Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.312
      1 /*	$NetBSD: tcp_input.c,v 1.312 2011/05/03 18:28:45 dyoung Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.312 2011/05/03 18:28:45 dyoung Exp $");
    152 
    153 #include "opt_inet.h"
    154 #include "opt_ipsec.h"
    155 #include "opt_inet_csum.h"
    156 #include "opt_tcp_debug.h"
    157 
    158 #include <sys/param.h>
    159 #include <sys/systm.h>
    160 #include <sys/malloc.h>
    161 #include <sys/mbuf.h>
    162 #include <sys/protosw.h>
    163 #include <sys/socket.h>
    164 #include <sys/socketvar.h>
    165 #include <sys/errno.h>
    166 #include <sys/syslog.h>
    167 #include <sys/pool.h>
    168 #include <sys/domain.h>
    169 #include <sys/kernel.h>
    170 #ifdef TCP_SIGNATURE
    171 #include <sys/md5.h>
    172 #endif
    173 #include <sys/lwp.h> /* for lwp0 */
    174 
    175 #include <net/if.h>
    176 #include <net/route.h>
    177 #include <net/if_types.h>
    178 
    179 #include <netinet/in.h>
    180 #include <netinet/in_systm.h>
    181 #include <netinet/ip.h>
    182 #include <netinet/in_pcb.h>
    183 #include <netinet/in_var.h>
    184 #include <netinet/ip_var.h>
    185 #include <netinet/in_offload.h>
    186 
    187 #ifdef INET6
    188 #ifndef INET
    189 #include <netinet/in.h>
    190 #endif
    191 #include <netinet/ip6.h>
    192 #include <netinet6/ip6_var.h>
    193 #include <netinet6/in6_pcb.h>
    194 #include <netinet6/ip6_var.h>
    195 #include <netinet6/in6_var.h>
    196 #include <netinet/icmp6.h>
    197 #include <netinet6/nd6.h>
    198 #ifdef TCP_SIGNATURE
    199 #include <netinet6/scope6_var.h>
    200 #endif
    201 #endif
    202 
    203 #ifndef INET6
    204 /* always need ip6.h for IP6_EXTHDR_GET */
    205 #include <netinet/ip6.h>
    206 #endif
    207 
    208 #include <netinet/tcp.h>
    209 #include <netinet/tcp_fsm.h>
    210 #include <netinet/tcp_seq.h>
    211 #include <netinet/tcp_timer.h>
    212 #include <netinet/tcp_var.h>
    213 #include <netinet/tcp_private.h>
    214 #include <netinet/tcpip.h>
    215 #include <netinet/tcp_congctl.h>
    216 #include <netinet/tcp_debug.h>
    217 
    218 #include <machine/stdarg.h>
    219 
    220 #ifdef IPSEC
    221 #include <netinet6/ipsec.h>
    222 #include <netinet6/ipsec_private.h>
    223 #include <netkey/key.h>
    224 #endif /*IPSEC*/
    225 #ifdef INET6
    226 #include "faith.h"
    227 #if defined(NFAITH) && NFAITH > 0
    228 #include <net/if_faith.h>
    229 #endif
    230 #endif	/* IPSEC */
    231 
    232 #ifdef FAST_IPSEC
    233 #include <netipsec/ipsec.h>
    234 #include <netipsec/ipsec_var.h>
    235 #include <netipsec/ipsec_private.h>
    236 #include <netipsec/key.h>
    237 #ifdef INET6
    238 #include <netipsec/ipsec6.h>
    239 #endif
    240 #endif	/* FAST_IPSEC*/
    241 
    242 #include <netinet/tcp_vtw.h>
    243 
    244 int	tcprexmtthresh = 3;
    245 int	tcp_log_refused;
    246 
    247 int	tcp_do_autorcvbuf = 1;
    248 int	tcp_autorcvbuf_inc = 16 * 1024;
    249 int	tcp_autorcvbuf_max = 256 * 1024;
    250 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    251 
    252 static int tcp_rst_ppslim_count = 0;
    253 static struct timeval tcp_rst_ppslim_last;
    254 static int tcp_ackdrop_ppslim_count = 0;
    255 static struct timeval tcp_ackdrop_ppslim_last;
    256 
    257 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    258 
    259 /* for modulo comparisons of timestamps */
    260 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    261 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    262 
    263 /*
    264  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    265  */
    266 #ifdef INET6
    267 static inline void
    268 nd6_hint(struct tcpcb *tp)
    269 {
    270 	struct rtentry *rt;
    271 
    272 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    273 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    274 		nd6_nud_hint(rt, NULL, 0);
    275 }
    276 #else
    277 static inline void
    278 nd6_hint(struct tcpcb *tp)
    279 {
    280 }
    281 #endif
    282 
    283 /*
    284  * Compute ACK transmission behavior.  Delay the ACK unless
    285  * we have already delayed an ACK (must send an ACK every two segments).
    286  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    287  * option is enabled.
    288  */
    289 static void
    290 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    291 {
    292 
    293 	if (tp->t_flags & TF_DELACK ||
    294 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    295 		tp->t_flags |= TF_ACKNOW;
    296 	else
    297 		TCP_SET_DELACK(tp);
    298 }
    299 
    300 static void
    301 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    302 {
    303 
    304 	/*
    305 	 * If we had a pending ICMP message that refers to data that have
    306 	 * just been acknowledged, disregard the recorded ICMP message.
    307 	 */
    308 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    309 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    310 		tp->t_flags &= ~TF_PMTUD_PEND;
    311 
    312 	/*
    313 	 * Keep track of the largest chunk of data
    314 	 * acknowledged since last PMTU update
    315 	 */
    316 	if (tp->t_pmtud_mss_acked < acked)
    317 		tp->t_pmtud_mss_acked = acked;
    318 }
    319 
    320 /*
    321  * Convert TCP protocol fields to host order for easier processing.
    322  */
    323 static void
    324 tcp_fields_to_host(struct tcphdr *th)
    325 {
    326 
    327 	NTOHL(th->th_seq);
    328 	NTOHL(th->th_ack);
    329 	NTOHS(th->th_win);
    330 	NTOHS(th->th_urp);
    331 }
    332 
    333 /*
    334  * ... and reverse the above.
    335  */
    336 static void
    337 tcp_fields_to_net(struct tcphdr *th)
    338 {
    339 
    340 	HTONL(th->th_seq);
    341 	HTONL(th->th_ack);
    342 	HTONS(th->th_win);
    343 	HTONS(th->th_urp);
    344 }
    345 
    346 #ifdef TCP_CSUM_COUNTERS
    347 #include <sys/device.h>
    348 
    349 #if defined(INET)
    350 extern struct evcnt tcp_hwcsum_ok;
    351 extern struct evcnt tcp_hwcsum_bad;
    352 extern struct evcnt tcp_hwcsum_data;
    353 extern struct evcnt tcp_swcsum;
    354 #endif /* defined(INET) */
    355 #if defined(INET6)
    356 extern struct evcnt tcp6_hwcsum_ok;
    357 extern struct evcnt tcp6_hwcsum_bad;
    358 extern struct evcnt tcp6_hwcsum_data;
    359 extern struct evcnt tcp6_swcsum;
    360 #endif /* defined(INET6) */
    361 
    362 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    363 
    364 #else
    365 
    366 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    367 
    368 #endif /* TCP_CSUM_COUNTERS */
    369 
    370 #ifdef TCP_REASS_COUNTERS
    371 #include <sys/device.h>
    372 
    373 extern struct evcnt tcp_reass_;
    374 extern struct evcnt tcp_reass_empty;
    375 extern struct evcnt tcp_reass_iteration[8];
    376 extern struct evcnt tcp_reass_prependfirst;
    377 extern struct evcnt tcp_reass_prepend;
    378 extern struct evcnt tcp_reass_insert;
    379 extern struct evcnt tcp_reass_inserttail;
    380 extern struct evcnt tcp_reass_append;
    381 extern struct evcnt tcp_reass_appendtail;
    382 extern struct evcnt tcp_reass_overlaptail;
    383 extern struct evcnt tcp_reass_overlapfront;
    384 extern struct evcnt tcp_reass_segdup;
    385 extern struct evcnt tcp_reass_fragdup;
    386 
    387 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    388 
    389 #else
    390 
    391 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    392 
    393 #endif /* TCP_REASS_COUNTERS */
    394 
    395 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    396     int *);
    397 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    398     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    399 
    400 #ifdef INET
    401 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    402 #endif
    403 #ifdef INET6
    404 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    405 #endif
    406 
    407 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    408 
    409 #if defined(MBUFTRACE)
    410 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    411 #endif /* defined(MBUFTRACE) */
    412 
    413 static struct pool tcpipqent_pool;
    414 
    415 void
    416 tcpipqent_init(void)
    417 {
    418 
    419 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    420 	    NULL, IPL_VM);
    421 }
    422 
    423 struct ipqent *
    424 tcpipqent_alloc(void)
    425 {
    426 	struct ipqent *ipqe;
    427 	int s;
    428 
    429 	s = splvm();
    430 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    431 	splx(s);
    432 
    433 	return ipqe;
    434 }
    435 
    436 void
    437 tcpipqent_free(struct ipqent *ipqe)
    438 {
    439 	int s;
    440 
    441 	s = splvm();
    442 	pool_put(&tcpipqent_pool, ipqe);
    443 	splx(s);
    444 }
    445 
    446 static int
    447 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    448 {
    449 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    450 	struct socket *so = NULL;
    451 	int pkt_flags;
    452 	tcp_seq pkt_seq;
    453 	unsigned pkt_len;
    454 	u_long rcvpartdupbyte = 0;
    455 	u_long rcvoobyte;
    456 #ifdef TCP_REASS_COUNTERS
    457 	u_int count = 0;
    458 #endif
    459 	uint64_t *tcps;
    460 
    461 	if (tp->t_inpcb)
    462 		so = tp->t_inpcb->inp_socket;
    463 #ifdef INET6
    464 	else if (tp->t_in6pcb)
    465 		so = tp->t_in6pcb->in6p_socket;
    466 #endif
    467 
    468 	TCP_REASS_LOCK_CHECK(tp);
    469 
    470 	/*
    471 	 * Call with th==0 after become established to
    472 	 * force pre-ESTABLISHED data up to user socket.
    473 	 */
    474 	if (th == 0)
    475 		goto present;
    476 
    477 	m_claimm(m, &tcp_reass_mowner);
    478 
    479 	rcvoobyte = *tlen;
    480 	/*
    481 	 * Copy these to local variables because the tcpiphdr
    482 	 * gets munged while we are collapsing mbufs.
    483 	 */
    484 	pkt_seq = th->th_seq;
    485 	pkt_len = *tlen;
    486 	pkt_flags = th->th_flags;
    487 
    488 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    489 
    490 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    491 		/*
    492 		 * When we miss a packet, the vast majority of time we get
    493 		 * packets that follow it in order.  So optimize for that.
    494 		 */
    495 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    496 			p->ipqe_len += pkt_len;
    497 			p->ipqe_flags |= pkt_flags;
    498 			m_cat(p->ipre_mlast, m);
    499 			TRAVERSE(p->ipre_mlast);
    500 			m = NULL;
    501 			tiqe = p;
    502 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    503 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    504 			goto skip_replacement;
    505 		}
    506 		/*
    507 		 * While we're here, if the pkt is completely beyond
    508 		 * anything we have, just insert it at the tail.
    509 		 */
    510 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    511 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    512 			goto insert_it;
    513 		}
    514 	}
    515 
    516 	q = TAILQ_FIRST(&tp->segq);
    517 
    518 	if (q != NULL) {
    519 		/*
    520 		 * If this segment immediately precedes the first out-of-order
    521 		 * block, simply slap the segment in front of it and (mostly)
    522 		 * skip the complicated logic.
    523 		 */
    524 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    525 			q->ipqe_seq = pkt_seq;
    526 			q->ipqe_len += pkt_len;
    527 			q->ipqe_flags |= pkt_flags;
    528 			m_cat(m, q->ipqe_m);
    529 			q->ipqe_m = m;
    530 			q->ipre_mlast = m; /* last mbuf may have changed */
    531 			TRAVERSE(q->ipre_mlast);
    532 			tiqe = q;
    533 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    534 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    535 			goto skip_replacement;
    536 		}
    537 	} else {
    538 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    539 	}
    540 
    541 	/*
    542 	 * Find a segment which begins after this one does.
    543 	 */
    544 	for (p = NULL; q != NULL; q = nq) {
    545 		nq = TAILQ_NEXT(q, ipqe_q);
    546 #ifdef TCP_REASS_COUNTERS
    547 		count++;
    548 #endif
    549 		/*
    550 		 * If the received segment is just right after this
    551 		 * fragment, merge the two together and then check
    552 		 * for further overlaps.
    553 		 */
    554 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    555 #ifdef TCPREASS_DEBUG
    556 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    557 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    558 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    559 #endif
    560 			pkt_len += q->ipqe_len;
    561 			pkt_flags |= q->ipqe_flags;
    562 			pkt_seq = q->ipqe_seq;
    563 			m_cat(q->ipre_mlast, m);
    564 			TRAVERSE(q->ipre_mlast);
    565 			m = q->ipqe_m;
    566 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    567 			goto free_ipqe;
    568 		}
    569 		/*
    570 		 * If the received segment is completely past this
    571 		 * fragment, we need to go the next fragment.
    572 		 */
    573 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    574 			p = q;
    575 			continue;
    576 		}
    577 		/*
    578 		 * If the fragment is past the received segment,
    579 		 * it (or any following) can't be concatenated.
    580 		 */
    581 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    582 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    583 			break;
    584 		}
    585 
    586 		/*
    587 		 * We've received all the data in this segment before.
    588 		 * mark it as a duplicate and return.
    589 		 */
    590 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    591 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    592 			tcps = TCP_STAT_GETREF();
    593 			tcps[TCP_STAT_RCVDUPPACK]++;
    594 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    595 			TCP_STAT_PUTREF();
    596 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    597 			m_freem(m);
    598 			if (tiqe != NULL) {
    599 				tcpipqent_free(tiqe);
    600 			}
    601 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    602 			goto out;
    603 		}
    604 		/*
    605 		 * Received segment completely overlaps this fragment
    606 		 * so we drop the fragment (this keeps the temporal
    607 		 * ordering of segments correct).
    608 		 */
    609 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    610 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    611 			rcvpartdupbyte += q->ipqe_len;
    612 			m_freem(q->ipqe_m);
    613 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    614 			goto free_ipqe;
    615 		}
    616 		/*
    617 		 * RX'ed segment extends past the end of the
    618 		 * fragment.  Drop the overlapping bytes.  Then
    619 		 * merge the fragment and segment then treat as
    620 		 * a longer received packet.
    621 		 */
    622 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    623 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    624 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    625 #ifdef TCPREASS_DEBUG
    626 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    627 			       tp, overlap,
    628 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    629 #endif
    630 			m_adj(m, overlap);
    631 			rcvpartdupbyte += overlap;
    632 			m_cat(q->ipre_mlast, m);
    633 			TRAVERSE(q->ipre_mlast);
    634 			m = q->ipqe_m;
    635 			pkt_seq = q->ipqe_seq;
    636 			pkt_len += q->ipqe_len - overlap;
    637 			rcvoobyte -= overlap;
    638 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    639 			goto free_ipqe;
    640 		}
    641 		/*
    642 		 * RX'ed segment extends past the front of the
    643 		 * fragment.  Drop the overlapping bytes on the
    644 		 * received packet.  The packet will then be
    645 		 * contatentated with this fragment a bit later.
    646 		 */
    647 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    648 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    649 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    650 #ifdef TCPREASS_DEBUG
    651 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    652 			       tp, overlap,
    653 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    654 #endif
    655 			m_adj(m, -overlap);
    656 			pkt_len -= overlap;
    657 			rcvpartdupbyte += overlap;
    658 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    659 			rcvoobyte -= overlap;
    660 		}
    661 		/*
    662 		 * If the received segment immediates precedes this
    663 		 * fragment then tack the fragment onto this segment
    664 		 * and reinsert the data.
    665 		 */
    666 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    667 #ifdef TCPREASS_DEBUG
    668 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    669 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    670 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    671 #endif
    672 			pkt_len += q->ipqe_len;
    673 			pkt_flags |= q->ipqe_flags;
    674 			m_cat(m, q->ipqe_m);
    675 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    676 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    677 			tp->t_segqlen--;
    678 			KASSERT(tp->t_segqlen >= 0);
    679 			KASSERT(tp->t_segqlen != 0 ||
    680 			    (TAILQ_EMPTY(&tp->segq) &&
    681 			    TAILQ_EMPTY(&tp->timeq)));
    682 			if (tiqe == NULL) {
    683 				tiqe = q;
    684 			} else {
    685 				tcpipqent_free(q);
    686 			}
    687 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    688 			break;
    689 		}
    690 		/*
    691 		 * If the fragment is before the segment, remember it.
    692 		 * When this loop is terminated, p will contain the
    693 		 * pointer to fragment that is right before the received
    694 		 * segment.
    695 		 */
    696 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    697 			p = q;
    698 
    699 		continue;
    700 
    701 		/*
    702 		 * This is a common operation.  It also will allow
    703 		 * to save doing a malloc/free in most instances.
    704 		 */
    705 	  free_ipqe:
    706 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    707 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    708 		tp->t_segqlen--;
    709 		KASSERT(tp->t_segqlen >= 0);
    710 		KASSERT(tp->t_segqlen != 0 ||
    711 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    712 		if (tiqe == NULL) {
    713 			tiqe = q;
    714 		} else {
    715 			tcpipqent_free(q);
    716 		}
    717 	}
    718 
    719 #ifdef TCP_REASS_COUNTERS
    720 	if (count > 7)
    721 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    722 	else if (count > 0)
    723 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    724 #endif
    725 
    726     insert_it:
    727 
    728 	/*
    729 	 * Allocate a new queue entry since the received segment did not
    730 	 * collapse onto any other out-of-order block; thus we are allocating
    731 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    732 	 * we would be reusing it.
    733 	 * XXX If we can't, just drop the packet.  XXX
    734 	 */
    735 	if (tiqe == NULL) {
    736 		tiqe = tcpipqent_alloc();
    737 		if (tiqe == NULL) {
    738 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    739 			m_freem(m);
    740 			goto out;
    741 		}
    742 	}
    743 
    744 	/*
    745 	 * Update the counters.
    746 	 */
    747 	tcps = TCP_STAT_GETREF();
    748 	tcps[TCP_STAT_RCVOOPACK]++;
    749 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    750 	if (rcvpartdupbyte) {
    751 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    752 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    753 	}
    754 	TCP_STAT_PUTREF();
    755 
    756 	/*
    757 	 * Insert the new fragment queue entry into both queues.
    758 	 */
    759 	tiqe->ipqe_m = m;
    760 	tiqe->ipre_mlast = m;
    761 	tiqe->ipqe_seq = pkt_seq;
    762 	tiqe->ipqe_len = pkt_len;
    763 	tiqe->ipqe_flags = pkt_flags;
    764 	if (p == NULL) {
    765 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    766 #ifdef TCPREASS_DEBUG
    767 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    768 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    769 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    770 #endif
    771 	} else {
    772 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    773 #ifdef TCPREASS_DEBUG
    774 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    775 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    776 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    777 #endif
    778 	}
    779 	tp->t_segqlen++;
    780 
    781 skip_replacement:
    782 
    783 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    784 
    785 present:
    786 	/*
    787 	 * Present data to user, advancing rcv_nxt through
    788 	 * completed sequence space.
