Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.311
      1 /*	$NetBSD: tcp_input.c,v 1.311 2011/04/25 22:12:43 yamt Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
     74  * All rights reserved.
     75  *
     76  * This code is derived from software contributed to The NetBSD Foundation
     77  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     78  * Facility, NASA Ames Research Center.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Charles M. Hannum.
     81  * This code is derived from software contributed to The NetBSD Foundation
     82  * by Rui Paulo.
     83  *
     84  * Redistribution and use in source and binary forms, with or without
     85  * modification, are permitted provided that the following conditions
     86  * are met:
     87  * 1. Redistributions of source code must retain the above copyright
     88  *    notice, this list of conditions and the following disclaimer.
     89  * 2. Redistributions in binary form must reproduce the above copyright
     90  *    notice, this list of conditions and the following disclaimer in the
     91  *    documentation and/or other materials provided with the distribution.
     92  *
     93  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     94  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     95  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     96  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
     97  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
     98  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
     99  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    100  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    101  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    102  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    103  * POSSIBILITY OF SUCH DAMAGE.
    104  */
    105 
    106 /*
    107  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    108  *	The Regents of the University of California.  All rights reserved.
    109  *
    110  * Redistribution and use in source and binary forms, with or without
    111  * modification, are permitted provided that the following conditions
    112  * are met:
    113  * 1. Redistributions of source code must retain the above copyright
    114  *    notice, this list of conditions and the following disclaimer.
    115  * 2. Redistributions in binary form must reproduce the above copyright
    116  *    notice, this list of conditions and the following disclaimer in the
    117  *    documentation and/or other materials provided with the distribution.
    118  * 3. Neither the name of the University nor the names of its contributors
    119  *    may be used to endorse or promote products derived from this software
    120  *    without specific prior written permission.
    121  *
    122  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    123  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    124  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    125  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    126  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    127  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    128  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    129  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    130  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    131  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    132  * SUCH DAMAGE.
    133  *
    134  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    135  */
    136 
    137 /*
    138  *	TODO list for SYN cache stuff:
    139  *
    140  *	Find room for a "state" field, which is needed to keep a
    141  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    142  *	that this is fairly important for very high-volume web and
    143  *	mail servers, which use a large number of short-lived
    144  *	connections.
    145  */
    146 
    147 #include <sys/cdefs.h>
    148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.311 2011/04/25 22:12:43 yamt Exp $");
    149 
    150 #include "opt_inet.h"
    151 #include "opt_ipsec.h"
    152 #include "opt_inet_csum.h"
    153 #include "opt_tcp_debug.h"
    154 
    155 #include <sys/param.h>
    156 #include <sys/systm.h>
    157 #include <sys/malloc.h>
    158 #include <sys/mbuf.h>
    159 #include <sys/protosw.h>
    160 #include <sys/socket.h>
    161 #include <sys/socketvar.h>
    162 #include <sys/errno.h>
    163 #include <sys/syslog.h>
    164 #include <sys/pool.h>
    165 #include <sys/domain.h>
    166 #include <sys/kernel.h>
    167 #ifdef TCP_SIGNATURE
    168 #include <sys/md5.h>
    169 #endif
    170 #include <sys/lwp.h> /* for lwp0 */
    171 
    172 #include <net/if.h>
    173 #include <net/route.h>
    174 #include <net/if_types.h>
    175 
    176 #include <netinet/in.h>
    177 #include <netinet/in_systm.h>
    178 #include <netinet/ip.h>
    179 #include <netinet/in_pcb.h>
    180 #include <netinet/in_var.h>
    181 #include <netinet/ip_var.h>
    182 #include <netinet/in_offload.h>
    183 
    184 #ifdef INET6
    185 #ifndef INET
    186 #include <netinet/in.h>
    187 #endif
    188 #include <netinet/ip6.h>
    189 #include <netinet6/ip6_var.h>
    190 #include <netinet6/in6_pcb.h>
    191 #include <netinet6/ip6_var.h>
    192 #include <netinet6/in6_var.h>
    193 #include <netinet/icmp6.h>
    194 #include <netinet6/nd6.h>
    195 #ifdef TCP_SIGNATURE
    196 #include <netinet6/scope6_var.h>
    197 #endif
    198 #endif
    199 
    200 #ifndef INET6
    201 /* always need ip6.h for IP6_EXTHDR_GET */
    202 #include <netinet/ip6.h>
    203 #endif
    204 
    205 #include <netinet/tcp.h>
    206 #include <netinet/tcp_fsm.h>
    207 #include <netinet/tcp_seq.h>
    208 #include <netinet/tcp_timer.h>
    209 #include <netinet/tcp_var.h>
    210 #include <netinet/tcp_private.h>
    211 #include <netinet/tcpip.h>
    212 #include <netinet/tcp_congctl.h>
    213 #include <netinet/tcp_debug.h>
    214 
    215 #include <machine/stdarg.h>
    216 
    217 #ifdef IPSEC
    218 #include <netinet6/ipsec.h>
    219 #include <netinet6/ipsec_private.h>
    220 #include <netkey/key.h>
    221 #endif /*IPSEC*/
    222 #ifdef INET6
    223 #include "faith.h"
    224 #if defined(NFAITH) && NFAITH > 0
    225 #include <net/if_faith.h>
    226 #endif
    227 #endif	/* IPSEC */
    228 
    229 #ifdef FAST_IPSEC
    230 #include <netipsec/ipsec.h>
    231 #include <netipsec/ipsec_var.h>
    232 #include <netipsec/ipsec_private.h>
    233 #include <netipsec/key.h>
    234 #ifdef INET6
    235 #include <netipsec/ipsec6.h>
    236 #endif
    237 #endif	/* FAST_IPSEC*/
    238 
    239 int	tcprexmtthresh = 3;
    240 int	tcp_log_refused;
    241 
    242 int	tcp_do_autorcvbuf = 1;
    243 int	tcp_autorcvbuf_inc = 16 * 1024;
    244 int	tcp_autorcvbuf_max = 256 * 1024;
    245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    246 
    247 static int tcp_rst_ppslim_count = 0;
    248 static struct timeval tcp_rst_ppslim_last;
    249 static int tcp_ackdrop_ppslim_count = 0;
    250 static struct timeval tcp_ackdrop_ppslim_last;
    251 
    252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    253 
    254 /* for modulo comparisons of timestamps */
    255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    257 
    258 /*
    259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    260  */
    261 #ifdef INET6
    262 static inline void
    263 nd6_hint(struct tcpcb *tp)
    264 {
    265 	struct rtentry *rt;
    266 
    267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    269 		nd6_nud_hint(rt, NULL, 0);
    270 }
    271 #else
    272 static inline void
    273 nd6_hint(struct tcpcb *tp)
    274 {
    275 }
    276 #endif
    277 
    278 /*
    279  * Compute ACK transmission behavior.  Delay the ACK unless
    280  * we have already delayed an ACK (must send an ACK every two segments).
    281  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    282  * option is enabled.
    283  */
    284 static void
    285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    286 {
    287 
    288 	if (tp->t_flags & TF_DELACK ||
    289 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    290 		tp->t_flags |= TF_ACKNOW;
    291 	else
    292 		TCP_SET_DELACK(tp);
    293 }
    294 
    295 static void
    296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    297 {
    298 
    299 	/*
    300 	 * If we had a pending ICMP message that refers to data that have
    301 	 * just been acknowledged, disregard the recorded ICMP message.
    302 	 */
    303 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    304 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    305 		tp->t_flags &= ~TF_PMTUD_PEND;
    306 
    307 	/*
    308 	 * Keep track of the largest chunk of data
    309 	 * acknowledged since last PMTU update
    310 	 */
    311 	if (tp->t_pmtud_mss_acked < acked)
    312 		tp->t_pmtud_mss_acked = acked;
    313 }
    314 
    315 /*
    316  * Convert TCP protocol fields to host order for easier processing.
    317  */
    318 static void
    319 tcp_fields_to_host(struct tcphdr *th)
    320 {
    321 
    322 	NTOHL(th->th_seq);
    323 	NTOHL(th->th_ack);
    324 	NTOHS(th->th_win);
    325 	NTOHS(th->th_urp);
    326 }
    327 
    328 /*
    329  * ... and reverse the above.
    330  */
    331 static void
    332 tcp_fields_to_net(struct tcphdr *th)
    333 {
    334 
    335 	HTONL(th->th_seq);
    336 	HTONL(th->th_ack);
    337 	HTONS(th->th_win);
    338 	HTONS(th->th_urp);
    339 }
    340 
    341 #ifdef TCP_CSUM_COUNTERS
    342 #include <sys/device.h>
    343 
    344 #if defined(INET)
    345 extern struct evcnt tcp_hwcsum_ok;
    346 extern struct evcnt tcp_hwcsum_bad;
    347 extern struct evcnt tcp_hwcsum_data;
    348 extern struct evcnt tcp_swcsum;
    349 #endif /* defined(INET) */
    350 #if defined(INET6)
    351 extern struct evcnt tcp6_hwcsum_ok;
    352 extern struct evcnt tcp6_hwcsum_bad;
    353 extern struct evcnt tcp6_hwcsum_data;
    354 extern struct evcnt tcp6_swcsum;
    355 #endif /* defined(INET6) */
    356 
    357 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    358 
    359 #else
    360 
    361 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    362 
    363 #endif /* TCP_CSUM_COUNTERS */
    364 
    365 #ifdef TCP_REASS_COUNTERS
    366 #include <sys/device.h>
    367 
    368 extern struct evcnt tcp_reass_;
    369 extern struct evcnt tcp_reass_empty;
    370 extern struct evcnt tcp_reass_iteration[8];
    371 extern struct evcnt tcp_reass_prependfirst;
    372 extern struct evcnt tcp_reass_prepend;
    373 extern struct evcnt tcp_reass_insert;
    374 extern struct evcnt tcp_reass_inserttail;
    375 extern struct evcnt tcp_reass_append;
    376 extern struct evcnt tcp_reass_appendtail;
    377 extern struct evcnt tcp_reass_overlaptail;
    378 extern struct evcnt tcp_reass_overlapfront;
    379 extern struct evcnt tcp_reass_segdup;
    380 extern struct evcnt tcp_reass_fragdup;
    381 
    382 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    383 
    384 #else
    385 
    386 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    387 
    388 #endif /* TCP_REASS_COUNTERS */
    389 
    390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    391     int *);
    392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    393     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    394 
    395 #ifdef INET
    396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    397 #endif
    398 #ifdef INET6
    399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    400 #endif
    401 
    402 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    403 
    404 #if defined(MBUFTRACE)
    405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    406 #endif /* defined(MBUFTRACE) */
    407 
    408 static struct pool tcpipqent_pool;
    409 
    410 void
    411 tcpipqent_init(void)
    412 {
    413 
    414 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    415 	    NULL, IPL_VM);
    416 }
    417 
    418 struct ipqent *
    419 tcpipqent_alloc(void)
    420 {
    421 	struct ipqent *ipqe;
    422 	int s;
    423 
    424 	s = splvm();
    425 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    426 	splx(s);
    427 
    428 	return ipqe;
    429 }
    430 
    431 void
    432 tcpipqent_free(struct ipqent *ipqe)
    433 {
    434 	int s;
    435 
    436 	s = splvm();
    437 	pool_put(&tcpipqent_pool, ipqe);
    438 	splx(s);
    439 }
    440 
    441 static int
    442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    443 {
    444 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    445 	struct socket *so = NULL;
    446 	int pkt_flags;
    447 	tcp_seq pkt_seq;
    448 	unsigned pkt_len;
    449 	u_long rcvpartdupbyte = 0;
    450 	u_long rcvoobyte;
    451 #ifdef TCP_REASS_COUNTERS
    452 	u_int count = 0;
    453 #endif
    454 	uint64_t *tcps;
    455 
    456 	if (tp->t_inpcb)
    457 		so = tp->t_inpcb->inp_socket;
    458 #ifdef INET6
    459 	else if (tp->t_in6pcb)
    460 		so = tp->t_in6pcb->in6p_socket;
    461 #endif
    462 
    463 	TCP_REASS_LOCK_CHECK(tp);
    464 
    465 	/*
    466 	 * Call with th==0 after become established to
    467 	 * force pre-ESTABLISHED data up to user socket.
    468 	 */
    469 	if (th == 0)
    470 		goto present;
    471 
    472 	m_claimm(m, &tcp_reass_mowner);
    473 
    474 	rcvoobyte = *tlen;
    475 	/*
    476 	 * Copy these to local variables because the tcpiphdr
    477 	 * gets munged while we are collapsing mbufs.
    478 	 */
    479 	pkt_seq = th->th_seq;
    480 	pkt_len = *tlen;
    481 	pkt_flags = th->th_flags;
    482 
    483 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    484 
    485 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    486 		/*
    487 		 * When we miss a packet, the vast majority of time we get
    488 		 * packets that follow it in order.  So optimize for that.
    489 		 */
    490 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    491 			p->ipqe_len += pkt_len;
    492 			p->ipqe_flags |= pkt_flags;
    493 			m_cat(p->ipre_mlast, m);
    494 			TRAVERSE(p->ipre_mlast);
    495 			m = NULL;
    496 			tiqe = p;
    497 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    498 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    499 			goto skip_replacement;
    500 		}
    501 		/*
    502 		 * While we're here, if the pkt is completely beyond
    503 		 * anything we have, just insert it at the tail.
    504 		 */
    505 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    506 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    507 			goto insert_it;
    508 		}
    509 	}
    510 
    511 	q = TAILQ_FIRST(&tp->segq);
    512 
    513 	if (q != NULL) {
    514 		/*
    515 		 * If this segment immediately precedes the first out-of-order
    516 		 * block, simply slap the segment in front of it and (mostly)
    517 		 * skip the complicated logic.
    518 		 */
    519 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    520 			q->ipqe_seq = pkt_seq;
    521 			q->ipqe_len += pkt_len;
    522 			q->ipqe_flags |= pkt_flags;
    523 			m_cat(m, q->ipqe_m);
    524 			q->ipqe_m = m;
    525 			q->ipre_mlast = m; /* last mbuf may have changed */
    526 			TRAVERSE(q->ipre_mlast);
    527 			tiqe = q;
    528 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    529 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    530 			goto skip_replacement;
    531 		}
    532 	} else {
    533 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    534 	}
    535 
    536 	/*
    537 	 * Find a segment which begins after this one does.
    538 	 */
    539 	for (p = NULL; q != NULL; q = nq) {
    540 		nq = TAILQ_NEXT(q, ipqe_q);
    541 #ifdef TCP_REASS_COUNTERS
    542 		count++;
    543 #endif
    544 		/*
    545 		 * If the received segment is just right after this
    546 		 * fragment, merge the two together and then check
    547 		 * for further overlaps.
    548 		 */
    549 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    550 #ifdef TCPREASS_DEBUG
    551 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    552 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    553 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    554 #endif
    555 			pkt_len += q->ipqe_len;
    556 			pkt_flags |= q->ipqe_flags;
    557 			pkt_seq = q->ipqe_seq;
    558 			m_cat(q->ipre_mlast, m);
    559 			TRAVERSE(q->ipre_mlast);
    560 			m = q->ipqe_m;
    561 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    562 			goto free_ipqe;
    563 		}
    564 		/*
    565 		 * If the received segment is completely past this
    566 		 * fragment, we need to go the next fragment.
    567 		 */
    568 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    569 			p = q;
    570 			continue;
    571 		}
    572 		/*
    573 		 * If the fragment is past the received segment,
    574 		 * it (or any following) can't be concatenated.
    575 		 */
    576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    578 			break;
    579 		}
    580 
    581 		/*
    582 		 * We've received all the data in this segment before.
    583 		 * mark it as a duplicate and return.
    584 		 */
    585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    587 			tcps = TCP_STAT_GETREF();
    588 			tcps[TCP_STAT_RCVDUPPACK]++;
    589 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    590 			TCP_STAT_PUTREF();
    591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    592 			m_freem(m);
    593 			if (tiqe != NULL) {
    594 				tcpipqent_free(tiqe);
    595 			}
    596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    597 			return (0);
    598 		}
    599 		/*
    600 		 * Received segment completely overlaps this fragment
    601 		 * so we drop the fragment (this keeps the temporal
    602 		 * ordering of segments correct).
    603 		 */
    604 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    605 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    606 			rcvpartdupbyte += q->ipqe_len;
    607 			m_freem(q->ipqe_m);
    608 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    609 			goto free_ipqe;
    610 		}
    611 		/*
    612 		 * RX'ed segment extends past the end of the
    613 		 * fragment.  Drop the overlapping bytes.  Then
    614 		 * merge the fragment and segment then treat as
    615 		 * a longer received packet.
    616 		 */
    617 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    618 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    619 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    620 #ifdef TCPREASS_DEBUG
    621 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    622 			       tp, overlap,
    623 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    624 #endif
    625 			m_adj(m, overlap);
    626 			rcvpartdupbyte += overlap;
    627 			m_cat(q->ipre_mlast, m);
    628 			TRAVERSE(q->ipre_mlast);
    629 			m = q->ipqe_m;
    630 			pkt_seq = q->ipqe_seq;
    631 			pkt_len += q->ipqe_len - overlap;
    632 			rcvoobyte -= overlap;
    633 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    634 			goto free_ipqe;
    635 		}
    636 		/*
    637 		 * RX'ed segment extends past the front of the
    638 		 * fragment.  Drop the overlapping bytes on the
    639 		 * received packet.  The packet will then be
    640 		 * contatentated with this fragment a bit later.
    641 		 */
    642 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    643 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    644 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    645 #ifdef TCPREASS_DEBUG
    646 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    647 			       tp, overlap,
    648 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    649 #endif
    650 			m_adj(m, -overlap);
    651 			pkt_len -= overlap;
    652 			rcvpartdupbyte += overlap;
    653 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    654 			rcvoobyte -= overlap;
    655 		}
    656 		/*
    657 		 * If the received segment immediates precedes this
    658 		 * fragment then tack the fragment onto this segment
    659 		 * and reinsert the data.
    660 		 */
    661 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    662 #ifdef TCPREASS_DEBUG
    663 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    664 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    665 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    666 #endif
    667 			pkt_len += q->ipqe_len;
    668 			pkt_flags |= q->ipqe_flags;
    669 			m_cat(m, q->ipqe_m);
    670 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    671 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    672 			tp->t_segqlen--;
    673 			KASSERT(tp->t_segqlen >= 0);
    674 			KASSERT(tp->t_segqlen != 0 ||
    675 			    (TAILQ_EMPTY(&tp->segq) &&
    676 			    TAILQ_EMPTY(&tp->timeq)));
    677 			if (tiqe == NULL) {
    678 				tiqe = q;
    679 			} else {
    680 				tcpipqent_free(q);
    681 			}
    682 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    683 			break;
    684 		}
    685 		/*
    686 		 * If the fragment is before the segment, remember it.
