tcp_input.c revision 1.301 1 /* $NetBSD: tcp_input.c,v 1.301 2010/04/01 00:24:41 tls Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 *
93 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
94 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
95 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
96 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
97 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
98 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
99 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
100 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
101 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
103 * POSSIBILITY OF SUCH DAMAGE.
104 */
105
106 /*
107 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108 * The Regents of the University of California. All rights reserved.
109 *
110 * Redistribution and use in source and binary forms, with or without
111 * modification, are permitted provided that the following conditions
112 * are met:
113 * 1. Redistributions of source code must retain the above copyright
114 * notice, this list of conditions and the following disclaimer.
115 * 2. Redistributions in binary form must reproduce the above copyright
116 * notice, this list of conditions and the following disclaimer in the
117 * documentation and/or other materials provided with the distribution.
118 * 3. Neither the name of the University nor the names of its contributors
119 * may be used to endorse or promote products derived from this software
120 * without specific prior written permission.
121 *
122 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132 * SUCH DAMAGE.
133 *
134 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
135 */
136
137 /*
138 * TODO list for SYN cache stuff:
139 *
140 * Find room for a "state" field, which is needed to keep a
141 * compressed state for TIME_WAIT TCBs. It's been noted already
142 * that this is fairly important for very high-volume web and
143 * mail servers, which use a large number of short-lived
144 * connections.
145 */
146
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.301 2010/04/01 00:24:41 tls Exp $");
149
150 #include "opt_inet.h"
151 #include "opt_ipsec.h"
152 #include "opt_inet_csum.h"
153 #include "opt_tcp_debug.h"
154
155 #include <sys/param.h>
156 #include <sys/systm.h>
157 #include <sys/malloc.h>
158 #include <sys/mbuf.h>
159 #include <sys/protosw.h>
160 #include <sys/socket.h>
161 #include <sys/socketvar.h>
162 #include <sys/errno.h>
163 #include <sys/syslog.h>
164 #include <sys/pool.h>
165 #include <sys/domain.h>
166 #include <sys/kernel.h>
167 #ifdef TCP_SIGNATURE
168 #include <sys/md5.h>
169 #endif
170 #include <sys/lwp.h> /* for lwp0 */
171
172 #include <net/if.h>
173 #include <net/route.h>
174 #include <net/if_types.h>
175
176 #include <netinet/in.h>
177 #include <netinet/in_systm.h>
178 #include <netinet/ip.h>
179 #include <netinet/in_pcb.h>
180 #include <netinet/in_var.h>
181 #include <netinet/ip_var.h>
182 #include <netinet/in_offload.h>
183
184 #ifdef INET6
185 #ifndef INET
186 #include <netinet/in.h>
187 #endif
188 #include <netinet/ip6.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_pcb.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_var.h>
193 #include <netinet/icmp6.h>
194 #include <netinet6/nd6.h>
195 #ifdef TCP_SIGNATURE
196 #include <netinet6/scope6_var.h>
197 #endif
198 #endif
199
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcp_private.h>
211 #include <netinet/tcpip.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214
215 #include <machine/stdarg.h>
216
217 #ifdef IPSEC
218 #include <netinet6/ipsec.h>
219 #include <netinet6/ipsec_private.h>
220 #include <netkey/key.h>
221 #endif /*IPSEC*/
222 #ifdef INET6
223 #include "faith.h"
224 #if defined(NFAITH) && NFAITH > 0
225 #include <net/if_faith.h>
226 #endif
227 #endif /* IPSEC */
228
229 #ifdef FAST_IPSEC
230 #include <netipsec/ipsec.h>
231 #include <netipsec/ipsec_var.h>
232 #include <netipsec/ipsec_private.h>
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif /* FAST_IPSEC*/
238
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
241
242 int tcp_do_autorcvbuf = 1;
243 int tcp_autorcvbuf_inc = 16 * 1024;
244 int tcp_autorcvbuf_max = 256 * 1024;
245 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251
252 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
253
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
257
258 /*
259 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260 */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 struct rtentry *rt;
266
267 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 nd6_nud_hint(rt, NULL, 0);
270 }
271 #else
272 static inline void
273 nd6_hint(struct tcpcb *tp)
274 {
275 }
276 #endif
277
278 /*
279 * Compute ACK transmission behavior. Delay the ACK unless
280 * we have already delayed an ACK (must send an ACK every two segments).
281 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
282 * option is enabled.
283 */
284 static void
285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
286 {
287
288 if (tp->t_flags & TF_DELACK ||
289 (tcp_ack_on_push && th->th_flags & TH_PUSH))
290 tp->t_flags |= TF_ACKNOW;
291 else
292 TCP_SET_DELACK(tp);
293 }
294
295 static void
296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
297 {
298
299 /*
300 * If we had a pending ICMP message that refers to data that have
301 * just been acknowledged, disregard the recorded ICMP message.
302 */
303 if ((tp->t_flags & TF_PMTUD_PEND) &&
304 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
305 tp->t_flags &= ~TF_PMTUD_PEND;
306
307 /*
308 * Keep track of the largest chunk of data
309 * acknowledged since last PMTU update
310 */
311 if (tp->t_pmtud_mss_acked < acked)
312 tp->t_pmtud_mss_acked = acked;
313 }
314
315 /*
316 * Convert TCP protocol fields to host order for easier processing.
317 */
318 static void
319 tcp_fields_to_host(struct tcphdr *th)
320 {
321
322 NTOHL(th->th_seq);
323 NTOHL(th->th_ack);
324 NTOHS(th->th_win);
325 NTOHS(th->th_urp);
326 }
327
328 /*
329 * ... and reverse the above.
330 */
331 static void
332 tcp_fields_to_net(struct tcphdr *th)
333 {
334
335 HTONL(th->th_seq);
336 HTONL(th->th_ack);
337 HTONS(th->th_win);
338 HTONS(th->th_urp);
339 }
340
341 #ifdef TCP_CSUM_COUNTERS
342 #include <sys/device.h>
343
344 #if defined(INET)
345 extern struct evcnt tcp_hwcsum_ok;
346 extern struct evcnt tcp_hwcsum_bad;
347 extern struct evcnt tcp_hwcsum_data;
348 extern struct evcnt tcp_swcsum;
349 #endif /* defined(INET) */
350 #if defined(INET6)
351 extern struct evcnt tcp6_hwcsum_ok;
352 extern struct evcnt tcp6_hwcsum_bad;
353 extern struct evcnt tcp6_hwcsum_data;
354 extern struct evcnt tcp6_swcsum;
355 #endif /* defined(INET6) */
356
357 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
358
359 #else
360
361 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
362
363 #endif /* TCP_CSUM_COUNTERS */
364
365 #ifdef TCP_REASS_COUNTERS
366 #include <sys/device.h>
367
368 extern struct evcnt tcp_reass_;
369 extern struct evcnt tcp_reass_empty;
370 extern struct evcnt tcp_reass_iteration[8];
371 extern struct evcnt tcp_reass_prependfirst;
372 extern struct evcnt tcp_reass_prepend;
373 extern struct evcnt tcp_reass_insert;
374 extern struct evcnt tcp_reass_inserttail;
375 extern struct evcnt tcp_reass_append;
376 extern struct evcnt tcp_reass_appendtail;
377 extern struct evcnt tcp_reass_overlaptail;
378 extern struct evcnt tcp_reass_overlapfront;
379 extern struct evcnt tcp_reass_segdup;
380 extern struct evcnt tcp_reass_fragdup;
381
382 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
383
384 #else
385
386 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
387
388 #endif /* TCP_REASS_COUNTERS */
389
390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
391 int *);
392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
393 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
394
395 #ifdef INET
396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
397 #endif
398 #ifdef INET6
399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
400 #endif
401
402 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
403
404 #if defined(MBUFTRACE)
405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
406 #endif /* defined(MBUFTRACE) */
407
408 static struct pool tcpipqent_pool;
409
410 void
411 tcpipqent_init(void)
412 {
413
414 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415 NULL, IPL_VM);
416 }
417
418 struct ipqent *
419 tcpipqent_alloc(void)
420 {
421 struct ipqent *ipqe;
422 int s;
423
424 s = splvm();
425 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
426 splx(s);
427
428 return ipqe;
429 }
430
431 void
432 tcpipqent_free(struct ipqent *ipqe)
433 {
434 int s;
435
436 s = splvm();
437 pool_put(&tcpipqent_pool, ipqe);
438 splx(s);
439 }
440
441 static int
442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
443 {
444 struct ipqent *p, *q, *nq, *tiqe = NULL;
445 struct socket *so = NULL;
446 int pkt_flags;
447 tcp_seq pkt_seq;
448 unsigned pkt_len;
449 u_long rcvpartdupbyte = 0;
450 u_long rcvoobyte;
451 #ifdef TCP_REASS_COUNTERS
452 u_int count = 0;
453 #endif
454 uint64_t *tcps;
455
456 if (tp->t_inpcb)
457 so = tp->t_inpcb->inp_socket;
458 #ifdef INET6
459 else if (tp->t_in6pcb)
460 so = tp->t_in6pcb->in6p_socket;
461 #endif
462
463 TCP_REASS_LOCK_CHECK(tp);
464
465 /*
466 * Call with th==0 after become established to
467 * force pre-ESTABLISHED data up to user socket.
468 */
469 if (th == 0)
470 goto present;
471
472 m_claimm(m, &tcp_reass_mowner);
473
474 rcvoobyte = *tlen;
475 /*
476 * Copy these to local variables because the tcpiphdr
477 * gets munged while we are collapsing mbufs.
478 */
479 pkt_seq = th->th_seq;
480 pkt_len = *tlen;
481 pkt_flags = th->th_flags;
482
483 TCP_REASS_COUNTER_INCR(&tcp_reass_);
484
485 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
486 /*
487 * When we miss a packet, the vast majority of time we get
488 * packets that follow it in order. So optimize for that.
489 */
490 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
491 p->ipqe_len += pkt_len;
492 p->ipqe_flags |= pkt_flags;
493 m_cat(p->ipre_mlast, m);
494 TRAVERSE(p->ipre_mlast);
495 m = NULL;
496 tiqe = p;
497 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
498 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
499 goto skip_replacement;
500 }
501 /*
502 * While we're here, if the pkt is completely beyond
503 * anything we have, just insert it at the tail.
504 */
505 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
506 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
507 goto insert_it;
508 }
509 }
510
511 q = TAILQ_FIRST(&tp->segq);
512
513 if (q != NULL) {
514 /*
515 * If this segment immediately precedes the first out-of-order
516 * block, simply slap the segment in front of it and (mostly)
517 * skip the complicated logic.
518 */
519 if (pkt_seq + pkt_len == q->ipqe_seq) {
520 q->ipqe_seq = pkt_seq;
521 q->ipqe_len += pkt_len;
522 q->ipqe_flags |= pkt_flags;
523 m_cat(m, q->ipqe_m);
524 q->ipqe_m = m;
525 q->ipre_mlast = m; /* last mbuf may have changed */
526 TRAVERSE(q->ipre_mlast);
527 tiqe = q;
528 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
529 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
530 goto skip_replacement;
531 }
532 } else {
533 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
534 }
535
536 /*
537 * Find a segment which begins after this one does.
538 */
539 for (p = NULL; q != NULL; q = nq) {
540 nq = TAILQ_NEXT(q, ipqe_q);
541 #ifdef TCP_REASS_COUNTERS
542 count++;
543 #endif
544 /*
545 * If the received segment is just right after this
546 * fragment, merge the two together and then check
547 * for further overlaps.
548 */
549 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
550 #ifdef TCPREASS_DEBUG
551 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
552 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
553 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
554 #endif
555 pkt_len += q->ipqe_len;
556 pkt_flags |= q->ipqe_flags;
557 pkt_seq = q->ipqe_seq;
558 m_cat(q->ipre_mlast, m);
559 TRAVERSE(q->ipre_mlast);
560 m = q->ipqe_m;
561 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
562 goto free_ipqe;
563 }
564 /*
565 * If the received segment is completely past this
566 * fragment, we need to go the next fragment.
567 */
568 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
569 p = q;
570 continue;
571 }
572 /*
573 * If the fragment is past the received segment,
574 * it (or any following) can't be concatenated.
575 */
576 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 break;
579 }
580
581 /*
582 * We've received all the data in this segment before.
583 * mark it as a duplicate and return.
584 */
585 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 tcps = TCP_STAT_GETREF();
588 tcps[TCP_STAT_RCVDUPPACK]++;
589 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 TCP_STAT_PUTREF();
591 tcp_new_dsack(tp, pkt_seq, pkt_len);
592 m_freem(m);
593 if (tiqe != NULL) {
594 tcpipqent_free(tiqe);
595 }
596 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 return (0);
598 }
599 /*
600 * Received segment completely overlaps this fragment
601 * so we drop the fragment (this keeps the temporal
602 * ordering of segments correct).
603 */
604 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
605 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
606 rcvpartdupbyte += q->ipqe_len;
607 m_freem(q->ipqe_m);
608 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
609 goto free_ipqe;
610 }
611 /*
612 * RX'ed segment extends past the end of the
613 * fragment. Drop the overlapping bytes. Then
614 * merge the fragment and segment then treat as
615 * a longer received packet.
616 */
617 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
618 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
619 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
620 #ifdef TCPREASS_DEBUG
621 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
622 tp, overlap,
623 pkt_seq, pkt_seq + pkt_len, pkt_len);
624 #endif
625 m_adj(m, overlap);
626 rcvpartdupbyte += overlap;
627 m_cat(q->ipre_mlast, m);
628 TRAVERSE(q->ipre_mlast);
629 m = q->ipqe_m;
630 pkt_seq = q->ipqe_seq;
631 pkt_len += q->ipqe_len - overlap;
632 rcvoobyte -= overlap;
633 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
634 goto free_ipqe;
635 }
636 /*
637 * RX'ed segment extends past the front of the
638 * fragment. Drop the overlapping bytes on the
639 * received packet. The packet will then be
640 * contatentated with this fragment a bit later.
641 */
642 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
643 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
644 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
645 #ifdef TCPREASS_DEBUG
646 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
647 tp, overlap,
648 pkt_seq, pkt_seq + pkt_len, pkt_len);
649 #endif
650 m_adj(m, -overlap);
651 pkt_len -= overlap;
652 rcvpartdupbyte += overlap;
653 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
654 rcvoobyte -= overlap;
655 }
656 /*
657 * If the received segment immediates precedes this
658 * fragment then tack the fragment onto this segment
659 * and reinsert the data.
660 */
661 if (q->ipqe_seq == pkt_seq + pkt_len) {
662 #ifdef TCPREASS_DEBUG
663 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
664 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
665 pkt_seq, pkt_seq + pkt_len, pkt_len);
666 #endif
667 pkt_len += q->ipqe_len;
668 pkt_flags |= q->ipqe_flags;
669 m_cat(m, q->ipqe_m);
670 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
671 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
672 tp->t_segqlen--;
673 KASSERT(tp->t_segqlen >= 0);
674 KASSERT(tp->t_segqlen != 0 ||
675 (TAILQ_EMPTY(&tp->segq) &&
676 TAILQ_EMPTY(&tp->timeq)));
677 if (tiqe == NULL) {
678 tiqe = q;
679 } else {
680 tcpipqent_free(q);
681 }
682 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
683 break;
684 }
685 /*
686 * If the fragment is before the segment, remember it.
687 * When this loop is terminated, p will contain the
688 * pointer to fragment that is right before the received
689 * segment.
690 */
691 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
692 p = q;
693
694 continue;
695
696 /*
697 * This is a common operation. It also will allow
698 * to save doing a malloc/free in most instances.
699 */
700 free_ipqe:
701 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
702 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
703 tp->t_segqlen--;
704 KASSERT(tp->t_segqlen >= 0);
705 KASSERT(tp->t_segqlen != 0 ||
706 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
707 if (tiqe == NULL) {
708 tiqe = q;
709 } else {
710 tcpipqent_free(q);
711 }
712 }
713
714 #ifdef TCP_REASS_COUNTERS
715 if (count > 7)
716 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
717 else if (count > 0)
718 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
719 #endif
720
721 insert_it:
722
723 /*
724 * Allocate a new queue entry since the received segment did not
725 * collapse onto any other out-of-order block; thus we are allocating
726 * a new block. If it had collapsed, tiqe would not be NULL and
727 * we would be reusing it.
728 * XXX If we can't, just drop the packet. XXX
729 */
730 if (tiqe == NULL) {
731 tiqe = tcpipqent_alloc();
732 if (tiqe == NULL) {
733 TCP_STATINC(TCP_STAT_RCVMEMDROP);
734 m_freem(m);
735 return (0);
736 }
737 }
738
739 /*
740 * Update the counters.
741 */
742 tcps = TCP_STAT_GETREF();
743 tcps[TCP_STAT_RCVOOPACK]++;
744 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
745 if (rcvpartdupbyte) {
746 tcps[TCP_STAT_RCVPARTDUPPACK]++;
747 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
748 }
749 TCP_STAT_PUTREF();
750
751 /*
752 * Insert the new fragment queue entry into both queues.
