tcp_input.c revision 1.312 1 /* $NetBSD: tcp_input.c,v 1.312 2011/05/03 18:28:45 dyoung Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.312 2011/05/03 18:28:45 dyoung Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173 #include <sys/lwp.h> /* for lwp0 */
174
175 #include <net/if.h>
176 #include <net/route.h>
177 #include <net/if_types.h>
178
179 #include <netinet/in.h>
180 #include <netinet/in_systm.h>
181 #include <netinet/ip.h>
182 #include <netinet/in_pcb.h>
183 #include <netinet/in_var.h>
184 #include <netinet/ip_var.h>
185 #include <netinet/in_offload.h>
186
187 #ifdef INET6
188 #ifndef INET
189 #include <netinet/in.h>
190 #endif
191 #include <netinet/ip6.h>
192 #include <netinet6/ip6_var.h>
193 #include <netinet6/in6_pcb.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_var.h>
196 #include <netinet/icmp6.h>
197 #include <netinet6/nd6.h>
198 #ifdef TCP_SIGNATURE
199 #include <netinet6/scope6_var.h>
200 #endif
201 #endif
202
203 #ifndef INET6
204 /* always need ip6.h for IP6_EXTHDR_GET */
205 #include <netinet/ip6.h>
206 #endif
207
208 #include <netinet/tcp.h>
209 #include <netinet/tcp_fsm.h>
210 #include <netinet/tcp_seq.h>
211 #include <netinet/tcp_timer.h>
212 #include <netinet/tcp_var.h>
213 #include <netinet/tcp_private.h>
214 #include <netinet/tcpip.h>
215 #include <netinet/tcp_congctl.h>
216 #include <netinet/tcp_debug.h>
217
218 #include <machine/stdarg.h>
219
220 #ifdef IPSEC
221 #include <netinet6/ipsec.h>
222 #include <netinet6/ipsec_private.h>
223 #include <netkey/key.h>
224 #endif /*IPSEC*/
225 #ifdef INET6
226 #include "faith.h"
227 #if defined(NFAITH) && NFAITH > 0
228 #include <net/if_faith.h>
229 #endif
230 #endif /* IPSEC */
231
232 #ifdef FAST_IPSEC
233 #include <netipsec/ipsec.h>
234 #include <netipsec/ipsec_var.h>
235 #include <netipsec/ipsec_private.h>
236 #include <netipsec/key.h>
237 #ifdef INET6
238 #include <netipsec/ipsec6.h>
239 #endif
240 #endif /* FAST_IPSEC*/
241
242 #include <netinet/tcp_vtw.h>
243
244 int tcprexmtthresh = 3;
245 int tcp_log_refused;
246
247 int tcp_do_autorcvbuf = 1;
248 int tcp_autorcvbuf_inc = 16 * 1024;
249 int tcp_autorcvbuf_max = 256 * 1024;
250 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
251
252 static int tcp_rst_ppslim_count = 0;
253 static struct timeval tcp_rst_ppslim_last;
254 static int tcp_ackdrop_ppslim_count = 0;
255 static struct timeval tcp_ackdrop_ppslim_last;
256
257 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
258
259 /* for modulo comparisons of timestamps */
260 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
261 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
262
263 /*
264 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
265 */
266 #ifdef INET6
267 static inline void
268 nd6_hint(struct tcpcb *tp)
269 {
270 struct rtentry *rt;
271
272 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
273 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
274 nd6_nud_hint(rt, NULL, 0);
275 }
276 #else
277 static inline void
278 nd6_hint(struct tcpcb *tp)
279 {
280 }
281 #endif
282
283 /*
284 * Compute ACK transmission behavior. Delay the ACK unless
285 * we have already delayed an ACK (must send an ACK every two segments).
286 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
287 * option is enabled.
288 */
289 static void
290 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
291 {
292
293 if (tp->t_flags & TF_DELACK ||
294 (tcp_ack_on_push && th->th_flags & TH_PUSH))
295 tp->t_flags |= TF_ACKNOW;
296 else
297 TCP_SET_DELACK(tp);
298 }
299
300 static void
301 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
302 {
303
304 /*
305 * If we had a pending ICMP message that refers to data that have
306 * just been acknowledged, disregard the recorded ICMP message.
307 */
308 if ((tp->t_flags & TF_PMTUD_PEND) &&
309 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
310 tp->t_flags &= ~TF_PMTUD_PEND;
311
312 /*
313 * Keep track of the largest chunk of data
314 * acknowledged since last PMTU update
315 */
316 if (tp->t_pmtud_mss_acked < acked)
317 tp->t_pmtud_mss_acked = acked;
318 }
319
320 /*
321 * Convert TCP protocol fields to host order for easier processing.
322 */
323 static void
324 tcp_fields_to_host(struct tcphdr *th)
325 {
326
327 NTOHL(th->th_seq);
328 NTOHL(th->th_ack);
329 NTOHS(th->th_win);
330 NTOHS(th->th_urp);
331 }
332
333 /*
334 * ... and reverse the above.
335 */
336 static void
337 tcp_fields_to_net(struct tcphdr *th)
338 {
339
340 HTONL(th->th_seq);
341 HTONL(th->th_ack);
342 HTONS(th->th_win);
343 HTONS(th->th_urp);
344 }
345
346 #ifdef TCP_CSUM_COUNTERS
347 #include <sys/device.h>
348
349 #if defined(INET)
350 extern struct evcnt tcp_hwcsum_ok;
351 extern struct evcnt tcp_hwcsum_bad;
352 extern struct evcnt tcp_hwcsum_data;
353 extern struct evcnt tcp_swcsum;
354 #endif /* defined(INET) */
355 #if defined(INET6)
356 extern struct evcnt tcp6_hwcsum_ok;
357 extern struct evcnt tcp6_hwcsum_bad;
358 extern struct evcnt tcp6_hwcsum_data;
359 extern struct evcnt tcp6_swcsum;
360 #endif /* defined(INET6) */
361
362 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
363
364 #else
365
366 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
367
368 #endif /* TCP_CSUM_COUNTERS */
369
370 #ifdef TCP_REASS_COUNTERS
371 #include <sys/device.h>
372
373 extern struct evcnt tcp_reass_;
374 extern struct evcnt tcp_reass_empty;
375 extern struct evcnt tcp_reass_iteration[8];
376 extern struct evcnt tcp_reass_prependfirst;
377 extern struct evcnt tcp_reass_prepend;
378 extern struct evcnt tcp_reass_insert;
379 extern struct evcnt tcp_reass_inserttail;
380 extern struct evcnt tcp_reass_append;
381 extern struct evcnt tcp_reass_appendtail;
382 extern struct evcnt tcp_reass_overlaptail;
383 extern struct evcnt tcp_reass_overlapfront;
384 extern struct evcnt tcp_reass_segdup;
385 extern struct evcnt tcp_reass_fragdup;
386
387 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
388
389 #else
390
391 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
392
393 #endif /* TCP_REASS_COUNTERS */
394
395 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
396 int *);
397 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
398 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
399
400 #ifdef INET
401 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
402 #endif
403 #ifdef INET6
404 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
405 #endif
406
407 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
408
409 #if defined(MBUFTRACE)
410 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
411 #endif /* defined(MBUFTRACE) */
412
413 static struct pool tcpipqent_pool;
414
415 void
416 tcpipqent_init(void)
417 {
418
419 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
420 NULL, IPL_VM);
421 }
422
423 struct ipqent *
424 tcpipqent_alloc(void)
425 {
426 struct ipqent *ipqe;
427 int s;
428
429 s = splvm();
430 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
431 splx(s);
432
433 return ipqe;
434 }
435
436 void
437 tcpipqent_free(struct ipqent *ipqe)
438 {
439 int s;
440
441 s = splvm();
442 pool_put(&tcpipqent_pool, ipqe);
443 splx(s);
444 }
445
446 static int
447 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
448 {
449 struct ipqent *p, *q, *nq, *tiqe = NULL;
450 struct socket *so = NULL;
451 int pkt_flags;
452 tcp_seq pkt_seq;
453 unsigned pkt_len;
454 u_long rcvpartdupbyte = 0;
455 u_long rcvoobyte;
456 #ifdef TCP_REASS_COUNTERS
457 u_int count = 0;
458 #endif
459 uint64_t *tcps;
460
461 if (tp->t_inpcb)
462 so = tp->t_inpcb->inp_socket;
463 #ifdef INET6
464 else if (tp->t_in6pcb)
465 so = tp->t_in6pcb->in6p_socket;
466 #endif
467
468 TCP_REASS_LOCK_CHECK(tp);
469
470 /*
471 * Call with th==0 after become established to
472 * force pre-ESTABLISHED data up to user socket.
473 */
474 if (th == 0)
475 goto present;
476
477 m_claimm(m, &tcp_reass_mowner);
478
479 rcvoobyte = *tlen;
480 /*
481 * Copy these to local variables because the tcpiphdr
482 * gets munged while we are collapsing mbufs.
483 */
484 pkt_seq = th->th_seq;
485 pkt_len = *tlen;
486 pkt_flags = th->th_flags;
487
488 TCP_REASS_COUNTER_INCR(&tcp_reass_);
489
490 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
491 /*
492 * When we miss a packet, the vast majority of time we get
493 * packets that follow it in order. So optimize for that.
494 */
495 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
496 p->ipqe_len += pkt_len;
497 p->ipqe_flags |= pkt_flags;
498 m_cat(p->ipre_mlast, m);
499 TRAVERSE(p->ipre_mlast);
500 m = NULL;
501 tiqe = p;
502 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
503 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
504 goto skip_replacement;
505 }
506 /*
507 * While we're here, if the pkt is completely beyond
508 * anything we have, just insert it at the tail.
509 */
510 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
511 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
512 goto insert_it;
513 }
514 }
515
516 q = TAILQ_FIRST(&tp->segq);
517
518 if (q != NULL) {
519 /*
520 * If this segment immediately precedes the first out-of-order
521 * block, simply slap the segment in front of it and (mostly)
522 * skip the complicated logic.
523 */
524 if (pkt_seq + pkt_len == q->ipqe_seq) {
525 q->ipqe_seq = pkt_seq;
526 q->ipqe_len += pkt_len;
527 q->ipqe_flags |= pkt_flags;
528 m_cat(m, q->ipqe_m);
529 q->ipqe_m = m;
530 q->ipre_mlast = m; /* last mbuf may have changed */
531 TRAVERSE(q->ipre_mlast);
532 tiqe = q;
533 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
534 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
535 goto skip_replacement;
536 }
537 } else {
538 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
539 }
540
541 /*
542 * Find a segment which begins after this one does.
543 */
544 for (p = NULL; q != NULL; q = nq) {
545 nq = TAILQ_NEXT(q, ipqe_q);
546 #ifdef TCP_REASS_COUNTERS
547 count++;
548 #endif
549 /*
550 * If the received segment is just right after this
551 * fragment, merge the two together and then check
552 * for further overlaps.
553 */
554 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
555 #ifdef TCPREASS_DEBUG
556 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
557 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
558 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
559 #endif
560 pkt_len += q->ipqe_len;
561 pkt_flags |= q->ipqe_flags;
562 pkt_seq = q->ipqe_seq;
563 m_cat(q->ipre_mlast, m);
564 TRAVERSE(q->ipre_mlast);
565 m = q->ipqe_m;
566 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
567 goto free_ipqe;
568 }
569 /*
570 * If the received segment is completely past this
571 * fragment, we need to go the next fragment.
572 */
573 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
574 p = q;
575 continue;
576 }
577 /*
578 * If the fragment is past the received segment,
579 * it (or any following) can't be concatenated.
580 */
581 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
582 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
583 break;
584 }
585
586 /*
587 * We've received all the data in this segment before.
588 * mark it as a duplicate and return.
589 */
590 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
591 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
592 tcps = TCP_STAT_GETREF();
593 tcps[TCP_STAT_RCVDUPPACK]++;
594 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
595 TCP_STAT_PUTREF();
596 tcp_new_dsack(tp, pkt_seq, pkt_len);
597 m_freem(m);
598 if (tiqe != NULL) {
599 tcpipqent_free(tiqe);
600 }
601 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
602 goto out;
603 }
604 /*
605 * Received segment completely overlaps this fragment
606 * so we drop the fragment (this keeps the temporal
607 * ordering of segments correct).
608 */
609 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
610 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
611 rcvpartdupbyte += q->ipqe_len;
612 m_freem(q->ipqe_m);
613 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
614 goto free_ipqe;
615 }
616 /*
617 * RX'ed segment extends past the end of the
618 * fragment. Drop the overlapping bytes. Then
619 * merge the fragment and segment then treat as
620 * a longer received packet.
621 */
622 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
623 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
624 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
625 #ifdef TCPREASS_DEBUG
626 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
627 tp, overlap,
628 pkt_seq, pkt_seq + pkt_len, pkt_len);
629 #endif
630 m_adj(m, overlap);
631 rcvpartdupbyte += overlap;
632 m_cat(q->ipre_mlast, m);
633 TRAVERSE(q->ipre_mlast);
634 m = q->ipqe_m;
635 pkt_seq = q->ipqe_seq;
636 pkt_len += q->ipqe_len - overlap;
637 rcvoobyte -= overlap;
638 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
639 goto free_ipqe;
640 }
641 /*
642 * RX'ed segment extends past the front of the
643 * fragment. Drop the overlapping bytes on the
644 * received packet. The packet will then be
645 * contatentated with this fragment a bit later.
646 */
647 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
648 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
649 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
650 #ifdef TCPREASS_DEBUG
651 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
652 tp, overlap,
653 pkt_seq, pkt_seq + pkt_len, pkt_len);
654 #endif
655 m_adj(m, -overlap);
656 pkt_len -= overlap;
657 rcvpartdupbyte += overlap;
658 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
659 rcvoobyte -= overlap;
660 }
661 /*
662 * If the received segment immediates precedes this
663 * fragment then tack the fragment onto this segment
664 * and reinsert the data.
665 */
666 if (q->ipqe_seq == pkt_seq + pkt_len) {
667 #ifdef TCPREASS_DEBUG
668 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
669 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
670 pkt_seq, pkt_seq + pkt_len, pkt_len);
671 #endif
672 pkt_len += q->ipqe_len;
673 pkt_flags |= q->ipqe_flags;
674 m_cat(m, q->ipqe_m);
675 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
676 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
677 tp->t_segqlen--;
678 KASSERT(tp->t_segqlen >= 0);
679 KASSERT(tp->t_segqlen != 0 ||
680 (TAILQ_EMPTY(&tp->segq) &&
681 TAILQ_EMPTY(&tp->timeq)));
682 if (tiqe == NULL) {
683 tiqe = q;
684 } else {
685 tcpipqent_free(q);
686 }
687 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
688 break;
689 }
690 /*
691 * If the fragment is before the segment, remember it.
692 * When this loop is terminated, p will contain the
693 * pointer to fragment that is right before the received
694 * segment.
695 */
696 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
697 p = q;
698
699 continue;
700
701 /*
702 * This is a common operation. It also will allow
703 * to save doing a malloc/free in most instances.
704 */
705 free_ipqe:
706 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
707 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
708 tp->t_segqlen--;
709 KASSERT(tp->t_segqlen >= 0);
710 KASSERT(tp->t_segqlen != 0 ||
711 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
712 if (tiqe == NULL) {
713 tiqe = q;
714 } else {
715 tcpipqent_free(q);
716 }
717 }
718
719 #ifdef TCP_REASS_COUNTERS
720 if (count > 7)
721 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
722 else if (count > 0)
723 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
724 #endif
725
726 insert_it:
727
728 /*
729 * Allocate a new queue entry since the received segment did not
730 * collapse onto any other out-of-order block; thus we are allocating
731 * a new block. If it had collapsed, tiqe would not be NULL and
732 * we would be reusing it.
733 * XXX If we can't, just drop the packet. XXX
734 */
735 if (tiqe == NULL) {
736 tiqe = tcpipqent_alloc();
737 if (tiqe == NULL) {
738 TCP_STATINC(TCP_STAT_RCVMEMDROP);
739 m_freem(m);
740 goto out;
741 }
742 }
743
744 /*
745 * Update the counters.
746 */
747 tcps = TCP_STAT_GETREF();
748 tcps[TCP_STAT_RCVOOPACK]++;
749 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
750 if (rcvpartdupbyte) {
751 tcps[TCP_STAT_RCVPARTDUPPACK]++;
752 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
753 }
754 TCP_STAT_PUTREF();
755
756 /*
757 * Insert the new fragment queue entry into both queues.
758 */
759 tiqe->ipqe_m = m;
760 tiqe->ipre_mlast = m;
761 tiqe->ipqe_seq = pkt_seq;
762 tiqe->ipqe_len = pkt_len;
763 tiqe->ipqe_flags = pkt_flags;
764 if (p == NULL) {
765 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
766 #ifdef TCPREASS_DEBUG
767 if (tiqe->ipqe_seq != tp->rcv_nxt)
768 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
769 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
770 #endif
771 } else {
772 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
773 #ifdef TCPREASS_DEBUG
774 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
775 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
776 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
777 #endif
778 }
779 tp->t_segqlen++;
780
781 skip_replacement:
782
783 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
784
785 present:
786 /*
787 * Present data to user, advancing rcv_nxt through
788 * completed sequence space.
789 */
790 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
791 goto out;
792 q = TAILQ_FIRST(&tp->segq);
793 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
794 goto out;
795 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
796 goto out;
797
798 tp->rcv_nxt += q->ipqe_len;
799 pkt_flags = q->ipqe_flags & TH_FIN;
800 nd6_hint(tp);
801
802 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
803 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
804 tp->t_segqlen--;
805 KASSERT(tp->t_segqlen >= 0);
806 KASSERT(tp->t_segqlen != 0 ||
807 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
808 if (so->so_state & SS_CANTRCVMORE)
809 m_freem(q->ipqe_m);
810 else
811 sbappendstream(&so->so_rcv, q->ipqe_m);
812 tcpipqent_free(q);
813 TCP_REASS_UNLOCK(tp);
814 sorwakeup(so);
815 return (pkt_flags);
816 out:
817 TCP_REASS_UNLOCK(tp);
818 return (0);
819 }
820
821 #ifdef INET6
822 int
823 tcp6_input(struct mbuf **mp, int *offp, int proto)
824 {
825 struct mbuf *m = *mp;
826
827 /*
828 * draft-itojun-ipv6-tcp-to-anycast
829 * better place to put this in?