    789 	 */
    790 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    791 		goto out;
    792 	q = TAILQ_FIRST(&tp->segq);
    793 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    794 		goto out;
    795 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    796 		goto out;
    797 
    798 	tp->rcv_nxt += q->ipqe_len;
    799 	pkt_flags = q->ipqe_flags & TH_FIN;
    800 	nd6_hint(tp);
    801 
    802 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    803 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    804 	tp->t_segqlen--;
    805 	KASSERT(tp->t_segqlen >= 0);
    806 	KASSERT(tp->t_segqlen != 0 ||
    807 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    808 	if (so->so_state & SS_CANTRCVMORE)
    809 		m_freem(q->ipqe_m);
    810 	else
    811 		sbappendstream(&so->so_rcv, q->ipqe_m);
    812 	tcpipqent_free(q);
    813 	TCP_REASS_UNLOCK(tp);
    814 	sorwakeup(so);
    815 	return (pkt_flags);
    816 out:
    817 	TCP_REASS_UNLOCK(tp);
    818 	return (0);
    819 }
    820 
    821 #ifdef INET6
    822 int
    823 tcp6_input(struct mbuf **mp, int *offp, int proto)
    824 {
    825 	struct mbuf *m = *mp;
    826 
    827 	/*
    828 	 * draft-itojun-ipv6-tcp-to-anycast
    829 	 * better place to put this in?
    830 	 */
    831 	if (m->m_flags & M_ANYCAST6) {
    832 		struct ip6_hdr *ip6;
    833 		if (m->m_len < sizeof(struct ip6_hdr)) {
    834 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    835 				TCP_STATINC(TCP_STAT_RCVSHORT);
    836 				return IPPROTO_DONE;
    837 			}
    838 		}
    839 		ip6 = mtod(m, struct ip6_hdr *);
    840 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    841 		    (char *)&ip6->ip6_dst - (char *)ip6);
    842 		return IPPROTO_DONE;
    843 	}
    844 
    845 	tcp_input(m, *offp, proto);
    846 	return IPPROTO_DONE;
    847 }
    848 #endif
    849 
    850 #ifdef INET
    851 static void
    852 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    853 {
    854 	char src[4*sizeof "123"];
    855 	char dst[4*sizeof "123"];
    856 
    857 	if (ip) {
    858 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    859 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    860 	}
    861 	else {
    862 		strlcpy(src, "(unknown)", sizeof(src));
    863 		strlcpy(dst, "(unknown)", sizeof(dst));
    864 	}
    865 	log(LOG_INFO,
    866 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    867 	    dst, ntohs(th->th_dport),
    868 	    src, ntohs(th->th_sport));
    869 }
    870 #endif
    871 
    872 #ifdef INET6
    873 static void
    874 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    875 {
    876 	char src[INET6_ADDRSTRLEN];
    877 	char dst[INET6_ADDRSTRLEN];
    878 
    879 	if (ip6) {
    880 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    881 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    882 	}
    883 	else {
    884 		strlcpy(src, "(unknown v6)", sizeof(src));
    885 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    886 	}
    887 	log(LOG_INFO,
    888 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    889 	    dst, ntohs(th->th_dport),
    890 	    src, ntohs(th->th_sport));
    891 }
    892 #endif
    893 
    894 /*
    895  * Checksum extended TCP header and data.
    896  */
    897 int
    898 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    899     int toff, int off, int tlen)
    900 {
    901 
    902 	/*
    903 	 * XXX it's better to record and check if this mbuf is
    904 	 * already checked.
    905 	 */
    906 
    907 	switch (af) {
    908 #ifdef INET
    909 	case AF_INET:
    910 		switch (m->m_pkthdr.csum_flags &
    911 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    912 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    913 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    914 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    915 			goto badcsum;
    916 
    917 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    918 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    919 
    920 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    921 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    922 				const struct ip *ip =
    923 				    mtod(m, const struct ip *);
    924 
    925 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    926 				    ip->ip_dst.s_addr,
    927 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    928 			}
    929 			if ((hw_csum ^ 0xffff) != 0)
    930 				goto badcsum;
    931 			break;
    932 		}
    933 
    934 		case M_CSUM_TCPv4:
    935 			/* Checksum was okay. */
    936 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    937 			break;
    938 
    939 		default:
    940 			/*
    941 			 * Must compute it ourselves.  Maybe skip checksum
    942 			 * on loopback interfaces.
    943 			 */
    944 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    945 					     IFF_LOOPBACK) ||
    946 					   tcp_do_loopback_cksum)) {
    947 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    948 				if (in4_cksum(m, IPPROTO_TCP, toff,
    949 					      tlen + off) != 0)
    950 					goto badcsum;
    951 			}
    952 			break;
    953 		}
    954 		break;
    955 #endif /* INET4 */
    956 
    957 #ifdef INET6
    958 	case AF_INET6:
    959 		switch (m->m_pkthdr.csum_flags &
    960 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    961 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    962 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    963 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    964 			goto badcsum;
    965 
    966 #if 0 /* notyet */
    967 		case M_CSUM_TCPv6|M_CSUM_DATA:
    968 #endif
    969 
    970 		case M_CSUM_TCPv6:
    971 			/* Checksum was okay. */
    972 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    973 			break;
    974 
    975 		default:
    976 			/*
    977 			 * Must compute it ourselves.  Maybe skip checksum
    978 			 * on loopback interfaces.
    979 			 */
    980 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    981 			    tcp_do_loopback_cksum)) {
    982 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    983 				if (in6_cksum(m, IPPROTO_TCP, toff,
    984 				    tlen + off) != 0)
    985 					goto badcsum;
    986 			}
    987 		}
    988 		break;
    989 #endif /* INET6 */
    990 	}
    991 
    992 	return 0;
    993 
    994 badcsum:
    995 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    996 	return -1;
    997 }
    998 
    999 /* When a packet arrives addressed to a vestigial tcpbp, we
   1000  * nevertheless have to respond to it per the spec.
   1001  */
   1002 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
   1003 			  struct mbuf *m, int tlen, int multicast)
   1004 {
   1005 	int		tiflags;
   1006 	int		todrop, dupseg;
   1007 	uint32_t	t_flags = 0;
   1008 	uint64_t	*tcps;
   1009 
   1010 	tiflags = th->th_flags;
   1011 	todrop  = vp->rcv_nxt - th->th_seq;
   1012 	dupseg  = false;
   1013 
   1014 	if (todrop > 0) {
   1015 		if (tiflags & TH_SYN) {
   1016 			tiflags &= ~TH_SYN;
   1017 			++th->th_seq;
   1018 			if (th->th_urp > 1)
   1019 				--th->th_urp;
   1020 			else {
   1021 				tiflags &= ~TH_URG;
   1022 				th->th_urp = 0;
   1023 			}
   1024 			--todrop;
   1025 		}
   1026 		if (todrop > tlen ||
   1027 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1028 			/*
   1029 			 * Any valid FIN or RST must be to the left of the
   1030 			 * window.  At this point the FIN or RST must be a
   1031 			 * duplicate or out of sequence; drop it.
   1032 			 */
   1033 			if (tiflags & TH_RST)
   1034 				goto drop;
   1035 			tiflags &= ~(TH_FIN|TH_RST);
   1036 			/*
   1037 			 * Send an ACK to resynchronize and drop any data.
   1038 			 * But keep on processing for RST or ACK.
   1039 			 */
   1040 			t_flags |= TF_ACKNOW;
   1041 			todrop = tlen;
   1042 			dupseg = true;
   1043 			tcps = TCP_STAT_GETREF();
   1044 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1045 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1046 			TCP_STAT_PUTREF();
   1047 		} else if ((tiflags & TH_RST)
   1048 			   && th->th_seq != vp->rcv_nxt) {
   1049 			/*
   1050 			 * Test for reset before adjusting the sequence
   1051 			 * number for overlapping data.
   1052 			 */
   1053 			goto dropafterack_ratelim;
   1054 		} else {
   1055 			tcps = TCP_STAT_GETREF();
   1056 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1057 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1058 			TCP_STAT_PUTREF();
   1059 		}
   1060 
   1061 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1062 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1063 
   1064 		th->th_seq += todrop;
   1065 		tlen -= todrop;
   1066 
   1067 		if (th->th_urp > todrop)
   1068 			th->th_urp -= todrop;
   1069 		else {
   1070 			tiflags &= ~TH_URG;
   1071 			th->th_urp = 0;
   1072 		}
   1073 	}
   1074 
   1075 	/*
   1076 	 * If new data are received on a connection after the
   1077 	 * user processes are gone, then RST the other end.
   1078 	 */
   1079 	if (tlen) {
   1080 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1081 		goto dropwithreset;
   1082 	}
   1083 
   1084 	/*
   1085 	 * If segment ends after window, drop trailing data
   1086 	 * (and PUSH and FIN); if nothing left, just ACK.
   1087 	 */
   1088 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
   1089 
   1090 	if (todrop > 0) {
   1091 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1092 		if (todrop >= tlen) {
   1093 			/*
   1094 			 * The segment actually starts after the window.
   1095 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1096 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1097 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1098 			 */
   1099 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1100 			/*
   1101 			 * If a new connection request is received
   1102 			 * while in TIME_WAIT, drop the old connection
   1103 			 * and start over if the sequence numbers
   1104 			 * are above the previous ones.
   1105 			 */
   1106 			if ((tiflags & TH_SYN)
   1107 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1108 				/* We only support this in the !NOFDREF case, which
   1109 				 * is to say: not here.
   1110 				 */
   1111 				goto dropwithreset;;
   1112 			}
   1113 			/*
   1114 			 * If window is closed can only take segments at
   1115 			 * window edge, and have to drop data and PUSH from
   1116 			 * incoming segments.  Continue processing, but
   1117 			 * remember to ack.  Otherwise, drop segment
   1118 			 * and (if not RST) ack.
   1119 			 */
   1120 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1121 				t_flags |= TF_ACKNOW;
   1122 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1123 			} else
   1124 				goto dropafterack;
   1125 		} else
   1126 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1127 		m_adj(m, -todrop);
   1128 		tlen -= todrop;
   1129 		tiflags &= ~(TH_PUSH|TH_FIN);
   1130 	}
   1131 
   1132 	if (tiflags & TH_RST) {
   1133 		if (th->th_seq != vp->rcv_nxt)
   1134 			goto dropafterack_ratelim;
   1135 
   1136 		vtw_del(vp->ctl, vp->vtw);
   1137 		goto drop;
   1138 	}
   1139 
   1140 	/*
   1141 	 * If the ACK bit is off we drop the segment and return.
   1142 	 */
   1143 	if ((tiflags & TH_ACK) == 0) {
   1144 		if (t_flags & TF_ACKNOW)
   1145 			goto dropafterack;
   1146 		else
   1147 			goto drop;
   1148 	}
   1149 
   1150 	/*
   1151 	 * In TIME_WAIT state the only thing that should arrive
   1152 	 * is a retransmission of the remote FIN.  Acknowledge
   1153 	 * it and restart the finack timer.
   1154 	 */
   1155 	vtw_restart(vp);
   1156 	goto dropafterack;
   1157 
   1158 dropafterack:
   1159 	/*
   1160 	 * Generate an ACK dropping incoming segment if it occupies
   1161 	 * sequence space, where the ACK reflects our state.
   1162 	 */
   1163 	if (tiflags & TH_RST)
   1164 		goto drop;
   1165 	goto dropafterack2;
   1166 
   1167 dropafterack_ratelim:
   1168 	/*
   1169 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1170 	 */
   1171 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1172 			 tcp_ackdrop_ppslim) == 0) {
   1173 		/* XXX stat */
   1174 		goto drop;
   1175 	}
   1176 	/* ...fall into dropafterack2... */
   1177 
   1178 dropafterack2:
   1179 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
   1180 			  TH_ACK);
   1181 	return;
   1182 
   1183 dropwithreset:
   1184 	/*
   1185 	 * Generate a RST, dropping incoming segment.
   1186 	 * Make ACK acceptable to originator of segment.
   1187 	 */
   1188 	if (tiflags & TH_RST)
   1189 		goto drop;
   1190 
   1191 	if (tiflags & TH_ACK)
   1192 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1193 	else {
   1194 		if (tiflags & TH_SYN)
   1195 			++tlen;
   1196 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1197 				  TH_RST|TH_ACK);
   1198 	}
   1199 	return;
   1200 drop:
   1201 	m_freem(m);
   1202 }
   1203 
   1204 /*
   1205  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1206  */
   1207 void
   1208 tcp_input(struct mbuf *m, ...)
   1209 {
   1210 	struct tcphdr *th;
   1211 	struct ip *ip;
   1212 	struct inpcb *inp;
   1213 #ifdef INET6
   1214 	struct ip6_hdr *ip6;
   1215 	struct in6pcb *in6p;
   1216 #endif
   1217 	u_int8_t *optp = NULL;
   1218 	int optlen = 0;
   1219 	int len, tlen, toff, hdroptlen = 0;
   1220 	struct tcpcb *tp = 0;
   1221 	int tiflags;
   1222 	struct socket *so = NULL;
   1223 	int todrop, acked, ourfinisacked, needoutput = 0;
   1224 	bool dupseg;
   1225 #ifdef TCP_DEBUG
   1226 	short ostate = 0;
   1227 #endif
   1228 	u_long tiwin;
   1229 	struct tcp_opt_info opti;
   1230 	int off, iphlen;
   1231 	va_list ap;
   1232 	int af;		/* af on the wire */
   1233 	struct mbuf *tcp_saveti = NULL;
   1234 	uint32_t ts_rtt;
   1235 	uint8_t iptos;
   1236 	uint64_t *tcps;
   1237 	vestigial_inpcb_t vestige;
   1238 
   1239 	vestige.valid = 0;
   1240 
   1241 	MCLAIM(m, &tcp_rx_mowner);
   1242 	va_start(ap, m);
   1243 	toff = va_arg(ap, int);
   1244 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1245 	va_end(ap);
   1246 
   1247 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1248 
   1249 	memset(&opti, 0, sizeof(opti));
   1250 	opti.ts_present = 0;
   1251 	opti.maxseg = 0;
   1252 
   1253 	/*
   1254 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1255 	 *
   1256 	 * TCP is, by definition, unicast, so we reject all
   1257 	 * multicast outright.
   1258 	 *
   1259 	 * Note, there are additional src/dst address checks in
   1260 	 * the AF-specific code below.
   1261 	 */
   1262 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1263 		/* XXX stat */
   1264 		goto drop;
   1265 	}
   1266 #ifdef INET6
   1267 	if (m->m_flags & M_ANYCAST6) {
   1268 		/* XXX stat */
   1269 		goto drop;
   1270 	}
   1271 #endif
   1272 
   1273 	/*
   1274 	 * Get IP and TCP header.
   1275 	 * Note: IP leaves IP header in first mbuf.
   1276 	 */
   1277 	ip = mtod(m, struct ip *);
   1278 	switch (ip->ip_v) {
   1279 #ifdef INET
   1280 	case 4:
   1281 #ifdef INET6
   1282 		ip6 = NULL;
   1283 #endif
   1284 		af = AF_INET;
   1285 		iphlen = sizeof(struct ip);
   1286 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1287 			sizeof(struct tcphdr));
   1288 		if (th == NULL) {
   1289 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1290 			return;
   1291 		}
   1292 		/* We do the checksum after PCB lookup... */
   1293 		len = ntohs(ip->ip_len);
   1294 		tlen = len - toff;
   1295 		iptos = ip->ip_tos;
   1296 		break;
   1297 #endif
   1298 #ifdef INET6
   1299 	case 6:
   1300 		ip = NULL;
   1301 		iphlen = sizeof(struct ip6_hdr);
   1302 		af = AF_INET6;
   1303 		ip6 = mtod(m, struct ip6_hdr *);
   1304 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1305 			sizeof(struct tcphdr));
   1306 		if (th == NULL) {
   1307 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1308 			return;
   1309 		}
   1310 
   1311 		/* Be proactive about malicious use of IPv4 mapped address */
   1312 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1313 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1314 			/* XXX stat */
   1315 			goto drop;
   1316 		}
   1317 
   1318 		/*
   1319 		 * Be proactive about unspecified IPv6 address in source.
   1320 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1321 		 * unspecified IPv6 address can be used to confuse us.
   1322 		 *
   1323 		 * Note that packets with unspecified IPv6 destination is
   1324 		 * already dropped in ip6_input.
   1325 		 */
   1326 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1327 			/* XXX stat */
   1328 			goto drop;
   1329 		}
   1330 
   1331 		/*
   1332 		 * Make sure destination address is not multicast.
   1333 		 * Source address checked in ip6_input().
   1334 		 */
   1335 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1336 			/* XXX stat */
   1337 			goto drop;
   1338 		}
   1339 
   1340 		/* We do the checksum after PCB lookup... */
   1341 		len = m->m_pkthdr.len;
   1342 		tlen = len - toff;
   1343 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1344 		break;
   1345 #endif
   1346 	default:
   1347 		m_freem(m);
   1348 		return;
   1349 	}
   1350 
   1351 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1352 
   1353 	/*
   1354 	 * Check that TCP offset makes sense,
   1355 	 * pull out TCP options and adjust length.		XXX
   1356 	 */
   1357 	off = th->th_off << 2;
   1358 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1359 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1360 		goto drop;
   1361 	}
   1362 	tlen -= off;
   1363 
   1364 	/*
   1365 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1366 	 * length throughout the function.  Other functions can use
   1367 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1368 	 * rja
   1369 	 */
   1370 
   1371 	if (off > sizeof (struct tcphdr)) {
   1372 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1373 		if (th == NULL) {
   1374 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1375 			return;
   1376 		}
   1377 		/*
   1378 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1379 		 * (as they're before toff) and we don't need to update those.
   1380 		 */
   1381 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1382 		optlen = off - sizeof (struct tcphdr);
   1383 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1384 		/*
   1385 		 * Do quick retrieval of timestamp options ("options
   1386 		 * prediction?").  If timestamp is the only option and it's
   1387 		 * formatted as recommended in RFC 1323 appendix A, we
   1388 		 * quickly get the values now and not bother calling
   1389 		 * tcp_dooptions(), etc.
   1390 		 */
   1391 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1392 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1393 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1394 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1395 		     (th->th_flags & TH_SYN) == 0) {
   1396 			opti.ts_present = 1;
   1397 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1398 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1399 			optp = NULL;	/* we've parsed the options */
   1400 		}
   1401 	}
   1402 	tiflags = th->th_flags;
   1403 
   1404 	/*
   1405 	 * Locate pcb for segment.