753 */
754 tiqe->ipqe_m = m;
755 tiqe->ipre_mlast = m;
756 tiqe->ipqe_seq = pkt_seq;
757 tiqe->ipqe_len = pkt_len;
758 tiqe->ipqe_flags = pkt_flags;
759 if (p == NULL) {
760 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
761 #ifdef TCPREASS_DEBUG
762 if (tiqe->ipqe_seq != tp->rcv_nxt)
763 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
764 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
765 #endif
766 } else {
767 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
768 #ifdef TCPREASS_DEBUG
769 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
770 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
771 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
772 #endif
773 }
774 tp->t_segqlen++;
775
776 skip_replacement:
777
778 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
779
780 present:
781 /*
782 * Present data to user, advancing rcv_nxt through
783 * completed sequence space.
784 */
785 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
786 return (0);
787 q = TAILQ_FIRST(&tp->segq);
788 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
789 return (0);
790 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
791 return (0);
792
793 tp->rcv_nxt += q->ipqe_len;
794 pkt_flags = q->ipqe_flags & TH_FIN;
795 nd6_hint(tp);
796
797 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
798 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
799 tp->t_segqlen--;
800 KASSERT(tp->t_segqlen >= 0);
801 KASSERT(tp->t_segqlen != 0 ||
802 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
803 if (so->so_state & SS_CANTRCVMORE)
804 m_freem(q->ipqe_m);
805 else
806 sbappendstream(&so->so_rcv, q->ipqe_m);
807 tcpipqent_free(q);
808 sorwakeup(so);
809 return (pkt_flags);
810 }
811
812 #ifdef INET6
813 int
814 tcp6_input(struct mbuf **mp, int *offp, int proto)
815 {
816 struct mbuf *m = *mp;
817
818 /*
819 * draft-itojun-ipv6-tcp-to-anycast
820 * better place to put this in?
821 */
822 if (m->m_flags & M_ANYCAST6) {
823 struct ip6_hdr *ip6;
824 if (m->m_len < sizeof(struct ip6_hdr)) {
825 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
826 TCP_STATINC(TCP_STAT_RCVSHORT);
827 return IPPROTO_DONE;
828 }
829 }
830 ip6 = mtod(m, struct ip6_hdr *);
831 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
832 (char *)&ip6->ip6_dst - (char *)ip6);
833 return IPPROTO_DONE;
834 }
835
836 tcp_input(m, *offp, proto);
837 return IPPROTO_DONE;
838 }
839 #endif
840
841 #ifdef INET
842 static void
843 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
844 {
845 char src[4*sizeof "123"];
846 char dst[4*sizeof "123"];
847
848 if (ip) {
849 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
850 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
851 }
852 else {
853 strlcpy(src, "(unknown)", sizeof(src));
854 strlcpy(dst, "(unknown)", sizeof(dst));
855 }
856 log(LOG_INFO,
857 "Connection attempt to TCP %s:%d from %s:%d\n",
858 dst, ntohs(th->th_dport),
859 src, ntohs(th->th_sport));
860 }
861 #endif
862
863 #ifdef INET6
864 static void
865 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
866 {
867 char src[INET6_ADDRSTRLEN];
868 char dst[INET6_ADDRSTRLEN];
869
870 if (ip6) {
871 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
872 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
873 }
874 else {
875 strlcpy(src, "(unknown v6)", sizeof(src));
876 strlcpy(dst, "(unknown v6)", sizeof(dst));
877 }
878 log(LOG_INFO,
879 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
880 dst, ntohs(th->th_dport),
881 src, ntohs(th->th_sport));
882 }
883 #endif
884
885 /*
886 * Checksum extended TCP header and data.
887 */
888 int
889 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
890 int toff, int off, int tlen)
891 {
892
893 /*
894 * XXX it's better to record and check if this mbuf is
895 * already checked.
896 */
897
898 switch (af) {
899 #ifdef INET
900 case AF_INET:
901 switch (m->m_pkthdr.csum_flags &
902 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
903 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
904 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
905 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
906 goto badcsum;
907
908 case M_CSUM_TCPv4|M_CSUM_DATA: {
909 u_int32_t hw_csum = m->m_pkthdr.csum_data;
910
911 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
912 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
913 const struct ip *ip =
914 mtod(m, const struct ip *);
915
916 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
917 ip->ip_dst.s_addr,
918 htons(hw_csum + tlen + off + IPPROTO_TCP));
919 }
920 if ((hw_csum ^ 0xffff) != 0)
921 goto badcsum;
922 break;
923 }
924
925 case M_CSUM_TCPv4:
926 /* Checksum was okay. */
927 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
928 break;
929
930 default:
931 /*
932 * Must compute it ourselves. Maybe skip checksum
933 * on loopback interfaces.
934 */
935 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
936 IFF_LOOPBACK) ||
937 tcp_do_loopback_cksum)) {
938 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
939 if (in4_cksum(m, IPPROTO_TCP, toff,
940 tlen + off) != 0)
941 goto badcsum;
942 }
943 break;
944 }
945 break;
946 #endif /* INET4 */
947
948 #ifdef INET6
949 case AF_INET6:
950 switch (m->m_pkthdr.csum_flags &
951 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
952 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
953 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
954 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
955 goto badcsum;
956
957 #if 0 /* notyet */
958 case M_CSUM_TCPv6|M_CSUM_DATA:
959 #endif
960
961 case M_CSUM_TCPv6:
962 /* Checksum was okay. */
963 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
964 break;
965
966 default:
967 /*
968 * Must compute it ourselves. Maybe skip checksum
969 * on loopback interfaces.
970 */
971 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
972 tcp_do_loopback_cksum)) {
973 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
974 if (in6_cksum(m, IPPROTO_TCP, toff,
975 tlen + off) != 0)
976 goto badcsum;
977 }
978 }
979 break;
980 #endif /* INET6 */
981 }
982
983 return 0;
984
985 badcsum:
986 TCP_STATINC(TCP_STAT_RCVBADSUM);
987 return -1;
988 }
989
990 /*
991 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
992 */
993 void
994 tcp_input(struct mbuf *m, ...)
995 {
996 struct tcphdr *th;
997 struct ip *ip;
998 struct inpcb *inp;
999 #ifdef INET6
1000 struct ip6_hdr *ip6;
1001 struct in6pcb *in6p;
1002 #endif
1003 u_int8_t *optp = NULL;
1004 int optlen = 0;
1005 int len, tlen, toff, hdroptlen = 0;
1006 struct tcpcb *tp = 0;
1007 int tiflags;
1008 struct socket *so = NULL;
1009 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1010 #ifdef TCP_DEBUG
1011 short ostate = 0;
1012 #endif
1013 u_long tiwin;
1014 struct tcp_opt_info opti;
1015 int off, iphlen;
1016 va_list ap;
1017 int af; /* af on the wire */
1018 struct mbuf *tcp_saveti = NULL;
1019 uint32_t ts_rtt;
1020 uint8_t iptos;
1021 uint64_t *tcps;
1022
1023 MCLAIM(m, &tcp_rx_mowner);
1024 va_start(ap, m);
1025 toff = va_arg(ap, int);
1026 (void)va_arg(ap, int); /* ignore value, advance ap */
1027 va_end(ap);
1028
1029 TCP_STATINC(TCP_STAT_RCVTOTAL);
1030
1031 memset(&opti, 0, sizeof(opti));
1032 opti.ts_present = 0;
1033 opti.maxseg = 0;
1034
1035 /*
1036 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1037 *
1038 * TCP is, by definition, unicast, so we reject all
1039 * multicast outright.
1040 *
1041 * Note, there are additional src/dst address checks in
1042 * the AF-specific code below.
1043 */
1044 if (m->m_flags & (M_BCAST|M_MCAST)) {
1045 /* XXX stat */
1046 goto drop;
1047 }
1048 #ifdef INET6
1049 if (m->m_flags & M_ANYCAST6) {
1050 /* XXX stat */
1051 goto drop;
1052 }
1053 #endif
1054
1055 /*
1056 * Get IP and TCP header.
1057 * Note: IP leaves IP header in first mbuf.
1058 */
1059 ip = mtod(m, struct ip *);
1060 #ifdef INET6
1061 ip6 = NULL;
1062 #endif
1063 switch (ip->ip_v) {
1064 #ifdef INET
1065 case 4:
1066 af = AF_INET;
1067 iphlen = sizeof(struct ip);
1068 ip = mtod(m, struct ip *);
1069 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1070 sizeof(struct tcphdr));
1071 if (th == NULL) {
1072 TCP_STATINC(TCP_STAT_RCVSHORT);
1073 return;
1074 }
1075 /* We do the checksum after PCB lookup... */
1076 len = ntohs(ip->ip_len);
1077 tlen = len - toff;
1078 iptos = ip->ip_tos;
1079 break;
1080 #endif
1081 #ifdef INET6
1082 case 6:
1083 ip = NULL;
1084 iphlen = sizeof(struct ip6_hdr);
1085 af = AF_INET6;
1086 ip6 = mtod(m, struct ip6_hdr *);
1087 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1088 sizeof(struct tcphdr));
1089 if (th == NULL) {
1090 TCP_STATINC(TCP_STAT_RCVSHORT);
1091 return;
1092 }
1093
1094 /* Be proactive about malicious use of IPv4 mapped address */
1095 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1096 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1097 /* XXX stat */
1098 goto drop;
1099 }
1100
1101 /*
1102 * Be proactive about unspecified IPv6 address in source.
1103 * As we use all-zero to indicate unbounded/unconnected pcb,
1104 * unspecified IPv6 address can be used to confuse us.
1105 *
1106 * Note that packets with unspecified IPv6 destination is
1107 * already dropped in ip6_input.
1108 */
1109 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1110 /* XXX stat */
1111 goto drop;
1112 }
1113
1114 /*
1115 * Make sure destination address is not multicast.
1116 * Source address checked in ip6_input().
1117 */
1118 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1119 /* XXX stat */
1120 goto drop;
1121 }
1122
1123 /* We do the checksum after PCB lookup... */
1124 len = m->m_pkthdr.len;
1125 tlen = len - toff;
1126 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1127 break;
1128 #endif
1129 default:
1130 m_freem(m);
1131 return;
1132 }
1133
1134 KASSERT(TCP_HDR_ALIGNED_P(th));
1135
1136 /*
1137 * Check that TCP offset makes sense,
1138 * pull out TCP options and adjust length. XXX
1139 */
1140 off = th->th_off << 2;
1141 if (off < sizeof (struct tcphdr) || off > tlen) {
1142 TCP_STATINC(TCP_STAT_RCVBADOFF);
1143 goto drop;
1144 }
1145 tlen -= off;
1146
1147 /*
1148 * tcp_input() has been modified to use tlen to mean the TCP data
1149 * length throughout the function. Other functions can use
1150 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1151 * rja
1152 */
1153
1154 if (off > sizeof (struct tcphdr)) {
1155 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1156 if (th == NULL) {
1157 TCP_STATINC(TCP_STAT_RCVSHORT);
1158 return;
1159 }
1160 /*
1161 * NOTE: ip/ip6 will not be affected by m_pulldown()
1162 * (as they're before toff) and we don't need to update those.
1163 */
1164 KASSERT(TCP_HDR_ALIGNED_P(th));
1165 optlen = off - sizeof (struct tcphdr);
1166 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1167 /*
1168 * Do quick retrieval of timestamp options ("options
1169 * prediction?"). If timestamp is the only option and it's
1170 * formatted as recommended in RFC 1323 appendix A, we
1171 * quickly get the values now and not bother calling
1172 * tcp_dooptions(), etc.
1173 */
1174 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1175 (optlen > TCPOLEN_TSTAMP_APPA &&
1176 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1177 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1178 (th->th_flags & TH_SYN) == 0) {
1179 opti.ts_present = 1;
1180 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1181 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1182 optp = NULL; /* we've parsed the options */
1183 }
1184 }
1185 tiflags = th->th_flags;
1186
1187 /*
1188 * Locate pcb for segment.
1189 */
1190 findpcb:
1191 inp = NULL;
1192 #ifdef INET6
1193 in6p = NULL;
1194 #endif
1195 switch (af) {
1196 #ifdef INET
1197 case AF_INET:
1198 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1199 ip->ip_dst, th->th_dport);
1200 if (inp == 0) {
1201 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1202 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1203 }
1204 #ifdef INET6
1205 if (inp == 0) {
1206 struct in6_addr s, d;
1207
1208 /* mapped addr case */
1209 memset(&s, 0, sizeof(s));
1210 s.s6_addr16[5] = htons(0xffff);
1211 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1212 memset(&d, 0, sizeof(d));
1213 d.s6_addr16[5] = htons(0xffff);
1214 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1215 in6p = in6_pcblookup_connect(&tcbtable, &s,
1216 th->th_sport, &d, th->th_dport, 0);
1217 if (in6p == 0) {
1218 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1219 in6p = in6_pcblookup_bind(&tcbtable, &d,
1220 th->th_dport, 0);
1221 }
1222 }
1223 #endif
1224 #ifndef INET6
1225 if (inp == 0)
1226 #else
1227 if (inp == 0 && in6p == 0)
1228 #endif
1229 {
1230 TCP_STATINC(TCP_STAT_NOPORT);
1231 if (tcp_log_refused &&
1232 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1233 tcp4_log_refused(ip, th);
1234 }
1235 tcp_fields_to_host(th);
1236 goto dropwithreset_ratelim;
1237 }
1238 #if defined(IPSEC) || defined(FAST_IPSEC)
1239 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1240 ipsec4_in_reject(m, inp)) {
1241 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1242 goto drop;
1243 }
1244 #ifdef INET6
1245 else if (in6p &&
1246 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1247 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1248 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1249 goto drop;
1250 }
1251 #endif
1252 #endif /*IPSEC*/
1253 break;
1254 #endif /*INET*/
1255 #ifdef INET6
1256 case AF_INET6:
1257 {
1258 int faith;
1259
1260 #if defined(NFAITH) && NFAITH > 0
1261 faith = faithprefix(&ip6->ip6_dst);
1262 #else
1263 faith = 0;
1264 #endif
1265 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1266 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1267 if (in6p == NULL) {
1268 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1269 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1270 th->th_dport, faith);
1271 }
1272 if (in6p == NULL) {
1273 TCP_STATINC(TCP_STAT_NOPORT);
1274 if (tcp_log_refused &&
1275 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1276 tcp6_log_refused(ip6, th);
1277 }
1278 tcp_fields_to_host(th);
1279 goto dropwithreset_ratelim;
1280 }
1281 #if defined(IPSEC) || defined(FAST_IPSEC)
1282 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1283 ipsec6_in_reject(m, in6p)) {
1284 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1285 goto drop;
1286 }
1287 #endif /*IPSEC*/
1288 break;
1289 }
1290 #endif
1291 }
1292
1293 /*
1294 * If the state is CLOSED (i.e., TCB does not exist) then
1295 * all data in the incoming segment is discarded.
1296 * If the TCB exists but is in CLOSED state, it is embryonic,
1297 * but should either do a listen or a connect soon.
1298 */
1299 tp = NULL;
1300 so = NULL;
1301 if (inp) {
1302 /* Check the minimum TTL for socket. */
1303 if (ip->ip_ttl < inp->inp_ip_minttl)
1304 goto drop;
1305
1306 tp = intotcpcb(inp);
1307 so = inp->inp_socket;
1308 }
1309 #ifdef INET6
1310 else if (in6p) {
1311 tp = in6totcpcb(in6p);
1312 so = in6p->in6p_socket;
1313 }
1314 #endif
1315 if (tp == 0) {
1316 tcp_fields_to_host(th);
1317 goto dropwithreset_ratelim;
1318 }
1319 if (tp->t_state == TCPS_CLOSED)
1320 goto drop;
1321
1322 KASSERT(so->so_lock == softnet_lock);
1323 KASSERT(solocked(so));
1324
1325 /*
1326 * Checksum extended TCP header and data.