830 */
831 if (m->m_flags & M_ANYCAST6) {
832 struct ip6_hdr *ip6;
833 if (m->m_len < sizeof(struct ip6_hdr)) {
834 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
835 TCP_STATINC(TCP_STAT_RCVSHORT);
836 return IPPROTO_DONE;
837 }
838 }
839 ip6 = mtod(m, struct ip6_hdr *);
840 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
841 (char *)&ip6->ip6_dst - (char *)ip6);
842 return IPPROTO_DONE;
843 }
844
845 tcp_input(m, *offp, proto);
846 return IPPROTO_DONE;
847 }
848 #endif
849
850 #ifdef INET
851 static void
852 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
853 {
854 char src[4*sizeof "123"];
855 char dst[4*sizeof "123"];
856
857 if (ip) {
858 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
859 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
860 }
861 else {
862 strlcpy(src, "(unknown)", sizeof(src));
863 strlcpy(dst, "(unknown)", sizeof(dst));
864 }
865 log(LOG_INFO,
866 "Connection attempt to TCP %s:%d from %s:%d\n",
867 dst, ntohs(th->th_dport),
868 src, ntohs(th->th_sport));
869 }
870 #endif
871
872 #ifdef INET6
873 static void
874 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
875 {
876 char src[INET6_ADDRSTRLEN];
877 char dst[INET6_ADDRSTRLEN];
878
879 if (ip6) {
880 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
881 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
882 }
883 else {
884 strlcpy(src, "(unknown v6)", sizeof(src));
885 strlcpy(dst, "(unknown v6)", sizeof(dst));
886 }
887 log(LOG_INFO,
888 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
889 dst, ntohs(th->th_dport),
890 src, ntohs(th->th_sport));
891 }
892 #endif
893
894 /*
895 * Checksum extended TCP header and data.
896 */
897 int
898 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
899 int toff, int off, int tlen)
900 {
901
902 /*
903 * XXX it's better to record and check if this mbuf is
904 * already checked.
905 */
906
907 switch (af) {
908 #ifdef INET
909 case AF_INET:
910 switch (m->m_pkthdr.csum_flags &
911 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
912 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
913 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
914 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
915 goto badcsum;
916
917 case M_CSUM_TCPv4|M_CSUM_DATA: {
918 u_int32_t hw_csum = m->m_pkthdr.csum_data;
919
920 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
921 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
922 const struct ip *ip =
923 mtod(m, const struct ip *);
924
925 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
926 ip->ip_dst.s_addr,
927 htons(hw_csum + tlen + off + IPPROTO_TCP));
928 }
929 if ((hw_csum ^ 0xffff) != 0)
930 goto badcsum;
931 break;
932 }
933
934 case M_CSUM_TCPv4:
935 /* Checksum was okay. */
936 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
937 break;
938
939 default:
940 /*
941 * Must compute it ourselves. Maybe skip checksum
942 * on loopback interfaces.
943 */
944 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
945 IFF_LOOPBACK) ||
946 tcp_do_loopback_cksum)) {
947 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
948 if (in4_cksum(m, IPPROTO_TCP, toff,
949 tlen + off) != 0)
950 goto badcsum;
951 }
952 break;
953 }
954 break;
955 #endif /* INET4 */
956
957 #ifdef INET6
958 case AF_INET6:
959 switch (m->m_pkthdr.csum_flags &
960 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
961 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
962 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
963 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
964 goto badcsum;
965
966 #if 0 /* notyet */
967 case M_CSUM_TCPv6|M_CSUM_DATA:
968 #endif
969
970 case M_CSUM_TCPv6:
971 /* Checksum was okay. */
972 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
973 break;
974
975 default:
976 /*
977 * Must compute it ourselves. Maybe skip checksum
978 * on loopback interfaces.
979 */
980 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
981 tcp_do_loopback_cksum)) {
982 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
983 if (in6_cksum(m, IPPROTO_TCP, toff,
984 tlen + off) != 0)
985 goto badcsum;
986 }
987 }
988 break;
989 #endif /* INET6 */
990 }
991
992 return 0;
993
994 badcsum:
995 TCP_STATINC(TCP_STAT_RCVBADSUM);
996 return -1;
997 }
998
999 /* When a packet arrives addressed to a vestigial tcpbp, we
1000 * nevertheless have to respond to it per the spec.
1001 */
1002 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1003 struct mbuf *m, int tlen, int multicast)
1004 {
1005 int tiflags;
1006 int todrop, dupseg;
1007 uint32_t t_flags = 0;
1008 uint64_t *tcps;
1009
1010 tiflags = th->th_flags;
1011 todrop = vp->rcv_nxt - th->th_seq;
1012 dupseg = false;
1013
1014 if (todrop > 0) {
1015 if (tiflags & TH_SYN) {
1016 tiflags &= ~TH_SYN;
1017 ++th->th_seq;
1018 if (th->th_urp > 1)
1019 --th->th_urp;
1020 else {
1021 tiflags &= ~TH_URG;
1022 th->th_urp = 0;
1023 }
1024 --todrop;
1025 }
1026 if (todrop > tlen ||
1027 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1028 /*
1029 * Any valid FIN or RST must be to the left of the
1030 * window. At this point the FIN or RST must be a
1031 * duplicate or out of sequence; drop it.
1032 */
1033 if (tiflags & TH_RST)
1034 goto drop;
1035 tiflags &= ~(TH_FIN|TH_RST);
1036 /*
1037 * Send an ACK to resynchronize and drop any data.
1038 * But keep on processing for RST or ACK.
1039 */
1040 t_flags |= TF_ACKNOW;
1041 todrop = tlen;
1042 dupseg = true;
1043 tcps = TCP_STAT_GETREF();
1044 tcps[TCP_STAT_RCVDUPPACK] += 1;
1045 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1046 TCP_STAT_PUTREF();
1047 } else if ((tiflags & TH_RST)
1048 && th->th_seq != vp->rcv_nxt) {
1049 /*
1050 * Test for reset before adjusting the sequence
1051 * number for overlapping data.
1052 */
1053 goto dropafterack_ratelim;
1054 } else {
1055 tcps = TCP_STAT_GETREF();
1056 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1057 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1058 TCP_STAT_PUTREF();
1059 }
1060
1061 // tcp_new_dsack(tp, th->th_seq, todrop);
1062 // hdroptlen += todrop; /*drop from head afterwards*/
1063
1064 th->th_seq += todrop;
1065 tlen -= todrop;
1066
1067 if (th->th_urp > todrop)
1068 th->th_urp -= todrop;
1069 else {
1070 tiflags &= ~TH_URG;
1071 th->th_urp = 0;
1072 }
1073 }
1074
1075 /*
1076 * If new data are received on a connection after the
1077 * user processes are gone, then RST the other end.
1078 */
1079 if (tlen) {
1080 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1081 goto dropwithreset;
1082 }
1083
1084 /*
1085 * If segment ends after window, drop trailing data
1086 * (and PUSH and FIN); if nothing left, just ACK.
1087 */
1088 todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1089
1090 if (todrop > 0) {
1091 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1092 if (todrop >= tlen) {
1093 /*
1094 * The segment actually starts after the window.
1095 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1096 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1097 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1098 */
1099 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1100 /*
1101 * If a new connection request is received
1102 * while in TIME_WAIT, drop the old connection
1103 * and start over if the sequence numbers
1104 * are above the previous ones.
1105 */
1106 if ((tiflags & TH_SYN)
1107 && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1108 /* We only support this in the !NOFDREF case, which
1109 * is to say: not here.
1110 */
1111 goto dropwithreset;;
1112 }
1113 /*
1114 * If window is closed can only take segments at
1115 * window edge, and have to drop data and PUSH from
1116 * incoming segments. Continue processing, but
1117 * remember to ack. Otherwise, drop segment
1118 * and (if not RST) ack.
1119 */
1120 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1121 t_flags |= TF_ACKNOW;
1122 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1123 } else
1124 goto dropafterack;
1125 } else
1126 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1127 m_adj(m, -todrop);
1128 tlen -= todrop;
1129 tiflags &= ~(TH_PUSH|TH_FIN);
1130 }
1131
1132 if (tiflags & TH_RST) {
1133 if (th->th_seq != vp->rcv_nxt)
1134 goto dropafterack_ratelim;
1135
1136 vtw_del(vp->ctl, vp->vtw);
1137 goto drop;
1138 }
1139
1140 /*
1141 * If the ACK bit is off we drop the segment and return.
1142 */
1143 if ((tiflags & TH_ACK) == 0) {
1144 if (t_flags & TF_ACKNOW)
1145 goto dropafterack;
1146 else
1147 goto drop;
1148 }
1149
1150 /*
1151 * In TIME_WAIT state the only thing that should arrive
1152 * is a retransmission of the remote FIN. Acknowledge
1153 * it and restart the finack timer.
1154 */
1155 vtw_restart(vp);
1156 goto dropafterack;
1157
1158 dropafterack:
1159 /*
1160 * Generate an ACK dropping incoming segment if it occupies
1161 * sequence space, where the ACK reflects our state.
1162 */
1163 if (tiflags & TH_RST)
1164 goto drop;
1165 goto dropafterack2;
1166
1167 dropafterack_ratelim:
1168 /*
1169 * We may want to rate-limit ACKs against SYN/RST attack.
1170 */
1171 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1172 tcp_ackdrop_ppslim) == 0) {
1173 /* XXX stat */
1174 goto drop;
1175 }
1176 /* ...fall into dropafterack2... */
1177
1178 dropafterack2:
1179 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1180 TH_ACK);
1181 return;
1182
1183 dropwithreset:
1184 /*
1185 * Generate a RST, dropping incoming segment.
1186 * Make ACK acceptable to originator of segment.
1187 */
1188 if (tiflags & TH_RST)
1189 goto drop;
1190
1191 if (tiflags & TH_ACK)
1192 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1193 else {
1194 if (tiflags & TH_SYN)
1195 ++tlen;
1196 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1197 TH_RST|TH_ACK);
1198 }
1199 return;
1200 drop:
1201 m_freem(m);
1202 }
1203
1204 /*
1205 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1206 */
1207 void
1208 tcp_input(struct mbuf *m, ...)
1209 {
1210 struct tcphdr *th;
1211 struct ip *ip;
1212 struct inpcb *inp;
1213 #ifdef INET6
1214 struct ip6_hdr *ip6;
1215 struct in6pcb *in6p;
1216 #endif
1217 u_int8_t *optp = NULL;
1218 int optlen = 0;
1219 int len, tlen, toff, hdroptlen = 0;
1220 struct tcpcb *tp = 0;
1221 int tiflags;
1222 struct socket *so = NULL;
1223 int todrop, acked, ourfinisacked, needoutput = 0;
1224 bool dupseg;
1225 #ifdef TCP_DEBUG
1226 short ostate = 0;
1227 #endif
1228 u_long tiwin;
1229 struct tcp_opt_info opti;
1230 int off, iphlen;
1231 va_list ap;
1232 int af; /* af on the wire */
1233 struct mbuf *tcp_saveti = NULL;
1234 uint32_t ts_rtt;
1235 uint8_t iptos;
1236 uint64_t *tcps;
1237 vestigial_inpcb_t vestige;
1238
1239 vestige.valid = 0;
1240
1241 MCLAIM(m, &tcp_rx_mowner);
1242 va_start(ap, m);
1243 toff = va_arg(ap, int);
1244 (void)va_arg(ap, int); /* ignore value, advance ap */
1245 va_end(ap);
1246
1247 TCP_STATINC(TCP_STAT_RCVTOTAL);
1248
1249 memset(&opti, 0, sizeof(opti));
1250 opti.ts_present = 0;
1251 opti.maxseg = 0;
1252
1253 /*
1254 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1255 *
1256 * TCP is, by definition, unicast, so we reject all
1257 * multicast outright.
1258 *
1259 * Note, there are additional src/dst address checks in
1260 * the AF-specific code below.
1261 */
1262 if (m->m_flags & (M_BCAST|M_MCAST)) {
1263 /* XXX stat */
1264 goto drop;
1265 }
1266 #ifdef INET6
1267 if (m->m_flags & M_ANYCAST6) {
1268 /* XXX stat */
1269 goto drop;
1270 }
1271 #endif
1272
1273 /*
1274 * Get IP and TCP header.
1275 * Note: IP leaves IP header in first mbuf.
1276 */
1277 ip = mtod(m, struct ip *);
1278 switch (ip->ip_v) {
1279 #ifdef INET
1280 case 4:
1281 #ifdef INET6
1282 ip6 = NULL;
1283 #endif
1284 af = AF_INET;
1285 iphlen = sizeof(struct ip);
1286 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1287 sizeof(struct tcphdr));
1288 if (th == NULL) {
1289 TCP_STATINC(TCP_STAT_RCVSHORT);
1290 return;
1291 }
1292 /* We do the checksum after PCB lookup... */
1293 len = ntohs(ip->ip_len);
1294 tlen = len - toff;
1295 iptos = ip->ip_tos;
1296 break;
1297 #endif
1298 #ifdef INET6
1299 case 6:
1300 ip = NULL;
1301 iphlen = sizeof(struct ip6_hdr);
1302 af = AF_INET6;
1303 ip6 = mtod(m, struct ip6_hdr *);
1304 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1305 sizeof(struct tcphdr));
1306 if (th == NULL) {
1307 TCP_STATINC(TCP_STAT_RCVSHORT);
1308 return;
1309 }
1310
1311 /* Be proactive about malicious use of IPv4 mapped address */
1312 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1313 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1314 /* XXX stat */
1315 goto drop;
1316 }
1317
1318 /*
1319 * Be proactive about unspecified IPv6 address in source.
1320 * As we use all-zero to indicate unbounded/unconnected pcb,
1321 * unspecified IPv6 address can be used to confuse us.
1322 *
1323 * Note that packets with unspecified IPv6 destination is
1324 * already dropped in ip6_input.
1325 */
1326 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1327 /* XXX stat */
1328 goto drop;
1329 }
1330
1331 /*
1332 * Make sure destination address is not multicast.
1333 * Source address checked in ip6_input().
1334 */
1335 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1336 /* XXX stat */
1337 goto drop;
1338 }
1339
1340 /* We do the checksum after PCB lookup... */
1341 len = m->m_pkthdr.len;
1342 tlen = len - toff;
1343 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1344 break;
1345 #endif
1346 default:
1347 m_freem(m);
1348 return;
1349 }
1350
1351 KASSERT(TCP_HDR_ALIGNED_P(th));
1352
1353 /*
1354 * Check that TCP offset makes sense,
1355 * pull out TCP options and adjust length. XXX
1356 */
1357 off = th->th_off << 2;
1358 if (off < sizeof (struct tcphdr) || off > tlen) {
1359 TCP_STATINC(TCP_STAT_RCVBADOFF);
1360 goto drop;
1361 }
1362 tlen -= off;
1363
1364 /*
1365 * tcp_input() has been modified to use tlen to mean the TCP data
1366 * length throughout the function. Other functions can use
1367 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1368 * rja
1369 */
1370
1371 if (off > sizeof (struct tcphdr)) {
1372 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1373 if (th == NULL) {
1374 TCP_STATINC(TCP_STAT_RCVSHORT);
1375 return;
1376 }
1377 /*
1378 * NOTE: ip/ip6 will not be affected by m_pulldown()
1379 * (as they're before toff) and we don't need to update those.
1380 */
1381 KASSERT(TCP_HDR_ALIGNED_P(th));
1382 optlen = off - sizeof (struct tcphdr);
1383 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1384 /*
1385 * Do quick retrieval of timestamp options ("options
1386 * prediction?"). If timestamp is the only option and it's
1387 * formatted as recommended in RFC 1323 appendix A, we
1388 * quickly get the values now and not bother calling
1389 * tcp_dooptions(), etc.
1390 */
1391 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1392 (optlen > TCPOLEN_TSTAMP_APPA &&
1393 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1394 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1395 (th->th_flags & TH_SYN) == 0) {
1396 opti.ts_present = 1;
1397 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1398 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1399 optp = NULL; /* we've parsed the options */
1400 }
1401 }
1402 tiflags = th->th_flags;
1403
1404 /*
1405 * Locate pcb for segment.
1406 */
1407 findpcb:
1408 inp = NULL;
1409 #ifdef INET6
1410 in6p = NULL;
1411 #endif
1412 switch (af) {
1413 #ifdef INET
1414 case AF_INET:
1415 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1416 ip->ip_dst, th->th_dport,
1417 &vestige);
1418 if (inp == 0 && !vestige.valid) {
1419 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1420 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1421 }
1422 #ifdef INET6
1423 if (inp == 0 && !vestige.valid) {
1424 struct in6_addr s, d;
1425
1426 /* mapped addr case */
1427 memset(&s, 0, sizeof(s));
1428 s.s6_addr16[5] = htons(0xffff);
1429 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1430 memset(&d, 0, sizeof(d));
1431 d.s6_addr16[5] = htons(0xffff);
1432 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1433 in6p = in6_pcblookup_connect(&tcbtable, &s,
1434 th->th_sport, &d, th->th_dport,
1435 0, &vestige);
1436 if (in6p == 0 && !vestige.valid) {
1437 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1438 in6p = in6_pcblookup_bind(&tcbtable, &d,
1439 th->th_dport, 0);
1440 }
1441 }
1442 #endif
1443 #ifndef INET6
1444 if (inp == 0 && !vestige.valid)
1445 #else
1446 if (inp == 0 && in6p == 0 && !vestige.valid)
1447 #endif
1448 {
1449 TCP_STATINC(TCP_STAT_NOPORT);
1450 if (tcp_log_refused &&
1451 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1452 tcp4_log_refused(ip, th);
1453 }
1454 tcp_fields_to_host(th);
1455 goto dropwithreset_ratelim;
1456 }
1457 #if defined(IPSEC) || defined(FAST_IPSEC)
1458 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1459 ipsec4_in_reject(m, inp)) {
1460 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1461 goto drop;
1462 }
1463 #ifdef INET6
1464 else if (in6p &&
1465 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1466 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1467 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1468 goto drop;
1469 }
1470 #endif
1471 #endif /*IPSEC*/
1472 break;
1473 #endif /*INET*/
1474 #ifdef INET6
1475 case AF_INET6:
1476 {
1477 int faith;
1478
1479 #if defined(NFAITH) && NFAITH > 0
1480 faith = faithprefix(&ip6->ip6_dst);
1481 #else
1482 faith = 0;
1483 #endif
1484 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1485 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1486 if (!in6p && !vestige.valid) {
1487 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1488 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1489 th->th_dport, faith);
1490 }
1491 if (!in6p && !vestige.valid) {
1492 TCP_STATINC(TCP_STAT_NOPORT);
1493 if (tcp_log_refused &&
1494 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1495 tcp6_log_refused(ip6, th);
1496 }
1497 tcp_fields_to_host(th);
1498 goto dropwithreset_ratelim;
1499 }
1500 #if defined(IPSEC) || defined(FAST_IPSEC)
1501 if (in6p
1502 && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1503 && ipsec6_in_reject(m, in6p)) {
1504 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1505 goto drop;
1506 }
1507 #endif /*IPSEC*/
1508 break;
1509 }
1510 #endif
1511 }
1512
1513 /*
1514 * If the state is CLOSED (i.e., TCB does not exist) then
1515 * all data in the incoming segment is discarded.
