC
3426 /*
3427 * This should never happen; we should always find a
3428 * non-empty bucket.
3429 */
3430 if (scp2 == scp)
3431 panic("syn_cache_insert: cacheoverflow: "
3432 "impossible");
3433 #endif
3434 }
3435 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3436 syn_cache_rm(sc2);
3437 syn_cache_put(sc2); /* calls pool_put but see spl above */
3438 }
3439
3440 /*
3441 * Initialize the entry's timer.
3442 */
3443 sc->sc_rxttot = 0;
3444 sc->sc_rxtshift = 0;
3445 SYN_CACHE_TIMER_ARM(sc);
3446
3447 /* Link it from tcpcb entry */
3448 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3449
3450 /* Put it into the bucket. */
3451 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3452 scp->sch_length++;
3453 syn_cache_count++;
3454
3455 TCP_STATINC(TCP_STAT_SC_ADDED);
3456 splx(s);
3457 }
3458
3459 /*
3460 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3461 * If we have retransmitted an entry the maximum number of times, expire
3462 * that entry.
3463 */
3464 void
3465 syn_cache_timer(void *arg)
3466 {
3467 struct syn_cache *sc = arg;
3468
3469 mutex_enter(softnet_lock);
3470 KERNEL_LOCK(1, NULL);
3471 callout_ack(&sc->sc_timer);
3472
3473 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3474 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3475 callout_destroy(&sc->sc_timer);
3476 pool_put(&syn_cache_pool, sc);
3477 KERNEL_UNLOCK_ONE(NULL);
3478 mutex_exit(softnet_lock);
3479 return;
3480 }
3481
3482 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3483 /* Drop it -- too many retransmissions. */
3484 goto dropit;
3485 }
3486
3487 /*
3488 * Compute the total amount of time this entry has
3489 * been on a queue. If this entry has been on longer
3490 * than the keep alive timer would allow, expire it.
3491 */
3492 sc->sc_rxttot += sc->sc_rxtcur;
3493 if (sc->sc_rxttot >= tcp_keepinit)
3494 goto dropit;
3495
3496 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3497 (void) syn_cache_respond(sc, NULL);
3498
3499 /* Advance the timer back-off. */
3500 sc->sc_rxtshift++;
3501 SYN_CACHE_TIMER_ARM(sc);
3502
3503 KERNEL_UNLOCK_ONE(NULL);
3504 mutex_exit(softnet_lock);
3505 return;
3506
3507 dropit:
3508 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3509 syn_cache_rm(sc);
3510 syn_cache_put(sc); /* calls pool_put but see spl above */
3511 KERNEL_UNLOCK_ONE(NULL);
3512 mutex_exit(softnet_lock);
3513 }
3514
3515 /*
3516 * Remove syn cache created by the specified tcb entry,
3517 * because this does not make sense to keep them
3518 * (if there's no tcb entry, syn cache entry will never be used)
3519 */
3520 void
3521 syn_cache_cleanup(struct tcpcb *tp)
3522 {
3523 struct syn_cache *sc, *nsc;
3524 int s;
3525
3526 s = splsoftnet();
3527
3528 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3529 nsc = LIST_NEXT(sc, sc_tpq);
3530
3531 #ifdef DIAGNOSTIC
3532 if (sc->sc_tp != tp)
3533 panic("invalid sc_tp in syn_cache_cleanup");
3534 #endif
3535 syn_cache_rm(sc);
3536 syn_cache_put(sc); /* calls pool_put but see spl above */
3537 }
3538 /* just for safety */
3539 LIST_INIT(&tp->t_sc);
3540
3541 splx(s);
3542 }
3543
3544 /*
3545 * Find an entry in the syn cache.
3546 */
3547 struct syn_cache *
3548 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3549 struct syn_cache_head **headp)
3550 {
3551 struct syn_cache *sc;
3552 struct syn_cache_head *scp;
3553 u_int32_t hash;
3554 int s;
3555
3556 SYN_HASHALL(hash, src, dst);
3557
3558 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3559 *headp = scp;
3560 s = splsoftnet();
3561 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3562 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3563 if (sc->sc_hash != hash)
3564 continue;
3565 if (!bcmp(&sc->sc_src, src, src->sa_len) &&
3566 !bcmp(&sc->sc_dst, dst, dst->sa_len)) {
3567 splx(s);
3568 return (sc);
3569 }
3570 }
3571 splx(s);
3572 return (NULL);
3573 }
3574
3575 /*
3576 * This function gets called when we receive an ACK for a
3577 * socket in the LISTEN state. We look up the connection
3578 * in the syn cache, and if its there, we pull it out of
3579 * the cache and turn it into a full-blown connection in
3580 * the SYN-RECEIVED state.