1327 */
1328 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1329 goto badcsum;
1330
1331 tcp_fields_to_host(th);
1332
1333 /* Unscale the window into a 32-bit value. */
1334 if ((tiflags & TH_SYN) == 0)
1335 tiwin = th->th_win << tp->snd_scale;
1336 else
1337 tiwin = th->th_win;
1338
1339 #ifdef INET6
1340 /* save packet options if user wanted */
1341 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1342 if (in6p->in6p_options) {
1343 m_freem(in6p->in6p_options);
1344 in6p->in6p_options = 0;
1345 }
1346 KASSERT(ip6 != NULL);
1347 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1348 }
1349 #endif
1350
1351 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1352 union syn_cache_sa src;
1353 union syn_cache_sa dst;
1354
1355 memset(&src, 0, sizeof(src));
1356 memset(&dst, 0, sizeof(dst));
1357 switch (af) {
1358 #ifdef INET
1359 case AF_INET:
1360 src.sin.sin_len = sizeof(struct sockaddr_in);
1361 src.sin.sin_family = AF_INET;
1362 src.sin.sin_addr = ip->ip_src;
1363 src.sin.sin_port = th->th_sport;
1364
1365 dst.sin.sin_len = sizeof(struct sockaddr_in);
1366 dst.sin.sin_family = AF_INET;
1367 dst.sin.sin_addr = ip->ip_dst;
1368 dst.sin.sin_port = th->th_dport;
1369 break;
1370 #endif
1371 #ifdef INET6
1372 case AF_INET6:
1373 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1374 src.sin6.sin6_family = AF_INET6;
1375 src.sin6.sin6_addr = ip6->ip6_src;
1376 src.sin6.sin6_port = th->th_sport;
1377
1378 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1379 dst.sin6.sin6_family = AF_INET6;
1380 dst.sin6.sin6_addr = ip6->ip6_dst;
1381 dst.sin6.sin6_port = th->th_dport;
1382 break;
1383 #endif /* INET6 */
1384 default:
1385 goto badsyn; /*sanity*/
1386 }
1387
1388 if (so->so_options & SO_DEBUG) {
1389 #ifdef TCP_DEBUG
1390 ostate = tp->t_state;
1391 #endif
1392
1393 tcp_saveti = NULL;
1394 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1395 goto nosave;
1396
1397 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1398 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1399 if (!tcp_saveti)
1400 goto nosave;
1401 } else {
1402 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1403 if (!tcp_saveti)
1404 goto nosave;
1405 MCLAIM(m, &tcp_mowner);
1406 tcp_saveti->m_len = iphlen;
1407 m_copydata(m, 0, iphlen,
1408 mtod(tcp_saveti, void *));
1409 }
1410
1411 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1412 m_freem(tcp_saveti);
1413 tcp_saveti = NULL;
1414 } else {
1415 tcp_saveti->m_len += sizeof(struct tcphdr);
1416 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1417 sizeof(struct tcphdr));
1418 }
1419 nosave:;
1420 }
1421 if (so->so_options & SO_ACCEPTCONN) {
1422 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1423 if (tiflags & TH_RST) {
1424 syn_cache_reset(&src.sa, &dst.sa, th);
1425 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1426 (TH_ACK|TH_SYN)) {
1427 /*
1428 * Received a SYN,ACK. This should
1429 * never happen while we are in
1430 * LISTEN. Send an RST.
1431 */
1432 goto badsyn;
1433 } else if (tiflags & TH_ACK) {
1434 so = syn_cache_get(&src.sa, &dst.sa,
1435 th, toff, tlen, so, m);
1436 if (so == NULL) {
1437 /*
1438 * We don't have a SYN for
1439 * this ACK; send an RST.
1440 */
1441 goto badsyn;
1442 } else if (so ==
1443 (struct socket *)(-1)) {
1444 /*
1445 * We were unable to create
1446 * the connection. If the
1447 * 3-way handshake was
1448 * completed, and RST has
1449 * been sent to the peer.
1450 * Since the mbuf might be
1451 * in use for the reply,
1452 * do not free it.
1453 */
1454 m = NULL;
1455 } else {
1456 /*
1457 * We have created a
1458 * full-blown connection.
1459 */
1460 tp = NULL;
1461 inp = NULL;
1462 #ifdef INET6
1463 in6p = NULL;
1464 #endif
1465 switch (so->so_proto->pr_domain->dom_family) {
1466 #ifdef INET
1467 case AF_INET:
1468 inp = sotoinpcb(so);
1469 tp = intotcpcb(inp);
1470 break;
1471 #endif
1472 #ifdef INET6
1473 case AF_INET6:
1474 in6p = sotoin6pcb(so);
1475 tp = in6totcpcb(in6p);
1476 break;
1477 #endif
1478 }
1479 if (tp == NULL)
1480 goto badsyn; /*XXX*/
1481 tiwin <<= tp->snd_scale;
1482 goto after_listen;
1483 }
1484 } else {
1485 /*
1486 * None of RST, SYN or ACK was set.
1487 * This is an invalid packet for a
1488 * TCB in LISTEN state. Send a RST.
1489 */
1490 goto badsyn;
1491 }
1492 } else {
1493 /*
1494 * Received a SYN.
1495 *
1496 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1497 */
1498 if (m->m_flags & (M_BCAST|M_MCAST))
1499 goto drop;
1500
1501 switch (af) {
1502 #ifdef INET6
1503 case AF_INET6:
1504 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1505 goto drop;
1506 break;
1507 #endif /* INET6 */
1508 case AF_INET:
1509 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1510 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1511 goto drop;
1512 break;
1513 }
1514
1515 #ifdef INET6
1516 /*
1517 * If deprecated address is forbidden, we do
1518 * not accept SYN to deprecated interface
1519 * address to prevent any new inbound
1520 * connection from getting established.
1521 * When we do not accept SYN, we send a TCP
1522 * RST, with deprecated source address (instead
1523 * of dropping it). We compromise it as it is
1524 * much better for peer to send a RST, and
1525 * RST will be the final packet for the
1526 * exchange.
1527 *
1528 * If we do not forbid deprecated addresses, we
1529 * accept the SYN packet. RFC2462 does not
1530 * suggest dropping SYN in this case.
1531 * If we decipher RFC2462 5.5.4, it says like
1532 * this:
1533 * 1. use of deprecated addr with existing
1534 * communication is okay - "SHOULD continue
1535 * to be used"
1536 * 2. use of it with new communication:
1537 * (2a) "SHOULD NOT be used if alternate
1538 * address with sufficient scope is
1539 * available"
1540 * (2b) nothing mentioned otherwise.
1541 * Here we fall into (2b) case as we have no
1542 * choice in our source address selection - we
1543 * must obey the peer.
1544 *
1545 * The wording in RFC2462 is confusing, and
1546 * there are multiple description text for
1547 * deprecated address handling - worse, they
1548 * are not exactly the same. I believe 5.5.4
1549 * is the best one, so we follow 5.5.4.
1550 */
1551 if (af == AF_INET6 && !ip6_use_deprecated) {
1552 struct in6_ifaddr *ia6;
1553 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1554 &ip6->ip6_dst)) &&
1555 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1556 tp = NULL;
1557 goto dropwithreset;
1558 }
1559 }
1560 #endif
1561
1562 #if defined(IPSEC) || defined(FAST_IPSEC)
1563 switch (af) {
1564 #ifdef INET
1565 case AF_INET:
1566 if (ipsec4_in_reject_so(m, so)) {
1567 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1568 tp = NULL;
1569 goto dropwithreset;
1570 }
1571 break;
1572 #endif
1573 #ifdef INET6
1574 case AF_INET6:
1575 if (ipsec6_in_reject_so(m, so)) {
1576 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1577 tp = NULL;
1578 goto dropwithreset;
1579 }
1580 break;
1581 #endif /*INET6*/
1582 }
1583 #endif /*IPSEC*/
1584
1585 /*
1586 * LISTEN socket received a SYN
1587 * from itself? This can't possibly
1588 * be valid; drop the packet.
1589 */
1590 if (th->th_sport == th->th_dport) {
1591 int i;
1592
1593 switch (af) {
1594 #ifdef INET
1595 case AF_INET:
1596 i = in_hosteq(ip->ip_src, ip->ip_dst);
1597 break;
1598 #endif
1599 #ifdef INET6
1600 case AF_INET6:
1601 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1602 break;
1603 #endif
1604 default:
1605 i = 1;
1606 }
1607 if (i) {
1608 TCP_STATINC(TCP_STAT_BADSYN);
1609 goto drop;
1610 }
1611 }
1612
1613 /*
1614 * SYN looks ok; create compressed TCP
1615 * state for it.
1616 */
1617 if (so->so_qlen <= so->so_qlimit &&
1618 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1619 so, m, optp, optlen, &opti))
1620 m = NULL;
1621 }
1622 goto drop;
1623 }
1624 }
1625
1626 after_listen:
1627 #ifdef DIAGNOSTIC
1628 /*
1629 * Should not happen now that all embryonic connections
1630 * are handled with compressed state.
1631 */
1632 if (tp->t_state == TCPS_LISTEN)
1633 panic("tcp_input: TCPS_LISTEN");
1634 #endif
1635
1636 /*
1637 * Segment received on connection.
1638 * Reset idle time and keep-alive timer.
1639 */
1640 tp->t_rcvtime = tcp_now;
1641 if (TCPS_HAVEESTABLISHED(tp->t_state))
1642 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1643
1644 /*
1645 * Process options.
1646 */
1647 #ifdef TCP_SIGNATURE
1648 if (optp || (tp->t_flags & TF_SIGNATURE))
1649 #else
1650 if (optp)
1651 #endif
1652 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1653 goto drop;
1654
1655 if (TCP_SACK_ENABLED(tp)) {
1656 tcp_del_sackholes(tp, th);
1657 }
1658
1659 if (TCP_ECN_ALLOWED(tp)) {
1660 switch (iptos & IPTOS_ECN_MASK) {
1661 case IPTOS_ECN_CE:
1662 tp->t_flags |= TF_ECN_SND_ECE;
1663 TCP_STATINC(TCP_STAT_ECN_CE);
1664 break;
1665 case IPTOS_ECN_ECT0:
1666 TCP_STATINC(TCP_STAT_ECN_ECT);
1667 break;
1668 case IPTOS_ECN_ECT1:
1669 /* XXX: ignore for now -- rpaulo */
1670 break;
1671 }
1672
1673 if (tiflags & TH_CWR)
1674 tp->t_flags &= ~TF_ECN_SND_ECE;
1675
1676 /*
1677 * Congestion experienced.
1678 * Ignore if we are already trying to recover.
1679 */
1680 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1681 tp->t_congctl->cong_exp(tp);
1682 }
1683
1684 if (opti.ts_present && opti.ts_ecr) {
1685 /*
1686 * Calculate the RTT from the returned time stamp and the
1687 * connection's time base. If the time stamp is later than
1688 * the current time, or is extremely old, fall back to non-1323
1689 * RTT calculation. Since ts_ecr is unsigned, we can test both
1690 * at the same time.
1691 */
1692 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1693 if (ts_rtt > TCP_PAWS_IDLE)
1694 ts_rtt = 0;
1695 } else {
1696 ts_rtt = 0;
1697 }
1698
1699 /*
1700 * Header prediction: check for the two common cases
1701 * of a uni-directional data xfer. If the packet has
1702 * no control flags, is in-sequence, the window didn't
1703 * change and we're not retransmitting, it's a
1704 * candidate. If the length is zero and the ack moved
1705 * forward, we're the sender side of the xfer. Just
1706 * free the data acked & wake any higher level process
1707 * that was blocked waiting for space. If the length
1708 * is non-zero and the ack didn't move, we're the
1709 * receiver side. If we're getting packets in-order
1710 * (the reassembly queue is empty), add the data to
1711 * the socket buffer and note that we need a delayed ack.
1712 */
1713 if (tp->t_state == TCPS_ESTABLISHED &&
1714 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1715 == TH_ACK &&
1716 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1717 th->th_seq == tp->rcv_nxt &&
1718 tiwin && tiwin == tp->snd_wnd &&
1719 tp->snd_nxt == tp->snd_max) {
1720
1721 /*
1722 * If last ACK falls within this segment's sequence numbers,
1723 * record the timestamp.
1724 * NOTE that the test is modified according to the latest
1725 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1726 *
1727 * note that we already know
1728 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1729 */
1730 if (opti.ts_present &&
1731 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1732 tp->ts_recent_age = tcp_now;
1733 tp->ts_recent = opti.ts_val;
1734 }
1735
1736 if (tlen == 0) {
1737 /* Ack prediction. */
1738 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1739 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1740 tp->snd_cwnd >= tp->snd_wnd &&
1741 tp->t_partialacks < 0) {
1742 /*
1743 * this is a pure ack for outstanding data.
1744 */
1745 if (ts_rtt)
1746 tcp_xmit_timer(tp, ts_rtt);
1747 else if (tp->t_rtttime &&
1748 SEQ_GT(th->th_ack, tp->t_rtseq))
1749 tcp_xmit_timer(tp,
1750 tcp_now - tp->t_rtttime);
1751 acked = th->th_ack - tp->snd_una;
1752 tcps = TCP_STAT_GETREF();
1753 tcps[TCP_STAT_PREDACK]++;
1754 tcps[TCP_STAT_RCVACKPACK]++;
1755 tcps[TCP_STAT_RCVACKBYTE] += acked;
1756 TCP_STAT_PUTREF();
1757 nd6_hint(tp);
1758
1759 if (acked > (tp->t_lastoff - tp->t_inoff))
1760 tp->t_lastm = NULL;
1761 sbdrop(&so->so_snd, acked);
1762 tp->t_lastoff -= acked;
1763
1764 icmp_check(tp, th, acked);
1765
1766 tp->snd_una = th->th_ack;
1767 tp->snd_fack = tp->snd_una;
1768 if (SEQ_LT(tp->snd_high, tp->snd_una))
1769 tp->snd_high = tp->snd_una;
1770 m_freem(m);
1771
1772 /*
1773 * If all outstanding data are acked, stop
1774 * retransmit timer, otherwise restart timer
1775 * using current (possibly backed-off) value.
1776 * If process is waiting for space,
1777 * wakeup/selnotify/signal. If data
1778 * are ready to send, let tcp_output
1779 * decide between more output or persist.
1780 */
1781 if (tp->snd_una == tp->snd_max)
1782 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1783 else if (TCP_TIMER_ISARMED(tp,
1784 TCPT_PERSIST) == 0)
1785 TCP_TIMER_ARM(tp, TCPT_REXMT,
1786 tp->t_rxtcur);
1787
1788 sowwakeup(so);
1789 if (so->so_snd.sb_cc)
1790 KERNEL_LOCK(1, NULL);
1791 (void) tcp_output(tp);
1792 KERNEL_UNLOCK_ONE(NULL);
1793 if (tcp_saveti)
1794 m_freem(tcp_saveti);
1795 return;
1796 }
1797 } else if (th->th_ack == tp->snd_una &&
1798 TAILQ_FIRST(&tp->segq) == NULL &&
1799 tlen <= sbspace(&so->so_rcv)) {
1800 int newsize = 0; /* automatic sockbuf scaling */
1801
1802 /*
1803 * this is a pure, in-sequence data packet
1804 * with nothing on the reassembly queue and
1805 * we have enough buffer space to take it.
1806 */
1807 tp->rcv_nxt += tlen;
1808 tcps = TCP_STAT_GETREF();
1809 tcps[TCP_STAT_PREDDAT]++;
1810 tcps[TCP_STAT_RCVPACK]++;
1811 tcps[TCP_STAT_RCVBYTE] += tlen;
1812 TCP_STAT_PUTREF();
1813 nd6_hint(tp);
1814
1815 /*
1816 * Automatic sizing enables the performance of large buffers
1817 * and most of the efficiency of small ones by only allocating
1818 * space when it is needed.
1819 *
1820 * On the receive side the socket buffer memory is only rarely
1821 * used to any significant extent. This allows us to be much
1822 * more aggressive in scaling the receive socket buffer. For
1823 * the case that the buffer space is actually used to a large
1824 * extent and we run out of kernel memory we can simply drop
1825 * the new segments; TCP on the sender will just retransmit it
1826 * later. Setting the buffer size too big may only consume too
1827 * much kernel memory if the application doesn't read() from
1828 * the socket or packet loss or reordering makes use of the
1829 * reassembly queue.
1830 *
1831 * The criteria to step up the receive buffer one notch are:
1832 * 1. the number of bytes received during the time it takes
1833 * one timestamp to be reflected back to us (the RTT);
1834 * 2. received bytes per RTT is within seven eighth of the
1835 * current socket buffer size;
1836 * 3. receive buffer size has not hit maximal automatic size;
1837 *
1838 * This algorithm does one step per RTT at most and only if
1839 * we receive a bulk stream w/o packet losses or reorderings.
1840 * Shrinking the buffer during idle times is not necessary as
1841 * it doesn't consume any memory when idle.
1842 *
1843 * TODO: Only step up if the application is actually serving
1844 * the buffer to better manage the socket buffer resources.
1845 */
1846 if (tcp_do_autorcvbuf &&
1847 opti.ts_ecr &&
1848 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1849 if (opti.ts_ecr > tp->rfbuf_ts &&
1850 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1851 if (tp->rfbuf_cnt >
1852 (so->so_rcv.sb_hiwat / 8 * 7) &&
1853 so->so_rcv.sb_hiwat <
1854 tcp_autorcvbuf_max) {
1855 newsize =
1856 min(so->so_rcv.sb_hiwat +
1857 tcp_autorcvbuf_inc,
1858 tcp_autorcvbuf_max);
1859 }
1860 /* Start over with next RTT. */
1861 tp->rfbuf_ts = 0;
1862 tp->rfbuf_cnt = 0;
1863 } else
1864 tp->rfbuf_cnt += tlen; /* add up */
1865 }
1866
1867 /*
1868 * Drop TCP, IP headers and TCP options then add data
1869 * to socket buffer.