    687 		 * When this loop is terminated, p will contain the
    688 		 * pointer to fragment that is right before the received
    689 		 * segment.
    690 		 */
    691 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    692 			p = q;
    693 
    694 		continue;
    695 
    696 		/*
    697 		 * This is a common operation.  It also will allow
    698 		 * to save doing a malloc/free in most instances.
    699 		 */
    700 	  free_ipqe:
    701 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    702 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    703 		tp->t_segqlen--;
    704 		KASSERT(tp->t_segqlen >= 0);
    705 		KASSERT(tp->t_segqlen != 0 ||
    706 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    707 		if (tiqe == NULL) {
    708 			tiqe = q;
    709 		} else {
    710 			tcpipqent_free(q);
    711 		}
    712 	}
    713 
    714 #ifdef TCP_REASS_COUNTERS
    715 	if (count > 7)
    716 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    717 	else if (count > 0)
    718 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    719 #endif
    720 
    721     insert_it:
    722 
    723 	/*
    724 	 * Allocate a new queue entry since the received segment did not
    725 	 * collapse onto any other out-of-order block; thus we are allocating
    726 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    727 	 * we would be reusing it.
    728 	 * XXX If we can't, just drop the packet.  XXX
    729 	 */
    730 	if (tiqe == NULL) {
    731 		tiqe = tcpipqent_alloc();
    732 		if (tiqe == NULL) {
    733 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    734 			m_freem(m);
    735 			return (0);
    736 		}
    737 	}
    738 
    739 	/*
    740 	 * Update the counters.
    741 	 */
    742 	tcps = TCP_STAT_GETREF();
    743 	tcps[TCP_STAT_RCVOOPACK]++;
    744 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    745 	if (rcvpartdupbyte) {
    746 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    747 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    748 	}
    749 	TCP_STAT_PUTREF();
    750 
    751 	/*
    752 	 * Insert the new fragment queue entry into both queues.
    753 	 */
    754 	tiqe->ipqe_m = m;
    755 	tiqe->ipre_mlast = m;
    756 	tiqe->ipqe_seq = pkt_seq;
    757 	tiqe->ipqe_len = pkt_len;
    758 	tiqe->ipqe_flags = pkt_flags;
    759 	if (p == NULL) {
    760 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    761 #ifdef TCPREASS_DEBUG
    762 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    763 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    764 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    765 #endif
    766 	} else {
    767 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    768 #ifdef TCPREASS_DEBUG
    769 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    770 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    771 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    772 #endif
    773 	}
    774 	tp->t_segqlen++;
    775 
    776 skip_replacement:
    777 
    778 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    779 
    780 present:
    781 	/*
    782 	 * Present data to user, advancing rcv_nxt through
    783 	 * completed sequence space.
    784 	 */
    785 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    786 		return (0);
    787 	q = TAILQ_FIRST(&tp->segq);
    788 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    789 		return (0);
    790 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    791 		return (0);
    792 
    793 	tp->rcv_nxt += q->ipqe_len;
    794 	pkt_flags = q->ipqe_flags & TH_FIN;
    795 	nd6_hint(tp);
    796 
    797 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    798 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    799 	tp->t_segqlen--;
    800 	KASSERT(tp->t_segqlen >= 0);
    801 	KASSERT(tp->t_segqlen != 0 ||
    802 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    803 	if (so->so_state & SS_CANTRCVMORE)
    804 		m_freem(q->ipqe_m);
    805 	else
    806 		sbappendstream(&so->so_rcv, q->ipqe_m);
    807 	tcpipqent_free(q);
    808 	sorwakeup(so);
    809 	return (pkt_flags);
    810 }
    811 
    812 #ifdef INET6
    813 int
    814 tcp6_input(struct mbuf **mp, int *offp, int proto)
    815 {
    816 	struct mbuf *m = *mp;
    817 
    818 	/*
    819 	 * draft-itojun-ipv6-tcp-to-anycast
    820 	 * better place to put this in?
    821 	 */
    822 	if (m->m_flags & M_ANYCAST6) {
    823 		struct ip6_hdr *ip6;
    824 		if (m->m_len < sizeof(struct ip6_hdr)) {
    825 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    826 				TCP_STATINC(TCP_STAT_RCVSHORT);
    827 				return IPPROTO_DONE;
    828 			}
    829 		}
    830 		ip6 = mtod(m, struct ip6_hdr *);
    831 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    832 		    (char *)&ip6->ip6_dst - (char *)ip6);
    833 		return IPPROTO_DONE;
    834 	}
    835 
    836 	tcp_input(m, *offp, proto);
    837 	return IPPROTO_DONE;
    838 }
    839 #endif
    840 
    841 #ifdef INET
    842 static void
    843 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    844 {
    845 	char src[4*sizeof "123"];
    846 	char dst[4*sizeof "123"];
    847 
    848 	if (ip) {
    849 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    850 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    851 	}
    852 	else {
    853 		strlcpy(src, "(unknown)", sizeof(src));
    854 		strlcpy(dst, "(unknown)", sizeof(dst));
    855 	}
    856 	log(LOG_INFO,
    857 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    858 	    dst, ntohs(th->th_dport),
    859 	    src, ntohs(th->th_sport));
    860 }
    861 #endif
    862 
    863 #ifdef INET6
    864 static void
    865 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    866 {
    867 	char src[INET6_ADDRSTRLEN];
    868 	char dst[INET6_ADDRSTRLEN];
    869 
    870 	if (ip6) {
    871 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    872 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    873 	}
    874 	else {
    875 		strlcpy(src, "(unknown v6)", sizeof(src));
    876 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    877 	}
    878 	log(LOG_INFO,
    879 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    880 	    dst, ntohs(th->th_dport),
    881 	    src, ntohs(th->th_sport));
    882 }
    883 #endif
    884 
    885 /*
    886  * Checksum extended TCP header and data.
    887  */
    888 int
    889 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    890     int toff, int off, int tlen)
    891 {
    892 
    893 	/*
    894 	 * XXX it's better to record and check if this mbuf is
    895 	 * already checked.
    896 	 */
    897 
    898 	switch (af) {
    899 #ifdef INET
    900 	case AF_INET:
    901 		switch (m->m_pkthdr.csum_flags &
    902 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    903 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    904 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    905 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    906 			goto badcsum;
    907 
    908 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    909 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    910 
    911 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    912 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    913 				const struct ip *ip =
    914 				    mtod(m, const struct ip *);
    915 
    916 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    917 				    ip->ip_dst.s_addr,
    918 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    919 			}
    920 			if ((hw_csum ^ 0xffff) != 0)
    921 				goto badcsum;
    922 			break;
    923 		}
    924 
    925 		case M_CSUM_TCPv4:
    926 			/* Checksum was okay. */
    927 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    928 			break;
    929 
    930 		default:
    931 			/*
    932 			 * Must compute it ourselves.  Maybe skip checksum
    933 			 * on loopback interfaces.
    934 			 */
    935 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    936 					     IFF_LOOPBACK) ||
    937 					   tcp_do_loopback_cksum)) {
    938 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    939 				if (in4_cksum(m, IPPROTO_TCP, toff,
    940 					      tlen + off) != 0)
    941 					goto badcsum;
    942 			}
    943 			break;
    944 		}
    945 		break;
    946 #endif /* INET4 */
    947 
    948 #ifdef INET6
    949 	case AF_INET6:
    950 		switch (m->m_pkthdr.csum_flags &
    951 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    952 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    953 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    954 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    955 			goto badcsum;
    956 
    957 #if 0 /* notyet */
    958 		case M_CSUM_TCPv6|M_CSUM_DATA:
    959 #endif
    960 
    961 		case M_CSUM_TCPv6:
    962 			/* Checksum was okay. */
    963 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    964 			break;
    965 
    966 		default:
    967 			/*
    968 			 * Must compute it ourselves.  Maybe skip checksum
    969 			 * on loopback interfaces.
    970 			 */
    971 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    972 			    tcp_do_loopback_cksum)) {
    973 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    974 				if (in6_cksum(m, IPPROTO_TCP, toff,
    975 				    tlen + off) != 0)
    976 					goto badcsum;
    977 			}
    978 		}
    979 		break;
    980 #endif /* INET6 */
    981 	}
    982 
    983 	return 0;
    984 
    985 badcsum:
    986 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    987 	return -1;
    988 }
    989 
    990 /*
    991  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
    992  */
    993 void
    994 tcp_input(struct mbuf *m, ...)
    995 {
    996 	struct tcphdr *th;
    997 	struct ip *ip;
    998 	struct inpcb *inp;
    999 #ifdef INET6
   1000 	struct ip6_hdr *ip6;
   1001 	struct in6pcb *in6p;
   1002 #endif
   1003 	u_int8_t *optp = NULL;
   1004 	int optlen = 0;
   1005 	int len, tlen, toff, hdroptlen = 0;
   1006 	struct tcpcb *tp = 0;
   1007 	int tiflags;
   1008 	struct socket *so = NULL;
   1009 	int todrop, acked, ourfinisacked, needoutput = 0;
   1010 	bool dupseg;
   1011 #ifdef TCP_DEBUG
   1012 	short ostate = 0;
   1013 #endif
   1014 	u_long tiwin;
   1015 	struct tcp_opt_info opti;
   1016 	int off, iphlen;
   1017 	va_list ap;
   1018 	int af;		/* af on the wire */
   1019 	struct mbuf *tcp_saveti = NULL;
   1020 	uint32_t ts_rtt;
   1021 	uint8_t iptos;
   1022 	uint64_t *tcps;
   1023 
   1024 	MCLAIM(m, &tcp_rx_mowner);
   1025 	va_start(ap, m);
   1026 	toff = va_arg(ap, int);
   1027 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1028 	va_end(ap);
   1029 
   1030 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1031 
   1032 	memset(&opti, 0, sizeof(opti));
   1033 	opti.ts_present = 0;
   1034 	opti.maxseg = 0;
   1035 
   1036 	/*
   1037 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1038 	 *
   1039 	 * TCP is, by definition, unicast, so we reject all
   1040 	 * multicast outright.
   1041 	 *
   1042 	 * Note, there are additional src/dst address checks in
   1043 	 * the AF-specific code below.
   1044 	 */
   1045 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1046 		/* XXX stat */
   1047 		goto drop;
   1048 	}
   1049 #ifdef INET6
   1050 	if (m->m_flags & M_ANYCAST6) {
   1051 		/* XXX stat */
   1052 		goto drop;
   1053 	}
   1054 #endif
   1055 
   1056 	/*
   1057 	 * Get IP and TCP header.
   1058 	 * Note: IP leaves IP header in first mbuf.
   1059 	 */
   1060 	ip = mtod(m, struct ip *);
   1061 	switch (ip->ip_v) {
   1062 #ifdef INET
   1063 	case 4:
   1064 #ifdef INET6
   1065 		ip6 = NULL;
   1066 #endif
   1067 		af = AF_INET;
   1068 		iphlen = sizeof(struct ip);
   1069 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1070 			sizeof(struct tcphdr));
   1071 		if (th == NULL) {
   1072 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1073 			return;
   1074 		}
   1075 		/* We do the checksum after PCB lookup... */
   1076 		len = ntohs(ip->ip_len);
   1077 		tlen = len - toff;
   1078 		iptos = ip->ip_tos;
   1079 		break;
   1080 #endif
   1081 #ifdef INET6
   1082 	case 6:
   1083 		ip = NULL;
   1084 		iphlen = sizeof(struct ip6_hdr);
   1085 		af = AF_INET6;
   1086 		ip6 = mtod(m, struct ip6_hdr *);
   1087 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1088 			sizeof(struct tcphdr));
   1089 		if (th == NULL) {
   1090 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1091 			return;
   1092 		}
   1093 
   1094 		/* Be proactive about malicious use of IPv4 mapped address */
   1095 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1096 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1097 			/* XXX stat */
   1098 			goto drop;
   1099 		}
   1100 
   1101 		/*
   1102 		 * Be proactive about unspecified IPv6 address in source.
   1103 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1104 		 * unspecified IPv6 address can be used to confuse us.
   1105 		 *
   1106 		 * Note that packets with unspecified IPv6 destination is
   1107 		 * already dropped in ip6_input.
   1108 		 */
   1109 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1110 			/* XXX stat */
   1111 			goto drop;
   1112 		}
   1113 
   1114 		/*
   1115 		 * Make sure destination address is not multicast.
   1116 		 * Source address checked in ip6_input().
   1117 		 */
   1118 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1119 			/* XXX stat */
   1120 			goto drop;
   1121 		}
   1122 
   1123 		/* We do the checksum after PCB lookup... */
   1124 		len = m->m_pkthdr.len;
   1125 		tlen = len - toff;
   1126 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1127 		break;
   1128 #endif
   1129 	default:
   1130 		m_freem(m);
   1131 		return;
   1132 	}
   1133 
   1134 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1135 
   1136 	/*
   1137 	 * Check that TCP offset makes sense,
   1138 	 * pull out TCP options and adjust length.		XXX
   1139 	 */
   1140 	off = th->th_off << 2;
   1141 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1142 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1143 		goto drop;
   1144 	}
   1145 	tlen -= off;
   1146 
   1147 	/*
   1148 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1149 	 * length throughout the function.  Other functions can use
   1150 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1151 	 * rja
   1152 	 */
   1153 
   1154 	if (off > sizeof (struct tcphdr)) {
   1155 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1156 		if (th == NULL) {
   1157 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1158 			return;
   1159 		}
   1160 		/*
   1161 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1162 		 * (as they're before toff) and we don't need to update those.
   1163 		 */
   1164 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1165 		optlen = off - sizeof (struct tcphdr);
   1166 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1167 		/*
   1168 		 * Do quick retrieval of timestamp options ("options
   1169 		 * prediction?").  If timestamp is the only option and it's
   1170 		 * formatted as recommended in RFC 1323 appendix A, we
   1171 		 * quickly get the values now and not bother calling
   1172 		 * tcp_dooptions(), etc.
   1173 		 */
   1174 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1175 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1176 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1177 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1178 		     (th->th_flags & TH_SYN) == 0) {
   1179 			opti.ts_present = 1;
   1180 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1181 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1182 			optp = NULL;	/* we've parsed the options */
   1183 		}
   1184 	}
   1185 	tiflags = th->th_flags;
   1186 
   1187 	/*
   1188 	 * Locate pcb for segment.
   1189 	 */
   1190 findpcb:
   1191 	inp = NULL;
   1192 #ifdef INET6
   1193 	in6p = NULL;
   1194 #endif
   1195 	switch (af) {
   1196 #ifdef INET
   1197 	case AF_INET:
   1198 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1199 		    ip->ip_dst, th->th_dport);
   1200 		if (inp == 0) {
   1201 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1202 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1203 		}
   1204 #ifdef INET6
   1205 		if (inp == 0) {
   1206 			struct in6_addr s, d;
   1207 
   1208 			/* mapped addr case */
   1209 			memset(&s, 0, sizeof(s));
   1210 			s.s6_addr16[5] = htons(0xffff);
   1211 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1212 			memset(&d, 0, sizeof(d));
   1213 			d.s6_addr16[5] = htons(0xffff);
   1214 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1215 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1216 			    th->th_sport, &d, th->th_dport, 0);
   1217 			if (in6p == 0) {
   1218 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1219 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1220 				    th->th_dport, 0);
   1221 			}
   1222 		}
   1223 #endif
   1224 #ifndef INET6
   1225 		if (inp == 0)
   1226 #else
   1227 		if (inp == 0 && in6p == 0)
   1228 #endif
   1229 		{
   1230 			TCP_STATINC(TCP_STAT_NOPORT);
   1231 			if (tcp_log_refused &&
   1232 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1233 				tcp4_log_refused(ip, th);
   1234 			}
   1235 			tcp_fields_to_host(th);
   1236 			goto dropwithreset_ratelim;
   1237 		}
   1238 #if defined(IPSEC) || defined(FAST_IPSEC)
   1239 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1240 		    ipsec4_in_reject(m, inp)) {
   1241 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1242 			goto drop;
   1243 		}
   1244 #ifdef INET6
   1245 		else if (in6p &&
   1246 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1247 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1248 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1249 			goto drop;
   1250 		}
   1251 #endif
   1252 #endif /*IPSEC*/
   1253 		break;
   1254 #endif /*INET*/
   1255 #ifdef INET6
   1256 	case AF_INET6:
   1257 	    {
   1258 		int faith;
   1259 
   1260 #if defined(NFAITH) && NFAITH > 0
   1261 		faith = faithprefix(&ip6->ip6_dst);
   1262 #else
   1263 		faith = 0;
   1264 #endif
   1265 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1266 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
   1267 		if (in6p == NULL) {
   1268 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1269 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1270 				th->th_dport, faith);
   1271 		}
   1272 		if (in6p == NULL) {
   1273 			TCP_STATINC(TCP_STAT_NOPORT);
   1274 			if (tcp_log_refused &&
   1275 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1276 				tcp6_log_refused(ip6, th);
   1277 			}
   1278 			tcp_fields_to_host(th);
   1279 			goto dropwithreset_ratelim;
   1280 		}
   1281 #if defined(IPSEC) || defined(FAST_IPSEC)
   1282 		if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1283 		    ipsec6_in_reject(m, in6p)) {
   1284 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1285 			goto drop;
   1286 		}
   1287 #endif /*IPSEC*/
   1288 		break;
   1289 	    }
   1290 #endif
   1291 	}
   1292 
   1293 	/*
   1294 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1295 	 * all data in the incoming segment is discarded.
   1296 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1297 	 * but should either do a listen or a connect soon.
   1298 	 */
   1299 	tp = NULL;
   1300 	so = NULL;
   1301 	if (inp) {
   1302 		/* Check the minimum TTL for socket. */
   1303 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1304 			goto drop;
   1305 
   1306 		tp = intotcpcb(inp);
   1307 		so = inp->inp_socket;
   1308 	}
   1309 #ifdef INET6
   1310 	else if (in6p) {
   1311 		tp = in6totcpcb(in6p);
   1312 		so = in6p->in6p_socket;
   1313 	}
   1314 #endif
   1315 	if (tp == 0) {
   1316 		tcp_fields_to_host(th);
   1317 		goto dropwithreset_ratelim;
   1318 	}
   1319 	if (tp->t_state == TCPS_CLOSED)
   1320 		goto drop;
   1321 
   1322 	KASSERT(so->so_lock == softnet_lock);
   1323 	KASSERT(solocked(so));
   1324 
   1325 	/*
   1326 	 * Checksum extended TCP header and data.