3581 *
3582 * The return values may not be immediately obvious, and their effects
3583 * can be subtle, so here they are:
3584 *
3585 * NULL SYN was not found in cache; caller should drop the
3586 * packet and send an RST.
3587 *
3588 * -1 We were unable to create the new connection, and are
3589 * aborting it. An ACK,RST is being sent to the peer
3590 * (unless we got screwey sequence numbners; see below),
3591 * because the 3-way handshake has been completed. Caller
3592 * should not free the mbuf, since we may be using it. If
3593 * we are not, we will free it.
3594 *
3595 * Otherwise, the return value is a pointer to the new socket
3596 * associated with the connection.
3597 */
3598 struct socket *
3599 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3600 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3601 struct socket *so, struct mbuf *m)
3602 {
3603 struct syn_cache *sc;
3604 struct syn_cache_head *scp;
3605 struct inpcb *inp = NULL;
3606 #ifdef INET6
3607 struct in6pcb *in6p = NULL;
3608 #endif
3609 struct tcpcb *tp = 0;
3610 struct mbuf *am;
3611 int s;
3612 struct socket *oso;
3613
3614 s = splsoftnet();
3615 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3616 splx(s);
3617 return (NULL);
3618 }
3619
3620 /*
3621 * Verify the sequence and ack numbers. Try getting the correct
3622 * response again.
3623 */
3624 if ((th->th_ack != sc->sc_iss + 1) ||
3625 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3626 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3627 (void) syn_cache_respond(sc, m);
3628 splx(s);
3629 return ((struct socket *)(-1));
3630 }
3631
3632 /* Remove this cache entry */
3633 syn_cache_rm(sc);
3634 splx(s);
3635
3636 /*
3637 * Ok, create the full blown connection, and set things up
3638 * as they would have been set up if we had created the
3639 * connection when the SYN arrived. If we can't create
3640 * the connection, abort it.
3641 */
3642 /*
3643 * inp still has the OLD in_pcb stuff, set the
3644 * v6-related flags on the new guy, too. This is
3645 * done particularly for the case where an AF_INET6
3646 * socket is bound only to a port, and a v4 connection
3647 * comes in on that port.
3648 * we also copy the flowinfo from the original pcb
3649 * to the new one.
3650 */
3651 oso = so;
3652 so = sonewconn(so, SS_ISCONNECTED);
3653 if (so == NULL)
3654 goto resetandabort;
3655
3656 switch (so->so_proto->pr_domain->dom_family) {
3657 #ifdef INET
3658 case AF_INET:
3659 inp = sotoinpcb(so);
3660 break;
3661 #endif
3662 #ifdef INET6
3663 case AF_INET6:
3664 in6p = sotoin6pcb(so);
3665 break;
3666 #endif
3667 }
3668 switch (src->sa_family) {
3669 #ifdef INET
3670 case AF_INET:
3671 if (inp) {
3672 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3673 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3674 inp->inp_options = ip_srcroute();
3675 in_pcbstate(inp, INP_BOUND);
3676 if (inp->inp_options == NULL) {
3677 inp->inp_options = sc->sc_ipopts;
3678 sc->sc_ipopts = NULL;
3679 }
3680 }
3681 #ifdef INET6
3682 else if (in6p) {
3683 /* IPv4 packet to AF_INET6 socket */
3684 bzero(&in6p->in6p_laddr, sizeof(in6p->in6p_laddr));
3685 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3686 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3687 &in6p->in6p_laddr.s6_addr32[3],
3688 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3689 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3690 in6totcpcb(in6p)->t_family = AF_INET;
3691 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3692 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3693 else
3694 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3695 in6_pcbstate(in6p, IN6P_BOUND);
3696 }
3697 #endif
3698 break;
3699 #endif
3700 #ifdef INET6
3701 case AF_INET6:
3702 if (in6p) {
3703 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3704 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3705 in6_pcbstate(in6p, IN6P_BOUND);
3706 }
3707 break;
3708 #endif
3709 }
3710 #ifdef INET6
3711 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3712 struct in6pcb *oin6p = sotoin6pcb(oso);
3713 /* inherit socket options from the listening socket */
3714 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3715 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3716 m_freem(in6p->in6p_options);
3717 in6p->in6p_options = 0;
3718 }
3719 ip6_savecontrol(in6p, &in6p->in6p_options,
3720 mtod(m, struct ip6_hdr *), m);
3721 }
3722 #endif
3723
3724 #if defined(IPSEC) || defined(FAST_IPSEC)
3725 /*
3726 * we make a copy of policy, instead of sharing the policy,
3727 * for better behavior in terms of SA lookup and dead SA removal.