1870 */
1871 if (so->so_state & SS_CANTRCVMORE)
1872 m_freem(m);
1873 else {
1874 /*
1875 * Set new socket buffer size.
1876 * Give up when limit is reached.
1877 */
1878 if (newsize)
1879 if (!sbreserve(&so->so_rcv,
1880 newsize, so))
1881 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1882 m_adj(m, toff + off);
1883 sbappendstream(&so->so_rcv, m);
1884 }
1885 sorwakeup(so);
1886 tcp_setup_ack(tp, th);
1887 if (tp->t_flags & TF_ACKNOW)
1888 KERNEL_LOCK(1, NULL);
1889 (void) tcp_output(tp);
1890 KERNEL_UNLOCK_ONE(NULL);
1891 if (tcp_saveti)
1892 m_freem(tcp_saveti);
1893 return;
1894 }
1895 }
1896
1897 /*
1898 * Compute mbuf offset to TCP data segment.
1899 */
1900 hdroptlen = toff + off;
1901
1902 /*
1903 * Calculate amount of space in receive window,
1904 * and then do TCP input processing.
1905 * Receive window is amount of space in rcv queue,
1906 * but not less than advertised window.
1907 */
1908 { int win;
1909
1910 win = sbspace(&so->so_rcv);
1911 if (win < 0)
1912 win = 0;
1913 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1914 }
1915
1916 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1917 tp->rfbuf_ts = 0;
1918 tp->rfbuf_cnt = 0;
1919
1920 switch (tp->t_state) {
1921 /*
1922 * If the state is SYN_SENT:
1923 * if seg contains an ACK, but not for our SYN, drop the input.
1924 * if seg contains a RST, then drop the connection.
1925 * if seg does not contain SYN, then drop it.
1926 * Otherwise this is an acceptable SYN segment
1927 * initialize tp->rcv_nxt and tp->irs
1928 * if seg contains ack then advance tp->snd_una
1929 * if seg contains a ECE and ECN support is enabled, the stream
1930 * is ECN capable.
1931 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1932 * arrange for segment to be acked (eventually)
1933 * continue processing rest of data/controls, beginning with URG
1934 */
1935 case TCPS_SYN_SENT:
1936 if ((tiflags & TH_ACK) &&
1937 (SEQ_LEQ(th->th_ack, tp->iss) ||
1938 SEQ_GT(th->th_ack, tp->snd_max)))
1939 goto dropwithreset;
1940 if (tiflags & TH_RST) {
1941 if (tiflags & TH_ACK)
1942 tp = tcp_drop(tp, ECONNREFUSED);
1943 goto drop;
1944 }
1945 if ((tiflags & TH_SYN) == 0)
1946 goto drop;
1947 if (tiflags & TH_ACK) {
1948 tp->snd_una = th->th_ack;
1949 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1950 tp->snd_nxt = tp->snd_una;
1951 if (SEQ_LT(tp->snd_high, tp->snd_una))
1952 tp->snd_high = tp->snd_una;
1953 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1954
1955 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1956 tp->t_flags |= TF_ECN_PERMIT;
1957 TCP_STATINC(TCP_STAT_ECN_SHS);
1958 }
1959
1960 }
1961 tp->irs = th->th_seq;
1962 tcp_rcvseqinit(tp);
1963 tp->t_flags |= TF_ACKNOW;
1964 tcp_mss_from_peer(tp, opti.maxseg);
1965
1966 /*
1967 * Initialize the initial congestion window. If we
1968 * had to retransmit the SYN, we must initialize cwnd
1969 * to 1 segment (i.e. the Loss Window).
1970 */
1971 if (tp->t_flags & TF_SYN_REXMT)
1972 tp->snd_cwnd = tp->t_peermss;
1973 else {
1974 int ss = tcp_init_win;
1975 #ifdef INET
1976 if (inp != NULL && in_localaddr(inp->inp_faddr))
1977 ss = tcp_init_win_local;
1978 #endif
1979 #ifdef INET6
1980 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1981 ss = tcp_init_win_local;
1982 #endif
1983 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1984 }
1985
1986 tcp_rmx_rtt(tp);
1987 if (tiflags & TH_ACK) {
1988 TCP_STATINC(TCP_STAT_CONNECTS);
1989 soisconnected(so);
1990 tcp_established(tp);
1991 /* Do window scaling on this connection? */
1992 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1993 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1994 tp->snd_scale = tp->requested_s_scale;
1995 tp->rcv_scale = tp->request_r_scale;
1996 }
1997 TCP_REASS_LOCK(tp);
1998 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
1999 TCP_REASS_UNLOCK(tp);
2000 /*
2001 * if we didn't have to retransmit the SYN,
2002 * use its rtt as our initial srtt & rtt var.
2003 */
2004 if (tp->t_rtttime)
2005 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2006 } else
2007 tp->t_state = TCPS_SYN_RECEIVED;
2008
2009 /*
2010 * Advance th->th_seq to correspond to first data byte.
2011 * If data, trim to stay within window,
2012 * dropping FIN if necessary.
2013 */
2014 th->th_seq++;
2015 if (tlen > tp->rcv_wnd) {
2016 todrop = tlen - tp->rcv_wnd;
2017 m_adj(m, -todrop);
2018 tlen = tp->rcv_wnd;
2019 tiflags &= ~TH_FIN;
2020 tcps = TCP_STAT_GETREF();
2021 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2022 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2023 TCP_STAT_PUTREF();
2024 }
2025 tp->snd_wl1 = th->th_seq - 1;
2026 tp->rcv_up = th->th_seq;
2027 goto step6;
2028
2029 /*
2030 * If the state is SYN_RECEIVED:
2031 * If seg contains an ACK, but not for our SYN, drop the input
2032 * and generate an RST. See page 36, rfc793
2033 */
2034 case TCPS_SYN_RECEIVED:
2035 if ((tiflags & TH_ACK) &&
2036 (SEQ_LEQ(th->th_ack, tp->iss) ||
2037 SEQ_GT(th->th_ack, tp->snd_max)))
2038 goto dropwithreset;
2039 break;
2040 }
2041
2042 /*
2043 * States other than LISTEN or SYN_SENT.
2044 * First check timestamp, if present.
2045 * Then check that at least some bytes of segment are within
2046 * receive window. If segment begins before rcv_nxt,
2047 * drop leading data (and SYN); if nothing left, just ack.
2048 *
2049 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2050 * and it's less than ts_recent, drop it.
2051 */
2052 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2053 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2054
2055 /* Check to see if ts_recent is over 24 days old. */
2056 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2057 /*
2058 * Invalidate ts_recent. If this segment updates
2059 * ts_recent, the age will be reset later and ts_recent
2060 * will get a valid value. If it does not, setting
2061 * ts_recent to zero will at least satisfy the
2062 * requirement that zero be placed in the timestamp
2063 * echo reply when ts_recent isn't valid. The
2064 * age isn't reset until we get a valid ts_recent
2065 * because we don't want out-of-order segments to be
2066 * dropped when ts_recent is old.
2067 */
2068 tp->ts_recent = 0;
2069 } else {
2070 tcps = TCP_STAT_GETREF();
2071 tcps[TCP_STAT_RCVDUPPACK]++;
2072 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2073 tcps[TCP_STAT_PAWSDROP]++;
2074 TCP_STAT_PUTREF();
2075 tcp_new_dsack(tp, th->th_seq, tlen);
2076 goto dropafterack;
2077 }
2078 }
2079
2080 todrop = tp->rcv_nxt - th->th_seq;
2081 dupseg = false;
2082 if (todrop > 0) {
2083 if (tiflags & TH_SYN) {
2084 tiflags &= ~TH_SYN;
2085 th->th_seq++;
2086 if (th->th_urp > 1)
2087 th->th_urp--;
2088 else {
2089 tiflags &= ~TH_URG;
2090 th->th_urp = 0;
2091 }
2092 todrop--;
2093 }
2094 if (todrop > tlen ||
2095 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2096 /*
2097 * Any valid FIN or RST must be to the left of the
2098 * window. At this point the FIN or RST must be a
2099 * duplicate or out of sequence; drop it.
2100 */
2101 if (tiflags & TH_RST)
2102 goto drop;
2103 tiflags &= ~(TH_FIN|TH_RST);
2104 /*
2105 * Send an ACK to resynchronize and drop any data.
2106 * But keep on processing for RST or ACK.
2107 */
2108 tp->t_flags |= TF_ACKNOW;
2109 todrop = tlen;
2110 dupseg = true;
2111 tcps = TCP_STAT_GETREF();
2112 tcps[TCP_STAT_RCVDUPPACK]++;
2113 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2114 TCP_STAT_PUTREF();
2115 } else if ((tiflags & TH_RST) &&
2116 th->th_seq != tp->rcv_nxt) {
2117 /*
2118 * Test for reset before adjusting the sequence
2119 * number for overlapping data.
2120 */
2121 goto dropafterack_ratelim;
2122 } else {
2123 tcps = TCP_STAT_GETREF();
2124 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2125 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2126 TCP_STAT_PUTREF();
2127 }
2128 tcp_new_dsack(tp, th->th_seq, todrop);
2129 hdroptlen += todrop; /*drop from head afterwards*/
2130 th->th_seq += todrop;
2131 tlen -= todrop;
2132 if (th->th_urp > todrop)
2133 th->th_urp -= todrop;
2134 else {
2135 tiflags &= ~TH_URG;
2136 th->th_urp = 0;
2137 }
2138 }
2139
2140 /*
2141 * If new data are received on a connection after the
2142 * user processes are gone, then RST the other end.
2143 */
2144 if ((so->so_state & SS_NOFDREF) &&
2145 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2146 tp = tcp_close(tp);
2147 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2148 goto dropwithreset;
2149 }
2150
2151 /*
2152 * If segment ends after window, drop trailing data
2153 * (and PUSH and FIN); if nothing left, just ACK.
2154 */
2155 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2156 if (todrop > 0) {
2157 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2158 if (todrop >= tlen) {
2159 /*
2160 * The segment actually starts after the window.
2161 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2162 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2163 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2164 */
2165 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2166 /*
2167 * If a new connection request is received
2168 * while in TIME_WAIT, drop the old connection
2169 * and start over if the sequence numbers
2170 * are above the previous ones.
2171 *
2172 * NOTE: We will checksum the packet again, and
2173 * so we need to put the header fields back into
2174 * network order!
2175 * XXX This kind of sucks, but we don't expect
2176 * XXX this to happen very often, so maybe it
2177 * XXX doesn't matter so much.
2178 */
2179 if (tiflags & TH_SYN &&
2180 tp->t_state == TCPS_TIME_WAIT &&
2181 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2182 tp = tcp_close(tp);
2183 tcp_fields_to_net(th);
2184 goto findpcb;
2185 }
2186 /*
2187 * If window is closed can only take segments at
2188 * window edge, and have to drop data and PUSH from
2189 * incoming segments. Continue processing, but
2190 * remember to ack. Otherwise, drop segment
2191 * and (if not RST) ack.
2192 */
2193 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2194 tp->t_flags |= TF_ACKNOW;
2195 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2196 } else
2197 goto dropafterack;
2198 } else
2199 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2200 m_adj(m, -todrop);
2201 tlen -= todrop;
2202 tiflags &= ~(TH_PUSH|TH_FIN);
2203 }
2204
2205 /*
2206 * If last ACK falls within this segment's sequence numbers,
2207 * record the timestamp.
2208 * NOTE:
2209 * 1) That the test incorporates suggestions from the latest
2210 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2211 * 2) That updating only on newer timestamps interferes with
2212 * our earlier PAWS tests, so this check should be solely
2213 * predicated on the sequence space of this segment.
2214 * 3) That we modify the segment boundary check to be
2215 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2216 * instead of RFC1323's
2217 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2218 * This modified check allows us to overcome RFC1323's
2219 * limitations as described in Stevens TCP/IP Illustrated
2220 * Vol. 2 p.869. In such cases, we can still calculate the
2221 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2222 */
2223 if (opti.ts_present &&
2224 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2225 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2226 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2227 tp->ts_recent_age = tcp_now;
2228 tp->ts_recent = opti.ts_val;
2229 }
2230
2231 /*
2232 * If the RST bit is set examine the state:
2233 * SYN_RECEIVED STATE:
2234 * If passive open, return to LISTEN state.
2235 * If active open, inform user that connection was refused.
2236 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2237 * Inform user that connection was reset, and close tcb.
2238 * CLOSING, LAST_ACK, TIME_WAIT STATES
2239 * Close the tcb.
2240 */
2241 if (tiflags & TH_RST) {
2242 if (th->th_seq != tp->rcv_nxt)
2243 goto dropafterack_ratelim;
2244
2245 switch (tp->t_state) {
2246 case TCPS_SYN_RECEIVED:
2247 so->so_error = ECONNREFUSED;
2248 goto close;
2249
2250 case TCPS_ESTABLISHED:
2251 case TCPS_FIN_WAIT_1:
2252 case TCPS_FIN_WAIT_2:
2253 case TCPS_CLOSE_WAIT:
2254 so->so_error = ECONNRESET;
2255 close:
2256 tp->t_state = TCPS_CLOSED;
2257 TCP_STATINC(TCP_STAT_DROPS);
2258 tp = tcp_close(tp);
2259 goto drop;
2260
2261 case TCPS_CLOSING:
2262 case TCPS_LAST_ACK:
2263 case TCPS_TIME_WAIT:
2264 tp = tcp_close(tp);
2265 goto drop;
2266 }
2267 }
2268
2269 /*
2270 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2271 * we must be in a synchronized state. RFC791 states (under RST
2272 * generation) that any unacceptable segment (an out-of-order SYN
2273 * qualifies) received in a synchronized state must elicit only an
2274 * empty acknowledgment segment ... and the connection remains in
2275 * the same state.
2276 */
2277 if (tiflags & TH_SYN) {
2278 if (tp->rcv_nxt == th->th_seq) {
2279 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2280 TH_ACK);
2281 if (tcp_saveti)
2282 m_freem(tcp_saveti);
2283 return;
2284 }
2285
2286 goto dropafterack_ratelim;
2287 }
2288
2289 /*
2290 * If the ACK bit is off we drop the segment and return.
2291 */
2292 if ((tiflags & TH_ACK) == 0) {
2293 if (tp->t_flags & TF_ACKNOW)
2294 goto dropafterack;
2295 else
2296 goto drop;
2297 }
2298
2299 /*
2300 * Ack processing.
2301 */
2302 switch (tp->t_state) {
2303
2304 /*
2305 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2306 * ESTABLISHED state and continue processing, otherwise
2307 * send an RST.
2308 */
2309 case TCPS_SYN_RECEIVED:
2310 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2311 SEQ_GT(th->th_ack, tp->snd_max))
2312 goto dropwithreset;
2313 TCP_STATINC(TCP_STAT_CONNECTS);
2314 soisconnected(so);
2315 tcp_established(tp);
2316 /* Do window scaling? */
2317 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2318 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2319 tp->snd_scale = tp->requested_s_scale;
2320 tp->rcv_scale = tp->request_r_scale;
2321 }
2322 TCP_REASS_LOCK(tp);
2323 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2324 TCP_REASS_UNLOCK(tp);
2325 tp->snd_wl1 = th->th_seq - 1;
2326 /* fall into ... */
2327
2328 /*
2329 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2330 * ACKs. If the ack is in the range
2331 * tp->snd_una < th->th_ack <= tp->snd_max
2332 * then advance tp->snd_una to th->th_ack and drop
2333 * data from the retransmission queue. If this ACK reflects
2334 * more up to date window information we update our window information.
2335 */
2336 case TCPS_ESTABLISHED:
2337 case TCPS_FIN_WAIT_1:
2338 case TCPS_FIN_WAIT_2:
2339 case TCPS_CLOSE_WAIT:
2340 case TCPS_CLOSING:
2341 case TCPS_LAST_ACK:
2342 case TCPS_TIME_WAIT:
2343
2344 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2345 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2346 TCP_STATINC(TCP_STAT_RCVDUPPACK);
2347 /*
2348 * If we have outstanding data (other than
2349 * a window probe), this is a completely
2350 * duplicate ack (ie, window info didn't
2351 * change), the ack is the biggest we've
2352 * seen and we've seen exactly our rexmt
2353 * threshhold of them, assume a packet
2354 * has been dropped and retransmit it.
2355 * Kludge snd_nxt & the congestion
2356 * window so we send only this one
2357 * packet.
2358 */
2359 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2360 th->th_ack != tp->snd_una)
2361 tp->t_dupacks = 0;
2362 else if (tp->t_partialacks < 0 &&
2363 (++tp->t_dupacks == tcprexmtthresh ||
2364 TCP_FACK_FASTRECOV(tp))) {
2365 /*
2366 * Do the fast retransmit, and adjust
2367 * congestion control paramenters.
