tcp_input.c revision 1.311 1 /* $NetBSD: tcp_input.c,v 1.311 2011/04/25 22:12:43 yamt Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006 The NetBSD Foundation, Inc.
74 * All rights reserved.
75 *
76 * This code is derived from software contributed to The NetBSD Foundation
77 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
78 * Facility, NASA Ames Research Center.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Charles M. Hannum.
81 * This code is derived from software contributed to The NetBSD Foundation
82 * by Rui Paulo.
83 *
84 * Redistribution and use in source and binary forms, with or without
85 * modification, are permitted provided that the following conditions
86 * are met:
87 * 1. Redistributions of source code must retain the above copyright
88 * notice, this list of conditions and the following disclaimer.
89 * 2. Redistributions in binary form must reproduce the above copyright
90 * notice, this list of conditions and the following disclaimer in the
91 * documentation and/or other materials provided with the distribution.
92 *
93 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
94 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
95 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
96 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
97 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
98 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
99 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
100 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
101 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
102 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
103 * POSSIBILITY OF SUCH DAMAGE.
104 */
105
106 /*
107 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
108 * The Regents of the University of California. All rights reserved.
109 *
110 * Redistribution and use in source and binary forms, with or without
111 * modification, are permitted provided that the following conditions
112 * are met:
113 * 1. Redistributions of source code must retain the above copyright
114 * notice, this list of conditions and the following disclaimer.
115 * 2. Redistributions in binary form must reproduce the above copyright
116 * notice, this list of conditions and the following disclaimer in the
117 * documentation and/or other materials provided with the distribution.
118 * 3. Neither the name of the University nor the names of its contributors
119 * may be used to endorse or promote products derived from this software
120 * without specific prior written permission.
121 *
122 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
123 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
124 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
125 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
126 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
127 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
128 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
129 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
130 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
131 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
132 * SUCH DAMAGE.
133 *
134 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
135 */
136
137 /*
138 * TODO list for SYN cache stuff:
139 *
140 * Find room for a "state" field, which is needed to keep a
141 * compressed state for TIME_WAIT TCBs. It's been noted already
142 * that this is fairly important for very high-volume web and
143 * mail servers, which use a large number of short-lived
144 * connections.
145 */
146
147 #include <sys/cdefs.h>
148 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.311 2011/04/25 22:12:43 yamt Exp $");
149
150 #include "opt_inet.h"
151 #include "opt_ipsec.h"
152 #include "opt_inet_csum.h"
153 #include "opt_tcp_debug.h"
154
155 #include <sys/param.h>
156 #include <sys/systm.h>
157 #include <sys/malloc.h>
158 #include <sys/mbuf.h>
159 #include <sys/protosw.h>
160 #include <sys/socket.h>
161 #include <sys/socketvar.h>
162 #include <sys/errno.h>
163 #include <sys/syslog.h>
164 #include <sys/pool.h>
165 #include <sys/domain.h>
166 #include <sys/kernel.h>
167 #ifdef TCP_SIGNATURE
168 #include <sys/md5.h>
169 #endif
170 #include <sys/lwp.h> /* for lwp0 */
171
172 #include <net/if.h>
173 #include <net/route.h>
174 #include <net/if_types.h>
175
176 #include <netinet/in.h>
177 #include <netinet/in_systm.h>
178 #include <netinet/ip.h>
179 #include <netinet/in_pcb.h>
180 #include <netinet/in_var.h>
181 #include <netinet/ip_var.h>
182 #include <netinet/in_offload.h>
183
184 #ifdef INET6
185 #ifndef INET
186 #include <netinet/in.h>
187 #endif
188 #include <netinet/ip6.h>
189 #include <netinet6/ip6_var.h>
190 #include <netinet6/in6_pcb.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_var.h>
193 #include <netinet/icmp6.h>
194 #include <netinet6/nd6.h>
195 #ifdef TCP_SIGNATURE
196 #include <netinet6/scope6_var.h>
197 #endif
198 #endif
199
200 #ifndef INET6
201 /* always need ip6.h for IP6_EXTHDR_GET */
202 #include <netinet/ip6.h>
203 #endif
204
205 #include <netinet/tcp.h>
206 #include <netinet/tcp_fsm.h>
207 #include <netinet/tcp_seq.h>
208 #include <netinet/tcp_timer.h>
209 #include <netinet/tcp_var.h>
210 #include <netinet/tcp_private.h>
211 #include <netinet/tcpip.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214
215 #include <machine/stdarg.h>
216
217 #ifdef IPSEC
218 #include <netinet6/ipsec.h>
219 #include <netinet6/ipsec_private.h>
220 #include <netkey/key.h>
221 #endif /*IPSEC*/
222 #ifdef INET6
223 #include "faith.h"
224 #if defined(NFAITH) && NFAITH > 0
225 #include <net/if_faith.h>
226 #endif
227 #endif /* IPSEC */
228
229 #ifdef FAST_IPSEC
230 #include <netipsec/ipsec.h>
231 #include <netipsec/ipsec_var.h>
232 #include <netipsec/ipsec_private.h>
233 #include <netipsec/key.h>
234 #ifdef INET6
235 #include <netipsec/ipsec6.h>
236 #endif
237 #endif /* FAST_IPSEC*/
238
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
241
242 int tcp_do_autorcvbuf = 1;
243 int tcp_autorcvbuf_inc = 16 * 1024;
244 int tcp_autorcvbuf_max = 256 * 1024;
245 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251
252 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
253
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
257
258 /*
259 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260 */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 struct rtentry *rt;
266
267 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 nd6_nud_hint(rt, NULL, 0);
270 }
271 #else
272 static inline void
273 nd6_hint(struct tcpcb *tp)
274 {
275 }
276 #endif
277
278 /*
279 * Compute ACK transmission behavior. Delay the ACK unless
280 * we have already delayed an ACK (must send an ACK every two segments).
281 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
282 * option is enabled.
283 */
284 static void
285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
286 {
287
288 if (tp->t_flags & TF_DELACK ||
289 (tcp_ack_on_push && th->th_flags & TH_PUSH))
290 tp->t_flags |= TF_ACKNOW;
291 else
292 TCP_SET_DELACK(tp);
293 }
294
295 static void
296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
297 {
298
299 /*
300 * If we had a pending ICMP message that refers to data that have
301 * just been acknowledged, disregard the recorded ICMP message.
302 */
303 if ((tp->t_flags & TF_PMTUD_PEND) &&
304 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
305 tp->t_flags &= ~TF_PMTUD_PEND;
306
307 /*
308 * Keep track of the largest chunk of data
309 * acknowledged since last PMTU update
310 */
311 if (tp->t_pmtud_mss_acked < acked)
312 tp->t_pmtud_mss_acked = acked;
313 }
314
315 /*
316 * Convert TCP protocol fields to host order for easier processing.
317 */
318 static void
319 tcp_fields_to_host(struct tcphdr *th)
320 {
321
322 NTOHL(th->th_seq);
323 NTOHL(th->th_ack);
324 NTOHS(th->th_win);
325 NTOHS(th->th_urp);
326 }
327
328 /*
329 * ... and reverse the above.
330 */
331 static void
332 tcp_fields_to_net(struct tcphdr *th)
333 {
334
335 HTONL(th->th_seq);
336 HTONL(th->th_ack);
337 HTONS(th->th_win);
338 HTONS(th->th_urp);
339 }
340
341 #ifdef TCP_CSUM_COUNTERS
342 #include <sys/device.h>
343
344 #if defined(INET)
345 extern struct evcnt tcp_hwcsum_ok;
346 extern struct evcnt tcp_hwcsum_bad;
347 extern struct evcnt tcp_hwcsum_data;
348 extern struct evcnt tcp_swcsum;
349 #endif /* defined(INET) */
350 #if defined(INET6)
351 extern struct evcnt tcp6_hwcsum_ok;
352 extern struct evcnt tcp6_hwcsum_bad;
353 extern struct evcnt tcp6_hwcsum_data;
354 extern struct evcnt tcp6_swcsum;
355 #endif /* defined(INET6) */
356
357 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
358
359 #else
360
361 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
362
363 #endif /* TCP_CSUM_COUNTERS */
364
365 #ifdef TCP_REASS_COUNTERS
366 #include <sys/device.h>
367
368 extern struct evcnt tcp_reass_;
369 extern struct evcnt tcp_reass_empty;
370 extern struct evcnt tcp_reass_iteration[8];
371 extern struct evcnt tcp_reass_prependfirst;
372 extern struct evcnt tcp_reass_prepend;
373 extern struct evcnt tcp_reass_insert;
374 extern struct evcnt tcp_reass_inserttail;
375 extern struct evcnt tcp_reass_append;
376 extern struct evcnt tcp_reass_appendtail;
377 extern struct evcnt tcp_reass_overlaptail;
378 extern struct evcnt tcp_reass_overlapfront;
379 extern struct evcnt tcp_reass_segdup;
380 extern struct evcnt tcp_reass_fragdup;
381
382 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
383
384 #else
385
386 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
387
388 #endif /* TCP_REASS_COUNTERS */
389
390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
391 int *);
392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
393 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
394
395 #ifdef INET
396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
397 #endif
398 #ifdef INET6
399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
400 #endif
401
402 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
403
404 #if defined(MBUFTRACE)
405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
406 #endif /* defined(MBUFTRACE) */
407
408 static struct pool tcpipqent_pool;
409
410 void
411 tcpipqent_init(void)
412 {
413
414 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
415 NULL, IPL_VM);
416 }
417
418 struct ipqent *
419 tcpipqent_alloc(void)
420 {
421 struct ipqent *ipqe;
422 int s;
423
424 s = splvm();
425 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
426 splx(s);
427
428 return ipqe;
429 }
430
431 void
432 tcpipqent_free(struct ipqent *ipqe)
433 {
434 int s;
435
436 s = splvm();
437 pool_put(&tcpipqent_pool, ipqe);
438 splx(s);
439 }
440
441 static int
442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
443 {
444 struct ipqent *p, *q, *nq, *tiqe = NULL;
445 struct socket *so = NULL;
446 int pkt_flags;
447 tcp_seq pkt_seq;
448 unsigned pkt_len;
449 u_long rcvpartdupbyte = 0;
450 u_long rcvoobyte;
451 #ifdef TCP_REASS_COUNTERS
452 u_int count = 0;
453 #endif
454 uint64_t *tcps;
455
456 if (tp->t_inpcb)
457 so = tp->t_inpcb->inp_socket;
458 #ifdef INET6
459 else if (tp->t_in6pcb)
460 so = tp->t_in6pcb->in6p_socket;
461 #endif
462
463 TCP_REASS_LOCK_CHECK(tp);
464
465 /*
466 * Call with th==0 after become established to
467 * force pre-ESTABLISHED data up to user socket.
468 */
469 if (th == 0)
470 goto present;
471
472 m_claimm(m, &tcp_reass_mowner);
473
474 rcvoobyte = *tlen;
475 /*
476 * Copy these to local variables because the tcpiphdr
477 * gets munged while we are collapsing mbufs.
478 */
479 pkt_seq = th->th_seq;
480 pkt_len = *tlen;
481 pkt_flags = th->th_flags;
482
483 TCP_REASS_COUNTER_INCR(&tcp_reass_);
484
485 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
486 /*
487 * When we miss a packet, the vast majority of time we get
488 * packets that follow it in order. So optimize for that.
489 */
490 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
491 p->ipqe_len += pkt_len;
492 p->ipqe_flags |= pkt_flags;
493 m_cat(p->ipre_mlast, m);
494 TRAVERSE(p->ipre_mlast);
495 m = NULL;
496 tiqe = p;
497 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
498 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
499 goto skip_replacement;
500 }
501 /*
502 * While we're here, if the pkt is completely beyond
503 * anything we have, just insert it at the tail.
504 */
505 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
506 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
507 goto insert_it;
508 }
509 }
510
511 q = TAILQ_FIRST(&tp->segq);
512
513 if (q != NULL) {
514 /*
515 * If this segment immediately precedes the first out-of-order
516 * block, simply slap the segment in front of it and (mostly)
517 * skip the complicated logic.
518 */
519 if (pkt_seq + pkt_len == q->ipqe_seq) {
520 q->ipqe_seq = pkt_seq;
521 q->ipqe_len += pkt_len;
522 q->ipqe_flags |= pkt_flags;
523 m_cat(m, q->ipqe_m);
524 q->ipqe_m = m;
525 q->ipre_mlast = m; /* last mbuf may have changed */
526 TRAVERSE(q->ipre_mlast);
527 tiqe = q;
528 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
529 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
530 goto skip_replacement;
531 }
532 } else {
533 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
534 }
535
536 /*
537 * Find a segment which begins after this one does.
538 */
539 for (p = NULL; q != NULL; q = nq) {
540 nq = TAILQ_NEXT(q, ipqe_q);
541 #ifdef TCP_REASS_COUNTERS
542 count++;
543 #endif
544 /*
545 * If the received segment is just right after this
546 * fragment, merge the two together and then check
547 * for further overlaps.
548 */
549 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
550 #ifdef TCPREASS_DEBUG
551 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
552 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
553 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
554 #endif
555 pkt_len += q->ipqe_len;
556 pkt_flags |= q->ipqe_flags;
557 pkt_seq = q->ipqe_seq;
558 m_cat(q->ipre_mlast, m);
559 TRAVERSE(q->ipre_mlast);
560 m = q->ipqe_m;
561 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
562 goto free_ipqe;
563 }
564 /*
565 * If the received segment is completely past this
566 * fragment, we need to go the next fragment.
567 */
568 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
569 p = q;
570 continue;
571 }
572 /*
573 * If the fragment is past the received segment,
574 * it (or any following) can't be concatenated.
575 */
576 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 break;
579 }
580
581 /*
582 * We've received all the data in this segment before.
583 * mark it as a duplicate and return.
584 */
585 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 tcps = TCP_STAT_GETREF();
588 tcps[TCP_STAT_RCVDUPPACK]++;
589 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 TCP_STAT_PUTREF();
591 tcp_new_dsack(tp, pkt_seq, pkt_len);
592 m_freem(m);
593 if (tiqe != NULL) {
594 tcpipqent_free(tiqe);
595 }
596 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 return (0);
598 }
599 /*
600 * Received segment completely overlaps this fragment
601 * so we drop the fragment (this keeps the temporal
602 * ordering of segments correct).
603 */
604 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
605 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
606 rcvpartdupbyte += q->ipqe_len;
607 m_freem(q->ipqe_m);
608 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
609 goto free_ipqe;
610 }
611 /*
612 * RX'ed segment extends past the end of the
613 * fragment. Drop the overlapping bytes. Then
614 * merge the fragment and segment then treat as
615 * a longer received packet.
616 */
617 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
618 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
619 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
620 #ifdef TCPREASS_DEBUG
621 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
622 tp, overlap,
623 pkt_seq, pkt_seq + pkt_len, pkt_len);
624 #endif
625 m_adj(m, overlap);
626 rcvpartdupbyte += overlap;
627 m_cat(q->ipre_mlast, m);
628 TRAVERSE(q->ipre_mlast);
629 m = q->ipqe_m;
630 pkt_seq = q->ipqe_seq;
631 pkt_len += q->ipqe_len - overlap;
632 rcvoobyte -= overlap;
633 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
634 goto free_ipqe;
635 }
636 /*
637 * RX'ed segment extends past the front of the
638 * fragment. Drop the overlapping bytes on the
639 * received packet. The packet will then be
640 * contatentated with this fragment a bit later.
641 */
642 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
643 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
644 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
645 #ifdef TCPREASS_DEBUG
646 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
647 tp, overlap,
648 pkt_seq, pkt_seq + pkt_len, pkt_len);
649 #endif
650 m_adj(m, -overlap);
651 pkt_len -= overlap;
652 rcvpartdupbyte += overlap;
653 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
654 rcvoobyte -= overlap;
655 }
656 /*
657 * If the received segment immediates precedes this
658 * fragment then tack the fragment onto this segment
659 * and reinsert the data.
660 */
661 if (q->ipqe_seq == pkt_seq + pkt_len) {
662 #ifdef TCPREASS_DEBUG
663 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
664 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
665 pkt_seq, pkt_seq + pkt_len, pkt_len);
666 #endif
667 pkt_len += q->ipqe_len;
668 pkt_flags |= q->ipqe_flags;
669 m_cat(m, q->ipqe_m);
670 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
671 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
672 tp->t_segqlen--;
673 KASSERT(tp->t_segqlen >= 0);
674 KASSERT(tp->t_segqlen != 0 ||
675 (TAILQ_EMPTY(&tp->segq) &&
676 TAILQ_EMPTY(&tp->timeq)));
677 if (tiqe == NULL) {
678 tiqe = q;
679 } else {
680 tcpipqent_free(q);
681 }
682 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
683 break;
684 }
685 /*
686 * If the fragment is before the segment, remember it.
687 * When this loop is terminated, p will contain the
688 * pointer to fragment that is right before the received
689 * segment.
690 */
691 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
692 p = q;
693
694 continue;
695
696 /*
697 * This is a common operation. It also will allow
698 * to save doing a malloc/free in most instances.
