Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.318
      1 /*	$NetBSD: tcp_input.c,v 1.318 2011/11/19 22:51:25 tls Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.318 2011/11/19 22:51:25 tls Exp $");
    152 
    153 #include "opt_inet.h"
    154 #include "opt_ipsec.h"
    155 #include "opt_inet_csum.h"
    156 #include "opt_tcp_debug.h"
    157 
    158 #include <sys/param.h>
    159 #include <sys/systm.h>
    160 #include <sys/malloc.h>
    161 #include <sys/mbuf.h>
    162 #include <sys/protosw.h>
    163 #include <sys/socket.h>
    164 #include <sys/socketvar.h>
    165 #include <sys/errno.h>
    166 #include <sys/syslog.h>
    167 #include <sys/pool.h>
    168 #include <sys/domain.h>
    169 #include <sys/kernel.h>
    170 #ifdef TCP_SIGNATURE
    171 #include <sys/md5.h>
    172 #endif
    173 #include <sys/lwp.h> /* for lwp0 */
    174 #include <sys/cprng.h>
    175 
    176 #include <net/if.h>
    177 #include <net/route.h>
    178 #include <net/if_types.h>
    179 
    180 #include <netinet/in.h>
    181 #include <netinet/in_systm.h>
    182 #include <netinet/ip.h>
    183 #include <netinet/in_pcb.h>
    184 #include <netinet/in_var.h>
    185 #include <netinet/ip_var.h>
    186 #include <netinet/in_offload.h>
    187 
    188 #ifdef INET6
    189 #ifndef INET
    190 #include <netinet/in.h>
    191 #endif
    192 #include <netinet/ip6.h>
    193 #include <netinet6/ip6_var.h>
    194 #include <netinet6/in6_pcb.h>
    195 #include <netinet6/ip6_var.h>
    196 #include <netinet6/in6_var.h>
    197 #include <netinet/icmp6.h>
    198 #include <netinet6/nd6.h>
    199 #ifdef TCP_SIGNATURE
    200 #include <netinet6/scope6_var.h>
    201 #endif
    202 #endif
    203 
    204 #ifndef INET6
    205 /* always need ip6.h for IP6_EXTHDR_GET */
    206 #include <netinet/ip6.h>
    207 #endif
    208 
    209 #include <netinet/tcp.h>
    210 #include <netinet/tcp_fsm.h>
    211 #include <netinet/tcp_seq.h>
    212 #include <netinet/tcp_timer.h>
    213 #include <netinet/tcp_var.h>
    214 #include <netinet/tcp_private.h>
    215 #include <netinet/tcpip.h>
    216 #include <netinet/tcp_congctl.h>
    217 #include <netinet/tcp_debug.h>
    218 
    219 #ifdef IPSEC
    220 #include <netinet6/ipsec.h>
    221 #include <netinet6/ipsec_private.h>
    222 #include <netkey/key.h>
    223 #endif /*IPSEC*/
    224 #ifdef INET6
    225 #include "faith.h"
    226 #if defined(NFAITH) && NFAITH > 0
    227 #include <net/if_faith.h>
    228 #endif
    229 #endif	/* IPSEC */
    230 
    231 #ifdef FAST_IPSEC
    232 #include <netipsec/ipsec.h>
    233 #include <netipsec/ipsec_var.h>
    234 #include <netipsec/ipsec_private.h>
    235 #include <netipsec/key.h>
    236 #ifdef INET6
    237 #include <netipsec/ipsec6.h>
    238 #endif
    239 #endif	/* FAST_IPSEC*/
    240 
    241 #include <netinet/tcp_vtw.h>
    242 
    243 int	tcprexmtthresh = 3;
    244 int	tcp_log_refused;
    245 
    246 int	tcp_do_autorcvbuf = 1;
    247 int	tcp_autorcvbuf_inc = 16 * 1024;
    248 int	tcp_autorcvbuf_max = 256 * 1024;
    249 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    250 
    251 static int tcp_rst_ppslim_count = 0;
    252 static struct timeval tcp_rst_ppslim_last;
    253 static int tcp_ackdrop_ppslim_count = 0;
    254 static struct timeval tcp_ackdrop_ppslim_last;
    255 
    256 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    257 
    258 /* for modulo comparisons of timestamps */
    259 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    260 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    261 
    262 /*
    263  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    264  */
    265 #ifdef INET6
    266 static inline void
    267 nd6_hint(struct tcpcb *tp)
    268 {
    269 	struct rtentry *rt;
    270 
    271 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    272 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    273 		nd6_nud_hint(rt, NULL, 0);
    274 }
    275 #else
    276 static inline void
    277 nd6_hint(struct tcpcb *tp)
    278 {
    279 }
    280 #endif
    281 
    282 /*
    283  * Compute ACK transmission behavior.  Delay the ACK unless
    284  * we have already delayed an ACK (must send an ACK every two segments).
    285  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    286  * option is enabled.
    287  */
    288 static void
    289 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    290 {
    291 
    292 	if (tp->t_flags & TF_DELACK ||
    293 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    294 		tp->t_flags |= TF_ACKNOW;
    295 	else
    296 		TCP_SET_DELACK(tp);
    297 }
    298 
    299 static void
    300 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    301 {
    302 
    303 	/*
    304 	 * If we had a pending ICMP message that refers to data that have
    305 	 * just been acknowledged, disregard the recorded ICMP message.
    306 	 */
    307 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    308 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    309 		tp->t_flags &= ~TF_PMTUD_PEND;
    310 
    311 	/*
    312 	 * Keep track of the largest chunk of data
    313 	 * acknowledged since last PMTU update
    314 	 */
    315 	if (tp->t_pmtud_mss_acked < acked)
    316 		tp->t_pmtud_mss_acked = acked;
    317 }
    318 
    319 /*
    320  * Convert TCP protocol fields to host order for easier processing.
    321  */
    322 static void
    323 tcp_fields_to_host(struct tcphdr *th)
    324 {
    325 
    326 	NTOHL(th->th_seq);
    327 	NTOHL(th->th_ack);
    328 	NTOHS(th->th_win);
    329 	NTOHS(th->th_urp);
    330 }
    331 
    332 /*
    333  * ... and reverse the above.
    334  */
    335 static void
    336 tcp_fields_to_net(struct tcphdr *th)
    337 {
    338 
    339 	HTONL(th->th_seq);
    340 	HTONL(th->th_ack);
    341 	HTONS(th->th_win);
    342 	HTONS(th->th_urp);
    343 }
    344 
    345 #ifdef TCP_CSUM_COUNTERS
    346 #include <sys/device.h>
    347 
    348 #if defined(INET)
    349 extern struct evcnt tcp_hwcsum_ok;
    350 extern struct evcnt tcp_hwcsum_bad;
    351 extern struct evcnt tcp_hwcsum_data;
    352 extern struct evcnt tcp_swcsum;
    353 #endif /* defined(INET) */
    354 #if defined(INET6)
    355 extern struct evcnt tcp6_hwcsum_ok;
    356 extern struct evcnt tcp6_hwcsum_bad;
    357 extern struct evcnt tcp6_hwcsum_data;
    358 extern struct evcnt tcp6_swcsum;
    359 #endif /* defined(INET6) */
    360 
    361 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    362 
    363 #else
    364 
    365 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    366 
    367 #endif /* TCP_CSUM_COUNTERS */
    368 
    369 #ifdef TCP_REASS_COUNTERS
    370 #include <sys/device.h>
    371 
    372 extern struct evcnt tcp_reass_;
    373 extern struct evcnt tcp_reass_empty;
    374 extern struct evcnt tcp_reass_iteration[8];
    375 extern struct evcnt tcp_reass_prependfirst;
    376 extern struct evcnt tcp_reass_prepend;
    377 extern struct evcnt tcp_reass_insert;
    378 extern struct evcnt tcp_reass_inserttail;
    379 extern struct evcnt tcp_reass_append;
    380 extern struct evcnt tcp_reass_appendtail;
    381 extern struct evcnt tcp_reass_overlaptail;
    382 extern struct evcnt tcp_reass_overlapfront;
    383 extern struct evcnt tcp_reass_segdup;
    384 extern struct evcnt tcp_reass_fragdup;
    385 
    386 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    387 
    388 #else
    389 
    390 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    391 
    392 #endif /* TCP_REASS_COUNTERS */
    393 
    394 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    395     int *);
    396 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    397     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    398 
    399 #ifdef INET
    400 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    401 #endif
    402 #ifdef INET6
    403 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    404 #endif
    405 
    406 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    407 
    408 #if defined(MBUFTRACE)
    409 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    410 #endif /* defined(MBUFTRACE) */
    411 
    412 static struct pool tcpipqent_pool;
    413 
    414 void
    415 tcpipqent_init(void)
    416 {
    417 
    418 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    419 	    NULL, IPL_VM);
    420 }
    421 
    422 struct ipqent *
    423 tcpipqent_alloc(void)
    424 {
    425 	struct ipqent *ipqe;
    426 	int s;
    427 
    428 	s = splvm();
    429 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    430 	splx(s);
    431 
    432 	return ipqe;
    433 }
    434 
    435 void
    436 tcpipqent_free(struct ipqent *ipqe)
    437 {
    438 	int s;
    439 
    440 	s = splvm();
    441 	pool_put(&tcpipqent_pool, ipqe);
    442 	splx(s);
    443 }
    444 
    445 static int
    446 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    447 {
    448 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    449 	struct socket *so = NULL;
    450 	int pkt_flags;
    451 	tcp_seq pkt_seq;
    452 	unsigned pkt_len;
    453 	u_long rcvpartdupbyte = 0;
    454 	u_long rcvoobyte;
    455 #ifdef TCP_REASS_COUNTERS
    456 	u_int count = 0;
    457 #endif
    458 	uint64_t *tcps;
    459 
    460 	if (tp->t_inpcb)
    461 		so = tp->t_inpcb->inp_socket;
    462 #ifdef INET6
    463 	else if (tp->t_in6pcb)
    464 		so = tp->t_in6pcb->in6p_socket;
    465 #endif
    466 
    467 	TCP_REASS_LOCK_CHECK(tp);
    468 
    469 	/*
    470 	 * Call with th==0 after become established to
    471 	 * force pre-ESTABLISHED data up to user socket.