1516 * If the TCB exists but is in CLOSED state, it is embryonic,
1517 * but should either do a listen or a connect soon.
1518 */
1519 tp = NULL;
1520 so = NULL;
1521 if (inp) {
1522 /* Check the minimum TTL for socket. */
1523 if (ip->ip_ttl < inp->inp_ip_minttl)
1524 goto drop;
1525
1526 tp = intotcpcb(inp);
1527 so = inp->inp_socket;
1528 }
1529 #ifdef INET6
1530 else if (in6p) {
1531 tp = in6totcpcb(in6p);
1532 so = in6p->in6p_socket;
1533 }
1534 #endif
1535 else if (vestige.valid) {
1536 int mc = 0;
1537
1538 /* We do not support the resurrection of vtw tcpcps.
1539 */
1540 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1541 goto badcsum;
1542
1543 switch (af) {
1544 #ifdef INET6
1545 case AF_INET6:
1546 mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1547 break;
1548 #endif
1549
1550 case AF_INET:
1551 mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1552 || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
1553 break;
1554 }
1555
1556 tcp_fields_to_host(th);
1557 tcp_vtw_input(th, &vestige, m, tlen, mc);
1558 m = 0;
1559 goto drop;
1560 }
1561
1562 if (tp == 0) {
1563 tcp_fields_to_host(th);
1564 goto dropwithreset_ratelim;
1565 }
1566 if (tp->t_state == TCPS_CLOSED)
1567 goto drop;
1568
1569 KASSERT(so->so_lock == softnet_lock);
1570 KASSERT(solocked(so));
1571
1572 /*
1573 * Checksum extended TCP header and data.
1574 */
1575 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1576 goto badcsum;
1577
1578 tcp_fields_to_host(th);
1579
1580 /* Unscale the window into a 32-bit value. */
1581 if ((tiflags & TH_SYN) == 0)
1582 tiwin = th->th_win << tp->snd_scale;
1583 else
1584 tiwin = th->th_win;
1585
1586 #ifdef INET6
1587 /* save packet options if user wanted */
1588 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1589 if (in6p->in6p_options) {
1590 m_freem(in6p->in6p_options);
1591 in6p->in6p_options = 0;
1592 }
1593 KASSERT(ip6 != NULL);
1594 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1595 }
1596 #endif
1597
1598 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1599 union syn_cache_sa src;
1600 union syn_cache_sa dst;
1601
1602 memset(&src, 0, sizeof(src));
1603 memset(&dst, 0, sizeof(dst));
1604 switch (af) {
1605 #ifdef INET
1606 case AF_INET:
1607 src.sin.sin_len = sizeof(struct sockaddr_in);
1608 src.sin.sin_family = AF_INET;
1609 src.sin.sin_addr = ip->ip_src;
1610 src.sin.sin_port = th->th_sport;
1611
1612 dst.sin.sin_len = sizeof(struct sockaddr_in);
1613 dst.sin.sin_family = AF_INET;
1614 dst.sin.sin_addr = ip->ip_dst;
1615 dst.sin.sin_port = th->th_dport;
1616 break;
1617 #endif
1618 #ifdef INET6
1619 case AF_INET6:
1620 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1621 src.sin6.sin6_family = AF_INET6;
1622 src.sin6.sin6_addr = ip6->ip6_src;
1623 src.sin6.sin6_port = th->th_sport;
1624
1625 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1626 dst.sin6.sin6_family = AF_INET6;
1627 dst.sin6.sin6_addr = ip6->ip6_dst;
1628 dst.sin6.sin6_port = th->th_dport;
1629 break;
1630 #endif /* INET6 */
1631 default:
1632 goto badsyn; /*sanity*/
1633 }
1634
1635 if (so->so_options & SO_DEBUG) {
1636 #ifdef TCP_DEBUG
1637 ostate = tp->t_state;
1638 #endif
1639
1640 tcp_saveti = NULL;
1641 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1642 goto nosave;
1643
1644 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1645 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1646 if (!tcp_saveti)
1647 goto nosave;
1648 } else {
1649 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1650 if (!tcp_saveti)
1651 goto nosave;
1652 MCLAIM(m, &tcp_mowner);
1653 tcp_saveti->m_len = iphlen;
1654 m_copydata(m, 0, iphlen,
1655 mtod(tcp_saveti, void *));
1656 }
1657
1658 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1659 m_freem(tcp_saveti);
1660 tcp_saveti = NULL;
1661 } else {
1662 tcp_saveti->m_len += sizeof(struct tcphdr);
1663 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1664 sizeof(struct tcphdr));
1665 }
1666 nosave:;
1667 }
1668 if (so->so_options & SO_ACCEPTCONN) {
1669 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1670 if (tiflags & TH_RST) {
1671 syn_cache_reset(&src.sa, &dst.sa, th);
1672 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1673 (TH_ACK|TH_SYN)) {
1674 /*
1675 * Received a SYN,ACK. This should
1676 * never happen while we are in
1677 * LISTEN. Send an RST.
1678 */
1679 goto badsyn;
1680 } else if (tiflags & TH_ACK) {
1681 so = syn_cache_get(&src.sa, &dst.sa,
1682 th, toff, tlen, so, m);
1683 if (so == NULL) {
1684 /*
1685 * We don't have a SYN for
1686 * this ACK; send an RST.
1687 */
1688 goto badsyn;
1689 } else if (so ==
1690 (struct socket *)(-1)) {
1691 /*
1692 * We were unable to create
1693 * the connection. If the
1694 * 3-way handshake was
1695 * completed, and RST has
1696 * been sent to the peer.
1697 * Since the mbuf might be
1698 * in use for the reply,
1699 * do not free it.
1700 */
1701 m = NULL;
1702 } else {
1703 /*
1704 * We have created a
1705 * full-blown connection.
1706 */
1707 tp = NULL;
1708 inp = NULL;
1709 #ifdef INET6
1710 in6p = NULL;
1711 #endif
1712 switch (so->so_proto->pr_domain->dom_family) {
1713 #ifdef INET
1714 case AF_INET:
1715 inp = sotoinpcb(so);
1716 tp = intotcpcb(inp);
1717 break;
1718 #endif
1719 #ifdef INET6
1720 case AF_INET6:
1721 in6p = sotoin6pcb(so);
1722 tp = in6totcpcb(in6p);
1723 break;
1724 #endif
1725 }
1726 if (tp == NULL)
1727 goto badsyn; /*XXX*/
1728 tiwin <<= tp->snd_scale;
1729 goto after_listen;
1730 }
1731 } else {
1732 /*
1733 * None of RST, SYN or ACK was set.
1734 * This is an invalid packet for a
1735 * TCB in LISTEN state. Send a RST.
1736 */
1737 goto badsyn;
1738 }
1739 } else {
1740 /*
1741 * Received a SYN.
1742 *
1743 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1744 */
1745 if (m->m_flags & (M_BCAST|M_MCAST))
1746 goto drop;
1747
1748 switch (af) {
1749 #ifdef INET6
1750 case AF_INET6:
1751 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1752 goto drop;
1753 break;
1754 #endif /* INET6 */
1755 case AF_INET:
1756 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1757 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1758 goto drop;
1759 break;
1760 }
1761
1762 #ifdef INET6
1763 /*
1764 * If deprecated address is forbidden, we do
1765 * not accept SYN to deprecated interface
1766 * address to prevent any new inbound
1767 * connection from getting established.
1768 * When we do not accept SYN, we send a TCP
1769 * RST, with deprecated source address (instead
1770 * of dropping it). We compromise it as it is
1771 * much better for peer to send a RST, and
1772 * RST will be the final packet for the
1773 * exchange.
1774 *
1775 * If we do not forbid deprecated addresses, we
1776 * accept the SYN packet. RFC2462 does not
1777 * suggest dropping SYN in this case.
1778 * If we decipher RFC2462 5.5.4, it says like
1779 * this:
1780 * 1. use of deprecated addr with existing
1781 * communication is okay - "SHOULD continue
1782 * to be used"
1783 * 2. use of it with new communication:
1784 * (2a) "SHOULD NOT be used if alternate
1785 * address with sufficient scope is
1786 * available"
1787 * (2b) nothing mentioned otherwise.
1788 * Here we fall into (2b) case as we have no
1789 * choice in our source address selection - we
1790 * must obey the peer.
1791 *
1792 * The wording in RFC2462 is confusing, and
1793 * there are multiple description text for
1794 * deprecated address handling - worse, they
1795 * are not exactly the same. I believe 5.5.4
1796 * is the best one, so we follow 5.5.4.
1797 */
1798 if (af == AF_INET6 && !ip6_use_deprecated) {
1799 struct in6_ifaddr *ia6;
1800 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1801 &ip6->ip6_dst)) &&
1802 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1803 tp = NULL;
1804 goto dropwithreset;
1805 }
1806 }
1807 #endif
1808
1809 #if defined(IPSEC) || defined(FAST_IPSEC)
1810 switch (af) {
1811 #ifdef INET
1812 case AF_INET:
1813 if (ipsec4_in_reject_so(m, so)) {
1814 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1815 tp = NULL;
1816 goto dropwithreset;
1817 }
1818 break;
1819 #endif
1820 #ifdef INET6
1821 case AF_INET6:
1822 if (ipsec6_in_reject_so(m, so)) {
1823 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1824 tp = NULL;
1825 goto dropwithreset;
1826 }
1827 break;
1828 #endif /*INET6*/
1829 }
1830 #endif /*IPSEC*/
1831
1832 /*
1833 * LISTEN socket received a SYN
1834 * from itself? This can't possibly
1835 * be valid; drop the packet.
1836 */
1837 if (th->th_sport == th->th_dport) {
1838 int i;
1839
1840 switch (af) {
1841 #ifdef INET
1842 case AF_INET:
1843 i = in_hosteq(ip->ip_src, ip->ip_dst);
1844 break;
1845 #endif
1846 #ifdef INET6
1847 case AF_INET6:
1848 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1849 break;
1850 #endif
1851 default:
1852 i = 1;
1853 }
1854 if (i) {
1855 TCP_STATINC(TCP_STAT_BADSYN);
1856 goto drop;
1857 }
1858 }
1859
1860 /*
1861 * SYN looks ok; create compressed TCP
1862 * state for it.
1863 */
1864 if (so->so_qlen <= so->so_qlimit &&
1865 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1866 so, m, optp, optlen, &opti))
1867 m = NULL;
1868 }
1869 goto drop;
1870 }
1871 }
1872
1873 after_listen:
1874 #ifdef DIAGNOSTIC
1875 /*
1876 * Should not happen now that all embryonic connections
1877 * are handled with compressed state.
1878 */
1879 if (tp->t_state == TCPS_LISTEN)
1880 panic("tcp_input: TCPS_LISTEN");
1881 #endif
1882
1883 /*
1884 * Segment received on connection.
1885 * Reset idle time and keep-alive timer.
1886 */
1887 tp->t_rcvtime = tcp_now;
1888 if (TCPS_HAVEESTABLISHED(tp->t_state))
1889 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1890
1891 /*
1892 * Process options.
1893 */
1894 #ifdef TCP_SIGNATURE
1895 if (optp || (tp->t_flags & TF_SIGNATURE))
1896 #else
1897 if (optp)
1898 #endif
1899 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1900 goto drop;
1901
1902 if (TCP_SACK_ENABLED(tp)) {
1903 tcp_del_sackholes(tp, th);
1904 }
1905
1906 if (TCP_ECN_ALLOWED(tp)) {
1907 if (tiflags & TH_CWR) {
1908 tp->t_flags &= ~TF_ECN_SND_ECE;
1909 }
1910 switch (iptos & IPTOS_ECN_MASK) {
1911 case IPTOS_ECN_CE:
1912 tp->t_flags |= TF_ECN_SND_ECE;
1913 TCP_STATINC(TCP_STAT_ECN_CE);
1914 break;
1915 case IPTOS_ECN_ECT0:
1916 TCP_STATINC(TCP_STAT_ECN_ECT);
1917 break;
1918 case IPTOS_ECN_ECT1:
1919 /* XXX: ignore for now -- rpaulo */
1920 break;
1921 }
1922 /*
1923 * Congestion experienced.
1924 * Ignore if we are already trying to recover.
1925 */
1926 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1927 tp->t_congctl->cong_exp(tp);
1928 }
1929
1930 if (opti.ts_present && opti.ts_ecr) {
1931 /*
1932 * Calculate the RTT from the returned time stamp and the
1933 * connection's time base. If the time stamp is later than
1934 * the current time, or is extremely old, fall back to non-1323
1935 * RTT calculation. Since ts_rtt is unsigned, we can test both
1936 * at the same time.
1937 *
1938 * Note that ts_rtt is in units of slow ticks (500
1939 * ms). Since most earthbound RTTs are < 500 ms,
1940 * observed values will have large quantization noise.
1941 * Our smoothed RTT is then the fraction of observed
1942 * samples that are 1 tick instead of 0 (times 500
1943 * ms).
1944 *
1945 * ts_rtt is increased by 1 to denote a valid sample,
1946 * with 0 indicating an invalid measurement. This
1947 * extra 1 must be removed when ts_rtt is used, or
1948 * else an an erroneous extra 500 ms will result.
1949 */
1950 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1951 if (ts_rtt > TCP_PAWS_IDLE)
1952 ts_rtt = 0;
1953 } else {
1954 ts_rtt = 0;
1955 }
1956
1957 /*
1958 * Header prediction: check for the two common cases
1959 * of a uni-directional data xfer. If the packet has
1960 * no control flags, is in-sequence, the window didn't
1961 * change and we're not retransmitting, it's a
1962 * candidate. If the length is zero and the ack moved
1963 * forward, we're the sender side of the xfer. Just
1964 * free the data acked & wake any higher level process
1965 * that was blocked waiting for space. If the length
1966 * is non-zero and the ack didn't move, we're the
1967 * receiver side. If we're getting packets in-order
1968 * (the reassembly queue is empty), add the data to
1969 * the socket buffer and note that we need a delayed ack.
1970 */
1971 if (tp->t_state == TCPS_ESTABLISHED &&
1972 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1973 == TH_ACK &&
1974 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1975 th->th_seq == tp->rcv_nxt &&
1976 tiwin && tiwin == tp->snd_wnd &&
1977 tp->snd_nxt == tp->snd_max) {
1978
1979 /*
1980 * If last ACK falls within this segment's sequence numbers,
1981 * record the timestamp.
1982 * NOTE that the test is modified according to the latest
1983 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1984 *
1985 * note that we already know
1986 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1987 */
1988 if (opti.ts_present &&
1989 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1990 tp->ts_recent_age = tcp_now;
1991 tp->ts_recent = opti.ts_val;
1992 }
1993
1994 if (tlen == 0) {
1995 /* Ack prediction. */
1996 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1997 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1998 tp->snd_cwnd >= tp->snd_wnd &&
1999 tp->t_partialacks < 0) {
2000 /*
2001 * this is a pure ack for outstanding data.
2002 */
2003 if (ts_rtt)
2004 tcp_xmit_timer(tp, ts_rtt);
2005 else if (tp->t_rtttime &&
2006 SEQ_GT(th->th_ack, tp->t_rtseq))
2007 tcp_xmit_timer(tp,
2008 tcp_now - tp->t_rtttime);
2009 acked = th->th_ack - tp->snd_una;
2010 tcps = TCP_STAT_GETREF();
2011 tcps[TCP_STAT_PREDACK]++;
2012 tcps[TCP_STAT_RCVACKPACK]++;
2013 tcps[TCP_STAT_RCVACKBYTE] += acked;
2014 TCP_STAT_PUTREF();
2015 nd6_hint(tp);
2016
2017 if (acked > (tp->t_lastoff - tp->t_inoff))
2018 tp->t_lastm = NULL;
2019 sbdrop(&so->so_snd, acked);
2020 tp->t_lastoff -= acked;
2021
2022 icmp_check(tp, th, acked);
2023
2024 tp->snd_una = th->th_ack;
2025 tp->snd_fack = tp->snd_una;
2026 if (SEQ_LT(tp->snd_high, tp->snd_una))
2027 tp->snd_high = tp->snd_una;
2028 m_freem(m);
2029
2030 /*
2031 * If all outstanding data are acked, stop
2032 * retransmit timer, otherwise restart timer
2033 * using current (possibly backed-off) value.
2034 * If process is waiting for space,
2035 * wakeup/selnotify/signal. If data
2036 * are ready to send, let tcp_output
2037 * decide between more output or persist.