2368 */
2369 if (tp->t_congctl->fast_retransmit(tp, th)) {
2370 /* False fast retransmit */
2371 break;
2372 } else
2373 goto drop;
2374 } else if (tp->t_dupacks > tcprexmtthresh) {
2375 tp->snd_cwnd += tp->t_segsz;
2376 KERNEL_LOCK(1, NULL);
2377 (void) tcp_output(tp);
2378 KERNEL_UNLOCK_ONE(NULL);
2379 goto drop;
2380 }
2381 } else {
2382 /*
2383 * If the ack appears to be very old, only
2384 * allow data that is in-sequence. This
2385 * makes it somewhat more difficult to insert
2386 * forged data by guessing sequence numbers.
2387 * Sent an ack to try to update the send
2388 * sequence number on the other side.
2389 */
2390 if (tlen && th->th_seq != tp->rcv_nxt &&
2391 SEQ_LT(th->th_ack,
2392 tp->snd_una - tp->max_sndwnd))
2393 goto dropafterack;
2394 }
2395 break;
2396 }
2397 /*
2398 * If the congestion window was inflated to account
2399 * for the other side's cached packets, retract it.
2400 */
2401 /* XXX: make SACK have his own congestion control
2402 * struct -- rpaulo */
2403 if (TCP_SACK_ENABLED(tp))
2404 tcp_sack_newack(tp, th);
2405 else
2406 tp->t_congctl->fast_retransmit_newack(tp, th);
2407 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2408 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2409 goto dropafterack;
2410 }
2411 acked = th->th_ack - tp->snd_una;
2412 tcps = TCP_STAT_GETREF();
2413 tcps[TCP_STAT_RCVACKPACK]++;
2414 tcps[TCP_STAT_RCVACKBYTE] += acked;
2415 TCP_STAT_PUTREF();
2416
2417 /*
2418 * If we have a timestamp reply, update smoothed
2419 * round trip time. If no timestamp is present but
2420 * transmit timer is running and timed sequence
2421 * number was acked, update smoothed round trip time.
2422 * Since we now have an rtt measurement, cancel the
2423 * timer backoff (cf., Phil Karn's retransmit alg.).
2424 * Recompute the initial retransmit timer.
2425 */
2426 if (ts_rtt)
2427 tcp_xmit_timer(tp, ts_rtt);
2428 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2429 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2430
2431 /*
2432 * If all outstanding data is acked, stop retransmit
2433 * timer and remember to restart (more output or persist).
2434 * If there is more data to be acked, restart retransmit
2435 * timer, using current (possibly backed-off) value.
2436 */
2437 if (th->th_ack == tp->snd_max) {
2438 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2439 needoutput = 1;
2440 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2441 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2442
2443 /*
2444 * New data has been acked, adjust the congestion window.
2445 */
2446 tp->t_congctl->newack(tp, th);
2447
2448 nd6_hint(tp);
2449 if (acked > so->so_snd.sb_cc) {
2450 tp->snd_wnd -= so->so_snd.sb_cc;
2451 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2452 ourfinisacked = 1;
2453 } else {
2454 if (acked > (tp->t_lastoff - tp->t_inoff))
2455 tp->t_lastm = NULL;
2456 sbdrop(&so->so_snd, acked);
2457 tp->t_lastoff -= acked;
2458 tp->snd_wnd -= acked;
2459 ourfinisacked = 0;
2460 }
2461 sowwakeup(so);
2462
2463 icmp_check(tp, th, acked);
2464
2465 tp->snd_una = th->th_ack;
2466 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2467 tp->snd_fack = tp->snd_una;
2468 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2469 tp->snd_nxt = tp->snd_una;
2470 if (SEQ_LT(tp->snd_high, tp->snd_una))
2471 tp->snd_high = tp->snd_una;
2472
2473 switch (tp->t_state) {
2474
2475 /*
2476 * In FIN_WAIT_1 STATE in addition to the processing
2477 * for the ESTABLISHED state if our FIN is now acknowledged
2478 * then enter FIN_WAIT_2.
2479 */
2480 case TCPS_FIN_WAIT_1:
2481 if (ourfinisacked) {
2482 /*
2483 * If we can't receive any more
2484 * data, then closing user can proceed.
2485 * Starting the timer is contrary to the
2486 * specification, but if we don't get a FIN
2487 * we'll hang forever.
2488 */
2489 if (so->so_state & SS_CANTRCVMORE) {
2490 soisdisconnected(so);
2491 if (tp->t_maxidle > 0)
2492 TCP_TIMER_ARM(tp, TCPT_2MSL,
2493 tp->t_maxidle);
2494 }
2495 tp->t_state = TCPS_FIN_WAIT_2;
2496 }
2497 break;
2498
2499 /*
2500 * In CLOSING STATE in addition to the processing for
2501 * the ESTABLISHED state if the ACK acknowledges our FIN
2502 * then enter the TIME-WAIT state, otherwise ignore
2503 * the segment.
2504 */
2505 case TCPS_CLOSING:
2506 if (ourfinisacked) {
2507 tp->t_state = TCPS_TIME_WAIT;
2508 tcp_canceltimers(tp);
2509 TCP_TIMER_ARM(tp, TCPT_2MSL,
2510 2 * PR_SLOWHZ * tcp_msl);
2511 soisdisconnected(so);
2512 }
2513 break;
2514
2515 /*
2516 * In LAST_ACK, we may still be waiting for data to drain
2517 * and/or to be acked, as well as for the ack of our FIN.
2518 * If our FIN is now acknowledged, delete the TCB,
2519 * enter the closed state and return.
2520 */
2521 case TCPS_LAST_ACK:
2522 if (ourfinisacked) {
2523 tp = tcp_close(tp);
2524 goto drop;
2525 }
2526 break;
2527
2528 /*
2529 * In TIME_WAIT state the only thing that should arrive
2530 * is a retransmission of the remote FIN. Acknowledge
2531 * it and restart the finack timer.
2532 */
2533 case TCPS_TIME_WAIT:
2534 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2535 goto dropafterack;
2536 }
2537 }
2538
2539 step6:
2540 /*
2541 * Update window information.
2542 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2543 */
2544 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2545 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2546 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2547 /* keep track of pure window updates */
2548 if (tlen == 0 &&
2549 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2550 TCP_STATINC(TCP_STAT_RCVWINUPD);
2551 tp->snd_wnd = tiwin;
2552 tp->snd_wl1 = th->th_seq;
2553 tp->snd_wl2 = th->th_ack;
2554 if (tp->snd_wnd > tp->max_sndwnd)
2555 tp->max_sndwnd = tp->snd_wnd;
2556 needoutput = 1;
2557 }
2558
2559 /*
2560 * Process segments with URG.
2561 */
2562 if ((tiflags & TH_URG) && th->th_urp &&
2563 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2564 /*
2565 * This is a kludge, but if we receive and accept
2566 * random urgent pointers, we'll crash in
2567 * soreceive. It's hard to imagine someone
2568 * actually wanting to send this much urgent data.
2569 */
2570 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2571 th->th_urp = 0; /* XXX */
2572 tiflags &= ~TH_URG; /* XXX */
2573 goto dodata; /* XXX */
2574 }
2575 /*
2576 * If this segment advances the known urgent pointer,
2577 * then mark the data stream. This should not happen
2578 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2579 * a FIN has been received from the remote side.
2580 * In these states we ignore the URG.
2581 *
2582 * According to RFC961 (Assigned Protocols),
2583 * the urgent pointer points to the last octet
2584 * of urgent data. We continue, however,
2585 * to consider it to indicate the first octet
2586 * of data past the urgent section as the original
2587 * spec states (in one of two places).
2588 */
2589 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2590 tp->rcv_up = th->th_seq + th->th_urp;
2591 so->so_oobmark = so->so_rcv.sb_cc +
2592 (tp->rcv_up - tp->rcv_nxt) - 1;
2593 if (so->so_oobmark == 0)
2594 so->so_state |= SS_RCVATMARK;
2595 sohasoutofband(so);
2596 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2597 }
2598 /*
2599 * Remove out of band data so doesn't get presented to user.
2600 * This can happen independent of advancing the URG pointer,
2601 * but if two URG's are pending at once, some out-of-band
2602 * data may creep in... ick.
2603 */
2604 if (th->th_urp <= (u_int16_t) tlen
2605 #ifdef SO_OOBINLINE
2606 && (so->so_options & SO_OOBINLINE) == 0
2607 #endif
2608 )
2609 tcp_pulloutofband(so, th, m, hdroptlen);
2610 } else
2611 /*
2612 * If no out of band data is expected,
2613 * pull receive urgent pointer along
2614 * with the receive window.
2615 */
2616 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2617 tp->rcv_up = tp->rcv_nxt;
2618 dodata: /* XXX */
2619
2620 /*
2621 * Process the segment text, merging it into the TCP sequencing queue,
2622 * and arranging for acknowledgement of receipt if necessary.
2623 * This process logically involves adjusting tp->rcv_wnd as data
2624 * is presented to the user (this happens in tcp_usrreq.c,
2625 * case PRU_RCVD). If a FIN has already been received on this
2626 * connection then we just ignore the text.
2627 */
2628 if ((tlen || (tiflags & TH_FIN)) &&
2629 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2630 /*
2631 * Insert segment ti into reassembly queue of tcp with
2632 * control block tp. Return TH_FIN if reassembly now includes
2633 * a segment with FIN. The macro form does the common case
2634 * inline (segment is the next to be received on an
2635 * established connection, and the queue is empty),
2636 * avoiding linkage into and removal from the queue and
2637 * repetition of various conversions.
2638 * Set DELACK for segments received in order, but ack
2639 * immediately when segments are out of order
2640 * (so fast retransmit can work).
2641 */
2642 /* NOTE: this was TCP_REASS() macro, but used only once */
2643 TCP_REASS_LOCK(tp);
2644 if (th->th_seq == tp->rcv_nxt &&
2645 TAILQ_FIRST(&tp->segq) == NULL &&
2646 tp->t_state == TCPS_ESTABLISHED) {
2647 tcp_setup_ack(tp, th);
2648 tp->rcv_nxt += tlen;
2649 tiflags = th->th_flags & TH_FIN;
2650 tcps = TCP_STAT_GETREF();
2651 tcps[TCP_STAT_RCVPACK]++;
2652 tcps[TCP_STAT_RCVBYTE] += tlen;
2653 TCP_STAT_PUTREF();
2654 nd6_hint(tp);
2655 if (so->so_state & SS_CANTRCVMORE)
2656 m_freem(m);
2657 else {
2658 m_adj(m, hdroptlen);
2659 sbappendstream(&(so)->so_rcv, m);
2660 }
2661 TCP_REASS_UNLOCK(tp);
2662 sorwakeup(so);
2663 } else {
2664 m_adj(m, hdroptlen);
2665 tiflags = tcp_reass(tp, th, m, &tlen);
2666 tp->t_flags |= TF_ACKNOW;
2667 TCP_REASS_UNLOCK(tp);
2668 }
2669
2670 /*
2671 * Note the amount of data that peer has sent into
2672 * our window, in order to estimate the sender's
2673 * buffer size.
2674 */
2675 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2676 } else {
2677 m_freem(m);
2678 m = NULL;
2679 tiflags &= ~TH_FIN;
2680 }
2681
2682 /*
2683 * If FIN is received ACK the FIN and let the user know
2684 * that the connection is closing. Ignore a FIN received before
2685 * the connection is fully established.
2686 */
2687 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2688 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2689 socantrcvmore(so);
2690 tp->t_flags |= TF_ACKNOW;
2691 tp->rcv_nxt++;
2692 }
2693 switch (tp->t_state) {
2694
2695 /*
2696 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2697 */
2698 case TCPS_ESTABLISHED:
2699 tp->t_state = TCPS_CLOSE_WAIT;
2700 break;
2701
2702 /*
2703 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2704 * enter the CLOSING state.
2705 */
2706 case TCPS_FIN_WAIT_1:
2707 tp->t_state = TCPS_CLOSING;
2708 break;
2709
2710 /*
2711 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2712 * starting the time-wait timer, turning off the other
2713 * standard timers.
2714 */
2715 case TCPS_FIN_WAIT_2:
2716 tp->t_state = TCPS_TIME_WAIT;
2717 tcp_canceltimers(tp);
2718 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2719 soisdisconnected(so);
2720 break;
2721
2722 /*
2723 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2724 */
2725 case TCPS_TIME_WAIT:
2726 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2727 break;
2728 }
2729 }
2730 #ifdef TCP_DEBUG
2731 if (so->so_options & SO_DEBUG)
2732 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2733 #endif
2734
2735 /*
2736 * Return any desired output.
2737 */
2738 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2739 KERNEL_LOCK(1, NULL);
2740 (void) tcp_output(tp);
2741 KERNEL_UNLOCK_ONE(NULL);
2742 }
2743 if (tcp_saveti)
2744 m_freem(tcp_saveti);
2745 return;
2746
2747 badsyn:
2748 /*
2749 * Received a bad SYN. Increment counters and dropwithreset.
2750 */
2751 TCP_STATINC(TCP_STAT_BADSYN);
2752 tp = NULL;
2753 goto dropwithreset;
2754
2755 dropafterack:
2756 /*
2757 * Generate an ACK dropping incoming segment if it occupies
2758 * sequence space, where the ACK reflects our state.
2759 */
2760 if (tiflags & TH_RST)
2761 goto drop;
2762 goto dropafterack2;
2763
2764 dropafterack_ratelim:
2765 /*
2766 * We may want to rate-limit ACKs against SYN/RST attack.
2767 */
2768 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2769 tcp_ackdrop_ppslim) == 0) {
2770 /* XXX stat */
2771 goto drop;
2772 }
2773 /* ...fall into dropafterack2... */
2774
2775 dropafterack2:
2776 m_freem(m);
2777 tp->t_flags |= TF_ACKNOW;
2778 KERNEL_LOCK(1, NULL);
2779 (void) tcp_output(tp);
2780 KERNEL_UNLOCK_ONE(NULL);
2781 if (tcp_saveti)
2782 m_freem(tcp_saveti);
2783 return;
2784
2785 dropwithreset_ratelim:
2786 /*
2787 * We may want to rate-limit RSTs in certain situations,
2788 * particularly if we are sending an RST in response to
2789 * an attempt to connect to or otherwise communicate with
2790 * a port for which we have no socket.
2791 */
2792 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2793 tcp_rst_ppslim) == 0) {
2794 /* XXX stat */
2795 goto drop;
2796 }
2797 /* ...fall into dropwithreset... */
2798
2799 dropwithreset:
2800 /*
2801 * Generate a RST, dropping incoming segment.
2802 * Make ACK acceptable to originator of segment.
2803 */
2804 if (tiflags & TH_RST)
2805 goto drop;
2806
2807 switch (af) {
2808 #ifdef INET6
2809 case AF_INET6:
2810 /* For following calls to tcp_respond */
2811 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2812 goto drop;
2813 break;
2814 #endif /* INET6 */
2815 case AF_INET:
2816 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2817 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2818 goto drop;
2819 }
2820
2821 if (tiflags & TH_ACK)
2822 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2823 else {
2824 if (tiflags & TH_SYN)
2825 tlen++;
2826 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2827 TH_RST|TH_ACK);
2828 }
2829 if (tcp_saveti)
2830 m_freem(tcp_saveti);
2831 return;
2832
2833 badcsum:
2834 drop:
2835 /*
2836 * Drop space held by incoming segment and return.
2837 */
2838 if (tp) {
2839 if (tp->t_inpcb)
2840 so = tp->t_inpcb->inp_socket;
2841 #ifdef INET6
2842 else if (tp->t_in6pcb)
2843 so = tp->t_in6pcb->in6p_socket;
2844 #endif
2845 else
2846 so = NULL;
2847 #ifdef TCP_DEBUG
2848 if (so && (so->so_options & SO_DEBUG) != 0)
2849 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2850 #endif
2851 }
2852 if (tcp_saveti)
2853 m_freem(tcp_saveti);
2854 m_freem(m);
2855 return;
2856 }
2857
2858 #ifdef TCP_SIGNATURE
2859 int
2860 tcp_signature_apply(void *fstate, void *data, u_int len)
2861 {
2862
2863 MD5Update(fstate, (u_char *)data, len);
2864 return (0);
2865 }
2866
2867 struct secasvar *
2868 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2869 {
2870 struct secasvar *sav;
2871 #ifdef FAST_IPSEC
2872 union sockaddr_union dst;
2873 #endif
2874 struct ip *ip;
2875 struct ip6_hdr *ip6;
2876
2877 ip = mtod(m, struct ip *);
2878 switch (ip->ip_v) {
2879 case 4:
2880 ip = mtod(m, struct ip *);
2881 ip6 = NULL;
2882 break;
2883 case 6:
2884 ip = NULL;
2885 ip6 = mtod(m, struct ip6_hdr *);
2886 break;
2887 default:
2888 return (NULL);
2889 }
2890
2891 #ifdef FAST_IPSEC
2892 /* Extract the destination from the IP header in the mbuf. */
2893 memset(&dst, 0, sizeof(union sockaddr_union));
2894 if (ip !=NULL) {
2895 dst.sa.sa_len = sizeof(struct sockaddr_in);
2896 dst.sa.sa_family = AF_INET;
2897 dst.sin.sin_addr = ip->ip_dst;
2898 } else {
2899 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2900 dst.sa.sa_family = AF_INET6;
2901 dst.sin6.sin6_addr = ip6->ip6_dst;
2902 }
2903
2904 /*
2905 * Look up an SADB entry which matches the address of the peer.