    472 	 */
    473 	if (th == 0)
    474 		goto present;
    475 
    476 	m_claimm(m, &tcp_reass_mowner);
    477 
    478 	rcvoobyte = *tlen;
    479 	/*
    480 	 * Copy these to local variables because the tcpiphdr
    481 	 * gets munged while we are collapsing mbufs.
    482 	 */
    483 	pkt_seq = th->th_seq;
    484 	pkt_len = *tlen;
    485 	pkt_flags = th->th_flags;
    486 
    487 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    488 
    489 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    490 		/*
    491 		 * When we miss a packet, the vast majority of time we get
    492 		 * packets that follow it in order.  So optimize for that.
    493 		 */
    494 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    495 			p->ipqe_len += pkt_len;
    496 			p->ipqe_flags |= pkt_flags;
    497 			m_cat(p->ipre_mlast, m);
    498 			TRAVERSE(p->ipre_mlast);
    499 			m = NULL;
    500 			tiqe = p;
    501 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    502 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    503 			goto skip_replacement;
    504 		}
    505 		/*
    506 		 * While we're here, if the pkt is completely beyond
    507 		 * anything we have, just insert it at the tail.
    508 		 */
    509 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    510 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    511 			goto insert_it;
    512 		}
    513 	}
    514 
    515 	q = TAILQ_FIRST(&tp->segq);
    516 
    517 	if (q != NULL) {
    518 		/*
    519 		 * If this segment immediately precedes the first out-of-order
    520 		 * block, simply slap the segment in front of it and (mostly)
    521 		 * skip the complicated logic.
    522 		 */
    523 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    524 			q->ipqe_seq = pkt_seq;
    525 			q->ipqe_len += pkt_len;
    526 			q->ipqe_flags |= pkt_flags;
    527 			m_cat(m, q->ipqe_m);
    528 			q->ipqe_m = m;
    529 			q->ipre_mlast = m; /* last mbuf may have changed */
    530 			TRAVERSE(q->ipre_mlast);
    531 			tiqe = q;
    532 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    533 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    534 			goto skip_replacement;
    535 		}
    536 	} else {
    537 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    538 	}
    539 
    540 	/*
    541 	 * Find a segment which begins after this one does.
    542 	 */
    543 	for (p = NULL; q != NULL; q = nq) {
    544 		nq = TAILQ_NEXT(q, ipqe_q);
    545 #ifdef TCP_REASS_COUNTERS
    546 		count++;
    547 #endif
    548 		/*
    549 		 * If the received segment is just right after this
    550 		 * fragment, merge the two together and then check
    551 		 * for further overlaps.
    552 		 */
    553 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    554 #ifdef TCPREASS_DEBUG
    555 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    556 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    557 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    558 #endif
    559 			pkt_len += q->ipqe_len;
    560 			pkt_flags |= q->ipqe_flags;
    561 			pkt_seq = q->ipqe_seq;
    562 			m_cat(q->ipre_mlast, m);
    563 			TRAVERSE(q->ipre_mlast);
    564 			m = q->ipqe_m;
    565 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    566 			goto free_ipqe;
    567 		}
    568 		/*
    569 		 * If the received segment is completely past this
    570 		 * fragment, we need to go the next fragment.
    571 		 */
    572 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    573 			p = q;
    574 			continue;
    575 		}
    576 		/*
    577 		 * If the fragment is past the received segment,
    578 		 * it (or any following) can't be concatenated.
    579 		 */
    580 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    581 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    582 			break;
    583 		}
    584 
    585 		/*
    586 		 * We've received all the data in this segment before.
    587 		 * mark it as a duplicate and return.
    588 		 */
    589 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    590 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    591 			tcps = TCP_STAT_GETREF();
    592 			tcps[TCP_STAT_RCVDUPPACK]++;
    593 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    594 			TCP_STAT_PUTREF();
    595 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    596 			m_freem(m);
    597 			if (tiqe != NULL) {
    598 				tcpipqent_free(tiqe);
    599 			}
    600 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    601 			goto out;
    602 		}
    603 		/*
    604 		 * Received segment completely overlaps this fragment
    605 		 * so we drop the fragment (this keeps the temporal
    606 		 * ordering of segments correct).
    607 		 */
    608 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    609 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    610 			rcvpartdupbyte += q->ipqe_len;
    611 			m_freem(q->ipqe_m);
    612 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    613 			goto free_ipqe;
    614 		}
    615 		/*
    616 		 * RX'ed segment extends past the end of the
    617 		 * fragment.  Drop the overlapping bytes.  Then
    618 		 * merge the fragment and segment then treat as
    619 		 * a longer received packet.
    620 		 */
    621 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    622 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    623 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    624 #ifdef TCPREASS_DEBUG
    625 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    626 			       tp, overlap,
    627 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    628 #endif
    629 			m_adj(m, overlap);
    630 			rcvpartdupbyte += overlap;
    631 			m_cat(q->ipre_mlast, m);
    632 			TRAVERSE(q->ipre_mlast);
    633 			m = q->ipqe_m;
    634 			pkt_seq = q->ipqe_seq;
    635 			pkt_len += q->ipqe_len - overlap;
    636 			rcvoobyte -= overlap;
    637 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    638 			goto free_ipqe;
    639 		}
    640 		/*
    641 		 * RX'ed segment extends past the front of the
    642 		 * fragment.  Drop the overlapping bytes on the
    643 		 * received packet.  The packet will then be
    644 		 * contatentated with this fragment a bit later.
    645 		 */
    646 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    647 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    648 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    649 #ifdef TCPREASS_DEBUG
    650 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    651 			       tp, overlap,
    652 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    653 #endif
    654 			m_adj(m, -overlap);
    655 			pkt_len -= overlap;
    656 			rcvpartdupbyte += overlap;
    657 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    658 			rcvoobyte -= overlap;
    659 		}
    660 		/*
    661 		 * If the received segment immediates precedes this
    662 		 * fragment then tack the fragment onto this segment
    663 		 * and reinsert the data.
    664 		 */
    665 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    666 #ifdef TCPREASS_DEBUG
    667 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    668 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    669 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    670 #endif
    671 			pkt_len += q->ipqe_len;
    672 			pkt_flags |= q->ipqe_flags;
    673 			m_cat(m, q->ipqe_m);
    674 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    675 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    676 			tp->t_segqlen--;
    677 			KASSERT(tp->t_segqlen >= 0);
    678 			KASSERT(tp->t_segqlen != 0 ||
    679 			    (TAILQ_EMPTY(&tp->segq) &&
    680 			    TAILQ_EMPTY(&tp->timeq)));
    681 			if (tiqe == NULL) {
    682 				tiqe = q;
    683 			} else {
    684 				tcpipqent_free(q);
    685 			}
    686 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    687 			break;
    688 		}
    689 		/*
    690 		 * If the fragment is before the segment, remember it.
    691 		 * When this loop is terminated, p will contain the
    692 		 * pointer to fragment that is right before the received
    693 		 * segment.
    694 		 */
    695 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    696 			p = q;
    697 
    698 		continue;
    699 
    700 		/*
    701 		 * This is a common operation.  It also will allow
    702 		 * to save doing a malloc/free in most instances.
    703 		 */
    704 	  free_ipqe:
    705 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    706 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    707 		tp->t_segqlen--;
    708 		KASSERT(tp->t_segqlen >= 0);
    709 		KASSERT(tp->t_segqlen != 0 ||
    710 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    711 		if (tiqe == NULL) {
    712 			tiqe = q;
    713 		} else {
    714 			tcpipqent_free(q);
    715 		}
    716 	}
    717 
    718 #ifdef TCP_REASS_COUNTERS
    719 	if (count > 7)
    720 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    721 	else if (count > 0)
    722 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    723 #endif
    724 
    725     insert_it:
    726 
    727 	/*
    728 	 * Allocate a new queue entry since the received segment did not
    729 	 * collapse onto any other out-of-order block; thus we are allocating
    730 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    731 	 * we would be reusing it.
    732 	 * XXX If we can't, just drop the packet.  XXX
    733 	 */
    734 	if (tiqe == NULL) {
    735 		tiqe = tcpipqent_alloc();
    736 		if (tiqe == NULL) {
    737 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    738 			m_freem(m);
    739 			goto out;
    740 		}
    741 	}
    742 
    743 	/*
    744 	 * Update the counters.
    745 	 */
    746 	tcps = TCP_STAT_GETREF();
    747 	tcps[TCP_STAT_RCVOOPACK]++;
    748 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    749 	if (rcvpartdupbyte) {
    750 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    751 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    752 	}
    753 	TCP_STAT_PUTREF();
    754 
    755 	/*
    756 	 * Insert the new fragment queue entry into both queues.