2038 */
2039 if (tp->snd_una == tp->snd_max)
2040 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2041 else if (TCP_TIMER_ISARMED(tp,
2042 TCPT_PERSIST) == 0)
2043 TCP_TIMER_ARM(tp, TCPT_REXMT,
2044 tp->t_rxtcur);
2045
2046 sowwakeup(so);
2047 if (so->so_snd.sb_cc) {
2048 KERNEL_LOCK(1, NULL);
2049 (void) tcp_output(tp);
2050 KERNEL_UNLOCK_ONE(NULL);
2051 }
2052 if (tcp_saveti)
2053 m_freem(tcp_saveti);
2054 return;
2055 }
2056 } else if (th->th_ack == tp->snd_una &&
2057 TAILQ_FIRST(&tp->segq) == NULL &&
2058 tlen <= sbspace(&so->so_rcv)) {
2059 int newsize = 0; /* automatic sockbuf scaling */
2060
2061 /*
2062 * this is a pure, in-sequence data packet
2063 * with nothing on the reassembly queue and
2064 * we have enough buffer space to take it.
2065 */
2066 tp->rcv_nxt += tlen;
2067 tcps = TCP_STAT_GETREF();
2068 tcps[TCP_STAT_PREDDAT]++;
2069 tcps[TCP_STAT_RCVPACK]++;
2070 tcps[TCP_STAT_RCVBYTE] += tlen;
2071 TCP_STAT_PUTREF();
2072 nd6_hint(tp);
2073
2074 /*
2075 * Automatic sizing enables the performance of large buffers
2076 * and most of the efficiency of small ones by only allocating
2077 * space when it is needed.
2078 *
2079 * On the receive side the socket buffer memory is only rarely
2080 * used to any significant extent. This allows us to be much
2081 * more aggressive in scaling the receive socket buffer. For
2082 * the case that the buffer space is actually used to a large
2083 * extent and we run out of kernel memory we can simply drop
2084 * the new segments; TCP on the sender will just retransmit it
2085 * later. Setting the buffer size too big may only consume too
2086 * much kernel memory if the application doesn't read() from
2087 * the socket or packet loss or reordering makes use of the
2088 * reassembly queue.
2089 *
2090 * The criteria to step up the receive buffer one notch are:
2091 * 1. the number of bytes received during the time it takes
2092 * one timestamp to be reflected back to us (the RTT);
2093 * 2. received bytes per RTT is within seven eighth of the
2094 * current socket buffer size;
2095 * 3. receive buffer size has not hit maximal automatic size;
2096 *
2097 * This algorithm does one step per RTT at most and only if
2098 * we receive a bulk stream w/o packet losses or reorderings.
2099 * Shrinking the buffer during idle times is not necessary as
2100 * it doesn't consume any memory when idle.
2101 *
2102 * TODO: Only step up if the application is actually serving
2103 * the buffer to better manage the socket buffer resources.
2104 */
2105 if (tcp_do_autorcvbuf &&
2106 opti.ts_ecr &&
2107 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2108 if (opti.ts_ecr > tp->rfbuf_ts &&
2109 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2110 if (tp->rfbuf_cnt >
2111 (so->so_rcv.sb_hiwat / 8 * 7) &&
2112 so->so_rcv.sb_hiwat <
2113 tcp_autorcvbuf_max) {
2114 newsize =
2115 min(so->so_rcv.sb_hiwat +
2116 tcp_autorcvbuf_inc,
2117 tcp_autorcvbuf_max);
2118 }
2119 /* Start over with next RTT. */
2120 tp->rfbuf_ts = 0;
2121 tp->rfbuf_cnt = 0;
2122 } else
2123 tp->rfbuf_cnt += tlen; /* add up */
2124 }
2125
2126 /*
2127 * Drop TCP, IP headers and TCP options then add data
2128 * to socket buffer.
2129 */
2130 if (so->so_state & SS_CANTRCVMORE)
2131 m_freem(m);
2132 else {
2133 /*
2134 * Set new socket buffer size.
2135 * Give up when limit is reached.
2136 */
2137 if (newsize)
2138 if (!sbreserve(&so->so_rcv,
2139 newsize, so))
2140 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2141 m_adj(m, toff + off);
2142 sbappendstream(&so->so_rcv, m);
2143 }
2144 sorwakeup(so);
2145 tcp_setup_ack(tp, th);
2146 if (tp->t_flags & TF_ACKNOW) {
2147 KERNEL_LOCK(1, NULL);
2148 (void) tcp_output(tp);
2149 KERNEL_UNLOCK_ONE(NULL);
2150 }
2151 if (tcp_saveti)
2152 m_freem(tcp_saveti);
2153 return;
2154 }
2155 }
2156
2157 /*
2158 * Compute mbuf offset to TCP data segment.
2159 */
2160 hdroptlen = toff + off;
2161
2162 /*
2163 * Calculate amount of space in receive window,
2164 * and then do TCP input processing.
2165 * Receive window is amount of space in rcv queue,
2166 * but not less than advertised window.
2167 */
2168 { int win;
2169
2170 win = sbspace(&so->so_rcv);
2171 if (win < 0)
2172 win = 0;
2173 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2174 }
2175
2176 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2177 tp->rfbuf_ts = 0;
2178 tp->rfbuf_cnt = 0;
2179
2180 switch (tp->t_state) {
2181 /*
2182 * If the state is SYN_SENT:
2183 * if seg contains an ACK, but not for our SYN, drop the input.
2184 * if seg contains a RST, then drop the connection.
2185 * if seg does not contain SYN, then drop it.
2186 * Otherwise this is an acceptable SYN segment
2187 * initialize tp->rcv_nxt and tp->irs
2188 * if seg contains ack then advance tp->snd_una
2189 * if seg contains a ECE and ECN support is enabled, the stream
2190 * is ECN capable.
2191 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2192 * arrange for segment to be acked (eventually)
2193 * continue processing rest of data/controls, beginning with URG
2194 */
2195 case TCPS_SYN_SENT:
2196 if ((tiflags & TH_ACK) &&
2197 (SEQ_LEQ(th->th_ack, tp->iss) ||
2198 SEQ_GT(th->th_ack, tp->snd_max)))
2199 goto dropwithreset;
2200 if (tiflags & TH_RST) {
2201 if (tiflags & TH_ACK)
2202 tp = tcp_drop(tp, ECONNREFUSED);
2203 goto drop;
2204 }
2205 if ((tiflags & TH_SYN) == 0)
2206 goto drop;
2207 if (tiflags & TH_ACK) {
2208 tp->snd_una = th->th_ack;
2209 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2210 tp->snd_nxt = tp->snd_una;
2211 if (SEQ_LT(tp->snd_high, tp->snd_una))
2212 tp->snd_high = tp->snd_una;
2213 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2214
2215 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2216 tp->t_flags |= TF_ECN_PERMIT;
2217 TCP_STATINC(TCP_STAT_ECN_SHS);
2218 }
2219
2220 }
2221 tp->irs = th->th_seq;
2222 tcp_rcvseqinit(tp);
2223 tp->t_flags |= TF_ACKNOW;
2224 tcp_mss_from_peer(tp, opti.maxseg);
2225
2226 /*
2227 * Initialize the initial congestion window. If we
2228 * had to retransmit the SYN, we must initialize cwnd
2229 * to 1 segment (i.e. the Loss Window).
2230 */
2231 if (tp->t_flags & TF_SYN_REXMT)
2232 tp->snd_cwnd = tp->t_peermss;
2233 else {
2234 int ss = tcp_init_win;
2235 #ifdef INET
2236 if (inp != NULL && in_localaddr(inp->inp_faddr))
2237 ss = tcp_init_win_local;
2238 #endif
2239 #ifdef INET6
2240 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2241 ss = tcp_init_win_local;
2242 #endif
2243 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2244 }
2245
2246 tcp_rmx_rtt(tp);
2247 if (tiflags & TH_ACK) {
2248 TCP_STATINC(TCP_STAT_CONNECTS);
2249 /*
2250 * move tcp_established before soisconnected
2251 * becasue upcall handler can drive tcp_output
2252 * functionality.
2253 * XXX we might call soisconnected at the end of
2254 * all processing
2255 */
2256 tcp_established(tp);
2257 soisconnected(so);
2258 /* Do window scaling on this connection? */
2259 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2260 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2261 tp->snd_scale = tp->requested_s_scale;
2262 tp->rcv_scale = tp->request_r_scale;
2263 }
2264 TCP_REASS_LOCK(tp);
2265 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2266 /*
2267 * if we didn't have to retransmit the SYN,
2268 * use its rtt as our initial srtt & rtt var.
2269 */
2270 if (tp->t_rtttime)
2271 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2272 } else
2273 tp->t_state = TCPS_SYN_RECEIVED;
2274
2275 /*
2276 * Advance th->th_seq to correspond to first data byte.
2277 * If data, trim to stay within window,
2278 * dropping FIN if necessary.
2279 */
2280 th->th_seq++;
2281 if (tlen > tp->rcv_wnd) {
2282 todrop = tlen - tp->rcv_wnd;
2283 m_adj(m, -todrop);
2284 tlen = tp->rcv_wnd;
2285 tiflags &= ~TH_FIN;
2286 tcps = TCP_STAT_GETREF();
2287 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2288 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2289 TCP_STAT_PUTREF();
2290 }
2291 tp->snd_wl1 = th->th_seq - 1;
2292 tp->rcv_up = th->th_seq;
2293 goto step6;
2294
2295 /*
2296 * If the state is SYN_RECEIVED:
2297 * If seg contains an ACK, but not for our SYN, drop the input
2298 * and generate an RST. See page 36, rfc793
2299 */
2300 case TCPS_SYN_RECEIVED:
2301 if ((tiflags & TH_ACK) &&
2302 (SEQ_LEQ(th->th_ack, tp->iss) ||
2303 SEQ_GT(th->th_ack, tp->snd_max)))
2304 goto dropwithreset;
2305 break;
2306 }
2307
2308 /*
2309 * States other than LISTEN or SYN_SENT.
2310 * First check timestamp, if present.
2311 * Then check that at least some bytes of segment are within
2312 * receive window. If segment begins before rcv_nxt,
2313 * drop leading data (and SYN); if nothing left, just ack.
2314 *
2315 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2316 * and it's less than ts_recent, drop it.
2317 */
2318 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2319 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2320
2321 /* Check to see if ts_recent is over 24 days old. */
2322 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2323 /*
2324 * Invalidate ts_recent. If this segment updates
2325 * ts_recent, the age will be reset later and ts_recent
2326 * will get a valid value. If it does not, setting
2327 * ts_recent to zero will at least satisfy the
2328 * requirement that zero be placed in the timestamp
2329 * echo reply when ts_recent isn't valid. The
2330 * age isn't reset until we get a valid ts_recent
2331 * because we don't want out-of-order segments to be
2332 * dropped when ts_recent is old.
2333 */
2334 tp->ts_recent = 0;
2335 } else {
2336 tcps = TCP_STAT_GETREF();
2337 tcps[TCP_STAT_RCVDUPPACK]++;
2338 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2339 tcps[TCP_STAT_PAWSDROP]++;
2340 TCP_STAT_PUTREF();
2341 tcp_new_dsack(tp, th->th_seq, tlen);
2342 goto dropafterack;
2343 }
2344 }
2345
2346 todrop = tp->rcv_nxt - th->th_seq;
2347 dupseg = false;
2348 if (todrop > 0) {
2349 if (tiflags & TH_SYN) {
2350 tiflags &= ~TH_SYN;
2351 th->th_seq++;
2352 if (th->th_urp > 1)
2353 th->th_urp--;
2354 else {
2355 tiflags &= ~TH_URG;
2356 th->th_urp = 0;
2357 }
2358 todrop--;
2359 }
2360 if (todrop > tlen ||
2361 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2362 /*
2363 * Any valid FIN or RST must be to the left of the
2364 * window. At this point the FIN or RST must be a
2365 * duplicate or out of sequence; drop it.
2366 */
2367 if (tiflags & TH_RST)
2368 goto drop;
2369 tiflags &= ~(TH_FIN|TH_RST);
2370 /*
2371 * Send an ACK to resynchronize and drop any data.
2372 * But keep on processing for RST or ACK.
2373 */
2374 tp->t_flags |= TF_ACKNOW;
2375 todrop = tlen;
2376 dupseg = true;
2377 tcps = TCP_STAT_GETREF();
2378 tcps[TCP_STAT_RCVDUPPACK]++;
2379 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2380 TCP_STAT_PUTREF();
2381 } else if ((tiflags & TH_RST) &&
2382 th->th_seq != tp->rcv_nxt) {
2383 /*
2384 * Test for reset before adjusting the sequence
2385 * number for overlapping data.
2386 */
2387 goto dropafterack_ratelim;
2388 } else {
2389 tcps = TCP_STAT_GETREF();
2390 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2391 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2392 TCP_STAT_PUTREF();
2393 }
2394 tcp_new_dsack(tp, th->th_seq, todrop);
2395 hdroptlen += todrop; /*drop from head afterwards*/
2396 th->th_seq += todrop;
2397 tlen -= todrop;
2398 if (th->th_urp > todrop)
2399 th->th_urp -= todrop;
2400 else {
2401 tiflags &= ~TH_URG;
2402 th->th_urp = 0;
2403 }
2404 }
2405
2406 /*
2407 * If new data are received on a connection after the
2408 * user processes are gone, then RST the other end.
2409 */
2410 if ((so->so_state & SS_NOFDREF) &&
2411 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2412 tp = tcp_close(tp);
2413 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2414 goto dropwithreset;
2415 }
2416
2417 /*
2418 * If segment ends after window, drop trailing data
2419 * (and PUSH and FIN); if nothing left, just ACK.
2420 */
2421 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2422 if (todrop > 0) {
2423 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2424 if (todrop >= tlen) {
2425 /*
2426 * The segment actually starts after the window.
2427 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2428 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2429 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2430 */
2431 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2432 /*
2433 * If a new connection request is received
2434 * while in TIME_WAIT, drop the old connection
2435 * and start over if the sequence numbers
2436 * are above the previous ones.
2437 *
2438 * NOTE: We will checksum the packet again, and
2439 * so we need to put the header fields back into
2440 * network order!
2441 * XXX This kind of sucks, but we don't expect
2442 * XXX this to happen very often, so maybe it
2443 * XXX doesn't matter so much.
2444 */
2445 if (tiflags & TH_SYN &&
2446 tp->t_state == TCPS_TIME_WAIT &&
2447 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2448 tp = tcp_close(tp);
2449 tcp_fields_to_net(th);
2450 goto findpcb;
2451 }
2452 /*
2453 * If window is closed can only take segments at
2454 * window edge, and have to drop data and PUSH from
2455 * incoming segments. Continue processing, but
2456 * remember to ack. Otherwise, drop segment
2457 * and (if not RST) ack.
2458 */
2459 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2460 tp->t_flags |= TF_ACKNOW;
2461 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2462 } else
2463 goto dropafterack;
2464 } else
2465 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2466 m_adj(m, -todrop);
2467 tlen -= todrop;
2468 tiflags &= ~(TH_PUSH|TH_FIN);
2469 }
2470
2471 /*
2472 * If last ACK falls within this segment's sequence numbers,
2473 * record the timestamp.
2474 * NOTE:
2475 * 1) That the test incorporates suggestions from the latest
2476 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2477 * 2) That updating only on newer timestamps interferes with
2478 * our earlier PAWS tests, so this check should be solely
2479 * predicated on the sequence space of this segment.
2480 * 3) That we modify the segment boundary check to be
2481 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2482 * instead of RFC1323's
2483 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2484 * This modified check allows us to overcome RFC1323's
2485 * limitations as described in Stevens TCP/IP Illustrated
2486 * Vol. 2 p.869. In such cases, we can still calculate the
2487 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2488 */
2489 if (opti.ts_present &&
2490 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2491 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2492 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2493 tp->ts_recent_age = tcp_now;
2494 tp->ts_recent = opti.ts_val;
2495 }
2496
2497 /*
2498 * If the RST bit is set examine the state:
2499 * SYN_RECEIVED STATE:
2500 * If passive open, return to LISTEN state.
2501 * If active open, inform user that connection was refused.
2502 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2503 * Inform user that connection was reset, and close tcb.
2504 * CLOSING, LAST_ACK, TIME_WAIT STATES
2505 * Close the tcb.
2506 */
2507 if (tiflags & TH_RST) {
2508 if (th->th_seq != tp->rcv_nxt)
2509 goto dropafterack_ratelim;
2510
2511 switch (tp->t_state) {
2512 case TCPS_SYN_RECEIVED:
2513 so->so_error = ECONNREFUSED;
2514 goto close;
2515
2516 case TCPS_ESTABLISHED:
2517 case TCPS_FIN_WAIT_1:
2518 case TCPS_FIN_WAIT_2:
2519 case TCPS_CLOSE_WAIT:
2520 so->so_error = ECONNRESET;
2521 close:
2522 tp->t_state = TCPS_CLOSED;
2523 TCP_STATINC(TCP_STAT_DROPS);
2524 tp = tcp_close(tp);
2525 goto drop;
2526
2527 case TCPS_CLOSING:
2528 case TCPS_LAST_ACK:
2529 case TCPS_TIME_WAIT:
2530 tp = tcp_close(tp);
2531 goto drop;
2532 }
2533 }
2534
2535 /*
2536 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2537 * we must be in a synchronized state. RFC791 states (under RST
2538 * generation) that any unacceptable segment (an out-of-order SYN
2539 * qualifies) received in a synchronized state must elicit only an
2540 * empty acknowledgment segment ... and the connection remains in
2541 * the same state.
2542 */
2543 if (tiflags & TH_SYN) {
2544 if (tp->rcv_nxt == th->th_seq) {
2545 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2546 TH_ACK);
2547 if (tcp_saveti)
2548 m_freem(tcp_saveti);
2549 return;
2550 }
2551
2552 goto dropafterack_ratelim;
2553 }
2554
2555 /*
2556 * If the ACK bit is off we drop the segment and return.
2557 */
2558 if ((tiflags & TH_ACK) == 0) {
2559 if (tp->t_flags & TF_ACKNOW)
2560 goto dropafterack;
2561 else
2562 goto drop;
2563 }
2564
2565 /*
2566 * Ack processing.