699 */
700 free_ipqe:
701 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
702 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
703 tp->t_segqlen--;
704 KASSERT(tp->t_segqlen >= 0);
705 KASSERT(tp->t_segqlen != 0 ||
706 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
707 if (tiqe == NULL) {
708 tiqe = q;
709 } else {
710 tcpipqent_free(q);
711 }
712 }
713
714 #ifdef TCP_REASS_COUNTERS
715 if (count > 7)
716 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
717 else if (count > 0)
718 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
719 #endif
720
721 insert_it:
722
723 /*
724 * Allocate a new queue entry since the received segment did not
725 * collapse onto any other out-of-order block; thus we are allocating
726 * a new block. If it had collapsed, tiqe would not be NULL and
727 * we would be reusing it.
728 * XXX If we can't, just drop the packet. XXX
729 */
730 if (tiqe == NULL) {
731 tiqe = tcpipqent_alloc();
732 if (tiqe == NULL) {
733 TCP_STATINC(TCP_STAT_RCVMEMDROP);
734 m_freem(m);
735 return (0);
736 }
737 }
738
739 /*
740 * Update the counters.
741 */
742 tcps = TCP_STAT_GETREF();
743 tcps[TCP_STAT_RCVOOPACK]++;
744 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
745 if (rcvpartdupbyte) {
746 tcps[TCP_STAT_RCVPARTDUPPACK]++;
747 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
748 }
749 TCP_STAT_PUTREF();
750
751 /*
752 * Insert the new fragment queue entry into both queues.
753 */
754 tiqe->ipqe_m = m;
755 tiqe->ipre_mlast = m;
756 tiqe->ipqe_seq = pkt_seq;
757 tiqe->ipqe_len = pkt_len;
758 tiqe->ipqe_flags = pkt_flags;
759 if (p == NULL) {
760 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
761 #ifdef TCPREASS_DEBUG
762 if (tiqe->ipqe_seq != tp->rcv_nxt)
763 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
764 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
765 #endif
766 } else {
767 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
768 #ifdef TCPREASS_DEBUG
769 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
770 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
771 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
772 #endif
773 }
774 tp->t_segqlen++;
775
776 skip_replacement:
777
778 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
779
780 present:
781 /*
782 * Present data to user, advancing rcv_nxt through
783 * completed sequence space.
784 */
785 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
786 return (0);
787 q = TAILQ_FIRST(&tp->segq);
788 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
789 return (0);
790 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
791 return (0);
792
793 tp->rcv_nxt += q->ipqe_len;
794 pkt_flags = q->ipqe_flags & TH_FIN;
795 nd6_hint(tp);
796
797 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
798 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
799 tp->t_segqlen--;
800 KASSERT(tp->t_segqlen >= 0);
801 KASSERT(tp->t_segqlen != 0 ||
802 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
803 if (so->so_state & SS_CANTRCVMORE)
804 m_freem(q->ipqe_m);
805 else
806 sbappendstream(&so->so_rcv, q->ipqe_m);
807 tcpipqent_free(q);
808 sorwakeup(so);
809 return (pkt_flags);
810 }
811
812 #ifdef INET6
813 int
814 tcp6_input(struct mbuf **mp, int *offp, int proto)
815 {
816 struct mbuf *m = *mp;
817
818 /*
819 * draft-itojun-ipv6-tcp-to-anycast
820 * better place to put this in?
821 */
822 if (m->m_flags & M_ANYCAST6) {
823 struct ip6_hdr *ip6;
824 if (m->m_len < sizeof(struct ip6_hdr)) {
825 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
826 TCP_STATINC(TCP_STAT_RCVSHORT);
827 return IPPROTO_DONE;
828 }
829 }
830 ip6 = mtod(m, struct ip6_hdr *);
831 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
832 (char *)&ip6->ip6_dst - (char *)ip6);
833 return IPPROTO_DONE;
834 }
835
836 tcp_input(m, *offp, proto);
837 return IPPROTO_DONE;
838 }
839 #endif
840
841 #ifdef INET
842 static void
843 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
844 {
845 char src[4*sizeof "123"];
846 char dst[4*sizeof "123"];
847
848 if (ip) {
849 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
850 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
851 }
852 else {
853 strlcpy(src, "(unknown)", sizeof(src));
854 strlcpy(dst, "(unknown)", sizeof(dst));
855 }
856 log(LOG_INFO,
857 "Connection attempt to TCP %s:%d from %s:%d\n",
858 dst, ntohs(th->th_dport),
859 src, ntohs(th->th_sport));
860 }
861 #endif
862
863 #ifdef INET6
864 static void
865 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
866 {
867 char src[INET6_ADDRSTRLEN];
868 char dst[INET6_ADDRSTRLEN];
869
870 if (ip6) {
871 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
872 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
873 }
874 else {
875 strlcpy(src, "(unknown v6)", sizeof(src));
876 strlcpy(dst, "(unknown v6)", sizeof(dst));
877 }
878 log(LOG_INFO,
879 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
880 dst, ntohs(th->th_dport),
881 src, ntohs(th->th_sport));
882 }
883 #endif
884
885 /*
886 * Checksum extended TCP header and data.
887 */
888 int
889 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
890 int toff, int off, int tlen)
891 {
892
893 /*
894 * XXX it's better to record and check if this mbuf is
895 * already checked.
896 */
897
898 switch (af) {
899 #ifdef INET
900 case AF_INET:
901 switch (m->m_pkthdr.csum_flags &
902 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
903 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
904 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
905 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
906 goto badcsum;
907
908 case M_CSUM_TCPv4|M_CSUM_DATA: {
909 u_int32_t hw_csum = m->m_pkthdr.csum_data;
910
911 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
912 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
913 const struct ip *ip =
914 mtod(m, const struct ip *);
915
916 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
917 ip->ip_dst.s_addr,
918 htons(hw_csum + tlen + off + IPPROTO_TCP));
919 }
920 if ((hw_csum ^ 0xffff) != 0)
921 goto badcsum;
922 break;
923 }
924
925 case M_CSUM_TCPv4:
926 /* Checksum was okay. */
927 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
928 break;
929
930 default:
931 /*
932 * Must compute it ourselves. Maybe skip checksum
933 * on loopback interfaces.
934 */
935 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
936 IFF_LOOPBACK) ||
937 tcp_do_loopback_cksum)) {
938 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
939 if (in4_cksum(m, IPPROTO_TCP, toff,
940 tlen + off) != 0)
941 goto badcsum;
942 }
943 break;
944 }
945 break;
946 #endif /* INET4 */
947
948 #ifdef INET6
949 case AF_INET6:
950 switch (m->m_pkthdr.csum_flags &
951 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
952 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
953 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
954 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
955 goto badcsum;
956
957 #if 0 /* notyet */
958 case M_CSUM_TCPv6|M_CSUM_DATA:
959 #endif
960
961 case M_CSUM_TCPv6:
962 /* Checksum was okay. */
963 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
964 break;
965
966 default:
967 /*
968 * Must compute it ourselves. Maybe skip checksum
969 * on loopback interfaces.
970 */
971 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
972 tcp_do_loopback_cksum)) {
973 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
974 if (in6_cksum(m, IPPROTO_TCP, toff,
975 tlen + off) != 0)
976 goto badcsum;
977 }
978 }
979 break;
980 #endif /* INET6 */
981 }
982
983 return 0;
984
985 badcsum:
986 TCP_STATINC(TCP_STAT_RCVBADSUM);
987 return -1;
988 }
989
990 /*
991 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
992 */
993 void
994 tcp_input(struct mbuf *m, ...)
995 {
996 struct tcphdr *th;
997 struct ip *ip;
998 struct inpcb *inp;
999 #ifdef INET6
1000 struct ip6_hdr *ip6;
1001 struct in6pcb *in6p;
1002 #endif
1003 u_int8_t *optp = NULL;
1004 int optlen = 0;
1005 int len, tlen, toff, hdroptlen = 0;
1006 struct tcpcb *tp = 0;
1007 int tiflags;
1008 struct socket *so = NULL;
1009 int todrop, acked, ourfinisacked, needoutput = 0;
1010 bool dupseg;
1011 #ifdef TCP_DEBUG
1012 short ostate = 0;
1013 #endif
1014 u_long tiwin;
1015 struct tcp_opt_info opti;
1016 int off, iphlen;
1017 va_list ap;
1018 int af; /* af on the wire */
1019 struct mbuf *tcp_saveti = NULL;
1020 uint32_t ts_rtt;
1021 uint8_t iptos;
1022 uint64_t *tcps;
1023
1024 MCLAIM(m, &tcp_rx_mowner);
1025 va_start(ap, m);
1026 toff = va_arg(ap, int);
1027 (void)va_arg(ap, int); /* ignore value, advance ap */
1028 va_end(ap);
1029
1030 TCP_STATINC(TCP_STAT_RCVTOTAL);
1031
1032 memset(&opti, 0, sizeof(opti));
1033 opti.ts_present = 0;
1034 opti.maxseg = 0;
1035
1036 /*
1037 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1038 *
1039 * TCP is, by definition, unicast, so we reject all
1040 * multicast outright.
1041 *
1042 * Note, there are additional src/dst address checks in
1043 * the AF-specific code below.
1044 */
1045 if (m->m_flags & (M_BCAST|M_MCAST)) {
1046 /* XXX stat */
1047 goto drop;
1048 }
1049 #ifdef INET6
1050 if (m->m_flags & M_ANYCAST6) {
1051 /* XXX stat */
1052 goto drop;
1053 }
1054 #endif
1055
1056 /*
1057 * Get IP and TCP header.
1058 * Note: IP leaves IP header in first mbuf.
1059 */
1060 ip = mtod(m, struct ip *);
1061 switch (ip->ip_v) {
1062 #ifdef INET
1063 case 4:
1064 #ifdef INET6
1065 ip6 = NULL;
1066 #endif
1067 af = AF_INET;
1068 iphlen = sizeof(struct ip);
1069 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1070 sizeof(struct tcphdr));
1071 if (th == NULL) {
1072 TCP_STATINC(TCP_STAT_RCVSHORT);
1073 return;
1074 }
1075 /* We do the checksum after PCB lookup... */
1076 len = ntohs(ip->ip_len);
1077 tlen = len - toff;
1078 iptos = ip->ip_tos;
1079 break;
1080 #endif
1081 #ifdef INET6
1082 case 6:
1083 ip = NULL;
1084 iphlen = sizeof(struct ip6_hdr);
1085 af = AF_INET6;
1086 ip6 = mtod(m, struct ip6_hdr *);
1087 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1088 sizeof(struct tcphdr));
1089 if (th == NULL) {
1090 TCP_STATINC(TCP_STAT_RCVSHORT);
1091 return;
1092 }
1093
1094 /* Be proactive about malicious use of IPv4 mapped address */
1095 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1096 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1097 /* XXX stat */
1098 goto drop;
1099 }
1100
1101 /*
1102 * Be proactive about unspecified IPv6 address in source.
1103 * As we use all-zero to indicate unbounded/unconnected pcb,
1104 * unspecified IPv6 address can be used to confuse us.
1105 *
1106 * Note that packets with unspecified IPv6 destination is
1107 * already dropped in ip6_input.
1108 */
1109 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1110 /* XXX stat */
1111 goto drop;
1112 }
1113
1114 /*
1115 * Make sure destination address is not multicast.
1116 * Source address checked in ip6_input().
1117 */
1118 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1119 /* XXX stat */
1120 goto drop;
1121 }
1122
1123 /* We do the checksum after PCB lookup... */
1124 len = m->m_pkthdr.len;
1125 tlen = len - toff;
1126 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1127 break;
1128 #endif
1129 default:
1130 m_freem(m);
1131 return;
1132 }
1133
1134 KASSERT(TCP_HDR_ALIGNED_P(th));
1135
1136 /*
1137 * Check that TCP offset makes sense,
1138 * pull out TCP options and adjust length. XXX
1139 */
1140 off = th->th_off << 2;
1141 if (off < sizeof (struct tcphdr) || off > tlen) {
1142 TCP_STATINC(TCP_STAT_RCVBADOFF);
1143 goto drop;
1144 }
1145 tlen -= off;
1146
1147 /*
1148 * tcp_input() has been modified to use tlen to mean the TCP data
1149 * length throughout the function. Other functions can use
1150 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1151 * rja
1152 */
1153
1154 if (off > sizeof (struct tcphdr)) {
1155 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1156 if (th == NULL) {
1157 TCP_STATINC(TCP_STAT_RCVSHORT);
1158 return;
1159 }
1160 /*
1161 * NOTE: ip/ip6 will not be affected by m_pulldown()
1162 * (as they're before toff) and we don't need to update those.
1163 */
1164 KASSERT(TCP_HDR_ALIGNED_P(th));
1165 optlen = off - sizeof (struct tcphdr);
1166 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1167 /*
1168 * Do quick retrieval of timestamp options ("options
1169 * prediction?"). If timestamp is the only option and it's
1170 * formatted as recommended in RFC 1323 appendix A, we
1171 * quickly get the values now and not bother calling
1172 * tcp_dooptions(), etc.
1173 */
1174 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1175 (optlen > TCPOLEN_TSTAMP_APPA &&
1176 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1177 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1178 (th->th_flags & TH_SYN) == 0) {
1179 opti.ts_present = 1;
1180 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1181 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1182 optp = NULL; /* we've parsed the options */
1183 }
1184 }
1185 tiflags = th->th_flags;
1186
1187 /*
1188 * Locate pcb for segment.
1189 */
1190 findpcb:
1191 inp = NULL;
1192 #ifdef INET6
1193 in6p = NULL;
1194 #endif
1195 switch (af) {
1196 #ifdef INET
1197 case AF_INET:
1198 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1199 ip->ip_dst, th->th_dport);
1200 if (inp == 0) {
1201 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1202 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1203 }
1204 #ifdef INET6
1205 if (inp == 0) {
1206 struct in6_addr s, d;
1207
1208 /* mapped addr case */
1209 memset(&s, 0, sizeof(s));
1210 s.s6_addr16[5] = htons(0xffff);
1211 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1212 memset(&d, 0, sizeof(d));
1213 d.s6_addr16[5] = htons(0xffff);
1214 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1215 in6p = in6_pcblookup_connect(&tcbtable, &s,
1216 th->th_sport, &d, th->th_dport, 0);
1217 if (in6p == 0) {
1218 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1219 in6p = in6_pcblookup_bind(&tcbtable, &d,
1220 th->th_dport, 0);
1221 }
1222 }
1223 #endif
1224 #ifndef INET6
1225 if (inp == 0)
1226 #else
1227 if (inp == 0 && in6p == 0)
1228 #endif
1229 {
1230 TCP_STATINC(TCP_STAT_NOPORT);
1231 if (tcp_log_refused &&
1232 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1233 tcp4_log_refused(ip, th);
1234 }
1235 tcp_fields_to_host(th);
1236 goto dropwithreset_ratelim;
1237 }
1238 #if defined(IPSEC) || defined(FAST_IPSEC)
1239 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1240 ipsec4_in_reject(m, inp)) {
1241 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1242 goto drop;
1243 }
1244 #ifdef INET6
1245 else if (in6p &&
1246 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1247 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1248 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1249 goto drop;
1250 }
1251 #endif
1252 #endif /*IPSEC*/
1253 break;
1254 #endif /*INET*/
1255 #ifdef INET6
1256 case AF_INET6:
1257 {
1258 int faith;
1259
1260 #if defined(NFAITH) && NFAITH > 0
1261 faith = faithprefix(&ip6->ip6_dst);
1262 #else
1263 faith = 0;
1264 #endif
1265 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1266 th->th_sport, &ip6->ip6_dst, th->th_dport, faith);
1267 if (in6p == NULL) {
1268 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1269 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1270 th->th_dport, faith);
1271 }
1272 if (in6p == NULL) {
1273 TCP_STATINC(TCP_STAT_NOPORT);
1274 if (tcp_log_refused &&
1275 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1276 tcp6_log_refused(ip6, th);
1277 }
1278 tcp_fields_to_host(th);
1279 goto dropwithreset_ratelim;
1280 }
1281 #if defined(IPSEC) || defined(FAST_IPSEC)
1282 if ((in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1283 ipsec6_in_reject(m, in6p)) {
1284 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1285 goto drop;
1286 }
1287 #endif /*IPSEC*/
1288 break;
1289 }
1290 #endif
1291 }
1292
1293 /*
1294 * If the state is CLOSED (i.e., TCB does not exist) then
1295 * all data in the incoming segment is discarded.
1296 * If the TCB exists but is in CLOSED state, it is embryonic,
1297 * but should either do a listen or a connect soon.
1298 */
1299 tp = NULL;
1300 so = NULL;
1301 if (inp) {
1302 /* Check the minimum TTL for socket. */
1303 if (ip->ip_ttl < inp->inp_ip_minttl)
1304 goto drop;
1305
1306 tp = intotcpcb(inp);
1307 so = inp->inp_socket;
1308 }
1309 #ifdef INET6
1310 else if (in6p) {
1311 tp = in6totcpcb(in6p);
1312 so = in6p->in6p_socket;
1313 }
1314 #endif
1315 if (tp == 0) {
1316 tcp_fields_to_host(th);
1317 goto dropwithreset_ratelim;
1318 }
1319 if (tp->t_state == TCPS_CLOSED)
1320 goto drop;
1321
1322 KASSERT(so->so_lock == softnet_lock);
1323 KASSERT(solocked(so));
1324
1325 /*
1326 * Checksum extended TCP header and data.
