tcp_input.c revision 1.304 1 /* $NetBSD: tcp_input.c,v 1.304 2010/04/21 20:40:16 bouyer Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 *
93 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
94 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
95 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
96 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
97 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
98 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
99 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
100 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
101 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
103 * POSSIBILITY OF SUCH DAMAGE.
104 */
105
106 /*
107 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108 * The Regents of the University of California. All rights reserved.
109 *
110 * Redistribution and use in source and binary forms, with or without
111 * modification, are permitted provided that the following conditions
112 * are met:
113 * 1. Redistributions of source code must retain the above copyright
114 * notice, this list of conditions and the following disclaimer.
115 * 2. Redistributions in binary form must reproduce the above copyright
116 * notice, this list of conditions and the following disclaimer in the
117 * documentation and/or other materials provided with the distribution.
118 * 3. Neither the name of the University nor the names of its contributors
119 * may be used to endorse or promote products derived from this software
120 * without specific prior written permission.
121 *
122 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132 * SUCH DAMAGE.
133 *
134 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
135 */
136
137 /*
138 * TODO list for SYN cache stuff:
139 *
140 * Find room for a "state" field, which is needed to keep a
141 * compressed state for TIME_WAIT TCBs. It's been noted already
142 * that this is fairly important for very high-volume web and
143 * mail servers, which use a large number of short-lived
144 * connections.
145 */
146
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.304 2010/04/21 20:40:16 bouyer Exp $");
149
150 #include "opt_inet.h"
151 #include "opt_ipsec.h"
152 #include "opt_inet_csum.h"
153 #include "opt_tcp_debug.h"
154
155 #include <sys/param.h>
156 #include <sys/systm.h>
157 #include <sys/malloc.h>
158 #include <sys/mbuf.h>
159 #include <sys/protosw.h>
160 #include <sys/socket.h>
161 #include <sys/socketvar.h>
162 #include <sys/errno.h>
163 #include <sys/syslog.h>
164 #include <sys/pool.h>
165 #include <sys/domain.h>
166 #include <sys/kernel.h>
167 #ifdef TCP_SIGNATURE
168 #include <sys/md5.h>
169 #endif
170 #include <sys/lwp.h> /* for lwp0 */
171
172 #include <net/if.h>
173 #include <net/route.h>
174 #include <net/if_types.h>
175
176 #include <netinet/in.h>
177 #include <netinet/in_systm.h>
178 #include <netinet/ip.h>
179 #include <netinet/in_pcb.h>
180 #include <netinet/in_var.h>
181 #include <netinet/ip_var.h>
182 #include <netinet/in_offload.h>
183
184 #ifdef INET6
185 #ifndef INET
186 #include <netinet/in.h>
187 #endif
188 #include <netinet/ip6.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_pcb.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_var.h>
193 #include <netinet/icmp6.h>
194 #include <netinet6/nd6.h>
195 #ifdef TCP_SIGNATURE
196 #include <netinet6/scope6_var.h>
197 #endif
198 #endif
199
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcp_private.h>
211 #include <netinet/tcpip.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214
215 #include <machine/stdarg.h>
216
217 #ifdef IPSEC
218 #include <netinet6/ipsec.h>
219 #include <netinet6/ipsec_private.h>
220 #include <netkey/key.h>
221 #endif /*IPSEC*/
222 #ifdef INET6
223 #include "faith.h"
224 #if defined(NFAITH) && NFAITH > 0
225 #include <net/if_faith.h>
226 #endif
227 #endif /* IPSEC */
228
229 #ifdef FAST_IPSEC
230 #include <netipsec/ipsec.h>
231 #include <netipsec/ipsec_var.h>
232 #include <netipsec/ipsec_private.h>
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif /* FAST_IPSEC*/
238
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
241
242 int tcp_do_autorcvbuf = 1;
243 int tcp_autorcvbuf_inc = 16 * 1024;
244 int tcp_autorcvbuf_max = 256 * 1024;
245 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251
252 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
253
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
257
258 /*
259 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260 */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 struct rtentry *rt;
266
267 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 nd6_nud_hint(rt, NULL, 0);
270 }
271 #else
272 static inline void
273 nd6_hint(struct tcpcb *tp)
274 {
275 }
276 #endif
277
278 /*
279 * Compute ACK transmission behavior. Delay the ACK unless
280 * we have already delayed an ACK (must send an ACK every two segments).
281 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
282 * option is enabled.
283 */
284 static void
285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
286 {
287
288 if (tp->t_flags & TF_DELACK ||
289 (tcp_ack_on_push && th->th_flags & TH_PUSH))
290 tp->t_flags |= TF_ACKNOW;
291 else
292 TCP_SET_DELACK(tp);
293 }
294
295 static void
296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
297 {
298
299 /*
300 * If we had a pending ICMP message that refers to data that have
301 * just been acknowledged, disregard the recorded ICMP message.
302 */
303 if ((tp->t_flags & TF_PMTUD_PEND) &&
304 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
305 tp->t_flags &= ~TF_PMTUD_PEND;
306
307 /*
308 * Keep track of the largest chunk of data
309 * acknowledged since last PMTU update
310 */
311 if (tp->t_pmtud_mss_acked < acked)
312 tp->t_pmtud_mss_acked = acked;
313 }
314
315 /*
316 * Convert TCP protocol fields to host order for easier processing.
317 */
318 static void
319 tcp_fields_to_host(struct tcphdr *th)
320 {
321
322 NTOHL(th->th_seq);
323 NTOHL(th->th_ack);
324 NTOHS(th->th_win);
325 NTOHS(th->th_urp);
326 }
327
328 /*
329 * ... and reverse the above.
330 */
331 static void
332 tcp_fields_to_net(struct tcphdr *th)
333 {
334
335 HTONL(th->th_seq);
336 HTONL(th->th_ack);
337 HTONS(th->th_win);
338 HTONS(th->th_urp);
339 }
340
341 #ifdef TCP_CSUM_COUNTERS
342 #include <sys/device.h>
343
344 #if defined(INET)
345 extern struct evcnt tcp_hwcsum_ok;
346 extern struct evcnt tcp_hwcsum_bad;
347 extern struct evcnt tcp_hwcsum_data;
348 extern struct evcnt tcp_swcsum;
349 #endif /* defined(INET) */
350 #if defined(INET6)
351 extern struct evcnt tcp6_hwcsum_ok;
352 extern struct evcnt tcp6_hwcsum_bad;
353 extern struct evcnt tcp6_hwcsum_data;
354 extern struct evcnt tcp6_swcsum;
355 #endif /* defined(INET6) */
356
357 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
358
359 #else
360
361 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
362
363 #endif /* TCP_CSUM_COUNTERS */
364
365 #ifdef TCP_REASS_COUNTERS
366 #include <sys/device.h>
367
368 extern struct evcnt tcp_reass_;
369 extern struct evcnt tcp_reass_empty;
370 extern struct evcnt tcp_reass_iteration[8];
371 extern struct evcnt tcp_reass_prependfirst;
372 extern struct evcnt tcp_reass_prepend;
373 extern struct evcnt tcp_reass_insert;
374 extern struct evcnt tcp_reass_inserttail;
375 extern struct evcnt tcp_reass_append;
376 extern struct evcnt tcp_reass_appendtail;
377 extern struct evcnt tcp_reass_overlaptail;
378 extern struct evcnt tcp_reass_overlapfront;
379 extern struct evcnt tcp_reass_segdup;
380 extern struct evcnt tcp_reass_fragdup;
381
382 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
383
384 #else
385
386 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
387
388 #endif /* TCP_REASS_COUNTERS */
389
390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
391 int *);
392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
393 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
394
395 #ifdef INET
396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
397 #endif
398 #ifdef INET6
399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
400 #endif
401
402 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
403
404 #if defined(MBUFTRACE)
405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
406 #endif /* defined(MBUFTRACE) */
407
408 static struct pool tcpipqent_pool;
409
410 void
411 tcpipqent_init(void)
412 {
413
414 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415 NULL, IPL_VM);
416 }
417
418 struct ipqent *
419 tcpipqent_alloc(void)
420 {
421 struct ipqent *ipqe;
422 int s;
423
424 s = splvm();
425 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
426 splx(s);
427
428 return ipqe;
429 }
430
431 void
432 tcpipqent_free(struct ipqent *ipqe)
433 {
434 int s;
435
436 s = splvm();
437 pool_put(&tcpipqent_pool, ipqe);
438 splx(s);
439 }
440
441 static int
442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
443 {
444 struct ipqent *p, *q, *nq, *tiqe = NULL;
445 struct socket *so = NULL;
446 int pkt_flags;
447 tcp_seq pkt_seq;
448 unsigned pkt_len;
449 u_long rcvpartdupbyte = 0;
450 u_long rcvoobyte;
451 #ifdef TCP_REASS_COUNTERS
452 u_int count = 0;
453 #endif
454 uint64_t *tcps;
455
456 if (tp->t_inpcb)
457 so = tp->t_inpcb->inp_socket;
458 #ifdef INET6
459 else if (tp->t_in6pcb)
460 so = tp->t_in6pcb->in6p_socket;
461 #endif
462
463 TCP_REASS_LOCK_CHECK(tp);
464
465 /*
466 * Call with th==0 after become established to
467 * force pre-ESTABLISHED data up to user socket.
468 */
469 if (th == 0)
470 goto present;
471
472 m_claimm(m, &tcp_reass_mowner);
473
474 rcvoobyte = *tlen;
475 /*
476 * Copy these to local variables because the tcpiphdr
477 * gets munged while we are collapsing mbufs.
478 */
479 pkt_seq = th->th_seq;
480 pkt_len = *tlen;
481 pkt_flags = th->th_flags;
482
483 TCP_REASS_COUNTER_INCR(&tcp_reass_);
484
485 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
486 /*
487 * When we miss a packet, the vast majority of time we get
488 * packets that follow it in order. So optimize for that.
489 */
490 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
491 p->ipqe_len += pkt_len;
492 p->ipqe_flags |= pkt_flags;
493 m_cat(p->ipre_mlast, m);
494 TRAVERSE(p->ipre_mlast);
495 m = NULL;
496 tiqe = p;
497 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
498 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
499 goto skip_replacement;
500 }
501 /*
502 * While we're here, if the pkt is completely beyond
503 * anything we have, just insert it at the tail.
504 */
505 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
506 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
507 goto insert_it;
508 }
509 }
510
511 q = TAILQ_FIRST(&tp->segq);
512
513 if (q != NULL) {
514 /*
515 * If this segment immediately precedes the first out-of-order
516 * block, simply slap the segment in front of it and (mostly)
517 * skip the complicated logic.
518 */
519 if (pkt_seq + pkt_len == q->ipqe_seq) {
520 q->ipqe_seq = pkt_seq;
521 q->ipqe_len += pkt_len;
522 q->ipqe_flags |= pkt_flags;
523 m_cat(m, q->ipqe_m);
524 q->ipqe_m = m;
525 q->ipre_mlast = m; /* last mbuf may have changed */
526 TRAVERSE(q->ipre_mlast);
527 tiqe = q;
528 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
529 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
530 goto skip_replacement;
531 }
532 } else {
533 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
534 }
535
536 /*
537 * Find a segment which begins after this one does.
538 */
539 for (p = NULL; q != NULL; q = nq) {
540 nq = TAILQ_NEXT(q, ipqe_q);
541 #ifdef TCP_REASS_COUNTERS
542 count++;
543 #endif
544 /*
545 * If the received segment is just right after this
546 * fragment, merge the two together and then check
547 * for further overlaps.
548 */
549 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
550 #ifdef TCPREASS_DEBUG
551 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
552 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
553 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
554 #endif
555 pkt_len += q->ipqe_len;
556 pkt_flags |= q->ipqe_flags;
557 pkt_seq = q->ipqe_seq;
558 m_cat(q->ipre_mlast, m);
559 TRAVERSE(q->ipre_mlast);
560 m = q->ipqe_m;
561 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
562 goto free_ipqe;
563 }
564 /*
565 * If the received segment is completely past this
566 * fragment, we need to go the next fragment.
567 */
568 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
569 p = q;
570 continue;
571 }
572 /*
573 * If the fragment is past the received segment,
574 * it (or any following) can't be concatenated.
575 */
576 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 break;
579 }
580
581 /*
582 * We've received all the data in this segment before.
583 * mark it as a duplicate and return.
584 */
585 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 tcps = TCP_STAT_GETREF();
588 tcps[TCP_STAT_RCVDUPPACK]++;
589 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 TCP_STAT_PUTREF();
591 tcp_new_dsack(tp, pkt_seq, pkt_len);
592 m_freem(m);
593 if (tiqe != NULL) {
594 tcpipqent_free(tiqe);
595 }
596 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 return (0);
598 }
599 /*
600 * Received segment completely overlaps this fragment
601 * so we drop the fragment (this keeps the temporal
602 * ordering of segments correct).
603 */
604 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
605 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
606 rcvpartdupbyte += q->ipqe_len;
607 m_freem(q->ipqe_m);
608 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
609 goto free_ipqe;
610 }
611 /*
612 * RX'ed segment extends past the end of the
613 * fragment. Drop the overlapping bytes. Then
614 * merge the fragment and segment then treat as
615 * a longer received packet.
616 */
617 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
618 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
619 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
620 #ifdef TCPREASS_DEBUG
621 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
622 tp, overlap,
623 pkt_seq, pkt_seq + pkt_len, pkt_len);
624 #endif
625 m_adj(m, overlap);
626 rcvpartdupbyte += overlap;
627 m_cat(q->ipre_mlast, m);
628 TRAVERSE(q->ipre_mlast);
629 m = q->ipqe_m;
630 pkt_seq = q->ipqe_seq;
631 pkt_len += q->ipqe_len - overlap;
632 rcvoobyte -= overlap;
633 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
634 goto free_ipqe;
635 }
636 /*
637 * RX'ed segment extends past the front of the
638 * fragment. Drop the overlapping bytes on the
639 * received packet. The packet will then be
640 * contatentated with this fragment a bit later.
641 */
642 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
643 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
644 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
645 #ifdef TCPREASS_DEBUG
646 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
647 tp, overlap,
648 pkt_seq, pkt_seq + pkt_len, pkt_len);
649 #endif
650 m_adj(m, -overlap);
651 pkt_len -= overlap;
652 rcvpartdupbyte += overlap;
653 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
654 rcvoobyte -= overlap;
655 }
656 /*
657 * If the received segment immediates precedes this
658 * fragment then tack the fragment onto this segment
659 * and reinsert the data.
660 */
661 if (q->ipqe_seq == pkt_seq + pkt_len) {
662 #ifdef TCPREASS_DEBUG
663 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
664 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
665 pkt_seq, pkt_seq + pkt_len, pkt_len);
666 #endif
667 pkt_len += q->ipqe_len;
668 pkt_flags |= q->ipqe_flags;
669 m_cat(m, q->ipqe_m);
670 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
671 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
672 tp->t_segqlen--;
673 KASSERT(tp->t_segqlen >= 0);
674 KASSERT(tp->t_segqlen != 0 ||
675 (TAILQ_EMPTY(&tp->segq) &&
676 TAILQ_EMPTY(&tp->timeq)));
677 if (tiqe == NULL) {
678 tiqe = q;
679 } else {
680 tcpipqent_free(q);
681 }
682 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
683 break;
684 }
685 /*
686 * If the fragment is before the segment, remember it.
687 * When this loop is terminated, p will contain the
688 * pointer to fragment that is right before the received
689 * segment.
690 */
691 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
692 p = q;
693
694 continue;
695
696 /*
697 * This is a common operation. It also will allow
698 * to save doing a malloc/free in most instances.
699 */
700 free_ipqe:
701 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
702 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
703 tp->t_segqlen--;
704 KASSERT(tp->t_segqlen >= 0);
705 KASSERT(tp->t_segqlen != 0 ||
706 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
707 if (tiqe == NULL) {
708 tiqe = q;
709 } else {
710 tcpipqent_free(q);
711 }
712 }
713
714 #ifdef TCP_REASS_COUNTERS
715 if (count > 7)
716 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
717 else if (count > 0)
718 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
719 #endif
720
721 insert_it:
722
723 /*
724 * Allocate a new queue entry since the received segment did not
725 * collapse onto any other out-of-order block; thus we are allocating
726 * a new block. If it had collapsed, tiqe would not be NULL and
727 * we would be reusing it.
728 * XXX If we can't, just drop the packet. XXX
729 */
730 if (tiqe == NULL) {
731 tiqe = tcpipqent_alloc();
732 if (tiqe == NULL) {
733 TCP_STATINC(TCP_STAT_RCVMEMDROP);
734 m_freem(m);
735 return (0);
736 }
737 }
738
739 /*
740 * Update the counters.
741 */
742 tcps = TCP_STAT_GETREF();
743 tcps[TCP_STAT_RCVOOPACK]++;
744 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
745 if (rcvpartdupbyte) {
746 tcps[TCP_STAT_RCVPARTDUPPACK]++;
747 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
748 }
749 TCP_STAT_PUTREF();
750
751 /*
752 * Insert the new fragment queue entry into both queues.