   1327 	 */
   1328 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1329 		goto badcsum;
   1330 
   1331 	tcp_fields_to_host(th);
   1332 
   1333 	/* Unscale the window into a 32-bit value. */
   1334 	if ((tiflags & TH_SYN) == 0)
   1335 		tiwin = th->th_win << tp->snd_scale;
   1336 	else
   1337 		tiwin = th->th_win;
   1338 
   1339 #ifdef INET6
   1340 	/* save packet options if user wanted */
   1341 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1342 		if (in6p->in6p_options) {
   1343 			m_freem(in6p->in6p_options);
   1344 			in6p->in6p_options = 0;
   1345 		}
   1346 		KASSERT(ip6 != NULL);
   1347 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1348 	}
   1349 #endif
   1350 
   1351 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1352 		union syn_cache_sa src;
   1353 		union syn_cache_sa dst;
   1354 
   1355 		memset(&src, 0, sizeof(src));
   1356 		memset(&dst, 0, sizeof(dst));
   1357 		switch (af) {
   1358 #ifdef INET
   1359 		case AF_INET:
   1360 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1361 			src.sin.sin_family = AF_INET;
   1362 			src.sin.sin_addr = ip->ip_src;
   1363 			src.sin.sin_port = th->th_sport;
   1364 
   1365 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1366 			dst.sin.sin_family = AF_INET;
   1367 			dst.sin.sin_addr = ip->ip_dst;
   1368 			dst.sin.sin_port = th->th_dport;
   1369 			break;
   1370 #endif
   1371 #ifdef INET6
   1372 		case AF_INET6:
   1373 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1374 			src.sin6.sin6_family = AF_INET6;
   1375 			src.sin6.sin6_addr = ip6->ip6_src;
   1376 			src.sin6.sin6_port = th->th_sport;
   1377 
   1378 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1379 			dst.sin6.sin6_family = AF_INET6;
   1380 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1381 			dst.sin6.sin6_port = th->th_dport;
   1382 			break;
   1383 #endif /* INET6 */
   1384 		default:
   1385 			goto badsyn;	/*sanity*/
   1386 		}
   1387 
   1388 		if (so->so_options & SO_DEBUG) {
   1389 #ifdef TCP_DEBUG
   1390 			ostate = tp->t_state;
   1391 #endif
   1392 
   1393 			tcp_saveti = NULL;
   1394 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1395 				goto nosave;
   1396 
   1397 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1398 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1399 				if (!tcp_saveti)
   1400 					goto nosave;
   1401 			} else {
   1402 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1403 				if (!tcp_saveti)
   1404 					goto nosave;
   1405 				MCLAIM(m, &tcp_mowner);
   1406 				tcp_saveti->m_len = iphlen;
   1407 				m_copydata(m, 0, iphlen,
   1408 				    mtod(tcp_saveti, void *));
   1409 			}
   1410 
   1411 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1412 				m_freem(tcp_saveti);
   1413 				tcp_saveti = NULL;
   1414 			} else {
   1415 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1416 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1417 				    sizeof(struct tcphdr));
   1418 			}
   1419 	nosave:;
   1420 		}
   1421 		if (so->so_options & SO_ACCEPTCONN) {
   1422 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1423 				if (tiflags & TH_RST) {
   1424 					syn_cache_reset(&src.sa, &dst.sa, th);
   1425 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1426 				    (TH_ACK|TH_SYN)) {
   1427 					/*
   1428 					 * Received a SYN,ACK.  This should
   1429 					 * never happen while we are in
   1430 					 * LISTEN.  Send an RST.
   1431 					 */
   1432 					goto badsyn;
   1433 				} else if (tiflags & TH_ACK) {
   1434 					so = syn_cache_get(&src.sa, &dst.sa,
   1435 						th, toff, tlen, so, m);
   1436 					if (so == NULL) {
   1437 						/*
   1438 						 * We don't have a SYN for
   1439 						 * this ACK; send an RST.
   1440 						 */
   1441 						goto badsyn;
   1442 					} else if (so ==
   1443 					    (struct socket *)(-1)) {
   1444 						/*
   1445 						 * We were unable to create
   1446 						 * the connection.  If the
   1447 						 * 3-way handshake was
   1448 						 * completed, and RST has
   1449 						 * been sent to the peer.
   1450 						 * Since the mbuf might be
   1451 						 * in use for the reply,
   1452 						 * do not free it.
   1453 						 */
   1454 						m = NULL;
   1455 					} else {
   1456 						/*
   1457 						 * We have created a
   1458 						 * full-blown connection.
   1459 						 */
   1460 						tp = NULL;
   1461 						inp = NULL;
   1462 #ifdef INET6
   1463 						in6p = NULL;
   1464 #endif
   1465 						switch (so->so_proto->pr_domain->dom_family) {
   1466 #ifdef INET
   1467 						case AF_INET:
   1468 							inp = sotoinpcb(so);
   1469 							tp = intotcpcb(inp);
   1470 							break;
   1471 #endif
   1472 #ifdef INET6
   1473 						case AF_INET6:
   1474 							in6p = sotoin6pcb(so);
   1475 							tp = in6totcpcb(in6p);
   1476 							break;
   1477 #endif
   1478 						}
   1479 						if (tp == NULL)
   1480 							goto badsyn;	/*XXX*/
   1481 						tiwin <<= tp->snd_scale;
   1482 						goto after_listen;
   1483 					}
   1484 				} else {
   1485 					/*
   1486 					 * None of RST, SYN or ACK was set.
   1487 					 * This is an invalid packet for a
   1488 					 * TCB in LISTEN state.  Send a RST.
   1489 					 */
   1490 					goto badsyn;
   1491 				}
   1492 			} else {
   1493 				/*
   1494 				 * Received a SYN.
   1495 				 *
   1496 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1497 				 */
   1498 				if (m->m_flags & (M_BCAST|M_MCAST))
   1499 					goto drop;
   1500 
   1501 				switch (af) {
   1502 #ifdef INET6
   1503 				case AF_INET6:
   1504 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1505 						goto drop;
   1506 					break;
   1507 #endif /* INET6 */
   1508 				case AF_INET:
   1509 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1510 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1511 						goto drop;
   1512 				break;
   1513 				}
   1514 
   1515 #ifdef INET6
   1516 				/*
   1517 				 * If deprecated address is forbidden, we do
   1518 				 * not accept SYN to deprecated interface
   1519 				 * address to prevent any new inbound
   1520 				 * connection from getting established.
   1521 				 * When we do not accept SYN, we send a TCP
   1522 				 * RST, with deprecated source address (instead
   1523 				 * of dropping it).  We compromise it as it is
   1524 				 * much better for peer to send a RST, and
   1525 				 * RST will be the final packet for the
   1526 				 * exchange.
   1527 				 *
   1528 				 * If we do not forbid deprecated addresses, we
   1529 				 * accept the SYN packet.  RFC2462 does not
   1530 				 * suggest dropping SYN in this case.
   1531 				 * If we decipher RFC2462 5.5.4, it says like
   1532 				 * this:
   1533 				 * 1. use of deprecated addr with existing
   1534 				 *    communication is okay - "SHOULD continue
   1535 				 *    to be used"
   1536 				 * 2. use of it with new communication:
   1537 				 *   (2a) "SHOULD NOT be used if alternate
   1538 				 *        address with sufficient scope is
   1539 				 *        available"
   1540 				 *   (2b) nothing mentioned otherwise.
   1541 				 * Here we fall into (2b) case as we have no
   1542 				 * choice in our source address selection - we
   1543 				 * must obey the peer.
   1544 				 *
   1545 				 * The wording in RFC2462 is confusing, and
   1546 				 * there are multiple description text for
   1547 				 * deprecated address handling - worse, they
   1548 				 * are not exactly the same.  I believe 5.5.4
   1549 				 * is the best one, so we follow 5.5.4.
   1550 				 */
   1551 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1552 					struct in6_ifaddr *ia6;
   1553 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1554 					    &ip6->ip6_dst)) &&
   1555 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1556 						tp = NULL;
   1557 						goto dropwithreset;
   1558 					}
   1559 				}
   1560 #endif
   1561 
   1562 #if defined(IPSEC) || defined(FAST_IPSEC)
   1563 				switch (af) {
   1564 #ifdef INET
   1565 				case AF_INET:
   1566 					if (ipsec4_in_reject_so(m, so)) {
   1567 						IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1568 						tp = NULL;
   1569 						goto dropwithreset;
   1570 					}
   1571 					break;
   1572 #endif
   1573 #ifdef INET6
   1574 				case AF_INET6:
   1575 					if (ipsec6_in_reject_so(m, so)) {
   1576 						IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1577 						tp = NULL;
   1578 						goto dropwithreset;
   1579 					}
   1580 					break;
   1581 #endif /*INET6*/
   1582 				}
   1583 #endif /*IPSEC*/
   1584 
   1585 				/*
   1586 				 * LISTEN socket received a SYN
   1587 				 * from itself?  This can't possibly
   1588 				 * be valid; drop the packet.
   1589 				 */
   1590 				if (th->th_sport == th->th_dport) {
   1591 					int i;
   1592 
   1593 					switch (af) {
   1594 #ifdef INET
   1595 					case AF_INET:
   1596 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1597 						break;
   1598 #endif
   1599 #ifdef INET6
   1600 					case AF_INET6:
   1601 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1602 						break;
   1603 #endif
   1604 					default:
   1605 						i = 1;
   1606 					}
   1607 					if (i) {
   1608 						TCP_STATINC(TCP_STAT_BADSYN);
   1609 						goto drop;
   1610 					}
   1611 				}
   1612 
   1613 				/*
   1614 				 * SYN looks ok; create compressed TCP
   1615 				 * state for it.
   1616 				 */
   1617 				if (so->so_qlen <= so->so_qlimit &&
   1618 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1619 						so, m, optp, optlen, &opti))
   1620 					m = NULL;
   1621 			}
   1622 			goto drop;
   1623 		}
   1624 	}
   1625 
   1626 after_listen:
   1627 #ifdef DIAGNOSTIC
   1628 	/*
   1629 	 * Should not happen now that all embryonic connections
   1630 	 * are handled with compressed state.
   1631 	 */
   1632 	if (tp->t_state == TCPS_LISTEN)
   1633 		panic("tcp_input: TCPS_LISTEN");
   1634 #endif
   1635 
   1636 	/*
   1637 	 * Segment received on connection.
   1638 	 * Reset idle time and keep-alive timer.
   1639 	 */
   1640 	tp->t_rcvtime = tcp_now;
   1641 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1642 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1643 
   1644 	/*
   1645 	 * Process options.
   1646 	 */
   1647 #ifdef TCP_SIGNATURE
   1648 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1649 #else
   1650 	if (optp)
   1651 #endif
   1652 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1653 			goto drop;
   1654 
   1655 	if (TCP_SACK_ENABLED(tp)) {
   1656 		tcp_del_sackholes(tp, th);
   1657 	}
   1658 
   1659 	if (TCP_ECN_ALLOWED(tp)) {
   1660 		if (tiflags & TH_CWR) {
   1661 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1662 		}
   1663 		switch (iptos & IPTOS_ECN_MASK) {
   1664 		case IPTOS_ECN_CE:
   1665 			tp->t_flags |= TF_ECN_SND_ECE;
   1666 			TCP_STATINC(TCP_STAT_ECN_CE);
   1667 			break;
   1668 		case IPTOS_ECN_ECT0:
   1669 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1670 			break;
   1671 		case IPTOS_ECN_ECT1:
   1672 			/* XXX: ignore for now -- rpaulo */
   1673 			break;
   1674 		}
   1675 		/*
   1676 		 * Congestion experienced.
   1677 		 * Ignore if we are already trying to recover.
   1678 		 */
   1679 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1680 			tp->t_congctl->cong_exp(tp);
   1681 	}
   1682 
   1683 	if (opti.ts_present && opti.ts_ecr) {
   1684 		/*
   1685 		 * Calculate the RTT from the returned time stamp and the
   1686 		 * connection's time base.  If the time stamp is later than
   1687 		 * the current time, or is extremely old, fall back to non-1323
   1688 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1689 		 * at the same time.
   1690 		 *
   1691 		 * Note that ts_rtt is in units of slow ticks (500
   1692 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1693 		 * observed values will have large quantization noise.
   1694 		 * Our smoothed RTT is then the fraction of observed
   1695 		 * samples that are 1 tick instead of 0 (times 500
   1696 		 * ms).
   1697 		 *
   1698 		 * ts_rtt is increased by 1 to denote a valid sample,
   1699 		 * with 0 indicating an invalid measurement.  This
   1700 		 * extra 1 must be removed when ts_rtt is used, or
   1701 		 * else an an erroneous extra 500 ms will result.
   1702 		 */
   1703 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1704 		if (ts_rtt > TCP_PAWS_IDLE)
   1705 			ts_rtt = 0;
   1706 	} else {
   1707 		ts_rtt = 0;
   1708 	}
   1709 
   1710 	/*
   1711 	 * Header prediction: check for the two common cases
   1712 	 * of a uni-directional data xfer.  If the packet has
   1713 	 * no control flags, is in-sequence, the window didn't
   1714 	 * change and we're not retransmitting, it's a
   1715 	 * candidate.  If the length is zero and the ack moved
   1716 	 * forward, we're the sender side of the xfer.  Just
   1717 	 * free the data acked & wake any higher level process
   1718 	 * that was blocked waiting for space.  If the length
   1719 	 * is non-zero and the ack didn't move, we're the
   1720 	 * receiver side.  If we're getting packets in-order
   1721 	 * (the reassembly queue is empty), add the data to
   1722 	 * the socket buffer and note that we need a delayed ack.
   1723 	 */
   1724 	if (tp->t_state == TCPS_ESTABLISHED &&
   1725 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1726 	        == TH_ACK &&
   1727 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1728 	    th->th_seq == tp->rcv_nxt &&
   1729 	    tiwin && tiwin == tp->snd_wnd &&
   1730 	    tp->snd_nxt == tp->snd_max) {
   1731 
   1732 		/*
   1733 		 * If last ACK falls within this segment's sequence numbers,
   1734 		 * record the timestamp.
   1735 		 * NOTE that the test is modified according to the latest
   1736 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1737 		 *
   1738 		 * note that we already know
   1739 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1740 		 */
   1741 		if (opti.ts_present &&
   1742 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1743 			tp->ts_recent_age = tcp_now;
   1744 			tp->ts_recent = opti.ts_val;
   1745 		}
   1746 
   1747 		if (tlen == 0) {
   1748 			/* Ack prediction. */
   1749 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1750 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1751 			    tp->snd_cwnd >= tp->snd_wnd &&
   1752 			    tp->t_partialacks < 0) {
   1753 				/*
   1754 				 * this is a pure ack for outstanding data.
   1755 				 */
   1756 				if (ts_rtt)
   1757 					tcp_xmit_timer(tp, ts_rtt);
   1758 				else if (tp->t_rtttime &&
   1759 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1760 					tcp_xmit_timer(tp,
   1761 					  tcp_now - tp->t_rtttime);
   1762 				acked = th->th_ack - tp->snd_una;
   1763 				tcps = TCP_STAT_GETREF();
   1764 				tcps[TCP_STAT_PREDACK]++;
   1765 				tcps[TCP_STAT_RCVACKPACK]++;
   1766 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   1767 				TCP_STAT_PUTREF();
   1768 				nd6_hint(tp);
   1769 
   1770 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1771 					tp->t_lastm = NULL;
   1772 				sbdrop(&so->so_snd, acked);
   1773 				tp->t_lastoff -= acked;
   1774 
   1775 				icmp_check(tp, th, acked);
   1776 
   1777 				tp->snd_una = th->th_ack;
   1778 				tp->snd_fack = tp->snd_una;
   1779 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1780 					tp->snd_high = tp->snd_una;
   1781 				m_freem(m);
   1782 
   1783 				/*
   1784 				 * If all outstanding data are acked, stop
   1785 				 * retransmit timer, otherwise restart timer
   1786 				 * using current (possibly backed-off) value.
   1787 				 * If process is waiting for space,
   1788 				 * wakeup/selnotify/signal.  If data
   1789 				 * are ready to send, let tcp_output
   1790 				 * decide between more output or persist.
   1791 				 */
   1792 				if (tp->snd_una == tp->snd_max)
   1793 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1794 				else if (TCP_TIMER_ISARMED(tp,
   1795 				    TCPT_PERSIST) == 0)
   1796 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1797 					    tp->t_rxtcur);
   1798 
   1799 				sowwakeup(so);
   1800 				if (so->so_snd.sb_cc) {
   1801 					KERNEL_LOCK(1, NULL);
   1802 					(void) tcp_output(tp);
   1803 					KERNEL_UNLOCK_ONE(NULL);
   1804 				}
   1805 				if (tcp_saveti)
   1806 					m_freem(tcp_saveti);
   1807 				return;
   1808 			}
   1809 		} else if (th->th_ack == tp->snd_una &&
   1810 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1811 		    tlen <= sbspace(&so->so_rcv)) {
   1812 			int newsize = 0;	/* automatic sockbuf scaling */
   1813 
   1814 			/*
   1815 			 * this is a pure, in-sequence data packet
   1816 			 * with nothing on the reassembly queue and
   1817 			 * we have enough buffer space to take it.
   1818 			 */
   1819 			tp->rcv_nxt += tlen;
   1820 			tcps = TCP_STAT_GETREF();
   1821 			tcps[TCP_STAT_PREDDAT]++;
   1822 			tcps[TCP_STAT_RCVPACK]++;
   1823 			tcps[TCP_STAT_RCVBYTE] += tlen;
   1824 			TCP_STAT_PUTREF();
   1825 			nd6_hint(tp);
   1826 
   1827 		/*
   1828 		 * Automatic sizing enables the performance of large buffers
   1829 		 * and most of the efficiency of small ones by only allocating
   1830 		 * space when it is needed.
   1831 		 *
   1832 		 * On the receive side the socket buffer memory is only rarely
   1833 		 * used to any significant extent.  This allows us to be much
   1834 		 * more aggressive in scaling the receive socket buffer.  For
   1835 		 * the case that the buffer space is actually used to a large
   1836 		 * extent and we run out of kernel memory we can simply drop
   1837 		 * the new segments; TCP on the sender will just retransmit it
   1838 		 * later.  Setting the buffer size too big may only consume too
   1839 		 * much kernel memory if the application doesn't read() from
   1840 		 * the socket or packet loss or reordering makes use of the
   1841 		 * reassembly queue.