   1406 	 */
   1407 findpcb:
   1408 	inp = NULL;
   1409 #ifdef INET6
   1410 	in6p = NULL;
   1411 #endif
   1412 	switch (af) {
   1413 #ifdef INET
   1414 	case AF_INET:
   1415 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1416 					   ip->ip_dst, th->th_dport,
   1417 					   &vestige);
   1418 		if (inp == 0 && !vestige.valid) {
   1419 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1420 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1421 		}
   1422 #ifdef INET6
   1423 		if (inp == 0 && !vestige.valid) {
   1424 			struct in6_addr s, d;
   1425 
   1426 			/* mapped addr case */
   1427 			memset(&s, 0, sizeof(s));
   1428 			s.s6_addr16[5] = htons(0xffff);
   1429 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1430 			memset(&d, 0, sizeof(d));
   1431 			d.s6_addr16[5] = htons(0xffff);
   1432 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1433 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1434 						     th->th_sport, &d, th->th_dport,
   1435 						     0, &vestige);
   1436 			if (in6p == 0 && !vestige.valid) {
   1437 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1438 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1439 				    th->th_dport, 0);
   1440 			}
   1441 		}
   1442 #endif
   1443 #ifndef INET6
   1444 		if (inp == 0 && !vestige.valid)
   1445 #else
   1446 		if (inp == 0 && in6p == 0 && !vestige.valid)
   1447 #endif
   1448 		{
   1449 			TCP_STATINC(TCP_STAT_NOPORT);
   1450 			if (tcp_log_refused &&
   1451 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1452 				tcp4_log_refused(ip, th);
   1453 			}
   1454 			tcp_fields_to_host(th);
   1455 			goto dropwithreset_ratelim;
   1456 		}
   1457 #if defined(IPSEC) || defined(FAST_IPSEC)
   1458 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1459 		    ipsec4_in_reject(m, inp)) {
   1460 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1461 			goto drop;
   1462 		}
   1463 #ifdef INET6
   1464 		else if (in6p &&
   1465 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1466 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1467 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1468 			goto drop;
   1469 		}
   1470 #endif
   1471 #endif /*IPSEC*/
   1472 		break;
   1473 #endif /*INET*/
   1474 #ifdef INET6
   1475 	case AF_INET6:
   1476 	    {
   1477 		int faith;
   1478 
   1479 #if defined(NFAITH) && NFAITH > 0
   1480 		faith = faithprefix(&ip6->ip6_dst);
   1481 #else
   1482 		faith = 0;
   1483 #endif
   1484 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1485 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1486 		if (!in6p && !vestige.valid) {
   1487 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1488 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1489 				th->th_dport, faith);
   1490 		}
   1491 		if (!in6p && !vestige.valid) {
   1492 			TCP_STATINC(TCP_STAT_NOPORT);
   1493 			if (tcp_log_refused &&
   1494 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1495 				tcp6_log_refused(ip6, th);
   1496 			}
   1497 			tcp_fields_to_host(th);
   1498 			goto dropwithreset_ratelim;
   1499 		}
   1500 #if defined(IPSEC) || defined(FAST_IPSEC)
   1501 		if (in6p
   1502 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1503 		    && ipsec6_in_reject(m, in6p)) {
   1504 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1505 			goto drop;
   1506 		}
   1507 #endif /*IPSEC*/
   1508 		break;
   1509 	    }
   1510 #endif
   1511 	}
   1512 
   1513 	/*
   1514 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1515 	 * all data in the incoming segment is discarded.
   1516 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1517 	 * but should either do a listen or a connect soon.
   1518 	 */
   1519 	tp = NULL;
   1520 	so = NULL;
   1521 	if (inp) {
   1522 		/* Check the minimum TTL for socket. */
   1523 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1524 			goto drop;
   1525 
   1526 		tp = intotcpcb(inp);
   1527 		so = inp->inp_socket;
   1528 	}
   1529 #ifdef INET6
   1530 	else if (in6p) {
   1531 		tp = in6totcpcb(in6p);
   1532 		so = in6p->in6p_socket;
   1533 	}
   1534 #endif
   1535 	else if (vestige.valid) {
   1536 		int mc = 0;
   1537 
   1538 		/* We do not support the resurrection of vtw tcpcps.
   1539 		 */
   1540 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1541 			goto badcsum;
   1542 
   1543 		switch (af) {
   1544 #ifdef INET6
   1545 		case AF_INET6:
   1546 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
   1547 			break;
   1548 #endif
   1549 
   1550 		case AF_INET:
   1551 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
   1552 			      || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
   1553 			break;
   1554 		}
   1555 
   1556 		tcp_fields_to_host(th);
   1557 		tcp_vtw_input(th, &vestige, m, tlen, mc);
   1558 		m = 0;
   1559 		goto drop;
   1560 	}
   1561 
   1562 	if (tp == 0) {
   1563 		tcp_fields_to_host(th);
   1564 		goto dropwithreset_ratelim;
   1565 	}
   1566 	if (tp->t_state == TCPS_CLOSED)
   1567 		goto drop;
   1568 
   1569 	KASSERT(so->so_lock == softnet_lock);
   1570 	KASSERT(solocked(so));
   1571 
   1572 	/*
   1573 	 * Checksum extended TCP header and data.
   1574 	 */
   1575 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1576 		goto badcsum;
   1577 
   1578 	tcp_fields_to_host(th);
   1579 
   1580 	/* Unscale the window into a 32-bit value. */
   1581 	if ((tiflags & TH_SYN) == 0)
   1582 		tiwin = th->th_win << tp->snd_scale;
   1583 	else
   1584 		tiwin = th->th_win;
   1585 
   1586 #ifdef INET6
   1587 	/* save packet options if user wanted */
   1588 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1589 		if (in6p->in6p_options) {
   1590 			m_freem(in6p->in6p_options);
   1591 			in6p->in6p_options = 0;
   1592 		}
   1593 		KASSERT(ip6 != NULL);
   1594 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1595 	}
   1596 #endif
   1597 
   1598 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1599 		union syn_cache_sa src;
   1600 		union syn_cache_sa dst;
   1601 
   1602 		memset(&src, 0, sizeof(src));
   1603 		memset(&dst, 0, sizeof(dst));
   1604 		switch (af) {
   1605 #ifdef INET
   1606 		case AF_INET:
   1607 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1608 			src.sin.sin_family = AF_INET;
   1609 			src.sin.sin_addr = ip->ip_src;
   1610 			src.sin.sin_port = th->th_sport;
   1611 
   1612 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1613 			dst.sin.sin_family = AF_INET;
   1614 			dst.sin.sin_addr = ip->ip_dst;
   1615 			dst.sin.sin_port = th->th_dport;
   1616 			break;
   1617 #endif
   1618 #ifdef INET6
   1619 		case AF_INET6:
   1620 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1621 			src.sin6.sin6_family = AF_INET6;
   1622 			src.sin6.sin6_addr = ip6->ip6_src;
   1623 			src.sin6.sin6_port = th->th_sport;
   1624 
   1625 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1626 			dst.sin6.sin6_family = AF_INET6;
   1627 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1628 			dst.sin6.sin6_port = th->th_dport;
   1629 			break;
   1630 #endif /* INET6 */
   1631 		default:
   1632 			goto badsyn;	/*sanity*/
   1633 		}
   1634 
   1635 		if (so->so_options & SO_DEBUG) {
   1636 #ifdef TCP_DEBUG
   1637 			ostate = tp->t_state;
   1638 #endif
   1639 
   1640 			tcp_saveti = NULL;
   1641 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1642 				goto nosave;
   1643 
   1644 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1645 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1646 				if (!tcp_saveti)
   1647 					goto nosave;
   1648 			} else {
   1649 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1650 				if (!tcp_saveti)
   1651 					goto nosave;
   1652 				MCLAIM(m, &tcp_mowner);
   1653 				tcp_saveti->m_len = iphlen;
   1654 				m_copydata(m, 0, iphlen,
   1655 				    mtod(tcp_saveti, void *));
   1656 			}
   1657 
   1658 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1659 				m_freem(tcp_saveti);
   1660 				tcp_saveti = NULL;
   1661 			} else {
   1662 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1663 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1664 				    sizeof(struct tcphdr));
   1665 			}
   1666 	nosave:;
   1667 		}
   1668 		if (so->so_options & SO_ACCEPTCONN) {
   1669 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1670 				if (tiflags & TH_RST) {
   1671 					syn_cache_reset(&src.sa, &dst.sa, th);
   1672 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1673 				    (TH_ACK|TH_SYN)) {
   1674 					/*
   1675 					 * Received a SYN,ACK.  This should
   1676 					 * never happen while we are in
   1677 					 * LISTEN.  Send an RST.
   1678 					 */
   1679 					goto badsyn;
   1680 				} else if (tiflags & TH_ACK) {
   1681 					so = syn_cache_get(&src.sa, &dst.sa,
   1682 						th, toff, tlen, so, m);
   1683 					if (so == NULL) {
   1684 						/*
   1685 						 * We don't have a SYN for
   1686 						 * this ACK; send an RST.
   1687 						 */
   1688 						goto badsyn;
   1689 					} else if (so ==
   1690 					    (struct socket *)(-1)) {
   1691 						/*
   1692 						 * We were unable to create
   1693 						 * the connection.  If the
   1694 						 * 3-way handshake was
   1695 						 * completed, and RST has
   1696 						 * been sent to the peer.
   1697 						 * Since the mbuf might be
   1698 						 * in use for the reply,
   1699 						 * do not free it.
   1700 						 */
   1701 						m = NULL;
   1702 					} else {
   1703 						/*
   1704 						 * We have created a
   1705 						 * full-blown connection.
   1706 						 */
   1707 						tp = NULL;
   1708 						inp = NULL;
   1709 #ifdef INET6
   1710 						in6p = NULL;
   1711 #endif
   1712 						switch (so->so_proto->pr_domain->dom_family) {
   1713 #ifdef INET
   1714 						case AF_INET:
   1715 							inp = sotoinpcb(so);
   1716 							tp = intotcpcb(inp);
   1717 							break;
   1718 #endif
   1719 #ifdef INET6
   1720 						case AF_INET6:
   1721 							in6p = sotoin6pcb(so);
   1722 							tp = in6totcpcb(in6p);
   1723 							break;
   1724 #endif
   1725 						}
   1726 						if (tp == NULL)
   1727 							goto badsyn;	/*XXX*/
   1728 						tiwin <<= tp->snd_scale;
   1729 						goto after_listen;
   1730 					}
   1731 				} else {
   1732 					/*
   1733 					 * None of RST, SYN or ACK was set.
   1734 					 * This is an invalid packet for a
   1735 					 * TCB in LISTEN state.  Send a RST.
   1736 					 */
   1737 					goto badsyn;
   1738 				}
   1739 			} else {
   1740 				/*
   1741 				 * Received a SYN.
   1742 				 *
   1743 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1744 				 */
   1745 				if (m->m_flags & (M_BCAST|M_MCAST))
   1746 					goto drop;
   1747 
   1748 				switch (af) {
   1749 #ifdef INET6
   1750 				case AF_INET6:
   1751 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1752 						goto drop;
   1753 					break;
   1754 #endif /* INET6 */
   1755 				case AF_INET:
   1756 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1757 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1758 						goto drop;
   1759 				break;
   1760 				}
   1761 
   1762 #ifdef INET6
   1763 				/*
   1764 				 * If deprecated address is forbidden, we do
   1765 				 * not accept SYN to deprecated interface
   1766 				 * address to prevent any new inbound
   1767 				 * connection from getting established.
   1768 				 * When we do not accept SYN, we send a TCP
   1769 				 * RST, with deprecated source address (instead
   1770 				 * of dropping it).  We compromise it as it is
   1771 				 * much better for peer to send a RST, and
   1772 				 * RST will be the final packet for the
   1773 				 * exchange.
   1774 				 *
   1775 				 * If we do not forbid deprecated addresses, we
   1776 				 * accept the SYN packet.  RFC2462 does not
   1777 				 * suggest dropping SYN in this case.
   1778 				 * If we decipher RFC2462 5.5.4, it says like
   1779 				 * this:
   1780 				 * 1. use of deprecated addr with existing
   1781 				 *    communication is okay - "SHOULD continue
   1782 				 *    to be used"
   1783 				 * 2. use of it with new communication:
   1784 				 *   (2a) "SHOULD NOT be used if alternate
   1785 				 *        address with sufficient scope is
   1786 				 *        available"
   1787 				 *   (2b) nothing mentioned otherwise.
   1788 				 * Here we fall into (2b) case as we have no
   1789 				 * choice in our source address selection - we
   1790 				 * must obey the peer.
   1791 				 *
   1792 				 * The wording in RFC2462 is confusing, and
   1793 				 * there are multiple description text for
   1794 				 * deprecated address handling - worse, they
   1795 				 * are not exactly the same.  I believe 5.5.4
   1796 				 * is the best one, so we follow 5.5.4.
   1797 				 */
   1798 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1799 					struct in6_ifaddr *ia6;
   1800 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1801 					    &ip6->ip6_dst)) &&
   1802 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1803 						tp = NULL;
   1804 						goto dropwithreset;
   1805 					}
   1806 				}
   1807 #endif
   1808 
   1809 #if defined(IPSEC) || defined(FAST_IPSEC)
   1810 				switch (af) {
   1811 #ifdef INET
   1812 				case AF_INET:
   1813 					if (ipsec4_in_reject_so(m, so)) {
   1814 						IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1815 						tp = NULL;
   1816 						goto dropwithreset;
   1817 					}
   1818 					break;
   1819 #endif
   1820 #ifdef INET6
   1821 				case AF_INET6:
   1822 					if (ipsec6_in_reject_so(m, so)) {
   1823 						IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1824 						tp = NULL;
   1825 						goto dropwithreset;
   1826 					}
   1827 					break;
   1828 #endif /*INET6*/
   1829 				}
   1830 #endif /*IPSEC*/
   1831 
   1832 				/*
   1833 				 * LISTEN socket received a SYN
   1834 				 * from itself?  This can't possibly
   1835 				 * be valid; drop the packet.
   1836 				 */
   1837 				if (th->th_sport == th->th_dport) {
   1838 					int i;
   1839 
   1840 					switch (af) {
   1841 #ifdef INET
   1842 					case AF_INET:
   1843 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1844 						break;
   1845 #endif
   1846 #ifdef INET6
   1847 					case AF_INET6:
   1848 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1849 						break;
   1850 #endif
   1851 					default:
   1852 						i = 1;
   1853 					}
   1854 					if (i) {
   1855 						TCP_STATINC(TCP_STAT_BADSYN);
   1856 						goto drop;
   1857 					}
   1858 				}
   1859 
   1860 				/*
   1861 				 * SYN looks ok; create compressed TCP
   1862 				 * state for it.
   1863 				 */
   1864 				if (so->so_qlen <= so->so_qlimit &&
   1865 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1866 						so, m, optp, optlen, &opti))
   1867 					m = NULL;
   1868 			}
   1869 			goto drop;
   1870 		}
   1871 	}
   1872 
   1873 after_listen:
   1874 #ifdef DIAGNOSTIC
   1875 	/*
   1876 	 * Should not happen now that all embryonic connections
   1877 	 * are handled with compressed state.
   1878 	 */
   1879 	if (tp->t_state == TCPS_LISTEN)
   1880 		panic("tcp_input: TCPS_LISTEN");
   1881 #endif
   1882 
   1883 	/*
   1884 	 * Segment received on connection.
   1885 	 * Reset idle time and keep-alive timer.
   1886 	 */
   1887 	tp->t_rcvtime = tcp_now;
   1888 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1889 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1890 
   1891 	/*
   1892 	 * Process options.
   1893 	 */
   1894 #ifdef TCP_SIGNATURE
   1895 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1896 #else
   1897 	if (optp)
   1898 #endif
   1899 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1900 			goto drop;
   1901 
   1902 	if (TCP_SACK_ENABLED(tp)) {
   1903 		tcp_del_sackholes(tp, th);
   1904 	}
   1905 
   1906 	if (TCP_ECN_ALLOWED(tp)) {
   1907 		if (tiflags & TH_CWR) {
   1908 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1909 		}
   1910 		switch (iptos & IPTOS_ECN_MASK) {
   1911 		case IPTOS_ECN_CE:
   1912 			tp->t_flags |= TF_ECN_SND_ECE;
   1913 			TCP_STATINC(TCP_STAT_ECN_CE);
   1914 			break;
   1915 		case IPTOS_ECN_ECT0:
   1916 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1917 			break;
   1918 		case IPTOS_ECN_ECT1:
   1919 			/* XXX: ignore for now -- rpaulo */
   1920 			break;
   1921 		}
   1922 		/*
   1923 		 * Congestion experienced.
   1924 		 * Ignore if we are already trying to recover.
   1925 		 */
   1926 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1927 			tp->t_congctl->cong_exp(tp);
   1928 	}
   1929 
   1930 	if (opti.ts_present && opti.ts_ecr) {
   1931 		/*
   1932 		 * Calculate the RTT from the returned time stamp and the
   1933 		 * connection's time base.  If the time stamp is later than
   1934 		 * the current time, or is extremely old, fall back to non-1323
   1935 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1936 		 * at the same time.
   1937 		 *
   1938 		 * Note that ts_rtt is in units of slow ticks (500
   1939 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1940 		 * observed values will have large quantization noise.
   1941 		 * Our smoothed RTT is then the fraction of observed
   1942 		 * samples that are 1 tick instead of 0 (times 500
   1943 		 * ms).
   1944 		 *
   1945 		 * ts_rtt is increased by 1 to denote a valid sample,
   1946 		 * with 0 indicating an invalid measurement.  This
   1947 		 * extra 1 must be removed when ts_rtt is used, or
   1948 		 * else an an erroneous extra 500 ms will result.
   1949 		 */
   1950 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1951 		if (ts_rtt > TCP_PAWS_IDLE)
   1952 			ts_rtt = 0;
   1953 	} else {
   1954 		ts_rtt = 0;
   1955 	}
   1956 
   1957 	/*
   1958 	 * Header prediction: check for the two common cases
   1959 	 * of a uni-directional data xfer.  If the packet has
   1960 	 * no control flags, is in-sequence, the window didn't
   1961 	 * change and we're not retransmitting, it's a
   1962 	 * candidate.  If the length is zero and the ack moved
   1963 	 * forward, we're the sender side of the xfer.  Just
   1964 	 * free the data acked & wake any higher level process
   1965 	 * that was blocked waiting for space.  If the length
   1966 	 * is non-zero and the ack didn't move, we're the
   1967 	 * receiver side.  If we're getting packets in-order
   1968 	 * (the reassembly queue is empty), add the data to
   1969 	 * the socket buffer and note that we need a delayed ack.
   1970 	 */
   1971 	if (tp->t_state == TCPS_ESTABLISHED &&
   1972 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1973 	        == TH_ACK &&
   1974 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1975 	    th->th_seq == tp->rcv_nxt &&
   1976 	    tiwin && tiwin == tp->snd_wnd &&
   1977 	    tp->snd_nxt == tp->snd_max) {
   1978 
   1979 		/*
   1980 		 * If last ACK falls within this segment's sequence numbers,
   1981 		 * record the timestamp.
   1982 		 * NOTE that the test is modified according to the latest
   1983 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1984 		 *
   1985 		 * note that we already know
   1986 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1987 		 */
   1988 		if (opti.ts_present &&
   1989 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1990 			tp->ts_recent_age = tcp_now;
   1991 			tp->ts_recent = opti.ts_val;
   1992 		}
   1993 
   1994 		if (tlen == 0) {
   1995 			/* Ack prediction. */
   1996 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1997 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1998 			    tp->snd_cwnd >= tp->snd_wnd &&
   1999 			    tp->t_partialacks < 0) {
   2000 				/*
   2001 				 * this is a pure ack for outstanding data.