753 */
754 tiqe->ipqe_m = m;
755 tiqe->ipre_mlast = m;
756 tiqe->ipqe_seq = pkt_seq;
757 tiqe->ipqe_len = pkt_len;
758 tiqe->ipqe_flags = pkt_flags;
759 if (p == NULL) {
760 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
761 #ifdef TCPREASS_DEBUG
762 if (tiqe->ipqe_seq != tp->rcv_nxt)
763 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
764 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
765 #endif
766 } else {
767 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
768 #ifdef TCPREASS_DEBUG
769 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
770 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
771 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
772 #endif
773 }
774 tp->t_segqlen++;
775
776 skip_replacement:
777
778 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
779
780 present:
781 /*
782 * Present data to user, advancing rcv_nxt through
783 * completed sequence space.
784 */
785 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
786 return (0);
787 q = TAILQ_FIRST(&tp->segq);
788 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
789 return (0);
790 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
791 return (0);
792
793 tp->rcv_nxt += q->ipqe_len;
794 pkt_flags = q->ipqe_flags & TH_FIN;
795 nd6_hint(tp);
796
797 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
798 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
799 tp->t_segqlen--;
800 KASSERT(tp->t_segqlen >= 0);
801 KASSERT(tp->t_segqlen != 0 ||
802 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
803 if (so->so_state & SS_CANTRCVMORE)
804 m_freem(q->ipqe_m);
805 else
806 sbappendstream(&so->so_rcv, q->ipqe_m);
807 tcpipqent_free(q);
808 sorwakeup(so);
809 return (pkt_flags);
810 }
811
812 #ifdef INET6
813 int
814 tcp6_input(struct mbuf **mp, int *offp, int proto)
815 {
816 struct mbuf *m = *mp;
817
818 /*
819 * draft-itojun-ipv6-tcp-to-anycast
820 * better place to put this in?
821 */
822 if (m->m_flags & M_ANYCAST6) {
823 struct ip6_hdr *ip6;
824 if (m->m_len < sizeof(struct ip6_hdr)) {
825 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
826 TCP_STATINC(TCP_STAT_RCVSHORT);
827 return IPPROTO_DONE;
828 }
829 }
830 ip6 = mtod(m, struct ip6_hdr *);
831 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
832 (char *)&ip6->ip6_dst - (char *)ip6);
833 return IPPROTO_DONE;
834 }
835
836 tcp_input(m, *offp, proto);
837 return IPPROTO_DONE;
838 }
839 #endif
840
841 #ifdef INET
842 static void
843 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
844 {
845 char src[4*sizeof "123"];
846 char dst[4*sizeof "123"];
847
848 if (ip) {
849 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
850 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
851 }
852 else {
853 strlcpy(src, "(unknown)", sizeof(src));
854 strlcpy(dst, "(unknown)", sizeof(dst));
855 }
856 log(LOG_INFO,
857 "Connection attempt to TCP %s:%d from %s:%d\n",
858 dst, ntohs(th->th_dport),
859 src, ntohs(th->th_sport));
860 }
861 #endif
862
863 #ifdef INET6
864 static void
865 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
866 {
867 char src[INET6_ADDRSTRLEN];
868 char dst[INET6_ADDRSTRLEN];
869
870 if (ip6) {
871 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
872 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
873 }
874 else {
875 strlcpy(src, "(unknown v6)", sizeof(src));
876 strlcpy(dst, "(unknown v6)", sizeof(dst));
877 }
878 log(LOG_INFO,
879 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
880 dst, ntohs(th->th_dport),
881 src, ntohs(th->th_sport));
882 }
883 #endif
884
885 /*
886 * Checksum extended TCP header and data.
887 */
888 int
889 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
890 int toff, int off, int tlen)
891 {
892
893 /*
894 * XXX it's better to record and check if this mbuf is
895 * already checked.
896 */
897
898 switch (af) {
899 #ifdef INET
900 case AF_INET:
901 switch (m->m_pkthdr.csum_flags &
902 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
903 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
904 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
905 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
906 goto badcsum;
907
908 case M_CSUM_TCPv4|M_CSUM_DATA: {
909 u_int32_t hw_csum = m->m_pkthdr.csum_data;
910
911 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
912 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
913 const struct ip *ip =
914 mtod(m, const struct ip *);
915
916 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
917 ip->ip_dst.s_addr,
918 htons(hw_csum + tlen + off + IPPROTO_TCP));
919 }
920 if ((hw_csum ^ 0xffff) != 0)
921 goto badcsum;
922 break;
923 }
924
925 case M_CSUM_TCPv4:
926 /* Checksum was okay. */
927 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
928 break;
929
930 default:
931 /*
932 * Must compute it ourselves. Maybe skip checksum
933 * on loopback interfaces.
934 */
935 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
936 IFF_LOOPBACK) ||
937 tcp_do_loopback_cksum)) {
938 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
939 if (in4_cksum(m, IPPROTO_TCP, toff,
940 tlen + off) != 0)
941 goto badcsum;
942 }
943 break;
944 }
945 break;
946 #endif /* INET4 */
947
948 #ifdef INET6
949 case AF_INET6:
950 switch (m->m_pkthdr.csum_flags &
951 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
952 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
953 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
954 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
955 goto badcsum;
956
957 #if 0 /* notyet */
958 case M_CSUM_TCPv6|M_CSUM_DATA:
959 #endif
960
961 case M_CSUM_TCPv6:
962 /* Checksum was okay. */
963 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
964 break;
965
966 default:
967 /*
968 * Must compute it ourselves. Maybe skip checksum
969 * on loopback interfaces.
970 */
971 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
972 tcp_do_loopback_cksum)) {
973 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
974 if (in6_cksum(m, IPPROTO_TCP, toff,
975 tlen + off) != 0)
976 goto badcsum;
977 }
978 }
979 break;
980 #endif /* INET6 */
981 }
982
983 return 0;
984
985 badcsum:
986 TCP_STATINC(TCP_STAT_RCVBADSUM);
987 return -1;
988 }
989
990 /*
991 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
992 */
993 void
994 tcp_input(struct mbuf *m, ...)
995 {
996 struct tcphdr *th;
997 struct ip *ip;
998 struct inpcb *inp;
999 #ifdef INET6
1000 struct ip6_hdr *ip6;
1001 struct in6pcb *in6p;
1002 #endif
1003 u_int8_t *optp = NULL;
1004 int optlen = 0;
1005 int len, tlen, toff, hdroptlen = 0;
1006 struct tcpcb *tp = 0;
1007 int tiflags;
1008 struct socket *so = NULL;
1009 int todrop, dupseg, acked, ourfinisacked, needoutput = 0;
1010 #ifdef TCP_DEBUG
1011 short ostate = 0;
1012 #endif
1013 u_long tiwin;
1014 struct tcp_opt_info opti;
1015 int off, iphlen;
1016 va_list ap;
1017 int af; /* af on the wire */
1018 struct mbuf *tcp_saveti = NULL;
1019 uint32_t ts_rtt;
1020 uint8_t iptos;
1021 uint64_t *tcps;
1022
1023 MCLAIM(m, &tcp_rx_mowner);
1024 va_start(ap, m);
1025 toff = va_arg(ap, int);
1026 (void)va_arg(ap, int); /* ignore value, advance ap */
1027 va_end(ap);
1028
1029 TCP_STATINC(TCP_STAT_RCVTOTAL);
1030
1031 memset(&opti, 0, sizeof(opti));
1032 opti.ts_present = 0;
1033 opti.maxseg = 0;
1034
1035 /*
1036 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1037 *
1038 * TCP is, by definition, unicast, so we reject all
1039 * multicast outright.
1040 *
1041 * Note, there are additional src/dst address checks in
1042 * the AF-specific code below.
1043 */
1044 if (m->m_flags & (M_BCAST|M_MCAST)) {
1045 /* XXX stat */
1046 goto drop;
1047 }
1048 #ifdef INET6
1049 if (m->m_flags & M_ANYCAST6) {
1050 /* XXX stat */
1051 goto drop;
1052 }
1053 #endif
1054
1055 /*
1056 * Get IP and TCP header.
1057 * Note: IP leaves IP header in first mbuf.
1058 */
1059 ip = mtod(m, struct ip *);
1060 #ifdef INET6
1061 ip6 = NULL;
1062 #endif
1063 switch (ip->ip_v) {
1064 #ifdef INET
1065 case 4:
1066 af = AF_INET;
1067 iphlen = sizeof(struct ip);
1068 ip = mtod(m, struct ip *);
1069 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1070 sizeof(struct tcphdr));
1071 if (th == NULL) {
1072 TCP_STATINC(TCP_STAT_RCVSHORT);
1073 return;
1074 }
1075 /* We do the checksum after PCB lookup... */
1076 len = ntohs(ip->ip_len);
1077 tlen = len - toff;
1078 iptos = ip->ip_tos;
1079 break;
1080 #endif
1081 #ifdef INET6
1082 case 6:
1083 ip = NULL;
1084 iphlen = sizeof(struct ip6_hdr);
1085 af = AF_INET6;
1086 ip6 = mtod(m, struct ip6_hdr *);
1087 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1088 sizeof(struct tcphdr));
1089 if (th == NULL) {
1090 TCP_STATINC(TCP_STAT_RCVSHORT);
1091 return;
1092 }
1093
1094 /* Be proactive about malicious use of IPv4 mapped address */
1095 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1096 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1097 /* XXX stat */
1098 goto drop;
1099 }
1100
1101 /*
1102 * Be proactive about unspecified IPv6 address in source.
1103 * As we use all-zero to indicate unbounded/unconnected pcb,
1104 * unspecified IPv6 address can be used to confuse us.
1105 *
1106 * Note that packets with unspecified IPv6 destination is
1107 * already dropped in ip6_input.
1108 */
1109 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1110 /* XXX stat */
1111 goto drop;
1112 }
1113
1114 /*
1115 * Make sure destination address is not multicast.
1116 * Source address checked in ip6_input().
1117 */
1118 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1119 /* XXX stat */
1120 goto drop;
1121 }
1122
1123 /* We do the checksum after PCB lookup... */
1124 len = m->m_pkthdr.len;
1125 tlen = len - toff;
1126 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1127 break;
1128 #endif
1129 default:
1130 m_freem(m);
1131 return;
1132 }
1133
1134 KASSERT(TCP_HDR_ALIGNED_P(th));
1135
1136 /*
1137 * Check that TCP offset makes sense,
1138 * pull out TCP options and adjust length. XXX
1139 */
1140 off = th->th_off << 2;
1141 if (off < sizeof (struct tcphdr) || off > tlen) {
1142 TCP_STATINC(TCP_STAT_RCVBADOFF);
1143 goto drop;
1144 }
1145 tlen -= off;
1146
1147 /*
1148 * tcp_input() has been modified to use tlen to mean the TCP data
1149 * length throughout the function. Other functions can use
1150 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1151 * rja
1152 */
1153
1154 if (off > sizeof (struct tcphdr)) {
1155 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1156 if (th == NULL) {
1157 TCP_STATINC(TCP_STAT_RCVSHORT);
1158 return;
1159 }
1160 /*
1161 * NOTE: ip/ip6 will not be affected by m_pulldown()
1162 * (as they're before toff) and we don't need to update those.
1163 */
1164 KASSERT(TCP_HDR_ALIGNED_P(th));
1165 optlen = off - sizeof (struct tcphdr);
1166 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1167 /*
1168 * Do quick retrieval of timestamp options ("options
1169 * prediction?"). If timestamp is the only option and it's
1170 * formatted as recommended in RFC 1323 appendix A, we
1171 * quickly get the values now and not bother calling
1172 * tcp_dooptions(), etc.
1173 */
1174 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1175 (optlen > TCPOLEN_TSTAMP_APPA &&
1176 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1177 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1178 (th->th_flags & TH_SYN) == 0) {
1179 opti.ts_present = 1;
1180 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1181 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1182 optp = NULL; /* we've parsed the options */
1183 }
1184 }
1185 tiflags = th->th_flags;
1186
1187 /*
1188 * Locate pcb for segment.
1189 */
1190 findpcb:
1191 inp = NULL;
1192 #ifdef INET6
1193 in6p = NULL;
1194 #endif
1195 switch (af) {
1196 #ifdef INET
1197 case AF_INET:
1198 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1199 ip->ip_dst, th->th_dport);
1200 if (inp == 0) {
1201 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1202 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1203 }
1204 #ifdef INET6
1205 if (inp == 0) {
1206 struct in6_addr s, d;
1207
1208 /* mapped addr case */
1209 memset(&s, 0, sizeof(s));
1210 s.s6_addr16[5] = htons(0xffff);
1211 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1212 memset(&d, 0, sizeof(d));
1213 d.s6_addr16[5] = htons(0xffff);
1214 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1215 in6p = in6_pcblookup_connect(&tcbtable, &s,
1216 th->th_sport, &d, th->th_dport, 0);
1217 if (in6p == 0) {
1218 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1219 in6p = in6_pcblookup_bind(&tcbtable, &d,
1220 th->th_dport, 0);
1221 }
1222 }
1223 #endif
1224 #ifndef INET6
1225 if (inp == 0)
1226 #else
1227 if (inp == 0 && in6p == 0)
1228 #endif
1229 {
1230 TCP_STATINC(TCP_STAT_NOPORT);
1231 if (tcp_log_refused &&
1232 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1233 tcp4_log_refused(ip, th);
1234 }
1235 tcp_fields_to_host(th);
1236 goto dropwithreset_ratelim;
1237 }
1238 #if defined(IPSEC) || defined(FAST_IPSEC)
1239 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1240 ipsec4_in_reject(m, inp)) {
1241 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1242 goto drop;
1243 }
1244 #ifdef INET6
1245 else if (in6p &&
1246 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1247 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1248 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1249 goto drop;
1250 }
1251 #endif
1252 #endif /*IPSEC*/
1253 break;
1254 #endif /*INET*/
1255 #ifdef INET6
1256 case AF_INET6:
1257 {
1258 int faith;
1259
1260 #if defined(NFAITH) && NFAITH > 0
1261 faith = faithprefix(&ip6->ip6_dst);
1262 #else
1263 faith = 0;
1264 #endif
1265 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1266 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1267 if (in6p == NULL) {
1268 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1269 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1270 th->th_dport, faith);
1271 }
1272 if (in6p == NULL) {
1273 TCP_STATINC(TCP_STAT_NOPORT);
1274 if (tcp_log_refused &&
1275 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1276 tcp6_log_refused(ip6, th);
1277 }
1278 tcp_fields_to_host(th);
1279 goto dropwithreset_ratelim;
1280 }
1281 #if defined(IPSEC) || defined(FAST_IPSEC)
1282 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1283 ipsec6_in_reject(m, in6p)) {
1284 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1285 goto drop;
1286 }
1287 #endif /*IPSEC*/
1288 break;
1289 }
1290 #endif
1291 }
1292
1293 /*
1294 * If the state is CLOSED (i.e., TCB does not exist) then
1295 * all data in the incoming segment is discarded.
1296 * If the TCB exists but is in CLOSED state, it is embryonic,
1297 * but should either do a listen or a connect soon.
1298 */
1299 tp = NULL;
1300 so = NULL;
1301 if (inp) {
1302 /* Check the minimum TTL for socket. */
1303 if (ip->ip_ttl < inp->inp_ip_minttl)
1304 goto drop;
1305
1306 tp = intotcpcb(inp);
1307 so = inp->inp_socket;
1308 }
1309 #ifdef INET6
1310 else if (in6p) {
1311 tp = in6totcpcb(in6p);
1312 so = in6p->in6p_socket;
1313 }
1314 #endif
1315 if (tp == 0) {
1316 tcp_fields_to_host(th);
1317 goto dropwithreset_ratelim;
1318 }
1319 if (tp->t_state == TCPS_CLOSED)
1320 goto drop;
1321
1322 KASSERT(so->so_lock == softnet_lock);
1323 KASSERT(solocked(so));
1324
1325 /*
1326 * Checksum extended TCP header and data.