   1842 		 *
   1843 		 * The criteria to step up the receive buffer one notch are:
   1844 		 *  1. the number of bytes received during the time it takes
   1845 		 *     one timestamp to be reflected back to us (the RTT);
   1846 		 *  2. received bytes per RTT is within seven eighth of the
   1847 		 *     current socket buffer size;
   1848 		 *  3. receive buffer size has not hit maximal automatic size;
   1849 		 *
   1850 		 * This algorithm does one step per RTT at most and only if
   1851 		 * we receive a bulk stream w/o packet losses or reorderings.
   1852 		 * Shrinking the buffer during idle times is not necessary as
   1853 		 * it doesn't consume any memory when idle.
   1854 		 *
   1855 		 * TODO: Only step up if the application is actually serving
   1856 		 * the buffer to better manage the socket buffer resources.
   1857 		 */
   1858 			if (tcp_do_autorcvbuf &&
   1859 			    opti.ts_ecr &&
   1860 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   1861 				if (opti.ts_ecr > tp->rfbuf_ts &&
   1862 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   1863 					if (tp->rfbuf_cnt >
   1864 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   1865 					    so->so_rcv.sb_hiwat <
   1866 					    tcp_autorcvbuf_max) {
   1867 						newsize =
   1868 						    min(so->so_rcv.sb_hiwat +
   1869 						    tcp_autorcvbuf_inc,
   1870 						    tcp_autorcvbuf_max);
   1871 					}
   1872 					/* Start over with next RTT. */
   1873 					tp->rfbuf_ts = 0;
   1874 					tp->rfbuf_cnt = 0;
   1875 				} else
   1876 					tp->rfbuf_cnt += tlen;	/* add up */
   1877 			}
   1878 
   1879 			/*
   1880 			 * Drop TCP, IP headers and TCP options then add data
   1881 			 * to socket buffer.
   1882 			 */
   1883 			if (so->so_state & SS_CANTRCVMORE)
   1884 				m_freem(m);
   1885 			else {
   1886 				/*
   1887 				 * Set new socket buffer size.
   1888 				 * Give up when limit is reached.
   1889 				 */
   1890 				if (newsize)
   1891 					if (!sbreserve(&so->so_rcv,
   1892 					    newsize, so))
   1893 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   1894 				m_adj(m, toff + off);
   1895 				sbappendstream(&so->so_rcv, m);
   1896 			}
   1897 			sorwakeup(so);
   1898 			tcp_setup_ack(tp, th);
   1899 			if (tp->t_flags & TF_ACKNOW) {
   1900 				KERNEL_LOCK(1, NULL);
   1901 				(void) tcp_output(tp);
   1902 				KERNEL_UNLOCK_ONE(NULL);
   1903 			}
   1904 			if (tcp_saveti)
   1905 				m_freem(tcp_saveti);
   1906 			return;
   1907 		}
   1908 	}
   1909 
   1910 	/*
   1911 	 * Compute mbuf offset to TCP data segment.
   1912 	 */
   1913 	hdroptlen = toff + off;
   1914 
   1915 	/*
   1916 	 * Calculate amount of space in receive window,
   1917 	 * and then do TCP input processing.
   1918 	 * Receive window is amount of space in rcv queue,
   1919 	 * but not less than advertised window.
   1920 	 */
   1921 	{ int win;
   1922 
   1923 	win = sbspace(&so->so_rcv);
   1924 	if (win < 0)
   1925 		win = 0;
   1926 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   1927 	}
   1928 
   1929 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   1930 	tp->rfbuf_ts = 0;
   1931 	tp->rfbuf_cnt = 0;
   1932 
   1933 	switch (tp->t_state) {
   1934 	/*
   1935 	 * If the state is SYN_SENT:
   1936 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   1937 	 *	if seg contains a RST, then drop the connection.
   1938 	 *	if seg does not contain SYN, then drop it.
   1939 	 * Otherwise this is an acceptable SYN segment
   1940 	 *	initialize tp->rcv_nxt and tp->irs
   1941 	 *	if seg contains ack then advance tp->snd_una
   1942 	 *	if seg contains a ECE and ECN support is enabled, the stream
   1943 	 *	    is ECN capable.
   1944 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   1945 	 *	arrange for segment to be acked (eventually)
   1946 	 *	continue processing rest of data/controls, beginning with URG
   1947 	 */
   1948 	case TCPS_SYN_SENT:
   1949 		if ((tiflags & TH_ACK) &&
   1950 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   1951 		     SEQ_GT(th->th_ack, tp->snd_max)))
   1952 			goto dropwithreset;
   1953 		if (tiflags & TH_RST) {
   1954 			if (tiflags & TH_ACK)
   1955 				tp = tcp_drop(tp, ECONNREFUSED);
   1956 			goto drop;
   1957 		}
   1958 		if ((tiflags & TH_SYN) == 0)
   1959 			goto drop;
   1960 		if (tiflags & TH_ACK) {
   1961 			tp->snd_una = th->th_ack;
   1962 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   1963 				tp->snd_nxt = tp->snd_una;
   1964 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   1965 				tp->snd_high = tp->snd_una;
   1966 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1967 
   1968 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   1969 				tp->t_flags |= TF_ECN_PERMIT;
   1970 				TCP_STATINC(TCP_STAT_ECN_SHS);
   1971 			}
   1972 
   1973 		}
   1974 		tp->irs = th->th_seq;
   1975 		tcp_rcvseqinit(tp);
   1976 		tp->t_flags |= TF_ACKNOW;
   1977 		tcp_mss_from_peer(tp, opti.maxseg);
   1978 
   1979 		/*
   1980 		 * Initialize the initial congestion window.  If we
   1981 		 * had to retransmit the SYN, we must initialize cwnd
   1982 		 * to 1 segment (i.e. the Loss Window).
   1983 		 */
   1984 		if (tp->t_flags & TF_SYN_REXMT)
   1985 			tp->snd_cwnd = tp->t_peermss;
   1986 		else {
   1987 			int ss = tcp_init_win;
   1988 #ifdef INET
   1989 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   1990 				ss = tcp_init_win_local;
   1991 #endif
   1992 #ifdef INET6
   1993 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   1994 				ss = tcp_init_win_local;
   1995 #endif
   1996 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   1997 		}
   1998 
   1999 		tcp_rmx_rtt(tp);
   2000 		if (tiflags & TH_ACK) {
   2001 			TCP_STATINC(TCP_STAT_CONNECTS);
   2002 			soisconnected(so);
   2003 			tcp_established(tp);
   2004 			/* Do window scaling on this connection? */
   2005 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2006 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2007 				tp->snd_scale = tp->requested_s_scale;
   2008 				tp->rcv_scale = tp->request_r_scale;
   2009 			}
   2010 			TCP_REASS_LOCK(tp);
   2011 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2012 			TCP_REASS_UNLOCK(tp);
   2013 			/*
   2014 			 * if we didn't have to retransmit the SYN,
   2015 			 * use its rtt as our initial srtt & rtt var.
   2016 			 */
   2017 			if (tp->t_rtttime)
   2018 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2019 		} else
   2020 			tp->t_state = TCPS_SYN_RECEIVED;
   2021 
   2022 		/*
   2023 		 * Advance th->th_seq to correspond to first data byte.
   2024 		 * If data, trim to stay within window,
   2025 		 * dropping FIN if necessary.
   2026 		 */
   2027 		th->th_seq++;
   2028 		if (tlen > tp->rcv_wnd) {
   2029 			todrop = tlen - tp->rcv_wnd;
   2030 			m_adj(m, -todrop);
   2031 			tlen = tp->rcv_wnd;
   2032 			tiflags &= ~TH_FIN;
   2033 			tcps = TCP_STAT_GETREF();
   2034 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2035 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2036 			TCP_STAT_PUTREF();
   2037 		}
   2038 		tp->snd_wl1 = th->th_seq - 1;
   2039 		tp->rcv_up = th->th_seq;
   2040 		goto step6;
   2041 
   2042 	/*
   2043 	 * If the state is SYN_RECEIVED:
   2044 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2045 	 *	and generate an RST.  See page 36, rfc793
   2046 	 */
   2047 	case TCPS_SYN_RECEIVED:
   2048 		if ((tiflags & TH_ACK) &&
   2049 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2050 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2051 			goto dropwithreset;
   2052 		break;
   2053 	}
   2054 
   2055 	/*
   2056 	 * States other than LISTEN or SYN_SENT.
   2057 	 * First check timestamp, if present.
   2058 	 * Then check that at least some bytes of segment are within
   2059 	 * receive window.  If segment begins before rcv_nxt,
   2060 	 * drop leading data (and SYN); if nothing left, just ack.
   2061 	 *
   2062 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2063 	 * and it's less than ts_recent, drop it.
   2064 	 */
   2065 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2066 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2067 
   2068 		/* Check to see if ts_recent is over 24 days old.  */
   2069 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2070 			/*
   2071 			 * Invalidate ts_recent.  If this segment updates
   2072 			 * ts_recent, the age will be reset later and ts_recent
   2073 			 * will get a valid value.  If it does not, setting
   2074 			 * ts_recent to zero will at least satisfy the
   2075 			 * requirement that zero be placed in the timestamp
   2076 			 * echo reply when ts_recent isn't valid.  The
   2077 			 * age isn't reset until we get a valid ts_recent
   2078 			 * because we don't want out-of-order segments to be
   2079 			 * dropped when ts_recent is old.
   2080 			 */
   2081 			tp->ts_recent = 0;
   2082 		} else {
   2083 			tcps = TCP_STAT_GETREF();
   2084 			tcps[TCP_STAT_RCVDUPPACK]++;
   2085 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2086 			tcps[TCP_STAT_PAWSDROP]++;
   2087 			TCP_STAT_PUTREF();
   2088 			tcp_new_dsack(tp, th->th_seq, tlen);
   2089 			goto dropafterack;
   2090 		}
   2091 	}
   2092 
   2093 	todrop = tp->rcv_nxt - th->th_seq;
   2094 	dupseg = false;
   2095 	if (todrop > 0) {
   2096 		if (tiflags & TH_SYN) {
   2097 			tiflags &= ~TH_SYN;
   2098 			th->th_seq++;
   2099 			if (th->th_urp > 1)
   2100 				th->th_urp--;
   2101 			else {
   2102 				tiflags &= ~TH_URG;
   2103 				th->th_urp = 0;
   2104 			}
   2105 			todrop--;
   2106 		}
   2107 		if (todrop > tlen ||
   2108 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2109 			/*
   2110 			 * Any valid FIN or RST must be to the left of the
   2111 			 * window.  At this point the FIN or RST must be a
   2112 			 * duplicate or out of sequence; drop it.
   2113 			 */
   2114 			if (tiflags & TH_RST)
   2115 				goto drop;
   2116 			tiflags &= ~(TH_FIN|TH_RST);
   2117 			/*
   2118 			 * Send an ACK to resynchronize and drop any data.
   2119 			 * But keep on processing for RST or ACK.
   2120 			 */
   2121 			tp->t_flags |= TF_ACKNOW;
   2122 			todrop = tlen;
   2123 			dupseg = true;
   2124 			tcps = TCP_STAT_GETREF();
   2125 			tcps[TCP_STAT_RCVDUPPACK]++;
   2126 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2127 			TCP_STAT_PUTREF();
   2128 		} else if ((tiflags & TH_RST) &&
   2129 			   th->th_seq != tp->rcv_nxt) {
   2130 			/*
   2131 			 * Test for reset before adjusting the sequence
   2132 			 * number for overlapping data.
   2133 			 */
   2134 			goto dropafterack_ratelim;
   2135 		} else {
   2136 			tcps = TCP_STAT_GETREF();
   2137 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2138 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2139 			TCP_STAT_PUTREF();
   2140 		}
   2141 		tcp_new_dsack(tp, th->th_seq, todrop);
   2142 		hdroptlen += todrop;	/*drop from head afterwards*/
   2143 		th->th_seq += todrop;
   2144 		tlen -= todrop;
   2145 		if (th->th_urp > todrop)
   2146 			th->th_urp -= todrop;
   2147 		else {
   2148 			tiflags &= ~TH_URG;
   2149 			th->th_urp = 0;
   2150 		}
   2151 	}
   2152 
   2153 	/*
   2154 	 * If new data are received on a connection after the
   2155 	 * user processes are gone, then RST the other end.
   2156 	 */
   2157 	if ((so->so_state & SS_NOFDREF) &&
   2158 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2159 		tp = tcp_close(tp);
   2160 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2161 		goto dropwithreset;
   2162 	}
   2163 
   2164 	/*
   2165 	 * If segment ends after window, drop trailing data
   2166 	 * (and PUSH and FIN); if nothing left, just ACK.
   2167 	 */
   2168 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2169 	if (todrop > 0) {
   2170 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2171 		if (todrop >= tlen) {
   2172 			/*
   2173 			 * The segment actually starts after the window.
   2174 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2175 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2176 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2177 			 */
   2178 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2179 			/*
   2180 			 * If a new connection request is received
   2181 			 * while in TIME_WAIT, drop the old connection
   2182 			 * and start over if the sequence numbers
   2183 			 * are above the previous ones.
   2184 			 *
   2185 			 * NOTE: We will checksum the packet again, and
   2186 			 * so we need to put the header fields back into
   2187 			 * network order!
   2188 			 * XXX This kind of sucks, but we don't expect
   2189 			 * XXX this to happen very often, so maybe it
   2190 			 * XXX doesn't matter so much.
   2191 			 */
   2192 			if (tiflags & TH_SYN &&
   2193 			    tp->t_state == TCPS_TIME_WAIT &&
   2194 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2195 				tp = tcp_close(tp);
   2196 				tcp_fields_to_net(th);
   2197 				goto findpcb;
   2198 			}
   2199 			/*
   2200 			 * If window is closed can only take segments at
   2201 			 * window edge, and have to drop data and PUSH from
   2202 			 * incoming segments.  Continue processing, but
   2203 			 * remember to ack.  Otherwise, drop segment
   2204 			 * and (if not RST) ack.
   2205 			 */
   2206 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2207 				tp->t_flags |= TF_ACKNOW;
   2208 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2209 			} else
   2210 				goto dropafterack;
   2211 		} else
   2212 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2213 		m_adj(m, -todrop);
   2214 		tlen -= todrop;
   2215 		tiflags &= ~(TH_PUSH|TH_FIN);
   2216 	}
   2217 
   2218 	/*
   2219 	 * If last ACK falls within this segment's sequence numbers,
   2220 	 *  record the timestamp.
   2221 	 * NOTE:
   2222 	 * 1) That the test incorporates suggestions from the latest
   2223 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2224 	 * 2) That updating only on newer timestamps interferes with
   2225 	 *    our earlier PAWS tests, so this check should be solely
   2226 	 *    predicated on the sequence space of this segment.
   2227 	 * 3) That we modify the segment boundary check to be
   2228 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2229 	 *    instead of RFC1323's
   2230 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2231 	 *    This modified check allows us to overcome RFC1323's
   2232 	 *    limitations as described in Stevens TCP/IP Illustrated
   2233 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2234 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2235 	 */
   2236 	if (opti.ts_present &&
   2237 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2238 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2239 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2240 		tp->ts_recent_age = tcp_now;
   2241 		tp->ts_recent = opti.ts_val;
   2242 	}
   2243 
   2244 	/*
   2245 	 * If the RST bit is set examine the state:
   2246 	 *    SYN_RECEIVED STATE:
   2247 	 *	If passive open, return to LISTEN state.
   2248 	 *	If active open, inform user that connection was refused.
   2249 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2250 	 *	Inform user that connection was reset, and close tcb.
   2251 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2252 	 *	Close the tcb.
   2253 	 */
   2254 	if (tiflags & TH_RST) {
   2255 		if (th->th_seq != tp->rcv_nxt)
   2256 			goto dropafterack_ratelim;
   2257 
   2258 		switch (tp->t_state) {
   2259 		case TCPS_SYN_RECEIVED:
   2260 			so->so_error = ECONNREFUSED;
   2261 			goto close;
   2262 
   2263 		case TCPS_ESTABLISHED:
   2264 		case TCPS_FIN_WAIT_1:
   2265 		case TCPS_FIN_WAIT_2:
   2266 		case TCPS_CLOSE_WAIT:
   2267 			so->so_error = ECONNRESET;
   2268 		close:
   2269 			tp->t_state = TCPS_CLOSED;
   2270 			TCP_STATINC(TCP_STAT_DROPS);
   2271 			tp = tcp_close(tp);
   2272 			goto drop;
   2273 
   2274 		case TCPS_CLOSING:
   2275 		case TCPS_LAST_ACK:
   2276 		case TCPS_TIME_WAIT:
   2277 			tp = tcp_close(tp);
   2278 			goto drop;
   2279 		}
   2280 	}
   2281 
   2282 	/*
   2283 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2284 	 * we must be in a synchronized state.  RFC791 states (under RST
   2285 	 * generation) that any unacceptable segment (an out-of-order SYN
   2286 	 * qualifies) received in a synchronized state must elicit only an
   2287 	 * empty acknowledgment segment ... and the connection remains in
   2288 	 * the same state.
   2289 	 */
   2290 	if (tiflags & TH_SYN) {
   2291 		if (tp->rcv_nxt == th->th_seq) {
   2292 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2293 			    TH_ACK);
   2294 			if (tcp_saveti)
   2295 				m_freem(tcp_saveti);
   2296 			return;
   2297 		}
   2298 
   2299 		goto dropafterack_ratelim;
   2300 	}
   2301 
   2302 	/*
   2303 	 * If the ACK bit is off we drop the segment and return.
   2304 	 */
   2305 	if ((tiflags & TH_ACK) == 0) {
   2306 		if (tp->t_flags & TF_ACKNOW)
   2307 			goto dropafterack;
   2308 		else
   2309 			goto drop;
   2310 	}
   2311 
   2312 	/*
   2313 	 * Ack processing.
   2314 	 */
   2315 	switch (tp->t_state) {
   2316 
   2317 	/*
   2318 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2319 	 * ESTABLISHED state and continue processing, otherwise
   2320 	 * send an RST.
   2321 	 */
   2322 	case TCPS_SYN_RECEIVED:
   2323 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2324 		    SEQ_GT(th->th_ack, tp->snd_max))
   2325 			goto dropwithreset;
   2326 		TCP_STATINC(TCP_STAT_CONNECTS);
   2327 		soisconnected(so);
   2328 		tcp_established(tp);
   2329 		/* Do window scaling? */
   2330 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2331 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2332 			tp->snd_scale = tp->requested_s_scale;
   2333 			tp->rcv_scale = tp->request_r_scale;
   2334 		}
   2335 		TCP_REASS_LOCK(tp);
   2336 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2337 		TCP_REASS_UNLOCK(tp);
   2338 		tp->snd_wl1 = th->th_seq - 1;
   2339 		/* fall into ... */
   2340 
   2341 	/*
   2342 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2343 	 * ACKs.  If the ack is in the range
   2344 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2345 	 * then advance tp->snd_una to th->th_ack and drop
   2346 	 * data from the retransmission queue.  If this ACK reflects
   2347 	 * more up to date window information we update our window information.