3728 */
3729 if (inp) {
3730 /* copy old policy into new socket's */
3731 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3732 printf("tcp_input: could not copy policy\n");
3733 }
3734 #ifdef INET6
3735 else if (in6p) {
3736 /* copy old policy into new socket's */
3737 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3738 in6p->in6p_sp))
3739 printf("tcp_input: could not copy policy\n");
3740 }
3741 #endif
3742 #endif
3743
3744 /*
3745 * Give the new socket our cached route reference.
3746 */
3747 if (inp) {
3748 rtcache_copy(&inp->inp_route, &sc->sc_route);
3749 rtcache_free(&sc->sc_route);
3750 }
3751 #ifdef INET6
3752 else {
3753 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3754 rtcache_free(&sc->sc_route);
3755 }
3756 #endif
3757
3758 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3759 if (am == NULL)
3760 goto resetandabort;
3761 MCLAIM(am, &tcp_mowner);
3762 am->m_len = src->sa_len;
3763 bcopy(src, mtod(am, void *), src->sa_len);
3764 if (inp) {
3765 if (in_pcbconnect(inp, am, &lwp0)) {
3766 (void) m_free(am);
3767 goto resetandabort;
3768 }
3769 }
3770 #ifdef INET6
3771 else if (in6p) {
3772 if (src->sa_family == AF_INET) {
3773 /* IPv4 packet to AF_INET6 socket */
3774 struct sockaddr_in6 *sin6;
3775 sin6 = mtod(am, struct sockaddr_in6 *);
3776 am->m_len = sizeof(*sin6);
3777 bzero(sin6, sizeof(*sin6));
3778 sin6->sin6_family = AF_INET6;
3779 sin6->sin6_len = sizeof(*sin6);
3780 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3781 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3782 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3783 &sin6->sin6_addr.s6_addr32[3],
3784 sizeof(sin6->sin6_addr.s6_addr32[3]));
3785 }
3786 if (in6_pcbconnect(in6p, am, NULL)) {
3787 (void) m_free(am);
3788 goto resetandabort;
3789 }
3790 }
3791 #endif
3792 else {
3793 (void) m_free(am);
3794 goto resetandabort;
3795 }
3796 (void) m_free(am);
3797
3798 if (inp)
3799 tp = intotcpcb(inp);
3800 #ifdef INET6
3801 else if (in6p)
3802 tp = in6totcpcb(in6p);
3803 #endif
3804 else
3805 tp = NULL;
3806 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3807 if (sc->sc_request_r_scale != 15) {
3808 tp->requested_s_scale = sc->sc_requested_s_scale;
3809 tp->request_r_scale = sc->sc_request_r_scale;
3810 tp->snd_scale = sc->sc_requested_s_scale;
3811 tp->rcv_scale = sc->sc_request_r_scale;
3812 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3813 }
3814 if (sc->sc_flags & SCF_TIMESTAMP)
3815 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3816 tp->ts_timebase = sc->sc_timebase;
3817
3818 tp->t_template = tcp_template(tp);
3819 if (tp->t_template == 0) {
3820 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3821 so = NULL;
3822 m_freem(m);
3823 goto abort;
3824 }
3825
3826 tp->iss = sc->sc_iss;
3827 tp->irs = sc->sc_irs;
3828 tcp_sendseqinit(tp);
3829 tcp_rcvseqinit(tp);
3830 tp->t_state = TCPS_SYN_RECEIVED;
3831 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3832 TCP_STATINC(TCP_STAT_ACCEPTS);
3833
3834 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3835 tp->t_flags |= TF_WILL_SACK;
3836
3837 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3838 tp->t_flags |= TF_ECN_PERMIT;
3839
3840 #ifdef TCP_SIGNATURE
3841 if (sc->sc_flags & SCF_SIGNATURE)
3842 tp->t_flags |= TF_SIGNATURE;
3843 #endif
3844
3845 /* Initialize tp->t_ourmss before we deal with the peer's! */
3846 tp->t_ourmss = sc->sc_ourmaxseg;
3847 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3848
3849 /*
3850 * Initialize the initial congestion window. If we
3851 * had to retransmit the SYN,ACK, we must initialize cwnd
3852 * to 1 segment (i.e. the Loss Window).