2567 */
2568 switch (tp->t_state) {
2569
2570 /*
2571 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2572 * ESTABLISHED state and continue processing, otherwise
2573 * send an RST.
2574 */
2575 case TCPS_SYN_RECEIVED:
2576 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2577 SEQ_GT(th->th_ack, tp->snd_max))
2578 goto dropwithreset;
2579 TCP_STATINC(TCP_STAT_CONNECTS);
2580 soisconnected(so);
2581 tcp_established(tp);
2582 /* Do window scaling? */
2583 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2584 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2585 tp->snd_scale = tp->requested_s_scale;
2586 tp->rcv_scale = tp->request_r_scale;
2587 }
2588 TCP_REASS_LOCK(tp);
2589 (void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
2590 tp->snd_wl1 = th->th_seq - 1;
2591 /* fall into ... */
2592
2593 /*
2594 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2595 * ACKs. If the ack is in the range
2596 * tp->snd_una < th->th_ack <= tp->snd_max
2597 * then advance tp->snd_una to th->th_ack and drop
2598 * data from the retransmission queue. If this ACK reflects
2599 * more up to date window information we update our window information.
2600 */
2601 case TCPS_ESTABLISHED:
2602 case TCPS_FIN_WAIT_1:
2603 case TCPS_FIN_WAIT_2:
2604 case TCPS_CLOSE_WAIT:
2605 case TCPS_CLOSING:
2606 case TCPS_LAST_ACK:
2607 case TCPS_TIME_WAIT:
2608
2609 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2610 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2611 TCP_STATINC(TCP_STAT_RCVDUPACK);
2612 /*
2613 * If we have outstanding data (other than
2614 * a window probe), this is a completely
2615 * duplicate ack (ie, window info didn't
2616 * change), the ack is the biggest we've
2617 * seen and we've seen exactly our rexmt
2618 * threshhold of them, assume a packet
2619 * has been dropped and retransmit it.
2620 * Kludge snd_nxt & the congestion
2621 * window so we send only this one
2622 * packet.
2623 */
2624 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2625 th->th_ack != tp->snd_una)
2626 tp->t_dupacks = 0;
2627 else if (tp->t_partialacks < 0 &&
2628 (++tp->t_dupacks == tcprexmtthresh ||
2629 TCP_FACK_FASTRECOV(tp))) {
2630 /*
2631 * Do the fast retransmit, and adjust
2632 * congestion control paramenters.
2633 */
2634 if (tp->t_congctl->fast_retransmit(tp, th)) {
2635 /* False fast retransmit */
2636 break;
2637 } else
2638 goto drop;
2639 } else if (tp->t_dupacks > tcprexmtthresh) {
2640 tp->snd_cwnd += tp->t_segsz;
2641 KERNEL_LOCK(1, NULL);
2642 (void) tcp_output(tp);
2643 KERNEL_UNLOCK_ONE(NULL);
2644 goto drop;
2645 }
2646 } else {
2647 /*
2648 * If the ack appears to be very old, only
2649 * allow data that is in-sequence. This
2650 * makes it somewhat more difficult to insert
2651 * forged data by guessing sequence numbers.
2652 * Sent an ack to try to update the send
2653 * sequence number on the other side.
2654 */
2655 if (tlen && th->th_seq != tp->rcv_nxt &&
2656 SEQ_LT(th->th_ack,
2657 tp->snd_una - tp->max_sndwnd))
2658 goto dropafterack;
2659 }
2660 break;
2661 }
2662 /*
2663 * If the congestion window was inflated to account
2664 * for the other side's cached packets, retract it.
2665 */
2666 /* XXX: make SACK have his own congestion control
2667 * struct -- rpaulo */
2668 if (TCP_SACK_ENABLED(tp))
2669 tcp_sack_newack(tp, th);
2670 else
2671 tp->t_congctl->fast_retransmit_newack(tp, th);
2672 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2673 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2674 goto dropafterack;
2675 }
2676 acked = th->th_ack - tp->snd_una;
2677 tcps = TCP_STAT_GETREF();
2678 tcps[TCP_STAT_RCVACKPACK]++;
2679 tcps[TCP_STAT_RCVACKBYTE] += acked;
2680 TCP_STAT_PUTREF();
2681
2682 /*
2683 * If we have a timestamp reply, update smoothed
2684 * round trip time. If no timestamp is present but
2685 * transmit timer is running and timed sequence
2686 * number was acked, update smoothed round trip time.
2687 * Since we now have an rtt measurement, cancel the
2688 * timer backoff (cf., Phil Karn's retransmit alg.).
2689 * Recompute the initial retransmit timer.
2690 */
2691 if (ts_rtt)
2692 tcp_xmit_timer(tp, ts_rtt);
2693 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2694 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2695
2696 /*
2697 * If all outstanding data is acked, stop retransmit
2698 * timer and remember to restart (more output or persist).
2699 * If there is more data to be acked, restart retransmit
2700 * timer, using current (possibly backed-off) value.
2701 */
2702 if (th->th_ack == tp->snd_max) {
2703 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2704 needoutput = 1;
2705 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2706 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2707
2708 /*
2709 * New data has been acked, adjust the congestion window.
2710 */
2711 tp->t_congctl->newack(tp, th);
2712
2713 nd6_hint(tp);
2714 if (acked > so->so_snd.sb_cc) {
2715 tp->snd_wnd -= so->so_snd.sb_cc;
2716 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2717 ourfinisacked = 1;
2718 } else {
2719 if (acked > (tp->t_lastoff - tp->t_inoff))
2720 tp->t_lastm = NULL;
2721 sbdrop(&so->so_snd, acked);
2722 tp->t_lastoff -= acked;
2723 tp->snd_wnd -= acked;
2724 ourfinisacked = 0;
2725 }
2726 sowwakeup(so);
2727
2728 icmp_check(tp, th, acked);
2729
2730 tp->snd_una = th->th_ack;
2731 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2732 tp->snd_fack = tp->snd_una;
2733 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2734 tp->snd_nxt = tp->snd_una;
2735 if (SEQ_LT(tp->snd_high, tp->snd_una))
2736 tp->snd_high = tp->snd_una;
2737
2738 switch (tp->t_state) {
2739
2740 /*
2741 * In FIN_WAIT_1 STATE in addition to the processing
2742 * for the ESTABLISHED state if our FIN is now acknowledged
2743 * then enter FIN_WAIT_2.
2744 */
2745 case TCPS_FIN_WAIT_1:
2746 if (ourfinisacked) {
2747 /*
2748 * If we can't receive any more
2749 * data, then closing user can proceed.
2750 * Starting the timer is contrary to the
2751 * specification, but if we don't get a FIN
2752 * we'll hang forever.
2753 */
2754 if (so->so_state & SS_CANTRCVMORE) {
2755 soisdisconnected(so);
2756 if (tp->t_maxidle > 0)
2757 TCP_TIMER_ARM(tp, TCPT_2MSL,
2758 tp->t_maxidle);
2759 }
2760 tp->t_state = TCPS_FIN_WAIT_2;
2761 }
2762 break;
2763
2764 /*
2765 * In CLOSING STATE in addition to the processing for
2766 * the ESTABLISHED state if the ACK acknowledges our FIN
2767 * then enter the TIME-WAIT state, otherwise ignore
2768 * the segment.
2769 */
2770 case TCPS_CLOSING:
2771 if (ourfinisacked) {
2772 tp->t_state = TCPS_TIME_WAIT;
2773 tcp_canceltimers(tp);
2774 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2775 soisdisconnected(so);
2776 }
2777 break;
2778
2779 /*
2780 * In LAST_ACK, we may still be waiting for data to drain
2781 * and/or to be acked, as well as for the ack of our FIN.
2782 * If our FIN is now acknowledged, delete the TCB,
2783 * enter the closed state and return.
2784 */
2785 case TCPS_LAST_ACK:
2786 if (ourfinisacked) {
2787 tp = tcp_close(tp);
2788 goto drop;
2789 }
2790 break;
2791
2792 /*
2793 * In TIME_WAIT state the only thing that should arrive
2794 * is a retransmission of the remote FIN. Acknowledge
2795 * it and restart the finack timer.
2796 */
2797 case TCPS_TIME_WAIT:
2798 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2799 goto dropafterack;
2800 }
2801 }
2802
2803 step6:
2804 /*
2805 * Update window information.
2806 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2807 */
2808 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2809 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2810 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2811 /* keep track of pure window updates */
2812 if (tlen == 0 &&
2813 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2814 TCP_STATINC(TCP_STAT_RCVWINUPD);
2815 tp->snd_wnd = tiwin;
2816 tp->snd_wl1 = th->th_seq;
2817 tp->snd_wl2 = th->th_ack;
2818 if (tp->snd_wnd > tp->max_sndwnd)
2819 tp->max_sndwnd = tp->snd_wnd;
2820 needoutput = 1;
2821 }
2822
2823 /*
2824 * Process segments with URG.
2825 */
2826 if ((tiflags & TH_URG) && th->th_urp &&
2827 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2828 /*
2829 * This is a kludge, but if we receive and accept
2830 * random urgent pointers, we'll crash in
2831 * soreceive. It's hard to imagine someone
2832 * actually wanting to send this much urgent data.
2833 */
2834 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2835 th->th_urp = 0; /* XXX */
2836 tiflags &= ~TH_URG; /* XXX */
2837 goto dodata; /* XXX */
2838 }
2839 /*
2840 * If this segment advances the known urgent pointer,
2841 * then mark the data stream. This should not happen
2842 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2843 * a FIN has been received from the remote side.
2844 * In these states we ignore the URG.
2845 *
2846 * According to RFC961 (Assigned Protocols),
2847 * the urgent pointer points to the last octet
2848 * of urgent data. We continue, however,
2849 * to consider it to indicate the first octet
2850 * of data past the urgent section as the original
2851 * spec states (in one of two places).
2852 */
2853 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2854 tp->rcv_up = th->th_seq + th->th_urp;
2855 so->so_oobmark = so->so_rcv.sb_cc +
2856 (tp->rcv_up - tp->rcv_nxt) - 1;
2857 if (so->so_oobmark == 0)
2858 so->so_state |= SS_RCVATMARK;
2859 sohasoutofband(so);
2860 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2861 }
2862 /*
2863 * Remove out of band data so doesn't get presented to user.
2864 * This can happen independent of advancing the URG pointer,
2865 * but if two URG's are pending at once, some out-of-band
2866 * data may creep in... ick.
2867 */
2868 if (th->th_urp <= (u_int16_t) tlen
2869 #ifdef SO_OOBINLINE
2870 && (so->so_options & SO_OOBINLINE) == 0
2871 #endif
2872 )
2873 tcp_pulloutofband(so, th, m, hdroptlen);
2874 } else
2875 /*
2876 * If no out of band data is expected,
2877 * pull receive urgent pointer along
2878 * with the receive window.
2879 */
2880 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2881 tp->rcv_up = tp->rcv_nxt;
2882 dodata: /* XXX */
2883
2884 /*
2885 * Process the segment text, merging it into the TCP sequencing queue,
2886 * and arranging for acknowledgement of receipt if necessary.
2887 * This process logically involves adjusting tp->rcv_wnd as data
2888 * is presented to the user (this happens in tcp_usrreq.c,
2889 * case PRU_RCVD). If a FIN has already been received on this
2890 * connection then we just ignore the text.
2891 */
2892 if ((tlen || (tiflags & TH_FIN)) &&
2893 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2894 /*
2895 * Insert segment ti into reassembly queue of tcp with
2896 * control block tp. Return TH_FIN if reassembly now includes
2897 * a segment with FIN. The macro form does the common case
2898 * inline (segment is the next to be received on an
2899 * established connection, and the queue is empty),
2900 * avoiding linkage into and removal from the queue and
2901 * repetition of various conversions.
2902 * Set DELACK for segments received in order, but ack
2903 * immediately when segments are out of order
2904 * (so fast retransmit can work).
2905 */
2906 /* NOTE: this was TCP_REASS() macro, but used only once */
2907 TCP_REASS_LOCK(tp);
2908 if (th->th_seq == tp->rcv_nxt &&
2909 TAILQ_FIRST(&tp->segq) == NULL &&
2910 tp->t_state == TCPS_ESTABLISHED) {
2911 tcp_setup_ack(tp, th);
2912 tp->rcv_nxt += tlen;
2913 tiflags = th->th_flags & TH_FIN;
2914 tcps = TCP_STAT_GETREF();
2915 tcps[TCP_STAT_RCVPACK]++;
2916 tcps[TCP_STAT_RCVBYTE] += tlen;
2917 TCP_STAT_PUTREF();
2918 nd6_hint(tp);
2919 if (so->so_state & SS_CANTRCVMORE)
2920 m_freem(m);
2921 else {
2922 m_adj(m, hdroptlen);
2923 sbappendstream(&(so)->so_rcv, m);
2924 }
2925 TCP_REASS_UNLOCK(tp);
2926 sorwakeup(so);
2927 } else {
2928 m_adj(m, hdroptlen);
2929 tiflags = tcp_reass(tp, th, m, &tlen);
2930 tp->t_flags |= TF_ACKNOW;
2931 TCP_REASS_UNLOCK(tp);
2932 }
2933
2934 /*
2935 * Note the amount of data that peer has sent into
2936 * our window, in order to estimate the sender's
2937 * buffer size.
2938 */
2939 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2940 } else {
2941 m_freem(m);
2942 m = NULL;
2943 tiflags &= ~TH_FIN;
2944 }
2945
2946 /*
2947 * If FIN is received ACK the FIN and let the user know
2948 * that the connection is closing. Ignore a FIN received before
2949 * the connection is fully established.
2950 */
2951 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2952 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2953 socantrcvmore(so);
2954 tp->t_flags |= TF_ACKNOW;
2955 tp->rcv_nxt++;
2956 }
2957 switch (tp->t_state) {
2958
2959 /*
2960 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2961 */
2962 case TCPS_ESTABLISHED:
2963 tp->t_state = TCPS_CLOSE_WAIT;
2964 break;
2965
2966 /*
2967 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2968 * enter the CLOSING state.
2969 */
2970 case TCPS_FIN_WAIT_1:
2971 tp->t_state = TCPS_CLOSING;
2972 break;
2973
2974 /*
2975 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2976 * starting the time-wait timer, turning off the other
2977 * standard timers.
2978 */
2979 case TCPS_FIN_WAIT_2:
2980 tp->t_state = TCPS_TIME_WAIT;
2981 tcp_canceltimers(tp);
2982 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2983 soisdisconnected(so);
2984 break;
2985
2986 /*
2987 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2988 */
2989 case TCPS_TIME_WAIT:
2990 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2991 break;
2992 }
2993 }
2994 #ifdef TCP_DEBUG
2995 if (so->so_options & SO_DEBUG)
2996 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2997 #endif
2998
2999 /*
3000 * Return any desired output.
3001 */
3002 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3003 KERNEL_LOCK(1, NULL);
3004 (void) tcp_output(tp);
3005 KERNEL_UNLOCK_ONE(NULL);
3006 }
3007 if (tcp_saveti)
3008 m_freem(tcp_saveti);
3009
3010 if (tp->t_state == TCPS_TIME_WAIT
3011 && (so->so_state & SS_NOFDREF)
3012 && (tp->t_inpcb || af != AF_INET)
3013 && (tp->t_in6pcb || af != AF_INET6)
3014 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3015 && TAILQ_EMPTY(&tp->segq)
3016 && vtw_add(af, tp)) {
3017 ;
3018 }
3019 return;
3020
3021 badsyn:
3022 /*
3023 * Received a bad SYN. Increment counters and dropwithreset.
3024 */
3025 TCP_STATINC(TCP_STAT_BADSYN);
3026 tp = NULL;
3027 goto dropwithreset;
3028
3029 dropafterack:
3030 /*
3031 * Generate an ACK dropping incoming segment if it occupies
3032 * sequence space, where the ACK reflects our state.
3033 */
3034 if (tiflags & TH_RST)
3035 goto drop;
3036 goto dropafterack2;
3037
3038 dropafterack_ratelim:
3039 /*
3040 * We may want to rate-limit ACKs against SYN/RST attack.
3041 */
3042 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3043 tcp_ackdrop_ppslim) == 0) {
3044 /* XXX stat */
3045 goto drop;
3046 }
3047 /* ...fall into dropafterack2... */
3048
3049 dropafterack2:
3050 m_freem(m);
3051 tp->t_flags |= TF_ACKNOW;
3052 KERNEL_LOCK(1, NULL);
3053 (void) tcp_output(tp);
3054 KERNEL_UNLOCK_ONE(NULL);
3055 if (tcp_saveti)
3056 m_freem(tcp_saveti);
3057 return;
3058
3059 dropwithreset_ratelim:
3060 /*
3061 * We may want to rate-limit RSTs in certain situations,
3062 * particularly if we are sending an RST in response to
3063 * an attempt to connect to or otherwise communicate with
3064 * a port for which we have no socket.
3065 */
3066 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3067 tcp_rst_ppslim) == 0) {
3068 /* XXX stat */
3069 goto drop;
3070 }
3071 /* ...fall into dropwithreset... */
3072
3073 dropwithreset:
3074 /*
3075 * Generate a RST, dropping incoming segment.
3076 * Make ACK acceptable to originator of segment.
3077 */
3078 if (tiflags & TH_RST)
3079 goto drop;
3080
3081 switch (af) {
3082 #ifdef INET6
3083 case AF_INET6:
3084 /* For following calls to tcp_respond */
3085 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3086 goto drop;
3087 break;
3088 #endif /* INET6 */
3089 case AF_INET:
3090 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3091 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3092 goto drop;
3093 }
3094
3095 if (tiflags & TH_ACK)
3096 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3097 else {
3098 if (tiflags & TH_SYN)
3099 tlen++;
3100 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3101 TH_RST|TH_ACK);
3102 }
3103 if (tcp_saveti)
3104 m_freem(tcp_saveti);
3105 return;
3106
3107 badcsum:
3108 drop:
3109 /*
3110 * Drop space held by incoming segment and return.