   2348 	 */
   2349 	case TCPS_ESTABLISHED:
   2350 	case TCPS_FIN_WAIT_1:
   2351 	case TCPS_FIN_WAIT_2:
   2352 	case TCPS_CLOSE_WAIT:
   2353 	case TCPS_CLOSING:
   2354 	case TCPS_LAST_ACK:
   2355 	case TCPS_TIME_WAIT:
   2356 
   2357 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2358 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2359 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2360 				/*
   2361 				 * If we have outstanding data (other than
   2362 				 * a window probe), this is a completely
   2363 				 * duplicate ack (ie, window info didn't
   2364 				 * change), the ack is the biggest we've
   2365 				 * seen and we've seen exactly our rexmt
   2366 				 * threshhold of them, assume a packet
   2367 				 * has been dropped and retransmit it.
   2368 				 * Kludge snd_nxt & the congestion
   2369 				 * window so we send only this one
   2370 				 * packet.
   2371 				 */
   2372 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2373 				    th->th_ack != tp->snd_una)
   2374 					tp->t_dupacks = 0;
   2375 				else if (tp->t_partialacks < 0 &&
   2376 					 (++tp->t_dupacks == tcprexmtthresh ||
   2377 					 TCP_FACK_FASTRECOV(tp))) {
   2378 					/*
   2379 					 * Do the fast retransmit, and adjust
   2380 					 * congestion control paramenters.
   2381 					 */
   2382 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2383 						/* False fast retransmit */
   2384 						break;
   2385 					} else
   2386 						goto drop;
   2387 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2388 					tp->snd_cwnd += tp->t_segsz;
   2389 					KERNEL_LOCK(1, NULL);
   2390 					(void) tcp_output(tp);
   2391 					KERNEL_UNLOCK_ONE(NULL);
   2392 					goto drop;
   2393 				}
   2394 			} else {
   2395 				/*
   2396 				 * If the ack appears to be very old, only
   2397 				 * allow data that is in-sequence.  This
   2398 				 * makes it somewhat more difficult to insert
   2399 				 * forged data by guessing sequence numbers.
   2400 				 * Sent an ack to try to update the send
   2401 				 * sequence number on the other side.
   2402 				 */
   2403 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2404 				    SEQ_LT(th->th_ack,
   2405 				    tp->snd_una - tp->max_sndwnd))
   2406 					goto dropafterack;
   2407 			}
   2408 			break;
   2409 		}
   2410 		/*
   2411 		 * If the congestion window was inflated to account
   2412 		 * for the other side's cached packets, retract it.
   2413 		 */
   2414 		/* XXX: make SACK have his own congestion control
   2415 		 * struct -- rpaulo */
   2416 		if (TCP_SACK_ENABLED(tp))
   2417 			tcp_sack_newack(tp, th);
   2418 		else
   2419 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2420 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2421 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2422 			goto dropafterack;
   2423 		}
   2424 		acked = th->th_ack - tp->snd_una;
   2425 		tcps = TCP_STAT_GETREF();
   2426 		tcps[TCP_STAT_RCVACKPACK]++;
   2427 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2428 		TCP_STAT_PUTREF();
   2429 
   2430 		/*
   2431 		 * If we have a timestamp reply, update smoothed
   2432 		 * round trip time.  If no timestamp is present but
   2433 		 * transmit timer is running and timed sequence
   2434 		 * number was acked, update smoothed round trip time.
   2435 		 * Since we now have an rtt measurement, cancel the
   2436 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2437 		 * Recompute the initial retransmit timer.
   2438 		 */
   2439 		if (ts_rtt)
   2440 			tcp_xmit_timer(tp, ts_rtt);
   2441 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2442 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2443 
   2444 		/*
   2445 		 * If all outstanding data is acked, stop retransmit
   2446 		 * timer and remember to restart (more output or persist).
   2447 		 * If there is more data to be acked, restart retransmit
   2448 		 * timer, using current (possibly backed-off) value.
   2449 		 */
   2450 		if (th->th_ack == tp->snd_max) {
   2451 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2452 			needoutput = 1;
   2453 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2454 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2455 
   2456 		/*
   2457 		 * New data has been acked, adjust the congestion window.
   2458 		 */
   2459 		tp->t_congctl->newack(tp, th);
   2460 
   2461 		nd6_hint(tp);
   2462 		if (acked > so->so_snd.sb_cc) {
   2463 			tp->snd_wnd -= so->so_snd.sb_cc;
   2464 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2465 			ourfinisacked = 1;
   2466 		} else {
   2467 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2468 				tp->t_lastm = NULL;
   2469 			sbdrop(&so->so_snd, acked);
   2470 			tp->t_lastoff -= acked;
   2471 			tp->snd_wnd -= acked;
   2472 			ourfinisacked = 0;
   2473 		}
   2474 		sowwakeup(so);
   2475 
   2476 		icmp_check(tp, th, acked);
   2477 
   2478 		tp->snd_una = th->th_ack;
   2479 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2480 			tp->snd_fack = tp->snd_una;
   2481 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2482 			tp->snd_nxt = tp->snd_una;
   2483 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2484 			tp->snd_high = tp->snd_una;
   2485 
   2486 		switch (tp->t_state) {
   2487 
   2488 		/*
   2489 		 * In FIN_WAIT_1 STATE in addition to the processing
   2490 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2491 		 * then enter FIN_WAIT_2.
   2492 		 */
   2493 		case TCPS_FIN_WAIT_1:
   2494 			if (ourfinisacked) {
   2495 				/*
   2496 				 * If we can't receive any more
   2497 				 * data, then closing user can proceed.
   2498 				 * Starting the timer is contrary to the
   2499 				 * specification, but if we don't get a FIN
   2500 				 * we'll hang forever.
   2501 				 */
   2502 				if (so->so_state & SS_CANTRCVMORE) {
   2503 					soisdisconnected(so);
   2504 					if (tp->t_maxidle > 0)
   2505 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2506 						    tp->t_maxidle);
   2507 				}
   2508 				tp->t_state = TCPS_FIN_WAIT_2;
   2509 			}
   2510 			break;
   2511 
   2512 	 	/*
   2513 		 * In CLOSING STATE in addition to the processing for
   2514 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2515 		 * then enter the TIME-WAIT state, otherwise ignore
   2516 		 * the segment.
   2517 		 */
   2518 		case TCPS_CLOSING:
   2519 			if (ourfinisacked) {
   2520 				tp->t_state = TCPS_TIME_WAIT;
   2521 				tcp_canceltimers(tp);
   2522 				TCP_TIMER_ARM(tp, TCPT_2MSL,
   2523 						2 * PR_SLOWHZ * tcp_msl);
   2524 				soisdisconnected(so);
   2525 			}
   2526 			break;
   2527 
   2528 		/*
   2529 		 * In LAST_ACK, we may still be waiting for data to drain
   2530 		 * and/or to be acked, as well as for the ack of our FIN.
   2531 		 * If our FIN is now acknowledged, delete the TCB,
   2532 		 * enter the closed state and return.
   2533 		 */
   2534 		case TCPS_LAST_ACK:
   2535 			if (ourfinisacked) {
   2536 				tp = tcp_close(tp);
   2537 				goto drop;
   2538 			}
   2539 			break;
   2540 
   2541 		/*
   2542 		 * In TIME_WAIT state the only thing that should arrive
   2543 		 * is a retransmission of the remote FIN.  Acknowledge
   2544 		 * it and restart the finack timer.
   2545 		 */
   2546 		case TCPS_TIME_WAIT:
   2547 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
   2548 			goto dropafterack;
   2549 		}
   2550 	}
   2551 
   2552 step6:
   2553 	/*
   2554 	 * Update window information.
   2555 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2556 	 */
   2557 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2558 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2559 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2560 		/* keep track of pure window updates */
   2561 		if (tlen == 0 &&
   2562 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2563 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2564 		tp->snd_wnd = tiwin;
   2565 		tp->snd_wl1 = th->th_seq;
   2566 		tp->snd_wl2 = th->th_ack;
   2567 		if (tp->snd_wnd > tp->max_sndwnd)
   2568 			tp->max_sndwnd = tp->snd_wnd;
   2569 		needoutput = 1;
   2570 	}
   2571 
   2572 	/*
   2573 	 * Process segments with URG.
   2574 	 */
   2575 	if ((tiflags & TH_URG) && th->th_urp &&
   2576 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2577 		/*
   2578 		 * This is a kludge, but if we receive and accept
   2579 		 * random urgent pointers, we'll crash in
   2580 		 * soreceive.  It's hard to imagine someone
   2581 		 * actually wanting to send this much urgent data.
   2582 		 */
   2583 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2584 			th->th_urp = 0;			/* XXX */
   2585 			tiflags &= ~TH_URG;		/* XXX */
   2586 			goto dodata;			/* XXX */
   2587 		}
   2588 		/*
   2589 		 * If this segment advances the known urgent pointer,
   2590 		 * then mark the data stream.  This should not happen
   2591 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2592 		 * a FIN has been received from the remote side.
   2593 		 * In these states we ignore the URG.
   2594 		 *
   2595 		 * According to RFC961 (Assigned Protocols),
   2596 		 * the urgent pointer points to the last octet
   2597 		 * of urgent data.  We continue, however,
   2598 		 * to consider it to indicate the first octet
   2599 		 * of data past the urgent section as the original
   2600 		 * spec states (in one of two places).
   2601 		 */
   2602 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2603 			tp->rcv_up = th->th_seq + th->th_urp;
   2604 			so->so_oobmark = so->so_rcv.sb_cc +
   2605 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2606 			if (so->so_oobmark == 0)
   2607 				so->so_state |= SS_RCVATMARK;
   2608 			sohasoutofband(so);
   2609 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2610 		}
   2611 		/*
   2612 		 * Remove out of band data so doesn't get presented to user.
   2613 		 * This can happen independent of advancing the URG pointer,
   2614 		 * but if two URG's are pending at once, some out-of-band
   2615 		 * data may creep in... ick.
   2616 		 */
   2617 		if (th->th_urp <= (u_int16_t) tlen
   2618 #ifdef SO_OOBINLINE
   2619 		     && (so->so_options & SO_OOBINLINE) == 0
   2620 #endif
   2621 		     )
   2622 			tcp_pulloutofband(so, th, m, hdroptlen);
   2623 	} else
   2624 		/*
   2625 		 * If no out of band data is expected,
   2626 		 * pull receive urgent pointer along
   2627 		 * with the receive window.
   2628 		 */
   2629 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2630 			tp->rcv_up = tp->rcv_nxt;
   2631 dodata:							/* XXX */
   2632 
   2633 	/*
   2634 	 * Process the segment text, merging it into the TCP sequencing queue,
   2635 	 * and arranging for acknowledgement of receipt if necessary.
   2636 	 * This process logically involves adjusting tp->rcv_wnd as data
   2637 	 * is presented to the user (this happens in tcp_usrreq.c,
   2638 	 * case PRU_RCVD).  If a FIN has already been received on this
   2639 	 * connection then we just ignore the text.
   2640 	 */
   2641 	if ((tlen || (tiflags & TH_FIN)) &&
   2642 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2643 		/*
   2644 		 * Insert segment ti into reassembly queue of tcp with
   2645 		 * control block tp.  Return TH_FIN if reassembly now includes
   2646 		 * a segment with FIN.  The macro form does the common case
   2647 		 * inline (segment is the next to be received on an
   2648 		 * established connection, and the queue is empty),
   2649 		 * avoiding linkage into and removal from the queue and
   2650 		 * repetition of various conversions.
   2651 		 * Set DELACK for segments received in order, but ack
   2652 		 * immediately when segments are out of order
   2653 		 * (so fast retransmit can work).
   2654 		 */
   2655 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2656 		TCP_REASS_LOCK(tp);
   2657 		if (th->th_seq == tp->rcv_nxt &&
   2658 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2659 		    tp->t_state == TCPS_ESTABLISHED) {
   2660 			tcp_setup_ack(tp, th);
   2661 			tp->rcv_nxt += tlen;
   2662 			tiflags = th->th_flags & TH_FIN;
   2663 			tcps = TCP_STAT_GETREF();
   2664 			tcps[TCP_STAT_RCVPACK]++;
   2665 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2666 			TCP_STAT_PUTREF();
   2667 			nd6_hint(tp);
   2668 			if (so->so_state & SS_CANTRCVMORE)
   2669 				m_freem(m);
   2670 			else {
   2671 				m_adj(m, hdroptlen);
   2672 				sbappendstream(&(so)->so_rcv, m);
   2673 			}
   2674 			TCP_REASS_UNLOCK(tp);
   2675 			sorwakeup(so);
   2676 		} else {
   2677 			m_adj(m, hdroptlen);
   2678 			tiflags = tcp_reass(tp, th, m, &tlen);
   2679 			tp->t_flags |= TF_ACKNOW;
   2680 			TCP_REASS_UNLOCK(tp);
   2681 		}
   2682 
   2683 		/*
   2684 		 * Note the amount of data that peer has sent into
   2685 		 * our window, in order to estimate the sender's
   2686 		 * buffer size.
   2687 		 */
   2688 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2689 	} else {
   2690 		m_freem(m);
   2691 		m = NULL;
   2692 		tiflags &= ~TH_FIN;
   2693 	}
   2694 
   2695 	/*
   2696 	 * If FIN is received ACK the FIN and let the user know
   2697 	 * that the connection is closing.  Ignore a FIN received before
   2698 	 * the connection is fully established.
   2699 	 */
   2700 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2701 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2702 			socantrcvmore(so);
   2703 			tp->t_flags |= TF_ACKNOW;
   2704 			tp->rcv_nxt++;
   2705 		}
   2706 		switch (tp->t_state) {
   2707 
   2708 	 	/*
   2709 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2710 		 */
   2711 		case TCPS_ESTABLISHED:
   2712 			tp->t_state = TCPS_CLOSE_WAIT;
   2713 			break;
   2714 
   2715 	 	/*
   2716 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2717 		 * enter the CLOSING state.
   2718 		 */
   2719 		case TCPS_FIN_WAIT_1:
   2720 			tp->t_state = TCPS_CLOSING;
   2721 			break;
   2722 
   2723 	 	/*
   2724 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2725 		 * starting the time-wait timer, turning off the other
   2726 		 * standard timers.
   2727 		 */
   2728 		case TCPS_FIN_WAIT_2:
   2729 			tp->t_state = TCPS_TIME_WAIT;
   2730 			tcp_canceltimers(tp);
   2731 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
   2732 			soisdisconnected(so);
   2733 			break;
   2734 
   2735 		/*
   2736 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2737 		 */
   2738 		case TCPS_TIME_WAIT:
   2739 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
   2740 			break;
   2741 		}
   2742 	}
   2743 #ifdef TCP_DEBUG
   2744 	if (so->so_options & SO_DEBUG)
   2745 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2746 #endif
   2747 
   2748 	/*
   2749 	 * Return any desired output.
   2750 	 */
   2751 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2752 		KERNEL_LOCK(1, NULL);
   2753 		(void) tcp_output(tp);
   2754 		KERNEL_UNLOCK_ONE(NULL);
   2755 	}
   2756 	if (tcp_saveti)
   2757 		m_freem(tcp_saveti);
   2758 	return;
   2759 
   2760 badsyn:
   2761 	/*
   2762 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2763 	 */
   2764 	TCP_STATINC(TCP_STAT_BADSYN);
   2765 	tp = NULL;
   2766 	goto dropwithreset;
   2767 
   2768 dropafterack:
   2769 	/*
   2770 	 * Generate an ACK dropping incoming segment if it occupies
   2771 	 * sequence space, where the ACK reflects our state.
   2772 	 */
   2773 	if (tiflags & TH_RST)
   2774 		goto drop;
   2775 	goto dropafterack2;
   2776 
   2777 dropafterack_ratelim:
   2778 	/*
   2779 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2780 	 */
   2781 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2782 	    tcp_ackdrop_ppslim) == 0) {
   2783 		/* XXX stat */
   2784 		goto drop;
   2785 	}
   2786 	/* ...fall into dropafterack2... */
   2787 
   2788 dropafterack2:
   2789 	m_freem(m);
   2790 	tp->t_flags |= TF_ACKNOW;
   2791 	KERNEL_LOCK(1, NULL);
   2792 	(void) tcp_output(tp);
   2793 	KERNEL_UNLOCK_ONE(NULL);
   2794 	if (tcp_saveti)
   2795 		m_freem(tcp_saveti);
   2796 	return;
   2797 
   2798 dropwithreset_ratelim:
   2799 	/*
   2800 	 * We may want to rate-limit RSTs in certain situations,
   2801 	 * particularly if we are sending an RST in response to
   2802 	 * an attempt to connect to or otherwise communicate with
   2803 	 * a port for which we have no socket.
   2804 	 */
   2805 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2806 	    tcp_rst_ppslim) == 0) {
   2807 		/* XXX stat */
   2808 		goto drop;
   2809 	}
   2810 	/* ...fall into dropwithreset... */
   2811 
   2812 dropwithreset:
   2813 	/*
   2814 	 * Generate a RST, dropping incoming segment.
   2815 	 * Make ACK acceptable to originator of segment.
   2816 	 */
   2817 	if (tiflags & TH_RST)
   2818 		goto drop;
   2819 
   2820 	switch (af) {
   2821 #ifdef INET6
   2822 	case AF_INET6:
   2823 		/* For following calls to tcp_respond */
   2824 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   2825 			goto drop;
   2826 		break;
   2827 #endif /* INET6 */
   2828 	case AF_INET:
   2829 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   2830 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   2831 			goto drop;
   2832 	}
   2833 
   2834 	if (tiflags & TH_ACK)
   2835 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2836 	else {
   2837 		if (tiflags & TH_SYN)
   2838 			tlen++;
   2839 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2840 		    TH_RST|TH_ACK);
   2841 	}
   2842 	if (tcp_saveti)
   2843 		m_freem(tcp_saveti);
   2844 	return;
   2845 
   2846 badcsum:
   2847 drop:
   2848 	/*
   2849 	 * Drop space held by incoming segment and return.