2906 */
2907 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2908 #else
2909 if (ip)
2910 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2911 (void *)&ip->ip_dst, IPPROTO_TCP,
2912 htonl(TCP_SIG_SPI), 0, 0);
2913 else
2914 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2915 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2916 htonl(TCP_SIG_SPI), 0, 0);
2917 #endif
2918
2919 return (sav); /* freesav must be performed by caller */
2920 }
2921
2922 int
2923 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2924 struct secasvar *sav, char *sig)
2925 {
2926 MD5_CTX ctx;
2927 struct ip *ip;
2928 struct ipovly *ipovly;
2929 struct ip6_hdr *ip6;
2930 struct ippseudo ippseudo;
2931 struct ip6_hdr_pseudo ip6pseudo;
2932 struct tcphdr th0;
2933 int l, tcphdrlen;
2934
2935 if (sav == NULL)
2936 return (-1);
2937
2938 tcphdrlen = th->th_off * 4;
2939
2940 switch (mtod(m, struct ip *)->ip_v) {
2941 case 4:
2942 ip = mtod(m, struct ip *);
2943 ip6 = NULL;
2944 break;
2945 case 6:
2946 ip = NULL;
2947 ip6 = mtod(m, struct ip6_hdr *);
2948 break;
2949 default:
2950 return (-1);
2951 }
2952
2953 MD5Init(&ctx);
2954
2955 if (ip) {
2956 memset(&ippseudo, 0, sizeof(ippseudo));
2957 ipovly = (struct ipovly *)ip;
2958 ippseudo.ippseudo_src = ipovly->ih_src;
2959 ippseudo.ippseudo_dst = ipovly->ih_dst;
2960 ippseudo.ippseudo_pad = 0;
2961 ippseudo.ippseudo_p = IPPROTO_TCP;
2962 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2963 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2964 } else {
2965 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2966 ip6pseudo.ip6ph_src = ip6->ip6_src;
2967 in6_clearscope(&ip6pseudo.ip6ph_src);
2968 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2969 in6_clearscope(&ip6pseudo.ip6ph_dst);
2970 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2971 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2972 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2973 }
2974
2975 th0 = *th;
2976 th0.th_sum = 0;
2977 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2978
2979 l = m->m_pkthdr.len - thoff - tcphdrlen;
2980 if (l > 0)
2981 m_apply(m, thoff + tcphdrlen,
2982 m->m_pkthdr.len - thoff - tcphdrlen,
2983 tcp_signature_apply, &ctx);
2984
2985 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2986 MD5Final(sig, &ctx);
2987
2988 return (0);
2989 }
2990 #endif
2991
2992 static int
2993 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2994 struct tcphdr *th,
2995 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2996 {
2997 u_int16_t mss;
2998 int opt, optlen = 0;
2999 #ifdef TCP_SIGNATURE
3000 void *sigp = NULL;
3001 char sigbuf[TCP_SIGLEN];
3002 struct secasvar *sav = NULL;
3003 #endif
3004
3005 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3006 opt = cp[0];
3007 if (opt == TCPOPT_EOL)
3008 break;
3009 if (opt == TCPOPT_NOP)
3010 optlen = 1;
3011 else {
3012 if (cnt < 2)
3013 break;
3014 optlen = cp[1];
3015 if (optlen < 2 || optlen > cnt)
3016 break;
3017 }
3018 switch (opt) {
3019
3020 default:
3021 continue;
3022
3023 case TCPOPT_MAXSEG:
3024 if (optlen != TCPOLEN_MAXSEG)
3025 continue;
3026 if (!(th->th_flags & TH_SYN))
3027 continue;
3028 if (TCPS_HAVERCVDSYN(tp->t_state))
3029 continue;
3030 bcopy(cp + 2, &mss, sizeof(mss));
3031 oi->maxseg = ntohs(mss);
3032 break;
3033
3034 case TCPOPT_WINDOW:
3035 if (optlen != TCPOLEN_WINDOW)
3036 continue;
3037 if (!(th->th_flags & TH_SYN))
3038 continue;
3039 if (TCPS_HAVERCVDSYN(tp->t_state))
3040 continue;
3041 tp->t_flags |= TF_RCVD_SCALE;
3042 tp->requested_s_scale = cp[2];
3043 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3044 #if 0 /*XXX*/
3045 char *p;
3046
3047 if (ip)
3048 p = ntohl(ip->ip_src);
3049 #ifdef INET6
3050 else if (ip6)
3051 p = ip6_sprintf(&ip6->ip6_src);
3052 #endif
3053 else
3054 p = "(unknown)";
3055 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3056 "assuming %d\n",
3057 tp->requested_s_scale, p,
3058 TCP_MAX_WINSHIFT);
3059 #else
3060 log(LOG_ERR, "TCP: invalid wscale %d, "
3061 "assuming %d\n",
3062 tp->requested_s_scale,
3063 TCP_MAX_WINSHIFT);
3064 #endif
3065 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3066 }
3067 break;
3068
3069 case TCPOPT_TIMESTAMP:
3070 if (optlen != TCPOLEN_TIMESTAMP)
3071 continue;
3072 oi->ts_present = 1;
3073 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3074 NTOHL(oi->ts_val);
3075 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3076 NTOHL(oi->ts_ecr);
3077
3078 if (!(th->th_flags & TH_SYN))
3079 continue;
3080 if (TCPS_HAVERCVDSYN(tp->t_state))
3081 continue;
3082 /*
3083 * A timestamp received in a SYN makes
3084 * it ok to send timestamp requests and replies.
3085 */
3086 tp->t_flags |= TF_RCVD_TSTMP;
3087 tp->ts_recent = oi->ts_val;
3088 tp->ts_recent_age = tcp_now;
3089 break;
3090
3091 case TCPOPT_SACK_PERMITTED:
3092 if (optlen != TCPOLEN_SACK_PERMITTED)
3093 continue;
3094 if (!(th->th_flags & TH_SYN))
3095 continue;
3096 if (TCPS_HAVERCVDSYN(tp->t_state))
3097 continue;
3098 if (tcp_do_sack) {
3099 tp->t_flags |= TF_SACK_PERMIT;
3100 tp->t_flags |= TF_WILL_SACK;
3101 }
3102 break;
3103
3104 case TCPOPT_SACK:
3105 tcp_sack_option(tp, th, cp, optlen);
3106 break;
3107 #ifdef TCP_SIGNATURE
3108 case TCPOPT_SIGNATURE:
3109 if (optlen != TCPOLEN_SIGNATURE)
3110 continue;
3111 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3112 return (-1);
3113
3114 sigp = sigbuf;
3115 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3116 tp->t_flags |= TF_SIGNATURE;
3117 break;
3118 #endif
3119 }
3120 }
3121
3122 #ifdef TCP_SIGNATURE
3123 if (tp->t_flags & TF_SIGNATURE) {
3124
3125 sav = tcp_signature_getsav(m, th);
3126
3127 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3128 return (-1);
3129 }
3130
3131 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3132 if (sav == NULL)
3133 return (-1);
3134 #ifdef FAST_IPSEC
3135 KEY_FREESAV(&sav);
3136 #else
3137 key_freesav(sav);
3138 #endif
3139 return (-1);
3140 }
3141
3142 if (sigp) {
3143 char sig[TCP_SIGLEN];
3144
3145 tcp_fields_to_net(th);
3146 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3147 tcp_fields_to_host(th);
3148 if (sav == NULL)
3149 return (-1);
3150 #ifdef FAST_IPSEC
3151 KEY_FREESAV(&sav);
3152 #else
3153 key_freesav(sav);
3154 #endif
3155 return (-1);
3156 }
3157 tcp_fields_to_host(th);
3158
3159 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3160 TCP_STATINC(TCP_STAT_BADSIG);
3161 if (sav == NULL)
3162 return (-1);
3163 #ifdef FAST_IPSEC
3164 KEY_FREESAV(&sav);
3165 #else
3166 key_freesav(sav);
3167 #endif
3168 return (-1);
3169 } else
3170 TCP_STATINC(TCP_STAT_GOODSIG);
3171
3172 key_sa_recordxfer(sav, m);
3173 #ifdef FAST_IPSEC
3174 KEY_FREESAV(&sav);
3175 #else
3176 key_freesav(sav);
3177 #endif
3178 }
3179 #endif
3180
3181 return (0);
3182 }
3183
3184 /*
3185 * Pull out of band byte out of a segment so
3186 * it doesn't appear in the user's data queue.
3187 * It is still reflected in the segment length for
3188 * sequencing purposes.
3189 */
3190 void
3191 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3192 struct mbuf *m, int off)
3193 {
3194 int cnt = off + th->th_urp - 1;
3195
3196 while (cnt >= 0) {
3197 if (m->m_len > cnt) {
3198 char *cp = mtod(m, char *) + cnt;
3199 struct tcpcb *tp = sototcpcb(so);
3200
3201 tp->t_iobc = *cp;
3202 tp->t_oobflags |= TCPOOB_HAVEDATA;
3203 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3204 m->m_len--;
3205 return;
3206 }
3207 cnt -= m->m_len;
3208 m = m->m_next;
3209 if (m == 0)
3210 break;
3211 }
3212 panic("tcp_pulloutofband");
3213 }
3214
3215 /*
3216 * Collect new round-trip time estimate
3217 * and update averages and current timeout.
3218 */
3219 void
3220 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3221 {
3222 int32_t delta;
3223
3224 TCP_STATINC(TCP_STAT_RTTUPDATED);
3225 if (tp->t_srtt != 0) {
3226 /*
3227 * srtt is stored as fixed point with 3 bits after the
3228 * binary point (i.e., scaled by 8). The following magic
3229 * is equivalent to the smoothing algorithm in rfc793 with
3230 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3231 * point). Adjust rtt to origin 0.
3232 */
3233 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3234 if ((tp->t_srtt += delta) <= 0)
3235 tp->t_srtt = 1 << 2;
3236 /*
3237 * We accumulate a smoothed rtt variance (actually, a
3238 * smoothed mean difference), then set the retransmit
3239 * timer to smoothed rtt + 4 times the smoothed variance.
3240 * rttvar is stored as fixed point with 2 bits after the
3241 * binary point (scaled by 4). The following is
3242 * equivalent to rfc793 smoothing with an alpha of .75
3243 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3244 * rfc793's wired-in beta.
3245 */
3246 if (delta < 0)
3247 delta = -delta;
3248 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3249 if ((tp->t_rttvar += delta) <= 0)
3250 tp->t_rttvar = 1 << 2;
3251 } else {
3252 /*
3253 * No rtt measurement yet - use the unsmoothed rtt.
3254 * Set the variance to half the rtt (so our first
3255 * retransmit happens at 3*rtt).
3256 */
3257 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3258 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3259 }
3260 tp->t_rtttime = 0;
3261 tp->t_rxtshift = 0;
3262
3263 /*
3264 * the retransmit should happen at rtt + 4 * rttvar.
3265 * Because of the way we do the smoothing, srtt and rttvar
3266 * will each average +1/2 tick of bias. When we compute
3267 * the retransmit timer, we want 1/2 tick of rounding and
3268 * 1 extra tick because of +-1/2 tick uncertainty in the
3269 * firing of the timer. The bias will give us exactly the
3270 * 1.5 tick we need. But, because the bias is
3271 * statistical, we have to test that we don't drop below
3272 * the minimum feasible timer (which is 2 ticks).
3273 */
3274 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3275 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3276
3277 /*
3278 * We received an ack for a packet that wasn't retransmitted;
3279 * it is probably safe to discard any error indications we've
3280 * received recently. This isn't quite right, but close enough
3281 * for now (a route might have failed after we sent a segment,
3282 * and the return path might not be symmetrical).
3283 */
3284 tp->t_softerror = 0;
3285 }
3286
3287
3288 /*
3289 * TCP compressed state engine. Currently used to hold compressed
3290 * state for SYN_RECEIVED.
3291 */
3292
3293 u_long syn_cache_count;
3294 u_int32_t syn_hash1, syn_hash2;
3295
3296 #define SYN_HASH(sa, sp, dp) \
3297 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3298 ((u_int32_t)(sp)))^syn_hash2)))
3299 #ifndef INET6
3300 #define SYN_HASHALL(hash, src, dst) \
3301 do { \
3302 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3303 ((const struct sockaddr_in *)(src))->sin_port, \
3304 ((const struct sockaddr_in *)(dst))->sin_port); \
3305 } while (/*CONSTCOND*/ 0)
3306 #else
3307 #define SYN_HASH6(sa, sp, dp) \
3308 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3309 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3310 & 0x7fffffff)
3311
3312 #define SYN_HASHALL(hash, src, dst) \
3313 do { \
3314 switch ((src)->sa_family) { \
3315 case AF_INET: \
3316 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3317 ((const struct sockaddr_in *)(src))->sin_port, \
3318 ((const struct sockaddr_in *)(dst))->sin_port); \
3319 break; \
3320 case AF_INET6: \
3321 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3322 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3323 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3324 break; \
3325 default: \
3326 hash = 0; \
3327 } \
3328 } while (/*CONSTCOND*/0)
3329 #endif /* INET6 */
3330
3331 static struct pool syn_cache_pool;
3332
3333 /*
3334 * We don't estimate RTT with SYNs, so each packet starts with the default
3335 * RTT and each timer step has a fixed timeout value.
3336 */
3337 #define SYN_CACHE_TIMER_ARM(sc) \
3338 do { \
3339 TCPT_RANGESET((sc)->sc_rxtcur, \
3340 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3341 TCPTV_REXMTMAX); \
3342 callout_reset(&(sc)->sc_timer, \
3343 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3344 } while (/*CONSTCOND*/0)
3345
3346 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3347
3348 static inline void
3349 syn_cache_rm(struct syn_cache *sc)
3350 {
3351 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3352 sc, sc_bucketq);
3353 sc->sc_tp = NULL;
3354 LIST_REMOVE(sc, sc_tpq);
3355 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3356 callout_stop(&sc->sc_timer);
3357 syn_cache_count--;
3358 }
3359
3360 static inline void
3361 syn_cache_put(struct syn_cache *sc)
3362 {
3363 if (sc->sc_ipopts)
3364 (void) m_free(sc->sc_ipopts);
3365 rtcache_free(&sc->sc_route);
3366 if (callout_invoking(&sc->sc_timer))
3367 sc->sc_flags |= SCF_DEAD;
3368 else {
3369 callout_destroy(&sc->sc_timer);
3370 pool_put(&syn_cache_pool, sc);
3371 }
3372 }
3373
3374 void
3375 syn_cache_init(void)
3376 {
3377 int i;
3378
3379 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3380 "synpl", NULL, IPL_SOFTNET);
3381
3382 /* Initialize the hash buckets. */
3383 for (i = 0; i < tcp_syn_cache_size; i++)
3384 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3385 }
3386
3387 void
3388 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3389 {
3390 struct syn_cache_head *scp;
3391 struct syn_cache *sc2;
3392 int s;
3393
3394 /*
3395 * If there are no entries in the hash table, reinitialize
3396 * the hash secrets.
3397 */
3398 if (syn_cache_count == 0) {
3399 syn_hash1 = arc4random();
3400 syn_hash2 = arc4random();
3401 }
3402
3403 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3404 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3405 scp = &tcp_syn_cache[sc->sc_bucketidx];
3406
3407 /*
3408 * Make sure that we don't overflow the per-bucket
3409 * limit or the total cache size limit.
3410 */
3411 s = splsoftnet();
3412 if (scp->sch_length >= tcp_syn_bucket_limit) {
3413 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3414 /*
3415 * The bucket is full. Toss the oldest element in the
3416 * bucket. This will be the first entry in the bucket.
3417 */
3418 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3419 #ifdef DIAGNOSTIC
3420 /*
3421 * This should never happen; we should always find an
3422 * entry in our bucket.
3423 */
3424 if (sc2 == NULL)
3425 panic("syn_cache_insert: bucketoverflow: impossible");
3426 #endif
3427 syn_cache_rm(sc2);
3428 syn_cache_put(sc2); /* calls pool_put but see spl above */
3429 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3430 struct syn_cache_head *scp2, *sce;
3431
3432 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3433 /*
3434 * The cache is full. Toss the oldest entry in the
3435 * first non-empty bucket we can find.