3111 */
3112 if (tp) {
3113 if (tp->t_inpcb)
3114 so = tp->t_inpcb->inp_socket;
3115 #ifdef INET6
3116 else if (tp->t_in6pcb)
3117 so = tp->t_in6pcb->in6p_socket;
3118 #endif
3119 else
3120 so = NULL;
3121 #ifdef TCP_DEBUG
3122 if (so && (so->so_options & SO_DEBUG) != 0)
3123 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3124 #endif
3125 }
3126 if (tcp_saveti)
3127 m_freem(tcp_saveti);
3128 m_freem(m);
3129 return;
3130 }
3131
3132 #ifdef TCP_SIGNATURE
3133 int
3134 tcp_signature_apply(void *fstate, void *data, u_int len)
3135 {
3136
3137 MD5Update(fstate, (u_char *)data, len);
3138 return (0);
3139 }
3140
3141 struct secasvar *
3142 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3143 {
3144 struct secasvar *sav;
3145 #ifdef FAST_IPSEC
3146 union sockaddr_union dst;
3147 #endif
3148 struct ip *ip;
3149 struct ip6_hdr *ip6;
3150
3151 ip = mtod(m, struct ip *);
3152 switch (ip->ip_v) {
3153 case 4:
3154 ip = mtod(m, struct ip *);
3155 ip6 = NULL;
3156 break;
3157 case 6:
3158 ip = NULL;
3159 ip6 = mtod(m, struct ip6_hdr *);
3160 break;
3161 default:
3162 return (NULL);
3163 }
3164
3165 #ifdef FAST_IPSEC
3166 /* Extract the destination from the IP header in the mbuf. */
3167 memset(&dst, 0, sizeof(union sockaddr_union));
3168 if (ip !=NULL) {
3169 dst.sa.sa_len = sizeof(struct sockaddr_in);
3170 dst.sa.sa_family = AF_INET;
3171 dst.sin.sin_addr = ip->ip_dst;
3172 } else {
3173 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3174 dst.sa.sa_family = AF_INET6;
3175 dst.sin6.sin6_addr = ip6->ip6_dst;
3176 }
3177
3178 /*
3179 * Look up an SADB entry which matches the address of the peer.
3180 */
3181 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
3182 #else
3183 if (ip)
3184 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
3185 (void *)&ip->ip_dst, IPPROTO_TCP,
3186 htonl(TCP_SIG_SPI), 0, 0);
3187 else
3188 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
3189 (void *)&ip6->ip6_dst, IPPROTO_TCP,
3190 htonl(TCP_SIG_SPI), 0, 0);
3191 #endif
3192
3193 return (sav); /* freesav must be performed by caller */
3194 }
3195
3196 int
3197 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3198 struct secasvar *sav, char *sig)
3199 {
3200 MD5_CTX ctx;
3201 struct ip *ip;
3202 struct ipovly *ipovly;
3203 struct ip6_hdr *ip6;
3204 struct ippseudo ippseudo;
3205 struct ip6_hdr_pseudo ip6pseudo;
3206 struct tcphdr th0;
3207 int l, tcphdrlen;
3208
3209 if (sav == NULL)
3210 return (-1);
3211
3212 tcphdrlen = th->th_off * 4;
3213
3214 switch (mtod(m, struct ip *)->ip_v) {
3215 case 4:
3216 ip = mtod(m, struct ip *);
3217 ip6 = NULL;
3218 break;
3219 case 6:
3220 ip = NULL;
3221 ip6 = mtod(m, struct ip6_hdr *);
3222 break;
3223 default:
3224 return (-1);
3225 }
3226
3227 MD5Init(&ctx);
3228
3229 if (ip) {
3230 memset(&ippseudo, 0, sizeof(ippseudo));
3231 ipovly = (struct ipovly *)ip;
3232 ippseudo.ippseudo_src = ipovly->ih_src;
3233 ippseudo.ippseudo_dst = ipovly->ih_dst;
3234 ippseudo.ippseudo_pad = 0;
3235 ippseudo.ippseudo_p = IPPROTO_TCP;
3236 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3237 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3238 } else {
3239 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3240 ip6pseudo.ip6ph_src = ip6->ip6_src;
3241 in6_clearscope(&ip6pseudo.ip6ph_src);
3242 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3243 in6_clearscope(&ip6pseudo.ip6ph_dst);
3244 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3245 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3246 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3247 }
3248
3249 th0 = *th;
3250 th0.th_sum = 0;
3251 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3252
3253 l = m->m_pkthdr.len - thoff - tcphdrlen;
3254 if (l > 0)
3255 m_apply(m, thoff + tcphdrlen,
3256 m->m_pkthdr.len - thoff - tcphdrlen,
3257 tcp_signature_apply, &ctx);
3258
3259 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3260 MD5Final(sig, &ctx);
3261
3262 return (0);
3263 }
3264 #endif
3265
3266 /*
3267 * tcp_dooptions: parse and process tcp options.
3268 *
3269 * returns -1 if this segment should be dropped. (eg. wrong signature)
3270 * otherwise returns 0.
3271 */
3272
3273 static int
3274 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3275 struct tcphdr *th,
3276 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3277 {
3278 u_int16_t mss;
3279 int opt, optlen = 0;
3280 #ifdef TCP_SIGNATURE
3281 void *sigp = NULL;
3282 char sigbuf[TCP_SIGLEN];
3283 struct secasvar *sav = NULL;
3284 #endif
3285
3286 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3287 opt = cp[0];
3288 if (opt == TCPOPT_EOL)
3289 break;
3290 if (opt == TCPOPT_NOP)
3291 optlen = 1;
3292 else {
3293 if (cnt < 2)
3294 break;
3295 optlen = cp[1];
3296 if (optlen < 2 || optlen > cnt)
3297 break;
3298 }
3299 switch (opt) {
3300
3301 default:
3302 continue;
3303
3304 case TCPOPT_MAXSEG:
3305 if (optlen != TCPOLEN_MAXSEG)
3306 continue;
3307 if (!(th->th_flags & TH_SYN))
3308 continue;
3309 if (TCPS_HAVERCVDSYN(tp->t_state))
3310 continue;
3311 bcopy(cp + 2, &mss, sizeof(mss));
3312 oi->maxseg = ntohs(mss);
3313 break;
3314
3315 case TCPOPT_WINDOW:
3316 if (optlen != TCPOLEN_WINDOW)
3317 continue;
3318 if (!(th->th_flags & TH_SYN))
3319 continue;
3320 if (TCPS_HAVERCVDSYN(tp->t_state))
3321 continue;
3322 tp->t_flags |= TF_RCVD_SCALE;
3323 tp->requested_s_scale = cp[2];
3324 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3325 #if 0 /*XXX*/
3326 char *p;
3327
3328 if (ip)
3329 p = ntohl(ip->ip_src);
3330 #ifdef INET6
3331 else if (ip6)
3332 p = ip6_sprintf(&ip6->ip6_src);
3333 #endif
3334 else
3335 p = "(unknown)";
3336 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3337 "assuming %d\n",
3338 tp->requested_s_scale, p,
3339 TCP_MAX_WINSHIFT);
3340 #else
3341 log(LOG_ERR, "TCP: invalid wscale %d, "
3342 "assuming %d\n",
3343 tp->requested_s_scale,
3344 TCP_MAX_WINSHIFT);
3345 #endif
3346 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3347 }
3348 break;
3349
3350 case TCPOPT_TIMESTAMP:
3351 if (optlen != TCPOLEN_TIMESTAMP)
3352 continue;
3353 oi->ts_present = 1;
3354 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3355 NTOHL(oi->ts_val);
3356 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3357 NTOHL(oi->ts_ecr);
3358
3359 if (!(th->th_flags & TH_SYN))
3360 continue;
3361 if (TCPS_HAVERCVDSYN(tp->t_state))
3362 continue;
3363 /*
3364 * A timestamp received in a SYN makes
3365 * it ok to send timestamp requests and replies.
3366 */
3367 tp->t_flags |= TF_RCVD_TSTMP;
3368 tp->ts_recent = oi->ts_val;
3369 tp->ts_recent_age = tcp_now;
3370 break;
3371
3372 case TCPOPT_SACK_PERMITTED:
3373 if (optlen != TCPOLEN_SACK_PERMITTED)
3374 continue;
3375 if (!(th->th_flags & TH_SYN))
3376 continue;
3377 if (TCPS_HAVERCVDSYN(tp->t_state))
3378 continue;
3379 if (tcp_do_sack) {
3380 tp->t_flags |= TF_SACK_PERMIT;
3381 tp->t_flags |= TF_WILL_SACK;
3382 }
3383 break;
3384
3385 case TCPOPT_SACK:
3386 tcp_sack_option(tp, th, cp, optlen);
3387 break;
3388 #ifdef TCP_SIGNATURE
3389 case TCPOPT_SIGNATURE:
3390 if (optlen != TCPOLEN_SIGNATURE)
3391 continue;
3392 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3393 return (-1);
3394
3395 sigp = sigbuf;
3396 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3397 tp->t_flags |= TF_SIGNATURE;
3398 break;
3399 #endif
3400 }
3401 }
3402
3403 #ifdef TCP_SIGNATURE
3404 if (tp->t_flags & TF_SIGNATURE) {
3405
3406 sav = tcp_signature_getsav(m, th);
3407
3408 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3409 return (-1);
3410 }
3411
3412 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
3413 if (sav == NULL)
3414 return (-1);
3415 #ifdef FAST_IPSEC
3416 KEY_FREESAV(&sav);
3417 #else
3418 key_freesav(sav);
3419 #endif
3420 return (-1);
3421 }
3422
3423 if (sigp) {
3424 char sig[TCP_SIGLEN];
3425
3426 tcp_fields_to_net(th);
3427 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3428 tcp_fields_to_host(th);
3429 if (sav == NULL)
3430 return (-1);
3431 #ifdef FAST_IPSEC
3432 KEY_FREESAV(&sav);
3433 #else
3434 key_freesav(sav);
3435 #endif
3436 return (-1);
3437 }
3438 tcp_fields_to_host(th);
3439
3440 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3441 TCP_STATINC(TCP_STAT_BADSIG);
3442 if (sav == NULL)
3443 return (-1);
3444 #ifdef FAST_IPSEC
3445 KEY_FREESAV(&sav);
3446 #else
3447 key_freesav(sav);
3448 #endif
3449 return (-1);
3450 } else
3451 TCP_STATINC(TCP_STAT_GOODSIG);
3452
3453 key_sa_recordxfer(sav, m);
3454 #ifdef FAST_IPSEC
3455 KEY_FREESAV(&sav);
3456 #else
3457 key_freesav(sav);
3458 #endif
3459 }
3460 #endif
3461
3462 return (0);
3463 }
3464
3465 /*
3466 * Pull out of band byte out of a segment so
3467 * it doesn't appear in the user's data queue.
3468 * It is still reflected in the segment length for
3469 * sequencing purposes.
3470 */
3471 void
3472 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3473 struct mbuf *m, int off)
3474 {
3475 int cnt = off + th->th_urp - 1;
3476
3477 while (cnt >= 0) {
3478 if (m->m_len > cnt) {
3479 char *cp = mtod(m, char *) + cnt;
3480 struct tcpcb *tp = sototcpcb(so);
3481
3482 tp->t_iobc = *cp;
3483 tp->t_oobflags |= TCPOOB_HAVEDATA;
3484 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3485 m->m_len--;
3486 return;
3487 }
3488 cnt -= m->m_len;
3489 m = m->m_next;
3490 if (m == 0)
3491 break;
3492 }
3493 panic("tcp_pulloutofband");
3494 }
3495
3496 /*
3497 * Collect new round-trip time estimate
3498 * and update averages and current timeout.
3499 *
3500 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3501 * difference of two timestamps.
3502 */
3503 void
3504 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3505 {
3506 int32_t delta;
3507
3508 TCP_STATINC(TCP_STAT_RTTUPDATED);
3509 if (tp->t_srtt != 0) {
3510 /*
3511 * Compute the amount to add to srtt for smoothing,
3512 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3513 * srtt is stored in 1/32 slow ticks, we conceptually
3514 * shift left 5 bits, subtract srtt to get the
3515 * diference, and then shift right by TCP_RTT_SHIFT
3516 * (3) to obtain 1/8 of the difference.
3517 */
3518 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3519 /*
3520 * This can never happen, because delta's lowest
3521 * possible value is 1/8 of t_srtt. But if it does,
3522 * set srtt to some reasonable value, here chosen
3523 * as 1/8 tick.
3524 */
3525 if ((tp->t_srtt += delta) <= 0)
3526 tp->t_srtt = 1 << 2;
3527 /*
3528 * RFC2988 requires that rttvar be updated first.
3529 * This code is compliant because "delta" is the old
3530 * srtt minus the new observation (scaled).
3531 *
3532 * RFC2988 says:
3533 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3534 *
3535 * delta is in units of 1/32 ticks, and has then been
3536 * divided by 8. This is equivalent to being in 1/16s
3537 * units and divided by 4. Subtract from it 1/4 of
3538 * the existing rttvar to form the (signed) amount to
3539 * adjust.
3540 */
3541 if (delta < 0)
3542 delta = -delta;
3543 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3544 /*
3545 * As with srtt, this should never happen. There is
3546 * no support in RFC2988 for this operation. But 1/4s
3547 * as rttvar when faced with something arguably wrong
3548 * is ok.
3549 */
3550 if ((tp->t_rttvar += delta) <= 0)
3551 tp->t_rttvar = 1 << 2;
3552
3553 /*
3554 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3555 * Problem is: it doesn't work. Disabled by defaulting
3556 * tcp_rttlocal to 0; see corresponding code in
3557 * tcp_subr that selects local vs remote in a different way.
3558 *
3559 * The static branch prediction hint here should be removed
3560 * when the rtt estimator is fixed and the rtt_enable code
3561 * is turned back on.
3562 */
3563 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3564 && tp->t_srtt > tcp_msl_remote_threshold
3565 && tp->t_msl < tcp_msl_remote) {
3566 tp->t_msl = tcp_msl_remote;
3567 }
3568 } else {
3569 /*
3570 * This is the first measurement. Per RFC2988, 2.2,
3571 * set rtt=R and srtt=R/2.
3572 * For srtt, storage representation is 1/32 ticks,
3573 * so shift left by 5.
3574 * For rttvar, storage representation is 1/16 ticks,
3575 * So shift left by 4, but then right by 1 to halve.
3576 */
3577 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3578 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3579 }
3580 tp->t_rtttime = 0;
3581 tp->t_rxtshift = 0;
3582
3583 /*
3584 * the retransmit should happen at rtt + 4 * rttvar.
3585 * Because of the way we do the smoothing, srtt and rttvar
3586 * will each average +1/2 tick of bias. When we compute
3587 * the retransmit timer, we want 1/2 tick of rounding and
3588 * 1 extra tick because of +-1/2 tick uncertainty in the
3589 * firing of the timer. The bias will give us exactly the
3590 * 1.5 tick we need. But, because the bias is
3591 * statistical, we have to test that we don't drop below
3592 * the minimum feasible timer (which is 2 ticks).
3593 */
3594 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3595 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3596
3597 /*
3598 * We received an ack for a packet that wasn't retransmitted;
3599 * it is probably safe to discard any error indications we've
3600 * received recently. This isn't quite right, but close enough
3601 * for now (a route might have failed after we sent a segment,
3602 * and the return path might not be symmetrical).
3603 */
3604 tp->t_softerror = 0;
3605 }
3606
3607
3608 /*
3609 * TCP compressed state engine. Currently used to hold compressed
3610 * state for SYN_RECEIVED.
3611 */
3612
3613 u_long syn_cache_count;
3614 u_int32_t syn_hash1, syn_hash2;
3615
3616 #define SYN_HASH(sa, sp, dp) \
3617 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3618 ((u_int32_t)(sp)))^syn_hash2)))
3619 #ifndef INET6
3620 #define SYN_HASHALL(hash, src, dst) \
3621 do { \
3622 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3623 ((const struct sockaddr_in *)(src))->sin_port, \
3624 ((const struct sockaddr_in *)(dst))->sin_port); \
3625 } while (/*CONSTCOND*/ 0)
3626 #else
3627 #define SYN_HASH6(sa, sp, dp) \
3628 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3629 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3630 & 0x7fffffff)
3631
3632 #define SYN_HASHALL(hash, src, dst) \
3633 do { \
3634 switch ((src)->sa_family) { \
3635 case AF_INET: \
3636 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3637 ((const struct sockaddr_in *)(src))->sin_port, \
3638 ((const struct sockaddr_in *)(dst))->sin_port); \
3639 break; \
3640 case AF_INET6: \
3641 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3642 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3643 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3644 break; \
3645 default: \
3646 hash = 0; \
3647 } \
3648 } while (/*CONSTCOND*/0)
3649 #endif /* INET6 */
3650
3651 static struct pool syn_cache_pool;
3652
3653 /*
3654 * We don't estimate RTT with SYNs, so each packet starts with the default
3655 * RTT and each timer step has a fixed timeout value.
3656 */
3657 #define SYN_CACHE_TIMER_ARM(sc) \
3658 do { \
3659 TCPT_RANGESET((sc)->sc_rxtcur, \
3660 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3661 TCPTV_REXMTMAX); \
3662 callout_reset(&(sc)->sc_timer, \
3663 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3664 } while (/*CONSTCOND*/0)
3665
3666 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3667
3668 static inline void
3669 syn_cache_rm(struct syn_cache *sc)
3670 {
3671 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3672 sc, sc_bucketq);
3673 sc->sc_tp = NULL;
3674 LIST_REMOVE(sc, sc_tpq);
3675 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3676 callout_stop(&sc->sc_timer);
3677 syn_cache_count--;
3678 }
3679
3680 static inline void
3681 syn_cache_put(struct syn_cache *sc)
3682 {
3683 if (sc->sc_ipopts)
3684 (void) m_free(sc->sc_ipopts);
3685 rtcache_free(&sc->sc_route);
3686 sc->sc_flags |= SCF_DEAD;
3687 if (!callout_invoking(&sc->sc_timer))
3688 callout_schedule(&(sc)->sc_timer, 1);
3689 }
3690
3691 void
3692 syn_cache_init(void)
3693 {
3694 int i;
3695
3696 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3697 "synpl", NULL, IPL_SOFTNET);
3698
3699 /* Initialize the hash buckets. */
3700 for (i = 0; i < tcp_syn_cache_size; i++)
3701 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3702 }
3703
3704 void
3705 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3706 {
3707 struct syn_cache_head *scp;
3708 struct syn_cache *sc2;
3709 int s;
3710
3711 /*
3712 * If there are no entries in the hash table, reinitialize
3713 * the hash secrets.