1327 */
1328 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1329 goto badcsum;
1330
1331 tcp_fields_to_host(th);
1332
1333 /* Unscale the window into a 32-bit value. */
1334 if ((tiflags & TH_SYN) == 0)
1335 tiwin = th->th_win << tp->snd_scale;
1336 else
1337 tiwin = th->th_win;
1338
1339 #ifdef INET6
1340 /* save packet options if user wanted */
1341 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1342 if (in6p->in6p_options) {
1343 m_freem(in6p->in6p_options);
1344 in6p->in6p_options = 0;
1345 }
1346 KASSERT(ip6 != NULL);
1347 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1348 }
1349 #endif
1350
1351 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1352 union syn_cache_sa src;
1353 union syn_cache_sa dst;
1354
1355 memset(&src, 0, sizeof(src));
1356 memset(&dst, 0, sizeof(dst));
1357 switch (af) {
1358 #ifdef INET
1359 case AF_INET:
1360 src.sin.sin_len = sizeof(struct sockaddr_in);
1361 src.sin.sin_family = AF_INET;
1362 src.sin.sin_addr = ip->ip_src;
1363 src.sin.sin_port = th->th_sport;
1364
1365 dst.sin.sin_len = sizeof(struct sockaddr_in);
1366 dst.sin.sin_family = AF_INET;
1367 dst.sin.sin_addr = ip->ip_dst;
1368 dst.sin.sin_port = th->th_dport;
1369 break;
1370 #endif
1371 #ifdef INET6
1372 case AF_INET6:
1373 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1374 src.sin6.sin6_family = AF_INET6;
1375 src.sin6.sin6_addr = ip6->ip6_src;
1376 src.sin6.sin6_port = th->th_sport;
1377
1378 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1379 dst.sin6.sin6_family = AF_INET6;
1380 dst.sin6.sin6_addr = ip6->ip6_dst;
1381 dst.sin6.sin6_port = th->th_dport;
1382 break;
1383 #endif /* INET6 */
1384 default:
1385 goto badsyn; /*sanity*/
1386 }
1387
1388 if (so->so_options & SO_DEBUG) {
1389 #ifdef TCP_DEBUG
1390 ostate = tp->t_state;
1391 #endif
1392
1393 tcp_saveti = NULL;
1394 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1395 goto nosave;
1396
1397 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1398 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1399 if (!tcp_saveti)
1400 goto nosave;
1401 } else {
1402 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1403 if (!tcp_saveti)
1404 goto nosave;
1405 MCLAIM(m, &tcp_mowner);
1406 tcp_saveti->m_len = iphlen;
1407 m_copydata(m, 0, iphlen,
1408 mtod(tcp_saveti, void *));
1409 }
1410
1411 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1412 m_freem(tcp_saveti);
1413 tcp_saveti = NULL;
1414 } else {
1415 tcp_saveti->m_len += sizeof(struct tcphdr);
1416 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1417 sizeof(struct tcphdr));
1418 }
1419 nosave:;
1420 }
1421 if (so->so_options & SO_ACCEPTCONN) {
1422 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1423 if (tiflags & TH_RST) {
1424 syn_cache_reset(&src.sa, &dst.sa, th);
1425 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1426 (TH_ACK|TH_SYN)) {
1427 /*
1428 * Received a SYN,ACK. This should
1429 * never happen while we are in
1430 * LISTEN. Send an RST.
1431 */
1432 goto badsyn;
1433 } else if (tiflags & TH_ACK) {
1434 so = syn_cache_get(&src.sa, &dst.sa,
1435 th, toff, tlen, so, m);
1436 if (so == NULL) {
1437 /*
1438 * We don't have a SYN for
1439 * this ACK; send an RST.
1440 */
1441 goto badsyn;
1442 } else if (so ==
1443 (struct socket *)(-1)) {
1444 /*
1445 * We were unable to create
1446 * the connection. If the
1447 * 3-way handshake was
1448 * completed, and RST has
1449 * been sent to the peer.
1450 * Since the mbuf might be
1451 * in use for the reply,
1452 * do not free it.
1453 */
1454 m = NULL;
1455 } else {
1456 /*
1457 * We have created a
1458 * full-blown connection.
1459 */
1460 tp = NULL;
1461 inp = NULL;
1462 #ifdef INET6
1463 in6p = NULL;
1464 #endif
1465 switch (so->so_proto->pr_domain->dom_family) {
1466 #ifdef INET
1467 case AF_INET:
1468 inp = sotoinpcb(so);
1469 tp = intotcpcb(inp);
1470 break;
1471 #endif
1472 #ifdef INET6
1473 case AF_INET6:
1474 in6p = sotoin6pcb(so);
1475 tp = in6totcpcb(in6p);
1476 break;
1477 #endif
1478 }
1479 if (tp == NULL)
1480 goto badsyn; /*XXX*/
1481 tiwin <<= tp->snd_scale;
1482 goto after_listen;
1483 }
1484 } else {
1485 /*
1486 * None of RST, SYN or ACK was set.
1487 * This is an invalid packet for a
1488 * TCB in LISTEN state. Send a RST.
1489 */
1490 goto badsyn;
1491 }
1492 } else {
1493 /*
1494 * Received a SYN.
1495 *
1496 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1497 */
1498 if (m->m_flags & (M_BCAST|M_MCAST))
1499 goto drop;
1500
1501 switch (af) {
1502 #ifdef INET6
1503 case AF_INET6:
1504 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1505 goto drop;
1506 break;
1507 #endif /* INET6 */
1508 case AF_INET:
1509 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1510 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1511 goto drop;
1512 break;
1513 }
1514
1515 #ifdef INET6
1516 /*
1517 * If deprecated address is forbidden, we do
1518 * not accept SYN to deprecated interface
1519 * address to prevent any new inbound
1520 * connection from getting established.
1521 * When we do not accept SYN, we send a TCP
1522 * RST, with deprecated source address (instead
1523 * of dropping it). We compromise it as it is
1524 * much better for peer to send a RST, and
1525 * RST will be the final packet for the
1526 * exchange.
1527 *
1528 * If we do not forbid deprecated addresses, we
1529 * accept the SYN packet. RFC2462 does not
1530 * suggest dropping SYN in this case.
1531 * If we decipher RFC2462 5.5.4, it says like
1532 * this:
1533 * 1. use of deprecated addr with existing
1534 * communication is okay - "SHOULD continue
1535 * to be used"
1536 * 2. use of it with new communication:
1537 * (2a) "SHOULD NOT be used if alternate
1538 * address with sufficient scope is
1539 * available"
1540 * (2b) nothing mentioned otherwise.
1541 * Here we fall into (2b) case as we have no
1542 * choice in our source address selection - we
1543 * must obey the peer.
1544 *
1545 * The wording in RFC2462 is confusing, and
1546 * there are multiple description text for
1547 * deprecated address handling - worse, they
1548 * are not exactly the same. I believe 5.5.4
1549 * is the best one, so we follow 5.5.4.
1550 */
1551 if (af == AF_INET6 && !ip6_use_deprecated) {
1552 struct in6_ifaddr *ia6;
1553 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1554 &ip6->ip6_dst)) &&
1555 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1556 tp = NULL;
1557 goto dropwithreset;
1558 }
1559 }
1560 #endif
1561
1562 #if defined(IPSEC) || defined(FAST_IPSEC)
1563 switch (af) {
1564 #ifdef INET
1565 case AF_INET:
1566 if (ipsec4_in_reject_so(m, so)) {
1567 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1568 tp = NULL;
1569 goto dropwithreset;
1570 }
1571 break;
1572 #endif
1573 #ifdef INET6
1574 case AF_INET6:
1575 if (ipsec6_in_reject_so(m, so)) {
1576 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1577 tp = NULL;
1578 goto dropwithreset;
1579 }
1580 break;
1581 #endif /*INET6*/
1582 }
1583 #endif /*IPSEC*/
1584
1585 /*
1586 * LISTEN socket received a SYN
1587 * from itself? This can't possibly
1588 * be valid; drop the packet.
1589 */
1590 if (th->th_sport == th->th_dport) {
1591 int i;
1592
1593 switch (af) {
1594 #ifdef INET
1595 case AF_INET:
1596 i = in_hosteq(ip->ip_src, ip->ip_dst);
1597 break;
1598 #endif
1599 #ifdef INET6
1600 case AF_INET6:
1601 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1602 break;
1603 #endif
1604 default:
1605 i = 1;
1606 }
1607 if (i) {
1608 TCP_STATINC(TCP_STAT_BADSYN);
1609 goto drop;
1610 }
1611 }
1612
1613 /*
1614 * SYN looks ok; create compressed TCP
1615 * state for it.
1616 */
1617 if (so->so_qlen <= so->so_qlimit &&
1618 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1619 so, m, optp, optlen, &opti))
1620 m = NULL;
1621 }
1622 goto drop;
1623 }
1624 }
1625
1626 after_listen:
1627 #ifdef DIAGNOSTIC
1628 /*
1629 * Should not happen now that all embryonic connections
1630 * are handled with compressed state.
1631 */
1632 if (tp->t_state == TCPS_LISTEN)
1633 panic("tcp_input: TCPS_LISTEN");
1634 #endif
1635
1636 /*
1637 * Segment received on connection.
1638 * Reset idle time and keep-alive timer.
1639 */
1640 tp->t_rcvtime = tcp_now;
1641 if (TCPS_HAVEESTABLISHED(tp->t_state))
1642 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1643
1644 /*
1645 * Process options.
1646 */
1647 #ifdef TCP_SIGNATURE
1648 if (optp || (tp->t_flags & TF_SIGNATURE))
1649 #else
1650 if (optp)
1651 #endif
1652 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1653 goto drop;
1654
1655 if (TCP_SACK_ENABLED(tp)) {
1656 tcp_del_sackholes(tp, th);
1657 }
1658
1659 if (TCP_ECN_ALLOWED(tp)) {
1660 if (tiflags & TH_CWR) {
1661 tp->t_flags &= ~TF_ECN_SND_ECE;
1662 }
1663 switch (iptos & IPTOS_ECN_MASK) {
1664 case IPTOS_ECN_CE:
1665 tp->t_flags |= TF_ECN_SND_ECE;
1666 TCP_STATINC(TCP_STAT_ECN_CE);
1667 break;
1668 case IPTOS_ECN_ECT0:
1669 TCP_STATINC(TCP_STAT_ECN_ECT);
1670 break;
1671 case IPTOS_ECN_ECT1:
1672 /* XXX: ignore for now -- rpaulo */
1673 break;
1674 }
1675 /*
1676 * Congestion experienced.
1677 * Ignore if we are already trying to recover.
1678 */
1679 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1680 tp->t_congctl->cong_exp(tp);
1681 }
1682
1683 if (opti.ts_present && opti.ts_ecr) {
1684 /*
1685 * Calculate the RTT from the returned time stamp and the
1686 * connection's time base. If the time stamp is later than
1687 * the current time, or is extremely old, fall back to non-1323
1688 * RTT calculation. Since ts_rtt is unsigned, we can test both
1689 * at the same time.
1690 *
1691 * Note that ts_rtt is in units of slow ticks (500
1692 * ms). Since most earthbound RTTs are < 500 ms,
1693 * observed values will have large quantization noise.
1694 * Our smoothed RTT is then the fraction of observed
1695 * samples that are 1 tick instead of 0 (times 500
1696 * ms).
1697 *
1698 * ts_rtt is increased by 1 to denote a valid sample,
1699 * with 0 indicating an invalid measurement. This
1700 * extra 1 must be removed when ts_rtt is used, or
1701 * else an an erroneous extra 500 ms will result.
1702 */
1703 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1704 if (ts_rtt > TCP_PAWS_IDLE)
1705 ts_rtt = 0;
1706 } else {
1707 ts_rtt = 0;
1708 }
1709
1710 /*
1711 * Header prediction: check for the two common cases
1712 * of a uni-directional data xfer. If the packet has
1713 * no control flags, is in-sequence, the window didn't
1714 * change and we're not retransmitting, it's a
1715 * candidate. If the length is zero and the ack moved
1716 * forward, we're the sender side of the xfer. Just
1717 * free the data acked & wake any higher level process
1718 * that was blocked waiting for space. If the length
1719 * is non-zero and the ack didn't move, we're the
1720 * receiver side. If we're getting packets in-order
1721 * (the reassembly queue is empty), add the data to
1722 * the socket buffer and note that we need a delayed ack.
1723 */
1724 if (tp->t_state == TCPS_ESTABLISHED &&
1725 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1726 == TH_ACK &&
1727 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1728 th->th_seq == tp->rcv_nxt &&
1729 tiwin && tiwin == tp->snd_wnd &&
1730 tp->snd_nxt == tp->snd_max) {
1731
1732 /*
1733 * If last ACK falls within this segment's sequence numbers,
1734 * record the timestamp.
1735 * NOTE that the test is modified according to the latest
1736 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1737 *
1738 * note that we already know
1739 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1740 */
1741 if (opti.ts_present &&
1742 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1743 tp->ts_recent_age = tcp_now;
1744 tp->ts_recent = opti.ts_val;
1745 }
1746
1747 if (tlen == 0) {
1748 /* Ack prediction. */
1749 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1750 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1751 tp->snd_cwnd >= tp->snd_wnd &&
1752 tp->t_partialacks < 0) {
1753 /*
1754 * this is a pure ack for outstanding data.
1755 */
1756 if (ts_rtt)
1757 tcp_xmit_timer(tp, ts_rtt);
1758 else if (tp->t_rtttime &&
1759 SEQ_GT(th->th_ack, tp->t_rtseq))
1760 tcp_xmit_timer(tp,
1761 tcp_now - tp->t_rtttime);
1762 acked = th->th_ack - tp->snd_una;
1763 tcps = TCP_STAT_GETREF();
1764 tcps[TCP_STAT_PREDACK]++;
1765 tcps[TCP_STAT_RCVACKPACK]++;
1766 tcps[TCP_STAT_RCVACKBYTE] += acked;
1767 TCP_STAT_PUTREF();
1768 nd6_hint(tp);
1769
1770 if (acked > (tp->t_lastoff - tp->t_inoff))
1771 tp->t_lastm = NULL;
1772 sbdrop(&so->so_snd, acked);
1773 tp->t_lastoff -= acked;
1774
1775 icmp_check(tp, th, acked);
1776
1777 tp->snd_una = th->th_ack;
1778 tp->snd_fack = tp->snd_una;
1779 if (SEQ_LT(tp->snd_high, tp->snd_una))
1780 tp->snd_high = tp->snd_una;
1781 m_freem(m);
1782
1783 /*
1784 * If all outstanding data are acked, stop
1785 * retransmit timer, otherwise restart timer
1786 * using current (possibly backed-off) value.
1787 * If process is waiting for space,
1788 * wakeup/selnotify/signal. If data
1789 * are ready to send, let tcp_output
1790 * decide between more output or persist.
1791 */
1792 if (tp->snd_una == tp->snd_max)
1793 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1794 else if (TCP_TIMER_ISARMED(tp,
1795 TCPT_PERSIST) == 0)
1796 TCP_TIMER_ARM(tp, TCPT_REXMT,
1797 tp->t_rxtcur);
1798
1799 sowwakeup(so);
1800 if (so->so_snd.sb_cc) {
1801 KERNEL_LOCK(1, NULL);
1802 (void) tcp_output(tp);
1803 KERNEL_UNLOCK_ONE(NULL);
1804 }
1805 if (tcp_saveti)
1806 m_freem(tcp_saveti);
1807 return;
1808 }
1809 } else if (th->th_ack == tp->snd_una &&
1810 TAILQ_FIRST(&tp->segq) == NULL &&
1811 tlen <= sbspace(&so->so_rcv)) {
1812 int newsize = 0; /* automatic sockbuf scaling */
1813
1814 /*
1815 * this is a pure, in-sequence data packet
1816 * with nothing on the reassembly queue and
1817 * we have enough buffer space to take it.
1818 */
1819 tp->rcv_nxt += tlen;
1820 tcps = TCP_STAT_GETREF();
1821 tcps[TCP_STAT_PREDDAT]++;
1822 tcps[TCP_STAT_RCVPACK]++;
1823 tcps[TCP_STAT_RCVBYTE] += tlen;
1824 TCP_STAT_PUTREF();
1825 nd6_hint(tp);
1826
1827 /*
1828 * Automatic sizing enables the performance of large buffers
1829 * and most of the efficiency of small ones by only allocating
1830 * space when it is needed.
1831 *
1832 * On the receive side the socket buffer memory is only rarely
1833 * used to any significant extent. This allows us to be much
1834 * more aggressive in scaling the receive socket buffer. For
1835 * the case that the buffer space is actually used to a large
1836 * extent and we run out of kernel memory we can simply drop
1837 * the new segments; TCP on the sender will just retransmit it
1838 * later. Setting the buffer size too big may only consume too
1839 * much kernel memory if the application doesn't read() from
1840 * the socket or packet loss or reordering makes use of the
1841 * reassembly queue.
1842 *
1843 * The criteria to step up the receive buffer one notch are:
1844 * 1. the number of bytes received during the time it takes
1845 * one timestamp to be reflected back to us (the RTT);
1846 * 2. received bytes per RTT is within seven eighth of the
1847 * current socket buffer size;
1848 * 3. receive buffer size has not hit maximal automatic size;
1849 *
1850 * This algorithm does one step per RTT at most and only if
1851 * we receive a bulk stream w/o packet losses or reorderings.
1852 * Shrinking the buffer during idle times is not necessary as
1853 * it doesn't consume any memory when idle.
1854 *
1855 * TODO: Only step up if the application is actually serving
1856 * the buffer to better manage the socket buffer resources.