   2002 				 */
   2003 				if (ts_rtt)
   2004 					tcp_xmit_timer(tp, ts_rtt);
   2005 				else if (tp->t_rtttime &&
   2006 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   2007 					tcp_xmit_timer(tp,
   2008 					  tcp_now - tp->t_rtttime);
   2009 				acked = th->th_ack - tp->snd_una;
   2010 				tcps = TCP_STAT_GETREF();
   2011 				tcps[TCP_STAT_PREDACK]++;
   2012 				tcps[TCP_STAT_RCVACKPACK]++;
   2013 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   2014 				TCP_STAT_PUTREF();
   2015 				nd6_hint(tp);
   2016 
   2017 				if (acked > (tp->t_lastoff - tp->t_inoff))
   2018 					tp->t_lastm = NULL;
   2019 				sbdrop(&so->so_snd, acked);
   2020 				tp->t_lastoff -= acked;
   2021 
   2022 				icmp_check(tp, th, acked);
   2023 
   2024 				tp->snd_una = th->th_ack;
   2025 				tp->snd_fack = tp->snd_una;
   2026 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   2027 					tp->snd_high = tp->snd_una;
   2028 				m_freem(m);
   2029 
   2030 				/*
   2031 				 * If all outstanding data are acked, stop
   2032 				 * retransmit timer, otherwise restart timer
   2033 				 * using current (possibly backed-off) value.
   2034 				 * If process is waiting for space,
   2035 				 * wakeup/selnotify/signal.  If data
   2036 				 * are ready to send, let tcp_output
   2037 				 * decide between more output or persist.
   2038 				 */
   2039 				if (tp->snd_una == tp->snd_max)
   2040 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2041 				else if (TCP_TIMER_ISARMED(tp,
   2042 				    TCPT_PERSIST) == 0)
   2043 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   2044 					    tp->t_rxtcur);
   2045 
   2046 				sowwakeup(so);
   2047 				if (so->so_snd.sb_cc) {
   2048 					KERNEL_LOCK(1, NULL);
   2049 					(void) tcp_output(tp);
   2050 					KERNEL_UNLOCK_ONE(NULL);
   2051 				}
   2052 				if (tcp_saveti)
   2053 					m_freem(tcp_saveti);
   2054 				return;
   2055 			}
   2056 		} else if (th->th_ack == tp->snd_una &&
   2057 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2058 		    tlen <= sbspace(&so->so_rcv)) {
   2059 			int newsize = 0;	/* automatic sockbuf scaling */
   2060 
   2061 			/*
   2062 			 * this is a pure, in-sequence data packet
   2063 			 * with nothing on the reassembly queue and
   2064 			 * we have enough buffer space to take it.
   2065 			 */
   2066 			tp->rcv_nxt += tlen;
   2067 			tcps = TCP_STAT_GETREF();
   2068 			tcps[TCP_STAT_PREDDAT]++;
   2069 			tcps[TCP_STAT_RCVPACK]++;
   2070 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2071 			TCP_STAT_PUTREF();
   2072 			nd6_hint(tp);
   2073 
   2074 		/*
   2075 		 * Automatic sizing enables the performance of large buffers
   2076 		 * and most of the efficiency of small ones by only allocating
   2077 		 * space when it is needed.
   2078 		 *
   2079 		 * On the receive side the socket buffer memory is only rarely
   2080 		 * used to any significant extent.  This allows us to be much
   2081 		 * more aggressive in scaling the receive socket buffer.  For
   2082 		 * the case that the buffer space is actually used to a large
   2083 		 * extent and we run out of kernel memory we can simply drop
   2084 		 * the new segments; TCP on the sender will just retransmit it
   2085 		 * later.  Setting the buffer size too big may only consume too
   2086 		 * much kernel memory if the application doesn't read() from
   2087 		 * the socket or packet loss or reordering makes use of the
   2088 		 * reassembly queue.
   2089 		 *
   2090 		 * The criteria to step up the receive buffer one notch are:
   2091 		 *  1. the number of bytes received during the time it takes
   2092 		 *     one timestamp to be reflected back to us (the RTT);
   2093 		 *  2. received bytes per RTT is within seven eighth of the
   2094 		 *     current socket buffer size;
   2095 		 *  3. receive buffer size has not hit maximal automatic size;
   2096 		 *
   2097 		 * This algorithm does one step per RTT at most and only if
   2098 		 * we receive a bulk stream w/o packet losses or reorderings.
   2099 		 * Shrinking the buffer during idle times is not necessary as
   2100 		 * it doesn't consume any memory when idle.
   2101 		 *
   2102 		 * TODO: Only step up if the application is actually serving
   2103 		 * the buffer to better manage the socket buffer resources.
   2104 		 */
   2105 			if (tcp_do_autorcvbuf &&
   2106 			    opti.ts_ecr &&
   2107 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2108 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2109 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2110 					if (tp->rfbuf_cnt >
   2111 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2112 					    so->so_rcv.sb_hiwat <
   2113 					    tcp_autorcvbuf_max) {
   2114 						newsize =
   2115 						    min(so->so_rcv.sb_hiwat +
   2116 						    tcp_autorcvbuf_inc,
   2117 						    tcp_autorcvbuf_max);
   2118 					}
   2119 					/* Start over with next RTT. */
   2120 					tp->rfbuf_ts = 0;
   2121 					tp->rfbuf_cnt = 0;
   2122 				} else
   2123 					tp->rfbuf_cnt += tlen;	/* add up */
   2124 			}
   2125 
   2126 			/*
   2127 			 * Drop TCP, IP headers and TCP options then add data
   2128 			 * to socket buffer.
   2129 			 */
   2130 			if (so->so_state & SS_CANTRCVMORE)
   2131 				m_freem(m);
   2132 			else {
   2133 				/*
   2134 				 * Set new socket buffer size.
   2135 				 * Give up when limit is reached.
   2136 				 */
   2137 				if (newsize)
   2138 					if (!sbreserve(&so->so_rcv,
   2139 					    newsize, so))
   2140 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2141 				m_adj(m, toff + off);
   2142 				sbappendstream(&so->so_rcv, m);
   2143 			}
   2144 			sorwakeup(so);
   2145 			tcp_setup_ack(tp, th);
   2146 			if (tp->t_flags & TF_ACKNOW) {
   2147 				KERNEL_LOCK(1, NULL);
   2148 				(void) tcp_output(tp);
   2149 				KERNEL_UNLOCK_ONE(NULL);
   2150 			}
   2151 			if (tcp_saveti)
   2152 				m_freem(tcp_saveti);
   2153 			return;
   2154 		}
   2155 	}
   2156 
   2157 	/*
   2158 	 * Compute mbuf offset to TCP data segment.
   2159 	 */
   2160 	hdroptlen = toff + off;
   2161 
   2162 	/*
   2163 	 * Calculate amount of space in receive window,
   2164 	 * and then do TCP input processing.
   2165 	 * Receive window is amount of space in rcv queue,
   2166 	 * but not less than advertised window.
   2167 	 */
   2168 	{ int win;
   2169 
   2170 	win = sbspace(&so->so_rcv);
   2171 	if (win < 0)
   2172 		win = 0;
   2173 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2174 	}
   2175 
   2176 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2177 	tp->rfbuf_ts = 0;
   2178 	tp->rfbuf_cnt = 0;
   2179 
   2180 	switch (tp->t_state) {
   2181 	/*
   2182 	 * If the state is SYN_SENT:
   2183 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2184 	 *	if seg contains a RST, then drop the connection.
   2185 	 *	if seg does not contain SYN, then drop it.
   2186 	 * Otherwise this is an acceptable SYN segment
   2187 	 *	initialize tp->rcv_nxt and tp->irs
   2188 	 *	if seg contains ack then advance tp->snd_una
   2189 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2190 	 *	    is ECN capable.
   2191 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2192 	 *	arrange for segment to be acked (eventually)
   2193 	 *	continue processing rest of data/controls, beginning with URG
   2194 	 */
   2195 	case TCPS_SYN_SENT:
   2196 		if ((tiflags & TH_ACK) &&
   2197 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2198 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2199 			goto dropwithreset;
   2200 		if (tiflags & TH_RST) {
   2201 			if (tiflags & TH_ACK)
   2202 				tp = tcp_drop(tp, ECONNREFUSED);
   2203 			goto drop;
   2204 		}
   2205 		if ((tiflags & TH_SYN) == 0)
   2206 			goto drop;
   2207 		if (tiflags & TH_ACK) {
   2208 			tp->snd_una = th->th_ack;
   2209 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2210 				tp->snd_nxt = tp->snd_una;
   2211 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2212 				tp->snd_high = tp->snd_una;
   2213 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2214 
   2215 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2216 				tp->t_flags |= TF_ECN_PERMIT;
   2217 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2218 			}
   2219 
   2220 		}
   2221 		tp->irs = th->th_seq;
   2222 		tcp_rcvseqinit(tp);
   2223 		tp->t_flags |= TF_ACKNOW;
   2224 		tcp_mss_from_peer(tp, opti.maxseg);
   2225 
   2226 		/*
   2227 		 * Initialize the initial congestion window.  If we
   2228 		 * had to retransmit the SYN, we must initialize cwnd
   2229 		 * to 1 segment (i.e. the Loss Window).
   2230 		 */
   2231 		if (tp->t_flags & TF_SYN_REXMT)
   2232 			tp->snd_cwnd = tp->t_peermss;
   2233 		else {
   2234 			int ss = tcp_init_win;
   2235 #ifdef INET
   2236 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2237 				ss = tcp_init_win_local;
   2238 #endif
   2239 #ifdef INET6
   2240 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2241 				ss = tcp_init_win_local;
   2242 #endif
   2243 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2244 		}
   2245 
   2246 		tcp_rmx_rtt(tp);
   2247 		if (tiflags & TH_ACK) {
   2248 			TCP_STATINC(TCP_STAT_CONNECTS);
   2249 			/*
   2250 			 * move tcp_established before soisconnected
   2251 			 * becasue upcall handler can drive tcp_output
   2252 			 * functionality.
   2253 			 * XXX we might call soisconnected at the end of
   2254 			 * all processing
   2255 			 */
   2256 			tcp_established(tp);
   2257 			soisconnected(so);
   2258 			/* Do window scaling on this connection? */
   2259 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2260 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2261 				tp->snd_scale = tp->requested_s_scale;
   2262 				tp->rcv_scale = tp->request_r_scale;
   2263 			}
   2264 			TCP_REASS_LOCK(tp);
   2265 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2266 			/*
   2267 			 * if we didn't have to retransmit the SYN,
   2268 			 * use its rtt as our initial srtt & rtt var.
   2269 			 */
   2270 			if (tp->t_rtttime)
   2271 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2272 		} else
   2273 			tp->t_state = TCPS_SYN_RECEIVED;
   2274 
   2275 		/*
   2276 		 * Advance th->th_seq to correspond to first data byte.
   2277 		 * If data, trim to stay within window,
   2278 		 * dropping FIN if necessary.
   2279 		 */
   2280 		th->th_seq++;
   2281 		if (tlen > tp->rcv_wnd) {
   2282 			todrop = tlen - tp->rcv_wnd;
   2283 			m_adj(m, -todrop);
   2284 			tlen = tp->rcv_wnd;
   2285 			tiflags &= ~TH_FIN;
   2286 			tcps = TCP_STAT_GETREF();
   2287 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2288 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2289 			TCP_STAT_PUTREF();
   2290 		}
   2291 		tp->snd_wl1 = th->th_seq - 1;
   2292 		tp->rcv_up = th->th_seq;
   2293 		goto step6;
   2294 
   2295 	/*
   2296 	 * If the state is SYN_RECEIVED:
   2297 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2298 	 *	and generate an RST.  See page 36, rfc793
   2299 	 */
   2300 	case TCPS_SYN_RECEIVED:
   2301 		if ((tiflags & TH_ACK) &&
   2302 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2303 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2304 			goto dropwithreset;
   2305 		break;
   2306 	}
   2307 
   2308 	/*
   2309 	 * States other than LISTEN or SYN_SENT.
   2310 	 * First check timestamp, if present.
   2311 	 * Then check that at least some bytes of segment are within
   2312 	 * receive window.  If segment begins before rcv_nxt,
   2313 	 * drop leading data (and SYN); if nothing left, just ack.
   2314 	 *
   2315 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2316 	 * and it's less than ts_recent, drop it.
   2317 	 */
   2318 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2319 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2320 
   2321 		/* Check to see if ts_recent is over 24 days old.  */
   2322 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2323 			/*
   2324 			 * Invalidate ts_recent.  If this segment updates
   2325 			 * ts_recent, the age will be reset later and ts_recent
   2326 			 * will get a valid value.  If it does not, setting
   2327 			 * ts_recent to zero will at least satisfy the
   2328 			 * requirement that zero be placed in the timestamp
   2329 			 * echo reply when ts_recent isn't valid.  The
   2330 			 * age isn't reset until we get a valid ts_recent
   2331 			 * because we don't want out-of-order segments to be
   2332 			 * dropped when ts_recent is old.
   2333 			 */
   2334 			tp->ts_recent = 0;
   2335 		} else {
   2336 			tcps = TCP_STAT_GETREF();
   2337 			tcps[TCP_STAT_RCVDUPPACK]++;
   2338 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2339 			tcps[TCP_STAT_PAWSDROP]++;
   2340 			TCP_STAT_PUTREF();
   2341 			tcp_new_dsack(tp, th->th_seq, tlen);
   2342 			goto dropafterack;
   2343 		}
   2344 	}
   2345 
   2346 	todrop = tp->rcv_nxt - th->th_seq;
   2347 	dupseg = false;
   2348 	if (todrop > 0) {
   2349 		if (tiflags & TH_SYN) {
   2350 			tiflags &= ~TH_SYN;
   2351 			th->th_seq++;
   2352 			if (th->th_urp > 1)
   2353 				th->th_urp--;
   2354 			else {
   2355 				tiflags &= ~TH_URG;
   2356 				th->th_urp = 0;
   2357 			}
   2358 			todrop--;
   2359 		}
   2360 		if (todrop > tlen ||
   2361 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2362 			/*
   2363 			 * Any valid FIN or RST must be to the left of the
   2364 			 * window.  At this point the FIN or RST must be a
   2365 			 * duplicate or out of sequence; drop it.
   2366 			 */
   2367 			if (tiflags & TH_RST)
   2368 				goto drop;
   2369 			tiflags &= ~(TH_FIN|TH_RST);
   2370 			/*
   2371 			 * Send an ACK to resynchronize and drop any data.
   2372 			 * But keep on processing for RST or ACK.
   2373 			 */
   2374 			tp->t_flags |= TF_ACKNOW;
   2375 			todrop = tlen;
   2376 			dupseg = true;
   2377 			tcps = TCP_STAT_GETREF();
   2378 			tcps[TCP_STAT_RCVDUPPACK]++;
   2379 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2380 			TCP_STAT_PUTREF();
   2381 		} else if ((tiflags & TH_RST) &&
   2382 			   th->th_seq != tp->rcv_nxt) {
   2383 			/*
   2384 			 * Test for reset before adjusting the sequence
   2385 			 * number for overlapping data.
   2386 			 */
   2387 			goto dropafterack_ratelim;
   2388 		} else {
   2389 			tcps = TCP_STAT_GETREF();
   2390 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2391 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2392 			TCP_STAT_PUTREF();
   2393 		}
   2394 		tcp_new_dsack(tp, th->th_seq, todrop);
   2395 		hdroptlen += todrop;	/*drop from head afterwards*/
   2396 		th->th_seq += todrop;
   2397 		tlen -= todrop;
   2398 		if (th->th_urp > todrop)
   2399 			th->th_urp -= todrop;
   2400 		else {
   2401 			tiflags &= ~TH_URG;
   2402 			th->th_urp = 0;
   2403 		}
   2404 	}
   2405 
   2406 	/*
   2407 	 * If new data are received on a connection after the
   2408 	 * user processes are gone, then RST the other end.
   2409 	 */
   2410 	if ((so->so_state & SS_NOFDREF) &&
   2411 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2412 		tp = tcp_close(tp);
   2413 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2414 		goto dropwithreset;
   2415 	}
   2416 
   2417 	/*
   2418 	 * If segment ends after window, drop trailing data
   2419 	 * (and PUSH and FIN); if nothing left, just ACK.
   2420 	 */
   2421 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2422 	if (todrop > 0) {
   2423 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2424 		if (todrop >= tlen) {
   2425 			/*
   2426 			 * The segment actually starts after the window.
   2427 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2428 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2429 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2430 			 */
   2431 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2432 			/*
   2433 			 * If a new connection request is received
   2434 			 * while in TIME_WAIT, drop the old connection
   2435 			 * and start over if the sequence numbers
   2436 			 * are above the previous ones.
   2437 			 *
   2438 			 * NOTE: We will checksum the packet again, and
   2439 			 * so we need to put the header fields back into
   2440 			 * network order!
   2441 			 * XXX This kind of sucks, but we don't expect
   2442 			 * XXX this to happen very often, so maybe it
   2443 			 * XXX doesn't matter so much.
   2444 			 */
   2445 			if (tiflags & TH_SYN &&
   2446 			    tp->t_state == TCPS_TIME_WAIT &&
   2447 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2448 				tp = tcp_close(tp);
   2449 				tcp_fields_to_net(th);
   2450 				goto findpcb;
   2451 			}
   2452 			/*
   2453 			 * If window is closed can only take segments at
   2454 			 * window edge, and have to drop data and PUSH from
   2455 			 * incoming segments.  Continue processing, but
   2456 			 * remember to ack.  Otherwise, drop segment
   2457 			 * and (if not RST) ack.
   2458 			 */
   2459 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2460 				tp->t_flags |= TF_ACKNOW;
   2461 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2462 			} else
   2463 				goto dropafterack;
   2464 		} else
   2465 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2466 		m_adj(m, -todrop);
   2467 		tlen -= todrop;
   2468 		tiflags &= ~(TH_PUSH|TH_FIN);
   2469 	}
   2470 
   2471 	/*
   2472 	 * If last ACK falls within this segment's sequence numbers,
   2473 	 *  record the timestamp.
   2474 	 * NOTE:
   2475 	 * 1) That the test incorporates suggestions from the latest
   2476 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2477 	 * 2) That updating only on newer timestamps interferes with
   2478 	 *    our earlier PAWS tests, so this check should be solely
   2479 	 *    predicated on the sequence space of this segment.
   2480 	 * 3) That we modify the segment boundary check to be
   2481 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2482 	 *    instead of RFC1323's
   2483 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2484 	 *    This modified check allows us to overcome RFC1323's
   2485 	 *    limitations as described in Stevens TCP/IP Illustrated
   2486 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2487 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2488 	 */
   2489 	if (opti.ts_present &&
   2490 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2491 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2492 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2493 		tp->ts_recent_age = tcp_now;
   2494 		tp->ts_recent = opti.ts_val;
   2495 	}
   2496 
   2497 	/*
   2498 	 * If the RST bit is set examine the state:
   2499 	 *    SYN_RECEIVED STATE:
   2500 	 *	If passive open, return to LISTEN state.
   2501 	 *	If active open, inform user that connection was refused.
   2502 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2503 	 *	Inform user that connection was reset, and close tcb.
   2504 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2505 	 *	Close the tcb.
   2506 	 */
   2507 	if (tiflags & TH_RST) {
   2508 		if (th->th_seq != tp->rcv_nxt)
   2509 			goto dropafterack_ratelim;
   2510 
   2511 		switch (tp->t_state) {
   2512 		case TCPS_SYN_RECEIVED:
   2513 			so->so_error = ECONNREFUSED;
   2514 			goto close;
   2515 
   2516 		case TCPS_ESTABLISHED:
   2517 		case TCPS_FIN_WAIT_1:
   2518 		case TCPS_FIN_WAIT_2:
   2519 		case TCPS_CLOSE_WAIT:
   2520 			so->so_error = ECONNRESET;
   2521 		close:
   2522 			tp->t_state = TCPS_CLOSED;
   2523 			TCP_STATINC(TCP_STAT_DROPS);
   2524 			tp = tcp_close(tp);
   2525 			goto drop;
   2526 
   2527 		case TCPS_CLOSING:
   2528 		case TCPS_LAST_ACK:
   2529 		case TCPS_TIME_WAIT:
   2530 			tp = tcp_close(tp);
   2531 			goto drop;
   2532 		}
   2533 	}
   2534 
   2535 	/*
   2536 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2537 	 * we must be in a synchronized state.  RFC791 states (under RST
   2538 	 * generation) that any unacceptable segment (an out-of-order SYN
   2539 	 * qualifies) received in a synchronized state must elicit only an
   2540 	 * empty acknowledgment segment ... and the connection remains in
   2541 	 * the same state.