3436 *
3437 * XXX We would really like to toss the oldest
3438 * entry in the cache, but we hope that this
3439 * condition doesn't happen very often.
3440 */
3441 scp2 = scp;
3442 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3443 sce = &tcp_syn_cache[tcp_syn_cache_size];
3444 for (++scp2; scp2 != scp; scp2++) {
3445 if (scp2 >= sce)
3446 scp2 = &tcp_syn_cache[0];
3447 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3448 break;
3449 }
3450 #ifdef DIAGNOSTIC
3451 /*
3452 * This should never happen; we should always find a
3453 * non-empty bucket.
3454 */
3455 if (scp2 == scp)
3456 panic("syn_cache_insert: cacheoverflow: "
3457 "impossible");
3458 #endif
3459 }
3460 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3461 syn_cache_rm(sc2);
3462 syn_cache_put(sc2); /* calls pool_put but see spl above */
3463 }
3464
3465 /*
3466 * Initialize the entry's timer.
3467 */
3468 sc->sc_rxttot = 0;
3469 sc->sc_rxtshift = 0;
3470 SYN_CACHE_TIMER_ARM(sc);
3471
3472 /* Link it from tcpcb entry */
3473 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3474
3475 /* Put it into the bucket. */
3476 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3477 scp->sch_length++;
3478 syn_cache_count++;
3479
3480 TCP_STATINC(TCP_STAT_SC_ADDED);
3481 splx(s);
3482 }
3483
3484 /*
3485 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3486 * If we have retransmitted an entry the maximum number of times, expire
3487 * that entry.
3488 */
3489 void
3490 syn_cache_timer(void *arg)
3491 {
3492 struct syn_cache *sc = arg;
3493
3494 mutex_enter(softnet_lock);
3495 KERNEL_LOCK(1, NULL);
3496 callout_ack(&sc->sc_timer);
3497
3498 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3499 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3500 callout_destroy(&sc->sc_timer);
3501 pool_put(&syn_cache_pool, sc);
3502 KERNEL_UNLOCK_ONE(NULL);
3503 mutex_exit(softnet_lock);
3504 return;
3505 }
3506
3507 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3508 /* Drop it -- too many retransmissions. */
3509 goto dropit;
3510 }
3511
3512 /*
3513 * Compute the total amount of time this entry has
3514 * been on a queue. If this entry has been on longer
3515 * than the keep alive timer would allow, expire it.
3516 */
3517 sc->sc_rxttot += sc->sc_rxtcur;
3518 if (sc->sc_rxttot >= tcp_keepinit)
3519 goto dropit;
3520
3521 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3522 (void) syn_cache_respond(sc, NULL);
3523
3524 /* Advance the timer back-off. */
3525 sc->sc_rxtshift++;
3526 SYN_CACHE_TIMER_ARM(sc);
3527
3528 KERNEL_UNLOCK_ONE(NULL);
3529 mutex_exit(softnet_lock);
3530 return;
3531
3532 dropit:
3533 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3534 syn_cache_rm(sc);
3535 syn_cache_put(sc); /* calls pool_put but see spl above */
3536 KERNEL_UNLOCK_ONE(NULL);
3537 mutex_exit(softnet_lock);
3538 }
3539
3540 /*
3541 * Remove syn cache created by the specified tcb entry,
3542 * because this does not make sense to keep them
3543 * (if there's no tcb entry, syn cache entry will never be used)
3544 */
3545 void
3546 syn_cache_cleanup(struct tcpcb *tp)
3547 {
3548 struct syn_cache *sc, *nsc;
3549 int s;
3550
3551 s = splsoftnet();
3552
3553 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3554 nsc = LIST_NEXT(sc, sc_tpq);
3555
3556 #ifdef DIAGNOSTIC
3557 if (sc->sc_tp != tp)
3558 panic("invalid sc_tp in syn_cache_cleanup");
3559 #endif
3560 syn_cache_rm(sc);
3561 syn_cache_put(sc); /* calls pool_put but see spl above */
3562 }
3563 /* just for safety */
3564 LIST_INIT(&tp->t_sc);
3565
3566 splx(s);
3567 }
3568
3569 /*
3570 * Find an entry in the syn cache.
3571 */
3572 struct syn_cache *
3573 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3574 struct syn_cache_head **headp)
3575 {
3576 struct syn_cache *sc;
3577 struct syn_cache_head *scp;
3578 u_int32_t hash;
3579 int s;
3580
3581 SYN_HASHALL(hash, src, dst);
3582
3583 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3584 *headp = scp;
3585 s = splsoftnet();
3586 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3587 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3588 if (sc->sc_hash != hash)
3589 continue;
3590 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3591 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3592 splx(s);
3593 return (sc);
3594 }
3595 }
3596 splx(s);
3597 return (NULL);
3598 }
3599
3600 /*
3601 * This function gets called when we receive an ACK for a
3602 * socket in the LISTEN state. We look up the connection
3603 * in the syn cache, and if its there, we pull it out of
3604 * the cache and turn it into a full-blown connection in
3605 * the SYN-RECEIVED state.
3606 *
3607 * The return values may not be immediately obvious, and their effects
3608 * can be subtle, so here they are:
3609 *
3610 * NULL SYN was not found in cache; caller should drop the
3611 * packet and send an RST.
3612 *
3613 * -1 We were unable to create the new connection, and are
3614 * aborting it. An ACK,RST is being sent to the peer
3615 * (unless we got screwey sequence numbners; see below),
3616 * because the 3-way handshake has been completed. Caller
3617 * should not free the mbuf, since we may be using it. If
3618 * we are not, we will free it.
3619 *
3620 * Otherwise, the return value is a pointer to the new socket
3621 * associated with the connection.
3622 */
3623 struct socket *
3624 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3625 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3626 struct socket *so, struct mbuf *m)
3627 {
3628 struct syn_cache *sc;
3629 struct syn_cache_head *scp;
3630 struct inpcb *inp = NULL;
3631 #ifdef INET6
3632 struct in6pcb *in6p = NULL;
3633 #endif
3634 struct tcpcb *tp = 0;
3635 struct mbuf *am;
3636 int s;
3637 struct socket *oso;
3638
3639 s = splsoftnet();
3640 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3641 splx(s);
3642 return (NULL);
3643 }
3644
3645 /*
3646 * Verify the sequence and ack numbers. Try getting the correct
3647 * response again.
3648 */
3649 if ((th->th_ack != sc->sc_iss + 1) ||
3650 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3651 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3652 (void) syn_cache_respond(sc, m);
3653 splx(s);
3654 return ((struct socket *)(-1));
3655 }
3656
3657 /* Remove this cache entry */
3658 syn_cache_rm(sc);
3659 splx(s);
3660
3661 /*
3662 * Ok, create the full blown connection, and set things up
3663 * as they would have been set up if we had created the
3664 * connection when the SYN arrived. If we can't create
3665 * the connection, abort it.
3666 */
3667 /*
3668 * inp still has the OLD in_pcb stuff, set the
3669 * v6-related flags on the new guy, too. This is
3670 * done particularly for the case where an AF_INET6
3671 * socket is bound only to a port, and a v4 connection
3672 * comes in on that port.
3673 * we also copy the flowinfo from the original pcb
3674 * to the new one.
3675 */
3676 oso = so;
3677 so = sonewconn(so, SS_ISCONNECTED);
3678 if (so == NULL)
3679 goto resetandabort;
3680
3681 switch (so->so_proto->pr_domain->dom_family) {
3682 #ifdef INET
3683 case AF_INET:
3684 inp = sotoinpcb(so);
3685 break;
3686 #endif
3687 #ifdef INET6
3688 case AF_INET6:
3689 in6p = sotoin6pcb(so);
3690 break;
3691 #endif
3692 }
3693 switch (src->sa_family) {
3694 #ifdef INET
3695 case AF_INET:
3696 if (inp) {
3697 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3698 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3699 inp->inp_options = ip_srcroute();
3700 in_pcbstate(inp, INP_BOUND);
3701 if (inp->inp_options == NULL) {
3702 inp->inp_options = sc->sc_ipopts;
3703 sc->sc_ipopts = NULL;
3704 }
3705 }
3706 #ifdef INET6
3707 else if (in6p) {
3708 /* IPv4 packet to AF_INET6 socket */
3709 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3710 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3711 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3712 &in6p->in6p_laddr.s6_addr32[3],
3713 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3714 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3715 in6totcpcb(in6p)->t_family = AF_INET;
3716 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3717 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3718 else
3719 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3720 in6_pcbstate(in6p, IN6P_BOUND);
3721 }
3722 #endif
3723 break;
3724 #endif
3725 #ifdef INET6
3726 case AF_INET6:
3727 if (in6p) {
3728 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3729 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3730 in6_pcbstate(in6p, IN6P_BOUND);
3731 }
3732 break;
3733 #endif
3734 }
3735 #ifdef INET6
3736 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3737 struct in6pcb *oin6p = sotoin6pcb(oso);
3738 /* inherit socket options from the listening socket */
3739 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3740 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3741 m_freem(in6p->in6p_options);
3742 in6p->in6p_options = 0;
3743 }
3744 ip6_savecontrol(in6p, &in6p->in6p_options,
3745 mtod(m, struct ip6_hdr *), m);
3746 }
3747 #endif
3748
3749 #if defined(IPSEC) || defined(FAST_IPSEC)
3750 /*
3751 * we make a copy of policy, instead of sharing the policy,
3752 * for better behavior in terms of SA lookup and dead SA removal.
3753 */
3754 if (inp) {
3755 /* copy old policy into new socket's */
3756 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3757 printf("tcp_input: could not copy policy\n");
3758 }
3759 #ifdef INET6
3760 else if (in6p) {
3761 /* copy old policy into new socket's */
3762 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3763 in6p->in6p_sp))
3764 printf("tcp_input: could not copy policy\n");
3765 }
3766 #endif
3767 #endif
3768
3769 /*
3770 * Give the new socket our cached route reference.
3771 */
3772 if (inp) {
3773 rtcache_copy(&inp->inp_route, &sc->sc_route);
3774 rtcache_free(&sc->sc_route);
3775 }
3776 #ifdef INET6
3777 else {
3778 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3779 rtcache_free(&sc->sc_route);
3780 }
3781 #endif
3782
3783 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3784 if (am == NULL)
3785 goto resetandabort;
3786 MCLAIM(am, &tcp_mowner);
3787 am->m_len = src->sa_len;
3788 bcopy(src, mtod(am, void *), src->sa_len);
3789 if (inp) {
3790 if (in_pcbconnect(inp, am, &lwp0)) {
3791 (void) m_free(am);
3792 goto resetandabort;
3793 }
3794 }
3795 #ifdef INET6
3796 else if (in6p) {
3797 if (src->sa_family == AF_INET) {
3798 /* IPv4 packet to AF_INET6 socket */
3799 struct sockaddr_in6 *sin6;
3800 sin6 = mtod(am, struct sockaddr_in6 *);
3801 am->m_len = sizeof(*sin6);
3802 memset(sin6, 0, sizeof(*sin6));
3803 sin6->sin6_family = AF_INET6;
3804 sin6->sin6_len = sizeof(*sin6);
3805 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3806 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3807 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3808 &sin6->sin6_addr.s6_addr32[3],
3809 sizeof(sin6->sin6_addr.s6_addr32[3]));
3810 }
3811 if (in6_pcbconnect(in6p, am, NULL)) {
3812 (void) m_free(am);
3813 goto resetandabort;
3814 }
3815 }
3816 #endif
3817 else {
3818 (void) m_free(am);
3819 goto resetandabort;
3820 }
3821 (void) m_free(am);
3822
3823 if (inp)
3824 tp = intotcpcb(inp);
3825 #ifdef INET6
3826 else if (in6p)
3827 tp = in6totcpcb(in6p);
3828 #endif
3829 else
3830 tp = NULL;
3831 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3832 if (sc->sc_request_r_scale != 15) {
3833 tp->requested_s_scale = sc->sc_requested_s_scale;
3834 tp->request_r_scale = sc->sc_request_r_scale;
3835 tp->snd_scale = sc->sc_requested_s_scale;
3836 tp->rcv_scale = sc->sc_request_r_scale;
3837 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3838 }
3839 if (sc->sc_flags & SCF_TIMESTAMP)
3840 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3841 tp->ts_timebase = sc->sc_timebase;
3842
3843 tp->t_template = tcp_template(tp);
3844 if (tp->t_template == 0) {
3845 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3846 so = NULL;
3847 m_freem(m);
3848 goto abort;
3849 }
3850
3851 tp->iss = sc->sc_iss;
3852 tp->irs = sc->sc_irs;
3853 tcp_sendseqinit(tp);
3854 tcp_rcvseqinit(tp);
3855 tp->t_state = TCPS_SYN_RECEIVED;
3856 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3857 TCP_STATINC(TCP_STAT_ACCEPTS);
3858
3859 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3860 tp->t_flags |= TF_WILL_SACK;
3861
3862 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3863 tp->t_flags |= TF_ECN_PERMIT;
3864
3865 #ifdef TCP_SIGNATURE
3866 if (sc->sc_flags & SCF_SIGNATURE)
3867 tp->t_flags |= TF_SIGNATURE;
3868 #endif
3869
3870 /* Initialize tp->t_ourmss before we deal with the peer's! */
3871 tp->t_ourmss = sc->sc_ourmaxseg;
3872 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3873
3874 /*
3875 * Initialize the initial congestion window. If we
3876 * had to retransmit the SYN,ACK, we must initialize cwnd
3877 * to 1 segment (i.e. the Loss Window).
3878 */
3879 if (sc->sc_rxtshift)
3880 tp->snd_cwnd = tp->t_peermss;
3881 else {
3882 int ss = tcp_init_win;
3883 #ifdef INET
3884 if (inp != NULL && in_localaddr(inp->inp_faddr))
3885 ss = tcp_init_win_local;
3886 #endif
3887 #ifdef INET6
3888 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3889 ss = tcp_init_win_local;
3890 #endif
3891 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3892 }
3893
3894 tcp_rmx_rtt(tp);
3895 tp->snd_wl1 = sc->sc_irs;
3896 tp->rcv_up = sc->sc_irs + 1;
3897
3898 /*
3899 * This is what whould have happened in tcp_output() when
3900 * the SYN,ACK was sent.
3901 */
3902 tp->snd_up = tp->snd_una;
3903 tp->snd_max = tp->snd_nxt = tp->iss+1;
3904 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3905 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3906 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3907 tp->last_ack_sent = tp->rcv_nxt;
3908 tp->t_partialacks = -1;
3909 tp->t_dupacks = 0;
3910
3911 TCP_STATINC(TCP_STAT_SC_COMPLETED);
3912 s = splsoftnet();
3913 syn_cache_put(sc);
3914 splx(s);
3915 return (so);
3916
3917 resetandabort:
3918 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3919 abort:
3920 if (so != NULL) {
3921 (void) soqremque(so, 1);
3922 (void) soabort(so);
3923 mutex_enter(softnet_lock);
3924 }
3925 s = splsoftnet();
3926 syn_cache_put(sc);
3927 splx(s);
3928 TCP_STATINC(TCP_STAT_SC_ABORTED);
3929 return ((struct socket *)(-1));
3930 }
3931
3932 /*
3933 * This function is called when we get a RST for a
3934 * non-existent connection, so that we can see if the
3935 * connection is in the syn cache. If it is, zap it.
3936 */
3937
3938 void
3939 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3940 {
3941 struct syn_cache *sc;
3942 struct syn_cache_head *scp;
3943 int s = splsoftnet();
3944
3945 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3946 splx(s);
3947 return;
3948 }
3949 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3950 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3951 splx(s);
3952 return;
3953 }
3954 syn_cache_rm(sc);
3955 TCP_STATINC(TCP_STAT_SC_RESET);
3956 syn_cache_put(sc); /* calls pool_put but see spl above */
3957 splx(s);
3958 }
3959
3960 void
3961 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3962 struct tcphdr *th)
3963 {
3964 struct syn_cache *sc;
3965 struct syn_cache_head *scp;
3966 int s;
3967
3968 s = splsoftnet();
3969 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3970 splx(s);
3971 return;
3972 }
3973 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3974 if (ntohl (th->th_seq) != sc->sc_iss) {
3975 splx(s);
3976 return;
3977 }
3978
3979 /*
3980 * If we've retransmitted 3 times and this is our second error,
3981 * we remove the entry. Otherwise, we allow it to continue on.
3982 * This prevents us from incorrectly nuking an entry during a
3983 * spurious network outage.
3984 *
3985 * See tcp_notify().
3986 */
3987 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3988 sc->sc_flags |= SCF_UNREACH;
3989 splx(s);
3990 return;
3991 }
3992
3993 syn_cache_rm(sc);
3994 TCP_STATINC(TCP_STAT_SC_UNREACH);
3995 syn_cache_put(sc); /* calls pool_put but see spl above */
3996 splx(s);
3997 }
3998
3999 /*
4000 * Given a LISTEN socket and an inbound SYN request, add
4001 * this to the syn cache, and send back a segment:
4002 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4003 * to the source.