    757 	 */
    758 	tiqe->ipqe_m = m;
    759 	tiqe->ipre_mlast = m;
    760 	tiqe->ipqe_seq = pkt_seq;
    761 	tiqe->ipqe_len = pkt_len;
    762 	tiqe->ipqe_flags = pkt_flags;
    763 	if (p == NULL) {
    764 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    765 #ifdef TCPREASS_DEBUG
    766 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    767 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    768 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    769 #endif
    770 	} else {
    771 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    772 #ifdef TCPREASS_DEBUG
    773 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    774 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    775 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    776 #endif
    777 	}
    778 	tp->t_segqlen++;
    779 
    780 skip_replacement:
    781 
    782 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    783 
    784 present:
    785 	/*
    786 	 * Present data to user, advancing rcv_nxt through
    787 	 * completed sequence space.
    788 	 */
    789 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    790 		goto out;
    791 	q = TAILQ_FIRST(&tp->segq);
    792 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    793 		goto out;
    794 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    795 		goto out;
    796 
    797 	tp->rcv_nxt += q->ipqe_len;
    798 	pkt_flags = q->ipqe_flags & TH_FIN;
    799 	nd6_hint(tp);
    800 
    801 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    802 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    803 	tp->t_segqlen--;
    804 	KASSERT(tp->t_segqlen >= 0);
    805 	KASSERT(tp->t_segqlen != 0 ||
    806 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    807 	if (so->so_state & SS_CANTRCVMORE)
    808 		m_freem(q->ipqe_m);
    809 	else
    810 		sbappendstream(&so->so_rcv, q->ipqe_m);
    811 	tcpipqent_free(q);
    812 	TCP_REASS_UNLOCK(tp);
    813 	sorwakeup(so);
    814 	return (pkt_flags);
    815 out:
    816 	TCP_REASS_UNLOCK(tp);
    817 	return (0);
    818 }
    819 
    820 #ifdef INET6
    821 int
    822 tcp6_input(struct mbuf **mp, int *offp, int proto)
    823 {
    824 	struct mbuf *m = *mp;
    825 
    826 	/*
    827 	 * draft-itojun-ipv6-tcp-to-anycast
    828 	 * better place to put this in?
    829 	 */
    830 	if (m->m_flags & M_ANYCAST6) {
    831 		struct ip6_hdr *ip6;
    832 		if (m->m_len < sizeof(struct ip6_hdr)) {
    833 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    834 				TCP_STATINC(TCP_STAT_RCVSHORT);
    835 				return IPPROTO_DONE;
    836 			}
    837 		}
    838 		ip6 = mtod(m, struct ip6_hdr *);
    839 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    840 		    (char *)&ip6->ip6_dst - (char *)ip6);
    841 		return IPPROTO_DONE;
    842 	}
    843 
    844 	tcp_input(m, *offp, proto);
    845 	return IPPROTO_DONE;
    846 }
    847 #endif
    848 
    849 #ifdef INET
    850 static void
    851 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    852 {
    853 	char src[4*sizeof "123"];
    854 	char dst[4*sizeof "123"];
    855 
    856 	if (ip) {
    857 		strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
    858 		strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
    859 	}
    860 	else {
    861 		strlcpy(src, "(unknown)", sizeof(src));
    862 		strlcpy(dst, "(unknown)", sizeof(dst));
    863 	}
    864 	log(LOG_INFO,
    865 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    866 	    dst, ntohs(th->th_dport),
    867 	    src, ntohs(th->th_sport));
    868 }
    869 #endif
    870 
    871 #ifdef INET6
    872 static void
    873 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    874 {
    875 	char src[INET6_ADDRSTRLEN];
    876 	char dst[INET6_ADDRSTRLEN];
    877 
    878 	if (ip6) {
    879 		strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
    880 		strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
    881 	}
    882 	else {
    883 		strlcpy(src, "(unknown v6)", sizeof(src));
    884 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    885 	}
    886 	log(LOG_INFO,
    887 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    888 	    dst, ntohs(th->th_dport),
    889 	    src, ntohs(th->th_sport));
    890 }
    891 #endif
    892 
    893 /*
    894  * Checksum extended TCP header and data.
    895  */
    896 int
    897 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    898     int toff, int off, int tlen)
    899 {
    900 
    901 	/*
    902 	 * XXX it's better to record and check if this mbuf is
    903 	 * already checked.
    904 	 */
    905 
    906 	switch (af) {
    907 #ifdef INET
    908 	case AF_INET:
    909 		switch (m->m_pkthdr.csum_flags &
    910 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    911 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    912 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    913 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    914 			goto badcsum;
    915 
    916 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    917 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    918 
    919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    920 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    921 				const struct ip *ip =
    922 				    mtod(m, const struct ip *);
    923 
    924 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    925 				    ip->ip_dst.s_addr,
    926 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    927 			}
    928 			if ((hw_csum ^ 0xffff) != 0)
    929 				goto badcsum;
    930 			break;
    931 		}
    932 
    933 		case M_CSUM_TCPv4:
    934 			/* Checksum was okay. */
    935 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    936 			break;
    937 
    938 		default:
    939 			/*
    940 			 * Must compute it ourselves.  Maybe skip checksum
    941 			 * on loopback interfaces.
    942 			 */
    943 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    944 					     IFF_LOOPBACK) ||
    945 					   tcp_do_loopback_cksum)) {
    946 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    947 				if (in4_cksum(m, IPPROTO_TCP, toff,
    948 					      tlen + off) != 0)
    949 					goto badcsum;
    950 			}
    951 			break;
    952 		}
    953 		break;
    954 #endif /* INET4 */
    955 
    956 #ifdef INET6
    957 	case AF_INET6:
    958 		switch (m->m_pkthdr.csum_flags &
    959 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    960 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    961 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    962 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    963 			goto badcsum;
    964 
    965 #if 0 /* notyet */
    966 		case M_CSUM_TCPv6|M_CSUM_DATA:
    967 #endif
    968 
    969 		case M_CSUM_TCPv6:
    970 			/* Checksum was okay. */
    971 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    972 			break;
    973 
    974 		default:
    975 			/*
    976 			 * Must compute it ourselves.  Maybe skip checksum
    977 			 * on loopback interfaces.
    978 			 */
    979 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    980 			    tcp_do_loopback_cksum)) {
    981 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    982 				if (in6_cksum(m, IPPROTO_TCP, toff,
    983 				    tlen + off) != 0)
    984 					goto badcsum;
    985 			}
    986 		}
    987 		break;
    988 #endif /* INET6 */
    989 	}
    990 
    991 	return 0;
    992 
    993 badcsum:
    994 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    995 	return -1;
    996 }
    997 
    998 /* When a packet arrives addressed to a vestigial tcpbp, we
    999  * nevertheless have to respond to it per the spec.
   1000  */
   1001 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
   1002 			  struct mbuf *m, int tlen, int multicast)
   1003 {
   1004 	int		tiflags;
   1005 	int		todrop, dupseg;
   1006 	uint32_t	t_flags = 0;
   1007 	uint64_t	*tcps;
   1008 
   1009 	tiflags = th->th_flags;
   1010 	todrop  = vp->rcv_nxt - th->th_seq;
   1011 	dupseg  = false;
   1012 
   1013 	if (todrop > 0) {
   1014 		if (tiflags & TH_SYN) {
   1015 			tiflags &= ~TH_SYN;
   1016 			++th->th_seq;
   1017 			if (th->th_urp > 1)
   1018 				--th->th_urp;
   1019 			else {
   1020 				tiflags &= ~TH_URG;
   1021 				th->th_urp = 0;
   1022 			}
   1023 			--todrop;
   1024 		}
   1025 		if (todrop > tlen ||
   1026 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1027 			/*
   1028 			 * Any valid FIN or RST must be to the left of the
   1029 			 * window.  At this point the FIN or RST must be a
   1030 			 * duplicate or out of sequence; drop it.
   1031 			 */
   1032 			if (tiflags & TH_RST)
   1033 				goto drop;
   1034 			tiflags &= ~(TH_FIN|TH_RST);
   1035 			/*
   1036 			 * Send an ACK to resynchronize and drop any data.
   1037 			 * But keep on processing for RST or ACK.
   1038 			 */
   1039 			t_flags |= TF_ACKNOW;
   1040 			todrop = tlen;
   1041 			dupseg = true;
   1042 			tcps = TCP_STAT_GETREF();
   1043 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1044 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1045 			TCP_STAT_PUTREF();
   1046 		} else if ((tiflags & TH_RST)
   1047 			   && th->th_seq != vp->rcv_nxt) {
   1048 			/*
   1049 			 * Test for reset before adjusting the sequence
   1050 			 * number for overlapping data.
   1051 			 */
   1052 			goto dropafterack_ratelim;
   1053 		} else {
   1054 			tcps = TCP_STAT_GETREF();
   1055 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1056 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1057 			TCP_STAT_PUTREF();
   1058 		}
   1059 
   1060 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1061 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1062 
   1063 		th->th_seq += todrop;
   1064 		tlen -= todrop;
   1065 
   1066 		if (th->th_urp > todrop)
   1067 			th->th_urp -= todrop;
   1068 		else {
   1069 			tiflags &= ~TH_URG;
   1070 			th->th_urp = 0;
   1071 		}
   1072 	}
   1073 
   1074 	/*
   1075 	 * If new data are received on a connection after the
   1076 	 * user processes are gone, then RST the other end.
   1077 	 */
   1078 	if (tlen) {
   1079 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1080 		goto dropwithreset;
   1081 	}
   1082 
   1083 	/*
   1084 	 * If segment ends after window, drop trailing data
   1085 	 * (and PUSH and FIN); if nothing left, just ACK.