1327 */
1328 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1329 goto badcsum;
1330
1331 tcp_fields_to_host(th);
1332
1333 /* Unscale the window into a 32-bit value. */
1334 if ((tiflags & TH_SYN) == 0)
1335 tiwin = th->th_win << tp->snd_scale;
1336 else
1337 tiwin = th->th_win;
1338
1339 #ifdef INET6
1340 /* save packet options if user wanted */
1341 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1342 if (in6p->in6p_options) {
1343 m_freem(in6p->in6p_options);
1344 in6p->in6p_options = 0;
1345 }
1346 KASSERT(ip6 != NULL);
1347 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1348 }
1349 #endif
1350
1351 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1352 union syn_cache_sa src;
1353 union syn_cache_sa dst;
1354
1355 memset(&src, 0, sizeof(src));
1356 memset(&dst, 0, sizeof(dst));
1357 switch (af) {
1358 #ifdef INET
1359 case AF_INET:
1360 src.sin.sin_len = sizeof(struct sockaddr_in);
1361 src.sin.sin_family = AF_INET;
1362 src.sin.sin_addr = ip->ip_src;
1363 src.sin.sin_port = th->th_sport;
1364
1365 dst.sin.sin_len = sizeof(struct sockaddr_in);
1366 dst.sin.sin_family = AF_INET;
1367 dst.sin.sin_addr = ip->ip_dst;
1368 dst.sin.sin_port = th->th_dport;
1369 break;
1370 #endif
1371 #ifdef INET6
1372 case AF_INET6:
1373 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1374 src.sin6.sin6_family = AF_INET6;
1375 src.sin6.sin6_addr = ip6->ip6_src;
1376 src.sin6.sin6_port = th->th_sport;
1377
1378 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1379 dst.sin6.sin6_family = AF_INET6;
1380 dst.sin6.sin6_addr = ip6->ip6_dst;
1381 dst.sin6.sin6_port = th->th_dport;
1382 break;
1383 #endif /* INET6 */
1384 default:
1385 goto badsyn; /*sanity*/
1386 }
1387
1388 if (so->so_options & SO_DEBUG) {
1389 #ifdef TCP_DEBUG
1390 ostate = tp->t_state;
1391 #endif
1392
1393 tcp_saveti = NULL;
1394 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1395 goto nosave;
1396
1397 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1398 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1399 if (!tcp_saveti)
1400 goto nosave;
1401 } else {
1402 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1403 if (!tcp_saveti)
1404 goto nosave;
1405 MCLAIM(m, &tcp_mowner);
1406 tcp_saveti->m_len = iphlen;
1407 m_copydata(m, 0, iphlen,
1408 mtod(tcp_saveti, void *));
1409 }
1410
1411 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1412 m_freem(tcp_saveti);
1413 tcp_saveti = NULL;
1414 } else {
1415 tcp_saveti->m_len += sizeof(struct tcphdr);
1416 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1417 sizeof(struct tcphdr));
1418 }
1419 nosave:;
1420 }
1421 if (so->so_options & SO_ACCEPTCONN) {
1422 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1423 if (tiflags & TH_RST) {
1424 syn_cache_reset(&src.sa, &dst.sa, th);
1425 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1426 (TH_ACK|TH_SYN)) {
1427 /*
1428 * Received a SYN,ACK. This should
1429 * never happen while we are in
1430 * LISTEN. Send an RST.
1431 */
1432 goto badsyn;
1433 } else if (tiflags & TH_ACK) {
1434 so = syn_cache_get(&src.sa, &dst.sa,
1435 th, toff, tlen, so, m);
1436 if (so == NULL) {
1437 /*
1438 * We don't have a SYN for
1439 * this ACK; send an RST.
1440 */
1441 goto badsyn;
1442 } else if (so ==
1443 (struct socket *)(-1)) {
1444 /*
1445 * We were unable to create
1446 * the connection. If the
1447 * 3-way handshake was
1448 * completed, and RST has
1449 * been sent to the peer.
1450 * Since the mbuf might be
1451 * in use for the reply,
1452 * do not free it.
1453 */
1454 m = NULL;
1455 } else {
1456 /*
1457 * We have created a
1458 * full-blown connection.
1459 */
1460 tp = NULL;
1461 inp = NULL;
1462 #ifdef INET6
1463 in6p = NULL;
1464 #endif
1465 switch (so->so_proto->pr_domain->dom_family) {
1466 #ifdef INET
1467 case AF_INET:
1468 inp = sotoinpcb(so);
1469 tp = intotcpcb(inp);
1470 break;
1471 #endif
1472 #ifdef INET6
1473 case AF_INET6:
1474 in6p = sotoin6pcb(so);
1475 tp = in6totcpcb(in6p);
1476 break;
1477 #endif
1478 }
1479 if (tp == NULL)
1480 goto badsyn; /*XXX*/
1481 tiwin <<= tp->snd_scale;
1482 goto after_listen;
1483 }
1484 } else {
1485 /*
1486 * None of RST, SYN or ACK was set.
1487 * This is an invalid packet for a
1488 * TCB in LISTEN state. Send a RST.
1489 */
1490 goto badsyn;
1491 }
1492 } else {
1493 /*
1494 * Received a SYN.
1495 *
1496 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1497 */
1498 if (m->m_flags & (M_BCAST|M_MCAST))
1499 goto drop;
1500
1501 switch (af) {
1502 #ifdef INET6
1503 case AF_INET6:
1504 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1505 goto drop;
1506 break;
1507 #endif /* INET6 */
1508 case AF_INET:
1509 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1510 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1511 goto drop;
1512 break;
1513 }
1514
1515 #ifdef INET6
1516 /*
1517 * If deprecated address is forbidden, we do
1518 * not accept SYN to deprecated interface
1519 * address to prevent any new inbound
1520 * connection from getting established.
1521 * When we do not accept SYN, we send a TCP
1522 * RST, with deprecated source address (instead
1523 * of dropping it). We compromise it as it is
1524 * much better for peer to send a RST, and
1525 * RST will be the final packet for the
1526 * exchange.
1527 *
1528 * If we do not forbid deprecated addresses, we
1529 * accept the SYN packet. RFC2462 does not
1530 * suggest dropping SYN in this case.
1531 * If we decipher RFC2462 5.5.4, it says like
1532 * this:
1533 * 1. use of deprecated addr with existing
1534 * communication is okay - "SHOULD continue
1535 * to be used"
1536 * 2. use of it with new communication:
1537 * (2a) "SHOULD NOT be used if alternate
1538 * address with sufficient scope is
1539 * available"
1540 * (2b) nothing mentioned otherwise.
1541 * Here we fall into (2b) case as we have no
1542 * choice in our source address selection - we
1543 * must obey the peer.
1544 *
1545 * The wording in RFC2462 is confusing, and
1546 * there are multiple description text for
1547 * deprecated address handling - worse, they
1548 * are not exactly the same. I believe 5.5.4
1549 * is the best one, so we follow 5.5.4.
1550 */
1551 if (af == AF_INET6 && !ip6_use_deprecated) {
1552 struct in6_ifaddr *ia6;
1553 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1554 &ip6->ip6_dst)) &&
1555 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1556 tp = NULL;
1557 goto dropwithreset;
1558 }
1559 }
1560 #endif
1561
1562 #if defined(IPSEC) || defined(FAST_IPSEC)
1563 switch (af) {
1564 #ifdef INET
1565 case AF_INET:
1566 if (ipsec4_in_reject_so(m, so)) {
1567 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1568 tp = NULL;
1569 goto dropwithreset;
1570 }
1571 break;
1572 #endif
1573 #ifdef INET6
1574 case AF_INET6:
1575 if (ipsec6_in_reject_so(m, so)) {
1576 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1577 tp = NULL;
1578 goto dropwithreset;
1579 }
1580 break;
1581 #endif /*INET6*/
1582 }
1583 #endif /*IPSEC*/
1584
1585 /*
1586 * LISTEN socket received a SYN
1587 * from itself? This can't possibly
1588 * be valid; drop the packet.
1589 */
1590 if (th->th_sport == th->th_dport) {
1591 int i;
1592
1593 switch (af) {
1594 #ifdef INET
1595 case AF_INET:
1596 i = in_hosteq(ip->ip_src, ip->ip_dst);
1597 break;
1598 #endif
1599 #ifdef INET6
1600 case AF_INET6:
1601 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1602 break;
1603 #endif
1604 default:
1605 i = 1;
1606 }
1607 if (i) {
1608 TCP_STATINC(TCP_STAT_BADSYN);
1609 goto drop;
1610 }
1611 }
1612
1613 /*
1614 * SYN looks ok; create compressed TCP
1615 * state for it.
1616 */
1617 if (so->so_qlen <= so->so_qlimit &&
1618 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1619 so, m, optp, optlen, &opti))
1620 m = NULL;
1621 }
1622 goto drop;
1623 }
1624 }
1625
1626 after_listen:
1627 #ifdef DIAGNOSTIC
1628 /*
1629 * Should not happen now that all embryonic connections
1630 * are handled with compressed state.
1631 */
1632 if (tp->t_state == TCPS_LISTEN)
1633 panic("tcp_input: TCPS_LISTEN");
1634 #endif
1635
1636 /*
1637 * Segment received on connection.
1638 * Reset idle time and keep-alive timer.
1639 */
1640 tp->t_rcvtime = tcp_now;
1641 if (TCPS_HAVEESTABLISHED(tp->t_state))
1642 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1643
1644 /*
1645 * Process options.
1646 */
1647 #ifdef TCP_SIGNATURE
1648 if (optp || (tp->t_flags & TF_SIGNATURE))
1649 #else
1650 if (optp)
1651 #endif
1652 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1653 goto drop;
1654
1655 if (TCP_SACK_ENABLED(tp)) {
1656 tcp_del_sackholes(tp, th);
1657 }
1658
1659 if (TCP_ECN_ALLOWED(tp)) {
1660 if (tiflags & TH_CWR) {
1661 tp->t_flags &= ~TF_ECN_SND_ECE;
1662 }
1663 switch (iptos & IPTOS_ECN_MASK) {
1664 case IPTOS_ECN_CE:
1665 tp->t_flags |= TF_ECN_SND_ECE;
1666 TCP_STATINC(TCP_STAT_ECN_CE);
1667 break;
1668 case IPTOS_ECN_ECT0:
1669 TCP_STATINC(TCP_STAT_ECN_ECT);
1670 break;
1671 case IPTOS_ECN_ECT1:
1672 /* XXX: ignore for now -- rpaulo */
1673 break;
1674 }
1675 /*
1676 * Congestion experienced.
1677 * Ignore if we are already trying to recover.
1678 */
1679 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1680 tp->t_congctl->cong_exp(tp);
1681 }
1682
1683 if (opti.ts_present && opti.ts_ecr) {
1684 /*
1685 * Calculate the RTT from the returned time stamp and the
1686 * connection's time base. If the time stamp is later than
1687 * the current time, or is extremely old, fall back to non-1323
1688 * RTT calculation. Since ts_ecr is unsigned, we can test both
1689 * at the same time.
1690 */
1691 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1692 if (ts_rtt > TCP_PAWS_IDLE)
1693 ts_rtt = 0;
1694 } else {
1695 ts_rtt = 0;
1696 }
1697
1698 /*
1699 * Header prediction: check for the two common cases
1700 * of a uni-directional data xfer. If the packet has
1701 * no control flags, is in-sequence, the window didn't
1702 * change and we're not retransmitting, it's a
1703 * candidate. If the length is zero and the ack moved
1704 * forward, we're the sender side of the xfer. Just
1705 * free the data acked & wake any higher level process
1706 * that was blocked waiting for space. If the length
1707 * is non-zero and the ack didn't move, we're the
1708 * receiver side. If we're getting packets in-order
1709 * (the reassembly queue is empty), add the data to
1710 * the socket buffer and note that we need a delayed ack.
1711 */
1712 if (tp->t_state == TCPS_ESTABLISHED &&
1713 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1714 == TH_ACK &&
1715 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1716 th->th_seq == tp->rcv_nxt &&
1717 tiwin && tiwin == tp->snd_wnd &&
1718 tp->snd_nxt == tp->snd_max) {
1719
1720 /*
1721 * If last ACK falls within this segment's sequence numbers,
1722 * record the timestamp.
1723 * NOTE that the test is modified according to the latest
1724 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1725 *
1726 * note that we already know
1727 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1728 */
1729 if (opti.ts_present &&
1730 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1731 tp->ts_recent_age = tcp_now;
1732 tp->ts_recent = opti.ts_val;
1733 }
1734
1735 if (tlen == 0) {
1736 /* Ack prediction. */
1737 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1738 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1739 tp->snd_cwnd >= tp->snd_wnd &&
1740 tp->t_partialacks < 0) {
1741 /*
1742 * this is a pure ack for outstanding data.
1743 */
1744 if (ts_rtt)
1745 tcp_xmit_timer(tp, ts_rtt);
1746 else if (tp->t_rtttime &&
1747 SEQ_GT(th->th_ack, tp->t_rtseq))
1748 tcp_xmit_timer(tp,
1749 tcp_now - tp->t_rtttime);
1750 acked = th->th_ack - tp->snd_una;
1751 tcps = TCP_STAT_GETREF();
1752 tcps[TCP_STAT_PREDACK]++;
1753 tcps[TCP_STAT_RCVACKPACK]++;
1754 tcps[TCP_STAT_RCVACKBYTE] += acked;
1755 TCP_STAT_PUTREF();
1756 nd6_hint(tp);
1757
1758 if (acked > (tp->t_lastoff - tp->t_inoff))
1759 tp->t_lastm = NULL;
1760 sbdrop(&so->so_snd, acked);
1761 tp->t_lastoff -= acked;
1762
1763 icmp_check(tp, th, acked);
1764
1765 tp->snd_una = th->th_ack;
1766 tp->snd_fack = tp->snd_una;
1767 if (SEQ_LT(tp->snd_high, tp->snd_una))
1768 tp->snd_high = tp->snd_una;
1769 m_freem(m);
1770
1771 /*
1772 * If all outstanding data are acked, stop
1773 * retransmit timer, otherwise restart timer
1774 * using current (possibly backed-off) value.
1775 * If process is waiting for space,
1776 * wakeup/selnotify/signal. If data
1777 * are ready to send, let tcp_output
1778 * decide between more output or persist.
1779 */
1780 if (tp->snd_una == tp->snd_max)
1781 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1782 else if (TCP_TIMER_ISARMED(tp,
1783 TCPT_PERSIST) == 0)
1784 TCP_TIMER_ARM(tp, TCPT_REXMT,
1785 tp->t_rxtcur);
1786
1787 sowwakeup(so);
1788 if (so->so_snd.sb_cc) {
1789 KERNEL_LOCK(1, NULL);
1790 (void) tcp_output(tp);
1791 KERNEL_UNLOCK_ONE(NULL);
1792 }
1793 if (tcp_saveti)
1794 m_freem(tcp_saveti);
1795 return;
1796 }
1797 } else if (th->th_ack == tp->snd_una &&
1798 TAILQ_FIRST(&tp->segq) == NULL &&
1799 tlen <= sbspace(&so->so_rcv)) {
1800 int newsize = 0; /* automatic sockbuf scaling */
1801
1802 /*
1803 * this is a pure, in-sequence data packet
1804 * with nothing on the reassembly queue and
1805 * we have enough buffer space to take it.
1806 */
1807 tp->rcv_nxt += tlen;
1808 tcps = TCP_STAT_GETREF();
1809 tcps[TCP_STAT_PREDDAT]++;
1810 tcps[TCP_STAT_RCVPACK]++;
1811 tcps[TCP_STAT_RCVBYTE] += tlen;
1812 TCP_STAT_PUTREF();
1813 nd6_hint(tp);
1814
1815 /*
1816 * Automatic sizing enables the performance of large buffers
1817 * and most of the efficiency of small ones by only allocating
1818 * space when it is needed.
1819 *
1820 * On the receive side the socket buffer memory is only rarely
1821 * used to any significant extent. This allows us to be much
1822 * more aggressive in scaling the receive socket buffer. For
1823 * the case that the buffer space is actually used to a large
1824 * extent and we run out of kernel memory we can simply drop
1825 * the new segments; TCP on the sender will just retransmit it
1826 * later. Setting the buffer size too big may only consume too
1827 * much kernel memory if the application doesn't read() from
1828 * the socket or packet loss or reordering makes use of the
1829 * reassembly queue.
1830 *
1831 * The criteria to step up the receive buffer one notch are:
1832 * 1. the number of bytes received during the time it takes
1833 * one timestamp to be reflected back to us (the RTT);
1834 * 2. received bytes per RTT is within seven eighth of the
1835 * current socket buffer size;
1836 * 3. receive buffer size has not hit maximal automatic size;
1837 *
1838 * This algorithm does one step per RTT at most and only if
1839 * we receive a bulk stream w/o packet losses or reorderings.
1840 * Shrinking the buffer during idle times is not necessary as
1841 * it doesn't consume any memory when idle.
1842 *
1843 * TODO: Only step up if the application is actually serving
1844 * the buffer to better manage the socket buffer resources.
1845 */
1846 if (tcp_do_autorcvbuf &&
1847 opti.ts_ecr &&
1848 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1849 if (opti.ts_ecr > tp->rfbuf_ts &&
1850 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1851 if (tp->rfbuf_cnt >
1852 (so->so_rcv.sb_hiwat / 8 * 7) &&
1853 so->so_rcv.sb_hiwat <
1854 tcp_autorcvbuf_max) {
1855 newsize =
1856 min(so->so_rcv.sb_hiwat +
1857 tcp_autorcvbuf_inc,
1858 tcp_autorcvbuf_max);
1859 }
1860 /* Start over with next RTT. */
1861 tp->rfbuf_ts = 0;
1862 tp->rfbuf_cnt = 0;
1863 } else
1864 tp->rfbuf_cnt += tlen; /* add up */
1865 }
1866
1867 /*
1868 * Drop TCP, IP headers and TCP options then add data
1869 * to socket buffer.