4004 *
4005 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4006 * Doing so would require that we hold onto the data and deliver it
4007 * to the application. However, if we are the target of a SYN-flood
4008 * DoS attack, an attacker could send data which would eventually
4009 * consume all available buffer space if it were ACKed. By not ACKing
4010 * the data, we avoid this DoS scenario.
4011 */
4012
4013 int
4014 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4015 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4016 int optlen, struct tcp_opt_info *oi)
4017 {
4018 struct tcpcb tb, *tp;
4019 long win;
4020 struct syn_cache *sc;
4021 struct syn_cache_head *scp;
4022 struct mbuf *ipopts;
4023 struct tcp_opt_info opti;
4024 int s;
4025
4026 tp = sototcpcb(so);
4027
4028 memset(&opti, 0, sizeof(opti));
4029
4030 /*
4031 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4032 *
4033 * Note this check is performed in tcp_input() very early on.
4034 */
4035
4036 /*
4037 * Initialize some local state.
4038 */
4039 win = sbspace(&so->so_rcv);
4040 if (win > TCP_MAXWIN)
4041 win = TCP_MAXWIN;
4042
4043 switch (src->sa_family) {
4044 #ifdef INET
4045 case AF_INET:
4046 /*
4047 * Remember the IP options, if any.
4048 */
4049 ipopts = ip_srcroute();
4050 break;
4051 #endif
4052 default:
4053 ipopts = NULL;
4054 }
4055
4056 #ifdef TCP_SIGNATURE
4057 if (optp || (tp->t_flags & TF_SIGNATURE))
4058 #else
4059 if (optp)
4060 #endif
4061 {
4062 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4063 #ifdef TCP_SIGNATURE
4064 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4065 #endif
4066 tb.t_state = TCPS_LISTEN;
4067 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4068 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4069 return (0);
4070 } else
4071 tb.t_flags = 0;
4072
4073 /*
4074 * See if we already have an entry for this connection.
4075 * If we do, resend the SYN,ACK. We do not count this
4076 * as a retransmission (XXX though maybe we should).
4077 */
4078 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4079 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4080 if (ipopts) {
4081 /*
4082 * If we were remembering a previous source route,
4083 * forget it and use the new one we've been given.
4084 */
4085 if (sc->sc_ipopts)
4086 (void) m_free(sc->sc_ipopts);
4087 sc->sc_ipopts = ipopts;
4088 }
4089 sc->sc_timestamp = tb.ts_recent;
4090 if (syn_cache_respond(sc, m) == 0) {
4091 uint64_t *tcps = TCP_STAT_GETREF();
4092 tcps[TCP_STAT_SNDACKS]++;
4093 tcps[TCP_STAT_SNDTOTAL]++;
4094 TCP_STAT_PUTREF();
4095 }
4096 return (1);
4097 }
4098
4099 s = splsoftnet();
4100 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4101 splx(s);
4102 if (sc == NULL) {
4103 if (ipopts)
4104 (void) m_free(ipopts);
4105 return (0);
4106 }
4107
4108 /*
4109 * Fill in the cache, and put the necessary IP and TCP
4110 * options into the reply.
4111 */
4112 memset(sc, 0, sizeof(struct syn_cache));
4113 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4114 bcopy(src, &sc->sc_src, src->sa_len);
4115 bcopy(dst, &sc->sc_dst, dst->sa_len);
4116 sc->sc_flags = 0;
4117 sc->sc_ipopts = ipopts;
4118 sc->sc_irs = th->th_seq;
4119 switch (src->sa_family) {
4120 #ifdef INET
4121 case AF_INET:
4122 {
4123 struct sockaddr_in *srcin = (void *) src;
4124 struct sockaddr_in *dstin = (void *) dst;
4125
4126 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4127 &srcin->sin_addr, dstin->sin_port,
4128 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4129 break;
4130 }
4131 #endif /* INET */
4132 #ifdef INET6
4133 case AF_INET6:
4134 {
4135 struct sockaddr_in6 *srcin6 = (void *) src;
4136 struct sockaddr_in6 *dstin6 = (void *) dst;
4137
4138 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4139 &srcin6->sin6_addr, dstin6->sin6_port,
4140 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4141 break;
4142 }
4143 #endif /* INET6 */
4144 }
4145 sc->sc_peermaxseg = oi->maxseg;
4146 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4147 m->m_pkthdr.rcvif : NULL,
4148 sc->sc_src.sa.sa_family);
4149 sc->sc_win = win;
4150 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4151 sc->sc_timestamp = tb.ts_recent;
4152 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4153 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4154 sc->sc_flags |= SCF_TIMESTAMP;
4155 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4156 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4157 sc->sc_requested_s_scale = tb.requested_s_scale;
4158 sc->sc_request_r_scale = 0;
4159 /*
4160 * Pick the smallest possible scaling factor that
4161 * will still allow us to scale up to sb_max.
4162 *
4163 * We do this because there are broken firewalls that
4164 * will corrupt the window scale option, leading to
4165 * the other endpoint believing that our advertised
4166 * window is unscaled. At scale factors larger than
4167 * 5 the unscaled window will drop below 1500 bytes,
4168 * leading to serious problems when traversing these
4169 * broken firewalls.
4170 *
4171 * With the default sbmax of 256K, a scale factor
4172 * of 3 will be chosen by this algorithm. Those who
4173 * choose a larger sbmax should watch out
4174 * for the compatiblity problems mentioned above.
4175 *
4176 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4177 * or <SYN,ACK>) segment itself is never scaled.
4178 */
4179 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4180 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4181 sc->sc_request_r_scale++;
4182 } else {
4183 sc->sc_requested_s_scale = 15;
4184 sc->sc_request_r_scale = 15;
4185 }
4186 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4187 sc->sc_flags |= SCF_SACK_PERMIT;
4188
4189 /*
4190 * ECN setup packet recieved.
4191 */
4192 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4193 sc->sc_flags |= SCF_ECN_PERMIT;
4194
4195 #ifdef TCP_SIGNATURE
4196 if (tb.t_flags & TF_SIGNATURE)
4197 sc->sc_flags |= SCF_SIGNATURE;
4198 #endif
4199 sc->sc_tp = tp;
4200 if (syn_cache_respond(sc, m) == 0) {
4201 uint64_t *tcps = TCP_STAT_GETREF();
4202 tcps[TCP_STAT_SNDACKS]++;
4203 tcps[TCP_STAT_SNDTOTAL]++;
4204 TCP_STAT_PUTREF();
4205 syn_cache_insert(sc, tp);
4206 } else {
4207 s = splsoftnet();
4208 syn_cache_put(sc);
4209 splx(s);
4210 TCP_STATINC(TCP_STAT_SC_DROPPED);
4211 }
4212 return (1);
4213 }
4214
4215 int
4216 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4217 {
4218 #ifdef INET6
4219 struct rtentry *rt;
4220 #endif
4221 struct route *ro;
4222 u_int8_t *optp;
4223 int optlen, error;
4224 u_int16_t tlen;
4225 struct ip *ip = NULL;
4226 #ifdef INET6
4227 struct ip6_hdr *ip6 = NULL;
4228 #endif
4229 struct tcpcb *tp = NULL;
4230 struct tcphdr *th;
4231 u_int hlen;
4232 struct socket *so;
4233
4234 ro = &sc->sc_route;
4235 switch (sc->sc_src.sa.sa_family) {
4236 case AF_INET:
4237 hlen = sizeof(struct ip);
4238 break;
4239 #ifdef INET6
4240 case AF_INET6:
4241 hlen = sizeof(struct ip6_hdr);
4242 break;
4243 #endif
4244 default:
4245 if (m)
4246 m_freem(m);
4247 return (EAFNOSUPPORT);
4248 }
4249
4250 /* Compute the size of the TCP options. */
4251 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4252 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4253 #ifdef TCP_SIGNATURE
4254 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4255 #endif
4256 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4257
4258 tlen = hlen + sizeof(struct tcphdr) + optlen;
4259
4260 /*
4261 * Create the IP+TCP header from scratch.
4262 */
4263 if (m)
4264 m_freem(m);
4265 #ifdef DIAGNOSTIC
4266 if (max_linkhdr + tlen > MCLBYTES)
4267 return (ENOBUFS);
4268 #endif
4269 MGETHDR(m, M_DONTWAIT, MT_DATA);
4270 if (m && tlen > MHLEN) {
4271 MCLGET(m, M_DONTWAIT);
4272 if ((m->m_flags & M_EXT) == 0) {
4273 m_freem(m);
4274 m = NULL;
4275 }
4276 }
4277 if (m == NULL)
4278 return (ENOBUFS);
4279 MCLAIM(m, &tcp_tx_mowner);
4280
4281 /* Fixup the mbuf. */
4282 m->m_data += max_linkhdr;
4283 m->m_len = m->m_pkthdr.len = tlen;
4284 if (sc->sc_tp) {
4285 tp = sc->sc_tp;
4286 if (tp->t_inpcb)
4287 so = tp->t_inpcb->inp_socket;
4288 #ifdef INET6
4289 else if (tp->t_in6pcb)
4290 so = tp->t_in6pcb->in6p_socket;
4291 #endif
4292 else
4293 so = NULL;
4294 } else
4295 so = NULL;
4296 m->m_pkthdr.rcvif = NULL;
4297 memset(mtod(m, u_char *), 0, tlen);
4298
4299 switch (sc->sc_src.sa.sa_family) {
4300 case AF_INET:
4301 ip = mtod(m, struct ip *);
4302 ip->ip_v = 4;
4303 ip->ip_dst = sc->sc_src.sin.sin_addr;
4304 ip->ip_src = sc->sc_dst.sin.sin_addr;
4305 ip->ip_p = IPPROTO_TCP;
4306 th = (struct tcphdr *)(ip + 1);
4307 th->th_dport = sc->sc_src.sin.sin_port;
4308 th->th_sport = sc->sc_dst.sin.sin_port;
4309 break;
4310 #ifdef INET6
4311 case AF_INET6:
4312 ip6 = mtod(m, struct ip6_hdr *);
4313 ip6->ip6_vfc = IPV6_VERSION;
4314 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4315 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4316 ip6->ip6_nxt = IPPROTO_TCP;
4317 /* ip6_plen will be updated in ip6_output() */
4318 th = (struct tcphdr *)(ip6 + 1);
4319 th->th_dport = sc->sc_src.sin6.sin6_port;
4320 th->th_sport = sc->sc_dst.sin6.sin6_port;
4321 break;
4322 #endif
4323 default:
4324 th = NULL;
4325 }
4326
4327 th->th_seq = htonl(sc->sc_iss);
4328 th->th_ack = htonl(sc->sc_irs + 1);
4329 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4330 th->th_flags = TH_SYN|TH_ACK;
4331 th->th_win = htons(sc->sc_win);
4332 /* th_sum already 0 */
4333 /* th_urp already 0 */
4334
4335 /* Tack on the TCP options. */
4336 optp = (u_int8_t *)(th + 1);
4337 *optp++ = TCPOPT_MAXSEG;
4338 *optp++ = 4;
4339 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4340 *optp++ = sc->sc_ourmaxseg & 0xff;
4341
4342 if (sc->sc_request_r_scale != 15) {
4343 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4344 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4345 sc->sc_request_r_scale);
4346 optp += 4;
4347 }
4348
4349 if (sc->sc_flags & SCF_TIMESTAMP) {
4350 u_int32_t *lp = (u_int32_t *)(optp);
4351 /* Form timestamp option as shown in appendix A of RFC 1323. */
4352 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4353 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4354 *lp = htonl(sc->sc_timestamp);
4355 optp += TCPOLEN_TSTAMP_APPA;
4356 }
4357
4358 if (sc->sc_flags & SCF_SACK_PERMIT) {
4359 u_int8_t *p = optp;
4360
4361 /* Let the peer know that we will SACK. */
4362 p[0] = TCPOPT_SACK_PERMITTED;
4363 p[1] = 2;
4364 p[2] = TCPOPT_NOP;
4365 p[3] = TCPOPT_NOP;
4366 optp += 4;
4367 }
4368
4369 /*
4370 * Send ECN SYN-ACK setup packet.
4371 * Routes can be asymetric, so, even if we receive a packet
4372 * with ECE and CWR set, we must not assume no one will block
4373 * the ECE packet we are about to send.
4374 */
4375 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4376 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4377 th->th_flags |= TH_ECE;
4378 TCP_STATINC(TCP_STAT_ECN_SHS);
4379
4380 /*
4381 * draft-ietf-tcpm-ecnsyn-00.txt
4382 *
4383 * "[...] a TCP node MAY respond to an ECN-setup
4384 * SYN packet by setting ECT in the responding
4385 * ECN-setup SYN/ACK packet, indicating to routers
4386 * that the SYN/ACK packet is ECN-Capable.
4387 * This allows a congested router along the path
4388 * to mark the packet instead of dropping the
4389 * packet as an indication of congestion."
4390 *
4391 * "[...] There can be a great benefit in setting
4392 * an ECN-capable codepoint in SYN/ACK packets [...]
4393 * Congestion is most likely to occur in
4394 * the server-to-client direction. As a result,
4395 * setting an ECN-capable codepoint in SYN/ACK
4396 * packets can reduce the occurence of three-second
4397 * retransmit timeouts resulting from the drop
4398 * of SYN/ACK packets."
4399 *
4400 * Page 4 and 6, January 2006.
4401 */
4402
4403 switch (sc->sc_src.sa.sa_family) {
4404 #ifdef INET
4405 case AF_INET:
4406 ip->ip_tos |= IPTOS_ECN_ECT0;
4407 break;
4408 #endif
4409 #ifdef INET6
4410 case AF_INET6:
4411 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4412 break;
4413 #endif
4414 }
4415 TCP_STATINC(TCP_STAT_ECN_ECT);
4416 }
4417
4418 #ifdef TCP_SIGNATURE
4419 if (sc->sc_flags & SCF_SIGNATURE) {
4420 struct secasvar *sav;
4421 u_int8_t *sigp;
4422
4423 sav = tcp_signature_getsav(m, th);
4424
4425 if (sav == NULL) {
4426 if (m)
4427 m_freem(m);
4428 return (EPERM);
4429 }
4430
4431 *optp++ = TCPOPT_SIGNATURE;
4432 *optp++ = TCPOLEN_SIGNATURE;
4433 sigp = optp;
4434 memset(optp, 0, TCP_SIGLEN);
4435 optp += TCP_SIGLEN;
4436 *optp++ = TCPOPT_NOP;
4437 *optp++ = TCPOPT_EOL;
4438
4439 (void)tcp_signature(m, th, hlen, sav, sigp);
4440
4441 key_sa_recordxfer(sav, m);
4442 #ifdef FAST_IPSEC
4443 KEY_FREESAV(&sav);
4444 #else
4445 key_freesav(sav);
4446 #endif
4447 }
4448 #endif
4449
4450 /* Compute the packet's checksum. */
4451 switch (sc->sc_src.sa.sa_family) {
4452 case AF_INET:
4453 ip->ip_len = htons(tlen - hlen);
4454 th->th_sum = 0;
4455 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4456 break;
4457 #ifdef INET6
4458 case AF_INET6:
4459 ip6->ip6_plen = htons(tlen - hlen);
4460 th->th_sum = 0;
4461 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4462 break;
4463 #endif
4464 }
4465
4466 /*
4467 * Fill in some straggling IP bits. Note the stack expects
4468 * ip_len to be in host order, for convenience.
4469 */
4470 switch (sc->sc_src.sa.sa_family) {
4471 #ifdef INET
4472 case AF_INET:
4473 ip->ip_len = htons(tlen);
4474 ip->ip_ttl = ip_defttl;
4475 /* XXX tos? */
4476 break;
4477 #endif
4478 #ifdef INET6
4479 case AF_INET6:
4480 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4481 ip6->ip6_vfc |= IPV6_VERSION;
4482 ip6->ip6_plen = htons(tlen - hlen);
4483 /* ip6_hlim will be initialized afterwards */
4484 /* XXX flowlabel? */
4485 break;
4486 #endif
4487 }
4488
4489 /* XXX use IPsec policy on listening socket, on SYN ACK */
4490 tp = sc->sc_tp;
4491
4492 switch (sc->sc_src.sa.sa_family) {
4493 #ifdef INET
4494 case AF_INET:
4495 error = ip_output(m, sc->sc_ipopts, ro,
4496 (ip_mtudisc ? IP_MTUDISC : 0),
4497 (struct ip_moptions *)NULL, so);
4498 break;
4499 #endif
4500 #ifdef INET6
4501 case AF_INET6:
4502 ip6->ip6_hlim = in6_selecthlim(NULL,
4503 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4504 : NULL);
4505
4506 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4507 break;
4508 #endif
4509 default:
4510 error = EAFNOSUPPORT;
4511 break;
4512 }
4513 return (error);
4514 }
4515