   2542 	 */
   2543 	if (tiflags & TH_SYN) {
   2544 		if (tp->rcv_nxt == th->th_seq) {
   2545 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2546 			    TH_ACK);
   2547 			if (tcp_saveti)
   2548 				m_freem(tcp_saveti);
   2549 			return;
   2550 		}
   2551 
   2552 		goto dropafterack_ratelim;
   2553 	}
   2554 
   2555 	/*
   2556 	 * If the ACK bit is off we drop the segment and return.
   2557 	 */
   2558 	if ((tiflags & TH_ACK) == 0) {
   2559 		if (tp->t_flags & TF_ACKNOW)
   2560 			goto dropafterack;
   2561 		else
   2562 			goto drop;
   2563 	}
   2564 
   2565 	/*
   2566 	 * Ack processing.
   2567 	 */
   2568 	switch (tp->t_state) {
   2569 
   2570 	/*
   2571 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2572 	 * ESTABLISHED state and continue processing, otherwise
   2573 	 * send an RST.
   2574 	 */
   2575 	case TCPS_SYN_RECEIVED:
   2576 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2577 		    SEQ_GT(th->th_ack, tp->snd_max))
   2578 			goto dropwithreset;
   2579 		TCP_STATINC(TCP_STAT_CONNECTS);
   2580 		soisconnected(so);
   2581 		tcp_established(tp);
   2582 		/* Do window scaling? */
   2583 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2584 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2585 			tp->snd_scale = tp->requested_s_scale;
   2586 			tp->rcv_scale = tp->request_r_scale;
   2587 		}
   2588 		TCP_REASS_LOCK(tp);
   2589 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2590 		tp->snd_wl1 = th->th_seq - 1;
   2591 		/* fall into ... */
   2592 
   2593 	/*
   2594 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2595 	 * ACKs.  If the ack is in the range
   2596 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2597 	 * then advance tp->snd_una to th->th_ack and drop
   2598 	 * data from the retransmission queue.  If this ACK reflects
   2599 	 * more up to date window information we update our window information.
   2600 	 */
   2601 	case TCPS_ESTABLISHED:
   2602 	case TCPS_FIN_WAIT_1:
   2603 	case TCPS_FIN_WAIT_2:
   2604 	case TCPS_CLOSE_WAIT:
   2605 	case TCPS_CLOSING:
   2606 	case TCPS_LAST_ACK:
   2607 	case TCPS_TIME_WAIT:
   2608 
   2609 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2610 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2611 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2612 				/*
   2613 				 * If we have outstanding data (other than
   2614 				 * a window probe), this is a completely
   2615 				 * duplicate ack (ie, window info didn't
   2616 				 * change), the ack is the biggest we've
   2617 				 * seen and we've seen exactly our rexmt
   2618 				 * threshhold of them, assume a packet
   2619 				 * has been dropped and retransmit it.
   2620 				 * Kludge snd_nxt & the congestion
   2621 				 * window so we send only this one
   2622 				 * packet.
   2623 				 */
   2624 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2625 				    th->th_ack != tp->snd_una)
   2626 					tp->t_dupacks = 0;
   2627 				else if (tp->t_partialacks < 0 &&
   2628 					 (++tp->t_dupacks == tcprexmtthresh ||
   2629 					 TCP_FACK_FASTRECOV(tp))) {
   2630 					/*
   2631 					 * Do the fast retransmit, and adjust
   2632 					 * congestion control paramenters.
   2633 					 */
   2634 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2635 						/* False fast retransmit */
   2636 						break;
   2637 					} else
   2638 						goto drop;
   2639 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2640 					tp->snd_cwnd += tp->t_segsz;
   2641 					KERNEL_LOCK(1, NULL);
   2642 					(void) tcp_output(tp);
   2643 					KERNEL_UNLOCK_ONE(NULL);
   2644 					goto drop;
   2645 				}
   2646 			} else {
   2647 				/*
   2648 				 * If the ack appears to be very old, only
   2649 				 * allow data that is in-sequence.  This
   2650 				 * makes it somewhat more difficult to insert
   2651 				 * forged data by guessing sequence numbers.
   2652 				 * Sent an ack to try to update the send
   2653 				 * sequence number on the other side.
   2654 				 */
   2655 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2656 				    SEQ_LT(th->th_ack,
   2657 				    tp->snd_una - tp->max_sndwnd))
   2658 					goto dropafterack;
   2659 			}
   2660 			break;
   2661 		}
   2662 		/*
   2663 		 * If the congestion window was inflated to account
   2664 		 * for the other side's cached packets, retract it.
   2665 		 */
   2666 		/* XXX: make SACK have his own congestion control
   2667 		 * struct -- rpaulo */
   2668 		if (TCP_SACK_ENABLED(tp))
   2669 			tcp_sack_newack(tp, th);
   2670 		else
   2671 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2672 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2673 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2674 			goto dropafterack;
   2675 		}
   2676 		acked = th->th_ack - tp->snd_una;
   2677 		tcps = TCP_STAT_GETREF();
   2678 		tcps[TCP_STAT_RCVACKPACK]++;
   2679 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2680 		TCP_STAT_PUTREF();
   2681 
   2682 		/*
   2683 		 * If we have a timestamp reply, update smoothed
   2684 		 * round trip time.  If no timestamp is present but
   2685 		 * transmit timer is running and timed sequence
   2686 		 * number was acked, update smoothed round trip time.
   2687 		 * Since we now have an rtt measurement, cancel the
   2688 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2689 		 * Recompute the initial retransmit timer.
   2690 		 */
   2691 		if (ts_rtt)
   2692 			tcp_xmit_timer(tp, ts_rtt);
   2693 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2694 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2695 
   2696 		/*
   2697 		 * If all outstanding data is acked, stop retransmit
   2698 		 * timer and remember to restart (more output or persist).
   2699 		 * If there is more data to be acked, restart retransmit
   2700 		 * timer, using current (possibly backed-off) value.
   2701 		 */
   2702 		if (th->th_ack == tp->snd_max) {
   2703 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2704 			needoutput = 1;
   2705 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2706 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2707 
   2708 		/*
   2709 		 * New data has been acked, adjust the congestion window.
   2710 		 */
   2711 		tp->t_congctl->newack(tp, th);
   2712 
   2713 		nd6_hint(tp);
   2714 		if (acked > so->so_snd.sb_cc) {
   2715 			tp->snd_wnd -= so->so_snd.sb_cc;
   2716 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2717 			ourfinisacked = 1;
   2718 		} else {
   2719 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2720 				tp->t_lastm = NULL;
   2721 			sbdrop(&so->so_snd, acked);
   2722 			tp->t_lastoff -= acked;
   2723 			tp->snd_wnd -= acked;
   2724 			ourfinisacked = 0;
   2725 		}
   2726 		sowwakeup(so);
   2727 
   2728 		icmp_check(tp, th, acked);
   2729 
   2730 		tp->snd_una = th->th_ack;
   2731 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2732 			tp->snd_fack = tp->snd_una;
   2733 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2734 			tp->snd_nxt = tp->snd_una;
   2735 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2736 			tp->snd_high = tp->snd_una;
   2737 
   2738 		switch (tp->t_state) {
   2739 
   2740 		/*
   2741 		 * In FIN_WAIT_1 STATE in addition to the processing
   2742 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2743 		 * then enter FIN_WAIT_2.
   2744 		 */
   2745 		case TCPS_FIN_WAIT_1:
   2746 			if (ourfinisacked) {
   2747 				/*
   2748 				 * If we can't receive any more
   2749 				 * data, then closing user can proceed.
   2750 				 * Starting the timer is contrary to the
   2751 				 * specification, but if we don't get a FIN
   2752 				 * we'll hang forever.
   2753 				 */
   2754 				if (so->so_state & SS_CANTRCVMORE) {
   2755 					soisdisconnected(so);
   2756 					if (tp->t_maxidle > 0)
   2757 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2758 						    tp->t_maxidle);
   2759 				}
   2760 				tp->t_state = TCPS_FIN_WAIT_2;
   2761 			}
   2762 			break;
   2763 
   2764 	 	/*
   2765 		 * In CLOSING STATE in addition to the processing for
   2766 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2767 		 * then enter the TIME-WAIT state, otherwise ignore
   2768 		 * the segment.
   2769 		 */
   2770 		case TCPS_CLOSING:
   2771 			if (ourfinisacked) {
   2772 				tp->t_state = TCPS_TIME_WAIT;
   2773 				tcp_canceltimers(tp);
   2774 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2775 				soisdisconnected(so);
   2776 			}
   2777 			break;
   2778 
   2779 		/*
   2780 		 * In LAST_ACK, we may still be waiting for data to drain
   2781 		 * and/or to be acked, as well as for the ack of our FIN.
   2782 		 * If our FIN is now acknowledged, delete the TCB,
   2783 		 * enter the closed state and return.
   2784 		 */
   2785 		case TCPS_LAST_ACK:
   2786 			if (ourfinisacked) {
   2787 				tp = tcp_close(tp);
   2788 				goto drop;
   2789 			}
   2790 			break;
   2791 
   2792 		/*
   2793 		 * In TIME_WAIT state the only thing that should arrive
   2794 		 * is a retransmission of the remote FIN.  Acknowledge
   2795 		 * it and restart the finack timer.
   2796 		 */
   2797 		case TCPS_TIME_WAIT:
   2798 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2799 			goto dropafterack;
   2800 		}
   2801 	}
   2802 
   2803 step6:
   2804 	/*
   2805 	 * Update window information.
   2806 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2807 	 */
   2808 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2809 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2810 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2811 		/* keep track of pure window updates */
   2812 		if (tlen == 0 &&
   2813 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2814 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2815 		tp->snd_wnd = tiwin;
   2816 		tp->snd_wl1 = th->th_seq;
   2817 		tp->snd_wl2 = th->th_ack;
   2818 		if (tp->snd_wnd > tp->max_sndwnd)
   2819 			tp->max_sndwnd = tp->snd_wnd;
   2820 		needoutput = 1;
   2821 	}
   2822 
   2823 	/*
   2824 	 * Process segments with URG.
   2825 	 */
   2826 	if ((tiflags & TH_URG) && th->th_urp &&
   2827 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2828 		/*
   2829 		 * This is a kludge, but if we receive and accept
   2830 		 * random urgent pointers, we'll crash in
   2831 		 * soreceive.  It's hard to imagine someone
   2832 		 * actually wanting to send this much urgent data.
   2833 		 */
   2834 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2835 			th->th_urp = 0;			/* XXX */
   2836 			tiflags &= ~TH_URG;		/* XXX */
   2837 			goto dodata;			/* XXX */
   2838 		}
   2839 		/*
   2840 		 * If this segment advances the known urgent pointer,
   2841 		 * then mark the data stream.  This should not happen
   2842 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2843 		 * a FIN has been received from the remote side.
   2844 		 * In these states we ignore the URG.
   2845 		 *
   2846 		 * According to RFC961 (Assigned Protocols),
   2847 		 * the urgent pointer points to the last octet
   2848 		 * of urgent data.  We continue, however,
   2849 		 * to consider it to indicate the first octet
   2850 		 * of data past the urgent section as the original
   2851 		 * spec states (in one of two places).
   2852 		 */
   2853 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2854 			tp->rcv_up = th->th_seq + th->th_urp;
   2855 			so->so_oobmark = so->so_rcv.sb_cc +
   2856 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2857 			if (so->so_oobmark == 0)
   2858 				so->so_state |= SS_RCVATMARK;
   2859 			sohasoutofband(so);
   2860 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2861 		}
   2862 		/*
   2863 		 * Remove out of band data so doesn't get presented to user.
   2864 		 * This can happen independent of advancing the URG pointer,
   2865 		 * but if two URG's are pending at once, some out-of-band
   2866 		 * data may creep in... ick.
   2867 		 */
   2868 		if (th->th_urp <= (u_int16_t) tlen
   2869 #ifdef SO_OOBINLINE
   2870 		     && (so->so_options & SO_OOBINLINE) == 0
   2871 #endif
   2872 		     )
   2873 			tcp_pulloutofband(so, th, m, hdroptlen);
   2874 	} else
   2875 		/*
   2876 		 * If no out of band data is expected,
   2877 		 * pull receive urgent pointer along
   2878 		 * with the receive window.
   2879 		 */
   2880 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2881 			tp->rcv_up = tp->rcv_nxt;
   2882 dodata:							/* XXX */
   2883 
   2884 	/*
   2885 	 * Process the segment text, merging it into the TCP sequencing queue,
   2886 	 * and arranging for acknowledgement of receipt if necessary.
   2887 	 * This process logically involves adjusting tp->rcv_wnd as data
   2888 	 * is presented to the user (this happens in tcp_usrreq.c,
   2889 	 * case PRU_RCVD).  If a FIN has already been received on this
   2890 	 * connection then we just ignore the text.
   2891 	 */
   2892 	if ((tlen || (tiflags & TH_FIN)) &&
   2893 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2894 		/*
   2895 		 * Insert segment ti into reassembly queue of tcp with
   2896 		 * control block tp.  Return TH_FIN if reassembly now includes
   2897 		 * a segment with FIN.  The macro form does the common case
   2898 		 * inline (segment is the next to be received on an
   2899 		 * established connection, and the queue is empty),
   2900 		 * avoiding linkage into and removal from the queue and
   2901 		 * repetition of various conversions.
   2902 		 * Set DELACK for segments received in order, but ack
   2903 		 * immediately when segments are out of order
   2904 		 * (so fast retransmit can work).
   2905 		 */
   2906 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2907 		TCP_REASS_LOCK(tp);
   2908 		if (th->th_seq == tp->rcv_nxt &&
   2909 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2910 		    tp->t_state == TCPS_ESTABLISHED) {
   2911 			tcp_setup_ack(tp, th);
   2912 			tp->rcv_nxt += tlen;
   2913 			tiflags = th->th_flags & TH_FIN;
   2914 			tcps = TCP_STAT_GETREF();
   2915 			tcps[TCP_STAT_RCVPACK]++;
   2916 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2917 			TCP_STAT_PUTREF();
   2918 			nd6_hint(tp);
   2919 			if (so->so_state & SS_CANTRCVMORE)
   2920 				m_freem(m);
   2921 			else {
   2922 				m_adj(m, hdroptlen);
   2923 				sbappendstream(&(so)->so_rcv, m);
   2924 			}
   2925 			TCP_REASS_UNLOCK(tp);
   2926 			sorwakeup(so);
   2927 		} else {
   2928 			m_adj(m, hdroptlen);
   2929 			tiflags = tcp_reass(tp, th, m, &tlen);
   2930 			tp->t_flags |= TF_ACKNOW;
   2931 			TCP_REASS_UNLOCK(tp);
   2932 		}
   2933 
   2934 		/*
   2935 		 * Note the amount of data that peer has sent into
   2936 		 * our window, in order to estimate the sender's
   2937 		 * buffer size.
   2938 		 */
   2939 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2940 	} else {
   2941 		m_freem(m);
   2942 		m = NULL;
   2943 		tiflags &= ~TH_FIN;
   2944 	}
   2945 
   2946 	/*
   2947 	 * If FIN is received ACK the FIN and let the user know
   2948 	 * that the connection is closing.  Ignore a FIN received before
   2949 	 * the connection is fully established.
   2950 	 */
   2951 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2952 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2953 			socantrcvmore(so);
   2954 			tp->t_flags |= TF_ACKNOW;
   2955 			tp->rcv_nxt++;
   2956 		}
   2957 		switch (tp->t_state) {
   2958 
   2959 	 	/*
   2960 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2961 		 */
   2962 		case TCPS_ESTABLISHED:
   2963 			tp->t_state = TCPS_CLOSE_WAIT;
   2964 			break;
   2965 
   2966 	 	/*
   2967 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2968 		 * enter the CLOSING state.
   2969 		 */
   2970 		case TCPS_FIN_WAIT_1:
   2971 			tp->t_state = TCPS_CLOSING;
   2972 			break;
   2973 
   2974 	 	/*
   2975 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2976 		 * starting the time-wait timer, turning off the other
   2977 		 * standard timers.
   2978 		 */
   2979 		case TCPS_FIN_WAIT_2:
   2980 			tp->t_state = TCPS_TIME_WAIT;
   2981 			tcp_canceltimers(tp);
   2982 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2983 			soisdisconnected(so);
   2984 			break;
   2985 
   2986 		/*
   2987 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2988 		 */
   2989 		case TCPS_TIME_WAIT:
   2990 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2991 			break;
   2992 		}
   2993 	}
   2994 #ifdef TCP_DEBUG
   2995 	if (so->so_options & SO_DEBUG)
   2996 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2997 #endif
   2998 
   2999 	/*
   3000 	 * Return any desired output.
   3001 	 */
   3002 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   3003 		KERNEL_LOCK(1, NULL);
   3004 		(void) tcp_output(tp);
   3005 		KERNEL_UNLOCK_ONE(NULL);
   3006 	}
   3007 	if (tcp_saveti)
   3008 		m_freem(tcp_saveti);
   3009 
   3010 	if (tp->t_state == TCPS_TIME_WAIT
   3011 	    && (so->so_state & SS_NOFDREF)
   3012 	    && (tp->t_inpcb || af != AF_INET)
   3013 	    && (tp->t_in6pcb || af != AF_INET6)
   3014 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   3015 	    && TAILQ_EMPTY(&tp->segq)
   3016 	    && vtw_add(af, tp)) {
   3017 		;
   3018 	}
   3019 	return;
   3020 
   3021 badsyn:
   3022 	/*
   3023 	 * Received a bad SYN.  Increment counters and dropwithreset.
   3024 	 */
   3025 	TCP_STATINC(TCP_STAT_BADSYN);
   3026 	tp = NULL;
   3027 	goto dropwithreset;
   3028 
   3029 dropafterack:
   3030 	/*
   3031 	 * Generate an ACK dropping incoming segment if it occupies
   3032 	 * sequence space, where the ACK reflects our state.
   3033 	 */
   3034 	if (tiflags & TH_RST)
   3035 		goto drop;
   3036 	goto dropafterack2;
   3037 
   3038 dropafterack_ratelim:
   3039 	/*
   3040 	 * We may want to rate-limit ACKs against SYN/RST attack.
   3041 	 */
   3042 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   3043 	    tcp_ackdrop_ppslim) == 0) {
   3044 		/* XXX stat */
   3045 		goto drop;
   3046 	}
   3047 	/* ...fall into dropafterack2... */
   3048 
   3049 dropafterack2:
   3050 	m_freem(m);
   3051 	tp->t_flags |= TF_ACKNOW;
   3052 	KERNEL_LOCK(1, NULL);
   3053 	(void) tcp_output(tp);
   3054 	KERNEL_UNLOCK_ONE(NULL);
   3055 	if (tcp_saveti)
   3056 		m_freem(tcp_saveti);
   3057 	return;
   3058 
   3059 dropwithreset_ratelim:
   3060 	/*
   3061 	 * We may want to rate-limit RSTs in certain situations,
   3062 	 * particularly if we are sending an RST in response to
   3063 	 * an attempt to connect to or otherwise communicate with
   3064 	 * a port for which we have no socket.