   1086 	 */
   1087 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
   1088 
   1089 	if (todrop > 0) {
   1090 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1091 		if (todrop >= tlen) {
   1092 			/*
   1093 			 * The segment actually starts after the window.
   1094 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1095 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1096 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1097 			 */
   1098 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1099 			/*
   1100 			 * If a new connection request is received
   1101 			 * while in TIME_WAIT, drop the old connection
   1102 			 * and start over if the sequence numbers
   1103 			 * are above the previous ones.
   1104 			 */
   1105 			if ((tiflags & TH_SYN)
   1106 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1107 				/* We only support this in the !NOFDREF case, which
   1108 				 * is to say: not here.
   1109 				 */
   1110 				goto dropwithreset;;
   1111 			}
   1112 			/*
   1113 			 * If window is closed can only take segments at
   1114 			 * window edge, and have to drop data and PUSH from
   1115 			 * incoming segments.  Continue processing, but
   1116 			 * remember to ack.  Otherwise, drop segment
   1117 			 * and (if not RST) ack.
   1118 			 */
   1119 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1120 				t_flags |= TF_ACKNOW;
   1121 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1122 			} else
   1123 				goto dropafterack;
   1124 		} else
   1125 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1126 		m_adj(m, -todrop);
   1127 		tlen -= todrop;
   1128 		tiflags &= ~(TH_PUSH|TH_FIN);
   1129 	}
   1130 
   1131 	if (tiflags & TH_RST) {
   1132 		if (th->th_seq != vp->rcv_nxt)
   1133 			goto dropafterack_ratelim;
   1134 
   1135 		vtw_del(vp->ctl, vp->vtw);
   1136 		goto drop;
   1137 	}
   1138 
   1139 	/*
   1140 	 * If the ACK bit is off we drop the segment and return.
   1141 	 */
   1142 	if ((tiflags & TH_ACK) == 0) {
   1143 		if (t_flags & TF_ACKNOW)
   1144 			goto dropafterack;
   1145 		else
   1146 			goto drop;
   1147 	}
   1148 
   1149 	/*
   1150 	 * In TIME_WAIT state the only thing that should arrive
   1151 	 * is a retransmission of the remote FIN.  Acknowledge
   1152 	 * it and restart the finack timer.
   1153 	 */
   1154 	vtw_restart(vp);
   1155 	goto dropafterack;
   1156 
   1157 dropafterack:
   1158 	/*
   1159 	 * Generate an ACK dropping incoming segment if it occupies
   1160 	 * sequence space, where the ACK reflects our state.
   1161 	 */
   1162 	if (tiflags & TH_RST)
   1163 		goto drop;
   1164 	goto dropafterack2;
   1165 
   1166 dropafterack_ratelim:
   1167 	/*
   1168 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1169 	 */
   1170 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1171 			 tcp_ackdrop_ppslim) == 0) {
   1172 		/* XXX stat */
   1173 		goto drop;
   1174 	}
   1175 	/* ...fall into dropafterack2... */
   1176 
   1177 dropafterack2:
   1178 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
   1179 			  TH_ACK);
   1180 	return;
   1181 
   1182 dropwithreset:
   1183 	/*
   1184 	 * Generate a RST, dropping incoming segment.
   1185 	 * Make ACK acceptable to originator of segment.
   1186 	 */
   1187 	if (tiflags & TH_RST)
   1188 		goto drop;
   1189 
   1190 	if (tiflags & TH_ACK)
   1191 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1192 	else {
   1193 		if (tiflags & TH_SYN)
   1194 			++tlen;
   1195 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1196 				  TH_RST|TH_ACK);
   1197 	}
   1198 	return;
   1199 drop:
   1200 	m_freem(m);
   1201 }
   1202 
   1203 /*
   1204  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1205  */
   1206 void
   1207 tcp_input(struct mbuf *m, ...)
   1208 {
   1209 	struct tcphdr *th;
   1210 	struct ip *ip;
   1211 	struct inpcb *inp;
   1212 #ifdef INET6
   1213 	struct ip6_hdr *ip6;
   1214 	struct in6pcb *in6p;
   1215 #endif
   1216 	u_int8_t *optp = NULL;
   1217 	int optlen = 0;
   1218 	int len, tlen, toff, hdroptlen = 0;
   1219 	struct tcpcb *tp = 0;
   1220 	int tiflags;
   1221 	struct socket *so = NULL;
   1222 	int todrop, acked, ourfinisacked, needoutput = 0;
   1223 	bool dupseg;
   1224 #ifdef TCP_DEBUG
   1225 	short ostate = 0;
   1226 #endif
   1227 	u_long tiwin;
   1228 	struct tcp_opt_info opti;
   1229 	int off, iphlen;
   1230 	va_list ap;
   1231 	int af;		/* af on the wire */
   1232 	struct mbuf *tcp_saveti = NULL;
   1233 	uint32_t ts_rtt;
   1234 	uint8_t iptos;
   1235 	uint64_t *tcps;
   1236 	vestigial_inpcb_t vestige;
   1237 
   1238 	vestige.valid = 0;
   1239 
   1240 	MCLAIM(m, &tcp_rx_mowner);
   1241 	va_start(ap, m);
   1242 	toff = va_arg(ap, int);
   1243 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1244 	va_end(ap);
   1245 
   1246 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1247 
   1248 	memset(&opti, 0, sizeof(opti));
   1249 	opti.ts_present = 0;
   1250 	opti.maxseg = 0;
   1251 
   1252 	/*
   1253 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1254 	 *
   1255 	 * TCP is, by definition, unicast, so we reject all
   1256 	 * multicast outright.
   1257 	 *
   1258 	 * Note, there are additional src/dst address checks in
   1259 	 * the AF-specific code below.
   1260 	 */
   1261 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1262 		/* XXX stat */
   1263 		goto drop;
   1264 	}
   1265 #ifdef INET6
   1266 	if (m->m_flags & M_ANYCAST6) {
   1267 		/* XXX stat */
   1268 		goto drop;
   1269 	}
   1270 #endif
   1271 
   1272 	/*
   1273 	 * Get IP and TCP header.
   1274 	 * Note: IP leaves IP header in first mbuf.
   1275 	 */
   1276 	ip = mtod(m, struct ip *);
   1277 	switch (ip->ip_v) {
   1278 #ifdef INET
   1279 	case 4:
   1280 #ifdef INET6
   1281 		ip6 = NULL;
   1282 #endif
   1283 		af = AF_INET;
   1284 		iphlen = sizeof(struct ip);
   1285 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1286 			sizeof(struct tcphdr));
   1287 		if (th == NULL) {
   1288 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1289 			return;
   1290 		}
   1291 		/* We do the checksum after PCB lookup... */
   1292 		len = ntohs(ip->ip_len);
   1293 		tlen = len - toff;
   1294 		iptos = ip->ip_tos;
   1295 		break;
   1296 #endif
   1297 #ifdef INET6
   1298 	case 6:
   1299 		ip = NULL;
   1300 		iphlen = sizeof(struct ip6_hdr);
   1301 		af = AF_INET6;
   1302 		ip6 = mtod(m, struct ip6_hdr *);
   1303 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1304 			sizeof(struct tcphdr));
   1305 		if (th == NULL) {
   1306 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1307 			return;
   1308 		}
   1309 
   1310 		/* Be proactive about malicious use of IPv4 mapped address */
   1311 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1312 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1313 			/* XXX stat */
   1314 			goto drop;
   1315 		}
   1316 
   1317 		/*
   1318 		 * Be proactive about unspecified IPv6 address in source.
   1319 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1320 		 * unspecified IPv6 address can be used to confuse us.
   1321 		 *
   1322 		 * Note that packets with unspecified IPv6 destination is
   1323 		 * already dropped in ip6_input.
   1324 		 */
   1325 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1326 			/* XXX stat */
   1327 			goto drop;
   1328 		}
   1329 
   1330 		/*
   1331 		 * Make sure destination address is not multicast.
   1332 		 * Source address checked in ip6_input().
   1333 		 */
   1334 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1335 			/* XXX stat */
   1336 			goto drop;
   1337 		}
   1338 
   1339 		/* We do the checksum after PCB lookup... */
   1340 		len = m->m_pkthdr.len;
   1341 		tlen = len - toff;
   1342 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1343 		break;
   1344 #endif
   1345 	default:
   1346 		m_freem(m);
   1347 		return;
   1348 	}
   1349 
   1350 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1351 
   1352 	/*
   1353 	 * Check that TCP offset makes sense,
   1354 	 * pull out TCP options and adjust length.		XXX
   1355 	 */
   1356 	off = th->th_off << 2;
   1357 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1358 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1359 		goto drop;
   1360 	}
   1361 	tlen -= off;
   1362 
   1363 	/*
   1364 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1365 	 * length throughout the function.  Other functions can use
   1366 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1367 	 * rja
   1368 	 */
   1369 
   1370 	if (off > sizeof (struct tcphdr)) {
   1371 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1372 		if (th == NULL) {
   1373 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1374 			return;
   1375 		}
   1376 		/*
   1377 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1378 		 * (as they're before toff) and we don't need to update those.
   1379 		 */
   1380 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1381 		optlen = off - sizeof (struct tcphdr);
   1382 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1383 		/*
   1384 		 * Do quick retrieval of timestamp options ("options
   1385 		 * prediction?").  If timestamp is the only option and it's
   1386 		 * formatted as recommended in RFC 1323 appendix A, we
   1387 		 * quickly get the values now and not bother calling
   1388 		 * tcp_dooptions(), etc.