1870 */
1871 if (so->so_state & SS_CANTRCVMORE)
1872 m_freem(m);
1873 else {
1874 /*
1875 * Set new socket buffer size.
1876 * Give up when limit is reached.
1877 */
1878 if (newsize)
1879 if (!sbreserve(&so->so_rcv,
1880 newsize, so))
1881 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1882 m_adj(m, toff + off);
1883 sbappendstream(&so->so_rcv, m);
1884 }
1885 sorwakeup(so);
1886 tcp_setup_ack(tp, th);
1887 if (tp->t_flags & TF_ACKNOW) {
1888 KERNEL_LOCK(1, NULL);
1889 (void) tcp_output(tp);
1890 KERNEL_UNLOCK_ONE(NULL);
1891 }
1892 if (tcp_saveti)
1893 m_freem(tcp_saveti);
1894 return;
1895 }
1896 }
1897
1898 /*
1899 * Compute mbuf offset to TCP data segment.
1900 */
1901 hdroptlen = toff + off;
1902
1903 /*
1904 * Calculate amount of space in receive window,
1905 * and then do TCP input processing.
1906 * Receive window is amount of space in rcv queue,
1907 * but not less than advertised window.
1908 */
1909 { int win;
1910
1911 win = sbspace(&so->so_rcv);
1912 if (win < 0)
1913 win = 0;
1914 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1915 }
1916
1917 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1918 tp->rfbuf_ts = 0;
1919 tp->rfbuf_cnt = 0;
1920
1921 switch (tp->t_state) {
1922 /*
1923 * If the state is SYN_SENT:
1924 * if seg contains an ACK, but not for our SYN, drop the input.
1925 * if seg contains a RST, then drop the connection.
1926 * if seg does not contain SYN, then drop it.
1927 * Otherwise this is an acceptable SYN segment
1928 * initialize tp->rcv_nxt and tp->irs
1929 * if seg contains ack then advance tp->snd_una
1930 * if seg contains a ECE and ECN support is enabled, the stream
1931 * is ECN capable.
1932 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1933 * arrange for segment to be acked (eventually)
1934 * continue processing rest of data/controls, beginning with URG
1935 */
1936 case TCPS_SYN_SENT:
1937 if ((tiflags & TH_ACK) &&
1938 (SEQ_LEQ(th->th_ack, tp->iss) ||
1939 SEQ_GT(th->th_ack, tp->snd_max)))
1940 goto dropwithreset;
1941 if (tiflags & TH_RST) {
1942 if (tiflags & TH_ACK)
1943 tp = tcp_drop(tp, ECONNREFUSED);
1944 goto drop;
1945 }
1946 if ((tiflags & TH_SYN) == 0)
1947 goto drop;
1948 if (tiflags & TH_ACK) {
1949 tp->snd_una = th->th_ack;
1950 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1951 tp->snd_nxt = tp->snd_una;
1952 if (SEQ_LT(tp->snd_high, tp->snd_una))
1953 tp->snd_high = tp->snd_una;
1954 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1955
1956 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1957 tp->t_flags |= TF_ECN_PERMIT;
1958 TCP_STATINC(TCP_STAT_ECN_SHS);
1959 }
1960
1961 }
1962 tp->irs = th->th_seq;
1963 tcp_rcvseqinit(tp);
1964 tp->t_flags |= TF_ACKNOW;
1965 tcp_mss_from_peer(tp, opti.maxseg);
1966
1967 /*
1968 * Initialize the initial congestion window. If we
1969 * had to retransmit the SYN, we must initialize cwnd
1970 * to 1 segment (i.e. the Loss Window).
1971 */
1972 if (tp->t_flags & TF_SYN_REXMT)
1973 tp->snd_cwnd = tp->t_peermss;
1974 else {
1975 int ss = tcp_init_win;
1976 #ifdef INET
1977 if (inp != NULL && in_localaddr(inp->inp_faddr))
1978 ss = tcp_init_win_local;
1979 #endif
1980 #ifdef INET6
1981 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1982 ss = tcp_init_win_local;
1983 #endif
1984 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1985 }
1986
1987 tcp_rmx_rtt(tp);
1988 if (tiflags & TH_ACK) {
1989 TCP_STATINC(TCP_STAT_CONNECTS);
1990 soisconnected(so);
1991 tcp_established(tp);
1992 /* Do window scaling on this connection? */
1993 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
1994 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
1995 tp->snd_scale = tp->requested_s_scale;
1996 tp->rcv_scale = tp->request_r_scale;
1997 }
1998 TCP_REASS_LOCK(tp);
1999 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2000 TCP_REASS_UNLOCK(tp);
2001 /*
2002 * if we didn't have to retransmit the SYN,
2003 * use its rtt as our initial srtt & rtt var.
2004 */
2005 if (tp->t_rtttime)
2006 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2007 } else
2008 tp->t_state = TCPS_SYN_RECEIVED;
2009
2010 /*
2011 * Advance th->th_seq to correspond to first data byte.
2012 * If data, trim to stay within window,
2013 * dropping FIN if necessary.
2014 */
2015 th->th_seq++;
2016 if (tlen > tp->rcv_wnd) {
2017 todrop = tlen - tp->rcv_wnd;
2018 m_adj(m, -todrop);
2019 tlen = tp->rcv_wnd;
2020 tiflags &= ~TH_FIN;
2021 tcps = TCP_STAT_GETREF();
2022 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2023 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2024 TCP_STAT_PUTREF();
2025 }
2026 tp->snd_wl1 = th->th_seq - 1;
2027 tp->rcv_up = th->th_seq;
2028 goto step6;
2029
2030 /*
2031 * If the state is SYN_RECEIVED:
2032 * If seg contains an ACK, but not for our SYN, drop the input
2033 * and generate an RST. See page 36, rfc793
2034 */
2035 case TCPS_SYN_RECEIVED:
2036 if ((tiflags & TH_ACK) &&
2037 (SEQ_LEQ(th->th_ack, tp->iss) ||
2038 SEQ_GT(th->th_ack, tp->snd_max)))
2039 goto dropwithreset;
2040 break;
2041 }
2042
2043 /*
2044 * States other than LISTEN or SYN_SENT.
2045 * First check timestamp, if present.
2046 * Then check that at least some bytes of segment are within
2047 * receive window. If segment begins before rcv_nxt,
2048 * drop leading data (and SYN); if nothing left, just ack.
2049 *
2050 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2051 * and it's less than ts_recent, drop it.
2052 */
2053 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2054 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2055
2056 /* Check to see if ts_recent is over 24 days old. */
2057 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2058 /*
2059 * Invalidate ts_recent. If this segment updates
2060 * ts_recent, the age will be reset later and ts_recent
2061 * will get a valid value. If it does not, setting
2062 * ts_recent to zero will at least satisfy the
2063 * requirement that zero be placed in the timestamp
2064 * echo reply when ts_recent isn't valid. The
2065 * age isn't reset until we get a valid ts_recent
2066 * because we don't want out-of-order segments to be
2067 * dropped when ts_recent is old.
2068 */
2069 tp->ts_recent = 0;
2070 } else {
2071 tcps = TCP_STAT_GETREF();
2072 tcps[TCP_STAT_RCVDUPPACK]++;
2073 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2074 tcps[TCP_STAT_PAWSDROP]++;
2075 TCP_STAT_PUTREF();
2076 tcp_new_dsack(tp, th->th_seq, tlen);
2077 goto dropafterack;
2078 }
2079 }
2080
2081 todrop = tp->rcv_nxt - th->th_seq;
2082 dupseg = false;
2083 if (todrop > 0) {
2084 if (tiflags & TH_SYN) {
2085 tiflags &= ~TH_SYN;
2086 th->th_seq++;
2087 if (th->th_urp > 1)
2088 th->th_urp--;
2089 else {
2090 tiflags &= ~TH_URG;
2091 th->th_urp = 0;
2092 }
2093 todrop--;
2094 }
2095 if (todrop > tlen ||
2096 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2097 /*
2098 * Any valid FIN or RST must be to the left of the
2099 * window. At this point the FIN or RST must be a
2100 * duplicate or out of sequence; drop it.
2101 */
2102 if (tiflags & TH_RST)
2103 goto drop;
2104 tiflags &= ~(TH_FIN|TH_RST);
2105 /*
2106 * Send an ACK to resynchronize and drop any data.
2107 * But keep on processing for RST or ACK.
2108 */
2109 tp->t_flags |= TF_ACKNOW;
2110 todrop = tlen;
2111 dupseg = true;
2112 tcps = TCP_STAT_GETREF();
2113 tcps[TCP_STAT_RCVDUPPACK]++;
2114 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2115 TCP_STAT_PUTREF();
2116 } else if ((tiflags & TH_RST) &&
2117 th->th_seq != tp->rcv_nxt) {
2118 /*
2119 * Test for reset before adjusting the sequence
2120 * number for overlapping data.
2121 */
2122 goto dropafterack_ratelim;
2123 } else {
2124 tcps = TCP_STAT_GETREF();
2125 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2126 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2127 TCP_STAT_PUTREF();
2128 }
2129 tcp_new_dsack(tp, th->th_seq, todrop);
2130 hdroptlen += todrop; /*drop from head afterwards*/
2131 th->th_seq += todrop;
2132 tlen -= todrop;
2133 if (th->th_urp > todrop)
2134 th->th_urp -= todrop;
2135 else {
2136 tiflags &= ~TH_URG;
2137 th->th_urp = 0;
2138 }
2139 }
2140
2141 /*
2142 * If new data are received on a connection after the
2143 * user processes are gone, then RST the other end.
2144 */
2145 if ((so->so_state & SS_NOFDREF) &&
2146 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2147 tp = tcp_close(tp);
2148 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2149 goto dropwithreset;
2150 }
2151
2152 /*
2153 * If segment ends after window, drop trailing data
2154 * (and PUSH and FIN); if nothing left, just ACK.
2155 */
2156 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2157 if (todrop > 0) {
2158 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2159 if (todrop >= tlen) {
2160 /*
2161 * The segment actually starts after the window.
2162 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2163 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2164 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2165 */
2166 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2167 /*
2168 * If a new connection request is received
2169 * while in TIME_WAIT, drop the old connection
2170 * and start over if the sequence numbers
2171 * are above the previous ones.
2172 *
2173 * NOTE: We will checksum the packet again, and
2174 * so we need to put the header fields back into
2175 * network order!
2176 * XXX This kind of sucks, but we don't expect
2177 * XXX this to happen very often, so maybe it
2178 * XXX doesn't matter so much.
2179 */
2180 if (tiflags & TH_SYN &&
2181 tp->t_state == TCPS_TIME_WAIT &&
2182 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2183 tp = tcp_close(tp);
2184 tcp_fields_to_net(th);
2185 goto findpcb;
2186 }
2187 /*
2188 * If window is closed can only take segments at
2189 * window edge, and have to drop data and PUSH from
2190 * incoming segments. Continue processing, but
2191 * remember to ack. Otherwise, drop segment
2192 * and (if not RST) ack.
2193 */
2194 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2195 tp->t_flags |= TF_ACKNOW;
2196 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2197 } else
2198 goto dropafterack;
2199 } else
2200 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2201 m_adj(m, -todrop);
2202 tlen -= todrop;
2203 tiflags &= ~(TH_PUSH|TH_FIN);
2204 }
2205
2206 /*
2207 * If last ACK falls within this segment's sequence numbers,
2208 * record the timestamp.
2209 * NOTE:
2210 * 1) That the test incorporates suggestions from the latest
2211 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2212 * 2) That updating only on newer timestamps interferes with
2213 * our earlier PAWS tests, so this check should be solely
2214 * predicated on the sequence space of this segment.
2215 * 3) That we modify the segment boundary check to be
2216 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2217 * instead of RFC1323's
2218 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2219 * This modified check allows us to overcome RFC1323's
2220 * limitations as described in Stevens TCP/IP Illustrated
2221 * Vol. 2 p.869. In such cases, we can still calculate the
2222 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2223 */
2224 if (opti.ts_present &&
2225 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2226 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2227 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2228 tp->ts_recent_age = tcp_now;
2229 tp->ts_recent = opti.ts_val;
2230 }
2231
2232 /*
2233 * If the RST bit is set examine the state:
2234 * SYN_RECEIVED STATE:
2235 * If passive open, return to LISTEN state.
2236 * If active open, inform user that connection was refused.
2237 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2238 * Inform user that connection was reset, and close tcb.
2239 * CLOSING, LAST_ACK, TIME_WAIT STATES
2240 * Close the tcb.
2241 */
2242 if (tiflags & TH_RST) {
2243 if (th->th_seq != tp->rcv_nxt)
2244 goto dropafterack_ratelim;
2245
2246 switch (tp->t_state) {
2247 case TCPS_SYN_RECEIVED:
2248 so->so_error = ECONNREFUSED;
2249 goto close;
2250
2251 case TCPS_ESTABLISHED:
2252 case TCPS_FIN_WAIT_1:
2253 case TCPS_FIN_WAIT_2:
2254 case TCPS_CLOSE_WAIT:
2255 so->so_error = ECONNRESET;
2256 close:
2257 tp->t_state = TCPS_CLOSED;
2258 TCP_STATINC(TCP_STAT_DROPS);
2259 tp = tcp_close(tp);
2260 goto drop;
2261
2262 case TCPS_CLOSING:
2263 case TCPS_LAST_ACK:
2264 case TCPS_TIME_WAIT:
2265 tp = tcp_close(tp);
2266 goto drop;
2267 }
2268 }
2269
2270 /*
2271 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2272 * we must be in a synchronized state. RFC791 states (under RST
2273 * generation) that any unacceptable segment (an out-of-order SYN
2274 * qualifies) received in a synchronized state must elicit only an
2275 * empty acknowledgment segment ... and the connection remains in
2276 * the same state.
2277 */
2278 if (tiflags & TH_SYN) {
2279 if (tp->rcv_nxt == th->th_seq) {
2280 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2281 TH_ACK);
2282 if (tcp_saveti)
2283 m_freem(tcp_saveti);
2284 return;
2285 }
2286
2287 goto dropafterack_ratelim;
2288 }
2289
2290 /*
2291 * If the ACK bit is off we drop the segment and return.
2292 */
2293 if ((tiflags & TH_ACK) == 0) {
2294 if (tp->t_flags & TF_ACKNOW)
2295 goto dropafterack;
2296 else
2297 goto drop;
2298 }
2299
2300 /*
2301 * Ack processing.
2302 */
2303 switch (tp->t_state) {
2304
2305 /*
2306 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2307 * ESTABLISHED state and continue processing, otherwise
2308 * send an RST.
2309 */
2310 case TCPS_SYN_RECEIVED:
2311 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2312 SEQ_GT(th->th_ack, tp->snd_max))
2313 goto dropwithreset;
2314 TCP_STATINC(TCP_STAT_CONNECTS);
2315 soisconnected(so);
2316 tcp_established(tp);
2317 /* Do window scaling? */
2318 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2319 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2320 tp->snd_scale = tp->requested_s_scale;
2321 tp->rcv_scale = tp->request_r_scale;
2322 }
2323 TCP_REASS_LOCK(tp);
2324 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2325 TCP_REASS_UNLOCK(tp);
2326 tp->snd_wl1 = th->th_seq - 1;
2327 /* fall into ... */
2328
2329 /*
2330 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2331 * ACKs. If the ack is in the range
2332 * tp->snd_una < th->th_ack <= tp->snd_max
2333 * then advance tp->snd_una to th->th_ack and drop
2334 * data from the retransmission queue. If this ACK reflects
2335 * more up to date window information we update our window information.
2336 */
2337 case TCPS_ESTABLISHED:
2338 case TCPS_FIN_WAIT_1:
2339 case TCPS_FIN_WAIT_2:
2340 case TCPS_CLOSE_WAIT:
2341 case TCPS_CLOSING:
2342 case TCPS_LAST_ACK:
2343 case TCPS_TIME_WAIT:
2344
2345 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2346 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2347 TCP_STATINC(TCP_STAT_RCVDUPPACK);
2348 /*
2349 * If we have outstanding data (other than
2350 * a window probe), this is a completely
2351 * duplicate ack (ie, window info didn't
2352 * change), the ack is the biggest we've
2353 * seen and we've seen exactly our rexmt
2354 * threshhold of them, assume a packet
2355 * has been dropped and retransmit it.
2356 * Kludge snd_nxt & the congestion
2357 * window so we send only this one
2358 * packet.
2359 */
2360 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2361 th->th_ack != tp->snd_una)
2362 tp->t_dupacks = 0;
2363 else if (tp->t_partialacks < 0 &&
2364 (++tp->t_dupacks == tcprexmtthresh ||
2365 TCP_FACK_FASTRECOV(tp))) {
2366 /*
2367 * Do the fast retransmit, and adjust
2368 * congestion control paramenters.