1857 */
1858 if (tcp_do_autorcvbuf &&
1859 opti.ts_ecr &&
1860 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1861 if (opti.ts_ecr > tp->rfbuf_ts &&
1862 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1863 if (tp->rfbuf_cnt >
1864 (so->so_rcv.sb_hiwat / 8 * 7) &&
1865 so->so_rcv.sb_hiwat <
1866 tcp_autorcvbuf_max) {
1867 newsize =
1868 min(so->so_rcv.sb_hiwat +
1869 tcp_autorcvbuf_inc,
1870 tcp_autorcvbuf_max);
1871 }
1872 /* Start over with next RTT. */
1873 tp->rfbuf_ts = 0;
1874 tp->rfbuf_cnt = 0;
1875 } else
1876 tp->rfbuf_cnt += tlen; /* add up */
1877 }
1878
1879 /*
1880 * Drop TCP, IP headers and TCP options then add data
1881 * to socket buffer.
1882 */
1883 if (so->so_state & SS_CANTRCVMORE)
1884 m_freem(m);
1885 else {
1886 /*
1887 * Set new socket buffer size.
1888 * Give up when limit is reached.
1889 */
1890 if (newsize)
1891 if (!sbreserve(&so->so_rcv,
1892 newsize, so))
1893 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
1894 m_adj(m, toff + off);
1895 sbappendstream(&so->so_rcv, m);
1896 }
1897 sorwakeup(so);
1898 tcp_setup_ack(tp, th);
1899 if (tp->t_flags & TF_ACKNOW) {
1900 KERNEL_LOCK(1, NULL);
1901 (void) tcp_output(tp);
1902 KERNEL_UNLOCK_ONE(NULL);
1903 }
1904 if (tcp_saveti)
1905 m_freem(tcp_saveti);
1906 return;
1907 }
1908 }
1909
1910 /*
1911 * Compute mbuf offset to TCP data segment.
1912 */
1913 hdroptlen = toff + off;
1914
1915 /*
1916 * Calculate amount of space in receive window,
1917 * and then do TCP input processing.
1918 * Receive window is amount of space in rcv queue,
1919 * but not less than advertised window.
1920 */
1921 { int win;
1922
1923 win = sbspace(&so->so_rcv);
1924 if (win < 0)
1925 win = 0;
1926 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
1927 }
1928
1929 /* Reset receive buffer auto scaling when not in bulk receive mode. */
1930 tp->rfbuf_ts = 0;
1931 tp->rfbuf_cnt = 0;
1932
1933 switch (tp->t_state) {
1934 /*
1935 * If the state is SYN_SENT:
1936 * if seg contains an ACK, but not for our SYN, drop the input.
1937 * if seg contains a RST, then drop the connection.
1938 * if seg does not contain SYN, then drop it.
1939 * Otherwise this is an acceptable SYN segment
1940 * initialize tp->rcv_nxt and tp->irs
1941 * if seg contains ack then advance tp->snd_una
1942 * if seg contains a ECE and ECN support is enabled, the stream
1943 * is ECN capable.
1944 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
1945 * arrange for segment to be acked (eventually)
1946 * continue processing rest of data/controls, beginning with URG
1947 */
1948 case TCPS_SYN_SENT:
1949 if ((tiflags & TH_ACK) &&
1950 (SEQ_LEQ(th->th_ack, tp->iss) ||
1951 SEQ_GT(th->th_ack, tp->snd_max)))
1952 goto dropwithreset;
1953 if (tiflags & TH_RST) {
1954 if (tiflags & TH_ACK)
1955 tp = tcp_drop(tp, ECONNREFUSED);
1956 goto drop;
1957 }
1958 if ((tiflags & TH_SYN) == 0)
1959 goto drop;
1960 if (tiflags & TH_ACK) {
1961 tp->snd_una = th->th_ack;
1962 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1963 tp->snd_nxt = tp->snd_una;
1964 if (SEQ_LT(tp->snd_high, tp->snd_una))
1965 tp->snd_high = tp->snd_una;
1966 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1967
1968 if ((tiflags & TH_ECE) && tcp_do_ecn) {
1969 tp->t_flags |= TF_ECN_PERMIT;
1970 TCP_STATINC(TCP_STAT_ECN_SHS);
1971 }
1972
1973 }
1974 tp->irs = th->th_seq;
1975 tcp_rcvseqinit(tp);
1976 tp->t_flags |= TF_ACKNOW;
1977 tcp_mss_from_peer(tp, opti.maxseg);
1978
1979 /*
1980 * Initialize the initial congestion window. If we
1981 * had to retransmit the SYN, we must initialize cwnd
1982 * to 1 segment (i.e. the Loss Window).
1983 */
1984 if (tp->t_flags & TF_SYN_REXMT)
1985 tp->snd_cwnd = tp->t_peermss;
1986 else {
1987 int ss = tcp_init_win;
1988 #ifdef INET
1989 if (inp != NULL && in_localaddr(inp->inp_faddr))
1990 ss = tcp_init_win_local;
1991 #endif
1992 #ifdef INET6
1993 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
1994 ss = tcp_init_win_local;
1995 #endif
1996 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
1997 }
1998
1999 tcp_rmx_rtt(tp);
2000 if (tiflags & TH_ACK) {
2001 TCP_STATINC(TCP_STAT_CONNECTS);
2002 soisconnected(so);
2003 tcp_established(tp);
2004 /* Do window scaling on this connection? */
2005 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2006 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2007 tp->snd_scale = tp->requested_s_scale;
2008 tp->rcv_scale = tp->request_r_scale;
2009 }
2010 TCP_REASS_LOCK(tp);
2011 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2012 TCP_REASS_UNLOCK(tp);
2013 /*
2014 * if we didn't have to retransmit the SYN,
2015 * use its rtt as our initial srtt & rtt var.
2016 */
2017 if (tp->t_rtttime)
2018 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2019 } else
2020 tp->t_state = TCPS_SYN_RECEIVED;
2021
2022 /*
2023 * Advance th->th_seq to correspond to first data byte.
2024 * If data, trim to stay within window,
2025 * dropping FIN if necessary.
2026 */
2027 th->th_seq++;
2028 if (tlen > tp->rcv_wnd) {
2029 todrop = tlen - tp->rcv_wnd;
2030 m_adj(m, -todrop);
2031 tlen = tp->rcv_wnd;
2032 tiflags &= ~TH_FIN;
2033 tcps = TCP_STAT_GETREF();
2034 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2035 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2036 TCP_STAT_PUTREF();
2037 }
2038 tp->snd_wl1 = th->th_seq - 1;
2039 tp->rcv_up = th->th_seq;
2040 goto step6;
2041
2042 /*
2043 * If the state is SYN_RECEIVED:
2044 * If seg contains an ACK, but not for our SYN, drop the input
2045 * and generate an RST. See page 36, rfc793
2046 */
2047 case TCPS_SYN_RECEIVED:
2048 if ((tiflags & TH_ACK) &&
2049 (SEQ_LEQ(th->th_ack, tp->iss) ||
2050 SEQ_GT(th->th_ack, tp->snd_max)))
2051 goto dropwithreset;
2052 break;
2053 }
2054
2055 /*
2056 * States other than LISTEN or SYN_SENT.
2057 * First check timestamp, if present.
2058 * Then check that at least some bytes of segment are within
2059 * receive window. If segment begins before rcv_nxt,
2060 * drop leading data (and SYN); if nothing left, just ack.
2061 *
2062 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2063 * and it's less than ts_recent, drop it.
2064 */
2065 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2066 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2067
2068 /* Check to see if ts_recent is over 24 days old. */
2069 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2070 /*
2071 * Invalidate ts_recent. If this segment updates
2072 * ts_recent, the age will be reset later and ts_recent
2073 * will get a valid value. If it does not, setting
2074 * ts_recent to zero will at least satisfy the
2075 * requirement that zero be placed in the timestamp
2076 * echo reply when ts_recent isn't valid. The
2077 * age isn't reset until we get a valid ts_recent
2078 * because we don't want out-of-order segments to be
2079 * dropped when ts_recent is old.
2080 */
2081 tp->ts_recent = 0;
2082 } else {
2083 tcps = TCP_STAT_GETREF();
2084 tcps[TCP_STAT_RCVDUPPACK]++;
2085 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2086 tcps[TCP_STAT_PAWSDROP]++;
2087 TCP_STAT_PUTREF();
2088 tcp_new_dsack(tp, th->th_seq, tlen);
2089 goto dropafterack;
2090 }
2091 }
2092
2093 todrop = tp->rcv_nxt - th->th_seq;
2094 dupseg = false;
2095 if (todrop > 0) {
2096 if (tiflags & TH_SYN) {
2097 tiflags &= ~TH_SYN;
2098 th->th_seq++;
2099 if (th->th_urp > 1)
2100 th->th_urp--;
2101 else {
2102 tiflags &= ~TH_URG;
2103 th->th_urp = 0;
2104 }
2105 todrop--;
2106 }
2107 if (todrop > tlen ||
2108 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2109 /*
2110 * Any valid FIN or RST must be to the left of the
2111 * window. At this point the FIN or RST must be a
2112 * duplicate or out of sequence; drop it.
2113 */
2114 if (tiflags & TH_RST)
2115 goto drop;
2116 tiflags &= ~(TH_FIN|TH_RST);
2117 /*
2118 * Send an ACK to resynchronize and drop any data.
2119 * But keep on processing for RST or ACK.
2120 */
2121 tp->t_flags |= TF_ACKNOW;
2122 todrop = tlen;
2123 dupseg = true;
2124 tcps = TCP_STAT_GETREF();
2125 tcps[TCP_STAT_RCVDUPPACK]++;
2126 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2127 TCP_STAT_PUTREF();
2128 } else if ((tiflags & TH_RST) &&
2129 th->th_seq != tp->rcv_nxt) {
2130 /*
2131 * Test for reset before adjusting the sequence
2132 * number for overlapping data.
2133 */
2134 goto dropafterack_ratelim;
2135 } else {
2136 tcps = TCP_STAT_GETREF();
2137 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2138 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2139 TCP_STAT_PUTREF();
2140 }
2141 tcp_new_dsack(tp, th->th_seq, todrop);
2142 hdroptlen += todrop; /*drop from head afterwards*/
2143 th->th_seq += todrop;
2144 tlen -= todrop;
2145 if (th->th_urp > todrop)
2146 th->th_urp -= todrop;
2147 else {
2148 tiflags &= ~TH_URG;
2149 th->th_urp = 0;
2150 }
2151 }
2152
2153 /*
2154 * If new data are received on a connection after the
2155 * user processes are gone, then RST the other end.
2156 */
2157 if ((so->so_state & SS_NOFDREF) &&
2158 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2159 tp = tcp_close(tp);
2160 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2161 goto dropwithreset;
2162 }
2163
2164 /*
2165 * If segment ends after window, drop trailing data
2166 * (and PUSH and FIN); if nothing left, just ACK.
2167 */
2168 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2169 if (todrop > 0) {
2170 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2171 if (todrop >= tlen) {
2172 /*
2173 * The segment actually starts after the window.
2174 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2175 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2176 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2177 */
2178 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2179 /*
2180 * If a new connection request is received
2181 * while in TIME_WAIT, drop the old connection
2182 * and start over if the sequence numbers
2183 * are above the previous ones.
2184 *
2185 * NOTE: We will checksum the packet again, and
2186 * so we need to put the header fields back into
2187 * network order!
2188 * XXX This kind of sucks, but we don't expect
2189 * XXX this to happen very often, so maybe it
2190 * XXX doesn't matter so much.
2191 */
2192 if (tiflags & TH_SYN &&
2193 tp->t_state == TCPS_TIME_WAIT &&
2194 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2195 tp = tcp_close(tp);
2196 tcp_fields_to_net(th);
2197 goto findpcb;
2198 }
2199 /*
2200 * If window is closed can only take segments at
2201 * window edge, and have to drop data and PUSH from
2202 * incoming segments. Continue processing, but
2203 * remember to ack. Otherwise, drop segment
2204 * and (if not RST) ack.
2205 */
2206 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2207 tp->t_flags |= TF_ACKNOW;
2208 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2209 } else
2210 goto dropafterack;
2211 } else
2212 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2213 m_adj(m, -todrop);
2214 tlen -= todrop;
2215 tiflags &= ~(TH_PUSH|TH_FIN);
2216 }
2217
2218 /*
2219 * If last ACK falls within this segment's sequence numbers,
2220 * record the timestamp.
2221 * NOTE:
2222 * 1) That the test incorporates suggestions from the latest
2223 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2224 * 2) That updating only on newer timestamps interferes with
2225 * our earlier PAWS tests, so this check should be solely
2226 * predicated on the sequence space of this segment.
2227 * 3) That we modify the segment boundary check to be
2228 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2229 * instead of RFC1323's
2230 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2231 * This modified check allows us to overcome RFC1323's
2232 * limitations as described in Stevens TCP/IP Illustrated
2233 * Vol. 2 p.869. In such cases, we can still calculate the
2234 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2235 */
2236 if (opti.ts_present &&
2237 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2238 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2239 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2240 tp->ts_recent_age = tcp_now;
2241 tp->ts_recent = opti.ts_val;
2242 }
2243
2244 /*
2245 * If the RST bit is set examine the state:
2246 * SYN_RECEIVED STATE:
2247 * If passive open, return to LISTEN state.
2248 * If active open, inform user that connection was refused.
2249 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2250 * Inform user that connection was reset, and close tcb.
2251 * CLOSING, LAST_ACK, TIME_WAIT STATES
2252 * Close the tcb.
2253 */
2254 if (tiflags & TH_RST) {
2255 if (th->th_seq != tp->rcv_nxt)
2256 goto dropafterack_ratelim;
2257
2258 switch (tp->t_state) {
2259 case TCPS_SYN_RECEIVED:
2260 so->so_error = ECONNREFUSED;
2261 goto close;
2262
2263 case TCPS_ESTABLISHED:
2264 case TCPS_FIN_WAIT_1:
2265 case TCPS_FIN_WAIT_2:
2266 case TCPS_CLOSE_WAIT:
2267 so->so_error = ECONNRESET;
2268 close:
2269 tp->t_state = TCPS_CLOSED;
2270 TCP_STATINC(TCP_STAT_DROPS);
2271 tp = tcp_close(tp);
2272 goto drop;
2273
2274 case TCPS_CLOSING:
2275 case TCPS_LAST_ACK:
2276 case TCPS_TIME_WAIT:
2277 tp = tcp_close(tp);
2278 goto drop;
2279 }
2280 }
2281
2282 /*
2283 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2284 * we must be in a synchronized state. RFC791 states (under RST
2285 * generation) that any unacceptable segment (an out-of-order SYN
2286 * qualifies) received in a synchronized state must elicit only an
2287 * empty acknowledgment segment ... and the connection remains in
2288 * the same state.
2289 */
2290 if (tiflags & TH_SYN) {
2291 if (tp->rcv_nxt == th->th_seq) {
2292 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2293 TH_ACK);
2294 if (tcp_saveti)
2295 m_freem(tcp_saveti);
2296 return;
2297 }
2298
2299 goto dropafterack_ratelim;
2300 }
2301
2302 /*
2303 * If the ACK bit is off we drop the segment and return.
2304 */
2305 if ((tiflags & TH_ACK) == 0) {
2306 if (tp->t_flags & TF_ACKNOW)
2307 goto dropafterack;
2308 else
2309 goto drop;
2310 }
2311
2312 /*
2313 * Ack processing.
2314 */
2315 switch (tp->t_state) {
2316
2317 /*
2318 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2319 * ESTABLISHED state and continue processing, otherwise
2320 * send an RST.
2321 */
2322 case TCPS_SYN_RECEIVED:
2323 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2324 SEQ_GT(th->th_ack, tp->snd_max))
2325 goto dropwithreset;
2326 TCP_STATINC(TCP_STAT_CONNECTS);
2327 soisconnected(so);
2328 tcp_established(tp);
2329 /* Do window scaling? */
2330 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2331 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2332 tp->snd_scale = tp->requested_s_scale;
2333 tp->rcv_scale = tp->request_r_scale;
2334 }
2335 TCP_REASS_LOCK(tp);
2336 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2337 TCP_REASS_UNLOCK(tp);
2338 tp->snd_wl1 = th->th_seq - 1;
2339 /* fall into ... */
2340
2341 /*
2342 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2343 * ACKs. If the ack is in the range
2344 * tp->snd_una < th->th_ack <= tp->snd_max
2345 * then advance tp->snd_una to th->th_ack and drop
2346 * data from the retransmission queue. If this ACK reflects
2347 * more up to date window information we update our window information.
2348 */
2349 case TCPS_ESTABLISHED:
2350 case TCPS_FIN_WAIT_1:
2351 case TCPS_FIN_WAIT_2:
2352 case TCPS_CLOSE_WAIT:
2353 case TCPS_CLOSING:
2354 case TCPS_LAST_ACK:
2355 case TCPS_TIME_WAIT:
2356
2357 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2358 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2359 TCP_STATINC(TCP_STAT_RCVDUPACK);
2360 /*
2361 * If we have outstanding data (other than
2362 * a window probe), this is a completely
2363 * duplicate ack (ie, window info didn't
2364 * change), the ack is the biggest we've
2365 * seen and we've seen exactly our rexmt
2366 * threshhold of them, assume a packet
2367 * has been dropped and retransmit it.
2368 * Kludge snd_nxt & the congestion
2369 * window so we send only this one
2370 * packet.