3853 */
3854 if (sc->sc_rxtshift)
3855 tp->snd_cwnd = tp->t_peermss;
3856 else {
3857 int ss = tcp_init_win;
3858 #ifdef INET
3859 if (inp != NULL && in_localaddr(inp->inp_faddr))
3860 ss = tcp_init_win_local;
3861 #endif
3862 #ifdef INET6
3863 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3864 ss = tcp_init_win_local;
3865 #endif
3866 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3867 }
3868
3869 tcp_rmx_rtt(tp);
3870 tp->snd_wl1 = sc->sc_irs;
3871 tp->rcv_up = sc->sc_irs + 1;
3872
3873 /*
3874 * This is what whould have happened in tcp_output() when
3875 * the SYN,ACK was sent.
3876 */
3877 tp->snd_up = tp->snd_una;
3878 tp->snd_max = tp->snd_nxt = tp->iss+1;
3879 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3880 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3881 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3882 tp->last_ack_sent = tp->rcv_nxt;
3883 tp->t_partialacks = -1;
3884 tp->t_dupacks = 0;
3885
3886 TCP_STATINC(TCP_STAT_SC_COMPLETED);
3887 s = splsoftnet();
3888 syn_cache_put(sc);
3889 splx(s);
3890 return (so);
3891
3892 resetandabort:
3893 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3894 abort:
3895 if (so != NULL) {
3896 (void) soqremque(so, 1);
3897 (void) soabort(so);
3898 mutex_enter(softnet_lock);
3899 }
3900 s = splsoftnet();
3901 syn_cache_put(sc);
3902 splx(s);
3903 TCP_STATINC(TCP_STAT_SC_ABORTED);
3904 return ((struct socket *)(-1));
3905 }
3906
3907 /*
3908 * This function is called when we get a RST for a
3909 * non-existent connection, so that we can see if the
3910 * connection is in the syn cache. If it is, zap it.
3911 */
3912
3913 void
3914 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3915 {
3916 struct syn_cache *sc;
3917 struct syn_cache_head *scp;
3918 int s = splsoftnet();
3919
3920 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3921 splx(s);
3922 return;
3923 }
3924 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3925 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3926 splx(s);
3927 return;
3928 }
3929 syn_cache_rm(sc);
3930 TCP_STATINC(TCP_STAT_SC_RESET);
3931 syn_cache_put(sc); /* calls pool_put but see spl above */
3932 splx(s);
3933 }
3934
3935 void
3936 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3937 struct tcphdr *th)
3938 {
3939 struct syn_cache *sc;
3940 struct syn_cache_head *scp;
3941 int s;
3942
3943 s = splsoftnet();
3944 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3945 splx(s);
3946 return;
3947 }
3948 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3949 if (ntohl (th->th_seq) != sc->sc_iss) {
3950 splx(s);
3951 return;
3952 }
3953
3954 /*
3955 * If we've retransmitted 3 times and this is our second error,
3956 * we remove the entry. Otherwise, we allow it to continue on.
3957 * This prevents us from incorrectly nuking an entry during a
3958 * spurious network outage.
3959 *
3960 * See tcp_notify().
3961 */
3962 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3963 sc->sc_flags |= SCF_UNREACH;
3964 splx(s);
3965 return;
3966 }
3967
3968 syn_cache_rm(sc);
3969 TCP_STATINC(TCP_STAT_SC_UNREACH);
3970 syn_cache_put(sc); /* calls pool_put but see spl above */
3971 splx(s);
3972 }
3973
3974 /*
3975 * Given a LISTEN socket and an inbound SYN request, add
3976 * this to the syn cache, and send back a segment:
3977 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
3978 * to the source.