   2850 	 */
   2851 	if (tp) {
   2852 		if (tp->t_inpcb)
   2853 			so = tp->t_inpcb->inp_socket;
   2854 #ifdef INET6
   2855 		else if (tp->t_in6pcb)
   2856 			so = tp->t_in6pcb->in6p_socket;
   2857 #endif
   2858 		else
   2859 			so = NULL;
   2860 #ifdef TCP_DEBUG
   2861 		if (so && (so->so_options & SO_DEBUG) != 0)
   2862 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2863 #endif
   2864 	}
   2865 	if (tcp_saveti)
   2866 		m_freem(tcp_saveti);
   2867 	m_freem(m);
   2868 	return;
   2869 }
   2870 
   2871 #ifdef TCP_SIGNATURE
   2872 int
   2873 tcp_signature_apply(void *fstate, void *data, u_int len)
   2874 {
   2875 
   2876 	MD5Update(fstate, (u_char *)data, len);
   2877 	return (0);
   2878 }
   2879 
   2880 struct secasvar *
   2881 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   2882 {
   2883 	struct secasvar *sav;
   2884 #ifdef FAST_IPSEC
   2885 	union sockaddr_union dst;
   2886 #endif
   2887 	struct ip *ip;
   2888 	struct ip6_hdr *ip6;
   2889 
   2890 	ip = mtod(m, struct ip *);
   2891 	switch (ip->ip_v) {
   2892 	case 4:
   2893 		ip = mtod(m, struct ip *);
   2894 		ip6 = NULL;
   2895 		break;
   2896 	case 6:
   2897 		ip = NULL;
   2898 		ip6 = mtod(m, struct ip6_hdr *);
   2899 		break;
   2900 	default:
   2901 		return (NULL);
   2902 	}
   2903 
   2904 #ifdef FAST_IPSEC
   2905 	/* Extract the destination from the IP header in the mbuf. */
   2906 	memset(&dst, 0, sizeof(union sockaddr_union));
   2907 	if (ip !=NULL) {
   2908 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   2909 		dst.sa.sa_family = AF_INET;
   2910 		dst.sin.sin_addr = ip->ip_dst;
   2911 	} else {
   2912 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   2913 		dst.sa.sa_family = AF_INET6;
   2914 		dst.sin6.sin6_addr = ip6->ip6_dst;
   2915 	}
   2916 
   2917 	/*
   2918 	 * Look up an SADB entry which matches the address of the peer.
   2919 	 */
   2920 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   2921 #else
   2922 	if (ip)
   2923 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
   2924 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   2925 		    htonl(TCP_SIG_SPI), 0, 0);
   2926 	else
   2927 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   2928 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   2929 		    htonl(TCP_SIG_SPI), 0, 0);
   2930 #endif
   2931 
   2932 	return (sav);	/* freesav must be performed by caller */
   2933 }
   2934 
   2935 int
   2936 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   2937     struct secasvar *sav, char *sig)
   2938 {
   2939 	MD5_CTX ctx;
   2940 	struct ip *ip;
   2941 	struct ipovly *ipovly;
   2942 	struct ip6_hdr *ip6;
   2943 	struct ippseudo ippseudo;
   2944 	struct ip6_hdr_pseudo ip6pseudo;
   2945 	struct tcphdr th0;
   2946 	int l, tcphdrlen;
   2947 
   2948 	if (sav == NULL)
   2949 		return (-1);
   2950 
   2951 	tcphdrlen = th->th_off * 4;
   2952 
   2953 	switch (mtod(m, struct ip *)->ip_v) {
   2954 	case 4:
   2955 		ip = mtod(m, struct ip *);
   2956 		ip6 = NULL;
   2957 		break;
   2958 	case 6:
   2959 		ip = NULL;
   2960 		ip6 = mtod(m, struct ip6_hdr *);
   2961 		break;
   2962 	default:
   2963 		return (-1);
   2964 	}
   2965 
   2966 	MD5Init(&ctx);
   2967 
   2968 	if (ip) {
   2969 		memset(&ippseudo, 0, sizeof(ippseudo));
   2970 		ipovly = (struct ipovly *)ip;
   2971 		ippseudo.ippseudo_src = ipovly->ih_src;
   2972 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   2973 		ippseudo.ippseudo_pad = 0;
   2974 		ippseudo.ippseudo_p = IPPROTO_TCP;
   2975 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   2976 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   2977 	} else {
   2978 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   2979 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   2980 		in6_clearscope(&ip6pseudo.ip6ph_src);
   2981 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   2982 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   2983 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   2984 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   2985 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   2986 	}
   2987 
   2988 	th0 = *th;
   2989 	th0.th_sum = 0;
   2990 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   2991 
   2992 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   2993 	if (l > 0)
   2994 		m_apply(m, thoff + tcphdrlen,
   2995 		    m->m_pkthdr.len - thoff - tcphdrlen,
   2996 		    tcp_signature_apply, &ctx);
   2997 
   2998 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   2999 	MD5Final(sig, &ctx);
   3000 
   3001 	return (0);
   3002 }
   3003 #endif
   3004 
   3005 /*
   3006  * tcp_dooptions: parse and process tcp options.
   3007  *
   3008  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3009  * otherwise returns 0.
   3010  */
   3011 
   3012 static int
   3013 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3014     struct tcphdr *th,
   3015     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3016 {
   3017 	u_int16_t mss;
   3018 	int opt, optlen = 0;
   3019 #ifdef TCP_SIGNATURE
   3020 	void *sigp = NULL;
   3021 	char sigbuf[TCP_SIGLEN];
   3022 	struct secasvar *sav = NULL;
   3023 #endif
   3024 
   3025 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3026 		opt = cp[0];
   3027 		if (opt == TCPOPT_EOL)
   3028 			break;
   3029 		if (opt == TCPOPT_NOP)
   3030 			optlen = 1;
   3031 		else {
   3032 			if (cnt < 2)
   3033 				break;
   3034 			optlen = cp[1];
   3035 			if (optlen < 2 || optlen > cnt)
   3036 				break;
   3037 		}
   3038 		switch (opt) {
   3039 
   3040 		default:
   3041 			continue;
   3042 
   3043 		case TCPOPT_MAXSEG:
   3044 			if (optlen != TCPOLEN_MAXSEG)
   3045 				continue;
   3046 			if (!(th->th_flags & TH_SYN))
   3047 				continue;
   3048 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3049 				continue;
   3050 			bcopy(cp + 2, &mss, sizeof(mss));
   3051 			oi->maxseg = ntohs(mss);
   3052 			break;
   3053 
   3054 		case TCPOPT_WINDOW:
   3055 			if (optlen != TCPOLEN_WINDOW)
   3056 				continue;
   3057 			if (!(th->th_flags & TH_SYN))
   3058 				continue;
   3059 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3060 				continue;
   3061 			tp->t_flags |= TF_RCVD_SCALE;
   3062 			tp->requested_s_scale = cp[2];
   3063 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3064 #if 0	/*XXX*/
   3065 				char *p;
   3066 
   3067 				if (ip)
   3068 					p = ntohl(ip->ip_src);
   3069 #ifdef INET6
   3070 				else if (ip6)
   3071 					p = ip6_sprintf(&ip6->ip6_src);
   3072 #endif
   3073 				else
   3074 					p = "(unknown)";
   3075 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3076 				    "assuming %d\n",
   3077 				    tp->requested_s_scale, p,
   3078 				    TCP_MAX_WINSHIFT);
   3079 #else
   3080 				log(LOG_ERR, "TCP: invalid wscale %d, "
   3081 				    "assuming %d\n",
   3082 				    tp->requested_s_scale,
   3083 				    TCP_MAX_WINSHIFT);
   3084 #endif
   3085 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3086 			}
   3087 			break;
   3088 
   3089 		case TCPOPT_TIMESTAMP:
   3090 			if (optlen != TCPOLEN_TIMESTAMP)
   3091 				continue;
   3092 			oi->ts_present = 1;
   3093 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3094 			NTOHL(oi->ts_val);
   3095 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3096 			NTOHL(oi->ts_ecr);
   3097 
   3098 			if (!(th->th_flags & TH_SYN))
   3099 				continue;
   3100 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3101 				continue;
   3102 			/*
   3103 			 * A timestamp received in a SYN makes
   3104 			 * it ok to send timestamp requests and replies.
   3105 			 */
   3106 			tp->t_flags |= TF_RCVD_TSTMP;
   3107 			tp->ts_recent = oi->ts_val;
   3108 			tp->ts_recent_age = tcp_now;
   3109                         break;
   3110 
   3111 		case TCPOPT_SACK_PERMITTED:
   3112 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3113 				continue;
   3114 			if (!(th->th_flags & TH_SYN))
   3115 				continue;
   3116 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3117 				continue;
   3118 			if (tcp_do_sack) {
   3119 				tp->t_flags |= TF_SACK_PERMIT;
   3120 				tp->t_flags |= TF_WILL_SACK;
   3121 			}
   3122 			break;
   3123 
   3124 		case TCPOPT_SACK:
   3125 			tcp_sack_option(tp, th, cp, optlen);
   3126 			break;
   3127 #ifdef TCP_SIGNATURE
   3128 		case TCPOPT_SIGNATURE:
   3129 			if (optlen != TCPOLEN_SIGNATURE)
   3130 				continue;
   3131 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3132 				return (-1);
   3133 
   3134 			sigp = sigbuf;
   3135 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3136 			tp->t_flags |= TF_SIGNATURE;
   3137 			break;
   3138 #endif
   3139 		}
   3140 	}
   3141 
   3142 #ifdef TCP_SIGNATURE
   3143 	if (tp->t_flags & TF_SIGNATURE) {
   3144 
   3145 		sav = tcp_signature_getsav(m, th);
   3146 
   3147 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3148 			return (-1);
   3149 	}
   3150 
   3151 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   3152 		if (sav == NULL)
   3153 			return (-1);
   3154 #ifdef FAST_IPSEC
   3155 		KEY_FREESAV(&sav);
   3156 #else
   3157 		key_freesav(sav);
   3158 #endif
   3159 		return (-1);
   3160 	}
   3161 
   3162 	if (sigp) {
   3163 		char sig[TCP_SIGLEN];
   3164 
   3165 		tcp_fields_to_net(th);
   3166 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3167 			tcp_fields_to_host(th);
   3168 			if (sav == NULL)
   3169 				return (-1);
   3170 #ifdef FAST_IPSEC
   3171 			KEY_FREESAV(&sav);
   3172 #else
   3173 			key_freesav(sav);
   3174 #endif
   3175 			return (-1);
   3176 		}
   3177 		tcp_fields_to_host(th);
   3178 
   3179 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3180 			TCP_STATINC(TCP_STAT_BADSIG);
   3181 			if (sav == NULL)
   3182 				return (-1);
   3183 #ifdef FAST_IPSEC
   3184 			KEY_FREESAV(&sav);
   3185 #else
   3186 			key_freesav(sav);
   3187 #endif
   3188 			return (-1);
   3189 		} else
   3190 			TCP_STATINC(TCP_STAT_GOODSIG);
   3191 
   3192 		key_sa_recordxfer(sav, m);
   3193 #ifdef FAST_IPSEC
   3194 		KEY_FREESAV(&sav);
   3195 #else
   3196 		key_freesav(sav);
   3197 #endif
   3198 	}
   3199 #endif
   3200 
   3201 	return (0);
   3202 }
   3203 
   3204 /*
   3205  * Pull out of band byte out of a segment so
   3206  * it doesn't appear in the user's data queue.
   3207  * It is still reflected in the segment length for
   3208  * sequencing purposes.
   3209  */
   3210 void
   3211 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3212     struct mbuf *m, int off)
   3213 {
   3214 	int cnt = off + th->th_urp - 1;
   3215 
   3216 	while (cnt >= 0) {
   3217 		if (m->m_len > cnt) {
   3218 			char *cp = mtod(m, char *) + cnt;
   3219 			struct tcpcb *tp = sototcpcb(so);
   3220 
   3221 			tp->t_iobc = *cp;
   3222 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3223 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3224 			m->m_len--;
   3225 			return;
   3226 		}
   3227 		cnt -= m->m_len;
   3228 		m = m->m_next;
   3229 		if (m == 0)
   3230 			break;
   3231 	}
   3232 	panic("tcp_pulloutofband");
   3233 }
   3234 
   3235 /*
   3236  * Collect new round-trip time estimate
   3237  * and update averages and current timeout.
   3238  *
   3239  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3240  * difference of two timestamps.
   3241  */
   3242 void
   3243 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3244 {
   3245 	int32_t delta;
   3246 
   3247 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3248 	if (tp->t_srtt != 0) {
   3249 		/*
   3250 		 * Compute the amount to add to srtt for smoothing,
   3251 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3252 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3253 		 * shift left 5 bits, subtract srtt to get the
   3254 		 * diference, and then shift right by TCP_RTT_SHIFT
   3255 		 * (3) to obtain 1/8 of the difference.
   3256 		 */
   3257 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3258 		/*
   3259 		 * This can never happen, because delta's lowest
   3260 		 * possible value is 1/8 of t_srtt.  But if it does,
   3261 		 * set srtt to some reasonable value, here chosen
   3262 		 * as 1/8 tick.
   3263 		 */
   3264 		if ((tp->t_srtt += delta) <= 0)
   3265 			tp->t_srtt = 1 << 2;
   3266 		/*
   3267 		 * RFC2988 requires that rttvar be updated first.
   3268 		 * This code is compliant because "delta" is the old
   3269 		 * srtt minus the new observation (scaled).
   3270 		 *
   3271 		 * RFC2988 says:
   3272 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3273 		 *
   3274 		 * delta is in units of 1/32 ticks, and has then been
   3275 		 * divided by 8.  This is equivalent to being in 1/16s
   3276 		 * units and divided by 4.  Subtract from it 1/4 of
   3277 		 * the existing rttvar to form the (signed) amount to
   3278 		 * adjust.
   3279 		 */
   3280 		if (delta < 0)
   3281 			delta = -delta;
   3282 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3283 		/*
   3284 		 * As with srtt, this should never happen.  There is
   3285 		 * no support in RFC2988 for this operation.  But 1/4s
   3286 		 * as rttvar when faced with something arguably wrong
   3287 		 * is ok.
   3288 		 */
   3289 		if ((tp->t_rttvar += delta) <= 0)
   3290 			tp->t_rttvar = 1 << 2;
   3291 	} else {
   3292 		/*
   3293 		 * This is the first measurement.  Per RFC2988, 2.2,
   3294 		 * set rtt=R and srtt=R/2.
   3295 		 * For srtt, storage representation is 1/32 ticks,
   3296 		 * so shift left by 5.
   3297 		 * For rttvar, storage representation is 1/16 ticks,
   3298 		 * So shift left by 4, but then right by 1 to halve.
   3299 		 */
   3300 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3301 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3302 	}
   3303 	tp->t_rtttime = 0;
   3304 	tp->t_rxtshift = 0;
   3305 
   3306 	/*
   3307 	 * the retransmit should happen at rtt + 4 * rttvar.
   3308 	 * Because of the way we do the smoothing, srtt and rttvar
   3309 	 * will each average +1/2 tick of bias.  When we compute
   3310 	 * the retransmit timer, we want 1/2 tick of rounding and
   3311 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3312 	 * firing of the timer.  The bias will give us exactly the
   3313 	 * 1.5 tick we need.  But, because the bias is
   3314 	 * statistical, we have to test that we don't drop below
   3315 	 * the minimum feasible timer (which is 2 ticks).
   3316 	 */
   3317 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3318 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3319 
   3320 	/*
   3321 	 * We received an ack for a packet that wasn't retransmitted;
   3322 	 * it is probably safe to discard any error indications we've
   3323 	 * received recently.  This isn't quite right, but close enough
   3324 	 * for now (a route might have failed after we sent a segment,
   3325 	 * and the return path might not be symmetrical).
   3326 	 */
   3327 	tp->t_softerror = 0;
   3328 }
   3329 
   3330 
   3331 /*
   3332  * TCP compressed state engine.  Currently used to hold compressed
   3333  * state for SYN_RECEIVED.
   3334  */
   3335 
   3336 u_long	syn_cache_count;
   3337 u_int32_t syn_hash1, syn_hash2;
   3338 
   3339 #define SYN_HASH(sa, sp, dp) \
   3340 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3341 				     ((u_int32_t)(sp)))^syn_hash2)))
   3342 #ifndef INET6
   3343 #define	SYN_HASHALL(hash, src, dst) \
   3344 do {									\
   3345 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3346 		((const struct sockaddr_in *)(src))->sin_port,		\
   3347 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3348 } while (/*CONSTCOND*/ 0)
   3349 #else
   3350 #define SYN_HASH6(sa, sp, dp) \
   3351 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3352 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3353 	 & 0x7fffffff)
   3354 
   3355 #define SYN_HASHALL(hash, src, dst) \
   3356 do {									\
   3357 	switch ((src)->sa_family) {					\
   3358 	case AF_INET:							\
   3359 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3360 			((const struct sockaddr_in *)(src))->sin_port,	\
   3361 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3362 		break;							\
   3363 	case AF_INET6:							\
   3364 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3365 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3366 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3367 		break;							\
   3368 	default:							\
   3369 		hash = 0;						\
   3370 	}								\
   3371 } while (/*CONSTCOND*/0)
   3372 #endif /* INET6 */
   3373 
   3374 static struct pool syn_cache_pool;
   3375 
   3376 /*
   3377  * We don't estimate RTT with SYNs, so each packet starts with the default
   3378  * RTT and each timer step has a fixed timeout value.
   3379  */
   3380 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3381 do {									\
   3382 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3383 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3384 	    TCPTV_REXMTMAX);						\
   3385 	callout_reset(&(sc)->sc_timer,					\
   3386 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3387 } while (/*CONSTCOND*/0)
   3388 
   3389 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3390 
   3391 static inline void
   3392 syn_cache_rm(struct syn_cache *sc)
   3393 {
   3394 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3395 	    sc, sc_bucketq);
   3396 	sc->sc_tp = NULL;
   3397 	LIST_REMOVE(sc, sc_tpq);
   3398 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3399 	callout_stop(&sc->sc_timer);
   3400 	syn_cache_count--;
   3401 }
   3402 
   3403 static inline void
   3404 syn_cache_put(struct syn_cache *sc)
   3405 {
   3406 	if (sc->sc_ipopts)
   3407 		(void) m_free(sc->sc_ipopts);
   3408 	rtcache_free(&sc->sc_route);
   3409 	sc->sc_flags |= SCF_DEAD;
   3410 	if (!callout_invoking(&sc->sc_timer))
   3411 		callout_schedule(&(sc)->sc_timer, 1);
   3412 }
   3413 
   3414 void
   3415 syn_cache_init(void)
   3416 {
   3417 	int i;
   3418 
   3419 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3420 	    "synpl", NULL, IPL_SOFTNET);
   3421 
   3422 	/* Initialize the hash buckets. */
   3423 	for (i = 0; i < tcp_syn_cache_size; i++)
   3424 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3425 }
   3426 
   3427 void
   3428 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3429 {
   3430 	struct syn_cache_head *scp;
   3431 	struct syn_cache *sc2;
   3432 	int s;
   3433 
   3434 	/*
   3435 	 * If there are no entries in the hash table, reinitialize
   3436 	 * the hash secrets.