2371 */
2372 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2373 th->th_ack != tp->snd_una)
2374 tp->t_dupacks = 0;
2375 else if (tp->t_partialacks < 0 &&
2376 (++tp->t_dupacks == tcprexmtthresh ||
2377 TCP_FACK_FASTRECOV(tp))) {
2378 /*
2379 * Do the fast retransmit, and adjust
2380 * congestion control paramenters.
2381 */
2382 if (tp->t_congctl->fast_retransmit(tp, th)) {
2383 /* False fast retransmit */
2384 break;
2385 } else
2386 goto drop;
2387 } else if (tp->t_dupacks > tcprexmtthresh) {
2388 tp->snd_cwnd += tp->t_segsz;
2389 KERNEL_LOCK(1, NULL);
2390 (void) tcp_output(tp);
2391 KERNEL_UNLOCK_ONE(NULL);
2392 goto drop;
2393 }
2394 } else {
2395 /*
2396 * If the ack appears to be very old, only
2397 * allow data that is in-sequence. This
2398 * makes it somewhat more difficult to insert
2399 * forged data by guessing sequence numbers.
2400 * Sent an ack to try to update the send
2401 * sequence number on the other side.
2402 */
2403 if (tlen && th->th_seq != tp->rcv_nxt &&
2404 SEQ_LT(th->th_ack,
2405 tp->snd_una - tp->max_sndwnd))
2406 goto dropafterack;
2407 }
2408 break;
2409 }
2410 /*
2411 * If the congestion window was inflated to account
2412 * for the other side's cached packets, retract it.
2413 */
2414 /* XXX: make SACK have his own congestion control
2415 * struct -- rpaulo */
2416 if (TCP_SACK_ENABLED(tp))
2417 tcp_sack_newack(tp, th);
2418 else
2419 tp->t_congctl->fast_retransmit_newack(tp, th);
2420 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2421 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2422 goto dropafterack;
2423 }
2424 acked = th->th_ack - tp->snd_una;
2425 tcps = TCP_STAT_GETREF();
2426 tcps[TCP_STAT_RCVACKPACK]++;
2427 tcps[TCP_STAT_RCVACKBYTE] += acked;
2428 TCP_STAT_PUTREF();
2429
2430 /*
2431 * If we have a timestamp reply, update smoothed
2432 * round trip time. If no timestamp is present but
2433 * transmit timer is running and timed sequence
2434 * number was acked, update smoothed round trip time.
2435 * Since we now have an rtt measurement, cancel the
2436 * timer backoff (cf., Phil Karn's retransmit alg.).
2437 * Recompute the initial retransmit timer.
2438 */
2439 if (ts_rtt)
2440 tcp_xmit_timer(tp, ts_rtt);
2441 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2442 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2443
2444 /*
2445 * If all outstanding data is acked, stop retransmit
2446 * timer and remember to restart (more output or persist).
2447 * If there is more data to be acked, restart retransmit
2448 * timer, using current (possibly backed-off) value.
2449 */
2450 if (th->th_ack == tp->snd_max) {
2451 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2452 needoutput = 1;
2453 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2454 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2455
2456 /*
2457 * New data has been acked, adjust the congestion window.
2458 */
2459 tp->t_congctl->newack(tp, th);
2460
2461 nd6_hint(tp);
2462 if (acked > so->so_snd.sb_cc) {
2463 tp->snd_wnd -= so->so_snd.sb_cc;
2464 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2465 ourfinisacked = 1;
2466 } else {
2467 if (acked > (tp->t_lastoff - tp->t_inoff))
2468 tp->t_lastm = NULL;
2469 sbdrop(&so->so_snd, acked);
2470 tp->t_lastoff -= acked;
2471 tp->snd_wnd -= acked;
2472 ourfinisacked = 0;
2473 }
2474 sowwakeup(so);
2475
2476 icmp_check(tp, th, acked);
2477
2478 tp->snd_una = th->th_ack;
2479 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2480 tp->snd_fack = tp->snd_una;
2481 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2482 tp->snd_nxt = tp->snd_una;
2483 if (SEQ_LT(tp->snd_high, tp->snd_una))
2484 tp->snd_high = tp->snd_una;
2485
2486 switch (tp->t_state) {
2487
2488 /*
2489 * In FIN_WAIT_1 STATE in addition to the processing
2490 * for the ESTABLISHED state if our FIN is now acknowledged
2491 * then enter FIN_WAIT_2.
2492 */
2493 case TCPS_FIN_WAIT_1:
2494 if (ourfinisacked) {
2495 /*
2496 * If we can't receive any more
2497 * data, then closing user can proceed.
2498 * Starting the timer is contrary to the
2499 * specification, but if we don't get a FIN
2500 * we'll hang forever.
2501 */
2502 if (so->so_state & SS_CANTRCVMORE) {
2503 soisdisconnected(so);
2504 if (tp->t_maxidle > 0)
2505 TCP_TIMER_ARM(tp, TCPT_2MSL,
2506 tp->t_maxidle);
2507 }
2508 tp->t_state = TCPS_FIN_WAIT_2;
2509 }
2510 break;
2511
2512 /*
2513 * In CLOSING STATE in addition to the processing for
2514 * the ESTABLISHED state if the ACK acknowledges our FIN
2515 * then enter the TIME-WAIT state, otherwise ignore
2516 * the segment.
2517 */
2518 case TCPS_CLOSING:
2519 if (ourfinisacked) {
2520 tp->t_state = TCPS_TIME_WAIT;
2521 tcp_canceltimers(tp);
2522 TCP_TIMER_ARM(tp, TCPT_2MSL,
2523 2 * PR_SLOWHZ * tcp_msl);
2524 soisdisconnected(so);
2525 }
2526 break;
2527
2528 /*
2529 * In LAST_ACK, we may still be waiting for data to drain
2530 * and/or to be acked, as well as for the ack of our FIN.
2531 * If our FIN is now acknowledged, delete the TCB,
2532 * enter the closed state and return.
2533 */
2534 case TCPS_LAST_ACK:
2535 if (ourfinisacked) {
2536 tp = tcp_close(tp);
2537 goto drop;
2538 }
2539 break;
2540
2541 /*
2542 * In TIME_WAIT state the only thing that should arrive
2543 * is a retransmission of the remote FIN. Acknowledge
2544 * it and restart the finack timer.
2545 */
2546 case TCPS_TIME_WAIT:
2547 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2548 goto dropafterack;
2549 }
2550 }
2551
2552 step6:
2553 /*
2554 * Update window information.
2555 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2556 */
2557 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2558 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2559 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2560 /* keep track of pure window updates */
2561 if (tlen == 0 &&
2562 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2563 TCP_STATINC(TCP_STAT_RCVWINUPD);
2564 tp->snd_wnd = tiwin;
2565 tp->snd_wl1 = th->th_seq;
2566 tp->snd_wl2 = th->th_ack;
2567 if (tp->snd_wnd > tp->max_sndwnd)
2568 tp->max_sndwnd = tp->snd_wnd;
2569 needoutput = 1;
2570 }
2571
2572 /*
2573 * Process segments with URG.
2574 */
2575 if ((tiflags & TH_URG) && th->th_urp &&
2576 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2577 /*
2578 * This is a kludge, but if we receive and accept
2579 * random urgent pointers, we'll crash in
2580 * soreceive. It's hard to imagine someone
2581 * actually wanting to send this much urgent data.
2582 */
2583 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2584 th->th_urp = 0; /* XXX */
2585 tiflags &= ~TH_URG; /* XXX */
2586 goto dodata; /* XXX */
2587 }
2588 /*
2589 * If this segment advances the known urgent pointer,
2590 * then mark the data stream. This should not happen
2591 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2592 * a FIN has been received from the remote side.
2593 * In these states we ignore the URG.
2594 *
2595 * According to RFC961 (Assigned Protocols),
2596 * the urgent pointer points to the last octet
2597 * of urgent data. We continue, however,
2598 * to consider it to indicate the first octet
2599 * of data past the urgent section as the original
2600 * spec states (in one of two places).
2601 */
2602 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2603 tp->rcv_up = th->th_seq + th->th_urp;
2604 so->so_oobmark = so->so_rcv.sb_cc +
2605 (tp->rcv_up - tp->rcv_nxt) - 1;
2606 if (so->so_oobmark == 0)
2607 so->so_state |= SS_RCVATMARK;
2608 sohasoutofband(so);
2609 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2610 }
2611 /*
2612 * Remove out of band data so doesn't get presented to user.
2613 * This can happen independent of advancing the URG pointer,
2614 * but if two URG's are pending at once, some out-of-band
2615 * data may creep in... ick.
2616 */
2617 if (th->th_urp <= (u_int16_t) tlen
2618 #ifdef SO_OOBINLINE
2619 && (so->so_options & SO_OOBINLINE) == 0
2620 #endif
2621 )
2622 tcp_pulloutofband(so, th, m, hdroptlen);
2623 } else
2624 /*
2625 * If no out of band data is expected,
2626 * pull receive urgent pointer along
2627 * with the receive window.
2628 */
2629 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2630 tp->rcv_up = tp->rcv_nxt;
2631 dodata: /* XXX */
2632
2633 /*
2634 * Process the segment text, merging it into the TCP sequencing queue,
2635 * and arranging for acknowledgement of receipt if necessary.
2636 * This process logically involves adjusting tp->rcv_wnd as data
2637 * is presented to the user (this happens in tcp_usrreq.c,
2638 * case PRU_RCVD). If a FIN has already been received on this
2639 * connection then we just ignore the text.
2640 */
2641 if ((tlen || (tiflags & TH_FIN)) &&
2642 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2643 /*
2644 * Insert segment ti into reassembly queue of tcp with
2645 * control block tp. Return TH_FIN if reassembly now includes
2646 * a segment with FIN. The macro form does the common case
2647 * inline (segment is the next to be received on an
2648 * established connection, and the queue is empty),
2649 * avoiding linkage into and removal from the queue and
2650 * repetition of various conversions.
2651 * Set DELACK for segments received in order, but ack
2652 * immediately when segments are out of order
2653 * (so fast retransmit can work).
2654 */
2655 /* NOTE: this was TCP_REASS() macro, but used only once */
2656 TCP_REASS_LOCK(tp);
2657 if (th->th_seq == tp->rcv_nxt &&
2658 TAILQ_FIRST(&tp->segq) == NULL &&
2659 tp->t_state == TCPS_ESTABLISHED) {
2660 tcp_setup_ack(tp, th);
2661 tp->rcv_nxt += tlen;
2662 tiflags = th->th_flags & TH_FIN;
2663 tcps = TCP_STAT_GETREF();
2664 tcps[TCP_STAT_RCVPACK]++;
2665 tcps[TCP_STAT_RCVBYTE] += tlen;
2666 TCP_STAT_PUTREF();
2667 nd6_hint(tp);
2668 if (so->so_state & SS_CANTRCVMORE)
2669 m_freem(m);
2670 else {
2671 m_adj(m, hdroptlen);
2672 sbappendstream(&(so)->so_rcv, m);
2673 }
2674 TCP_REASS_UNLOCK(tp);
2675 sorwakeup(so);
2676 } else {
2677 m_adj(m, hdroptlen);
2678 tiflags = tcp_reass(tp, th, m, &tlen);
2679 tp->t_flags |= TF_ACKNOW;
2680 TCP_REASS_UNLOCK(tp);
2681 }
2682
2683 /*
2684 * Note the amount of data that peer has sent into
2685 * our window, in order to estimate the sender's
2686 * buffer size.
2687 */
2688 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2689 } else {
2690 m_freem(m);
2691 m = NULL;
2692 tiflags &= ~TH_FIN;
2693 }
2694
2695 /*
2696 * If FIN is received ACK the FIN and let the user know
2697 * that the connection is closing. Ignore a FIN received before
2698 * the connection is fully established.
2699 */
2700 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2701 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2702 socantrcvmore(so);
2703 tp->t_flags |= TF_ACKNOW;
2704 tp->rcv_nxt++;
2705 }
2706 switch (tp->t_state) {
2707
2708 /*
2709 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2710 */
2711 case TCPS_ESTABLISHED:
2712 tp->t_state = TCPS_CLOSE_WAIT;
2713 break;
2714
2715 /*
2716 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2717 * enter the CLOSING state.
2718 */
2719 case TCPS_FIN_WAIT_1:
2720 tp->t_state = TCPS_CLOSING;
2721 break;
2722
2723 /*
2724 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2725 * starting the time-wait timer, turning off the other
2726 * standard timers.
2727 */
2728 case TCPS_FIN_WAIT_2:
2729 tp->t_state = TCPS_TIME_WAIT;
2730 tcp_canceltimers(tp);
2731 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2732 soisdisconnected(so);
2733 break;
2734
2735 /*
2736 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2737 */
2738 case TCPS_TIME_WAIT:
2739 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * PR_SLOWHZ * tcp_msl);
2740 break;
2741 }
2742 }
2743 #ifdef TCP_DEBUG
2744 if (so->so_options & SO_DEBUG)
2745 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2746 #endif
2747
2748 /*
2749 * Return any desired output.
2750 */
2751 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2752 KERNEL_LOCK(1, NULL);
2753 (void) tcp_output(tp);
2754 KERNEL_UNLOCK_ONE(NULL);
2755 }
2756 if (tcp_saveti)
2757 m_freem(tcp_saveti);
2758 return;
2759
2760 badsyn:
2761 /*
2762 * Received a bad SYN. Increment counters and dropwithreset.
2763 */
2764 TCP_STATINC(TCP_STAT_BADSYN);
2765 tp = NULL;
2766 goto dropwithreset;
2767
2768 dropafterack:
2769 /*
2770 * Generate an ACK dropping incoming segment if it occupies
2771 * sequence space, where the ACK reflects our state.
2772 */
2773 if (tiflags & TH_RST)
2774 goto drop;
2775 goto dropafterack2;
2776
2777 dropafterack_ratelim:
2778 /*
2779 * We may want to rate-limit ACKs against SYN/RST attack.
2780 */
2781 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2782 tcp_ackdrop_ppslim) == 0) {
2783 /* XXX stat */
2784 goto drop;
2785 }
2786 /* ...fall into dropafterack2... */
2787
2788 dropafterack2:
2789 m_freem(m);
2790 tp->t_flags |= TF_ACKNOW;
2791 KERNEL_LOCK(1, NULL);
2792 (void) tcp_output(tp);
2793 KERNEL_UNLOCK_ONE(NULL);
2794 if (tcp_saveti)
2795 m_freem(tcp_saveti);
2796 return;
2797
2798 dropwithreset_ratelim:
2799 /*
2800 * We may want to rate-limit RSTs in certain situations,
2801 * particularly if we are sending an RST in response to
2802 * an attempt to connect to or otherwise communicate with
2803 * a port for which we have no socket.
2804 */
2805 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2806 tcp_rst_ppslim) == 0) {
2807 /* XXX stat */
2808 goto drop;
2809 }
2810 /* ...fall into dropwithreset... */
2811
2812 dropwithreset:
2813 /*
2814 * Generate a RST, dropping incoming segment.
2815 * Make ACK acceptable to originator of segment.
2816 */
2817 if (tiflags & TH_RST)
2818 goto drop;
2819
2820 switch (af) {
2821 #ifdef INET6
2822 case AF_INET6:
2823 /* For following calls to tcp_respond */
2824 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
2825 goto drop;
2826 break;
2827 #endif /* INET6 */
2828 case AF_INET:
2829 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
2830 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
2831 goto drop;
2832 }
2833
2834 if (tiflags & TH_ACK)
2835 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2836 else {
2837 if (tiflags & TH_SYN)
2838 tlen++;
2839 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2840 TH_RST|TH_ACK);
2841 }
2842 if (tcp_saveti)
2843 m_freem(tcp_saveti);
2844 return;
2845
2846 badcsum:
2847 drop:
2848 /*
2849 * Drop space held by incoming segment and return.
2850 */
2851 if (tp) {
2852 if (tp->t_inpcb)
2853 so = tp->t_inpcb->inp_socket;
2854 #ifdef INET6
2855 else if (tp->t_in6pcb)
2856 so = tp->t_in6pcb->in6p_socket;
2857 #endif
2858 else
2859 so = NULL;
2860 #ifdef TCP_DEBUG
2861 if (so && (so->so_options & SO_DEBUG) != 0)
2862 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2863 #endif
2864 }
2865 if (tcp_saveti)
2866 m_freem(tcp_saveti);
2867 m_freem(m);
2868 return;
2869 }
2870
2871 #ifdef TCP_SIGNATURE
2872 int
2873 tcp_signature_apply(void *fstate, void *data, u_int len)
2874 {
2875
2876 MD5Update(fstate, (u_char *)data, len);
2877 return (0);
2878 }
2879
2880 struct secasvar *
2881 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
2882 {
2883 struct secasvar *sav;
2884 #ifdef FAST_IPSEC
2885 union sockaddr_union dst;
2886 #endif
2887 struct ip *ip;
2888 struct ip6_hdr *ip6;
2889
2890 ip = mtod(m, struct ip *);
2891 switch (ip->ip_v) {
2892 case 4:
2893 ip = mtod(m, struct ip *);
2894 ip6 = NULL;
2895 break;
2896 case 6:
2897 ip = NULL;
2898 ip6 = mtod(m, struct ip6_hdr *);
2899 break;
2900 default:
2901 return (NULL);
2902 }
2903
2904 #ifdef FAST_IPSEC
2905 /* Extract the destination from the IP header in the mbuf. */
2906 memset(&dst, 0, sizeof(union sockaddr_union));
2907 if (ip !=NULL) {
2908 dst.sa.sa_len = sizeof(struct sockaddr_in);
2909 dst.sa.sa_family = AF_INET;
2910 dst.sin.sin_addr = ip->ip_dst;
2911 } else {
2912 dst.sa.sa_len = sizeof(struct sockaddr_in6);
2913 dst.sa.sa_family = AF_INET6;
2914 dst.sin6.sin6_addr = ip6->ip6_dst;
2915 }
2916
2917 /*
2918 * Look up an SADB entry which matches the address of the peer.