3979 *
3980 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
3981 * Doing so would require that we hold onto the data and deliver it
3982 * to the application. However, if we are the target of a SYN-flood
3983 * DoS attack, an attacker could send data which would eventually
3984 * consume all available buffer space if it were ACKed. By not ACKing
3985 * the data, we avoid this DoS scenario.
3986 */
3987
3988 int
3989 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
3990 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
3991 int optlen, struct tcp_opt_info *oi)
3992 {
3993 struct tcpcb tb, *tp;
3994 long win;
3995 struct syn_cache *sc;
3996 struct syn_cache_head *scp;
3997 struct mbuf *ipopts;
3998 struct tcp_opt_info opti;
3999 int s;
4000
4001 tp = sototcpcb(so);
4002
4003 bzero(&opti, sizeof(opti));
4004
4005 /*
4006 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4007 *
4008 * Note this check is performed in tcp_input() very early on.
4009 */
4010
4011 /*
4012 * Initialize some local state.
4013 */
4014 win = sbspace(&so->so_rcv);
4015 if (win > TCP_MAXWIN)
4016 win = TCP_MAXWIN;
4017
4018 switch (src->sa_family) {
4019 #ifdef INET
4020 case AF_INET:
4021 /*
4022 * Remember the IP options, if any.
4023 */
4024 ipopts = ip_srcroute();
4025 break;
4026 #endif
4027 default:
4028 ipopts = NULL;
4029 }
4030
4031 #ifdef TCP_SIGNATURE
4032 if (optp || (tp->t_flags & TF_SIGNATURE))
4033 #else
4034 if (optp)
4035 #endif
4036 {
4037 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4038 #ifdef TCP_SIGNATURE
4039 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4040 #endif
4041 tb.t_state = TCPS_LISTEN;
4042 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4043 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4044 return (0);
4045 } else
4046 tb.t_flags = 0;
4047
4048 /*
4049 * See if we already have an entry for this connection.
4050 * If we do, resend the SYN,ACK. We do not count this
4051 * as a retransmission (XXX though maybe we should).
4052 */
4053 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4054 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4055 if (ipopts) {
4056 /*
4057 * If we were remembering a previous source route,
4058 * forget it and use the new one we've been given.
4059 */
4060 if (sc->sc_ipopts)
4061 (void) m_free(sc->sc_ipopts);
4062 sc->sc_ipopts = ipopts;
4063 }
4064 sc->sc_timestamp = tb.ts_recent;
4065 if (syn_cache_respond(sc, m) == 0) {
4066 uint64_t *tcps = TCP_STAT_GETREF();
4067 tcps[TCP_STAT_SNDACKS]++;
4068 tcps[TCP_STAT_SNDTOTAL]++;
4069 TCP_STAT_PUTREF();
4070 }
4071 return (1);
4072 }
4073
4074 s = splsoftnet();
4075 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4076 splx(s);
4077 if (sc == NULL) {
4078 if (ipopts)
4079 (void) m_free(ipopts);
4080 return (0);
4081 }
4082
4083 /*
4084 * Fill in the cache, and put the necessary IP and TCP
4085 * options into the reply.
4086 */
4087 bzero(sc, sizeof(struct syn_cache));
4088 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4089 bcopy(src, &sc->sc_src, src->sa_len);
4090 bcopy(dst, &sc->sc_dst, dst->sa_len);
4091 sc->sc_flags = 0;
4092 sc->sc_ipopts = ipopts;
4093 sc->sc_irs = th->th_seq;
4094 switch (src->sa_family) {
4095 #ifdef INET
4096 case AF_INET:
4097 {
4098 struct sockaddr_in *srcin = (void *) src;
4099 struct sockaddr_in *dstin = (void *) dst;
4100
4101 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4102 &srcin->sin_addr, dstin->sin_port,
4103 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4104 break;
4105 }
4106 #endif /* INET */
4107 #ifdef INET6
4108 case AF_INET6:
4109 {
4110 struct sockaddr_in6 *srcin6 = (void *) src;
4111 struct sockaddr_in6 *dstin6 = (void *) dst;
4112
4113 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4114 &srcin6->sin6_addr, dstin6->sin6_port,
4115 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4116 break;
4117 }
4118 #endif /* INET6 */
4119 }
4120 sc->sc_peermaxseg = oi->maxseg;
4121 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4122 m->m_pkthdr.rcvif : NULL,
4123 sc->sc_src.sa.sa_family);
4124 sc->sc_win = win;
4125 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4126 sc->sc_timestamp = tb.ts_recent;
4127 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4128 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4129 sc->sc_flags |= SCF_TIMESTAMP;
4130 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4131 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4132 sc->sc_requested_s_scale = tb.requested_s_scale;
4133 sc->sc_request_r_scale = 0;
4134 /*
4135 * Pick the smallest possible scaling factor that
4136 * will still allow us to scale up to sb_max.