3714 */
3715 if (syn_cache_count == 0) {
3716 syn_hash1 = arc4random();
3717 syn_hash2 = arc4random();
3718 }
3719
3720 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3721 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3722 scp = &tcp_syn_cache[sc->sc_bucketidx];
3723
3724 /*
3725 * Make sure that we don't overflow the per-bucket
3726 * limit or the total cache size limit.
3727 */
3728 s = splsoftnet();
3729 if (scp->sch_length >= tcp_syn_bucket_limit) {
3730 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3731 /*
3732 * The bucket is full. Toss the oldest element in the
3733 * bucket. This will be the first entry in the bucket.
3734 */
3735 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3736 #ifdef DIAGNOSTIC
3737 /*
3738 * This should never happen; we should always find an
3739 * entry in our bucket.
3740 */
3741 if (sc2 == NULL)
3742 panic("syn_cache_insert: bucketoverflow: impossible");
3743 #endif
3744 syn_cache_rm(sc2);
3745 syn_cache_put(sc2); /* calls pool_put but see spl above */
3746 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3747 struct syn_cache_head *scp2, *sce;
3748
3749 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3750 /*
3751 * The cache is full. Toss the oldest entry in the
3752 * first non-empty bucket we can find.
3753 *
3754 * XXX We would really like to toss the oldest
3755 * entry in the cache, but we hope that this
3756 * condition doesn't happen very often.
3757 */
3758 scp2 = scp;
3759 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3760 sce = &tcp_syn_cache[tcp_syn_cache_size];
3761 for (++scp2; scp2 != scp; scp2++) {
3762 if (scp2 >= sce)
3763 scp2 = &tcp_syn_cache[0];
3764 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3765 break;
3766 }
3767 #ifdef DIAGNOSTIC
3768 /*
3769 * This should never happen; we should always find a
3770 * non-empty bucket.
3771 */
3772 if (scp2 == scp)
3773 panic("syn_cache_insert: cacheoverflow: "
3774 "impossible");
3775 #endif
3776 }
3777 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3778 syn_cache_rm(sc2);
3779 syn_cache_put(sc2); /* calls pool_put but see spl above */
3780 }
3781
3782 /*
3783 * Initialize the entry's timer.
3784 */
3785 sc->sc_rxttot = 0;
3786 sc->sc_rxtshift = 0;
3787 SYN_CACHE_TIMER_ARM(sc);
3788
3789 /* Link it from tcpcb entry */
3790 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3791
3792 /* Put it into the bucket. */
3793 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3794 scp->sch_length++;
3795 syn_cache_count++;
3796
3797 TCP_STATINC(TCP_STAT_SC_ADDED);
3798 splx(s);
3799 }
3800
3801 /*
3802 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3803 * If we have retransmitted an entry the maximum number of times, expire
3804 * that entry.
3805 */
3806 void
3807 syn_cache_timer(void *arg)
3808 {
3809 struct syn_cache *sc = arg;
3810
3811 mutex_enter(softnet_lock);
3812 KERNEL_LOCK(1, NULL);
3813 callout_ack(&sc->sc_timer);
3814
3815 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3816 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3817 callout_destroy(&sc->sc_timer);
3818 pool_put(&syn_cache_pool, sc);
3819 KERNEL_UNLOCK_ONE(NULL);
3820 mutex_exit(softnet_lock);
3821 return;
3822 }
3823
3824 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3825 /* Drop it -- too many retransmissions. */
3826 goto dropit;
3827 }
3828
3829 /*
3830 * Compute the total amount of time this entry has
3831 * been on a queue. If this entry has been on longer
3832 * than the keep alive timer would allow, expire it.
3833 */
3834 sc->sc_rxttot += sc->sc_rxtcur;
3835 if (sc->sc_rxttot >= tcp_keepinit)
3836 goto dropit;
3837
3838 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3839 (void) syn_cache_respond(sc, NULL);
3840
3841 /* Advance the timer back-off. */
3842 sc->sc_rxtshift++;
3843 SYN_CACHE_TIMER_ARM(sc);
3844
3845 KERNEL_UNLOCK_ONE(NULL);
3846 mutex_exit(softnet_lock);
3847 return;
3848
3849 dropit:
3850 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3851 syn_cache_rm(sc);
3852 if (sc->sc_ipopts)
3853 (void) m_free(sc->sc_ipopts);
3854 rtcache_free(&sc->sc_route);
3855 callout_destroy(&sc->sc_timer);
3856 pool_put(&syn_cache_pool, sc);
3857 KERNEL_UNLOCK_ONE(NULL);
3858 mutex_exit(softnet_lock);
3859 }
3860
3861 /*
3862 * Remove syn cache created by the specified tcb entry,
3863 * because this does not make sense to keep them
3864 * (if there's no tcb entry, syn cache entry will never be used)
3865 */
3866 void
3867 syn_cache_cleanup(struct tcpcb *tp)
3868 {
3869 struct syn_cache *sc, *nsc;
3870 int s;
3871
3872 s = splsoftnet();
3873
3874 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3875 nsc = LIST_NEXT(sc, sc_tpq);
3876
3877 #ifdef DIAGNOSTIC
3878 if (sc->sc_tp != tp)
3879 panic("invalid sc_tp in syn_cache_cleanup");
3880 #endif
3881 syn_cache_rm(sc);
3882 syn_cache_put(sc); /* calls pool_put but see spl above */
3883 }
3884 /* just for safety */
3885 LIST_INIT(&tp->t_sc);
3886
3887 splx(s);
3888 }
3889
3890 /*
3891 * Find an entry in the syn cache.
3892 */
3893 struct syn_cache *
3894 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3895 struct syn_cache_head **headp)
3896 {
3897 struct syn_cache *sc;
3898 struct syn_cache_head *scp;
3899 u_int32_t hash;
3900 int s;
3901
3902 SYN_HASHALL(hash, src, dst);
3903
3904 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3905 *headp = scp;
3906 s = splsoftnet();
3907 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3908 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3909 if (sc->sc_hash != hash)
3910 continue;
3911 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3912 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3913 splx(s);
3914 return (sc);
3915 }
3916 }
3917 splx(s);
3918 return (NULL);
3919 }
3920
3921 /*
3922 * This function gets called when we receive an ACK for a
3923 * socket in the LISTEN state. We look up the connection
3924 * in the syn cache, and if its there, we pull it out of
3925 * the cache and turn it into a full-blown connection in
3926 * the SYN-RECEIVED state.
3927 *
3928 * The return values may not be immediately obvious, and their effects
3929 * can be subtle, so here they are:
3930 *
3931 * NULL SYN was not found in cache; caller should drop the
3932 * packet and send an RST.
3933 *
3934 * -1 We were unable to create the new connection, and are
3935 * aborting it. An ACK,RST is being sent to the peer
3936 * (unless we got screwey sequence numbners; see below),
3937 * because the 3-way handshake has been completed. Caller
3938 * should not free the mbuf, since we may be using it. If
3939 * we are not, we will free it.
3940 *
3941 * Otherwise, the return value is a pointer to the new socket
3942 * associated with the connection.
3943 */
3944 struct socket *
3945 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3946 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3947 struct socket *so, struct mbuf *m)
3948 {
3949 struct syn_cache *sc;
3950 struct syn_cache_head *scp;
3951 struct inpcb *inp = NULL;
3952 #ifdef INET6
3953 struct in6pcb *in6p = NULL;
3954 #endif
3955 struct tcpcb *tp = 0;
3956 struct mbuf *am;
3957 int s;
3958 struct socket *oso;
3959
3960 s = splsoftnet();
3961 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3962 splx(s);
3963 return (NULL);
3964 }
3965
3966 /*
3967 * Verify the sequence and ack numbers. Try getting the correct
3968 * response again.
3969 */
3970 if ((th->th_ack != sc->sc_iss + 1) ||
3971 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3972 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3973 (void) syn_cache_respond(sc, m);
3974 splx(s);
3975 return ((struct socket *)(-1));
3976 }
3977
3978 /* Remove this cache entry */
3979 syn_cache_rm(sc);
3980 splx(s);
3981
3982 /*
3983 * Ok, create the full blown connection, and set things up
3984 * as they would have been set up if we had created the
3985 * connection when the SYN arrived. If we can't create
3986 * the connection, abort it.
3987 */
3988 /*
3989 * inp still has the OLD in_pcb stuff, set the
3990 * v6-related flags on the new guy, too. This is
3991 * done particularly for the case where an AF_INET6
3992 * socket is bound only to a port, and a v4 connection
3993 * comes in on that port.
3994 * we also copy the flowinfo from the original pcb
3995 * to the new one.
3996 */
3997 oso = so;
3998 so = sonewconn(so, SS_ISCONNECTED);
3999 if (so == NULL)
4000 goto resetandabort;
4001
4002 switch (so->so_proto->pr_domain->dom_family) {
4003 #ifdef INET
4004 case AF_INET:
4005 inp = sotoinpcb(so);
4006 break;
4007 #endif
4008 #ifdef INET6
4009 case AF_INET6:
4010 in6p = sotoin6pcb(so);
4011 break;
4012 #endif
4013 }
4014 switch (src->sa_family) {
4015 #ifdef INET
4016 case AF_INET:
4017 if (inp) {
4018 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
4019 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
4020 inp->inp_options = ip_srcroute();
4021 in_pcbstate(inp, INP_BOUND);
4022 if (inp->inp_options == NULL) {
4023 inp->inp_options = sc->sc_ipopts;
4024 sc->sc_ipopts = NULL;
4025 }
4026 }
4027 #ifdef INET6
4028 else if (in6p) {
4029 /* IPv4 packet to AF_INET6 socket */
4030 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4031 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4032 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4033 &in6p->in6p_laddr.s6_addr32[3],
4034 sizeof(((struct sockaddr_in *)dst)->sin_addr));
4035 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4036 in6totcpcb(in6p)->t_family = AF_INET;
4037 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4038 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4039 else
4040 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4041 in6_pcbstate(in6p, IN6P_BOUND);
4042 }
4043 #endif
4044 break;
4045 #endif
4046 #ifdef INET6
4047 case AF_INET6:
4048 if (in6p) {
4049 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4050 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4051 in6_pcbstate(in6p, IN6P_BOUND);
4052 }
4053 break;
4054 #endif
4055 }
4056 #ifdef INET6
4057 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4058 struct in6pcb *oin6p = sotoin6pcb(oso);
4059 /* inherit socket options from the listening socket */
4060 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4061 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4062 m_freem(in6p->in6p_options);
4063 in6p->in6p_options = 0;
4064 }
4065 ip6_savecontrol(in6p, &in6p->in6p_options,
4066 mtod(m, struct ip6_hdr *), m);
4067 }
4068 #endif
4069
4070 #if defined(IPSEC) || defined(FAST_IPSEC)
4071 /*
4072 * we make a copy of policy, instead of sharing the policy,
4073 * for better behavior in terms of SA lookup and dead SA removal.
4074 */
4075 if (inp) {
4076 /* copy old policy into new socket's */
4077 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
4078 printf("tcp_input: could not copy policy\n");
4079 }
4080 #ifdef INET6
4081 else if (in6p) {
4082 /* copy old policy into new socket's */
4083 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4084 in6p->in6p_sp))
4085 printf("tcp_input: could not copy policy\n");
4086 }
4087 #endif
4088 #endif
4089
4090 /*
4091 * Give the new socket our cached route reference.
4092 */
4093 if (inp) {
4094 rtcache_copy(&inp->inp_route, &sc->sc_route);
4095 rtcache_free(&sc->sc_route);
4096 }
4097 #ifdef INET6
4098 else {
4099 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4100 rtcache_free(&sc->sc_route);
4101 }
4102 #endif
4103
4104 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
4105 if (am == NULL)
4106 goto resetandabort;
4107 MCLAIM(am, &tcp_mowner);
4108 am->m_len = src->sa_len;
4109 bcopy(src, mtod(am, void *), src->sa_len);
4110 if (inp) {
4111 if (in_pcbconnect(inp, am, &lwp0)) {
4112 (void) m_free(am);
4113 goto resetandabort;
4114 }
4115 }
4116 #ifdef INET6
4117 else if (in6p) {
4118 if (src->sa_family == AF_INET) {
4119 /* IPv4 packet to AF_INET6 socket */
4120 struct sockaddr_in6 *sin6;
4121 sin6 = mtod(am, struct sockaddr_in6 *);
4122 am->m_len = sizeof(*sin6);
4123 memset(sin6, 0, sizeof(*sin6));
4124 sin6->sin6_family = AF_INET6;
4125 sin6->sin6_len = sizeof(*sin6);
4126 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
4127 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
4128 bcopy(&((struct sockaddr_in *)src)->sin_addr,
4129 &sin6->sin6_addr.s6_addr32[3],
4130 sizeof(sin6->sin6_addr.s6_addr32[3]));
4131 }
4132 if (in6_pcbconnect(in6p, am, NULL)) {
4133 (void) m_free(am);
4134 goto resetandabort;
4135 }
4136 }
4137 #endif
4138 else {
4139 (void) m_free(am);
4140 goto resetandabort;
4141 }
4142 (void) m_free(am);
4143
4144 if (inp)
4145 tp = intotcpcb(inp);
4146 #ifdef INET6
4147 else if (in6p)
4148 tp = in6totcpcb(in6p);
4149 #endif
4150 else
4151 tp = NULL;
4152 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4153 if (sc->sc_request_r_scale != 15) {
4154 tp->requested_s_scale = sc->sc_requested_s_scale;
4155 tp->request_r_scale = sc->sc_request_r_scale;
4156 tp->snd_scale = sc->sc_requested_s_scale;
4157 tp->rcv_scale = sc->sc_request_r_scale;
4158 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4159 }
4160 if (sc->sc_flags & SCF_TIMESTAMP)
4161 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4162 tp->ts_timebase = sc->sc_timebase;
4163
4164 tp->t_template = tcp_template(tp);
4165 if (tp->t_template == 0) {
4166 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
4167 so = NULL;
4168 m_freem(m);
4169 goto abort;
4170 }
4171
4172 tp->iss = sc->sc_iss;
4173 tp->irs = sc->sc_irs;
4174 tcp_sendseqinit(tp);
4175 tcp_rcvseqinit(tp);
4176 tp->t_state = TCPS_SYN_RECEIVED;
4177 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4178 TCP_STATINC(TCP_STAT_ACCEPTS);
4179
4180 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4181 tp->t_flags |= TF_WILL_SACK;
4182
4183 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4184 tp->t_flags |= TF_ECN_PERMIT;
4185
4186 #ifdef TCP_SIGNATURE
4187 if (sc->sc_flags & SCF_SIGNATURE)
4188 tp->t_flags |= TF_SIGNATURE;
4189 #endif
4190
4191 /* Initialize tp->t_ourmss before we deal with the peer's! */
4192 tp->t_ourmss = sc->sc_ourmaxseg;
4193 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4194
4195 /*
4196 * Initialize the initial congestion window. If we
4197 * had to retransmit the SYN,ACK, we must initialize cwnd
4198 * to 1 segment (i.e. the Loss Window).
4199 */
4200 if (sc->sc_rxtshift)
4201 tp->snd_cwnd = tp->t_peermss;
4202 else {
4203 int ss = tcp_init_win;
4204 #ifdef INET
4205 if (inp != NULL && in_localaddr(inp->inp_faddr))
4206 ss = tcp_init_win_local;
4207 #endif
4208 #ifdef INET6
4209 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4210 ss = tcp_init_win_local;
4211 #endif
4212 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4213 }
4214
4215 tcp_rmx_rtt(tp);
4216 tp->snd_wl1 = sc->sc_irs;
4217 tp->rcv_up = sc->sc_irs + 1;
4218
4219 /*
4220 * This is what whould have happened in tcp_output() when
4221 * the SYN,ACK was sent.
4222 */
4223 tp->snd_up = tp->snd_una;
4224 tp->snd_max = tp->snd_nxt = tp->iss+1;
4225 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4226 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4227 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4228 tp->last_ack_sent = tp->rcv_nxt;
4229 tp->t_partialacks = -1;
4230 tp->t_dupacks = 0;
4231
4232 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4233 s = splsoftnet();
4234 syn_cache_put(sc);
4235 splx(s);
4236 return (so);
4237
4238 resetandabort:
4239 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4240 abort:
4241 if (so != NULL) {
4242 (void) soqremque(so, 1);
4243 (void) soabort(so);
4244 mutex_enter(softnet_lock);
4245 }
4246 s = splsoftnet();
4247 syn_cache_put(sc);
4248 splx(s);
4249 TCP_STATINC(TCP_STAT_SC_ABORTED);
4250 return ((struct socket *)(-1));
4251 }
4252
4253 /*
4254 * This function is called when we get a RST for a
4255 * non-existent connection, so that we can see if the
4256 * connection is in the syn cache. If it is, zap it.
4257 */
4258
4259 void
4260 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4261 {
4262 struct syn_cache *sc;
4263 struct syn_cache_head *scp;
4264 int s = splsoftnet();
4265
4266 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4267 splx(s);
4268 return;
4269 }
4270 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4271 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4272 splx(s);
4273 return;
4274 }
4275 syn_cache_rm(sc);
4276 TCP_STATINC(TCP_STAT_SC_RESET);
4277 syn_cache_put(sc); /* calls pool_put but see spl above */
4278 splx(s);
4279 }
4280
4281 void
4282 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4283 struct tcphdr *th)
4284 {
4285 struct syn_cache *sc;
4286 struct syn_cache_head *scp;
4287 int s;
4288
4289 s = splsoftnet();
4290 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4291 splx(s);
4292 return;
4293 }
4294 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4295 if (ntohl (th->th_seq) != sc->sc_iss) {
4296 splx(s);
4297 return;
4298 }
4299
4300 /*
4301 * If we've retransmitted 3 times and this is our second error,
4302 * we remove the entry. Otherwise, we allow it to continue on.