   3437 	 */
   3438 	if (syn_cache_count == 0) {
   3439 		syn_hash1 = arc4random();
   3440 		syn_hash2 = arc4random();
   3441 	}
   3442 
   3443 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3444 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3445 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3446 
   3447 	/*
   3448 	 * Make sure that we don't overflow the per-bucket
   3449 	 * limit or the total cache size limit.
   3450 	 */
   3451 	s = splsoftnet();
   3452 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3453 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3454 		/*
   3455 		 * The bucket is full.  Toss the oldest element in the
   3456 		 * bucket.  This will be the first entry in the bucket.
   3457 		 */
   3458 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3459 #ifdef DIAGNOSTIC
   3460 		/*
   3461 		 * This should never happen; we should always find an
   3462 		 * entry in our bucket.
   3463 		 */
   3464 		if (sc2 == NULL)
   3465 			panic("syn_cache_insert: bucketoverflow: impossible");
   3466 #endif
   3467 		syn_cache_rm(sc2);
   3468 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3469 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3470 		struct syn_cache_head *scp2, *sce;
   3471 
   3472 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3473 		/*
   3474 		 * The cache is full.  Toss the oldest entry in the
   3475 		 * first non-empty bucket we can find.
   3476 		 *
   3477 		 * XXX We would really like to toss the oldest
   3478 		 * entry in the cache, but we hope that this
   3479 		 * condition doesn't happen very often.
   3480 		 */
   3481 		scp2 = scp;
   3482 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3483 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3484 			for (++scp2; scp2 != scp; scp2++) {
   3485 				if (scp2 >= sce)
   3486 					scp2 = &tcp_syn_cache[0];
   3487 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3488 					break;
   3489 			}
   3490 #ifdef DIAGNOSTIC
   3491 			/*
   3492 			 * This should never happen; we should always find a
   3493 			 * non-empty bucket.
   3494 			 */
   3495 			if (scp2 == scp)
   3496 				panic("syn_cache_insert: cacheoverflow: "
   3497 				    "impossible");
   3498 #endif
   3499 		}
   3500 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3501 		syn_cache_rm(sc2);
   3502 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3503 	}
   3504 
   3505 	/*
   3506 	 * Initialize the entry's timer.
   3507 	 */
   3508 	sc->sc_rxttot = 0;
   3509 	sc->sc_rxtshift = 0;
   3510 	SYN_CACHE_TIMER_ARM(sc);
   3511 
   3512 	/* Link it from tcpcb entry */
   3513 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3514 
   3515 	/* Put it into the bucket. */
   3516 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3517 	scp->sch_length++;
   3518 	syn_cache_count++;
   3519 
   3520 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3521 	splx(s);
   3522 }
   3523 
   3524 /*
   3525  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3526  * If we have retransmitted an entry the maximum number of times, expire
   3527  * that entry.
   3528  */
   3529 void
   3530 syn_cache_timer(void *arg)
   3531 {
   3532 	struct syn_cache *sc = arg;
   3533 
   3534 	mutex_enter(softnet_lock);
   3535 	KERNEL_LOCK(1, NULL);
   3536 	callout_ack(&sc->sc_timer);
   3537 
   3538 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3539 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3540 		callout_destroy(&sc->sc_timer);
   3541 		pool_put(&syn_cache_pool, sc);
   3542 		KERNEL_UNLOCK_ONE(NULL);
   3543 		mutex_exit(softnet_lock);
   3544 		return;
   3545 	}
   3546 
   3547 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3548 		/* Drop it -- too many retransmissions. */
   3549 		goto dropit;
   3550 	}
   3551 
   3552 	/*
   3553 	 * Compute the total amount of time this entry has
   3554 	 * been on a queue.  If this entry has been on longer
   3555 	 * than the keep alive timer would allow, expire it.
   3556 	 */
   3557 	sc->sc_rxttot += sc->sc_rxtcur;
   3558 	if (sc->sc_rxttot >= tcp_keepinit)
   3559 		goto dropit;
   3560 
   3561 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3562 	(void) syn_cache_respond(sc, NULL);
   3563 
   3564 	/* Advance the timer back-off. */
   3565 	sc->sc_rxtshift++;
   3566 	SYN_CACHE_TIMER_ARM(sc);
   3567 
   3568 	KERNEL_UNLOCK_ONE(NULL);
   3569 	mutex_exit(softnet_lock);
   3570 	return;
   3571 
   3572  dropit:
   3573 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3574 	syn_cache_rm(sc);
   3575 	if (sc->sc_ipopts)
   3576 		(void) m_free(sc->sc_ipopts);
   3577 	rtcache_free(&sc->sc_route);
   3578 	callout_destroy(&sc->sc_timer);
   3579 	pool_put(&syn_cache_pool, sc);
   3580 	KERNEL_UNLOCK_ONE(NULL);
   3581 	mutex_exit(softnet_lock);
   3582 }
   3583 
   3584 /*
   3585  * Remove syn cache created by the specified tcb entry,
   3586  * because this does not make sense to keep them
   3587  * (if there's no tcb entry, syn cache entry will never be used)
   3588  */
   3589 void
   3590 syn_cache_cleanup(struct tcpcb *tp)
   3591 {
   3592 	struct syn_cache *sc, *nsc;
   3593 	int s;
   3594 
   3595 	s = splsoftnet();
   3596 
   3597 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3598 		nsc = LIST_NEXT(sc, sc_tpq);
   3599 
   3600 #ifdef DIAGNOSTIC
   3601 		if (sc->sc_tp != tp)
   3602 			panic("invalid sc_tp in syn_cache_cleanup");
   3603 #endif
   3604 		syn_cache_rm(sc);
   3605 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3606 	}
   3607 	/* just for safety */
   3608 	LIST_INIT(&tp->t_sc);
   3609 
   3610 	splx(s);
   3611 }
   3612 
   3613 /*
   3614  * Find an entry in the syn cache.
   3615  */
   3616 struct syn_cache *
   3617 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3618     struct syn_cache_head **headp)
   3619 {
   3620 	struct syn_cache *sc;
   3621 	struct syn_cache_head *scp;
   3622 	u_int32_t hash;
   3623 	int s;
   3624 
   3625 	SYN_HASHALL(hash, src, dst);
   3626 
   3627 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3628 	*headp = scp;
   3629 	s = splsoftnet();
   3630 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3631 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3632 		if (sc->sc_hash != hash)
   3633 			continue;
   3634 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3635 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3636 			splx(s);
   3637 			return (sc);
   3638 		}
   3639 	}
   3640 	splx(s);
   3641 	return (NULL);
   3642 }
   3643 
   3644 /*
   3645  * This function gets called when we receive an ACK for a
   3646  * socket in the LISTEN state.  We look up the connection
   3647  * in the syn cache, and if its there, we pull it out of
   3648  * the cache and turn it into a full-blown connection in
   3649  * the SYN-RECEIVED state.
   3650  *
   3651  * The return values may not be immediately obvious, and their effects
   3652  * can be subtle, so here they are:
   3653  *
   3654  *	NULL	SYN was not found in cache; caller should drop the
   3655  *		packet and send an RST.
   3656  *
   3657  *	-1	We were unable to create the new connection, and are
   3658  *		aborting it.  An ACK,RST is being sent to the peer
   3659  *		(unless we got screwey sequence numbners; see below),
   3660  *		because the 3-way handshake has been completed.  Caller
   3661  *		should not free the mbuf, since we may be using it.  If
   3662  *		we are not, we will free it.
   3663  *
   3664  *	Otherwise, the return value is a pointer to the new socket
   3665  *	associated with the connection.
   3666  */
   3667 struct socket *
   3668 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3669     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3670     struct socket *so, struct mbuf *m)
   3671 {
   3672 	struct syn_cache *sc;
   3673 	struct syn_cache_head *scp;
   3674 	struct inpcb *inp = NULL;
   3675 #ifdef INET6
   3676 	struct in6pcb *in6p = NULL;
   3677 #endif
   3678 	struct tcpcb *tp = 0;
   3679 	struct mbuf *am;
   3680 	int s;
   3681 	struct socket *oso;
   3682 
   3683 	s = splsoftnet();
   3684 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3685 		splx(s);
   3686 		return (NULL);
   3687 	}
   3688 
   3689 	/*
   3690 	 * Verify the sequence and ack numbers.  Try getting the correct
   3691 	 * response again.
   3692 	 */
   3693 	if ((th->th_ack != sc->sc_iss + 1) ||
   3694 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3695 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3696 		(void) syn_cache_respond(sc, m);
   3697 		splx(s);
   3698 		return ((struct socket *)(-1));
   3699 	}
   3700 
   3701 	/* Remove this cache entry */
   3702 	syn_cache_rm(sc);
   3703 	splx(s);
   3704 
   3705 	/*
   3706 	 * Ok, create the full blown connection, and set things up
   3707 	 * as they would have been set up if we had created the
   3708 	 * connection when the SYN arrived.  If we can't create
   3709 	 * the connection, abort it.
   3710 	 */
   3711 	/*
   3712 	 * inp still has the OLD in_pcb stuff, set the
   3713 	 * v6-related flags on the new guy, too.   This is
   3714 	 * done particularly for the case where an AF_INET6
   3715 	 * socket is bound only to a port, and a v4 connection
   3716 	 * comes in on that port.
   3717 	 * we also copy the flowinfo from the original pcb
   3718 	 * to the new one.
   3719 	 */
   3720 	oso = so;
   3721 	so = sonewconn(so, SS_ISCONNECTED);
   3722 	if (so == NULL)
   3723 		goto resetandabort;
   3724 
   3725 	switch (so->so_proto->pr_domain->dom_family) {
   3726 #ifdef INET
   3727 	case AF_INET:
   3728 		inp = sotoinpcb(so);
   3729 		break;
   3730 #endif
   3731 #ifdef INET6
   3732 	case AF_INET6:
   3733 		in6p = sotoin6pcb(so);
   3734 		break;
   3735 #endif
   3736 	}
   3737 	switch (src->sa_family) {
   3738 #ifdef INET
   3739 	case AF_INET:
   3740 		if (inp) {
   3741 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3742 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3743 			inp->inp_options = ip_srcroute();
   3744 			in_pcbstate(inp, INP_BOUND);
   3745 			if (inp->inp_options == NULL) {
   3746 				inp->inp_options = sc->sc_ipopts;
   3747 				sc->sc_ipopts = NULL;
   3748 			}
   3749 		}
   3750 #ifdef INET6
   3751 		else if (in6p) {
   3752 			/* IPv4 packet to AF_INET6 socket */
   3753 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   3754 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3755 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3756 				&in6p->in6p_laddr.s6_addr32[3],
   3757 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3758 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3759 			in6totcpcb(in6p)->t_family = AF_INET;
   3760 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3761 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3762 			else
   3763 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3764 			in6_pcbstate(in6p, IN6P_BOUND);
   3765 		}
   3766 #endif
   3767 		break;
   3768 #endif
   3769 #ifdef INET6
   3770 	case AF_INET6:
   3771 		if (in6p) {
   3772 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3773 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3774 			in6_pcbstate(in6p, IN6P_BOUND);
   3775 		}
   3776 		break;
   3777 #endif
   3778 	}
   3779 #ifdef INET6
   3780 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3781 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3782 		/* inherit socket options from the listening socket */
   3783 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3784 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3785 			m_freem(in6p->in6p_options);
   3786 			in6p->in6p_options = 0;
   3787 		}
   3788 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3789 			mtod(m, struct ip6_hdr *), m);
   3790 	}
   3791 #endif
   3792 
   3793 #if defined(IPSEC) || defined(FAST_IPSEC)
   3794 	/*
   3795 	 * we make a copy of policy, instead of sharing the policy,
   3796 	 * for better behavior in terms of SA lookup and dead SA removal.
   3797 	 */
   3798 	if (inp) {
   3799 		/* copy old policy into new socket's */
   3800 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   3801 			printf("tcp_input: could not copy policy\n");
   3802 	}
   3803 #ifdef INET6
   3804 	else if (in6p) {
   3805 		/* copy old policy into new socket's */
   3806 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3807 		    in6p->in6p_sp))
   3808 			printf("tcp_input: could not copy policy\n");
   3809 	}
   3810 #endif
   3811 #endif
   3812 
   3813 	/*
   3814 	 * Give the new socket our cached route reference.
   3815 	 */
   3816 	if (inp) {
   3817 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   3818 		rtcache_free(&sc->sc_route);
   3819 	}
   3820 #ifdef INET6
   3821 	else {
   3822 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   3823 		rtcache_free(&sc->sc_route);
   3824 	}
   3825 #endif
   3826 
   3827 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   3828 	if (am == NULL)
   3829 		goto resetandabort;
   3830 	MCLAIM(am, &tcp_mowner);
   3831 	am->m_len = src->sa_len;
   3832 	bcopy(src, mtod(am, void *), src->sa_len);
   3833 	if (inp) {
   3834 		if (in_pcbconnect(inp, am, &lwp0)) {
   3835 			(void) m_free(am);
   3836 			goto resetandabort;
   3837 		}
   3838 	}
   3839 #ifdef INET6
   3840 	else if (in6p) {
   3841 		if (src->sa_family == AF_INET) {
   3842 			/* IPv4 packet to AF_INET6 socket */
   3843 			struct sockaddr_in6 *sin6;
   3844 			sin6 = mtod(am, struct sockaddr_in6 *);
   3845 			am->m_len = sizeof(*sin6);
   3846 			memset(sin6, 0, sizeof(*sin6));
   3847 			sin6->sin6_family = AF_INET6;
   3848 			sin6->sin6_len = sizeof(*sin6);
   3849 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   3850 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   3851 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   3852 				&sin6->sin6_addr.s6_addr32[3],
   3853 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   3854 		}
   3855 		if (in6_pcbconnect(in6p, am, NULL)) {
   3856 			(void) m_free(am);
   3857 			goto resetandabort;
   3858 		}
   3859 	}
   3860 #endif
   3861 	else {
   3862 		(void) m_free(am);
   3863 		goto resetandabort;
   3864 	}
   3865 	(void) m_free(am);
   3866 
   3867 	if (inp)
   3868 		tp = intotcpcb(inp);
   3869 #ifdef INET6
   3870 	else if (in6p)
   3871 		tp = in6totcpcb(in6p);
   3872 #endif
   3873 	else
   3874 		tp = NULL;
   3875 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3876 	if (sc->sc_request_r_scale != 15) {
   3877 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3878 		tp->request_r_scale = sc->sc_request_r_scale;
   3879 		tp->snd_scale = sc->sc_requested_s_scale;
   3880 		tp->rcv_scale = sc->sc_request_r_scale;
   3881 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3882 	}
   3883 	if (sc->sc_flags & SCF_TIMESTAMP)
   3884 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3885 	tp->ts_timebase = sc->sc_timebase;
   3886 
   3887 	tp->t_template = tcp_template(tp);
   3888 	if (tp->t_template == 0) {
   3889 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3890 		so = NULL;
   3891 		m_freem(m);
   3892 		goto abort;
   3893 	}
   3894 
   3895 	tp->iss = sc->sc_iss;
   3896 	tp->irs = sc->sc_irs;
   3897 	tcp_sendseqinit(tp);
   3898 	tcp_rcvseqinit(tp);
   3899 	tp->t_state = TCPS_SYN_RECEIVED;
   3900 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   3901 	TCP_STATINC(TCP_STAT_ACCEPTS);
   3902 
   3903 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3904 		tp->t_flags |= TF_WILL_SACK;
   3905 
   3906 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   3907 		tp->t_flags |= TF_ECN_PERMIT;
   3908 
   3909 #ifdef TCP_SIGNATURE
   3910 	if (sc->sc_flags & SCF_SIGNATURE)
   3911 		tp->t_flags |= TF_SIGNATURE;
   3912 #endif
   3913 
   3914 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3915 	tp->t_ourmss = sc->sc_ourmaxseg;
   3916 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3917 
   3918 	/*
   3919 	 * Initialize the initial congestion window.  If we
   3920 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3921 	 * to 1 segment (i.e. the Loss Window).
   3922 	 */
   3923 	if (sc->sc_rxtshift)
   3924 		tp->snd_cwnd = tp->t_peermss;
   3925 	else {
   3926 		int ss = tcp_init_win;
   3927 #ifdef INET
   3928 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3929 			ss = tcp_init_win_local;
   3930 #endif
   3931 #ifdef INET6
   3932 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3933 			ss = tcp_init_win_local;
   3934 #endif
   3935 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3936 	}
   3937 
   3938 	tcp_rmx_rtt(tp);
   3939 	tp->snd_wl1 = sc->sc_irs;
   3940 	tp->rcv_up = sc->sc_irs + 1;
   3941 
   3942 	/*
   3943 	 * This is what whould have happened in tcp_output() when
   3944 	 * the SYN,ACK was sent.
   3945 	 */
   3946 	tp->snd_up = tp->snd_una;
   3947 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   3948 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   3949 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   3950 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   3951 	tp->last_ack_sent = tp->rcv_nxt;
   3952 	tp->t_partialacks = -1;
   3953 	tp->t_dupacks = 0;
   3954 
   3955 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   3956 	s = splsoftnet();
   3957 	syn_cache_put(sc);
   3958 	splx(s);
   3959 	return (so);
   3960 
   3961 resetandabort:
   3962 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3963 abort:
   3964 	if (so != NULL) {
   3965 		(void) soqremque(so, 1);
   3966 		(void) soabort(so);
   3967 		mutex_enter(softnet_lock);
   3968 	}
   3969 	s = splsoftnet();
   3970 	syn_cache_put(sc);
   3971 	splx(s);
   3972 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   3973 	return ((struct socket *)(-1));
   3974 }
   3975 
   3976 /*
   3977  * This function is called when we get a RST for a
   3978  * non-existent connection, so that we can see if the
   3979  * connection is in the syn cache.  If it is, zap it.
   3980  */
   3981 
   3982 void
   3983 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   3984 {
   3985 	struct syn_cache *sc;
   3986 	struct syn_cache_head *scp;
   3987 	int s = splsoftnet();
   3988 
   3989 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3990 		splx(s);
   3991 		return;
   3992 	}
   3993 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   3994 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   3995 		splx(s);
   3996 		return;
   3997 	}
   3998 	syn_cache_rm(sc);
   3999 	TCP_STATINC(TCP_STAT_SC_RESET);
   4000 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4001 	splx(s);
   4002 }
   4003 
   4004 void
   4005 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4006     struct tcphdr *th)
   4007 {
   4008 	struct syn_cache *sc;
   4009 	struct syn_cache_head *scp;
   4010 	int s;
   4011 
   4012 	s = splsoftnet();
   4013 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4014 		splx(s);
   4015 		return;
   4016 	}
   4017 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4018 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4019 		splx(s);
   4020 		return;
   4021 	}
   4022 
   4023 	/*
   4024 	 * If we've retransmitted 3 times and this is our second error,
   4025 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4026 	 * This prevents us from incorrectly nuking an entry during a
   4027 	 * spurious network outage.