   3065 	 */
   3066 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   3067 	    tcp_rst_ppslim) == 0) {
   3068 		/* XXX stat */
   3069 		goto drop;
   3070 	}
   3071 	/* ...fall into dropwithreset... */
   3072 
   3073 dropwithreset:
   3074 	/*
   3075 	 * Generate a RST, dropping incoming segment.
   3076 	 * Make ACK acceptable to originator of segment.
   3077 	 */
   3078 	if (tiflags & TH_RST)
   3079 		goto drop;
   3080 
   3081 	switch (af) {
   3082 #ifdef INET6
   3083 	case AF_INET6:
   3084 		/* For following calls to tcp_respond */
   3085 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   3086 			goto drop;
   3087 		break;
   3088 #endif /* INET6 */
   3089 	case AF_INET:
   3090 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   3091 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   3092 			goto drop;
   3093 	}
   3094 
   3095 	if (tiflags & TH_ACK)
   3096 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3097 	else {
   3098 		if (tiflags & TH_SYN)
   3099 			tlen++;
   3100 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3101 		    TH_RST|TH_ACK);
   3102 	}
   3103 	if (tcp_saveti)
   3104 		m_freem(tcp_saveti);
   3105 	return;
   3106 
   3107 badcsum:
   3108 drop:
   3109 	/*
   3110 	 * Drop space held by incoming segment and return.
   3111 	 */
   3112 	if (tp) {
   3113 		if (tp->t_inpcb)
   3114 			so = tp->t_inpcb->inp_socket;
   3115 #ifdef INET6
   3116 		else if (tp->t_in6pcb)
   3117 			so = tp->t_in6pcb->in6p_socket;
   3118 #endif
   3119 		else
   3120 			so = NULL;
   3121 #ifdef TCP_DEBUG
   3122 		if (so && (so->so_options & SO_DEBUG) != 0)
   3123 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3124 #endif
   3125 	}
   3126 	if (tcp_saveti)
   3127 		m_freem(tcp_saveti);
   3128 	m_freem(m);
   3129 	return;
   3130 }
   3131 
   3132 #ifdef TCP_SIGNATURE
   3133 int
   3134 tcp_signature_apply(void *fstate, void *data, u_int len)
   3135 {
   3136 
   3137 	MD5Update(fstate, (u_char *)data, len);
   3138 	return (0);
   3139 }
   3140 
   3141 struct secasvar *
   3142 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   3143 {
   3144 	struct secasvar *sav;
   3145 #ifdef FAST_IPSEC
   3146 	union sockaddr_union dst;
   3147 #endif
   3148 	struct ip *ip;
   3149 	struct ip6_hdr *ip6;
   3150 
   3151 	ip = mtod(m, struct ip *);
   3152 	switch (ip->ip_v) {
   3153 	case 4:
   3154 		ip = mtod(m, struct ip *);
   3155 		ip6 = NULL;
   3156 		break;
   3157 	case 6:
   3158 		ip = NULL;
   3159 		ip6 = mtod(m, struct ip6_hdr *);
   3160 		break;
   3161 	default:
   3162 		return (NULL);
   3163 	}
   3164 
   3165 #ifdef FAST_IPSEC
   3166 	/* Extract the destination from the IP header in the mbuf. */
   3167 	memset(&dst, 0, sizeof(union sockaddr_union));
   3168 	if (ip !=NULL) {
   3169 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   3170 		dst.sa.sa_family = AF_INET;
   3171 		dst.sin.sin_addr = ip->ip_dst;
   3172 	} else {
   3173 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3174 		dst.sa.sa_family = AF_INET6;
   3175 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3176 	}
   3177 
   3178 	/*
   3179 	 * Look up an SADB entry which matches the address of the peer.
   3180 	 */
   3181 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   3182 #else
   3183 	if (ip)
   3184 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
   3185 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   3186 		    htonl(TCP_SIG_SPI), 0, 0);
   3187 	else
   3188 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   3189 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   3190 		    htonl(TCP_SIG_SPI), 0, 0);
   3191 #endif
   3192 
   3193 	return (sav);	/* freesav must be performed by caller */
   3194 }
   3195 
   3196 int
   3197 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3198     struct secasvar *sav, char *sig)
   3199 {
   3200 	MD5_CTX ctx;
   3201 	struct ip *ip;
   3202 	struct ipovly *ipovly;
   3203 	struct ip6_hdr *ip6;
   3204 	struct ippseudo ippseudo;
   3205 	struct ip6_hdr_pseudo ip6pseudo;
   3206 	struct tcphdr th0;
   3207 	int l, tcphdrlen;
   3208 
   3209 	if (sav == NULL)
   3210 		return (-1);
   3211 
   3212 	tcphdrlen = th->th_off * 4;
   3213 
   3214 	switch (mtod(m, struct ip *)->ip_v) {
   3215 	case 4:
   3216 		ip = mtod(m, struct ip *);
   3217 		ip6 = NULL;
   3218 		break;
   3219 	case 6:
   3220 		ip = NULL;
   3221 		ip6 = mtod(m, struct ip6_hdr *);
   3222 		break;
   3223 	default:
   3224 		return (-1);
   3225 	}
   3226 
   3227 	MD5Init(&ctx);
   3228 
   3229 	if (ip) {
   3230 		memset(&ippseudo, 0, sizeof(ippseudo));
   3231 		ipovly = (struct ipovly *)ip;
   3232 		ippseudo.ippseudo_src = ipovly->ih_src;
   3233 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3234 		ippseudo.ippseudo_pad = 0;
   3235 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3236 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3237 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3238 	} else {
   3239 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3240 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3241 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3242 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3243 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3244 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3245 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3246 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3247 	}
   3248 
   3249 	th0 = *th;
   3250 	th0.th_sum = 0;
   3251 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3252 
   3253 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3254 	if (l > 0)
   3255 		m_apply(m, thoff + tcphdrlen,
   3256 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3257 		    tcp_signature_apply, &ctx);
   3258 
   3259 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3260 	MD5Final(sig, &ctx);
   3261 
   3262 	return (0);
   3263 }
   3264 #endif
   3265 
   3266 /*
   3267  * tcp_dooptions: parse and process tcp options.
   3268  *
   3269  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3270  * otherwise returns 0.
   3271  */
   3272 
   3273 static int
   3274 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3275     struct tcphdr *th,
   3276     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3277 {
   3278 	u_int16_t mss;
   3279 	int opt, optlen = 0;
   3280 #ifdef TCP_SIGNATURE
   3281 	void *sigp = NULL;
   3282 	char sigbuf[TCP_SIGLEN];
   3283 	struct secasvar *sav = NULL;
   3284 #endif
   3285 
   3286 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3287 		opt = cp[0];
   3288 		if (opt == TCPOPT_EOL)
   3289 			break;
   3290 		if (opt == TCPOPT_NOP)
   3291 			optlen = 1;
   3292 		else {
   3293 			if (cnt < 2)
   3294 				break;
   3295 			optlen = cp[1];
   3296 			if (optlen < 2 || optlen > cnt)
   3297 				break;
   3298 		}
   3299 		switch (opt) {
   3300 
   3301 		default:
   3302 			continue;
   3303 
   3304 		case TCPOPT_MAXSEG:
   3305 			if (optlen != TCPOLEN_MAXSEG)
   3306 				continue;
   3307 			if (!(th->th_flags & TH_SYN))
   3308 				continue;
   3309 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3310 				continue;
   3311 			bcopy(cp + 2, &mss, sizeof(mss));
   3312 			oi->maxseg = ntohs(mss);
   3313 			break;
   3314 
   3315 		case TCPOPT_WINDOW:
   3316 			if (optlen != TCPOLEN_WINDOW)
   3317 				continue;
   3318 			if (!(th->th_flags & TH_SYN))
   3319 				continue;
   3320 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3321 				continue;
   3322 			tp->t_flags |= TF_RCVD_SCALE;
   3323 			tp->requested_s_scale = cp[2];
   3324 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3325 #if 0	/*XXX*/
   3326 				char *p;
   3327 
   3328 				if (ip)
   3329 					p = ntohl(ip->ip_src);
   3330 #ifdef INET6
   3331 				else if (ip6)
   3332 					p = ip6_sprintf(&ip6->ip6_src);
   3333 #endif
   3334 				else
   3335 					p = "(unknown)";
   3336 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3337 				    "assuming %d\n",
   3338 				    tp->requested_s_scale, p,
   3339 				    TCP_MAX_WINSHIFT);
   3340 #else
   3341 				log(LOG_ERR, "TCP: invalid wscale %d, "
   3342 				    "assuming %d\n",
   3343 				    tp->requested_s_scale,
   3344 				    TCP_MAX_WINSHIFT);
   3345 #endif
   3346 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3347 			}
   3348 			break;
   3349 
   3350 		case TCPOPT_TIMESTAMP:
   3351 			if (optlen != TCPOLEN_TIMESTAMP)
   3352 				continue;
   3353 			oi->ts_present = 1;
   3354 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3355 			NTOHL(oi->ts_val);
   3356 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3357 			NTOHL(oi->ts_ecr);
   3358 
   3359 			if (!(th->th_flags & TH_SYN))
   3360 				continue;
   3361 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3362 				continue;
   3363 			/*
   3364 			 * A timestamp received in a SYN makes
   3365 			 * it ok to send timestamp requests and replies.
   3366 			 */
   3367 			tp->t_flags |= TF_RCVD_TSTMP;
   3368 			tp->ts_recent = oi->ts_val;
   3369 			tp->ts_recent_age = tcp_now;
   3370                         break;
   3371 
   3372 		case TCPOPT_SACK_PERMITTED:
   3373 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3374 				continue;
   3375 			if (!(th->th_flags & TH_SYN))
   3376 				continue;
   3377 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3378 				continue;
   3379 			if (tcp_do_sack) {
   3380 				tp->t_flags |= TF_SACK_PERMIT;
   3381 				tp->t_flags |= TF_WILL_SACK;
   3382 			}
   3383 			break;
   3384 
   3385 		case TCPOPT_SACK:
   3386 			tcp_sack_option(tp, th, cp, optlen);
   3387 			break;
   3388 #ifdef TCP_SIGNATURE
   3389 		case TCPOPT_SIGNATURE:
   3390 			if (optlen != TCPOLEN_SIGNATURE)
   3391 				continue;
   3392 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3393 				return (-1);
   3394 
   3395 			sigp = sigbuf;
   3396 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3397 			tp->t_flags |= TF_SIGNATURE;
   3398 			break;
   3399 #endif
   3400 		}
   3401 	}
   3402 
   3403 #ifdef TCP_SIGNATURE
   3404 	if (tp->t_flags & TF_SIGNATURE) {
   3405 
   3406 		sav = tcp_signature_getsav(m, th);
   3407 
   3408 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3409 			return (-1);
   3410 	}
   3411 
   3412 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   3413 		if (sav == NULL)
   3414 			return (-1);
   3415 #ifdef FAST_IPSEC
   3416 		KEY_FREESAV(&sav);
   3417 #else
   3418 		key_freesav(sav);
   3419 #endif
   3420 		return (-1);
   3421 	}
   3422 
   3423 	if (sigp) {
   3424 		char sig[TCP_SIGLEN];
   3425 
   3426 		tcp_fields_to_net(th);
   3427 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3428 			tcp_fields_to_host(th);
   3429 			if (sav == NULL)
   3430 				return (-1);
   3431 #ifdef FAST_IPSEC
   3432 			KEY_FREESAV(&sav);
   3433 #else
   3434 			key_freesav(sav);
   3435 #endif
   3436 			return (-1);
   3437 		}
   3438 		tcp_fields_to_host(th);
   3439 
   3440 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3441 			TCP_STATINC(TCP_STAT_BADSIG);
   3442 			if (sav == NULL)
   3443 				return (-1);
   3444 #ifdef FAST_IPSEC
   3445 			KEY_FREESAV(&sav);
   3446 #else
   3447 			key_freesav(sav);
   3448 #endif
   3449 			return (-1);
   3450 		} else
   3451 			TCP_STATINC(TCP_STAT_GOODSIG);
   3452 
   3453 		key_sa_recordxfer(sav, m);
   3454 #ifdef FAST_IPSEC
   3455 		KEY_FREESAV(&sav);
   3456 #else
   3457 		key_freesav(sav);
   3458 #endif
   3459 	}
   3460 #endif
   3461 
   3462 	return (0);
   3463 }
   3464 
   3465 /*
   3466  * Pull out of band byte out of a segment so
   3467  * it doesn't appear in the user's data queue.
   3468  * It is still reflected in the segment length for
   3469  * sequencing purposes.
   3470  */
   3471 void
   3472 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3473     struct mbuf *m, int off)
   3474 {
   3475 	int cnt = off + th->th_urp - 1;
   3476 
   3477 	while (cnt >= 0) {
   3478 		if (m->m_len > cnt) {
   3479 			char *cp = mtod(m, char *) + cnt;
   3480 			struct tcpcb *tp = sototcpcb(so);
   3481 
   3482 			tp->t_iobc = *cp;
   3483 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3484 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3485 			m->m_len--;
   3486 			return;
   3487 		}
   3488 		cnt -= m->m_len;
   3489 		m = m->m_next;
   3490 		if (m == 0)
   3491 			break;
   3492 	}
   3493 	panic("tcp_pulloutofband");
   3494 }
   3495 
   3496 /*
   3497  * Collect new round-trip time estimate
   3498  * and update averages and current timeout.
   3499  *
   3500  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3501  * difference of two timestamps.
   3502  */
   3503 void
   3504 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3505 {
   3506 	int32_t delta;
   3507 
   3508 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3509 	if (tp->t_srtt != 0) {
   3510 		/*
   3511 		 * Compute the amount to add to srtt for smoothing,
   3512 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3513 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3514 		 * shift left 5 bits, subtract srtt to get the
   3515 		 * diference, and then shift right by TCP_RTT_SHIFT
   3516 		 * (3) to obtain 1/8 of the difference.
   3517 		 */
   3518 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3519 		/*
   3520 		 * This can never happen, because delta's lowest
   3521 		 * possible value is 1/8 of t_srtt.  But if it does,
   3522 		 * set srtt to some reasonable value, here chosen
   3523 		 * as 1/8 tick.
   3524 		 */
   3525 		if ((tp->t_srtt += delta) <= 0)
   3526 			tp->t_srtt = 1 << 2;
   3527 		/*
   3528 		 * RFC2988 requires that rttvar be updated first.
   3529 		 * This code is compliant because "delta" is the old
   3530 		 * srtt minus the new observation (scaled).
   3531 		 *
   3532 		 * RFC2988 says:
   3533 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3534 		 *
   3535 		 * delta is in units of 1/32 ticks, and has then been
   3536 		 * divided by 8.  This is equivalent to being in 1/16s
   3537 		 * units and divided by 4.  Subtract from it 1/4 of
   3538 		 * the existing rttvar to form the (signed) amount to
   3539 		 * adjust.
   3540 		 */
   3541 		if (delta < 0)
   3542 			delta = -delta;
   3543 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3544 		/*
   3545 		 * As with srtt, this should never happen.  There is
   3546 		 * no support in RFC2988 for this operation.  But 1/4s
   3547 		 * as rttvar when faced with something arguably wrong
   3548 		 * is ok.
   3549 		 */
   3550 		if ((tp->t_rttvar += delta) <= 0)
   3551 			tp->t_rttvar = 1 << 2;
   3552 
   3553 		/*
   3554 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3555 		 * Problem is: it doesn't work.  Disabled by defaulting
   3556 		 * tcp_rttlocal to 0; see corresponding code in
   3557 		 * tcp_subr that selects local vs remote in a different way.
   3558 		 *
   3559 		 * The static branch prediction hint here should be removed
   3560 		 * when the rtt estimator is fixed and the rtt_enable code
   3561 		 * is turned back on.
   3562 		 */
   3563 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3564 		    && tp->t_srtt > tcp_msl_remote_threshold
   3565 		    && tp->t_msl  < tcp_msl_remote) {
   3566 			tp->t_msl = tcp_msl_remote;
   3567 		}
   3568 	} else {
   3569 		/*
   3570 		 * This is the first measurement.  Per RFC2988, 2.2,
   3571 		 * set rtt=R and srtt=R/2.
   3572 		 * For srtt, storage representation is 1/32 ticks,
   3573 		 * so shift left by 5.
   3574 		 * For rttvar, storage representation is 1/16 ticks,
   3575 		 * So shift left by 4, but then right by 1 to halve.
   3576 		 */
   3577 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3578 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3579 	}
   3580 	tp->t_rtttime = 0;
   3581 	tp->t_rxtshift = 0;
   3582 
   3583 	/*
   3584 	 * the retransmit should happen at rtt + 4 * rttvar.
   3585 	 * Because of the way we do the smoothing, srtt and rttvar
   3586 	 * will each average +1/2 tick of bias.  When we compute
   3587 	 * the retransmit timer, we want 1/2 tick of rounding and
   3588 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3589 	 * firing of the timer.  The bias will give us exactly the
   3590 	 * 1.5 tick we need.  But, because the bias is
   3591 	 * statistical, we have to test that we don't drop below
   3592 	 * the minimum feasible timer (which is 2 ticks).
   3593 	 */
   3594 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3595 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3596 
   3597 	/*
   3598 	 * We received an ack for a packet that wasn't retransmitted;
   3599 	 * it is probably safe to discard any error indications we've
   3600 	 * received recently.  This isn't quite right, but close enough
   3601 	 * for now (a route might have failed after we sent a segment,
   3602 	 * and the return path might not be symmetrical).
   3603 	 */
   3604 	tp->t_softerror = 0;
   3605 }
   3606 
   3607 
   3608 /*
   3609  * TCP compressed state engine.  Currently used to hold compressed
   3610  * state for SYN_RECEIVED.
   3611  */
   3612 
   3613 u_long	syn_cache_count;
   3614 u_int32_t syn_hash1, syn_hash2;
   3615 
   3616 #define SYN_HASH(sa, sp, dp) \
   3617 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3618 				     ((u_int32_t)(sp)))^syn_hash2)))
   3619 #ifndef INET6
   3620 #define	SYN_HASHALL(hash, src, dst) \
   3621 do {									\
   3622 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3623 		((const struct sockaddr_in *)(src))->sin_port,		\
   3624 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3625 } while (/*CONSTCOND*/ 0)
   3626 #else
   3627 #define SYN_HASH6(sa, sp, dp) \
   3628 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3629 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3630 	 & 0x7fffffff)
   3631 
   3632 #define SYN_HASHALL(hash, src, dst) \
   3633 do {									\
   3634 	switch ((src)->sa_family) {					\
   3635 	case AF_INET:							\
   3636 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3637 			((const struct sockaddr_in *)(src))->sin_port,	\
   3638 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3639 		break;							\
   3640 	case AF_INET6:							\
   3641 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3642 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3643 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3644 		break;							\
   3645 	default:							\
   3646 		hash = 0;						\
   3647 	}								\
   3648 } while (/*CONSTCOND*/0)
   3649 #endif /* INET6 */
   3650 
   3651 static struct pool syn_cache_pool;
   3652 
   3653 /*
   3654  * We don't estimate RTT with SYNs, so each packet starts with the default
   3655  * RTT and each timer step has a fixed timeout value.