2369 */
2370 if (tp->t_congctl->fast_retransmit(tp, th)) {
2371 /* False fast retransmit */
2372 break;
2373 } else
2374 goto drop;
2375 } else if (tp->t_dupacks > tcprexmtthresh) {
2376 tp->snd_cwnd += tp->t_segsz;
2377 KERNEL_LOCK(1, NULL);
2378 (void) tcp_output(tp);
2379 KERNEL_UNLOCK_ONE(NULL);
2380 goto drop;
2381 }
2382 } else {
2383 /*
2384 * If the ack appears to be very old, only
2385 * allow data that is in-sequence. This
2386 * makes it somewhat more difficult to insert
2387 * forged data by guessing sequence numbers.
2388 * Sent an ack to try to update the send
2389 * sequence number on the other side.
2390 */
2391 if (tlen && th->th_seq != tp->rcv_nxt &&
2392 SEQ_LT(th->th_ack,
2393 tp->snd_una - tp->max_sndwnd))
2394 goto dropafterack;
2395 }
2396 break;
2397 }
2398 /*
2399 * If the congestion window was inflated to account
2400 * for the other side's cached packets, retract it.
2401 */
2402 /* XXX: make SACK have his own congestion control
2403 * struct -- rpaulo */
2404 if (TCP_SACK_ENABLED(tp))
2405 tcp_sack_newack(tp, th);
2406 else
2407 tp->t_congctl->fast_retransmit_newack(tp, th);
2408 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2409 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2410 goto dropafterack;
2411 }
2412 acked = th->th_ack - tp->snd_una;
2413 tcps = TCP_STAT_GETREF();
2414 tcps[TCP_STAT_RCVACKPACK]++;
2415 tcps[TCP_STAT_RCVACKBYTE] += acked;
2416 TCP_STAT_PUTREF();
2417
2418 /*
2419 * If we have a timestamp reply, update smoothed
2420 * round trip time. If no timestamp is present but
2421 * transmit timer is running and timed sequence
2422 * number was acked, update smoothed round trip time.
2423 * Since we now have an rtt measurement, cancel the
2424 * timer backoff (cf., Phil Karn's retransmit alg.).
2425 * Recompute the initial retransmit timer.
2426 */
2427 if (ts_rtt)
2428 tcp_xmit_timer(tp, ts_rtt);
2429 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2430 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2431
2432 /*
2433 * If all outstanding data is acked, stop retransmit
2434 * timer and remember to restart (more output or persist).
2435 * If there is more data to be acked, restart retransmit
2436 * timer, using current (possibly backed-off) value.
2437 */
2438 if (th->th_ack == tp->snd_max) {
2439 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2440 needoutput = 1;
2441 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2442 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2443
2444 /*
2445 * New data has been acked, adjust the congestion window.
2446 */
2447 tp->t_congctl->newack(tp, th);
2448
2449 nd6_hint(tp);
2450 if (acked > so->so_snd.sb_cc) {
2451 tp->snd_wnd -= so->so_snd.sb_cc;
2452 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2453 ourfinisacked = 1;
2454 } else {
2455 if (acked > (tp->t_lastoff - tp->t_inoff))
2456 tp->t_lastm = NULL;
2457 sbdrop(&so->so_snd, acked);
2458 tp->t_lastoff -= acked;
2459 tp->snd_wnd -= acked;
2460 ourfinisacked = 0;
2461 }
2462 sowwakeup(so);
2463
2464 icmp_check(tp, th, acked);
2465
2466 tp->snd_una = th->th_ack;
2467 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2468 tp->snd_fack = tp->snd_una;
2469 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2470 tp->snd_nxt = tp->snd_una;
2471 if (SEQ_LT(tp->snd_high, tp->snd_una))
2472 tp->snd_high = tp->snd_una;
2473
2474 switch (tp->t_state) {
2475
2476 /*
2477 * In FIN_WAIT_1 STATE in addition to the processing
2478 * for the ESTABLISHED state if our FIN is now acknowledged
2479 * then enter FIN_WAIT_2.
2480 */
2481 case TCPS_FIN_WAIT_1:
2482 if (ourfinisacked) {
2483 /*
2484 * If we can't receive any more
2485 * data, then closing user can proceed.
2486 * Starting the timer is contrary to the
2487 * specification, but if we don't get a FIN
2488 * we'll hang forever.
2489 */
2490 if (so->so_state & SS_CANTRCVMORE) {
2491 soisdisconnected(so);
2492 if (tp->t_maxidle > 0)
2493 TCP_TIMER_ARM(tp, TCPT_2MSL,
2494 tp->t_maxidle);
2495 }
2496 tp->t_state = TCPS_FIN_WAIT_2;
2497 }
2498 break;
2499
2500 /*
2501 * In CLOSING STATE in addition to the processing for
2502 * the ESTABLISHED state if the ACK acknowledges our FIN
2503 * then enter the TIME-WAIT state, otherwise ignore
2504 * the segment.
2505 */
2506 case TCPS_CLOSING:
2507 if (ourfinisacked) {
2508 tp->t_state = TCPS_TIME_WAIT;
2509 tcp_canceltimers(tp);
2510 TCP_TIMER_ARM(tp, TCPT_2MSL,
2511 2 * PR_SLOWHZ * tcp_msl);
2512 soisdisconnected(so);
2513 }
2514 break;
2515
2516 /*
2517 * In LAST_ACK, we may still be waiting for data to drain
2518 * and/or to be acked, as well as for the ack of our FIN.
2519 * If our FIN is now acknowledged, delete the TCB,
2520 * enter the closed state and return.
2521 */
2522 case TCPS_LAST_ACK:
2523 if (ourfinisacked) {
2524 tp = tcp_close(tp);
2525 goto drop;
2526 }
2527 break;
2528
2529 /*
2530 * In TIME_WAIT state the only thing that should arrive
2531 * is a retransmission of the remote FIN. Acknowledge
2532 * it and restart the finack timer.
2533 */
2534 case TCPS_TIME_WAIT:
2535 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2536 goto dropafterack;
2537 }
2538 }
2539
2540 step6:
2541 /*
2542 * Update window information.
2543 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2544 */
2545 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2546 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2547 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2548 /* keep track of pure window updates */
2549 if (tlen == 0 &&
2550 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2551 TCP_STATINC(TCP_STAT_RCVWINUPD);
2552 tp->snd_wnd = tiwin;
2553 tp->snd_wl1 = th->th_seq;
2554 tp->snd_wl2 = th->th_ack;
2555 if (tp->snd_wnd > tp->max_sndwnd)
2556 tp->max_sndwnd = tp->snd_wnd;
2557 needoutput = 1;
2558 }
2559
2560 /*
2561 * Process segments with URG.
2562 */
2563 if ((tiflags & TH_URG) && th->th_urp &&
2564 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2565 /*
2566 * This is a kludge, but if we receive and accept
2567 * random urgent pointers, we'll crash in
2568 * soreceive. It's hard to imagine someone
2569 * actually wanting to send this much urgent data.
2570 */
2571 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2572 th->th_urp = 0; /* XXX */
2573 tiflags &= ~TH_URG; /* XXX */
2574 goto dodata; /* XXX */
2575 }
2576 /*
2577 * If this segment advances the known urgent pointer,
2578 * then mark the data stream. This should not happen
2579 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2580 * a FIN has been received from the remote side.
2581 * In these states we ignore the URG.
2582 *
2583 * According to RFC961 (Assigned Protocols),
2584 * the urgent pointer points to the last octet
2585 * of urgent data. We continue, however,
2586 * to consider it to indicate the first octet
2587 * of data past the urgent section as the original
2588 * spec states (in one of two places).
2589 */
2590 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2591 tp->rcv_up = th->th_seq + th->th_urp;
2592 so->so_oobmark = so->so_rcv.sb_cc +
2593 (tp->rcv_up - tp->rcv_nxt) - 1;
2594 if (so->so_oobmark == 0)
2595 so->so_state |= SS_RCVATMARK;
2596 sohasoutofband(so);
2597 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2598 }
2599 /*
2600 * Remove out of band data so doesn't get presented to user.
2601 * This can happen independent of advancing the URG pointer,
2602 * but if two URG's are pending at once, some out-of-band
2603 * data may creep in... ick.
2604 */
2605 if (th->th_urp <= (u_int16_t) tlen
2606 #ifdef SO_OOBINLINE
2607 && (so->so_options & SO_OOBINLINE) == 0
2608 #endif
2609 )
2610 tcp_pulloutofband(so, th, m, hdroptlen);
2611 } else
2612 /*
2613 * If no out of band data is expected,
2614 * pull receive urgent pointer along
2615 * with the receive window.
2616 */
2617 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2618 tp->rcv_up = tp->rcv_nxt;
2619 dodata: /* XXX */
2620
2621 /*
2622 * Process the segment text, merging it into the TCP sequencing queue,
2623 * and arranging for acknowledgement of receipt if necessary.
2624 * This process logically involves adjusting tp->rcv_wnd as data
2625 * is presented to the user (this happens in tcp_usrreq.c,
2626 * case PRU_RCVD). If a FIN has already been received on this
2627 * connection then we just ignore the text.
2628 */
2629 if ((tlen || (tiflags & TH_FIN)) &&
2630 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2631 /*
2632 * Insert segment ti into reassembly queue of tcp with
2633 * control block tp. Return TH_FIN if reassembly now includes
2634 * a segment with FIN. The macro form does the common case
2635 * inline (segment is the next to be received on an
2636 * established connection, and the queue is empty),
2637 * avoiding linkage into and removal from the queue and
2638 * repetition of various conversions.
2639 * Set DELACK for segments received in order, but ack
2640 * immediately when segments are out of order
2641 * (so fast retransmit can work).
2642 */
2643 /* NOTE: this was TCP_REASS() macro, but used only once */
2644 TCP_REASS_LOCK(tp);
2645 if (th->th_seq == tp->rcv_nxt &&
2646 TAILQ_FIRST(&tp->segq) == NULL &&
2647 tp->t_state == TCPS_ESTABLISHED) {
2648 tcp_setup_ack(tp, th);
2649 tp->rcv_nxt += tlen;
2650 tiflags = th->th_flags & TH_FIN;
2651 tcps = TCP_STAT_GETREF();
2652 tcps[TCP_STAT_RCVPACK]++;
2653 tcps[TCP_STAT_RCVBYTE] += tlen;
2654 TCP_STAT_PUTREF();
2655 nd6_hint(tp);
2656 if (so->so_state & SS_CANTRCVMORE)
2657 m_freem(m);
2658 else {
2659 m_adj(m, hdroptlen);
2660 sbappendstream(&(so)->so_rcv, m);
2661 }
2662 TCP_REASS_UNLOCK(tp);
2663 sorwakeup(so);
2664 } else {
2665 m_adj(m, hdroptlen);
2666 tiflags = tcp_reass(tp, th, m, &tlen);
2667 tp->t_flags |= TF_ACKNOW;
2668 TCP_REASS_UNLOCK(tp);
2669 }
2670
2671 /*
2672 * Note the amount of data that peer has sent into
2673 * our window, in order to estimate the sender's
2674 * buffer size.
2675 */
2676 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2677 } else {
2678 m_freem(m);
2679 m = NULL;
2680 tiflags &= ~TH_FIN;
2681 }
2682
2683 /*
2684 * If FIN is received ACK the FIN and let the user know
2685 * that the connection is closing. Ignore a FIN received before
2686 * the connection is fully established.
2687 */
2688 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2689 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2690 socantrcvmore(so);
2691 tp->t_flags |= TF_ACKNOW;
2692 tp->rcv_nxt++;
2693 }
2694 switch (tp->t_state) {
2695
2696 /*
2697 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2698 */
2699 case TCPS_ESTABLISHED:
2700 tp->t_state = TCPS_CLOSE_WAIT;
2701 break;
2702
2703 /*
2704 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2705 * enter the CLOSING state.
2706 */
2707 case TCPS_FIN_WAIT_1:
2708 tp->t_state = TCPS_CLOSING;
2709 break;
2710
2711 /*
2712 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2713 * starting the time-wait timer, turning off the other
2714 * standard timers.
2715 */
2716 case TCPS_FIN_WAIT_2:
2717 tp->t_state = TCPS_TIME_WAIT;
2718 tcp_canceltimers(tp);
2719 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2720 soisdisconnected(so);
2721 break;
2722
2723 /*
2724 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2725 */
2726 case TCPS_TIME_WAIT:
2727 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2728 break;
2729 }
2730 }
2731 #ifdef TCP_DEBUG
2732 if (so->so_options & SO_DEBUG)
2733 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2734 #endif
2735
2736 /*
2737 * Return any desired output.
2738 */
2739 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2740 KERNEL_LOCK(1, NULL);
2741 (void) tcp_output(tp);
2742 KERNEL_UNLOCK_ONE(NULL);
2743 }
2744 if (tcp_saveti)
2745 m_freem(tcp_saveti);
2746 return;
2747
2748 badsyn:
2749 /*
2750 * Received a bad SYN. Increment counters and dropwithreset.
2751 */
2752 TCP_STATINC(TCP_STAT_BADSYN);
2753 tp = NULL;
2754 goto dropwithreset;
2755
2756 dropafterack:
2757 /*
2758 * Generate an ACK dropping incoming segment if it occupies
2759 * sequence space, where the ACK reflects our state.
2760 */
2761 if (tiflags & TH_RST)
2762 goto drop;
2763 goto dropafterack2;
2764
2765 dropafterack_ratelim:
2766 /*
2767 * We may want to rate-limit ACKs against SYN/RST attack.
2768 */
2769 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2770 tcp_ackdrop_ppslim) == 0) {
2771 /* XXX stat */
2772 goto drop;
2773 }
2774 /* ...fall into dropafterack2... */
2775
2776 dropafterack2:
2777 m_freem(m);
2778 tp->t_flags |= TF_ACKNOW;
2779 KERNEL_LOCK(1, NULL);
2780 (void) tcp_output(tp);
2781 KERNEL_UNLOCK_ONE(NULL);
2782 if (tcp_saveti)
2783 m_freem(tcp_saveti);
2784 return;
2785
2786 dropwithreset_ratelim:
2787 /*
2788 * We may want to rate-limit RSTs in certain situations,
2789 * particularly if we are sending an RST in response to
2790 * an attempt to connect to or otherwise communicate with
2791 * a port for which we have no socket.
2792 */
2793 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2794 tcp_rst_ppslim) == 0) {
2795 /* XXX stat */
2796 goto drop;
2797 }
2798 /* ...fall into dropwithreset... */
2799
2800 dropwithreset:
2801 /*
2802 * Generate a RST, dropping incoming segment.
2803 * Make ACK acceptable to originator of segment.
2804 */
2805 if (tiflags & TH_RST)
2806 goto drop;
2807
2808 switch (af) {
2809 #ifdef INET6
2810 case AF_INET6:
2811 /* For following calls to tcp_respond */
2812 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2813 goto drop;
2814 break;
2815 #endif /* INET6 */
2816 case AF_INET:
2817 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2818 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2819 goto drop;
2820 }
2821
2822 if (tiflags & TH_ACK)
2823 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2824 else {
2825 if (tiflags & TH_SYN)
2826 tlen++;
2827 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2828 TH_RST|TH_ACK);
2829 }
2830 if (tcp_saveti)
2831 m_freem(tcp_saveti);
2832 return;
2833
2834 badcsum:
2835 drop:
2836 /*
2837 * Drop space held by incoming segment and return.
2838 */
2839 if (tp) {
2840 if (tp->t_inpcb)
2841 so = tp->t_inpcb->inp_socket;
2842 #ifdef INET6
2843 else if (tp->t_in6pcb)
2844 so = tp->t_in6pcb->in6p_socket;
2845 #endif
2846 else
2847 so = NULL;
2848 #ifdef TCP_DEBUG
2849 if (so && (so->so_options & SO_DEBUG) != 0)
2850 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2851 #endif
2852 }
2853 if (tcp_saveti)
2854 m_freem(tcp_saveti);
2855 m_freem(m);
2856 return;
2857 }
2858
2859 #ifdef TCP_SIGNATURE
2860 int
2861 tcp_signature_apply(void *fstate, void *data, u_int len)
2862 {
2863
2864 MD5Update(fstate, (u_char *)data, len);
2865 return (0);
2866 }
2867
2868 struct secasvar *
2869 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2870 {
2871 struct secasvar *sav;
2872 #ifdef FAST_IPSEC
2873 union sockaddr_union dst;
2874 #endif
2875 struct ip *ip;
2876 struct ip6_hdr *ip6;
2877
2878 ip = mtod(m, struct ip *);
2879 switch (ip->ip_v) {
2880 case 4:
2881 ip = mtod(m, struct ip *);
2882 ip6 = NULL;
2883 break;
2884 case 6:
2885 ip = NULL;
2886 ip6 = mtod(m, struct ip6_hdr *);
2887 break;
2888 default:
2889 return (NULL);
2890 }
2891
2892 #ifdef FAST_IPSEC
2893 /* Extract the destination from the IP header in the mbuf. */
2894 memset(&dst, 0, sizeof(union sockaddr_union));
2895 if (ip !=NULL) {
2896 dst.sa.sa_len = sizeof(struct sockaddr_in);
2897 dst.sa.sa_family = AF_INET;
2898 dst.sin.sin_addr = ip->ip_dst;
2899 } else {
2900 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2901 dst.sa.sa_family = AF_INET6;
2902 dst.sin6.sin6_addr = ip6->ip6_dst;
2903 }
2904
2905 /*
2906 * Look up an SADB entry which matches the address of the peer.