4137 *
4138 * We do this because there are broken firewalls that
4139 * will corrupt the window scale option, leading to
4140 * the other endpoint believing that our advertised
4141 * window is unscaled. At scale factors larger than
4142 * 5 the unscaled window will drop below 1500 bytes,
4143 * leading to serious problems when traversing these
4144 * broken firewalls.
4145 *
4146 * With the default sbmax of 256K, a scale factor
4147 * of 3 will be chosen by this algorithm. Those who
4148 * choose a larger sbmax should watch out
4149 * for the compatiblity problems mentioned above.
4150 *
4151 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4152 * or <SYN,ACK>) segment itself is never scaled.
4153 */
4154 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4155 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4156 sc->sc_request_r_scale++;
4157 } else {
4158 sc->sc_requested_s_scale = 15;
4159 sc->sc_request_r_scale = 15;
4160 }
4161 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4162 sc->sc_flags |= SCF_SACK_PERMIT;
4163
4164 /*
4165 * ECN setup packet recieved.
4166 */
4167 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4168 sc->sc_flags |= SCF_ECN_PERMIT;
4169
4170 #ifdef TCP_SIGNATURE
4171 if (tb.t_flags & TF_SIGNATURE)
4172 sc->sc_flags |= SCF_SIGNATURE;
4173 #endif
4174 sc->sc_tp = tp;
4175 if (syn_cache_respond(sc, m) == 0) {
4176 uint64_t *tcps = TCP_STAT_GETREF();
4177 tcps[TCP_STAT_SNDACKS]++;
4178 tcps[TCP_STAT_SNDTOTAL]++;
4179 TCP_STAT_PUTREF();
4180 syn_cache_insert(sc, tp);
4181 } else {
4182 s = splsoftnet();
4183 syn_cache_put(sc);
4184 splx(s);
4185 TCP_STATINC(TCP_STAT_SC_DROPPED);
4186 }
4187 return (1);
4188 }
4189
4190 int
4191 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4192 {
4193 #ifdef INET6
4194 struct rtentry *rt;
4195 #endif
4196 struct route *ro;
4197 u_int8_t *optp;
4198 int optlen, error;
4199 u_int16_t tlen;
4200 struct ip *ip = NULL;
4201 #ifdef INET6
4202 struct ip6_hdr *ip6 = NULL;
4203 #endif
4204 struct tcpcb *tp = NULL;
4205 struct tcphdr *th;
4206 u_int hlen;
4207 struct socket *so;
4208
4209 ro = &sc->sc_route;
4210 switch (sc->sc_src.sa.sa_family) {
4211 case AF_INET:
4212 hlen = sizeof(struct ip);
4213 break;
4214 #ifdef INET6
4215 case AF_INET6:
4216 hlen = sizeof(struct ip6_hdr);
4217 break;
4218 #endif
4219 default:
4220 if (m)
4221 m_freem(m);
4222 return (EAFNOSUPPORT);
4223 }
4224
4225 /* Compute the size of the TCP options. */
4226 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4227 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4228 #ifdef TCP_SIGNATURE
4229 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4230 #endif
4231 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4232
4233 tlen = hlen + sizeof(struct tcphdr) + optlen;
4234
4235 /*
4236 * Create the IP+TCP header from scratch.