   3656  */
   3657 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3658 do {									\
   3659 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3660 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3661 	    TCPTV_REXMTMAX);						\
   3662 	callout_reset(&(sc)->sc_timer,					\
   3663 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3664 } while (/*CONSTCOND*/0)
   3665 
   3666 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3667 
   3668 static inline void
   3669 syn_cache_rm(struct syn_cache *sc)
   3670 {
   3671 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3672 	    sc, sc_bucketq);
   3673 	sc->sc_tp = NULL;
   3674 	LIST_REMOVE(sc, sc_tpq);
   3675 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3676 	callout_stop(&sc->sc_timer);
   3677 	syn_cache_count--;
   3678 }
   3679 
   3680 static inline void
   3681 syn_cache_put(struct syn_cache *sc)
   3682 {
   3683 	if (sc->sc_ipopts)
   3684 		(void) m_free(sc->sc_ipopts);
   3685 	rtcache_free(&sc->sc_route);
   3686 	sc->sc_flags |= SCF_DEAD;
   3687 	if (!callout_invoking(&sc->sc_timer))
   3688 		callout_schedule(&(sc)->sc_timer, 1);
   3689 }
   3690 
   3691 void
   3692 syn_cache_init(void)
   3693 {
   3694 	int i;
   3695 
   3696 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3697 	    "synpl", NULL, IPL_SOFTNET);
   3698 
   3699 	/* Initialize the hash buckets. */
   3700 	for (i = 0; i < tcp_syn_cache_size; i++)
   3701 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3702 }
   3703 
   3704 void
   3705 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3706 {
   3707 	struct syn_cache_head *scp;
   3708 	struct syn_cache *sc2;
   3709 	int s;
   3710 
   3711 	/*
   3712 	 * If there are no entries in the hash table, reinitialize
   3713 	 * the hash secrets.
   3714 	 */
   3715 	if (syn_cache_count == 0) {
   3716 		syn_hash1 = arc4random();
   3717 		syn_hash2 = arc4random();
   3718 	}
   3719 
   3720 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3721 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3722 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3723 
   3724 	/*
   3725 	 * Make sure that we don't overflow the per-bucket
   3726 	 * limit or the total cache size limit.
   3727 	 */
   3728 	s = splsoftnet();
   3729 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3730 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3731 		/*
   3732 		 * The bucket is full.  Toss the oldest element in the
   3733 		 * bucket.  This will be the first entry in the bucket.
   3734 		 */
   3735 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3736 #ifdef DIAGNOSTIC
   3737 		/*
   3738 		 * This should never happen; we should always find an
   3739 		 * entry in our bucket.
   3740 		 */
   3741 		if (sc2 == NULL)
   3742 			panic("syn_cache_insert: bucketoverflow: impossible");
   3743 #endif
   3744 		syn_cache_rm(sc2);
   3745 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3746 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3747 		struct syn_cache_head *scp2, *sce;
   3748 
   3749 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3750 		/*
   3751 		 * The cache is full.  Toss the oldest entry in the
   3752 		 * first non-empty bucket we can find.
   3753 		 *
   3754 		 * XXX We would really like to toss the oldest
   3755 		 * entry in the cache, but we hope that this
   3756 		 * condition doesn't happen very often.
   3757 		 */
   3758 		scp2 = scp;
   3759 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3760 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3761 			for (++scp2; scp2 != scp; scp2++) {
   3762 				if (scp2 >= sce)
   3763 					scp2 = &tcp_syn_cache[0];
   3764 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3765 					break;
   3766 			}
   3767 #ifdef DIAGNOSTIC
   3768 			/*
   3769 			 * This should never happen; we should always find a
   3770 			 * non-empty bucket.
   3771 			 */
   3772 			if (scp2 == scp)
   3773 				panic("syn_cache_insert: cacheoverflow: "
   3774 				    "impossible");
   3775 #endif
   3776 		}
   3777 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3778 		syn_cache_rm(sc2);
   3779 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3780 	}
   3781 
   3782 	/*
   3783 	 * Initialize the entry's timer.
   3784 	 */
   3785 	sc->sc_rxttot = 0;
   3786 	sc->sc_rxtshift = 0;
   3787 	SYN_CACHE_TIMER_ARM(sc);
   3788 
   3789 	/* Link it from tcpcb entry */
   3790 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3791 
   3792 	/* Put it into the bucket. */
   3793 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3794 	scp->sch_length++;
   3795 	syn_cache_count++;
   3796 
   3797 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3798 	splx(s);
   3799 }
   3800 
   3801 /*
   3802  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3803  * If we have retransmitted an entry the maximum number of times, expire
   3804  * that entry.
   3805  */
   3806 void
   3807 syn_cache_timer(void *arg)
   3808 {
   3809 	struct syn_cache *sc = arg;
   3810 
   3811 	mutex_enter(softnet_lock);
   3812 	KERNEL_LOCK(1, NULL);
   3813 	callout_ack(&sc->sc_timer);
   3814 
   3815 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3816 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3817 		callout_destroy(&sc->sc_timer);
   3818 		pool_put(&syn_cache_pool, sc);
   3819 		KERNEL_UNLOCK_ONE(NULL);
   3820 		mutex_exit(softnet_lock);
   3821 		return;
   3822 	}
   3823 
   3824 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3825 		/* Drop it -- too many retransmissions. */
   3826 		goto dropit;
   3827 	}
   3828 
   3829 	/*
   3830 	 * Compute the total amount of time this entry has
   3831 	 * been on a queue.  If this entry has been on longer
   3832 	 * than the keep alive timer would allow, expire it.
   3833 	 */
   3834 	sc->sc_rxttot += sc->sc_rxtcur;
   3835 	if (sc->sc_rxttot >= tcp_keepinit)
   3836 		goto dropit;
   3837 
   3838 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3839 	(void) syn_cache_respond(sc, NULL);
   3840 
   3841 	/* Advance the timer back-off. */
   3842 	sc->sc_rxtshift++;
   3843 	SYN_CACHE_TIMER_ARM(sc);
   3844 
   3845 	KERNEL_UNLOCK_ONE(NULL);
   3846 	mutex_exit(softnet_lock);
   3847 	return;
   3848 
   3849  dropit:
   3850 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3851 	syn_cache_rm(sc);
   3852 	if (sc->sc_ipopts)
   3853 		(void) m_free(sc->sc_ipopts);
   3854 	rtcache_free(&sc->sc_route);
   3855 	callout_destroy(&sc->sc_timer);
   3856 	pool_put(&syn_cache_pool, sc);
   3857 	KERNEL_UNLOCK_ONE(NULL);
   3858 	mutex_exit(softnet_lock);
   3859 }
   3860 
   3861 /*
   3862  * Remove syn cache created by the specified tcb entry,
   3863  * because this does not make sense to keep them
   3864  * (if there's no tcb entry, syn cache entry will never be used)
   3865  */
   3866 void
   3867 syn_cache_cleanup(struct tcpcb *tp)
   3868 {
   3869 	struct syn_cache *sc, *nsc;
   3870 	int s;
   3871 
   3872 	s = splsoftnet();
   3873 
   3874 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3875 		nsc = LIST_NEXT(sc, sc_tpq);
   3876 
   3877 #ifdef DIAGNOSTIC
   3878 		if (sc->sc_tp != tp)
   3879 			panic("invalid sc_tp in syn_cache_cleanup");
   3880 #endif
   3881 		syn_cache_rm(sc);
   3882 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3883 	}
   3884 	/* just for safety */
   3885 	LIST_INIT(&tp->t_sc);
   3886 
   3887 	splx(s);
   3888 }
   3889 
   3890 /*
   3891  * Find an entry in the syn cache.
   3892  */
   3893 struct syn_cache *
   3894 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3895     struct syn_cache_head **headp)
   3896 {
   3897 	struct syn_cache *sc;
   3898 	struct syn_cache_head *scp;
   3899 	u_int32_t hash;
   3900 	int s;
   3901 
   3902 	SYN_HASHALL(hash, src, dst);
   3903 
   3904 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3905 	*headp = scp;
   3906 	s = splsoftnet();
   3907 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3908 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3909 		if (sc->sc_hash != hash)
   3910 			continue;
   3911 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3912 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3913 			splx(s);
   3914 			return (sc);
   3915 		}
   3916 	}
   3917 	splx(s);
   3918 	return (NULL);
   3919 }
   3920 
   3921 /*
   3922  * This function gets called when we receive an ACK for a
   3923  * socket in the LISTEN state.  We look up the connection
   3924  * in the syn cache, and if its there, we pull it out of
   3925  * the cache and turn it into a full-blown connection in
   3926  * the SYN-RECEIVED state.
   3927  *
   3928  * The return values may not be immediately obvious, and their effects
   3929  * can be subtle, so here they are:
   3930  *
   3931  *	NULL	SYN was not found in cache; caller should drop the
   3932  *		packet and send an RST.
   3933  *
   3934  *	-1	We were unable to create the new connection, and are
   3935  *		aborting it.  An ACK,RST is being sent to the peer
   3936  *		(unless we got screwey sequence numbners; see below),
   3937  *		because the 3-way handshake has been completed.  Caller
   3938  *		should not free the mbuf, since we may be using it.  If
   3939  *		we are not, we will free it.
   3940  *
   3941  *	Otherwise, the return value is a pointer to the new socket
   3942  *	associated with the connection.
   3943  */
   3944 struct socket *
   3945 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3946     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3947     struct socket *so, struct mbuf *m)
   3948 {
   3949 	struct syn_cache *sc;
   3950 	struct syn_cache_head *scp;
   3951 	struct inpcb *inp = NULL;
   3952 #ifdef INET6
   3953 	struct in6pcb *in6p = NULL;
   3954 #endif
   3955 	struct tcpcb *tp = 0;
   3956 	struct mbuf *am;
   3957 	int s;
   3958 	struct socket *oso;
   3959 
   3960 	s = splsoftnet();
   3961 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3962 		splx(s);
   3963 		return (NULL);
   3964 	}
   3965 
   3966 	/*
   3967 	 * Verify the sequence and ack numbers.  Try getting the correct
   3968 	 * response again.
   3969 	 */
   3970 	if ((th->th_ack != sc->sc_iss + 1) ||
   3971 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3972 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3973 		(void) syn_cache_respond(sc, m);
   3974 		splx(s);
   3975 		return ((struct socket *)(-1));
   3976 	}
   3977 
   3978 	/* Remove this cache entry */
   3979 	syn_cache_rm(sc);
   3980 	splx(s);
   3981 
   3982 	/*
   3983 	 * Ok, create the full blown connection, and set things up
   3984 	 * as they would have been set up if we had created the
   3985 	 * connection when the SYN arrived.  If we can't create
   3986 	 * the connection, abort it.
   3987 	 */
   3988 	/*
   3989 	 * inp still has the OLD in_pcb stuff, set the
   3990 	 * v6-related flags on the new guy, too.   This is
   3991 	 * done particularly for the case where an AF_INET6
   3992 	 * socket is bound only to a port, and a v4 connection
   3993 	 * comes in on that port.
   3994 	 * we also copy the flowinfo from the original pcb
   3995 	 * to the new one.
   3996 	 */
   3997 	oso = so;
   3998 	so = sonewconn(so, SS_ISCONNECTED);
   3999 	if (so == NULL)
   4000 		goto resetandabort;
   4001 
   4002 	switch (so->so_proto->pr_domain->dom_family) {
   4003 #ifdef INET
   4004 	case AF_INET:
   4005 		inp = sotoinpcb(so);
   4006 		break;
   4007 #endif
   4008 #ifdef INET6
   4009 	case AF_INET6:
   4010 		in6p = sotoin6pcb(so);
   4011 		break;
   4012 #endif
   4013 	}
   4014 	switch (src->sa_family) {
   4015 #ifdef INET
   4016 	case AF_INET:
   4017 		if (inp) {
   4018 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   4019 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   4020 			inp->inp_options = ip_srcroute();
   4021 			in_pcbstate(inp, INP_BOUND);
   4022 			if (inp->inp_options == NULL) {
   4023 				inp->inp_options = sc->sc_ipopts;
   4024 				sc->sc_ipopts = NULL;
   4025 			}
   4026 		}
   4027 #ifdef INET6
   4028 		else if (in6p) {
   4029 			/* IPv4 packet to AF_INET6 socket */
   4030 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   4031 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   4032 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   4033 				&in6p->in6p_laddr.s6_addr32[3],
   4034 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   4035 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   4036 			in6totcpcb(in6p)->t_family = AF_INET;
   4037 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   4038 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   4039 			else
   4040 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   4041 			in6_pcbstate(in6p, IN6P_BOUND);
   4042 		}
   4043 #endif
   4044 		break;
   4045 #endif
   4046 #ifdef INET6
   4047 	case AF_INET6:
   4048 		if (in6p) {
   4049 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   4050 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   4051 			in6_pcbstate(in6p, IN6P_BOUND);
   4052 		}
   4053 		break;
   4054 #endif
   4055 	}
   4056 #ifdef INET6
   4057 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   4058 		struct in6pcb *oin6p = sotoin6pcb(oso);
   4059 		/* inherit socket options from the listening socket */
   4060 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   4061 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   4062 			m_freem(in6p->in6p_options);
   4063 			in6p->in6p_options = 0;
   4064 		}
   4065 		ip6_savecontrol(in6p, &in6p->in6p_options,
   4066 			mtod(m, struct ip6_hdr *), m);
   4067 	}
   4068 #endif
   4069 
   4070 #if defined(IPSEC) || defined(FAST_IPSEC)
   4071 	/*
   4072 	 * we make a copy of policy, instead of sharing the policy,
   4073 	 * for better behavior in terms of SA lookup and dead SA removal.
   4074 	 */
   4075 	if (inp) {
   4076 		/* copy old policy into new socket's */
   4077 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   4078 			printf("tcp_input: could not copy policy\n");
   4079 	}
   4080 #ifdef INET6
   4081 	else if (in6p) {
   4082 		/* copy old policy into new socket's */
   4083 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   4084 		    in6p->in6p_sp))
   4085 			printf("tcp_input: could not copy policy\n");
   4086 	}
   4087 #endif
   4088 #endif
   4089 
   4090 	/*
   4091 	 * Give the new socket our cached route reference.
   4092 	 */
   4093 	if (inp) {
   4094 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   4095 		rtcache_free(&sc->sc_route);
   4096 	}
   4097 #ifdef INET6
   4098 	else {
   4099 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   4100 		rtcache_free(&sc->sc_route);
   4101 	}
   4102 #endif
   4103 
   4104 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   4105 	if (am == NULL)
   4106 		goto resetandabort;
   4107 	MCLAIM(am, &tcp_mowner);
   4108 	am->m_len = src->sa_len;
   4109 	bcopy(src, mtod(am, void *), src->sa_len);
   4110 	if (inp) {
   4111 		if (in_pcbconnect(inp, am, &lwp0)) {
   4112 			(void) m_free(am);
   4113 			goto resetandabort;
   4114 		}
   4115 	}
   4116 #ifdef INET6
   4117 	else if (in6p) {
   4118 		if (src->sa_family == AF_INET) {
   4119 			/* IPv4 packet to AF_INET6 socket */
   4120 			struct sockaddr_in6 *sin6;
   4121 			sin6 = mtod(am, struct sockaddr_in6 *);
   4122 			am->m_len = sizeof(*sin6);
   4123 			memset(sin6, 0, sizeof(*sin6));
   4124 			sin6->sin6_family = AF_INET6;
   4125 			sin6->sin6_len = sizeof(*sin6);
   4126 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   4127 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   4128 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   4129 				&sin6->sin6_addr.s6_addr32[3],
   4130 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   4131 		}
   4132 		if (in6_pcbconnect(in6p, am, NULL)) {
   4133 			(void) m_free(am);
   4134 			goto resetandabort;
   4135 		}
   4136 	}
   4137 #endif
   4138 	else {
   4139 		(void) m_free(am);
   4140 		goto resetandabort;
   4141 	}
   4142 	(void) m_free(am);
   4143 
   4144 	if (inp)
   4145 		tp = intotcpcb(inp);
   4146 #ifdef INET6
   4147 	else if (in6p)
   4148 		tp = in6totcpcb(in6p);
   4149 #endif
   4150 	else
   4151 		tp = NULL;
   4152 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   4153 	if (sc->sc_request_r_scale != 15) {
   4154 		tp->requested_s_scale = sc->sc_requested_s_scale;
   4155 		tp->request_r_scale = sc->sc_request_r_scale;
   4156 		tp->snd_scale = sc->sc_requested_s_scale;
   4157 		tp->rcv_scale = sc->sc_request_r_scale;
   4158 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   4159 	}
   4160 	if (sc->sc_flags & SCF_TIMESTAMP)
   4161 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   4162 	tp->ts_timebase = sc->sc_timebase;
   4163 
   4164 	tp->t_template = tcp_template(tp);
   4165 	if (tp->t_template == 0) {
   4166 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   4167 		so = NULL;
   4168 		m_freem(m);
   4169 		goto abort;
   4170 	}
   4171 
   4172 	tp->iss = sc->sc_iss;
   4173 	tp->irs = sc->sc_irs;
   4174 	tcp_sendseqinit(tp);
   4175 	tcp_rcvseqinit(tp);
   4176 	tp->t_state = TCPS_SYN_RECEIVED;
   4177 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4178 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4179 
   4180 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4181 		tp->t_flags |= TF_WILL_SACK;
   4182 
   4183 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4184 		tp->t_flags |= TF_ECN_PERMIT;
   4185 
   4186 #ifdef TCP_SIGNATURE
   4187 	if (sc->sc_flags & SCF_SIGNATURE)
   4188 		tp->t_flags |= TF_SIGNATURE;
   4189 #endif
   4190 
   4191 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4192 	tp->t_ourmss = sc->sc_ourmaxseg;
   4193 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4194 
   4195 	/*
   4196 	 * Initialize the initial congestion window.  If we
   4197 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4198 	 * to 1 segment (i.e. the Loss Window).
   4199 	 */
   4200 	if (sc->sc_rxtshift)
   4201 		tp->snd_cwnd = tp->t_peermss;
   4202 	else {
   4203 		int ss = tcp_init_win;
   4204 #ifdef INET
   4205 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4206 			ss = tcp_init_win_local;
   4207 #endif
   4208 #ifdef INET6
   4209 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4210 			ss = tcp_init_win_local;
   4211 #endif
   4212 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4213 	}
   4214 
   4215 	tcp_rmx_rtt(tp);
   4216 	tp->snd_wl1 = sc->sc_irs;
   4217 	tp->rcv_up = sc->sc_irs + 1;
   4218 
   4219 	/*
   4220 	 * This is what whould have happened in tcp_output() when
   4221 	 * the SYN,ACK was sent.
   4222 	 */
   4223 	tp->snd_up = tp->snd_una;
   4224 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4225 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4226 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4227 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4228 	tp->last_ack_sent = tp->rcv_nxt;
   4229 	tp->t_partialacks = -1;
   4230 	tp->t_dupacks = 0;
   4231 
   4232 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4233 	s = splsoftnet();
   4234 	syn_cache_put(sc);
   4235 	splx(s);
   4236 	return (so);
   4237 
   4238 resetandabort:
   4239 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4240 abort:
   4241 	if (so != NULL) {
   4242 		(void) soqremque(so, 1);
   4243 		(void) soabort(so);
   4244 		mutex_enter(softnet_lock);
   4245 	}
   4246 	s = splsoftnet();
   4247 	syn_cache_put(sc);
   4248 	splx(s);
   4249 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4250 	return ((struct socket *)(-1));
   4251 }
   4252 
   4253 /*
   4254  * This function is called when we get a RST for a
   4255  * non-existent connection, so that we can see if the
   4256  * connection is in the syn cache.  If it is, zap it.