   1389 		 */
   1390 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1391 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1392 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1393 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1394 		     (th->th_flags & TH_SYN) == 0) {
   1395 			opti.ts_present = 1;
   1396 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1397 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1398 			optp = NULL;	/* we've parsed the options */
   1399 		}
   1400 	}
   1401 	tiflags = th->th_flags;
   1402 
   1403 	/*
   1404 	 * Locate pcb for segment.
   1405 	 */
   1406 findpcb:
   1407 	inp = NULL;
   1408 #ifdef INET6
   1409 	in6p = NULL;
   1410 #endif
   1411 	switch (af) {
   1412 #ifdef INET
   1413 	case AF_INET:
   1414 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1415 					   ip->ip_dst, th->th_dport,
   1416 					   &vestige);
   1417 		if (inp == 0 && !vestige.valid) {
   1418 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1419 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1420 		}
   1421 #ifdef INET6
   1422 		if (inp == 0 && !vestige.valid) {
   1423 			struct in6_addr s, d;
   1424 
   1425 			/* mapped addr case */
   1426 			memset(&s, 0, sizeof(s));
   1427 			s.s6_addr16[5] = htons(0xffff);
   1428 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1429 			memset(&d, 0, sizeof(d));
   1430 			d.s6_addr16[5] = htons(0xffff);
   1431 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1432 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1433 						     th->th_sport, &d, th->th_dport,
   1434 						     0, &vestige);
   1435 			if (in6p == 0 && !vestige.valid) {
   1436 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1437 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1438 				    th->th_dport, 0);
   1439 			}
   1440 		}
   1441 #endif
   1442 #ifndef INET6
   1443 		if (inp == 0 && !vestige.valid)
   1444 #else
   1445 		if (inp == 0 && in6p == 0 && !vestige.valid)
   1446 #endif
   1447 		{
   1448 			TCP_STATINC(TCP_STAT_NOPORT);
   1449 			if (tcp_log_refused &&
   1450 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1451 				tcp4_log_refused(ip, th);
   1452 			}
   1453 			tcp_fields_to_host(th);
   1454 			goto dropwithreset_ratelim;
   1455 		}
   1456 #if defined(IPSEC) || defined(FAST_IPSEC)
   1457 		if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1458 		    ipsec4_in_reject(m, inp)) {
   1459 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1460 			goto drop;
   1461 		}
   1462 #ifdef INET6
   1463 		else if (in6p &&
   1464 		    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
   1465 		    ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1466 			IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1467 			goto drop;
   1468 		}
   1469 #endif
   1470 #endif /*IPSEC*/
   1471 		break;
   1472 #endif /*INET*/
   1473 #ifdef INET6
   1474 	case AF_INET6:
   1475 	    {
   1476 		int faith;
   1477 
   1478 #if defined(NFAITH) && NFAITH > 0
   1479 		faith = faithprefix(&ip6->ip6_dst);
   1480 #else
   1481 		faith = 0;
   1482 #endif
   1483 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1484 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1485 		if (!in6p && !vestige.valid) {
   1486 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1487 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1488 				th->th_dport, faith);
   1489 		}
   1490 		if (!in6p && !vestige.valid) {
   1491 			TCP_STATINC(TCP_STAT_NOPORT);
   1492 			if (tcp_log_refused &&
   1493 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1494 				tcp6_log_refused(ip6, th);
   1495 			}
   1496 			tcp_fields_to_host(th);
   1497 			goto dropwithreset_ratelim;
   1498 		}
   1499 #if defined(IPSEC) || defined(FAST_IPSEC)
   1500 		if (in6p
   1501 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1502 		    && ipsec6_in_reject(m, in6p)) {
   1503 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1504 			goto drop;
   1505 		}
   1506 #endif /*IPSEC*/
   1507 		break;
   1508 	    }
   1509 #endif
   1510 	}
   1511 
   1512 	/*
   1513 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1514 	 * all data in the incoming segment is discarded.
   1515 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1516 	 * but should either do a listen or a connect soon.
   1517 	 */
   1518 	tp = NULL;
   1519 	so = NULL;
   1520 	if (inp) {
   1521 		/* Check the minimum TTL for socket. */
   1522 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1523 			goto drop;
   1524 
   1525 		tp = intotcpcb(inp);
   1526 		so = inp->inp_socket;
   1527 	}
   1528 #ifdef INET6
   1529 	else if (in6p) {
   1530 		tp = in6totcpcb(in6p);
   1531 		so = in6p->in6p_socket;
   1532 	}
   1533 #endif
   1534 	else if (vestige.valid) {
   1535 		int mc = 0;
   1536 
   1537 		/* We do not support the resurrection of vtw tcpcps.
   1538 		 */
   1539 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1540 			goto badcsum;
   1541 
   1542 		switch (af) {
   1543 #ifdef INET6
   1544 		case AF_INET6:
   1545 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
   1546 			break;
   1547 #endif
   1548 
   1549 		case AF_INET:
   1550 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
   1551 			      || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
   1552 			break;
   1553 		}
   1554 
   1555 		tcp_fields_to_host(th);
   1556 		tcp_vtw_input(th, &vestige, m, tlen, mc);
   1557 		m = 0;
   1558 		goto drop;
   1559 	}
   1560 
   1561 	if (tp == 0) {
   1562 		tcp_fields_to_host(th);
   1563 		goto dropwithreset_ratelim;
   1564 	}
   1565 	if (tp->t_state == TCPS_CLOSED)
   1566 		goto drop;
   1567 
   1568 	KASSERT(so->so_lock == softnet_lock);
   1569 	KASSERT(solocked(so));
   1570 
   1571 	/*
   1572 	 * Checksum extended TCP header and data.
   1573 	 */
   1574 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1575 		goto badcsum;
   1576 
   1577 	tcp_fields_to_host(th);
   1578 
   1579 	/* Unscale the window into a 32-bit value. */
   1580 	if ((tiflags & TH_SYN) == 0)
   1581 		tiwin = th->th_win << tp->snd_scale;
   1582 	else
   1583 		tiwin = th->th_win;
   1584 
   1585 #ifdef INET6
   1586 	/* save packet options if user wanted */
   1587 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1588 		if (in6p->in6p_options) {
   1589 			m_freem(in6p->in6p_options);
   1590 			in6p->in6p_options = 0;
   1591 		}
   1592 		KASSERT(ip6 != NULL);
   1593 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1594 	}
   1595 #endif
   1596 
   1597 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1598 		union syn_cache_sa src;
   1599 		union syn_cache_sa dst;
   1600 
   1601 		memset(&src, 0, sizeof(src));
   1602 		memset(&dst, 0, sizeof(dst));
   1603 		switch (af) {
   1604 #ifdef INET
   1605 		case AF_INET:
   1606 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1607 			src.sin.sin_family = AF_INET;
   1608 			src.sin.sin_addr = ip->ip_src;
   1609 			src.sin.sin_port = th->th_sport;
   1610 
   1611 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1612 			dst.sin.sin_family = AF_INET;
   1613 			dst.sin.sin_addr = ip->ip_dst;
   1614 			dst.sin.sin_port = th->th_dport;
   1615 			break;
   1616 #endif
   1617 #ifdef INET6
   1618 		case AF_INET6:
   1619 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1620 			src.sin6.sin6_family = AF_INET6;
   1621 			src.sin6.sin6_addr = ip6->ip6_src;
   1622 			src.sin6.sin6_port = th->th_sport;
   1623 
   1624 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1625 			dst.sin6.sin6_family = AF_INET6;
   1626 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1627 			dst.sin6.sin6_port = th->th_dport;
   1628 			break;
   1629 #endif /* INET6 */
   1630 		default:
   1631 			goto badsyn;	/*sanity*/
   1632 		}
   1633 
   1634 		if (so->so_options & SO_DEBUG) {
   1635 #ifdef TCP_DEBUG
   1636 			ostate = tp->t_state;
   1637 #endif
   1638 
   1639 			tcp_saveti = NULL;
   1640 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1641 				goto nosave;
   1642 
   1643 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1644 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1645 				if (!tcp_saveti)
   1646 					goto nosave;
   1647 			} else {
   1648 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1649 				if (!tcp_saveti)
   1650 					goto nosave;
   1651 				MCLAIM(m, &tcp_mowner);
   1652 				tcp_saveti->m_len = iphlen;
   1653 				m_copydata(m, 0, iphlen,
   1654 				    mtod(tcp_saveti, void *));
   1655 			}
   1656 
   1657 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1658 				m_freem(tcp_saveti);
   1659 				tcp_saveti = NULL;
   1660 			} else {
   1661 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1662 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1663 				    sizeof(struct tcphdr));
   1664 			}
   1665 	nosave:;
   1666 		}
   1667 		if (so->so_options & SO_ACCEPTCONN) {
   1668 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1669 				if (tiflags & TH_RST) {
   1670 					syn_cache_reset(&src.sa, &dst.sa, th);
   1671 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1672 				    (TH_ACK|TH_SYN)) {
   1673 					/*
   1674 					 * Received a SYN,ACK.  This should
   1675 					 * never happen while we are in
   1676 					 * LISTEN.  Send an RST.
   1677 					 */
   1678 					goto badsyn;
   1679 				} else if (tiflags & TH_ACK) {
   1680 					so = syn_cache_get(&src.sa, &dst.sa,
   1681 						th, toff, tlen, so, m);
   1682 					if (so == NULL) {
   1683 						/*
   1684 						 * We don't have a SYN for
   1685 						 * this ACK; send an RST.