2907 */
2908 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2909 #else
2910 if (ip)
2911 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2912 (void *)&ip->ip_dst, IPPROTO_TCP,
2913 htonl(TCP_SIG_SPI), 0, 0);
2914 else
2915 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2916 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2917 htonl(TCP_SIG_SPI), 0, 0);
2918 #endif
2919
2920 return (sav); /* freesav must be performed by caller */
2921 }
2922
2923 int
2924 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2925 struct secasvar *sav, char *sig)
2926 {
2927 MD5_CTX ctx;
2928 struct ip *ip;
2929 struct ipovly *ipovly;
2930 struct ip6_hdr *ip6;
2931 struct ippseudo ippseudo;
2932 struct ip6_hdr_pseudo ip6pseudo;
2933 struct tcphdr th0;
2934 int l, tcphdrlen;
2935
2936 if (sav == NULL)
2937 return (-1);
2938
2939 tcphdrlen = th->th_off * 4;
2940
2941 switch (mtod(m, struct ip *)->ip_v) {
2942 case 4:
2943 ip = mtod(m, struct ip *);
2944 ip6 = NULL;
2945 break;
2946 case 6:
2947 ip = NULL;
2948 ip6 = mtod(m, struct ip6_hdr *);
2949 break;
2950 default:
2951 return (-1);
2952 }
2953
2954 MD5Init(&ctx);
2955
2956 if (ip) {
2957 memset(&ippseudo, 0, sizeof(ippseudo));
2958 ipovly = (struct ipovly *)ip;
2959 ippseudo.ippseudo_src = ipovly->ih_src;
2960 ippseudo.ippseudo_dst = ipovly->ih_dst;
2961 ippseudo.ippseudo_pad = 0;
2962 ippseudo.ippseudo_p = IPPROTO_TCP;
2963 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2964 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2965 } else {
2966 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2967 ip6pseudo.ip6ph_src = ip6->ip6_src;
2968 in6_clearscope(&ip6pseudo.ip6ph_src);
2969 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2970 in6_clearscope(&ip6pseudo.ip6ph_dst);
2971 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2972 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2973 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2974 }
2975
2976 th0 = *th;
2977 th0.th_sum = 0;
2978 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2979
2980 l = m->m_pkthdr.len - thoff - tcphdrlen;
2981 if (l > 0)
2982 m_apply(m, thoff + tcphdrlen,
2983 m->m_pkthdr.len - thoff - tcphdrlen,
2984 tcp_signature_apply, &ctx);
2985
2986 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2987 MD5Final(sig, &ctx);
2988
2989 return (0);
2990 }
2991 #endif
2992
2993 static int
2994 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
2995 struct tcphdr *th,
2996 struct mbuf *m, int toff, struct tcp_opt_info *oi)
2997 {
2998 u_int16_t mss;
2999 int opt, optlen = 0;
3000 #ifdef TCP_SIGNATURE
3001 void *sigp = NULL;
3002 char sigbuf[TCP_SIGLEN];
3003 struct secasvar *sav = NULL;
3004 #endif
3005
3006 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3007 opt = cp[0];
3008 if (opt == TCPOPT_EOL)
3009 break;
3010 if (opt == TCPOPT_NOP)
3011 optlen = 1;
3012 else {
3013 if (cnt < 2)
3014 break;
3015 optlen = cp[1];
3016 if (optlen < 2 || optlen > cnt)
3017 break;
3018 }
3019 switch (opt) {
3020
3021 default:
3022 continue;
3023
3024 case TCPOPT_MAXSEG:
3025 if (optlen != TCPOLEN_MAXSEG)
3026 continue;
3027 if (!(th->th_flags & TH_SYN))
3028 continue;
3029 if (TCPS_HAVERCVDSYN(tp->t_state))
3030 continue;
3031 bcopy(cp + 2, &mss, sizeof(mss));
3032 oi->maxseg = ntohs(mss);
3033 break;
3034
3035 case TCPOPT_WINDOW:
3036 if (optlen != TCPOLEN_WINDOW)
3037 continue;
3038 if (!(th->th_flags & TH_SYN))
3039 continue;
3040 if (TCPS_HAVERCVDSYN(tp->t_state))
3041 continue;
3042 tp->t_flags |= TF_RCVD_SCALE;
3043 tp->requested_s_scale = cp[2];
3044 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3045 #if 0 /*XXX*/
3046 char *p;
3047
3048 if (ip)
3049 p = ntohl(ip->ip_src);
3050 #ifdef INET6
3051 else if (ip6)
3052 p = ip6_sprintf(&ip6->ip6_src);
3053 #endif
3054 else
3055 p = "(unknown)";
3056 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3057 "assuming %d\n",
3058 tp->requested_s_scale, p,
3059 TCP_MAX_WINSHIFT);
3060 #else
3061 log(LOG_ERR, "TCP: invalid wscale %d, "
3062 "assuming %d\n",
3063 tp->requested_s_scale,
3064 TCP_MAX_WINSHIFT);
3065 #endif
3066 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3067 }
3068 break;
3069
3070 case TCPOPT_TIMESTAMP:
3071 if (optlen != TCPOLEN_TIMESTAMP)
3072 continue;
3073 oi->ts_present = 1;
3074 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3075 NTOHL(oi->ts_val);
3076 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3077 NTOHL(oi->ts_ecr);
3078
3079 if (!(th->th_flags & TH_SYN))
3080 continue;
3081 if (TCPS_HAVERCVDSYN(tp->t_state))
3082 continue;
3083 /*
3084 * A timestamp received in a SYN makes
3085 * it ok to send timestamp requests and replies.
3086 */
3087 tp->t_flags |= TF_RCVD_TSTMP;
3088 tp->ts_recent = oi->ts_val;
3089 tp->ts_recent_age = tcp_now;
3090 break;
3091
3092 case TCPOPT_SACK_PERMITTED:
3093 if (optlen != TCPOLEN_SACK_PERMITTED)
3094 continue;
3095 if (!(th->th_flags & TH_SYN))
3096 continue;
3097 if (TCPS_HAVERCVDSYN(tp->t_state))
3098 continue;
3099 if (tcp_do_sack) {
3100 tp->t_flags |= TF_SACK_PERMIT;
3101 tp->t_flags |= TF_WILL_SACK;
3102 }
3103 break;
3104
3105 case TCPOPT_SACK:
3106 tcp_sack_option(tp, th, cp, optlen);
3107 break;
3108 #ifdef TCP_SIGNATURE
3109 case TCPOPT_SIGNATURE:
3110 if (optlen != TCPOLEN_SIGNATURE)
3111 continue;
3112 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3113 return (-1);
3114
3115 sigp = sigbuf;
3116 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3117 tp->t_flags |= TF_SIGNATURE;
3118 break;
3119 #endif
3120 }
3121 }
3122
3123 #ifdef TCP_SIGNATURE
3124 if (tp->t_flags & TF_SIGNATURE) {
3125
3126 sav = tcp_signature_getsav(m, th);
3127
3128 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3129 return (-1);
3130 }
3131
3132 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3133 if (sav == NULL)
3134 return (-1);
3135 #ifdef FAST_IPSEC
3136 KEY_FREESAV(&sav);
3137 #else
3138 key_freesav(sav);
3139 #endif
3140 return (-1);
3141 }
3142
3143 if (sigp) {
3144 char sig[TCP_SIGLEN];
3145
3146 tcp_fields_to_net(th);
3147 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3148 tcp_fields_to_host(th);
3149 if (sav == NULL)
3150 return (-1);
3151 #ifdef FAST_IPSEC
3152 KEY_FREESAV(&sav);
3153 #else
3154 key_freesav(sav);
3155 #endif
3156 return (-1);
3157 }
3158 tcp_fields_to_host(th);
3159
3160 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3161 TCP_STATINC(TCP_STAT_BADSIG);
3162 if (sav == NULL)
3163 return (-1);
3164 #ifdef FAST_IPSEC
3165 KEY_FREESAV(&sav);
3166 #else
3167 key_freesav(sav);
3168 #endif
3169 return (-1);
3170 } else
3171 TCP_STATINC(TCP_STAT_GOODSIG);
3172
3173 key_sa_recordxfer(sav, m);
3174 #ifdef FAST_IPSEC
3175 KEY_FREESAV(&sav);
3176 #else
3177 key_freesav(sav);
3178 #endif
3179 }
3180 #endif
3181
3182 return (0);
3183 }
3184
3185 /*
3186 * Pull out of band byte out of a segment so
3187 * it doesn't appear in the user's data queue.
3188 * It is still reflected in the segment length for
3189 * sequencing purposes.
3190 */
3191 void
3192 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3193 struct mbuf *m, int off)
3194 {
3195 int cnt = off + th->th_urp - 1;
3196
3197 while (cnt >= 0) {
3198 if (m->m_len > cnt) {
3199 char *cp = mtod(m, char *) + cnt;
3200 struct tcpcb *tp = sototcpcb(so);
3201
3202 tp->t_iobc = *cp;
3203 tp->t_oobflags |= TCPOOB_HAVEDATA;
3204 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3205 m->m_len--;
3206 return;
3207 }
3208 cnt -= m->m_len;
3209 m = m->m_next;
3210 if (m == 0)
3211 break;
3212 }
3213 panic("tcp_pulloutofband");
3214 }
3215
3216 /*
3217 * Collect new round-trip time estimate
3218 * and update averages and current timeout.
3219 */
3220 void
3221 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3222 {
3223 int32_t delta;
3224
3225 TCP_STATINC(TCP_STAT_RTTUPDATED);
3226 if (tp->t_srtt != 0) {
3227 /*
3228 * srtt is stored as fixed point with 3 bits after the
3229 * binary point (i.e., scaled by 8). The following magic
3230 * is equivalent to the smoothing algorithm in rfc793 with
3231 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
3232 * point). Adjust rtt to origin 0.
3233 */
3234 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3235 if ((tp->t_srtt += delta) <= 0)
3236 tp->t_srtt = 1 << 2;
3237 /*
3238 * We accumulate a smoothed rtt variance (actually, a
3239 * smoothed mean difference), then set the retransmit
3240 * timer to smoothed rtt + 4 times the smoothed variance.
3241 * rttvar is stored as fixed point with 2 bits after the
3242 * binary point (scaled by 4). The following is
3243 * equivalent to rfc793 smoothing with an alpha of .75
3244 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
3245 * rfc793's wired-in beta.
3246 */
3247 if (delta < 0)
3248 delta = -delta;
3249 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3250 if ((tp->t_rttvar += delta) <= 0)
3251 tp->t_rttvar = 1 << 2;
3252 } else {
3253 /*
3254 * No rtt measurement yet - use the unsmoothed rtt.
3255 * Set the variance to half the rtt (so our first
3256 * retransmit happens at 3*rtt).
3257 */
3258 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3259 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3260 }
3261 tp->t_rtttime = 0;
3262 tp->t_rxtshift = 0;
3263
3264 /*
3265 * the retransmit should happen at rtt + 4 * rttvar.
3266 * Because of the way we do the smoothing, srtt and rttvar
3267 * will each average +1/2 tick of bias. When we compute
3268 * the retransmit timer, we want 1/2 tick of rounding and
3269 * 1 extra tick because of +-1/2 tick uncertainty in the
3270 * firing of the timer. The bias will give us exactly the
3271 * 1.5 tick we need. But, because the bias is
3272 * statistical, we have to test that we don't drop below
3273 * the minimum feasible timer (which is 2 ticks).
3274 */
3275 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3276 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3277
3278 /*
3279 * We received an ack for a packet that wasn't retransmitted;
3280 * it is probably safe to discard any error indications we've
3281 * received recently. This isn't quite right, but close enough
3282 * for now (a route might have failed after we sent a segment,
3283 * and the return path might not be symmetrical).
3284 */
3285 tp->t_softerror = 0;
3286 }
3287
3288
3289 /*
3290 * TCP compressed state engine. Currently used to hold compressed
3291 * state for SYN_RECEIVED.
3292 */
3293
3294 u_long syn_cache_count;
3295 u_int32_t syn_hash1, syn_hash2;
3296
3297 #define SYN_HASH(sa, sp, dp) \
3298 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3299 ((u_int32_t)(sp)))^syn_hash2)))
3300 #ifndef INET6
3301 #define SYN_HASHALL(hash, src, dst) \
3302 do { \
3303 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3304 ((const struct sockaddr_in *)(src))->sin_port, \
3305 ((const struct sockaddr_in *)(dst))->sin_port); \
3306 } while (/*CONSTCOND*/ 0)
3307 #else
3308 #define SYN_HASH6(sa, sp, dp) \
3309 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3310 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3311 & 0x7fffffff)
3312
3313 #define SYN_HASHALL(hash, src, dst) \
3314 do { \
3315 switch ((src)->sa_family) { \
3316 case AF_INET: \
3317 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3318 ((const struct sockaddr_in *)(src))->sin_port, \
3319 ((const struct sockaddr_in *)(dst))->sin_port); \
3320 break; \
3321 case AF_INET6: \
3322 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3323 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3324 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3325 break; \
3326 default: \
3327 hash = 0; \
3328 } \
3329 } while (/*CONSTCOND*/0)
3330 #endif /* INET6 */
3331
3332 static struct pool syn_cache_pool;
3333
3334 /*
3335 * We don't estimate RTT with SYNs, so each packet starts with the default
3336 * RTT and each timer step has a fixed timeout value.
3337 */
3338 #define SYN_CACHE_TIMER_ARM(sc) \
3339 do { \
3340 TCPT_RANGESET((sc)->sc_rxtcur, \
3341 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3342 TCPTV_REXMTMAX); \
3343 callout_reset(&(sc)->sc_timer, \
3344 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3345 } while (/*CONSTCOND*/0)
3346
3347 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3348
3349 static inline void
3350 syn_cache_rm(struct syn_cache *sc)
3351 {
3352 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3353 sc, sc_bucketq);
3354 sc->sc_tp = NULL;
3355 LIST_REMOVE(sc, sc_tpq);
3356 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3357 callout_stop(&sc->sc_timer);
3358 syn_cache_count--;
3359 }
3360
3361 static inline void
3362 syn_cache_put(struct syn_cache *sc)
3363 {
3364 if (sc->sc_ipopts)
3365 (void) m_free(sc->sc_ipopts);
3366 rtcache_free(&sc->sc_route);
3367 sc->sc_flags |= SCF_DEAD;
3368 if (!callout_invoking(&sc->sc_timer))
3369 callout_schedule(&(sc)->sc_timer, 1);
3370 }
3371
3372 void
3373 syn_cache_init(void)
3374 {
3375 int i;
3376
3377 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3378 "synpl", NULL, IPL_SOFTNET);
3379
3380 /* Initialize the hash buckets. */
3381 for (i = 0; i < tcp_syn_cache_size; i++)
3382 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3383 }
3384
3385 void
3386 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3387 {
3388 struct syn_cache_head *scp;
3389 struct syn_cache *sc2;
3390 int s;
3391
3392 /*
3393 * If there are no entries in the hash table, reinitialize
3394 * the hash secrets.
3395 */
3396 if (syn_cache_count == 0) {
3397 syn_hash1 = arc4random();
3398 syn_hash2 = arc4random();
3399 }
3400
3401 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3402 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3403 scp = &tcp_syn_cache[sc->sc_bucketidx];
3404
3405 /*
3406 * Make sure that we don't overflow the per-bucket
3407 * limit or the total cache size limit.
3408 */
3409 s = splsoftnet();
3410 if (scp->sch_length >= tcp_syn_bucket_limit) {
3411 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3412 /*
3413 * The bucket is full. Toss the oldest element in the
3414 * bucket. This will be the first entry in the bucket.
3415 */
3416 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3417 #ifdef DIAGNOSTIC
3418 /*
3419 * This should never happen; we should always find an
3420 * entry in our bucket.
3421 */
3422 if (sc2 == NULL)
3423 panic("syn_cache_insert: bucketoverflow: impossible");
3424 #endif
3425 syn_cache_rm(sc2);
3426 syn_cache_put(sc2); /* calls pool_put but see spl above */
3427 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3428 struct syn_cache_head *scp2, *sce;
3429
3430 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3431 /*
3432 * The cache is full. Toss the oldest entry in the
3433 * first non-empty bucket we can find.
3434 *
3435 * XXX We would really like to toss the oldest
3436 * entry in the cache, but we hope that this
3437 * condition doesn't happen very often.