   4028 	 *
   4029 	 * See tcp_notify().
   4030 	 */
   4031 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4032 		sc->sc_flags |= SCF_UNREACH;
   4033 		splx(s);
   4034 		return;
   4035 	}
   4036 
   4037 	syn_cache_rm(sc);
   4038 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4039 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4040 	splx(s);
   4041 }
   4042 
   4043 /*
   4044  * Given a LISTEN socket and an inbound SYN request, add
   4045  * this to the syn cache, and send back a segment:
   4046  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4047  * to the source.
   4048  *
   4049  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4050  * Doing so would require that we hold onto the data and deliver it
   4051  * to the application.  However, if we are the target of a SYN-flood
   4052  * DoS attack, an attacker could send data which would eventually
   4053  * consume all available buffer space if it were ACKed.  By not ACKing
   4054  * the data, we avoid this DoS scenario.
   4055  */
   4056 
   4057 int
   4058 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4059     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4060     int optlen, struct tcp_opt_info *oi)
   4061 {
   4062 	struct tcpcb tb, *tp;
   4063 	long win;
   4064 	struct syn_cache *sc;
   4065 	struct syn_cache_head *scp;
   4066 	struct mbuf *ipopts;
   4067 	struct tcp_opt_info opti;
   4068 	int s;
   4069 
   4070 	tp = sototcpcb(so);
   4071 
   4072 	memset(&opti, 0, sizeof(opti));
   4073 
   4074 	/*
   4075 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4076 	 *
   4077 	 * Note this check is performed in tcp_input() very early on.
   4078 	 */
   4079 
   4080 	/*
   4081 	 * Initialize some local state.
   4082 	 */
   4083 	win = sbspace(&so->so_rcv);
   4084 	if (win > TCP_MAXWIN)
   4085 		win = TCP_MAXWIN;
   4086 
   4087 	switch (src->sa_family) {
   4088 #ifdef INET
   4089 	case AF_INET:
   4090 		/*
   4091 		 * Remember the IP options, if any.
   4092 		 */
   4093 		ipopts = ip_srcroute();
   4094 		break;
   4095 #endif
   4096 	default:
   4097 		ipopts = NULL;
   4098 	}
   4099 
   4100 #ifdef TCP_SIGNATURE
   4101 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4102 #else
   4103 	if (optp)
   4104 #endif
   4105 	{
   4106 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4107 #ifdef TCP_SIGNATURE
   4108 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4109 #endif
   4110 		tb.t_state = TCPS_LISTEN;
   4111 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4112 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4113 			return (0);
   4114 	} else
   4115 		tb.t_flags = 0;
   4116 
   4117 	/*
   4118 	 * See if we already have an entry for this connection.
   4119 	 * If we do, resend the SYN,ACK.  We do not count this
   4120 	 * as a retransmission (XXX though maybe we should).
   4121 	 */
   4122 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4123 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4124 		if (ipopts) {
   4125 			/*
   4126 			 * If we were remembering a previous source route,
   4127 			 * forget it and use the new one we've been given.
   4128 			 */
   4129 			if (sc->sc_ipopts)
   4130 				(void) m_free(sc->sc_ipopts);
   4131 			sc->sc_ipopts = ipopts;
   4132 		}
   4133 		sc->sc_timestamp = tb.ts_recent;
   4134 		if (syn_cache_respond(sc, m) == 0) {
   4135 			uint64_t *tcps = TCP_STAT_GETREF();
   4136 			tcps[TCP_STAT_SNDACKS]++;
   4137 			tcps[TCP_STAT_SNDTOTAL]++;
   4138 			TCP_STAT_PUTREF();
   4139 		}
   4140 		return (1);
   4141 	}
   4142 
   4143 	s = splsoftnet();
   4144 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4145 	splx(s);
   4146 	if (sc == NULL) {
   4147 		if (ipopts)
   4148 			(void) m_free(ipopts);
   4149 		return (0);
   4150 	}
   4151 
   4152 	/*
   4153 	 * Fill in the cache, and put the necessary IP and TCP
   4154 	 * options into the reply.
   4155 	 */
   4156 	memset(sc, 0, sizeof(struct syn_cache));
   4157 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4158 	bcopy(src, &sc->sc_src, src->sa_len);
   4159 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4160 	sc->sc_flags = 0;
   4161 	sc->sc_ipopts = ipopts;
   4162 	sc->sc_irs = th->th_seq;
   4163 	switch (src->sa_family) {
   4164 #ifdef INET
   4165 	case AF_INET:
   4166 	    {
   4167 		struct sockaddr_in *srcin = (void *) src;
   4168 		struct sockaddr_in *dstin = (void *) dst;
   4169 
   4170 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4171 		    &srcin->sin_addr, dstin->sin_port,
   4172 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4173 		break;
   4174 	    }
   4175 #endif /* INET */
   4176 #ifdef INET6
   4177 	case AF_INET6:
   4178 	    {
   4179 		struct sockaddr_in6 *srcin6 = (void *) src;
   4180 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4181 
   4182 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4183 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4184 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4185 		break;
   4186 	    }
   4187 #endif /* INET6 */
   4188 	}
   4189 	sc->sc_peermaxseg = oi->maxseg;
   4190 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4191 						m->m_pkthdr.rcvif : NULL,
   4192 						sc->sc_src.sa.sa_family);
   4193 	sc->sc_win = win;
   4194 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4195 	sc->sc_timestamp = tb.ts_recent;
   4196 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4197 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4198 		sc->sc_flags |= SCF_TIMESTAMP;
   4199 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4200 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4201 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4202 		sc->sc_request_r_scale = 0;
   4203 		/*
   4204 		 * Pick the smallest possible scaling factor that
   4205 		 * will still allow us to scale up to sb_max.
   4206 		 *
   4207 		 * We do this because there are broken firewalls that
   4208 		 * will corrupt the window scale option, leading to
   4209 		 * the other endpoint believing that our advertised
   4210 		 * window is unscaled.  At scale factors larger than
   4211 		 * 5 the unscaled window will drop below 1500 bytes,
   4212 		 * leading to serious problems when traversing these
   4213 		 * broken firewalls.
   4214 		 *
   4215 		 * With the default sbmax of 256K, a scale factor
   4216 		 * of 3 will be chosen by this algorithm.  Those who
   4217 		 * choose a larger sbmax should watch out
   4218 		 * for the compatiblity problems mentioned above.
   4219 		 *
   4220 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4221 		 * or <SYN,ACK>) segment itself is never scaled.
   4222 		 */
   4223 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4224 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4225 			sc->sc_request_r_scale++;
   4226 	} else {
   4227 		sc->sc_requested_s_scale = 15;
   4228 		sc->sc_request_r_scale = 15;
   4229 	}
   4230 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4231 		sc->sc_flags |= SCF_SACK_PERMIT;
   4232 
   4233 	/*
   4234 	 * ECN setup packet recieved.
   4235 	 */
   4236 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4237 		sc->sc_flags |= SCF_ECN_PERMIT;
   4238 
   4239 #ifdef TCP_SIGNATURE
   4240 	if (tb.t_flags & TF_SIGNATURE)
   4241 		sc->sc_flags |= SCF_SIGNATURE;
   4242 #endif
   4243 	sc->sc_tp = tp;
   4244 	if (syn_cache_respond(sc, m) == 0) {
   4245 		uint64_t *tcps = TCP_STAT_GETREF();
   4246 		tcps[TCP_STAT_SNDACKS]++;
   4247 		tcps[TCP_STAT_SNDTOTAL]++;
   4248 		TCP_STAT_PUTREF();
   4249 		syn_cache_insert(sc, tp);
   4250 	} else {
   4251 		s = splsoftnet();
   4252 		/*
   4253 		 * syn_cache_put() will try to schedule the timer, so
   4254 		 * we need to initialize it
   4255 		 */
   4256 		SYN_CACHE_TIMER_ARM(sc);
   4257 		syn_cache_put(sc);
   4258 		splx(s);
   4259 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4260 	}
   4261 	return (1);
   4262 }
   4263 
   4264 int
   4265 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4266 {
   4267 #ifdef INET6
   4268 	struct rtentry *rt;
   4269 #endif
   4270 	struct route *ro;
   4271 	u_int8_t *optp;
   4272 	int optlen, error;
   4273 	u_int16_t tlen;
   4274 	struct ip *ip = NULL;
   4275 #ifdef INET6
   4276 	struct ip6_hdr *ip6 = NULL;
   4277 #endif
   4278 	struct tcpcb *tp = NULL;
   4279 	struct tcphdr *th;
   4280 	u_int hlen;
   4281 	struct socket *so;
   4282 
   4283 	ro = &sc->sc_route;
   4284 	switch (sc->sc_src.sa.sa_family) {
   4285 	case AF_INET:
   4286 		hlen = sizeof(struct ip);
   4287 		break;
   4288 #ifdef INET6
   4289 	case AF_INET6:
   4290 		hlen = sizeof(struct ip6_hdr);
   4291 		break;
   4292 #endif
   4293 	default:
   4294 		if (m)
   4295 			m_freem(m);
   4296 		return (EAFNOSUPPORT);
   4297 	}
   4298 
   4299 	/* Compute the size of the TCP options. */
   4300 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4301 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4302 #ifdef TCP_SIGNATURE
   4303 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4304 #endif
   4305 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4306 
   4307 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4308 
   4309 	/*
   4310 	 * Create the IP+TCP header from scratch.
   4311 	 */
   4312 	if (m)
   4313 		m_freem(m);
   4314 #ifdef DIAGNOSTIC
   4315 	if (max_linkhdr + tlen > MCLBYTES)
   4316 		return (ENOBUFS);
   4317 #endif
   4318 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4319 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4320 		MCLGET(m, M_DONTWAIT);
   4321 		if ((m->m_flags & M_EXT) == 0) {
   4322 			m_freem(m);
   4323 			m = NULL;
   4324 		}
   4325 	}
   4326 	if (m == NULL)
   4327 		return (ENOBUFS);
   4328 	MCLAIM(m, &tcp_tx_mowner);
   4329 
   4330 	/* Fixup the mbuf. */
   4331 	m->m_data += max_linkhdr;
   4332 	m->m_len = m->m_pkthdr.len = tlen;
   4333 	if (sc->sc_tp) {
   4334 		tp = sc->sc_tp;
   4335 		if (tp->t_inpcb)
   4336 			so = tp->t_inpcb->inp_socket;
   4337 #ifdef INET6
   4338 		else if (tp->t_in6pcb)
   4339 			so = tp->t_in6pcb->in6p_socket;
   4340 #endif
   4341 		else
   4342 			so = NULL;
   4343 	} else
   4344 		so = NULL;
   4345 	m->m_pkthdr.rcvif = NULL;
   4346 	memset(mtod(m, u_char *), 0, tlen);
   4347 
   4348 	switch (sc->sc_src.sa.sa_family) {
   4349 	case AF_INET:
   4350 		ip = mtod(m, struct ip *);
   4351 		ip->ip_v = 4;
   4352 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4353 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4354 		ip->ip_p = IPPROTO_TCP;
   4355 		th = (struct tcphdr *)(ip + 1);
   4356 		th->th_dport = sc->sc_src.sin.sin_port;
   4357 		th->th_sport = sc->sc_dst.sin.sin_port;
   4358 		break;
   4359 #ifdef INET6
   4360 	case AF_INET6:
   4361 		ip6 = mtod(m, struct ip6_hdr *);
   4362 		ip6->ip6_vfc = IPV6_VERSION;
   4363 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4364 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4365 		ip6->ip6_nxt = IPPROTO_TCP;
   4366 		/* ip6_plen will be updated in ip6_output() */
   4367 		th = (struct tcphdr *)(ip6 + 1);
   4368 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4369 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4370 		break;
   4371 #endif
   4372 	default:
   4373 		th = NULL;
   4374 	}
   4375 
   4376 	th->th_seq = htonl(sc->sc_iss);
   4377 	th->th_ack = htonl(sc->sc_irs + 1);
   4378 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4379 	th->th_flags = TH_SYN|TH_ACK;
   4380 	th->th_win = htons(sc->sc_win);
   4381 	/* th_sum already 0 */
   4382 	/* th_urp already 0 */
   4383 
   4384 	/* Tack on the TCP options. */
   4385 	optp = (u_int8_t *)(th + 1);
   4386 	*optp++ = TCPOPT_MAXSEG;
   4387 	*optp++ = 4;
   4388 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4389 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4390 
   4391 	if (sc->sc_request_r_scale != 15) {
   4392 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4393 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4394 		    sc->sc_request_r_scale);
   4395 		optp += 4;
   4396 	}
   4397 
   4398 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4399 		u_int32_t *lp = (u_int32_t *)(optp);
   4400 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4401 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4402 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4403 		*lp   = htonl(sc->sc_timestamp);
   4404 		optp += TCPOLEN_TSTAMP_APPA;
   4405 	}
   4406 
   4407 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4408 		u_int8_t *p = optp;
   4409 
   4410 		/* Let the peer know that we will SACK. */
   4411 		p[0] = TCPOPT_SACK_PERMITTED;
   4412 		p[1] = 2;
   4413 		p[2] = TCPOPT_NOP;
   4414 		p[3] = TCPOPT_NOP;
   4415 		optp += 4;
   4416 	}
   4417 
   4418 	/*
   4419 	 * Send ECN SYN-ACK setup packet.
   4420 	 * Routes can be asymetric, so, even if we receive a packet
   4421 	 * with ECE and CWR set, we must not assume no one will block
   4422 	 * the ECE packet we are about to send.
   4423 	 */
   4424 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4425 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4426 		th->th_flags |= TH_ECE;
   4427 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4428 
   4429 		/*
   4430 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4431 		 *
   4432 		 * "[...] a TCP node MAY respond to an ECN-setup
   4433 		 * SYN packet by setting ECT in the responding
   4434 		 * ECN-setup SYN/ACK packet, indicating to routers
   4435 		 * that the SYN/ACK packet is ECN-Capable.
   4436 		 * This allows a congested router along the path
   4437 		 * to mark the packet instead of dropping the
   4438 		 * packet as an indication of congestion."
   4439 		 *
   4440 		 * "[...] There can be a great benefit in setting
   4441 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4442 		 * Congestion is  most likely to occur in
   4443 		 * the server-to-client direction.  As a result,
   4444 		 * setting an ECN-capable codepoint in SYN/ACK
   4445 		 * packets can reduce the occurence of three-second
   4446 		 * retransmit timeouts resulting from the drop
   4447 		 * of SYN/ACK packets."
   4448 		 *
   4449 		 * Page 4 and 6, January 2006.
   4450 		 */
   4451 
   4452 		switch (sc->sc_src.sa.sa_family) {
   4453 #ifdef INET
   4454 		case AF_INET:
   4455 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4456 			break;
   4457 #endif
   4458 #ifdef INET6
   4459 		case AF_INET6:
   4460 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4461 			break;
   4462 #endif
   4463 		}
   4464 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4465 	}
   4466 
   4467 #ifdef TCP_SIGNATURE
   4468 	if (sc->sc_flags & SCF_SIGNATURE) {
   4469 		struct secasvar *sav;
   4470 		u_int8_t *sigp;
   4471 
   4472 		sav = tcp_signature_getsav(m, th);
   4473 
   4474 		if (sav == NULL) {
   4475 			if (m)
   4476 				m_freem(m);
   4477 			return (EPERM);
   4478 		}
   4479 
   4480 		*optp++ = TCPOPT_SIGNATURE;
   4481 		*optp++ = TCPOLEN_SIGNATURE;
   4482 		sigp = optp;
   4483 		memset(optp, 0, TCP_SIGLEN);
   4484 		optp += TCP_SIGLEN;
   4485 		*optp++ = TCPOPT_NOP;
   4486 		*optp++ = TCPOPT_EOL;
   4487 
   4488 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4489 
   4490 		key_sa_recordxfer(sav, m);
   4491 #ifdef FAST_IPSEC
   4492 		KEY_FREESAV(&sav);
   4493 #else
   4494 		key_freesav(sav);
   4495 #endif
   4496 	}
   4497 #endif
   4498 
   4499 	/* Compute the packet's checksum. */
   4500 	switch (sc->sc_src.sa.sa_family) {
   4501 	case AF_INET:
   4502 		ip->ip_len = htons(tlen - hlen);
   4503 		th->th_sum = 0;
   4504 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4505 		break;
   4506 #ifdef INET6
   4507 	case AF_INET6:
   4508 		ip6->ip6_plen = htons(tlen - hlen);
   4509 		th->th_sum = 0;
   4510 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4511 		break;
   4512 #endif
   4513 	}
   4514 
   4515 	/*
   4516 	 * Fill in some straggling IP bits.  Note the stack expects
   4517 	 * ip_len to be in host order, for convenience.
   4518 	 */
   4519 	switch (sc->sc_src.sa.sa_family) {
   4520 #ifdef INET
   4521 	case AF_INET:
   4522 		ip->ip_len = htons(tlen);
   4523 		ip->ip_ttl = ip_defttl;
   4524 		/* XXX tos? */
   4525 		break;
   4526 #endif
   4527 #ifdef INET6
   4528 	case AF_INET6:
   4529 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4530 		ip6->ip6_vfc |= IPV6_VERSION;
   4531 		ip6->ip6_plen = htons(tlen - hlen);
   4532 		/* ip6_hlim will be initialized afterwards */
   4533 		/* XXX flowlabel? */
   4534 		break;
   4535 #endif
   4536 	}
   4537 
   4538 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4539 	tp = sc->sc_tp;
   4540 
   4541 	switch (sc->sc_src.sa.sa_family) {
   4542 #ifdef INET
   4543 	case AF_INET:
   4544 		error = ip_output(m, sc->sc_ipopts, ro,
   4545 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4546 		    (struct ip_moptions *)NULL, so);
   4547 		break;
   4548 #endif
   4549 #ifdef INET6
   4550 	case AF_INET6:
   4551 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4552 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
   4553 				                                    : NULL);
   4554 
   4555 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4556 		break;
   4557 #endif
   4558 	default:
   4559 		error = EAFNOSUPPORT;
   4560 		break;
   4561 	}
   4562 	return (error);
   4563 }
   4564