2919 */
2920 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
2921 #else
2922 if (ip)
2923 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
2924 (void *)&ip->ip_dst, IPPROTO_TCP,
2925 htonl(TCP_SIG_SPI), 0, 0);
2926 else
2927 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
2928 (void *)&ip6->ip6_dst, IPPROTO_TCP,
2929 htonl(TCP_SIG_SPI), 0, 0);
2930 #endif
2931
2932 return (sav); /* freesav must be performed by caller */
2933 }
2934
2935 int
2936 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
2937 struct secasvar *sav, char *sig)
2938 {
2939 MD5_CTX ctx;
2940 struct ip *ip;
2941 struct ipovly *ipovly;
2942 struct ip6_hdr *ip6;
2943 struct ippseudo ippseudo;
2944 struct ip6_hdr_pseudo ip6pseudo;
2945 struct tcphdr th0;
2946 int l, tcphdrlen;
2947
2948 if (sav == NULL)
2949 return (-1);
2950
2951 tcphdrlen = th->th_off * 4;
2952
2953 switch (mtod(m, struct ip *)->ip_v) {
2954 case 4:
2955 ip = mtod(m, struct ip *);
2956 ip6 = NULL;
2957 break;
2958 case 6:
2959 ip = NULL;
2960 ip6 = mtod(m, struct ip6_hdr *);
2961 break;
2962 default:
2963 return (-1);
2964 }
2965
2966 MD5Init(&ctx);
2967
2968 if (ip) {
2969 memset(&ippseudo, 0, sizeof(ippseudo));
2970 ipovly = (struct ipovly *)ip;
2971 ippseudo.ippseudo_src = ipovly->ih_src;
2972 ippseudo.ippseudo_dst = ipovly->ih_dst;
2973 ippseudo.ippseudo_pad = 0;
2974 ippseudo.ippseudo_p = IPPROTO_TCP;
2975 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
2976 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
2977 } else {
2978 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
2979 ip6pseudo.ip6ph_src = ip6->ip6_src;
2980 in6_clearscope(&ip6pseudo.ip6ph_src);
2981 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
2982 in6_clearscope(&ip6pseudo.ip6ph_dst);
2983 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
2984 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
2985 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
2986 }
2987
2988 th0 = *th;
2989 th0.th_sum = 0;
2990 MD5Update(&ctx, (char *)&th0, sizeof(th0));
2991
2992 l = m->m_pkthdr.len - thoff - tcphdrlen;
2993 if (l > 0)
2994 m_apply(m, thoff + tcphdrlen,
2995 m->m_pkthdr.len - thoff - tcphdrlen,
2996 tcp_signature_apply, &ctx);
2997
2998 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
2999 MD5Final(sig, &ctx);
3000
3001 return (0);
3002 }
3003 #endif
3004
3005 /*
3006 * tcp_dooptions: parse and process tcp options.
3007 *
3008 * returns -1 if this segment should be dropped. (eg. wrong signature)
3009 * otherwise returns 0.
3010 */
3011
3012 static int
3013 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3014 struct tcphdr *th,
3015 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3016 {
3017 u_int16_t mss;
3018 int opt, optlen = 0;
3019 #ifdef TCP_SIGNATURE
3020 void *sigp = NULL;
3021 char sigbuf[TCP_SIGLEN];
3022 struct secasvar *sav = NULL;
3023 #endif
3024
3025 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3026 opt = cp[0];
3027 if (opt == TCPOPT_EOL)
3028 break;
3029 if (opt == TCPOPT_NOP)
3030 optlen = 1;
3031 else {
3032 if (cnt < 2)
3033 break;
3034 optlen = cp[1];
3035 if (optlen < 2 || optlen > cnt)
3036 break;
3037 }
3038 switch (opt) {
3039
3040 default:
3041 continue;
3042
3043 case TCPOPT_MAXSEG:
3044 if (optlen != TCPOLEN_MAXSEG)
3045 continue;
3046 if (!(th->th_flags & TH_SYN))
3047 continue;
3048 if (TCPS_HAVERCVDSYN(tp->t_state))
3049 continue;
3050 bcopy(cp + 2, &mss, sizeof(mss));
3051 oi->maxseg = ntohs(mss);
3052 break;
3053
3054 case TCPOPT_WINDOW:
3055 if (optlen != TCPOLEN_WINDOW)
3056 continue;
3057 if (!(th->th_flags & TH_SYN))
3058 continue;
3059 if (TCPS_HAVERCVDSYN(tp->t_state))
3060 continue;
3061 tp->t_flags |= TF_RCVD_SCALE;
3062 tp->requested_s_scale = cp[2];
3063 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3064 #if 0 /*XXX*/
3065 char *p;
3066
3067 if (ip)
3068 p = ntohl(ip->ip_src);
3069 #ifdef INET6
3070 else if (ip6)
3071 p = ip6_sprintf(&ip6->ip6_src);
3072 #endif
3073 else
3074 p = "(unknown)";
3075 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3076 "assuming %d\n",
3077 tp->requested_s_scale, p,
3078 TCP_MAX_WINSHIFT);
3079 #else
3080 log(LOG_ERR, "TCP: invalid wscale %d, "
3081 "assuming %d\n",
3082 tp->requested_s_scale,
3083 TCP_MAX_WINSHIFT);
3084 #endif
3085 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3086 }
3087 break;
3088
3089 case TCPOPT_TIMESTAMP:
3090 if (optlen != TCPOLEN_TIMESTAMP)
3091 continue;
3092 oi->ts_present = 1;
3093 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3094 NTOHL(oi->ts_val);
3095 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3096 NTOHL(oi->ts_ecr);
3097
3098 if (!(th->th_flags & TH_SYN))
3099 continue;
3100 if (TCPS_HAVERCVDSYN(tp->t_state))
3101 continue;
3102 /*
3103 * A timestamp received in a SYN makes
3104 * it ok to send timestamp requests and replies.
3105 */
3106 tp->t_flags |= TF_RCVD_TSTMP;
3107 tp->ts_recent = oi->ts_val;
3108 tp->ts_recent_age = tcp_now;
3109 break;
3110
3111 case TCPOPT_SACK_PERMITTED:
3112 if (optlen != TCPOLEN_SACK_PERMITTED)
3113 continue;
3114 if (!(th->th_flags & TH_SYN))
3115 continue;
3116 if (TCPS_HAVERCVDSYN(tp->t_state))
3117 continue;
3118 if (tcp_do_sack) {
3119 tp->t_flags |= TF_SACK_PERMIT;
3120 tp->t_flags |= TF_WILL_SACK;
3121 }
3122 break;
3123
3124 case TCPOPT_SACK:
3125 tcp_sack_option(tp, th, cp, optlen);
3126 break;
3127 #ifdef TCP_SIGNATURE
3128 case TCPOPT_SIGNATURE:
3129 if (optlen != TCPOLEN_SIGNATURE)
3130 continue;
3131 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3132 return (-1);
3133
3134 sigp = sigbuf;
3135 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3136 tp->t_flags |= TF_SIGNATURE;
3137 break;
3138 #endif
3139 }
3140 }
3141
3142 #ifdef TCP_SIGNATURE
3143 if (tp->t_flags & TF_SIGNATURE) {
3144
3145 sav = tcp_signature_getsav(m, th);
3146
3147 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3148 return (-1);
3149 }
3150
3151 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3152 if (sav == NULL)
3153 return (-1);
3154 #ifdef FAST_IPSEC
3155 KEY_FREESAV(&sav);
3156 #else
3157 key_freesav(sav);
3158 #endif
3159 return (-1);
3160 }
3161
3162 if (sigp) {
3163 char sig[TCP_SIGLEN];
3164
3165 tcp_fields_to_net(th);
3166 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3167 tcp_fields_to_host(th);
3168 if (sav == NULL)
3169 return (-1);
3170 #ifdef FAST_IPSEC
3171 KEY_FREESAV(&sav);
3172 #else
3173 key_freesav(sav);
3174 #endif
3175 return (-1);
3176 }
3177 tcp_fields_to_host(th);
3178
3179 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3180 TCP_STATINC(TCP_STAT_BADSIG);
3181 if (sav == NULL)
3182 return (-1);
3183 #ifdef FAST_IPSEC
3184 KEY_FREESAV(&sav);
3185 #else
3186 key_freesav(sav);
3187 #endif
3188 return (-1);
3189 } else
3190 TCP_STATINC(TCP_STAT_GOODSIG);
3191
3192 key_sa_recordxfer(sav, m);
3193 #ifdef FAST_IPSEC
3194 KEY_FREESAV(&sav);
3195 #else
3196 key_freesav(sav);
3197 #endif
3198 }
3199 #endif
3200
3201 return (0);
3202 }
3203
3204 /*
3205 * Pull out of band byte out of a segment so
3206 * it doesn't appear in the user's data queue.
3207 * It is still reflected in the segment length for
3208 * sequencing purposes.
3209 */
3210 void
3211 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3212 struct mbuf *m, int off)
3213 {
3214 int cnt = off + th->th_urp - 1;
3215
3216 while (cnt >= 0) {
3217 if (m->m_len > cnt) {
3218 char *cp = mtod(m, char *) + cnt;
3219 struct tcpcb *tp = sototcpcb(so);
3220
3221 tp->t_iobc = *cp;
3222 tp->t_oobflags |= TCPOOB_HAVEDATA;
3223 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3224 m->m_len--;
3225 return;
3226 }
3227 cnt -= m->m_len;
3228 m = m->m_next;
3229 if (m == 0)
3230 break;
3231 }
3232 panic("tcp_pulloutofband");
3233 }
3234
3235 /*
3236 * Collect new round-trip time estimate
3237 * and update averages and current timeout.
3238 *
3239 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3240 * difference of two timestamps.
3241 */
3242 void
3243 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3244 {
3245 int32_t delta;
3246
3247 TCP_STATINC(TCP_STAT_RTTUPDATED);
3248 if (tp->t_srtt != 0) {
3249 /*
3250 * Compute the amount to add to srtt for smoothing,
3251 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3252 * srtt is stored in 1/32 slow ticks, we conceptually
3253 * shift left 5 bits, subtract srtt to get the
3254 * diference, and then shift right by TCP_RTT_SHIFT
3255 * (3) to obtain 1/8 of the difference.
3256 */
3257 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3258 /*
3259 * This can never happen, because delta's lowest
3260 * possible value is 1/8 of t_srtt. But if it does,
3261 * set srtt to some reasonable value, here chosen
3262 * as 1/8 tick.
3263 */
3264 if ((tp->t_srtt += delta) <= 0)
3265 tp->t_srtt = 1 << 2;
3266 /*
3267 * RFC2988 requires that rttvar be updated first.
3268 * This code is compliant because "delta" is the old
3269 * srtt minus the new observation (scaled).
3270 *
3271 * RFC2988 says:
3272 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3273 *
3274 * delta is in units of 1/32 ticks, and has then been
3275 * divided by 8. This is equivalent to being in 1/16s
3276 * units and divided by 4. Subtract from it 1/4 of
3277 * the existing rttvar to form the (signed) amount to
3278 * adjust.
3279 */
3280 if (delta < 0)
3281 delta = -delta;
3282 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3283 /*
3284 * As with srtt, this should never happen. There is
3285 * no support in RFC2988 for this operation. But 1/4s
3286 * as rttvar when faced with something arguably wrong
3287 * is ok.
3288 */
3289 if ((tp->t_rttvar += delta) <= 0)
3290 tp->t_rttvar = 1 << 2;
3291 } else {
3292 /*
3293 * This is the first measurement. Per RFC2988, 2.2,
3294 * set rtt=R and srtt=R/2.
3295 * For srtt, storage representation is 1/32 ticks,
3296 * so shift left by 5.
3297 * For rttvar, storage representation is 1/16 ticks,
3298 * So shift left by 4, but then right by 1 to halve.
3299 */
3300 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3301 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3302 }
3303 tp->t_rtttime = 0;
3304 tp->t_rxtshift = 0;
3305
3306 /*
3307 * the retransmit should happen at rtt + 4 * rttvar.
3308 * Because of the way we do the smoothing, srtt and rttvar
3309 * will each average +1/2 tick of bias. When we compute
3310 * the retransmit timer, we want 1/2 tick of rounding and
3311 * 1 extra tick because of +-1/2 tick uncertainty in the
3312 * firing of the timer. The bias will give us exactly the
3313 * 1.5 tick we need. But, because the bias is
3314 * statistical, we have to test that we don't drop below
3315 * the minimum feasible timer (which is 2 ticks).
3316 */
3317 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3318 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3319
3320 /*
3321 * We received an ack for a packet that wasn't retransmitted;
3322 * it is probably safe to discard any error indications we've
3323 * received recently. This isn't quite right, but close enough
3324 * for now (a route might have failed after we sent a segment,
3325 * and the return path might not be symmetrical).
3326 */
3327 tp->t_softerror = 0;
3328 }
3329
3330
3331 /*
3332 * TCP compressed state engine. Currently used to hold compressed
3333 * state for SYN_RECEIVED.
3334 */
3335
3336 u_long syn_cache_count;
3337 u_int32_t syn_hash1, syn_hash2;
3338
3339 #define SYN_HASH(sa, sp, dp) \
3340 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3341 ((u_int32_t)(sp)))^syn_hash2)))
3342 #ifndef INET6
3343 #define SYN_HASHALL(hash, src, dst) \
3344 do { \
3345 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3346 ((const struct sockaddr_in *)(src))->sin_port, \
3347 ((const struct sockaddr_in *)(dst))->sin_port); \
3348 } while (/*CONSTCOND*/ 0)
3349 #else
3350 #define SYN_HASH6(sa, sp, dp) \
3351 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3352 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3353 & 0x7fffffff)
3354
3355 #define SYN_HASHALL(hash, src, dst) \
3356 do { \
3357 switch ((src)->sa_family) { \
3358 case AF_INET: \
3359 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3360 ((const struct sockaddr_in *)(src))->sin_port, \
3361 ((const struct sockaddr_in *)(dst))->sin_port); \
3362 break; \
3363 case AF_INET6: \
3364 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3365 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3366 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3367 break; \
3368 default: \
3369 hash = 0; \
3370 } \
3371 } while (/*CONSTCOND*/0)
3372 #endif /* INET6 */
3373
3374 static struct pool syn_cache_pool;
3375
3376 /*
3377 * We don't estimate RTT with SYNs, so each packet starts with the default
3378 * RTT and each timer step has a fixed timeout value.
3379 */
3380 #define SYN_CACHE_TIMER_ARM(sc) \
3381 do { \
3382 TCPT_RANGESET((sc)->sc_rxtcur, \
3383 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3384 TCPTV_REXMTMAX); \
3385 callout_reset(&(sc)->sc_timer, \
3386 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3387 } while (/*CONSTCOND*/0)
3388
3389 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3390
3391 static inline void
3392 syn_cache_rm(struct syn_cache *sc)
3393 {
3394 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3395 sc, sc_bucketq);
3396 sc->sc_tp = NULL;
3397 LIST_REMOVE(sc, sc_tpq);
3398 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3399 callout_stop(&sc->sc_timer);
3400 syn_cache_count--;
3401 }
3402
3403 static inline void
3404 syn_cache_put(struct syn_cache *sc)
3405 {
3406 if (sc->sc_ipopts)
3407 (void) m_free(sc->sc_ipopts);
3408 rtcache_free(&sc->sc_route);
3409 sc->sc_flags |= SCF_DEAD;
3410 if (!callout_invoking(&sc->sc_timer))
3411 callout_schedule(&(sc)->sc_timer, 1);
3412 }
3413
3414 void
3415 syn_cache_init(void)
3416 {
3417 int i;
3418
3419 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3420 "synpl", NULL, IPL_SOFTNET);
3421
3422 /* Initialize the hash buckets. */
3423 for (i = 0; i < tcp_syn_cache_size; i++)
3424 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3425 }
3426
3427 void
3428 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3429 {
3430 struct syn_cache_head *scp;
3431 struct syn_cache *sc2;
3432 int s;
3433
3434 /*
3435 * If there are no entries in the hash table, reinitialize
3436 * the hash secrets.
3437 */
3438 if (syn_cache_count == 0) {
3439 syn_hash1 = arc4random();
3440 syn_hash2 = arc4random();
3441 }
3442
3443 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3444 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3445 scp = &tcp_syn_cache[sc->sc_bucketidx];
3446
3447 /*
3448 * Make sure that we don't overflow the per-bucket
3449 * limit or the total cache size limit.
3450 */
3451 s = splsoftnet();
3452 if (scp->sch_length >= tcp_syn_bucket_limit) {
3453 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3454 /*
3455 * The bucket is full. Toss the oldest element in the
3456 * bucket. This will be the first entry in the bucket.
3457 */
3458 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3459 #ifdef DIAGNOSTIC
3460 /*
3461 * This should never happen; we should always find an
3462 * entry in our bucket.