   1686 						 */
   1687 						goto badsyn;
   1688 					} else if (so ==
   1689 					    (struct socket *)(-1)) {
   1690 						/*
   1691 						 * We were unable to create
   1692 						 * the connection.  If the
   1693 						 * 3-way handshake was
   1694 						 * completed, and RST has
   1695 						 * been sent to the peer.
   1696 						 * Since the mbuf might be
   1697 						 * in use for the reply,
   1698 						 * do not free it.
   1699 						 */
   1700 						m = NULL;
   1701 					} else {
   1702 						/*
   1703 						 * We have created a
   1704 						 * full-blown connection.
   1705 						 */
   1706 						tp = NULL;
   1707 						inp = NULL;
   1708 #ifdef INET6
   1709 						in6p = NULL;
   1710 #endif
   1711 						switch (so->so_proto->pr_domain->dom_family) {
   1712 #ifdef INET
   1713 						case AF_INET:
   1714 							inp = sotoinpcb(so);
   1715 							tp = intotcpcb(inp);
   1716 							break;
   1717 #endif
   1718 #ifdef INET6
   1719 						case AF_INET6:
   1720 							in6p = sotoin6pcb(so);
   1721 							tp = in6totcpcb(in6p);
   1722 							break;
   1723 #endif
   1724 						}
   1725 						if (tp == NULL)
   1726 							goto badsyn;	/*XXX*/
   1727 						tiwin <<= tp->snd_scale;
   1728 						goto after_listen;
   1729 					}
   1730 				} else {
   1731 					/*
   1732 					 * None of RST, SYN or ACK was set.
   1733 					 * This is an invalid packet for a
   1734 					 * TCB in LISTEN state.  Send a RST.
   1735 					 */
   1736 					goto badsyn;
   1737 				}
   1738 			} else {
   1739 				/*
   1740 				 * Received a SYN.
   1741 				 *
   1742 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1743 				 */
   1744 				if (m->m_flags & (M_BCAST|M_MCAST))
   1745 					goto drop;
   1746 
   1747 				switch (af) {
   1748 #ifdef INET6
   1749 				case AF_INET6:
   1750 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1751 						goto drop;
   1752 					break;
   1753 #endif /* INET6 */
   1754 				case AF_INET:
   1755 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1756 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1757 						goto drop;
   1758 				break;
   1759 				}
   1760 
   1761 #ifdef INET6
   1762 				/*
   1763 				 * If deprecated address is forbidden, we do
   1764 				 * not accept SYN to deprecated interface
   1765 				 * address to prevent any new inbound
   1766 				 * connection from getting established.
   1767 				 * When we do not accept SYN, we send a TCP
   1768 				 * RST, with deprecated source address (instead
   1769 				 * of dropping it).  We compromise it as it is
   1770 				 * much better for peer to send a RST, and
   1771 				 * RST will be the final packet for the
   1772 				 * exchange.
   1773 				 *
   1774 				 * If we do not forbid deprecated addresses, we
   1775 				 * accept the SYN packet.  RFC2462 does not
   1776 				 * suggest dropping SYN in this case.
   1777 				 * If we decipher RFC2462 5.5.4, it says like
   1778 				 * this:
   1779 				 * 1. use of deprecated addr with existing
   1780 				 *    communication is okay - "SHOULD continue
   1781 				 *    to be used"
   1782 				 * 2. use of it with new communication:
   1783 				 *   (2a) "SHOULD NOT be used if alternate
   1784 				 *        address with sufficient scope is
   1785 				 *        available"
   1786 				 *   (2b) nothing mentioned otherwise.
   1787 				 * Here we fall into (2b) case as we have no
   1788 				 * choice in our source address selection - we
   1789 				 * must obey the peer.
   1790 				 *
   1791 				 * The wording in RFC2462 is confusing, and
   1792 				 * there are multiple description text for
   1793 				 * deprecated address handling - worse, they
   1794 				 * are not exactly the same.  I believe 5.5.4
   1795 				 * is the best one, so we follow 5.5.4.
   1796 				 */
   1797 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1798 					struct in6_ifaddr *ia6;
   1799 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1800 					    &ip6->ip6_dst)) &&
   1801 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1802 						tp = NULL;
   1803 						goto dropwithreset;
   1804 					}
   1805 				}
   1806 #endif
   1807 
   1808 #if defined(IPSEC) || defined(FAST_IPSEC)
   1809 				switch (af) {
   1810 #ifdef INET
   1811 				case AF_INET:
   1812 					if (ipsec4_in_reject_so(m, so)) {
   1813 						IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1814 						tp = NULL;
   1815 						goto dropwithreset;
   1816 					}
   1817 					break;
   1818 #endif
   1819 #ifdef INET6
   1820 				case AF_INET6:
   1821 					if (ipsec6_in_reject_so(m, so)) {
   1822 						IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1823 						tp = NULL;
   1824 						goto dropwithreset;
   1825 					}
   1826 					break;
   1827 #endif /*INET6*/
   1828 				}
   1829 #endif /*IPSEC*/
   1830 
   1831 				/*
   1832 				 * LISTEN socket received a SYN
   1833 				 * from itself?  This can't possibly
   1834 				 * be valid; drop the packet.
   1835 				 */
   1836 				if (th->th_sport == th->th_dport) {
   1837 					int i;
   1838 
   1839 					switch (af) {
   1840 #ifdef INET
   1841 					case AF_INET:
   1842 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1843 						break;
   1844 #endif
   1845 #ifdef INET6
   1846 					case AF_INET6:
   1847 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1848 						break;
   1849 #endif
   1850 					default:
   1851 						i = 1;
   1852 					}
   1853 					if (i) {
   1854 						TCP_STATINC(TCP_STAT_BADSYN);
   1855 						goto drop;
   1856 					}
   1857 				}
   1858 
   1859 				/*
   1860 				 * SYN looks ok; create compressed TCP
   1861 				 * state for it.
   1862 				 */
   1863 				if (so->so_qlen <= so->so_qlimit &&
   1864 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1865 						so, m, optp, optlen, &opti))
   1866 					m = NULL;
   1867 			}
   1868 			goto drop;
   1869 		}
   1870 	}
   1871 
   1872 after_listen:
   1873 #ifdef DIAGNOSTIC
   1874 	/*
   1875 	 * Should not happen now that all embryonic connections
   1876 	 * are handled with compressed state.
   1877 	 */
   1878 	if (tp->t_state == TCPS_LISTEN)
   1879 		panic("tcp_input: TCPS_LISTEN");
   1880 #endif
   1881 
   1882 	/*
   1883 	 * Segment received on connection.
   1884 	 * Reset idle time and keep-alive timer.
   1885 	 */
   1886 	tp->t_rcvtime = tcp_now;
   1887 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1888 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1889 
   1890 	/*
   1891 	 * Process options.
   1892 	 */
   1893 #ifdef TCP_SIGNATURE
   1894 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1895 #else
   1896 	if (optp)
   1897 #endif
   1898 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1899 			goto drop;
   1900 
   1901 	if (TCP_SACK_ENABLED(tp)) {
   1902 		tcp_del_sackholes(tp, th);
   1903 	}
   1904 
   1905 	if (TCP_ECN_ALLOWED(tp)) {
   1906 		if (tiflags & TH_CWR) {
   1907 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1908 		}
   1909 		switch (iptos & IPTOS_ECN_MASK) {
   1910 		case IPTOS_ECN_CE:
   1911 			tp->t_flags |= TF_ECN_SND_ECE;
   1912 			TCP_STATINC(TCP_STAT_ECN_CE);
   1913 			break;
   1914 		case IPTOS_ECN_ECT0:
   1915 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1916 			break;
   1917 		case IPTOS_ECN_ECT1:
   1918 			/* XXX: ignore for now -- rpaulo */
   1919 			break;
   1920 		}
   1921 		/*
   1922 		 * Congestion experienced.
   1923 		 * Ignore if we are already trying to recover.
   1924 		 */
   1925 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1926 			tp->t_congctl->cong_exp(tp);
   1927 	}
   1928 
   1929 	if (opti.ts_present && opti.ts_ecr) {
   1930 		/*
   1931 		 * Calculate the RTT from the returned time stamp and the
   1932 		 * connection's time base.  If the time stamp is later than
   1933 		 * the current time, or is extremely old, fall back to non-1323
   1934 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1935 		 * at the same time.
   1936 		 *
   1937 		 * Note that ts_rtt is in units of slow ticks (500
   1938 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1939 		 * observed values will have large quantization noise.
   1940 		 * Our smoothed RTT is then the fraction of observed
   1941 		 * samples that are 1 tick instead of 0 (times 500
   1942 		 * ms).
   1943 		 *
   1944 		 * ts_rtt is increased by 1 to denote a valid sample,
   1945 		 * with 0 indicating an invalid measurement.  This
   1946 		 * extra 1 must be removed when ts_rtt is used, or
   1947 		 * else an an erroneous extra 500 ms will result.
   1948 		 */
   1949 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1950 		if (ts_rtt > TCP_PAWS_IDLE)
   1951 			ts_rtt = 0;
   1952 	} else {
   1953 		ts_rtt = 0;
   1954 	}
   1955 
   1956 	/*
   1957 	 * Header prediction: check for the two common cases
   1958 	 * of a uni-directional data xfer.  If the packet has
   1959 	 * no control flags, is in-sequence, the window didn't
   1960 	 * change and we're not retransmitting, it's a
   1961 	 * candidate.  If the length is zero and the ack moved
   1962 	 * forward, we're the sender side of the xfer.  Just
   1963 	 * free the data acked & wake any higher level process
   1964 	 * that was blocked waiting for space.  If the length
   1965 	 * is non-zero and the ack didn't move, we're the
   1966 	 * receiver side.  If we're getting packets in-order
   1967 	 * (the reassembly queue is empty), add the data to
   1968 	 * the socket buffer and note that we need a delayed ack.