3438 */
3439 scp2 = scp;
3440 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3441 sce = &tcp_syn_cache[tcp_syn_cache_size];
3442 for (++scp2; scp2 != scp; scp2++) {
3443 if (scp2 >= sce)
3444 scp2 = &tcp_syn_cache[0];
3445 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3446 break;
3447 }
3448 #ifdef DIAGNOSTIC
3449 /*
3450 * This should never happen; we should always find a
3451 * non-empty bucket.
3452 */
3453 if (scp2 == scp)
3454 panic("syn_cache_insert: cacheoverflow: "
3455 "impossible");
3456 #endif
3457 }
3458 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3459 syn_cache_rm(sc2);
3460 syn_cache_put(sc2); /* calls pool_put but see spl above */
3461 }
3462
3463 /*
3464 * Initialize the entry's timer.
3465 */
3466 sc->sc_rxttot = 0;
3467 sc->sc_rxtshift = 0;
3468 SYN_CACHE_TIMER_ARM(sc);
3469
3470 /* Link it from tcpcb entry */
3471 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3472
3473 /* Put it into the bucket. */
3474 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3475 scp->sch_length++;
3476 syn_cache_count++;
3477
3478 TCP_STATINC(TCP_STAT_SC_ADDED);
3479 splx(s);
3480 }
3481
3482 /*
3483 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3484 * If we have retransmitted an entry the maximum number of times, expire
3485 * that entry.
3486 */
3487 void
3488 syn_cache_timer(void *arg)
3489 {
3490 struct syn_cache *sc = arg;
3491
3492 mutex_enter(softnet_lock);
3493 KERNEL_LOCK(1, NULL);
3494 callout_ack(&sc->sc_timer);
3495
3496 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3497 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3498 callout_destroy(&sc->sc_timer);
3499 pool_put(&syn_cache_pool, sc);
3500 KERNEL_UNLOCK_ONE(NULL);
3501 mutex_exit(softnet_lock);
3502 return;
3503 }
3504
3505 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3506 /* Drop it -- too many retransmissions. */
3507 goto dropit;
3508 }
3509
3510 /*
3511 * Compute the total amount of time this entry has
3512 * been on a queue. If this entry has been on longer
3513 * than the keep alive timer would allow, expire it.
3514 */
3515 sc->sc_rxttot += sc->sc_rxtcur;
3516 if (sc->sc_rxttot >= tcp_keepinit)
3517 goto dropit;
3518
3519 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3520 (void) syn_cache_respond(sc, NULL);
3521
3522 /* Advance the timer back-off. */
3523 sc->sc_rxtshift++;
3524 SYN_CACHE_TIMER_ARM(sc);
3525
3526 KERNEL_UNLOCK_ONE(NULL);
3527 mutex_exit(softnet_lock);
3528 return;
3529
3530 dropit:
3531 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3532 syn_cache_rm(sc);
3533 if (sc->sc_ipopts)
3534 (void) m_free(sc->sc_ipopts);
3535 rtcache_free(&sc->sc_route);
3536 callout_destroy(&sc->sc_timer);
3537 pool_put(&syn_cache_pool, sc);
3538 KERNEL_UNLOCK_ONE(NULL);
3539 mutex_exit(softnet_lock);
3540 }
3541
3542 /*
3543 * Remove syn cache created by the specified tcb entry,
3544 * because this does not make sense to keep them
3545 * (if there's no tcb entry, syn cache entry will never be used)
3546 */
3547 void
3548 syn_cache_cleanup(struct tcpcb *tp)
3549 {
3550 struct syn_cache *sc, *nsc;
3551 int s;
3552
3553 s = splsoftnet();
3554
3555 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3556 nsc = LIST_NEXT(sc, sc_tpq);
3557
3558 #ifdef DIAGNOSTIC
3559 if (sc->sc_tp != tp)
3560 panic("invalid sc_tp in syn_cache_cleanup");
3561 #endif
3562 syn_cache_rm(sc);
3563 syn_cache_put(sc); /* calls pool_put but see spl above */
3564 }
3565 /* just for safety */
3566 LIST_INIT(&tp->t_sc);
3567
3568 splx(s);
3569 }
3570
3571 /*
3572 * Find an entry in the syn cache.
3573 */
3574 struct syn_cache *
3575 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3576 struct syn_cache_head **headp)
3577 {
3578 struct syn_cache *sc;
3579 struct syn_cache_head *scp;
3580 u_int32_t hash;
3581 int s;
3582
3583 SYN_HASHALL(hash, src, dst);
3584
3585 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3586 *headp = scp;
3587 s = splsoftnet();
3588 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3589 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3590 if (sc->sc_hash != hash)
3591 continue;
3592 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3593 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3594 splx(s);
3595 return (sc);
3596 }
3597 }
3598 splx(s);
3599 return (NULL);
3600 }
3601
3602 /*
3603 * This function gets called when we receive an ACK for a
3604 * socket in the LISTEN state. We look up the connection
3605 * in the syn cache, and if its there, we pull it out of
3606 * the cache and turn it into a full-blown connection in
3607 * the SYN-RECEIVED state.
3608 *
3609 * The return values may not be immediately obvious, and their effects
3610 * can be subtle, so here they are:
3611 *
3612 * NULL SYN was not found in cache; caller should drop the
3613 * packet and send an RST.
3614 *
3615 * -1 We were unable to create the new connection, and are
3616 * aborting it. An ACK,RST is being sent to the peer
3617 * (unless we got screwey sequence numbners; see below),
3618 * because the 3-way handshake has been completed. Caller
3619 * should not free the mbuf, since we may be using it. If
3620 * we are not, we will free it.
3621 *
3622 * Otherwise, the return value is a pointer to the new socket
3623 * associated with the connection.
3624 */
3625 struct socket *
3626 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3627 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3628 struct socket *so, struct mbuf *m)
3629 {
3630 struct syn_cache *sc;
3631 struct syn_cache_head *scp;
3632 struct inpcb *inp = NULL;
3633 #ifdef INET6
3634 struct in6pcb *in6p = NULL;
3635 #endif
3636 struct tcpcb *tp = 0;
3637 struct mbuf *am;
3638 int s;
3639 struct socket *oso;
3640
3641 s = splsoftnet();
3642 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3643 splx(s);
3644 return (NULL);
3645 }
3646
3647 /*
3648 * Verify the sequence and ack numbers. Try getting the correct
3649 * response again.
3650 */
3651 if ((th->th_ack != sc->sc_iss + 1) ||
3652 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3653 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3654 (void) syn_cache_respond(sc, m);
3655 splx(s);
3656 return ((struct socket *)(-1));
3657 }
3658
3659 /* Remove this cache entry */
3660 syn_cache_rm(sc);
3661 splx(s);
3662
3663 /*
3664 * Ok, create the full blown connection, and set things up
3665 * as they would have been set up if we had created the
3666 * connection when the SYN arrived. If we can't create
3667 * the connection, abort it.
3668 */
3669 /*
3670 * inp still has the OLD in_pcb stuff, set the
3671 * v6-related flags on the new guy, too. This is
3672 * done particularly for the case where an AF_INET6
3673 * socket is bound only to a port, and a v4 connection
3674 * comes in on that port.
3675 * we also copy the flowinfo from the original pcb
3676 * to the new one.
3677 */
3678 oso = so;
3679 so = sonewconn(so, SS_ISCONNECTED);
3680 if (so == NULL)
3681 goto resetandabort;
3682
3683 switch (so->so_proto->pr_domain->dom_family) {
3684 #ifdef INET
3685 case AF_INET:
3686 inp = sotoinpcb(so);
3687 break;
3688 #endif
3689 #ifdef INET6
3690 case AF_INET6:
3691 in6p = sotoin6pcb(so);
3692 break;
3693 #endif
3694 }
3695 switch (src->sa_family) {
3696 #ifdef INET
3697 case AF_INET:
3698 if (inp) {
3699 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3700 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3701 inp->inp_options = ip_srcroute();
3702 in_pcbstate(inp, INP_BOUND);
3703 if (inp->inp_options == NULL) {
3704 inp->inp_options = sc->sc_ipopts;
3705 sc->sc_ipopts = NULL;
3706 }
3707 }
3708 #ifdef INET6
3709 else if (in6p) {
3710 /* IPv4 packet to AF_INET6 socket */
3711 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3712 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3713 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3714 &in6p->in6p_laddr.s6_addr32[3],
3715 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3716 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3717 in6totcpcb(in6p)->t_family = AF_INET;
3718 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3719 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3720 else
3721 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3722 in6_pcbstate(in6p, IN6P_BOUND);
3723 }
3724 #endif
3725 break;
3726 #endif
3727 #ifdef INET6
3728 case AF_INET6:
3729 if (in6p) {
3730 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3731 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3732 in6_pcbstate(in6p, IN6P_BOUND);
3733 }
3734 break;
3735 #endif
3736 }
3737 #ifdef INET6
3738 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3739 struct in6pcb *oin6p = sotoin6pcb(oso);
3740 /* inherit socket options from the listening socket */
3741 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3742 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3743 m_freem(in6p->in6p_options);
3744 in6p->in6p_options = 0;
3745 }
3746 ip6_savecontrol(in6p, &in6p->in6p_options,
3747 mtod(m, struct ip6_hdr *), m);
3748 }
3749 #endif
3750
3751 #if defined(IPSEC) || defined(FAST_IPSEC)
3752 /*
3753 * we make a copy of policy, instead of sharing the policy,
3754 * for better behavior in terms of SA lookup and dead SA removal.
3755 */
3756 if (inp) {
3757 /* copy old policy into new socket's */
3758 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3759 printf("tcp_input: could not copy policy\n");
3760 }
3761 #ifdef INET6
3762 else if (in6p) {
3763 /* copy old policy into new socket's */
3764 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3765 in6p->in6p_sp))
3766 printf("tcp_input: could not copy policy\n");
3767 }
3768 #endif
3769 #endif
3770
3771 /*
3772 * Give the new socket our cached route reference.
3773 */
3774 if (inp) {
3775 rtcache_copy(&inp->inp_route, &sc->sc_route);
3776 rtcache_free(&sc->sc_route);
3777 }
3778 #ifdef INET6
3779 else {
3780 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3781 rtcache_free(&sc->sc_route);
3782 }
3783 #endif
3784
3785 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3786 if (am == NULL)
3787 goto resetandabort;
3788 MCLAIM(am, &tcp_mowner);
3789 am->m_len = src->sa_len;
3790 bcopy(src, mtod(am, void *), src->sa_len);
3791 if (inp) {
3792 if (in_pcbconnect(inp, am, &lwp0)) {
3793 (void) m_free(am);
3794 goto resetandabort;
3795 }
3796 }
3797 #ifdef INET6
3798 else if (in6p) {
3799 if (src->sa_family == AF_INET) {
3800 /* IPv4 packet to AF_INET6 socket */
3801 struct sockaddr_in6 *sin6;
3802 sin6 = mtod(am, struct sockaddr_in6 *);
3803 am->m_len = sizeof(*sin6);
3804 memset(sin6, 0, sizeof(*sin6));
3805 sin6->sin6_family = AF_INET6;
3806 sin6->sin6_len = sizeof(*sin6);
3807 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3808 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3809 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3810 &sin6->sin6_addr.s6_addr32[3],
3811 sizeof(sin6->sin6_addr.s6_addr32[3]));
3812 }
3813 if (in6_pcbconnect(in6p, am, NULL)) {
3814 (void) m_free(am);
3815 goto resetandabort;
3816 }
3817 }
3818 #endif
3819 else {
3820 (void) m_free(am);
3821 goto resetandabort;
3822 }
3823 (void) m_free(am);
3824
3825 if (inp)
3826 tp = intotcpcb(inp);
3827 #ifdef INET6
3828 else if (in6p)
3829 tp = in6totcpcb(in6p);
3830 #endif
3831 else
3832 tp = NULL;
3833 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3834 if (sc->sc_request_r_scale != 15) {
3835 tp->requested_s_scale = sc->sc_requested_s_scale;
3836 tp->request_r_scale = sc->sc_request_r_scale;
3837 tp->snd_scale = sc->sc_requested_s_scale;
3838 tp->rcv_scale = sc->sc_request_r_scale;
3839 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3840 }
3841 if (sc->sc_flags & SCF_TIMESTAMP)
3842 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3843 tp->ts_timebase = sc->sc_timebase;
3844
3845 tp->t_template = tcp_template(tp);
3846 if (tp->t_template == 0) {
3847 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3848 so = NULL;
3849 m_freem(m);
3850 goto abort;
3851 }
3852
3853 tp->iss = sc->sc_iss;
3854 tp->irs = sc->sc_irs;
3855 tcp_sendseqinit(tp);
3856 tcp_rcvseqinit(tp);
3857 tp->t_state = TCPS_SYN_RECEIVED;
3858 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3859 TCP_STATINC(TCP_STAT_ACCEPTS);
3860
3861 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3862 tp->t_flags |= TF_WILL_SACK;
3863
3864 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3865 tp->t_flags |= TF_ECN_PERMIT;
3866
3867 #ifdef TCP_SIGNATURE
3868 if (sc->sc_flags & SCF_SIGNATURE)
3869 tp->t_flags |= TF_SIGNATURE;
3870 #endif
3871
3872 /* Initialize tp->t_ourmss before we deal with the peer's! */
3873 tp->t_ourmss = sc->sc_ourmaxseg;
3874 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3875
3876 /*
3877 * Initialize the initial congestion window. If we
3878 * had to retransmit the SYN,ACK, we must initialize cwnd
3879 * to 1 segment (i.e. the Loss Window).
3880 */
3881 if (sc->sc_rxtshift)
3882 tp->snd_cwnd = tp->t_peermss;
3883 else {
3884 int ss = tcp_init_win;
3885 #ifdef INET
3886 if (inp != NULL && in_localaddr(inp->inp_faddr))
3887 ss = tcp_init_win_local;
3888 #endif
3889 #ifdef INET6
3890 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3891 ss = tcp_init_win_local;
3892 #endif
3893 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3894 }
3895
3896 tcp_rmx_rtt(tp);
3897 tp->snd_wl1 = sc->sc_irs;
3898 tp->rcv_up = sc->sc_irs + 1;
3899
3900 /*
3901 * This is what whould have happened in tcp_output() when
3902 * the SYN,ACK was sent.
3903 */
3904 tp->snd_up = tp->snd_una;
3905 tp->snd_max = tp->snd_nxt = tp->iss+1;
3906 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3907 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3908 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3909 tp->last_ack_sent = tp->rcv_nxt;
3910 tp->t_partialacks = -1;
3911 tp->t_dupacks = 0;
3912
3913 TCP_STATINC(TCP_STAT_SC_COMPLETED);
3914 s = splsoftnet();
3915 syn_cache_put(sc);
3916 splx(s);
3917 return (so);
3918
3919 resetandabort:
3920 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3921 abort:
3922 if (so != NULL) {
3923 (void) soqremque(so, 1);
3924 (void) soabort(so);
3925 mutex_enter(softnet_lock);
3926 }
3927 s = splsoftnet();
3928 syn_cache_put(sc);
3929 splx(s);
3930 TCP_STATINC(TCP_STAT_SC_ABORTED);
3931 return ((struct socket *)(-1));
3932 }
3933
3934 /*
3935 * This function is called when we get a RST for a
3936 * non-existent connection, so that we can see if the
3937 * connection is in the syn cache. If it is, zap it.
3938 */
3939
3940 void
3941 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3942 {
3943 struct syn_cache *sc;
3944 struct syn_cache_head *scp;
3945 int s = splsoftnet();
3946
3947 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3948 splx(s);
3949 return;
3950 }
3951 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3952 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3953 splx(s);
3954 return;
3955 }
3956 syn_cache_rm(sc);
3957 TCP_STATINC(TCP_STAT_SC_RESET);
3958 syn_cache_put(sc); /* calls pool_put but see spl above */
3959 splx(s);
3960 }
3961
3962 void
3963 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
3964 struct tcphdr *th)
3965 {
3966 struct syn_cache *sc;
3967 struct syn_cache_head *scp;
3968 int s;
3969
3970 s = splsoftnet();
3971 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3972 splx(s);
3973 return;
3974 }
3975 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
3976 if (ntohl (th->th_seq) != sc->sc_iss) {
3977 splx(s);
3978 return;
3979 }
3980
3981 /*
3982 * If we've retransmitted 3 times and this is our second error,
3983 * we remove the entry. Otherwise, we allow it to continue on.
3984 * This prevents us from incorrectly nuking an entry during a
3985 * spurious network outage.
3986 *
3987 * See tcp_notify().
3988 */
3989 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
3990 sc->sc_flags |= SCF_UNREACH;
3991 splx(s);
3992 return;
3993 }
3994
3995 syn_cache_rm(sc);
3996 TCP_STATINC(TCP_STAT_SC_UNREACH);
3997 syn_cache_put(sc); /* calls pool_put but see spl above */
3998 splx(s);
3999 }
4000
4001 /*
4002 * Given a LISTEN socket and an inbound SYN request, add
4003 * this to the syn cache, and send back a segment:
4004 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4005 * to the source.