3463 */
3464 if (sc2 == NULL)
3465 panic("syn_cache_insert: bucketoverflow: impossible");
3466 #endif
3467 syn_cache_rm(sc2);
3468 syn_cache_put(sc2); /* calls pool_put but see spl above */
3469 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3470 struct syn_cache_head *scp2, *sce;
3471
3472 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3473 /*
3474 * The cache is full. Toss the oldest entry in the
3475 * first non-empty bucket we can find.
3476 *
3477 * XXX We would really like to toss the oldest
3478 * entry in the cache, but we hope that this
3479 * condition doesn't happen very often.
3480 */
3481 scp2 = scp;
3482 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3483 sce = &tcp_syn_cache[tcp_syn_cache_size];
3484 for (++scp2; scp2 != scp; scp2++) {
3485 if (scp2 >= sce)
3486 scp2 = &tcp_syn_cache[0];
3487 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3488 break;
3489 }
3490 #ifdef DIAGNOSTIC
3491 /*
3492 * This should never happen; we should always find a
3493 * non-empty bucket.
3494 */
3495 if (scp2 == scp)
3496 panic("syn_cache_insert: cacheoverflow: "
3497 "impossible");
3498 #endif
3499 }
3500 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3501 syn_cache_rm(sc2);
3502 syn_cache_put(sc2); /* calls pool_put but see spl above */
3503 }
3504
3505 /*
3506 * Initialize the entry's timer.
3507 */
3508 sc->sc_rxttot = 0;
3509 sc->sc_rxtshift = 0;
3510 SYN_CACHE_TIMER_ARM(sc);
3511
3512 /* Link it from tcpcb entry */
3513 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3514
3515 /* Put it into the bucket. */
3516 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3517 scp->sch_length++;
3518 syn_cache_count++;
3519
3520 TCP_STATINC(TCP_STAT_SC_ADDED);
3521 splx(s);
3522 }
3523
3524 /*
3525 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3526 * If we have retransmitted an entry the maximum number of times, expire
3527 * that entry.
3528 */
3529 void
3530 syn_cache_timer(void *arg)
3531 {
3532 struct syn_cache *sc = arg;
3533
3534 mutex_enter(softnet_lock);
3535 KERNEL_LOCK(1, NULL);
3536 callout_ack(&sc->sc_timer);
3537
3538 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3539 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3540 callout_destroy(&sc->sc_timer);
3541 pool_put(&syn_cache_pool, sc);
3542 KERNEL_UNLOCK_ONE(NULL);
3543 mutex_exit(softnet_lock);
3544 return;
3545 }
3546
3547 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3548 /* Drop it -- too many retransmissions. */
3549 goto dropit;
3550 }
3551
3552 /*
3553 * Compute the total amount of time this entry has
3554 * been on a queue. If this entry has been on longer
3555 * than the keep alive timer would allow, expire it.
3556 */
3557 sc->sc_rxttot += sc->sc_rxtcur;
3558 if (sc->sc_rxttot >= tcp_keepinit)
3559 goto dropit;
3560
3561 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3562 (void) syn_cache_respond(sc, NULL);
3563
3564 /* Advance the timer back-off. */
3565 sc->sc_rxtshift++;
3566 SYN_CACHE_TIMER_ARM(sc);
3567
3568 KERNEL_UNLOCK_ONE(NULL);
3569 mutex_exit(softnet_lock);
3570 return;
3571
3572 dropit:
3573 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3574 syn_cache_rm(sc);
3575 if (sc->sc_ipopts)
3576 (void) m_free(sc->sc_ipopts);
3577 rtcache_free(&sc->sc_route);
3578 callout_destroy(&sc->sc_timer);
3579 pool_put(&syn_cache_pool, sc);
3580 KERNEL_UNLOCK_ONE(NULL);
3581 mutex_exit(softnet_lock);
3582 }
3583
3584 /*
3585 * Remove syn cache created by the specified tcb entry,
3586 * because this does not make sense to keep them
3587 * (if there's no tcb entry, syn cache entry will never be used)
3588 */
3589 void
3590 syn_cache_cleanup(struct tcpcb *tp)
3591 {
3592 struct syn_cache *sc, *nsc;
3593 int s;
3594
3595 s = splsoftnet();
3596
3597 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3598 nsc = LIST_NEXT(sc, sc_tpq);
3599
3600 #ifdef DIAGNOSTIC
3601 if (sc->sc_tp != tp)
3602 panic("invalid sc_tp in syn_cache_cleanup");
3603 #endif
3604 syn_cache_rm(sc);
3605 syn_cache_put(sc); /* calls pool_put but see spl above */
3606 }
3607 /* just for safety */
3608 LIST_INIT(&tp->t_sc);
3609
3610 splx(s);
3611 }
3612
3613 /*
3614 * Find an entry in the syn cache.
3615 */
3616 struct syn_cache *
3617 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3618 struct syn_cache_head **headp)
3619 {
3620 struct syn_cache *sc;
3621 struct syn_cache_head *scp;
3622 u_int32_t hash;
3623 int s;
3624
3625 SYN_HASHALL(hash, src, dst);
3626
3627 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3628 *headp = scp;
3629 s = splsoftnet();
3630 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3631 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3632 if (sc->sc_hash != hash)
3633 continue;
3634 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3635 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3636 splx(s);
3637 return (sc);
3638 }
3639 }
3640 splx(s);
3641 return (NULL);
3642 }
3643
3644 /*
3645 * This function gets called when we receive an ACK for a
3646 * socket in the LISTEN state. We look up the connection
3647 * in the syn cache, and if its there, we pull it out of
3648 * the cache and turn it into a full-blown connection in
3649 * the SYN-RECEIVED state.
3650 *
3651 * The return values may not be immediately obvious, and their effects
3652 * can be subtle, so here they are:
3653 *
3654 * NULL SYN was not found in cache; caller should drop the
3655 * packet and send an RST.
3656 *
3657 * -1 We were unable to create the new connection, and are
3658 * aborting it. An ACK,RST is being sent to the peer
3659 * (unless we got screwey sequence numbners; see below),
3660 * because the 3-way handshake has been completed. Caller
3661 * should not free the mbuf, since we may be using it. If
3662 * we are not, we will free it.
3663 *
3664 * Otherwise, the return value is a pointer to the new socket
3665 * associated with the connection.
3666 */
3667 struct socket *
3668 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3669 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3670 struct socket *so, struct mbuf *m)
3671 {
3672 struct syn_cache *sc;
3673 struct syn_cache_head *scp;
3674 struct inpcb *inp = NULL;
3675 #ifdef INET6
3676 struct in6pcb *in6p = NULL;
3677 #endif
3678 struct tcpcb *tp = 0;
3679 struct mbuf *am;
3680 int s;
3681 struct socket *oso;
3682
3683 s = splsoftnet();
3684 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3685 splx(s);
3686 return (NULL);
3687 }
3688
3689 /*
3690 * Verify the sequence and ack numbers. Try getting the correct
3691 * response again.
3692 */
3693 if ((th->th_ack != sc->sc_iss + 1) ||
3694 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3695 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3696 (void) syn_cache_respond(sc, m);
3697 splx(s);
3698 return ((struct socket *)(-1));
3699 }
3700
3701 /* Remove this cache entry */
3702 syn_cache_rm(sc);
3703 splx(s);
3704
3705 /*
3706 * Ok, create the full blown connection, and set things up
3707 * as they would have been set up if we had created the
3708 * connection when the SYN arrived. If we can't create
3709 * the connection, abort it.
3710 */
3711 /*
3712 * inp still has the OLD in_pcb stuff, set the
3713 * v6-related flags on the new guy, too. This is
3714 * done particularly for the case where an AF_INET6
3715 * socket is bound only to a port, and a v4 connection
3716 * comes in on that port.
3717 * we also copy the flowinfo from the original pcb
3718 * to the new one.
3719 */
3720 oso = so;
3721 so = sonewconn(so, SS_ISCONNECTED);
3722 if (so == NULL)
3723 goto resetandabort;
3724
3725 switch (so->so_proto->pr_domain->dom_family) {
3726 #ifdef INET
3727 case AF_INET:
3728 inp = sotoinpcb(so);
3729 break;
3730 #endif
3731 #ifdef INET6
3732 case AF_INET6:
3733 in6p = sotoin6pcb(so);
3734 break;
3735 #endif
3736 }
3737 switch (src->sa_family) {
3738 #ifdef INET
3739 case AF_INET:
3740 if (inp) {
3741 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3742 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3743 inp->inp_options = ip_srcroute();
3744 in_pcbstate(inp, INP_BOUND);
3745 if (inp->inp_options == NULL) {
3746 inp->inp_options = sc->sc_ipopts;
3747 sc->sc_ipopts = NULL;
3748 }
3749 }
3750 #ifdef INET6
3751 else if (in6p) {
3752 /* IPv4 packet to AF_INET6 socket */
3753 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3754 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3755 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3756 &in6p->in6p_laddr.s6_addr32[3],
3757 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3758 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3759 in6totcpcb(in6p)->t_family = AF_INET;
3760 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3761 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3762 else
3763 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3764 in6_pcbstate(in6p, IN6P_BOUND);
3765 }
3766 #endif
3767 break;
3768 #endif
3769 #ifdef INET6
3770 case AF_INET6:
3771 if (in6p) {
3772 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3773 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3774 in6_pcbstate(in6p, IN6P_BOUND);
3775 }
3776 break;
3777 #endif
3778 }
3779 #ifdef INET6
3780 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3781 struct in6pcb *oin6p = sotoin6pcb(oso);
3782 /* inherit socket options from the listening socket */
3783 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3784 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3785 m_freem(in6p->in6p_options);
3786 in6p->in6p_options = 0;
3787 }
3788 ip6_savecontrol(in6p, &in6p->in6p_options,
3789 mtod(m, struct ip6_hdr *), m);
3790 }
3791 #endif
3792
3793 #if defined(IPSEC) || defined(FAST_IPSEC)
3794 /*
3795 * we make a copy of policy, instead of sharing the policy,
3796 * for better behavior in terms of SA lookup and dead SA removal.
3797 */
3798 if (inp) {
3799 /* copy old policy into new socket's */
3800 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
3801 printf("tcp_input: could not copy policy\n");
3802 }
3803 #ifdef INET6
3804 else if (in6p) {
3805 /* copy old policy into new socket's */
3806 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3807 in6p->in6p_sp))
3808 printf("tcp_input: could not copy policy\n");
3809 }
3810 #endif
3811 #endif
3812
3813 /*
3814 * Give the new socket our cached route reference.
3815 */
3816 if (inp) {
3817 rtcache_copy(&inp->inp_route, &sc->sc_route);
3818 rtcache_free(&sc->sc_route);
3819 }
3820 #ifdef INET6
3821 else {
3822 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3823 rtcache_free(&sc->sc_route);
3824 }
3825 #endif
3826
3827 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
3828 if (am == NULL)
3829 goto resetandabort;
3830 MCLAIM(am, &tcp_mowner);
3831 am->m_len = src->sa_len;
3832 bcopy(src, mtod(am, void *), src->sa_len);
3833 if (inp) {
3834 if (in_pcbconnect(inp, am, &lwp0)) {
3835 (void) m_free(am);
3836 goto resetandabort;
3837 }
3838 }
3839 #ifdef INET6
3840 else if (in6p) {
3841 if (src->sa_family == AF_INET) {
3842 /* IPv4 packet to AF_INET6 socket */
3843 struct sockaddr_in6 *sin6;
3844 sin6 = mtod(am, struct sockaddr_in6 *);
3845 am->m_len = sizeof(*sin6);
3846 memset(sin6, 0, sizeof(*sin6));
3847 sin6->sin6_family = AF_INET6;
3848 sin6->sin6_len = sizeof(*sin6);
3849 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
3850 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
3851 bcopy(&((struct sockaddr_in *)src)->sin_addr,
3852 &sin6->sin6_addr.s6_addr32[3],
3853 sizeof(sin6->sin6_addr.s6_addr32[3]));
3854 }
3855 if (in6_pcbconnect(in6p, am, NULL)) {
3856 (void) m_free(am);
3857 goto resetandabort;
3858 }
3859 }
3860 #endif
3861 else {
3862 (void) m_free(am);
3863 goto resetandabort;
3864 }
3865 (void) m_free(am);
3866
3867 if (inp)
3868 tp = intotcpcb(inp);
3869 #ifdef INET6
3870 else if (in6p)
3871 tp = in6totcpcb(in6p);
3872 #endif
3873 else
3874 tp = NULL;
3875 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3876 if (sc->sc_request_r_scale != 15) {
3877 tp->requested_s_scale = sc->sc_requested_s_scale;
3878 tp->request_r_scale = sc->sc_request_r_scale;
3879 tp->snd_scale = sc->sc_requested_s_scale;
3880 tp->rcv_scale = sc->sc_request_r_scale;
3881 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3882 }
3883 if (sc->sc_flags & SCF_TIMESTAMP)
3884 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3885 tp->ts_timebase = sc->sc_timebase;
3886
3887 tp->t_template = tcp_template(tp);
3888 if (tp->t_template == 0) {
3889 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3890 so = NULL;
3891 m_freem(m);
3892 goto abort;
3893 }
3894
3895 tp->iss = sc->sc_iss;
3896 tp->irs = sc->sc_irs;
3897 tcp_sendseqinit(tp);
3898 tcp_rcvseqinit(tp);
3899 tp->t_state = TCPS_SYN_RECEIVED;
3900 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3901 TCP_STATINC(TCP_STAT_ACCEPTS);
3902
3903 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3904 tp->t_flags |= TF_WILL_SACK;
3905
3906 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3907 tp->t_flags |= TF_ECN_PERMIT;
3908
3909 #ifdef TCP_SIGNATURE
3910 if (sc->sc_flags & SCF_SIGNATURE)
3911 tp->t_flags |= TF_SIGNATURE;
3912 #endif
3913
3914 /* Initialize tp->t_ourmss before we deal with the peer's! */
3915 tp->t_ourmss = sc->sc_ourmaxseg;
3916 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3917
3918 /*
3919 * Initialize the initial congestion window. If we
3920 * had to retransmit the SYN,ACK, we must initialize cwnd
3921 * to 1 segment (i.e. the Loss Window).
3922 */
3923 if (sc->sc_rxtshift)
3924 tp->snd_cwnd = tp->t_peermss;
3925 else {
3926 int ss = tcp_init_win;
3927 #ifdef INET
3928 if (inp != NULL && in_localaddr(inp->inp_faddr))
3929 ss = tcp_init_win_local;
3930 #endif
3931 #ifdef INET6
3932 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3933 ss = tcp_init_win_local;
3934 #endif
3935 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3936 }
3937
3938 tcp_rmx_rtt(tp);
3939 tp->snd_wl1 = sc->sc_irs;
3940 tp->rcv_up = sc->sc_irs + 1;
3941
3942 /*
3943 * This is what whould have happened in tcp_output() when
3944 * the SYN,ACK was sent.
3945 */
3946 tp->snd_up = tp->snd_una;
3947 tp->snd_max = tp->snd_nxt = tp->iss+1;
3948 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
3949 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
3950 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
3951 tp->last_ack_sent = tp->rcv_nxt;
3952 tp->t_partialacks = -1;
3953 tp->t_dupacks = 0;
3954
3955 TCP_STATINC(TCP_STAT_SC_COMPLETED);
3956 s = splsoftnet();
3957 syn_cache_put(sc);
3958 splx(s);
3959 return (so);
3960
3961 resetandabort:
3962 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3963 abort:
3964 if (so != NULL) {
3965 (void) soqremque(so, 1);
3966 (void) soabort(so);
3967 mutex_enter(softnet_lock);
3968 }
3969 s = splsoftnet();
3970 syn_cache_put(sc);
3971 splx(s);
3972 TCP_STATINC(TCP_STAT_SC_ABORTED);
3973 return ((struct socket *)(-1));
3974 }
3975
3976 /*
3977 * This function is called when we get a RST for a
3978 * non-existent connection, so that we can see if the
3979 * connection is in the syn cache. If it is, zap it.
3980 */
3981
3982 void
3983 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
3984 {
3985 struct syn_cache *sc;
3986 struct syn_cache_head *scp;
3987 int s = splsoftnet();
3988
3989 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3990 splx(s);
3991 return;
3992 }
3993 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
3994 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
3995 splx(s);
3996 return;
3997 }
3998 syn_cache_rm(sc);
3999 TCP_STATINC(TCP_STAT_SC_RESET);
4000 syn_cache_put(sc); /* calls pool_put but see spl above */
4001 splx(s);
4002 }
4003
4004 void
4005 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4006 struct tcphdr *th)
4007 {
4008 struct syn_cache *sc;
4009 struct syn_cache_head *scp;
4010 int s;
4011
4012 s = splsoftnet();
4013 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4014 splx(s);
4015 return;
4016 }
4017 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4018 if (ntohl (th->th_seq) != sc->sc_iss) {
4019 splx(s);
4020 return;
4021 }
4022
4023 /*
4024 * If we've retransmitted 3 times and this is our second error,
4025 * we remove the entry. Otherwise, we allow it to continue on.
4026 * This prevents us from incorrectly nuking an entry during a
4027 * spurious network outage.
4028 *
4029 * See tcp_notify().