   4257  */
   4258 
   4259 void
   4260 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4261 {
   4262 	struct syn_cache *sc;
   4263 	struct syn_cache_head *scp;
   4264 	int s = splsoftnet();
   4265 
   4266 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4267 		splx(s);
   4268 		return;
   4269 	}
   4270 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4271 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4272 		splx(s);
   4273 		return;
   4274 	}
   4275 	syn_cache_rm(sc);
   4276 	TCP_STATINC(TCP_STAT_SC_RESET);
   4277 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4278 	splx(s);
   4279 }
   4280 
   4281 void
   4282 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4283     struct tcphdr *th)
   4284 {
   4285 	struct syn_cache *sc;
   4286 	struct syn_cache_head *scp;
   4287 	int s;
   4288 
   4289 	s = splsoftnet();
   4290 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4291 		splx(s);
   4292 		return;
   4293 	}
   4294 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4295 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4296 		splx(s);
   4297 		return;
   4298 	}
   4299 
   4300 	/*
   4301 	 * If we've retransmitted 3 times and this is our second error,
   4302 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4303 	 * This prevents us from incorrectly nuking an entry during a
   4304 	 * spurious network outage.
   4305 	 *
   4306 	 * See tcp_notify().
   4307 	 */
   4308 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4309 		sc->sc_flags |= SCF_UNREACH;
   4310 		splx(s);
   4311 		return;
   4312 	}
   4313 
   4314 	syn_cache_rm(sc);
   4315 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4316 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4317 	splx(s);
   4318 }
   4319 
   4320 /*
   4321  * Given a LISTEN socket and an inbound SYN request, add
   4322  * this to the syn cache, and send back a segment:
   4323  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4324  * to the source.
   4325  *
   4326  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4327  * Doing so would require that we hold onto the data and deliver it
   4328  * to the application.  However, if we are the target of a SYN-flood
   4329  * DoS attack, an attacker could send data which would eventually
   4330  * consume all available buffer space if it were ACKed.  By not ACKing
   4331  * the data, we avoid this DoS scenario.
   4332  */
   4333 
   4334 int
   4335 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4336     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4337     int optlen, struct tcp_opt_info *oi)
   4338 {
   4339 	struct tcpcb tb, *tp;
   4340 	long win;
   4341 	struct syn_cache *sc;
   4342 	struct syn_cache_head *scp;
   4343 	struct mbuf *ipopts;
   4344 	struct tcp_opt_info opti;
   4345 	int s;
   4346 
   4347 	tp = sototcpcb(so);
   4348 
   4349 	memset(&opti, 0, sizeof(opti));
   4350 
   4351 	/*
   4352 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4353 	 *
   4354 	 * Note this check is performed in tcp_input() very early on.
   4355 	 */
   4356 
   4357 	/*
   4358 	 * Initialize some local state.
   4359 	 */
   4360 	win = sbspace(&so->so_rcv);
   4361 	if (win > TCP_MAXWIN)
   4362 		win = TCP_MAXWIN;
   4363 
   4364 	switch (src->sa_family) {
   4365 #ifdef INET
   4366 	case AF_INET:
   4367 		/*
   4368 		 * Remember the IP options, if any.
   4369 		 */
   4370 		ipopts = ip_srcroute();
   4371 		break;
   4372 #endif
   4373 	default:
   4374 		ipopts = NULL;
   4375 	}
   4376 
   4377 #ifdef TCP_SIGNATURE
   4378 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4379 #else
   4380 	if (optp)
   4381 #endif
   4382 	{
   4383 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4384 #ifdef TCP_SIGNATURE
   4385 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4386 #endif
   4387 		tb.t_state = TCPS_LISTEN;
   4388 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4389 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4390 			return (0);
   4391 	} else
   4392 		tb.t_flags = 0;
   4393 
   4394 	/*
   4395 	 * See if we already have an entry for this connection.
   4396 	 * If we do, resend the SYN,ACK.  We do not count this
   4397 	 * as a retransmission (XXX though maybe we should).
   4398 	 */
   4399 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4400 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4401 		if (ipopts) {
   4402 			/*
   4403 			 * If we were remembering a previous source route,
   4404 			 * forget it and use the new one we've been given.
   4405 			 */
   4406 			if (sc->sc_ipopts)
   4407 				(void) m_free(sc->sc_ipopts);
   4408 			sc->sc_ipopts = ipopts;
   4409 		}
   4410 		sc->sc_timestamp = tb.ts_recent;
   4411 		if (syn_cache_respond(sc, m) == 0) {
   4412 			uint64_t *tcps = TCP_STAT_GETREF();
   4413 			tcps[TCP_STAT_SNDACKS]++;
   4414 			tcps[TCP_STAT_SNDTOTAL]++;
   4415 			TCP_STAT_PUTREF();
   4416 		}
   4417 		return (1);
   4418 	}
   4419 
   4420 	s = splsoftnet();
   4421 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4422 	splx(s);
   4423 	if (sc == NULL) {
   4424 		if (ipopts)
   4425 			(void) m_free(ipopts);
   4426 		return (0);
   4427 	}
   4428 
   4429 	/*
   4430 	 * Fill in the cache, and put the necessary IP and TCP
   4431 	 * options into the reply.
   4432 	 */
   4433 	memset(sc, 0, sizeof(struct syn_cache));
   4434 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4435 	bcopy(src, &sc->sc_src, src->sa_len);
   4436 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4437 	sc->sc_flags = 0;
   4438 	sc->sc_ipopts = ipopts;
   4439 	sc->sc_irs = th->th_seq;
   4440 	switch (src->sa_family) {
   4441 #ifdef INET
   4442 	case AF_INET:
   4443 	    {
   4444 		struct sockaddr_in *srcin = (void *) src;
   4445 		struct sockaddr_in *dstin = (void *) dst;
   4446 
   4447 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4448 		    &srcin->sin_addr, dstin->sin_port,
   4449 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4450 		break;
   4451 	    }
   4452 #endif /* INET */
   4453 #ifdef INET6
   4454 	case AF_INET6:
   4455 	    {
   4456 		struct sockaddr_in6 *srcin6 = (void *) src;
   4457 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4458 
   4459 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4460 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4461 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4462 		break;
   4463 	    }
   4464 #endif /* INET6 */
   4465 	}
   4466 	sc->sc_peermaxseg = oi->maxseg;
   4467 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4468 						m->m_pkthdr.rcvif : NULL,
   4469 						sc->sc_src.sa.sa_family);
   4470 	sc->sc_win = win;
   4471 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4472 	sc->sc_timestamp = tb.ts_recent;
   4473 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4474 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4475 		sc->sc_flags |= SCF_TIMESTAMP;
   4476 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4477 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4478 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4479 		sc->sc_request_r_scale = 0;
   4480 		/*
   4481 		 * Pick the smallest possible scaling factor that
   4482 		 * will still allow us to scale up to sb_max.
   4483 		 *
   4484 		 * We do this because there are broken firewalls that
   4485 		 * will corrupt the window scale option, leading to
   4486 		 * the other endpoint believing that our advertised
   4487 		 * window is unscaled.  At scale factors larger than
   4488 		 * 5 the unscaled window will drop below 1500 bytes,
   4489 		 * leading to serious problems when traversing these
   4490 		 * broken firewalls.
   4491 		 *
   4492 		 * With the default sbmax of 256K, a scale factor
   4493 		 * of 3 will be chosen by this algorithm.  Those who
   4494 		 * choose a larger sbmax should watch out
   4495 		 * for the compatiblity problems mentioned above.
   4496 		 *
   4497 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4498 		 * or <SYN,ACK>) segment itself is never scaled.
   4499 		 */
   4500 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4501 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4502 			sc->sc_request_r_scale++;
   4503 	} else {
   4504 		sc->sc_requested_s_scale = 15;
   4505 		sc->sc_request_r_scale = 15;
   4506 	}
   4507 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4508 		sc->sc_flags |= SCF_SACK_PERMIT;
   4509 
   4510 	/*
   4511 	 * ECN setup packet recieved.
   4512 	 */
   4513 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4514 		sc->sc_flags |= SCF_ECN_PERMIT;
   4515 
   4516 #ifdef TCP_SIGNATURE
   4517 	if (tb.t_flags & TF_SIGNATURE)
   4518 		sc->sc_flags |= SCF_SIGNATURE;
   4519 #endif
   4520 	sc->sc_tp = tp;
   4521 	if (syn_cache_respond(sc, m) == 0) {
   4522 		uint64_t *tcps = TCP_STAT_GETREF();
   4523 		tcps[TCP_STAT_SNDACKS]++;
   4524 		tcps[TCP_STAT_SNDTOTAL]++;
   4525 		TCP_STAT_PUTREF();
   4526 		syn_cache_insert(sc, tp);
   4527 	} else {
   4528 		s = splsoftnet();
   4529 		/*
   4530 		 * syn_cache_put() will try to schedule the timer, so
   4531 		 * we need to initialize it
   4532 		 */
   4533 		SYN_CACHE_TIMER_ARM(sc);
   4534 		syn_cache_put(sc);
   4535 		splx(s);
   4536 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4537 	}
   4538 	return (1);
   4539 }
   4540 
   4541 int
   4542 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4543 {
   4544 #ifdef INET6
   4545 	struct rtentry *rt;
   4546 #endif
   4547 	struct route *ro;
   4548 	u_int8_t *optp;
   4549 	int optlen, error;
   4550 	u_int16_t tlen;
   4551 	struct ip *ip = NULL;
   4552 #ifdef INET6
   4553 	struct ip6_hdr *ip6 = NULL;
   4554 #endif
   4555 	struct tcpcb *tp = NULL;
   4556 	struct tcphdr *th;
   4557 	u_int hlen;
   4558 	struct socket *so;
   4559 
   4560 	ro = &sc->sc_route;
   4561 	switch (sc->sc_src.sa.sa_family) {
   4562 	case AF_INET:
   4563 		hlen = sizeof(struct ip);
   4564 		break;
   4565 #ifdef INET6
   4566 	case AF_INET6:
   4567 		hlen = sizeof(struct ip6_hdr);
   4568 		break;
   4569 #endif
   4570 	default:
   4571 		if (m)
   4572 			m_freem(m);
   4573 		return (EAFNOSUPPORT);
   4574 	}
   4575 
   4576 	/* Compute the size of the TCP options. */
   4577 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4578 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4579 #ifdef TCP_SIGNATURE
   4580 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4581 #endif
   4582 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4583 
   4584 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4585 
   4586 	/*
   4587 	 * Create the IP+TCP header from scratch.
   4588 	 */
   4589 	if (m)
   4590 		m_freem(m);
   4591 #ifdef DIAGNOSTIC
   4592 	if (max_linkhdr + tlen > MCLBYTES)
   4593 		return (ENOBUFS);
   4594 #endif
   4595 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4596 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4597 		MCLGET(m, M_DONTWAIT);
   4598 		if ((m->m_flags & M_EXT) == 0) {
   4599 			m_freem(m);
   4600 			m = NULL;
   4601 		}
   4602 	}
   4603 	if (m == NULL)
   4604 		return (ENOBUFS);
   4605 	MCLAIM(m, &tcp_tx_mowner);
   4606 
   4607 	/* Fixup the mbuf. */
   4608 	m->m_data += max_linkhdr;
   4609 	m->m_len = m->m_pkthdr.len = tlen;
   4610 	if (sc->sc_tp) {
   4611 		tp = sc->sc_tp;
   4612 		if (tp->t_inpcb)
   4613 			so = tp->t_inpcb->inp_socket;
   4614 #ifdef INET6
   4615 		else if (tp->t_in6pcb)
   4616 			so = tp->t_in6pcb->in6p_socket;
   4617 #endif
   4618 		else
   4619 			so = NULL;
   4620 	} else
   4621 		so = NULL;
   4622 	m->m_pkthdr.rcvif = NULL;
   4623 	memset(mtod(m, u_char *), 0, tlen);
   4624 
   4625 	switch (sc->sc_src.sa.sa_family) {
   4626 	case AF_INET:
   4627 		ip = mtod(m, struct ip *);
   4628 		ip->ip_v = 4;
   4629 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4630 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4631 		ip->ip_p = IPPROTO_TCP;
   4632 		th = (struct tcphdr *)(ip + 1);
   4633 		th->th_dport = sc->sc_src.sin.sin_port;
   4634 		th->th_sport = sc->sc_dst.sin.sin_port;
   4635 		break;
   4636 #ifdef INET6
   4637 	case AF_INET6:
   4638 		ip6 = mtod(m, struct ip6_hdr *);
   4639 		ip6->ip6_vfc = IPV6_VERSION;
   4640 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4641 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4642 		ip6->ip6_nxt = IPPROTO_TCP;
   4643 		/* ip6_plen will be updated in ip6_output() */
   4644 		th = (struct tcphdr *)(ip6 + 1);
   4645 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4646 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4647 		break;
   4648 #endif
   4649 	default:
   4650 		th = NULL;
   4651 	}
   4652 
   4653 	th->th_seq = htonl(sc->sc_iss);
   4654 	th->th_ack = htonl(sc->sc_irs + 1);
   4655 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4656 	th->th_flags = TH_SYN|TH_ACK;
   4657 	th->th_win = htons(sc->sc_win);
   4658 	/* th_sum already 0 */
   4659 	/* th_urp already 0 */
   4660 
   4661 	/* Tack on the TCP options. */
   4662 	optp = (u_int8_t *)(th + 1);
   4663 	*optp++ = TCPOPT_MAXSEG;
   4664 	*optp++ = 4;
   4665 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4666 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4667 
   4668 	if (sc->sc_request_r_scale != 15) {
   4669 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4670 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4671 		    sc->sc_request_r_scale);
   4672 		optp += 4;
   4673 	}
   4674 
   4675 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4676 		u_int32_t *lp = (u_int32_t *)(optp);
   4677 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4678 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4679 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4680 		*lp   = htonl(sc->sc_timestamp);
   4681 		optp += TCPOLEN_TSTAMP_APPA;
   4682 	}
   4683 
   4684 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4685 		u_int8_t *p = optp;
   4686 
   4687 		/* Let the peer know that we will SACK. */
   4688 		p[0] = TCPOPT_SACK_PERMITTED;
   4689 		p[1] = 2;
   4690 		p[2] = TCPOPT_NOP;
   4691 		p[3] = TCPOPT_NOP;
   4692 		optp += 4;
   4693 	}
   4694 
   4695 	/*
   4696 	 * Send ECN SYN-ACK setup packet.
   4697 	 * Routes can be asymetric, so, even if we receive a packet
   4698 	 * with ECE and CWR set, we must not assume no one will block
   4699 	 * the ECE packet we are about to send.
   4700 	 */
   4701 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4702 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4703 		th->th_flags |= TH_ECE;
   4704 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4705 
   4706 		/*
   4707 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4708 		 *
   4709 		 * "[...] a TCP node MAY respond to an ECN-setup
   4710 		 * SYN packet by setting ECT in the responding
   4711 		 * ECN-setup SYN/ACK packet, indicating to routers
   4712 		 * that the SYN/ACK packet is ECN-Capable.
   4713 		 * This allows a congested router along the path
   4714 		 * to mark the packet instead of dropping the
   4715 		 * packet as an indication of congestion."
   4716 		 *
   4717 		 * "[...] There can be a great benefit in setting
   4718 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4719 		 * Congestion is  most likely to occur in
   4720 		 * the server-to-client direction.  As a result,
   4721 		 * setting an ECN-capable codepoint in SYN/ACK
   4722 		 * packets can reduce the occurence of three-second
   4723 		 * retransmit timeouts resulting from the drop
   4724 		 * of SYN/ACK packets."
   4725 		 *
   4726 		 * Page 4 and 6, January 2006.
   4727 		 */
   4728 
   4729 		switch (sc->sc_src.sa.sa_family) {
   4730 #ifdef INET
   4731 		case AF_INET:
   4732 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4733 			break;
   4734 #endif
   4735 #ifdef INET6
   4736 		case AF_INET6:
   4737 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4738 			break;
   4739 #endif
   4740 		}
   4741 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4742 	}
   4743 
   4744 #ifdef TCP_SIGNATURE
   4745 	if (sc->sc_flags & SCF_SIGNATURE) {
   4746 		struct secasvar *sav;
   4747 		u_int8_t *sigp;
   4748 
   4749 		sav = tcp_signature_getsav(m, th);
   4750 
   4751 		if (sav == NULL) {
   4752 			if (m)
   4753 				m_freem(m);
   4754 			return (EPERM);
   4755 		}
   4756 
   4757 		*optp++ = TCPOPT_SIGNATURE;
   4758 		*optp++ = TCPOLEN_SIGNATURE;
   4759 		sigp = optp;
   4760 		memset(optp, 0, TCP_SIGLEN);
   4761 		optp += TCP_SIGLEN;
   4762 		*optp++ = TCPOPT_NOP;
   4763 		*optp++ = TCPOPT_EOL;
   4764 
   4765 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4766 
   4767 		key_sa_recordxfer(sav, m);
   4768 #ifdef FAST_IPSEC
   4769 		KEY_FREESAV(&sav);
   4770 #else
   4771 		key_freesav(sav);
   4772 #endif
   4773 	}
   4774 #endif
   4775 
   4776 	/* Compute the packet's checksum. */
   4777 	switch (sc->sc_src.sa.sa_family) {
   4778 	case AF_INET:
   4779 		ip->ip_len = htons(tlen - hlen);
   4780 		th->th_sum = 0;
   4781 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4782 		break;
   4783 #ifdef INET6
   4784 	case AF_INET6:
   4785 		ip6->ip6_plen = htons(tlen - hlen);
   4786 		th->th_sum = 0;
   4787 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4788 		break;
   4789 #endif
   4790 	}
   4791 
   4792 	/*
   4793 	 * Fill in some straggling IP bits.  Note the stack expects
   4794 	 * ip_len to be in host order, for convenience.
   4795 	 */
   4796 	switch (sc->sc_src.sa.sa_family) {
   4797 #ifdef INET
   4798 	case AF_INET:
   4799 		ip->ip_len = htons(tlen);
   4800 		ip->ip_ttl = ip_defttl;
   4801 		/* XXX tos? */
   4802 		break;
   4803 #endif
   4804 #ifdef INET6
   4805 	case AF_INET6:
   4806 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4807 		ip6->ip6_vfc |= IPV6_VERSION;
   4808 		ip6->ip6_plen = htons(tlen - hlen);
   4809 		/* ip6_hlim will be initialized afterwards */
   4810 		/* XXX flowlabel? */
   4811 		break;
   4812 #endif
   4813 	}
   4814 
   4815 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4816 	tp = sc->sc_tp;
   4817 
   4818 	switch (sc->sc_src.sa.sa_family) {
   4819 #ifdef INET
   4820 	case AF_INET:
   4821 		error = ip_output(m, sc->sc_ipopts, ro,
   4822 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4823 		    (struct ip_moptions *)NULL, so);
   4824 		break;
   4825 #endif
   4826 #ifdef INET6
   4827 	case AF_INET6:
   4828 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4829 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
   4830 				                                    : NULL);
   4831 
   4832 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4833 		break;
   4834 #endif
   4835 	default:
   4836 		error = EAFNOSUPPORT;
   4837 		break;
   4838 	}
   4839 	return (error);
   4840 }
   4841