4237 */
4238 if (m)
4239 m_freem(m);
4240 #ifdef DIAGNOSTIC
4241 if (max_linkhdr + tlen > MCLBYTES)
4242 return (ENOBUFS);
4243 #endif
4244 MGETHDR(m, M_DONTWAIT, MT_DATA);
4245 if (m && tlen > MHLEN) {
4246 MCLGET(m, M_DONTWAIT);
4247 if ((m->m_flags & M_EXT) == 0) {
4248 m_freem(m);
4249 m = NULL;
4250 }
4251 }
4252 if (m == NULL)
4253 return (ENOBUFS);
4254 MCLAIM(m, &tcp_tx_mowner);
4255
4256 /* Fixup the mbuf. */
4257 m->m_data += max_linkhdr;
4258 m->m_len = m->m_pkthdr.len = tlen;
4259 if (sc->sc_tp) {
4260 tp = sc->sc_tp;
4261 if (tp->t_inpcb)
4262 so = tp->t_inpcb->inp_socket;
4263 #ifdef INET6
4264 else if (tp->t_in6pcb)
4265 so = tp->t_in6pcb->in6p_socket;
4266 #endif
4267 else
4268 so = NULL;
4269 } else
4270 so = NULL;
4271 m->m_pkthdr.rcvif = NULL;
4272 memset(mtod(m, u_char *), 0, tlen);
4273
4274 switch (sc->sc_src.sa.sa_family) {
4275 case AF_INET:
4276 ip = mtod(m, struct ip *);
4277 ip->ip_v = 4;
4278 ip->ip_dst = sc->sc_src.sin.sin_addr;
4279 ip->ip_src = sc->sc_dst.sin.sin_addr;
4280 ip->ip_p = IPPROTO_TCP;
4281 th = (struct tcphdr *)(ip + 1);
4282 th->th_dport = sc->sc_src.sin.sin_port;
4283 th->th_sport = sc->sc_dst.sin.sin_port;
4284 break;
4285 #ifdef INET6
4286 case AF_INET6:
4287 ip6 = mtod(m, struct ip6_hdr *);
4288 ip6->ip6_vfc = IPV6_VERSION;
4289 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4290 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4291 ip6->ip6_nxt = IPPROTO_TCP;
4292 /* ip6_plen will be updated in ip6_output() */
4293 th = (struct tcphdr *)(ip6 + 1);
4294 th->th_dport = sc->sc_src.sin6.sin6_port;
4295 th->th_sport = sc->sc_dst.sin6.sin6_port;
4296 break;
4297 #endif
4298 default:
4299 th = NULL;
4300 }
4301
4302 th->th_seq = htonl(sc->sc_iss);
4303 th->th_ack = htonl(sc->sc_irs + 1);
4304 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4305 th->th_flags = TH_SYN|TH_ACK;
4306 th->th_win = htons(sc->sc_win);
4307 /* th_sum already 0 */
4308 /* th_urp already 0 */
4309
4310 /* Tack on the TCP options. */
4311 optp = (u_int8_t *)(th + 1);
4312 *optp++ = TCPOPT_MAXSEG;
4313 *optp++ = 4;
4314 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4315 *optp++ = sc->sc_ourmaxseg & 0xff;
4316
4317 if (sc->sc_request_r_scale != 15) {
4318 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4319 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4320 sc->sc_request_r_scale);
4321 optp += 4;
4322 }
4323
4324 if (sc->sc_flags & SCF_TIMESTAMP) {
4325 u_int32_t *lp = (u_int32_t *)(optp);
4326 /* Form timestamp option as shown in appendix A of RFC 1323. */
4327 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4328 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4329 *lp = htonl(sc->sc_timestamp);
4330 optp += TCPOLEN_TSTAMP_APPA;
4331 }
4332
4333 if (sc->sc_flags & SCF_SACK_PERMIT) {
4334 u_int8_t *p = optp;
4335
4336 /* Let the peer know that we will SACK. */
4337 p[0] = TCPOPT_SACK_PERMITTED;
4338 p[1] = 2;
4339 p[2] = TCPOPT_NOP;
4340 p[3] = TCPOPT_NOP;
4341 optp += 4;
4342 }
4343
4344 /*
4345 * Send ECN SYN-ACK setup packet.
4346 * Routes can be asymetric, so, even if we receive a packet
4347 * with ECE and CWR set, we must not assume no one will block
4348 * the ECE packet we are about to send.
4349 */
4350 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4351 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4352 th->th_flags |= TH_ECE;
4353 TCP_STATINC(TCP_STAT_ECN_SHS);
4354
4355 /*
4356 * draft-ietf-tcpm-ecnsyn-00.txt
4357 *
4358 * "[...] a TCP node MAY respond to an ECN-setup
4359 * SYN packet by setting ECT in the responding
4360 * ECN-setup SYN/ACK packet, indicating to routers
4361 * that the SYN/ACK packet is ECN-Capable.