   1969 	 */
   1970 	if (tp->t_state == TCPS_ESTABLISHED &&
   1971 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1972 	        == TH_ACK &&
   1973 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1974 	    th->th_seq == tp->rcv_nxt &&
   1975 	    tiwin && tiwin == tp->snd_wnd &&
   1976 	    tp->snd_nxt == tp->snd_max) {
   1977 
   1978 		/*
   1979 		 * If last ACK falls within this segment's sequence numbers,
   1980 		 * record the timestamp.
   1981 		 * NOTE that the test is modified according to the latest
   1982 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1983 		 *
   1984 		 * note that we already know
   1985 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1986 		 */
   1987 		if (opti.ts_present &&
   1988 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1989 			tp->ts_recent_age = tcp_now;
   1990 			tp->ts_recent = opti.ts_val;
   1991 		}
   1992 
   1993 		if (tlen == 0) {
   1994 			/* Ack prediction. */
   1995 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1996 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1997 			    tp->snd_cwnd >= tp->snd_wnd &&
   1998 			    tp->t_partialacks < 0) {
   1999 				/*
   2000 				 * this is a pure ack for outstanding data.
   2001 				 */
   2002 				if (ts_rtt)
   2003 					tcp_xmit_timer(tp, ts_rtt - 1);
   2004 				else if (tp->t_rtttime &&
   2005 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   2006 					tcp_xmit_timer(tp,
   2007 					  tcp_now - tp->t_rtttime);
   2008 				acked = th->th_ack - tp->snd_una;
   2009 				tcps = TCP_STAT_GETREF();
   2010 				tcps[TCP_STAT_PREDACK]++;
   2011 				tcps[TCP_STAT_RCVACKPACK]++;
   2012 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   2013 				TCP_STAT_PUTREF();
   2014 				nd6_hint(tp);
   2015 
   2016 				if (acked > (tp->t_lastoff - tp->t_inoff))
   2017 					tp->t_lastm = NULL;
   2018 				sbdrop(&so->so_snd, acked);
   2019 				tp->t_lastoff -= acked;
   2020 
   2021 				icmp_check(tp, th, acked);
   2022 
   2023 				tp->snd_una = th->th_ack;
   2024 				tp->snd_fack = tp->snd_una;
   2025 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   2026 					tp->snd_high = tp->snd_una;
   2027 				m_freem(m);
   2028 
   2029 				/*
   2030 				 * If all outstanding data are acked, stop
   2031 				 * retransmit timer, otherwise restart timer
   2032 				 * using current (possibly backed-off) value.
   2033 				 * If process is waiting for space,
   2034 				 * wakeup/selnotify/signal.  If data
   2035 				 * are ready to send, let tcp_output
   2036 				 * decide between more output or persist.
   2037 				 */
   2038 				if (tp->snd_una == tp->snd_max)
   2039 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2040 				else if (TCP_TIMER_ISARMED(tp,
   2041 				    TCPT_PERSIST) == 0)
   2042 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   2043 					    tp->t_rxtcur);
   2044 
   2045 				sowwakeup(so);
   2046 				if (so->so_snd.sb_cc) {
   2047 					KERNEL_LOCK(1, NULL);
   2048 					(void) tcp_output(tp);
   2049 					KERNEL_UNLOCK_ONE(NULL);
   2050 				}
   2051 				if (tcp_saveti)
   2052 					m_freem(tcp_saveti);
   2053 				return;
   2054 			}
   2055 		} else if (th->th_ack == tp->snd_una &&
   2056 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2057 		    tlen <= sbspace(&so->so_rcv)) {
   2058 			int newsize = 0;	/* automatic sockbuf scaling */
   2059 
   2060 			/*
   2061 			 * this is a pure, in-sequence data packet
   2062 			 * with nothing on the reassembly queue and
   2063 			 * we have enough buffer space to take it.
   2064 			 */
   2065 			tp->rcv_nxt += tlen;
   2066 			tcps = TCP_STAT_GETREF();
   2067 			tcps[TCP_STAT_PREDDAT]++;
   2068 			tcps[TCP_STAT_RCVPACK]++;
   2069 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2070 			TCP_STAT_PUTREF();
   2071 			nd6_hint(tp);
   2072 
   2073 		/*
   2074 		 * Automatic sizing enables the performance of large buffers
   2075 		 * and most of the efficiency of small ones by only allocating
   2076 		 * space when it is needed.
   2077 		 *
   2078 		 * On the receive side the socket buffer memory is only rarely
   2079 		 * used to any significant extent.  This allows us to be much
   2080 		 * more aggressive in scaling the receive socket buffer.  For
   2081 		 * the case that the buffer space is actually used to a large
   2082 		 * extent and we run out of kernel memory we can simply drop
   2083 		 * the new segments; TCP on the sender will just retransmit it
   2084 		 * later.  Setting the buffer size too big may only consume too
   2085 		 * much kernel memory if the application doesn't read() from
   2086 		 * the socket or packet loss or reordering makes use of the
   2087 		 * reassembly queue.
   2088 		 *
   2089 		 * The criteria to step up the receive buffer one notch are:
   2090 		 *  1. the number of bytes received during the time it takes
   2091 		 *     one timestamp to be reflected back to us (the RTT);
   2092 		 *  2. received bytes per RTT is within seven eighth of the
   2093 		 *     current socket buffer size;
   2094 		 *  3. receive buffer size has not hit maximal automatic size;
   2095 		 *
   2096 		 * This algorithm does one step per RTT at most and only if
   2097 		 * we receive a bulk stream w/o packet losses or reorderings.
   2098 		 * Shrinking the buffer during idle times is not necessary as
   2099 		 * it doesn't consume any memory when idle.
   2100 		 *
   2101 		 * TODO: Only step up if the application is actually serving
   2102 		 * the buffer to better manage the socket buffer resources.
   2103 		 */
   2104 			if (tcp_do_autorcvbuf &&
   2105 			    opti.ts_ecr &&
   2106 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2107 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2108 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2109 					if (tp->rfbuf_cnt >
   2110 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2111 					    so->so_rcv.sb_hiwat <
   2112 					    tcp_autorcvbuf_max) {
   2113 						newsize =
   2114 						    min(so->so_rcv.sb_hiwat +
   2115 						    tcp_autorcvbuf_inc,
   2116 						    tcp_autorcvbuf_max);
   2117 					}
   2118 					/* Start over with next RTT. */
   2119 					tp->rfbuf_ts = 0;
   2120 					tp->rfbuf_cnt = 0;
   2121 				} else
   2122 					tp->rfbuf_cnt += tlen;	/* add up */
   2123 			}
   2124 
   2125 			/*
   2126 			 * Drop TCP, IP headers and TCP options then add data
   2127 			 * to socket buffer.
   2128 			 */
   2129 			if (so->so_state & SS_CANTRCVMORE)
   2130 				m_freem(m);
   2131 			else {
   2132 				/*
   2133 				 * Set new socket buffer size.
   2134 				 * Give up when limit is reached.
   2135 				 */
   2136 				if (newsize)
   2137 					if (!sbreserve(&so->so_rcv,
   2138 					    newsize, so))
   2139 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2140 				m_adj(m, toff + off);
   2141 				sbappendstream(&so->so_rcv, m);
   2142 			}
   2143 			sorwakeup(so);
   2144 			tcp_setup_ack(tp, th);
   2145 			if (tp->t_flags & TF_ACKNOW) {
   2146 				KERNEL_LOCK(1, NULL);
   2147 				(void) tcp_output(tp);
   2148 				KERNEL_UNLOCK_ONE(NULL);
   2149 			}
   2150 			if (tcp_saveti)
   2151 				m_freem(tcp_saveti);
   2152 			return;
   2153 		}
   2154 	}
   2155 
   2156 	/*
   2157 	 * Compute mbuf offset to TCP data segment.
   2158 	 */
   2159 	hdroptlen = toff + off;
   2160 
   2161 	/*
   2162 	 * Calculate amount of space in receive window,
   2163 	 * and then do TCP input processing.
   2164 	 * Receive window is amount of space in rcv queue,
   2165 	 * but not less than advertised window.
   2166 	 */
   2167 	{ int win;
   2168 
   2169 	win = sbspace(&so->so_rcv);
   2170 	if (win < 0)
   2171 		win = 0;
   2172 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2173 	}
   2174 
   2175 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2176 	tp->rfbuf_ts = 0;
   2177 	tp->rfbuf_cnt = 0;
   2178 
   2179 	switch (tp->t_state) {
   2180 	/*
   2181 	 * If the state is SYN_SENT:
   2182 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2183 	 *	if seg contains a RST, then drop the connection.
   2184 	 *	if seg does not contain SYN, then drop it.
   2185 	 * Otherwise this is an acceptable SYN segment
   2186 	 *	initialize tp->rcv_nxt and tp->irs
   2187 	 *	if seg contains ack then advance tp->snd_una
   2188 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2189 	 *	    is ECN capable.