4030 */
4031 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4032 sc->sc_flags |= SCF_UNREACH;
4033 splx(s);
4034 return;
4035 }
4036
4037 syn_cache_rm(sc);
4038 TCP_STATINC(TCP_STAT_SC_UNREACH);
4039 syn_cache_put(sc); /* calls pool_put but see spl above */
4040 splx(s);
4041 }
4042
4043 /*
4044 * Given a LISTEN socket and an inbound SYN request, add
4045 * this to the syn cache, and send back a segment:
4046 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4047 * to the source.
4048 *
4049 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4050 * Doing so would require that we hold onto the data and deliver it
4051 * to the application. However, if we are the target of a SYN-flood
4052 * DoS attack, an attacker could send data which would eventually
4053 * consume all available buffer space if it were ACKed. By not ACKing
4054 * the data, we avoid this DoS scenario.
4055 */
4056
4057 int
4058 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4059 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4060 int optlen, struct tcp_opt_info *oi)
4061 {
4062 struct tcpcb tb, *tp;
4063 long win;
4064 struct syn_cache *sc;
4065 struct syn_cache_head *scp;
4066 struct mbuf *ipopts;
4067 struct tcp_opt_info opti;
4068 int s;
4069
4070 tp = sototcpcb(so);
4071
4072 memset(&opti, 0, sizeof(opti));
4073
4074 /*
4075 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4076 *
4077 * Note this check is performed in tcp_input() very early on.
4078 */
4079
4080 /*
4081 * Initialize some local state.
4082 */
4083 win = sbspace(&so->so_rcv);
4084 if (win > TCP_MAXWIN)
4085 win = TCP_MAXWIN;
4086
4087 switch (src->sa_family) {
4088 #ifdef INET
4089 case AF_INET:
4090 /*
4091 * Remember the IP options, if any.
4092 */
4093 ipopts = ip_srcroute();
4094 break;
4095 #endif
4096 default:
4097 ipopts = NULL;
4098 }
4099
4100 #ifdef TCP_SIGNATURE
4101 if (optp || (tp->t_flags & TF_SIGNATURE))
4102 #else
4103 if (optp)
4104 #endif
4105 {
4106 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4107 #ifdef TCP_SIGNATURE
4108 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4109 #endif
4110 tb.t_state = TCPS_LISTEN;
4111 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4112 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4113 return (0);
4114 } else
4115 tb.t_flags = 0;
4116
4117 /*
4118 * See if we already have an entry for this connection.
4119 * If we do, resend the SYN,ACK. We do not count this
4120 * as a retransmission (XXX though maybe we should).
4121 */
4122 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4123 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4124 if (ipopts) {
4125 /*
4126 * If we were remembering a previous source route,
4127 * forget it and use the new one we've been given.
4128 */
4129 if (sc->sc_ipopts)
4130 (void) m_free(sc->sc_ipopts);
4131 sc->sc_ipopts = ipopts;
4132 }
4133 sc->sc_timestamp = tb.ts_recent;
4134 if (syn_cache_respond(sc, m) == 0) {
4135 uint64_t *tcps = TCP_STAT_GETREF();
4136 tcps[TCP_STAT_SNDACKS]++;
4137 tcps[TCP_STAT_SNDTOTAL]++;
4138 TCP_STAT_PUTREF();
4139 }
4140 return (1);
4141 }
4142
4143 s = splsoftnet();
4144 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4145 splx(s);
4146 if (sc == NULL) {
4147 if (ipopts)
4148 (void) m_free(ipopts);
4149 return (0);
4150 }
4151
4152 /*
4153 * Fill in the cache, and put the necessary IP and TCP
4154 * options into the reply.
4155 */
4156 memset(sc, 0, sizeof(struct syn_cache));
4157 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4158 bcopy(src, &sc->sc_src, src->sa_len);
4159 bcopy(dst, &sc->sc_dst, dst->sa_len);
4160 sc->sc_flags = 0;
4161 sc->sc_ipopts = ipopts;
4162 sc->sc_irs = th->th_seq;
4163 switch (src->sa_family) {
4164 #ifdef INET
4165 case AF_INET:
4166 {
4167 struct sockaddr_in *srcin = (void *) src;
4168 struct sockaddr_in *dstin = (void *) dst;
4169
4170 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4171 &srcin->sin_addr, dstin->sin_port,
4172 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4173 break;
4174 }
4175 #endif /* INET */
4176 #ifdef INET6
4177 case AF_INET6:
4178 {
4179 struct sockaddr_in6 *srcin6 = (void *) src;
4180 struct sockaddr_in6 *dstin6 = (void *) dst;
4181
4182 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4183 &srcin6->sin6_addr, dstin6->sin6_port,
4184 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4185 break;
4186 }
4187 #endif /* INET6 */
4188 }
4189 sc->sc_peermaxseg = oi->maxseg;
4190 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4191 m->m_pkthdr.rcvif : NULL,
4192 sc->sc_src.sa.sa_family);
4193 sc->sc_win = win;
4194 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4195 sc->sc_timestamp = tb.ts_recent;
4196 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4197 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4198 sc->sc_flags |= SCF_TIMESTAMP;
4199 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4200 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4201 sc->sc_requested_s_scale = tb.requested_s_scale;
4202 sc->sc_request_r_scale = 0;
4203 /*
4204 * Pick the smallest possible scaling factor that
4205 * will still allow us to scale up to sb_max.
4206 *
4207 * We do this because there are broken firewalls that
4208 * will corrupt the window scale option, leading to
4209 * the other endpoint believing that our advertised
4210 * window is unscaled. At scale factors larger than
4211 * 5 the unscaled window will drop below 1500 bytes,
4212 * leading to serious problems when traversing these
4213 * broken firewalls.
4214 *
4215 * With the default sbmax of 256K, a scale factor
4216 * of 3 will be chosen by this algorithm. Those who
4217 * choose a larger sbmax should watch out
4218 * for the compatiblity problems mentioned above.
4219 *
4220 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4221 * or <SYN,ACK>) segment itself is never scaled.
4222 */
4223 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4224 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4225 sc->sc_request_r_scale++;
4226 } else {
4227 sc->sc_requested_s_scale = 15;
4228 sc->sc_request_r_scale = 15;
4229 }
4230 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4231 sc->sc_flags |= SCF_SACK_PERMIT;
4232
4233 /*
4234 * ECN setup packet recieved.
4235 */
4236 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4237 sc->sc_flags |= SCF_ECN_PERMIT;
4238
4239 #ifdef TCP_SIGNATURE
4240 if (tb.t_flags & TF_SIGNATURE)
4241 sc->sc_flags |= SCF_SIGNATURE;
4242 #endif
4243 sc->sc_tp = tp;
4244 if (syn_cache_respond(sc, m) == 0) {
4245 uint64_t *tcps = TCP_STAT_GETREF();
4246 tcps[TCP_STAT_SNDACKS]++;
4247 tcps[TCP_STAT_SNDTOTAL]++;
4248 TCP_STAT_PUTREF();
4249 syn_cache_insert(sc, tp);
4250 } else {
4251 s = splsoftnet();
4252 /*
4253 * syn_cache_put() will try to schedule the timer, so
4254 * we need to initialize it
4255 */
4256 SYN_CACHE_TIMER_ARM(sc);
4257 syn_cache_put(sc);
4258 splx(s);
4259 TCP_STATINC(TCP_STAT_SC_DROPPED);
4260 }
4261 return (1);
4262 }
4263
4264 int
4265 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4266 {
4267 #ifdef INET6
4268 struct rtentry *rt;
4269 #endif
4270 struct route *ro;
4271 u_int8_t *optp;
4272 int optlen, error;
4273 u_int16_t tlen;
4274 struct ip *ip = NULL;
4275 #ifdef INET6
4276 struct ip6_hdr *ip6 = NULL;
4277 #endif
4278 struct tcpcb *tp = NULL;
4279 struct tcphdr *th;
4280 u_int hlen;
4281 struct socket *so;
4282
4283 ro = &sc->sc_route;
4284 switch (sc->sc_src.sa.sa_family) {
4285 case AF_INET:
4286 hlen = sizeof(struct ip);
4287 break;
4288 #ifdef INET6
4289 case AF_INET6:
4290 hlen = sizeof(struct ip6_hdr);
4291 break;
4292 #endif
4293 default:
4294 if (m)
4295 m_freem(m);
4296 return (EAFNOSUPPORT);
4297 }
4298
4299 /* Compute the size of the TCP options. */
4300 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4301 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4302 #ifdef TCP_SIGNATURE
4303 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4304 #endif
4305 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4306
4307 tlen = hlen + sizeof(struct tcphdr) + optlen;
4308
4309 /*
4310 * Create the IP+TCP header from scratch.
4311 */
4312 if (m)
4313 m_freem(m);
4314 #ifdef DIAGNOSTIC
4315 if (max_linkhdr + tlen > MCLBYTES)
4316 return (ENOBUFS);
4317 #endif
4318 MGETHDR(m, M_DONTWAIT, MT_DATA);
4319 if (m && (max_linkhdr + tlen) > MHLEN) {
4320 MCLGET(m, M_DONTWAIT);
4321 if ((m->m_flags & M_EXT) == 0) {
4322 m_freem(m);
4323 m = NULL;
4324 }
4325 }
4326 if (m == NULL)
4327 return (ENOBUFS);
4328 MCLAIM(m, &tcp_tx_mowner);
4329
4330 /* Fixup the mbuf. */
4331 m->m_data += max_linkhdr;
4332 m->m_len = m->m_pkthdr.len = tlen;
4333 if (sc->sc_tp) {
4334 tp = sc->sc_tp;
4335 if (tp->t_inpcb)
4336 so = tp->t_inpcb->inp_socket;
4337 #ifdef INET6
4338 else if (tp->t_in6pcb)
4339 so = tp->t_in6pcb->in6p_socket;
4340 #endif
4341 else
4342 so = NULL;
4343 } else
4344 so = NULL;
4345 m->m_pkthdr.rcvif = NULL;
4346 memset(mtod(m, u_char *), 0, tlen);
4347
4348 switch (sc->sc_src.sa.sa_family) {
4349 case AF_INET:
4350 ip = mtod(m, struct ip *);
4351 ip->ip_v = 4;
4352 ip->ip_dst = sc->sc_src.sin.sin_addr;
4353 ip->ip_src = sc->sc_dst.sin.sin_addr;
4354 ip->ip_p = IPPROTO_TCP;
4355 th = (struct tcphdr *)(ip + 1);
4356 th->th_dport = sc->sc_src.sin.sin_port;
4357 th->th_sport = sc->sc_dst.sin.sin_port;
4358 break;
4359 #ifdef INET6
4360 case AF_INET6:
4361 ip6 = mtod(m, struct ip6_hdr *);
4362 ip6->ip6_vfc = IPV6_VERSION;
4363 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4364 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4365 ip6->ip6_nxt = IPPROTO_TCP;
4366 /* ip6_plen will be updated in ip6_output() */
4367 th = (struct tcphdr *)(ip6 + 1);
4368 th->th_dport = sc->sc_src.sin6.sin6_port;
4369 th->th_sport = sc->sc_dst.sin6.sin6_port;
4370 break;
4371 #endif
4372 default:
4373 th = NULL;
4374 }
4375
4376 th->th_seq = htonl(sc->sc_iss);
4377 th->th_ack = htonl(sc->sc_irs + 1);
4378 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4379 th->th_flags = TH_SYN|TH_ACK;
4380 th->th_win = htons(sc->sc_win);
4381 /* th_sum already 0 */
4382 /* th_urp already 0 */
4383
4384 /* Tack on the TCP options. */
4385 optp = (u_int8_t *)(th + 1);
4386 *optp++ = TCPOPT_MAXSEG;
4387 *optp++ = 4;
4388 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4389 *optp++ = sc->sc_ourmaxseg & 0xff;
4390
4391 if (sc->sc_request_r_scale != 15) {
4392 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4393 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4394 sc->sc_request_r_scale);
4395 optp += 4;
4396 }
4397
4398 if (sc->sc_flags & SCF_TIMESTAMP) {
4399 u_int32_t *lp = (u_int32_t *)(optp);
4400 /* Form timestamp option as shown in appendix A of RFC 1323. */
4401 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4402 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4403 *lp = htonl(sc->sc_timestamp);
4404 optp += TCPOLEN_TSTAMP_APPA;
4405 }
4406
4407 if (sc->sc_flags & SCF_SACK_PERMIT) {
4408 u_int8_t *p = optp;
4409
4410 /* Let the peer know that we will SACK. */
4411 p[0] = TCPOPT_SACK_PERMITTED;
4412 p[1] = 2;
4413 p[2] = TCPOPT_NOP;
4414 p[3] = TCPOPT_NOP;
4415 optp += 4;
4416 }
4417
4418 /*
4419 * Send ECN SYN-ACK setup packet.
4420 * Routes can be asymetric, so, even if we receive a packet
4421 * with ECE and CWR set, we must not assume no one will block
4422 * the ECE packet we are about to send.
4423 */
4424 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4425 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4426 th->th_flags |= TH_ECE;
4427 TCP_STATINC(TCP_STAT_ECN_SHS);
4428
4429 /*
4430 * draft-ietf-tcpm-ecnsyn-00.txt
4431 *
4432 * "[...] a TCP node MAY respond to an ECN-setup
4433 * SYN packet by setting ECT in the responding
4434 * ECN-setup SYN/ACK packet, indicating to routers
4435 * that the SYN/ACK packet is ECN-Capable.
4436 * This allows a congested router along the path
4437 * to mark the packet instead of dropping the
4438 * packet as an indication of congestion."
4439 *
4440 * "[...] There can be a great benefit in setting
4441 * an ECN-capable codepoint in SYN/ACK packets [...]
4442 * Congestion is most likely to occur in
4443 * the server-to-client direction. As a result,
4444 * setting an ECN-capable codepoint in SYN/ACK
4445 * packets can reduce the occurence of three-second
4446 * retransmit timeouts resulting from the drop
4447 * of SYN/ACK packets."
4448 *
4449 * Page 4 and 6, January 2006.
4450 */
4451
4452 switch (sc->sc_src.sa.sa_family) {
4453 #ifdef INET
4454 case AF_INET:
4455 ip->ip_tos |= IPTOS_ECN_ECT0;
4456 break;
4457 #endif
4458 #ifdef INET6
4459 case AF_INET6:
4460 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4461 break;
4462 #endif
4463 }
4464 TCP_STATINC(TCP_STAT_ECN_ECT);
4465 }
4466
4467 #ifdef TCP_SIGNATURE
4468 if (sc->sc_flags & SCF_SIGNATURE) {
4469 struct secasvar *sav;
4470 u_int8_t *sigp;
4471
4472 sav = tcp_signature_getsav(m, th);
4473
4474 if (sav == NULL) {
4475 if (m)
4476 m_freem(m);
4477 return (EPERM);
4478 }
4479
4480 *optp++ = TCPOPT_SIGNATURE;
4481 *optp++ = TCPOLEN_SIGNATURE;
4482 sigp = optp;
4483 memset(optp, 0, TCP_SIGLEN);
4484 optp += TCP_SIGLEN;
4485 *optp++ = TCPOPT_NOP;
4486 *optp++ = TCPOPT_EOL;
4487
4488 (void)tcp_signature(m, th, hlen, sav, sigp);
4489
4490 key_sa_recordxfer(sav, m);
4491 #ifdef FAST_IPSEC
4492 KEY_FREESAV(&sav);
4493 #else
4494 key_freesav(sav);
4495 #endif
4496 }
4497 #endif
4498
4499 /* Compute the packet's checksum. */
4500 switch (sc->sc_src.sa.sa_family) {
4501 case AF_INET:
4502 ip->ip_len = htons(tlen - hlen);
4503 th->th_sum = 0;
4504 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4505 break;
4506 #ifdef INET6
4507 case AF_INET6:
4508 ip6->ip6_plen = htons(tlen - hlen);
4509 th->th_sum = 0;
4510 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4511 break;
4512 #endif
4513 }
4514
4515 /*
4516 * Fill in some straggling IP bits. Note the stack expects
4517 * ip_len to be in host order, for convenience.
4518 */
4519 switch (sc->sc_src.sa.sa_family) {
4520 #ifdef INET
4521 case AF_INET:
4522 ip->ip_len = htons(tlen);
4523 ip->ip_ttl = ip_defttl;
4524 /* XXX tos? */
4525 break;
4526 #endif
4527 #ifdef INET6
4528 case AF_INET6:
4529 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4530 ip6->ip6_vfc |= IPV6_VERSION;
4531 ip6->ip6_plen = htons(tlen - hlen);
4532 /* ip6_hlim will be initialized afterwards */
4533 /* XXX flowlabel? */
4534 break;
4535 #endif
4536 }
4537
4538 /* XXX use IPsec policy on listening socket, on SYN ACK */
4539 tp = sc->sc_tp;
4540
4541 switch (sc->sc_src.sa.sa_family) {
4542 #ifdef INET
4543 case AF_INET:
4544 error = ip_output(m, sc->sc_ipopts, ro,
4545 (ip_mtudisc ? IP_MTUDISC : 0),
4546 (struct ip_moptions *)NULL, so);
4547 break;
4548 #endif
4549 #ifdef INET6
4550 case AF_INET6:
4551 ip6->ip6_hlim = in6_selecthlim(NULL,
4552 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4553 : NULL);
4554
4555 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4556 break;
4557 #endif
4558 default:
4559 error = EAFNOSUPPORT;
4560 break;
4561 }
4562 return (error);
4563 }
4564