4362 * This allows a congested router along the path
4363 * to mark the packet instead of dropping the
4364 * packet as an indication of congestion."
4365 *
4366 * "[...] There can be a great benefit in setting
4367 * an ECN-capable codepoint in SYN/ACK packets [...]
4368 * Congestion is most likely to occur in
4369 * the server-to-client direction. As a result,
4370 * setting an ECN-capable codepoint in SYN/ACK
4371 * packets can reduce the occurence of three-second
4372 * retransmit timeouts resulting from the drop
4373 * of SYN/ACK packets."
4374 *
4375 * Page 4 and 6, January 2006.
4376 */
4377
4378 switch (sc->sc_src.sa.sa_family) {
4379 #ifdef INET
4380 case AF_INET:
4381 ip->ip_tos |= IPTOS_ECN_ECT0;
4382 break;
4383 #endif
4384 #ifdef INET6
4385 case AF_INET6:
4386 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4387 break;
4388 #endif
4389 }
4390 TCP_STATINC(TCP_STAT_ECN_ECT);
4391 }
4392
4393 #ifdef TCP_SIGNATURE
4394 if (sc->sc_flags & SCF_SIGNATURE) {
4395 struct secasvar *sav;
4396 u_int8_t *sigp;
4397
4398 sav = tcp_signature_getsav(m, th);
4399
4400 if (sav == NULL) {
4401 if (m)
4402 m_freem(m);
4403 return (EPERM);
4404 }
4405
4406 *optp++ = TCPOPT_SIGNATURE;
4407 *optp++ = TCPOLEN_SIGNATURE;
4408 sigp = optp;
4409 bzero(optp, TCP_SIGLEN);
4410 optp += TCP_SIGLEN;
4411 *optp++ = TCPOPT_NOP;
4412 *optp++ = TCPOPT_EOL;
4413
4414 (void)tcp_signature(m, th, hlen, sav, sigp);
4415
4416 key_sa_recordxfer(sav, m);
4417 #ifdef FAST_IPSEC
4418 KEY_FREESAV(&sav);
4419 #else
4420 key_freesav(sav);
4421 #endif
4422 }
4423 #endif
4424
4425 /* Compute the packet's checksum. */
4426 switch (sc->sc_src.sa.sa_family) {
4427 case AF_INET:
4428 ip->ip_len = htons(tlen - hlen);
4429 th->th_sum = 0;
4430 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4431 break;
4432 #ifdef INET6
4433 case AF_INET6:
4434 ip6->ip6_plen = htons(tlen - hlen);
4435 th->th_sum = 0;
4436 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4437 break;
4438 #endif
4439 }
4440
4441 /*
4442 * Fill in some straggling IP bits. Note the stack expects
4443 * ip_len to be in host order, for convenience.
4444 */
4445 switch (sc->sc_src.sa.sa_family) {
4446 #ifdef INET
4447 case AF_INET:
4448 ip->ip_len = htons(tlen);
4449 ip->ip_ttl = ip_defttl;
4450 /* XXX tos? */
4451 break;
4452 #endif
4453 #ifdef INET6
4454 case AF_INET6:
4455 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4456 ip6->ip6_vfc |= IPV6_VERSION;
4457 ip6->ip6_plen = htons(tlen - hlen);
4458 /* ip6_hlim will be initialized afterwards */
4459 /* XXX flowlabel? */
4460 break;
4461 #endif
4462 }
4463
4464 /* XXX use IPsec policy on listening socket, on SYN ACK */
4465 tp = sc->sc_tp;
4466
4467 switch (sc->sc_src.sa.sa_family) {
4468 #ifdef INET
4469 case AF_INET:
4470 error = ip_output(m, sc->sc_ipopts, ro,
4471 (ip_mtudisc ? IP_MTUDISC : 0),
4472 (struct ip_moptions *)NULL, so);
4473 break;
4474 #endif
4475 #ifdef INET6
4476 case AF_INET6:
4477 ip6->ip6_hlim = in6_selecthlim(NULL,
4478 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4479 : NULL);
4480
4481 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4482 break;
4483 #endif
4484 default:
4485 error = EAFNOSUPPORT;
4486 break;
4487 }
4488 return (error);
4489 }
4490