4303 * This prevents us from incorrectly nuking an entry during a
4304 * spurious network outage.
4305 *
4306 * See tcp_notify().
4307 */
4308 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4309 sc->sc_flags |= SCF_UNREACH;
4310 splx(s);
4311 return;
4312 }
4313
4314 syn_cache_rm(sc);
4315 TCP_STATINC(TCP_STAT_SC_UNREACH);
4316 syn_cache_put(sc); /* calls pool_put but see spl above */
4317 splx(s);
4318 }
4319
4320 /*
4321 * Given a LISTEN socket and an inbound SYN request, add
4322 * this to the syn cache, and send back a segment:
4323 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4324 * to the source.
4325 *
4326 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4327 * Doing so would require that we hold onto the data and deliver it
4328 * to the application. However, if we are the target of a SYN-flood
4329 * DoS attack, an attacker could send data which would eventually
4330 * consume all available buffer space if it were ACKed. By not ACKing
4331 * the data, we avoid this DoS scenario.
4332 */
4333
4334 int
4335 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4336 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4337 int optlen, struct tcp_opt_info *oi)
4338 {
4339 struct tcpcb tb, *tp;
4340 long win;
4341 struct syn_cache *sc;
4342 struct syn_cache_head *scp;
4343 struct mbuf *ipopts;
4344 struct tcp_opt_info opti;
4345 int s;
4346
4347 tp = sototcpcb(so);
4348
4349 memset(&opti, 0, sizeof(opti));
4350
4351 /*
4352 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4353 *
4354 * Note this check is performed in tcp_input() very early on.
4355 */
4356
4357 /*
4358 * Initialize some local state.
4359 */
4360 win = sbspace(&so->so_rcv);
4361 if (win > TCP_MAXWIN)
4362 win = TCP_MAXWIN;
4363
4364 switch (src->sa_family) {
4365 #ifdef INET
4366 case AF_INET:
4367 /*
4368 * Remember the IP options, if any.
4369 */
4370 ipopts = ip_srcroute();
4371 break;
4372 #endif
4373 default:
4374 ipopts = NULL;
4375 }
4376
4377 #ifdef TCP_SIGNATURE
4378 if (optp || (tp->t_flags & TF_SIGNATURE))
4379 #else
4380 if (optp)
4381 #endif
4382 {
4383 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4384 #ifdef TCP_SIGNATURE
4385 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4386 #endif
4387 tb.t_state = TCPS_LISTEN;
4388 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4389 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4390 return (0);
4391 } else
4392 tb.t_flags = 0;
4393
4394 /*
4395 * See if we already have an entry for this connection.
4396 * If we do, resend the SYN,ACK. We do not count this
4397 * as a retransmission (XXX though maybe we should).
4398 */
4399 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4400 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4401 if (ipopts) {
4402 /*
4403 * If we were remembering a previous source route,
4404 * forget it and use the new one we've been given.
4405 */
4406 if (sc->sc_ipopts)
4407 (void) m_free(sc->sc_ipopts);
4408 sc->sc_ipopts = ipopts;
4409 }
4410 sc->sc_timestamp = tb.ts_recent;
4411 if (syn_cache_respond(sc, m) == 0) {
4412 uint64_t *tcps = TCP_STAT_GETREF();
4413 tcps[TCP_STAT_SNDACKS]++;
4414 tcps[TCP_STAT_SNDTOTAL]++;
4415 TCP_STAT_PUTREF();
4416 }
4417 return (1);
4418 }
4419
4420 s = splsoftnet();
4421 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4422 splx(s);
4423 if (sc == NULL) {
4424 if (ipopts)
4425 (void) m_free(ipopts);
4426 return (0);
4427 }
4428
4429 /*
4430 * Fill in the cache, and put the necessary IP and TCP
4431 * options into the reply.
4432 */
4433 memset(sc, 0, sizeof(struct syn_cache));
4434 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4435 bcopy(src, &sc->sc_src, src->sa_len);
4436 bcopy(dst, &sc->sc_dst, dst->sa_len);
4437 sc->sc_flags = 0;
4438 sc->sc_ipopts = ipopts;
4439 sc->sc_irs = th->th_seq;
4440 switch (src->sa_family) {
4441 #ifdef INET
4442 case AF_INET:
4443 {
4444 struct sockaddr_in *srcin = (void *) src;
4445 struct sockaddr_in *dstin = (void *) dst;
4446
4447 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4448 &srcin->sin_addr, dstin->sin_port,
4449 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4450 break;
4451 }
4452 #endif /* INET */
4453 #ifdef INET6
4454 case AF_INET6:
4455 {
4456 struct sockaddr_in6 *srcin6 = (void *) src;
4457 struct sockaddr_in6 *dstin6 = (void *) dst;
4458
4459 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4460 &srcin6->sin6_addr, dstin6->sin6_port,
4461 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4462 break;
4463 }
4464 #endif /* INET6 */
4465 }
4466 sc->sc_peermaxseg = oi->maxseg;
4467 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4468 m->m_pkthdr.rcvif : NULL,
4469 sc->sc_src.sa.sa_family);
4470 sc->sc_win = win;
4471 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4472 sc->sc_timestamp = tb.ts_recent;
4473 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4474 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4475 sc->sc_flags |= SCF_TIMESTAMP;
4476 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4477 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4478 sc->sc_requested_s_scale = tb.requested_s_scale;
4479 sc->sc_request_r_scale = 0;
4480 /*
4481 * Pick the smallest possible scaling factor that
4482 * will still allow us to scale up to sb_max.
4483 *
4484 * We do this because there are broken firewalls that
4485 * will corrupt the window scale option, leading to
4486 * the other endpoint believing that our advertised
4487 * window is unscaled. At scale factors larger than
4488 * 5 the unscaled window will drop below 1500 bytes,
4489 * leading to serious problems when traversing these
4490 * broken firewalls.
4491 *
4492 * With the default sbmax of 256K, a scale factor
4493 * of 3 will be chosen by this algorithm. Those who
4494 * choose a larger sbmax should watch out
4495 * for the compatiblity problems mentioned above.
4496 *
4497 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4498 * or <SYN,ACK>) segment itself is never scaled.
4499 */
4500 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4501 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4502 sc->sc_request_r_scale++;
4503 } else {
4504 sc->sc_requested_s_scale = 15;
4505 sc->sc_request_r_scale = 15;
4506 }
4507 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4508 sc->sc_flags |= SCF_SACK_PERMIT;
4509
4510 /*
4511 * ECN setup packet recieved.
4512 */
4513 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4514 sc->sc_flags |= SCF_ECN_PERMIT;
4515
4516 #ifdef TCP_SIGNATURE
4517 if (tb.t_flags & TF_SIGNATURE)
4518 sc->sc_flags |= SCF_SIGNATURE;
4519 #endif
4520 sc->sc_tp = tp;
4521 if (syn_cache_respond(sc, m) == 0) {
4522 uint64_t *tcps = TCP_STAT_GETREF();
4523 tcps[TCP_STAT_SNDACKS]++;
4524 tcps[TCP_STAT_SNDTOTAL]++;
4525 TCP_STAT_PUTREF();
4526 syn_cache_insert(sc, tp);
4527 } else {
4528 s = splsoftnet();
4529 /*
4530 * syn_cache_put() will try to schedule the timer, so
4531 * we need to initialize it
4532 */
4533 SYN_CACHE_TIMER_ARM(sc);
4534 syn_cache_put(sc);
4535 splx(s);
4536 TCP_STATINC(TCP_STAT_SC_DROPPED);
4537 }
4538 return (1);
4539 }
4540
4541 int
4542 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4543 {
4544 #ifdef INET6
4545 struct rtentry *rt;
4546 #endif
4547 struct route *ro;
4548 u_int8_t *optp;
4549 int optlen, error;
4550 u_int16_t tlen;
4551 struct ip *ip = NULL;
4552 #ifdef INET6
4553 struct ip6_hdr *ip6 = NULL;
4554 #endif
4555 struct tcpcb *tp = NULL;
4556 struct tcphdr *th;
4557 u_int hlen;
4558 struct socket *so;
4559
4560 ro = &sc->sc_route;
4561 switch (sc->sc_src.sa.sa_family) {
4562 case AF_INET:
4563 hlen = sizeof(struct ip);
4564 break;
4565 #ifdef INET6
4566 case AF_INET6:
4567 hlen = sizeof(struct ip6_hdr);
4568 break;
4569 #endif
4570 default:
4571 if (m)
4572 m_freem(m);
4573 return (EAFNOSUPPORT);
4574 }
4575
4576 /* Compute the size of the TCP options. */
4577 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4578 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4579 #ifdef TCP_SIGNATURE
4580 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4581 #endif
4582 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4583
4584 tlen = hlen + sizeof(struct tcphdr) + optlen;
4585
4586 /*
4587 * Create the IP+TCP header from scratch.
4588 */
4589 if (m)
4590 m_freem(m);
4591 #ifdef DIAGNOSTIC
4592 if (max_linkhdr + tlen > MCLBYTES)
4593 return (ENOBUFS);
4594 #endif
4595 MGETHDR(m, M_DONTWAIT, MT_DATA);
4596 if (m && (max_linkhdr + tlen) > MHLEN) {
4597 MCLGET(m, M_DONTWAIT);
4598 if ((m->m_flags & M_EXT) == 0) {
4599 m_freem(m);
4600 m = NULL;
4601 }
4602 }
4603 if (m == NULL)
4604 return (ENOBUFS);
4605 MCLAIM(m, &tcp_tx_mowner);
4606
4607 /* Fixup the mbuf. */
4608 m->m_data += max_linkhdr;
4609 m->m_len = m->m_pkthdr.len = tlen;
4610 if (sc->sc_tp) {
4611 tp = sc->sc_tp;
4612 if (tp->t_inpcb)
4613 so = tp->t_inpcb->inp_socket;
4614 #ifdef INET6
4615 else if (tp->t_in6pcb)
4616 so = tp->t_in6pcb->in6p_socket;
4617 #endif
4618 else
4619 so = NULL;
4620 } else
4621 so = NULL;
4622 m->m_pkthdr.rcvif = NULL;
4623 memset(mtod(m, u_char *), 0, tlen);
4624
4625 switch (sc->sc_src.sa.sa_family) {
4626 case AF_INET:
4627 ip = mtod(m, struct ip *);
4628 ip->ip_v = 4;
4629 ip->ip_dst = sc->sc_src.sin.sin_addr;
4630 ip->ip_src = sc->sc_dst.sin.sin_addr;
4631 ip->ip_p = IPPROTO_TCP;
4632 th = (struct tcphdr *)(ip + 1);
4633 th->th_dport = sc->sc_src.sin.sin_port;
4634 th->th_sport = sc->sc_dst.sin.sin_port;
4635 break;
4636 #ifdef INET6
4637 case AF_INET6:
4638 ip6 = mtod(m, struct ip6_hdr *);
4639 ip6->ip6_vfc = IPV6_VERSION;
4640 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4641 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4642 ip6->ip6_nxt = IPPROTO_TCP;
4643 /* ip6_plen will be updated in ip6_output() */
4644 th = (struct tcphdr *)(ip6 + 1);
4645 th->th_dport = sc->sc_src.sin6.sin6_port;
4646 th->th_sport = sc->sc_dst.sin6.sin6_port;
4647 break;
4648 #endif
4649 default:
4650 th = NULL;
4651 }
4652
4653 th->th_seq = htonl(sc->sc_iss);
4654 th->th_ack = htonl(sc->sc_irs + 1);
4655 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4656 th->th_flags = TH_SYN|TH_ACK;
4657 th->th_win = htons(sc->sc_win);
4658 /* th_sum already 0 */
4659 /* th_urp already 0 */
4660
4661 /* Tack on the TCP options. */
4662 optp = (u_int8_t *)(th + 1);
4663 *optp++ = TCPOPT_MAXSEG;
4664 *optp++ = 4;
4665 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4666 *optp++ = sc->sc_ourmaxseg & 0xff;
4667
4668 if (sc->sc_request_r_scale != 15) {
4669 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4670 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4671 sc->sc_request_r_scale);
4672 optp += 4;
4673 }
4674
4675 if (sc->sc_flags & SCF_TIMESTAMP) {
4676 u_int32_t *lp = (u_int32_t *)(optp);
4677 /* Form timestamp option as shown in appendix A of RFC 1323. */
4678 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4679 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4680 *lp = htonl(sc->sc_timestamp);
4681 optp += TCPOLEN_TSTAMP_APPA;
4682 }
4683
4684 if (sc->sc_flags & SCF_SACK_PERMIT) {
4685 u_int8_t *p = optp;
4686
4687 /* Let the peer know that we will SACK. */
4688 p[0] = TCPOPT_SACK_PERMITTED;
4689 p[1] = 2;
4690 p[2] = TCPOPT_NOP;
4691 p[3] = TCPOPT_NOP;
4692 optp += 4;
4693 }
4694
4695 /*
4696 * Send ECN SYN-ACK setup packet.
4697 * Routes can be asymetric, so, even if we receive a packet
4698 * with ECE and CWR set, we must not assume no one will block
4699 * the ECE packet we are about to send.
4700 */
4701 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4702 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4703 th->th_flags |= TH_ECE;
4704 TCP_STATINC(TCP_STAT_ECN_SHS);
4705
4706 /*
4707 * draft-ietf-tcpm-ecnsyn-00.txt
4708 *
4709 * "[...] a TCP node MAY respond to an ECN-setup
4710 * SYN packet by setting ECT in the responding
4711 * ECN-setup SYN/ACK packet, indicating to routers
4712 * that the SYN/ACK packet is ECN-Capable.
4713 * This allows a congested router along the path
4714 * to mark the packet instead of dropping the
4715 * packet as an indication of congestion."
4716 *
4717 * "[...] There can be a great benefit in setting
4718 * an ECN-capable codepoint in SYN/ACK packets [...]
4719 * Congestion is most likely to occur in
4720 * the server-to-client direction. As a result,
4721 * setting an ECN-capable codepoint in SYN/ACK
4722 * packets can reduce the occurence of three-second
4723 * retransmit timeouts resulting from the drop
4724 * of SYN/ACK packets."
4725 *
4726 * Page 4 and 6, January 2006.
4727 */
4728
4729 switch (sc->sc_src.sa.sa_family) {
4730 #ifdef INET
4731 case AF_INET:
4732 ip->ip_tos |= IPTOS_ECN_ECT0;
4733 break;
4734 #endif
4735 #ifdef INET6
4736 case AF_INET6:
4737 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4738 break;
4739 #endif
4740 }
4741 TCP_STATINC(TCP_STAT_ECN_ECT);
4742 }
4743
4744 #ifdef TCP_SIGNATURE
4745 if (sc->sc_flags & SCF_SIGNATURE) {
4746 struct secasvar *sav;
4747 u_int8_t *sigp;
4748
4749 sav = tcp_signature_getsav(m, th);
4750
4751 if (sav == NULL) {
4752 if (m)
4753 m_freem(m);
4754 return (EPERM);
4755 }
4756
4757 *optp++ = TCPOPT_SIGNATURE;
4758 *optp++ = TCPOLEN_SIGNATURE;
4759 sigp = optp;
4760 memset(optp, 0, TCP_SIGLEN);
4761 optp += TCP_SIGLEN;
4762 *optp++ = TCPOPT_NOP;
4763 *optp++ = TCPOPT_EOL;
4764
4765 (void)tcp_signature(m, th, hlen, sav, sigp);
4766
4767 key_sa_recordxfer(sav, m);
4768 #ifdef FAST_IPSEC
4769 KEY_FREESAV(&sav);
4770 #else
4771 key_freesav(sav);
4772 #endif
4773 }
4774 #endif
4775
4776 /* Compute the packet's checksum. */
4777 switch (sc->sc_src.sa.sa_family) {
4778 case AF_INET:
4779 ip->ip_len = htons(tlen - hlen);
4780 th->th_sum = 0;
4781 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4782 break;
4783 #ifdef INET6
4784 case AF_INET6:
4785 ip6->ip6_plen = htons(tlen - hlen);
4786 th->th_sum = 0;
4787 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4788 break;
4789 #endif
4790 }
4791
4792 /*
4793 * Fill in some straggling IP bits. Note the stack expects
4794 * ip_len to be in host order, for convenience.
4795 */
4796 switch (sc->sc_src.sa.sa_family) {
4797 #ifdef INET
4798 case AF_INET:
4799 ip->ip_len = htons(tlen);
4800 ip->ip_ttl = ip_defttl;
4801 /* XXX tos? */
4802 break;
4803 #endif
4804 #ifdef INET6
4805 case AF_INET6:
4806 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4807 ip6->ip6_vfc |= IPV6_VERSION;
4808 ip6->ip6_plen = htons(tlen - hlen);
4809 /* ip6_hlim will be initialized afterwards */
4810 /* XXX flowlabel? */
4811 break;
4812 #endif
4813 }
4814
4815 /* XXX use IPsec policy on listening socket, on SYN ACK */
4816 tp = sc->sc_tp;
4817
4818 switch (sc->sc_src.sa.sa_family) {
4819 #ifdef INET
4820 case AF_INET:
4821 error = ip_output(m, sc->sc_ipopts, ro,
4822 (ip_mtudisc ? IP_MTUDISC : 0),
4823 (struct ip_moptions *)NULL, so);
4824 break;
4825 #endif
4826 #ifdef INET6
4827 case AF_INET6:
4828 ip6->ip6_hlim = in6_selecthlim(NULL,
4829 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4830 : NULL);
4831
4832 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4833 break;
4834 #endif
4835 default:
4836 error = EAFNOSUPPORT;
4837 break;
4838 }
4839 return (error);
4840 }
4841