4006 *
4007 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4008 * Doing so would require that we hold onto the data and deliver it
4009 * to the application. However, if we are the target of a SYN-flood
4010 * DoS attack, an attacker could send data which would eventually
4011 * consume all available buffer space if it were ACKed. By not ACKing
4012 * the data, we avoid this DoS scenario.
4013 */
4014
4015 int
4016 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4017 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4018 int optlen, struct tcp_opt_info *oi)
4019 {
4020 struct tcpcb tb, *tp;
4021 long win;
4022 struct syn_cache *sc;
4023 struct syn_cache_head *scp;
4024 struct mbuf *ipopts;
4025 struct tcp_opt_info opti;
4026 int s;
4027
4028 tp = sototcpcb(so);
4029
4030 memset(&opti, 0, sizeof(opti));
4031
4032 /*
4033 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4034 *
4035 * Note this check is performed in tcp_input() very early on.
4036 */
4037
4038 /*
4039 * Initialize some local state.
4040 */
4041 win = sbspace(&so->so_rcv);
4042 if (win > TCP_MAXWIN)
4043 win = TCP_MAXWIN;
4044
4045 switch (src->sa_family) {
4046 #ifdef INET
4047 case AF_INET:
4048 /*
4049 * Remember the IP options, if any.
4050 */
4051 ipopts = ip_srcroute();
4052 break;
4053 #endif
4054 default:
4055 ipopts = NULL;
4056 }
4057
4058 #ifdef TCP_SIGNATURE
4059 if (optp || (tp->t_flags & TF_SIGNATURE))
4060 #else
4061 if (optp)
4062 #endif
4063 {
4064 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4065 #ifdef TCP_SIGNATURE
4066 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4067 #endif
4068 tb.t_state = TCPS_LISTEN;
4069 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4070 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4071 return (0);
4072 } else
4073 tb.t_flags = 0;
4074
4075 /*
4076 * See if we already have an entry for this connection.
4077 * If we do, resend the SYN,ACK. We do not count this
4078 * as a retransmission (XXX though maybe we should).
4079 */
4080 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4081 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4082 if (ipopts) {
4083 /*
4084 * If we were remembering a previous source route,
4085 * forget it and use the new one we've been given.
4086 */
4087 if (sc->sc_ipopts)
4088 (void) m_free(sc->sc_ipopts);
4089 sc->sc_ipopts = ipopts;
4090 }
4091 sc->sc_timestamp = tb.ts_recent;
4092 if (syn_cache_respond(sc, m) == 0) {
4093 uint64_t *tcps = TCP_STAT_GETREF();
4094 tcps[TCP_STAT_SNDACKS]++;
4095 tcps[TCP_STAT_SNDTOTAL]++;
4096 TCP_STAT_PUTREF();
4097 }
4098 return (1);
4099 }
4100
4101 s = splsoftnet();
4102 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4103 splx(s);
4104 if (sc == NULL) {
4105 if (ipopts)
4106 (void) m_free(ipopts);
4107 return (0);
4108 }
4109
4110 /*
4111 * Fill in the cache, and put the necessary IP and TCP
4112 * options into the reply.
4113 */
4114 memset(sc, 0, sizeof(struct syn_cache));
4115 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4116 bcopy(src, &sc->sc_src, src->sa_len);
4117 bcopy(dst, &sc->sc_dst, dst->sa_len);
4118 sc->sc_flags = 0;
4119 sc->sc_ipopts = ipopts;
4120 sc->sc_irs = th->th_seq;
4121 switch (src->sa_family) {
4122 #ifdef INET
4123 case AF_INET:
4124 {
4125 struct sockaddr_in *srcin = (void *) src;
4126 struct sockaddr_in *dstin = (void *) dst;
4127
4128 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4129 &srcin->sin_addr, dstin->sin_port,
4130 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4131 break;
4132 }
4133 #endif /* INET */
4134 #ifdef INET6
4135 case AF_INET6:
4136 {
4137 struct sockaddr_in6 *srcin6 = (void *) src;
4138 struct sockaddr_in6 *dstin6 = (void *) dst;
4139
4140 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4141 &srcin6->sin6_addr, dstin6->sin6_port,
4142 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4143 break;
4144 }
4145 #endif /* INET6 */
4146 }
4147 sc->sc_peermaxseg = oi->maxseg;
4148 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4149 m->m_pkthdr.rcvif : NULL,
4150 sc->sc_src.sa.sa_family);
4151 sc->sc_win = win;
4152 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4153 sc->sc_timestamp = tb.ts_recent;
4154 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4155 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4156 sc->sc_flags |= SCF_TIMESTAMP;
4157 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4158 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4159 sc->sc_requested_s_scale = tb.requested_s_scale;
4160 sc->sc_request_r_scale = 0;
4161 /*
4162 * Pick the smallest possible scaling factor that
4163 * will still allow us to scale up to sb_max.
4164 *
4165 * We do this because there are broken firewalls that
4166 * will corrupt the window scale option, leading to
4167 * the other endpoint believing that our advertised
4168 * window is unscaled. At scale factors larger than
4169 * 5 the unscaled window will drop below 1500 bytes,
4170 * leading to serious problems when traversing these
4171 * broken firewalls.
4172 *
4173 * With the default sbmax of 256K, a scale factor
4174 * of 3 will be chosen by this algorithm. Those who
4175 * choose a larger sbmax should watch out
4176 * for the compatiblity problems mentioned above.
4177 *
4178 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4179 * or <SYN,ACK>) segment itself is never scaled.
4180 */
4181 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4182 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4183 sc->sc_request_r_scale++;
4184 } else {
4185 sc->sc_requested_s_scale = 15;
4186 sc->sc_request_r_scale = 15;
4187 }
4188 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4189 sc->sc_flags |= SCF_SACK_PERMIT;
4190
4191 /*
4192 * ECN setup packet recieved.
4193 */
4194 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4195 sc->sc_flags |= SCF_ECN_PERMIT;
4196
4197 #ifdef TCP_SIGNATURE
4198 if (tb.t_flags & TF_SIGNATURE)
4199 sc->sc_flags |= SCF_SIGNATURE;
4200 #endif
4201 sc->sc_tp = tp;
4202 if (syn_cache_respond(sc, m) == 0) {
4203 uint64_t *tcps = TCP_STAT_GETREF();
4204 tcps[TCP_STAT_SNDACKS]++;
4205 tcps[TCP_STAT_SNDTOTAL]++;
4206 TCP_STAT_PUTREF();
4207 syn_cache_insert(sc, tp);
4208 } else {
4209 s = splsoftnet();
4210 syn_cache_put(sc);
4211 splx(s);
4212 TCP_STATINC(TCP_STAT_SC_DROPPED);
4213 }
4214 return (1);
4215 }
4216
4217 int
4218 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4219 {
4220 #ifdef INET6
4221 struct rtentry *rt;
4222 #endif
4223 struct route *ro;
4224 u_int8_t *optp;
4225 int optlen, error;
4226 u_int16_t tlen;
4227 struct ip *ip = NULL;
4228 #ifdef INET6
4229 struct ip6_hdr *ip6 = NULL;
4230 #endif
4231 struct tcpcb *tp = NULL;
4232 struct tcphdr *th;
4233 u_int hlen;
4234 struct socket *so;
4235
4236 ro = &sc->sc_route;
4237 switch (sc->sc_src.sa.sa_family) {
4238 case AF_INET:
4239 hlen = sizeof(struct ip);
4240 break;
4241 #ifdef INET6
4242 case AF_INET6:
4243 hlen = sizeof(struct ip6_hdr);
4244 break;
4245 #endif
4246 default:
4247 if (m)
4248 m_freem(m);
4249 return (EAFNOSUPPORT);
4250 }
4251
4252 /* Compute the size of the TCP options. */
4253 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4254 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4255 #ifdef TCP_SIGNATURE
4256 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4257 #endif
4258 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4259
4260 tlen = hlen + sizeof(struct tcphdr) + optlen;
4261
4262 /*
4263 * Create the IP+TCP header from scratch.
4264 */
4265 if (m)
4266 m_freem(m);
4267 #ifdef DIAGNOSTIC
4268 if (max_linkhdr + tlen > MCLBYTES)
4269 return (ENOBUFS);
4270 #endif
4271 MGETHDR(m, M_DONTWAIT, MT_DATA);
4272 if (m && tlen > MHLEN) {
4273 MCLGET(m, M_DONTWAIT);
4274 if ((m->m_flags & M_EXT) == 0) {
4275 m_freem(m);
4276 m = NULL;
4277 }
4278 }
4279 if (m == NULL)
4280 return (ENOBUFS);
4281 MCLAIM(m, &tcp_tx_mowner);
4282
4283 /* Fixup the mbuf. */
4284 m->m_data += max_linkhdr;
4285 m->m_len = m->m_pkthdr.len = tlen;
4286 if (sc->sc_tp) {
4287 tp = sc->sc_tp;
4288 if (tp->t_inpcb)
4289 so = tp->t_inpcb->inp_socket;
4290 #ifdef INET6
4291 else if (tp->t_in6pcb)
4292 so = tp->t_in6pcb->in6p_socket;
4293 #endif
4294 else
4295 so = NULL;
4296 } else
4297 so = NULL;
4298 m->m_pkthdr.rcvif = NULL;
4299 memset(mtod(m, u_char *), 0, tlen);
4300
4301 switch (sc->sc_src.sa.sa_family) {
4302 case AF_INET:
4303 ip = mtod(m, struct ip *);
4304 ip->ip_v = 4;
4305 ip->ip_dst = sc->sc_src.sin.sin_addr;
4306 ip->ip_src = sc->sc_dst.sin.sin_addr;
4307 ip->ip_p = IPPROTO_TCP;
4308 th = (struct tcphdr *)(ip + 1);
4309 th->th_dport = sc->sc_src.sin.sin_port;
4310 th->th_sport = sc->sc_dst.sin.sin_port;
4311 break;
4312 #ifdef INET6
4313 case AF_INET6:
4314 ip6 = mtod(m, struct ip6_hdr *);
4315 ip6->ip6_vfc = IPV6_VERSION;
4316 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4317 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4318 ip6->ip6_nxt = IPPROTO_TCP;
4319 /* ip6_plen will be updated in ip6_output() */
4320 th = (struct tcphdr *)(ip6 + 1);
4321 th->th_dport = sc->sc_src.sin6.sin6_port;
4322 th->th_sport = sc->sc_dst.sin6.sin6_port;
4323 break;
4324 #endif
4325 default:
4326 th = NULL;
4327 }
4328
4329 th->th_seq = htonl(sc->sc_iss);
4330 th->th_ack = htonl(sc->sc_irs + 1);
4331 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4332 th->th_flags = TH_SYN|TH_ACK;
4333 th->th_win = htons(sc->sc_win);
4334 /* th_sum already 0 */
4335 /* th_urp already 0 */
4336
4337 /* Tack on the TCP options. */
4338 optp = (u_int8_t *)(th + 1);
4339 *optp++ = TCPOPT_MAXSEG;
4340 *optp++ = 4;
4341 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4342 *optp++ = sc->sc_ourmaxseg & 0xff;
4343
4344 if (sc->sc_request_r_scale != 15) {
4345 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4346 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4347 sc->sc_request_r_scale);
4348 optp += 4;
4349 }
4350
4351 if (sc->sc_flags & SCF_TIMESTAMP) {
4352 u_int32_t *lp = (u_int32_t *)(optp);
4353 /* Form timestamp option as shown in appendix A of RFC 1323. */
4354 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4355 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4356 *lp = htonl(sc->sc_timestamp);
4357 optp += TCPOLEN_TSTAMP_APPA;
4358 }
4359
4360 if (sc->sc_flags & SCF_SACK_PERMIT) {
4361 u_int8_t *p = optp;
4362
4363 /* Let the peer know that we will SACK. */
4364 p[0] = TCPOPT_SACK_PERMITTED;
4365 p[1] = 2;
4366 p[2] = TCPOPT_NOP;
4367 p[3] = TCPOPT_NOP;
4368 optp += 4;
4369 }
4370
4371 /*
4372 * Send ECN SYN-ACK setup packet.
4373 * Routes can be asymetric, so, even if we receive a packet
4374 * with ECE and CWR set, we must not assume no one will block
4375 * the ECE packet we are about to send.
4376 */
4377 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4378 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4379 th->th_flags |= TH_ECE;
4380 TCP_STATINC(TCP_STAT_ECN_SHS);
4381
4382 /*
4383 * draft-ietf-tcpm-ecnsyn-00.txt
4384 *
4385 * "[...] a TCP node MAY respond to an ECN-setup
4386 * SYN packet by setting ECT in the responding
4387 * ECN-setup SYN/ACK packet, indicating to routers
4388 * that the SYN/ACK packet is ECN-Capable.
4389 * This allows a congested router along the path
4390 * to mark the packet instead of dropping the
4391 * packet as an indication of congestion."
4392 *
4393 * "[...] There can be a great benefit in setting
4394 * an ECN-capable codepoint in SYN/ACK packets [...]
4395 * Congestion is most likely to occur in
4396 * the server-to-client direction. As a result,
4397 * setting an ECN-capable codepoint in SYN/ACK
4398 * packets can reduce the occurence of three-second
4399 * retransmit timeouts resulting from the drop
4400 * of SYN/ACK packets."
4401 *
4402 * Page 4 and 6, January 2006.
4403 */
4404
4405 switch (sc->sc_src.sa.sa_family) {
4406 #ifdef INET
4407 case AF_INET:
4408 ip->ip_tos |= IPTOS_ECN_ECT0;
4409 break;
4410 #endif
4411 #ifdef INET6
4412 case AF_INET6:
4413 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4414 break;
4415 #endif
4416 }
4417 TCP_STATINC(TCP_STAT_ECN_ECT);
4418 }
4419
4420 #ifdef TCP_SIGNATURE
4421 if (sc->sc_flags & SCF_SIGNATURE) {
4422 struct secasvar *sav;
4423 u_int8_t *sigp;
4424
4425 sav = tcp_signature_getsav(m, th);
4426
4427 if (sav == NULL) {
4428 if (m)
4429 m_freem(m);
4430 return (EPERM);
4431 }
4432
4433 *optp++ = TCPOPT_SIGNATURE;
4434 *optp++ = TCPOLEN_SIGNATURE;
4435 sigp = optp;
4436 memset(optp, 0, TCP_SIGLEN);
4437 optp += TCP_SIGLEN;
4438 *optp++ = TCPOPT_NOP;
4439 *optp++ = TCPOPT_EOL;
4440
4441 (void)tcp_signature(m, th, hlen, sav, sigp);
4442
4443 key_sa_recordxfer(sav, m);
4444 #ifdef FAST_IPSEC
4445 KEY_FREESAV(&sav);
4446 #else
4447 key_freesav(sav);
4448 #endif
4449 }
4450 #endif
4451
4452 /* Compute the packet's checksum. */
4453 switch (sc->sc_src.sa.sa_family) {
4454 case AF_INET:
4455 ip->ip_len = htons(tlen - hlen);
4456 th->th_sum = 0;
4457 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4458 break;
4459 #ifdef INET6
4460 case AF_INET6:
4461 ip6->ip6_plen = htons(tlen - hlen);
4462 th->th_sum = 0;
4463 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4464 break;
4465 #endif
4466 }
4467
4468 /*
4469 * Fill in some straggling IP bits. Note the stack expects
4470 * ip_len to be in host order, for convenience.
4471 */
4472 switch (sc->sc_src.sa.sa_family) {
4473 #ifdef INET
4474 case AF_INET:
4475 ip->ip_len = htons(tlen);
4476 ip->ip_ttl = ip_defttl;
4477 /* XXX tos? */
4478 break;
4479 #endif
4480 #ifdef INET6
4481 case AF_INET6:
4482 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4483 ip6->ip6_vfc |= IPV6_VERSION;
4484 ip6->ip6_plen = htons(tlen - hlen);
4485 /* ip6_hlim will be initialized afterwards */
4486 /* XXX flowlabel? */
4487 break;
4488 #endif
4489 }
4490
4491 /* XXX use IPsec policy on listening socket, on SYN ACK */
4492 tp = sc->sc_tp;
4493
4494 switch (sc->sc_src.sa.sa_family) {
4495 #ifdef INET
4496 case AF_INET:
4497 error = ip_output(m, sc->sc_ipopts, ro,
4498 (ip_mtudisc ? IP_MTUDISC : 0),
4499 (struct ip_moptions *)NULL, so);
4500 break;
4501 #endif
4502 #ifdef INET6
4503 case AF_INET6:
4504 ip6->ip6_hlim = in6_selecthlim(NULL,
4505 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4506 : NULL);
4507
4508 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4509 break;
4510 #endif
4511 default:
4512 error = EAFNOSUPPORT;
4513 break;
4514 }
4515 return (error);
4516 }
4517