   2190 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2191 	 *	arrange for segment to be acked (eventually)
   2192 	 *	continue processing rest of data/controls, beginning with URG
   2193 	 */
   2194 	case TCPS_SYN_SENT:
   2195 		if ((tiflags & TH_ACK) &&
   2196 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2197 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2198 			goto dropwithreset;
   2199 		if (tiflags & TH_RST) {
   2200 			if (tiflags & TH_ACK)
   2201 				tp = tcp_drop(tp, ECONNREFUSED);
   2202 			goto drop;
   2203 		}
   2204 		if ((tiflags & TH_SYN) == 0)
   2205 			goto drop;
   2206 		if (tiflags & TH_ACK) {
   2207 			tp->snd_una = th->th_ack;
   2208 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2209 				tp->snd_nxt = tp->snd_una;
   2210 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2211 				tp->snd_high = tp->snd_una;
   2212 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2213 
   2214 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2215 				tp->t_flags |= TF_ECN_PERMIT;
   2216 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2217 			}
   2218 
   2219 		}
   2220 		tp->irs = th->th_seq;
   2221 		tcp_rcvseqinit(tp);
   2222 		tp->t_flags |= TF_ACKNOW;
   2223 		tcp_mss_from_peer(tp, opti.maxseg);
   2224 
   2225 		/*
   2226 		 * Initialize the initial congestion window.  If we
   2227 		 * had to retransmit the SYN, we must initialize cwnd
   2228 		 * to 1 segment (i.e. the Loss Window).
   2229 		 */
   2230 		if (tp->t_flags & TF_SYN_REXMT)
   2231 			tp->snd_cwnd = tp->t_peermss;
   2232 		else {
   2233 			int ss = tcp_init_win;
   2234 #ifdef INET
   2235 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2236 				ss = tcp_init_win_local;
   2237 #endif
   2238 #ifdef INET6
   2239 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2240 				ss = tcp_init_win_local;
   2241 #endif
   2242 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2243 		}
   2244 
   2245 		tcp_rmx_rtt(tp);
   2246 		if (tiflags & TH_ACK) {
   2247 			TCP_STATINC(TCP_STAT_CONNECTS);
   2248 			/*
   2249 			 * move tcp_established before soisconnected
   2250 			 * because upcall handler can drive tcp_output
   2251 			 * functionality.
   2252 			 * XXX we might call soisconnected at the end of
   2253 			 * all processing
   2254 			 */
   2255 			tcp_established(tp);
   2256 			soisconnected(so);
   2257 			/* Do window scaling on this connection? */
   2258 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2259 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2260 				tp->snd_scale = tp->requested_s_scale;
   2261 				tp->rcv_scale = tp->request_r_scale;
   2262 			}
   2263 			TCP_REASS_LOCK(tp);
   2264 			(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2265 			/*
   2266 			 * if we didn't have to retransmit the SYN,
   2267 			 * use its rtt as our initial srtt & rtt var.
   2268 			 */
   2269 			if (tp->t_rtttime)
   2270 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2271 		} else
   2272 			tp->t_state = TCPS_SYN_RECEIVED;
   2273 
   2274 		/*
   2275 		 * Advance th->th_seq to correspond to first data byte.
   2276 		 * If data, trim to stay within window,
   2277 		 * dropping FIN if necessary.
   2278 		 */
   2279 		th->th_seq++;
   2280 		if (tlen > tp->rcv_wnd) {
   2281 			todrop = tlen - tp->rcv_wnd;
   2282 			m_adj(m, -todrop);
   2283 			tlen = tp->rcv_wnd;
   2284 			tiflags &= ~TH_FIN;
   2285 			tcps = TCP_STAT_GETREF();
   2286 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2287 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2288 			TCP_STAT_PUTREF();
   2289 		}
   2290 		tp->snd_wl1 = th->th_seq - 1;
   2291 		tp->rcv_up = th->th_seq;
   2292 		goto step6;
   2293 
   2294 	/*
   2295 	 * If the state is SYN_RECEIVED:
   2296 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2297 	 *	and generate an RST.  See page 36, rfc793
   2298 	 */
   2299 	case TCPS_SYN_RECEIVED:
   2300 		if ((tiflags & TH_ACK) &&
   2301 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2302 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2303 			goto dropwithreset;
   2304 		break;
   2305 	}
   2306 
   2307 	/*
   2308 	 * States other than LISTEN or SYN_SENT.
   2309 	 * First check timestamp, if present.
   2310 	 * Then check that at least some bytes of segment are within
   2311 	 * receive window.  If segment begins before rcv_nxt,
   2312 	 * drop leading data (and SYN); if nothing left, just ack.
   2313 	 *
   2314 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2315 	 * and it's less than ts_recent, drop it.
   2316 	 */
   2317 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2318 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2319 
   2320 		/* Check to see if ts_recent is over 24 days old.  */
   2321 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2322 			/*
   2323 			 * Invalidate ts_recent.  If this segment updates
   2324 			 * ts_recent, the age will be reset later and ts_recent
   2325 			 * will get a valid value.  If it does not, setting
   2326 			 * ts_recent to zero will at least satisfy the
   2327 			 * requirement that zero be placed in the timestamp
   2328 			 * echo reply when ts_recent isn't valid.  The
   2329 			 * age isn't reset until we get a valid ts_recent
   2330 			 * because we don't want out-of-order segments to be
   2331 			 * dropped when ts_recent is old.
   2332 			 */
   2333 			tp->ts_recent = 0;
   2334 		} else {
   2335 			tcps = TCP_STAT_GETREF();
   2336 			tcps[TCP_STAT_RCVDUPPACK]++;
   2337 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2338 			tcps[TCP_STAT_PAWSDROP]++;
   2339 			TCP_STAT_PUTREF();
   2340 			tcp_new_dsack(tp, th->th_seq, tlen);
   2341 			goto dropafterack;
   2342 		}
   2343 	}
   2344 
   2345 	todrop = tp->rcv_nxt - th->th_seq;
   2346 	dupseg = false;
   2347 	if (todrop > 0) {
   2348 		if (tiflags & TH_SYN) {
   2349 			tiflags &= ~TH_SYN;
   2350 			th->th_seq++;
   2351 			if (th->th_urp > 1)
   2352 				th->th_urp--;
   2353 			else {
   2354 				tiflags &= ~TH_URG;
   2355 				th->th_urp = 0;
   2356 			}
   2357 			todrop--;
   2358 		}
   2359 		if (todrop > tlen ||
   2360 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2361 			/*
   2362 			 * Any valid FIN or RST must be to the left of the
   2363 			 * window.  At this point the FIN or RST must be a
   2364 			 * duplicate or out of sequence; drop it.
   2365 			 */
   2366 			if (tiflags & TH_RST)
   2367 				goto drop;
   2368 			tiflags &= ~(TH_FIN|TH_RST);
   2369 			/*
   2370 			 * Send an ACK to resynchronize and drop any data.
   2371 			 * But keep on processing for RST or ACK.
   2372 			 */
   2373 			tp->t_flags |= TF_ACKNOW;
   2374 			todrop = tlen;
   2375 			dupseg = true;
   2376 			tcps = TCP_STAT_GETREF();
   2377 			tcps[TCP_STAT_RCVDUPPACK]++;
   2378 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2379 			TCP_STAT_PUTREF();
   2380 		} else if ((tiflags & TH_RST) &&
   2381 			   th->th_seq != tp->rcv_nxt) {
   2382 			/*
   2383 			 * Test for reset before adjusting the sequence
   2384 			 * number for overlapping data.
   2385 			 */
   2386 			goto dropafterack_ratelim;
   2387 		} else {
   2388 			tcps = TCP_STAT_GETREF();
   2389 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2390 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2391 			TCP_STAT_PUTREF();
   2392 		}
   2393 		tcp_new_dsack(tp, th->th_seq, todrop);
   2394 		hdroptlen += todrop;	/*drop from head afterwards*/
   2395 		th->th_seq += todrop;
   2396 		tlen -= todrop;
   2397 		if (th->th_urp > todrop)
   2398 			th->th_urp -= todrop;
   2399 		else {
   2400 			tiflags &= ~TH_URG;
   2401 			th->th_urp = 0;
   2402 		}
   2403 	}
   2404 
   2405 	/*
   2406 	 * If new data are received on a connection after the
   2407 	 * user processes are gone, then RST the other end.
   2408 	 */
   2409 	if ((so->so_state & SS_NOFDREF) &&
   2410 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2411 		tp = tcp_close(tp);
   2412 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2413 		goto dropwithreset;
   2414 	}
   2415 
   2416 	/*
   2417 	 * If segment ends after window, drop trailing data
   2418 	 * (and PUSH and FIN); if nothing left, just ACK.
   2419 	 */
   2420 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2421 	if (todrop > 0) {
   2422 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2423 		if (todrop >= tlen) {
   2424 			/*
   2425 			 * The segment actually starts after the window.
   2426 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2427 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2428 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2429 			 */
   2430 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2431 			/*
   2432 			 * If a new connection request is received
   2433 			 * while in TIME_WAIT, drop the old connection
   2434 			 * and start over if the sequence numbers
   2435 			 * are above the previous ones.
   2436 			 *
   2437 			 * NOTE: We will checksum the packet again, and
   2438 			 * so we need to put the header fields back into
   2439 			 * network order!
   2440 			 * XXX This kind of sucks, but we don't expect
   2441 			 * XXX this to happen very often, so maybe it
   2442 			 * XXX doesn't matter so much.
   2443 			 */
   2444 			if (tiflags & TH_SYN &&
   2445 			    tp->t_state == TCPS_TIME_WAIT &&
   2446 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2447 				tp = tcp_close(tp);
   2448 				tcp_fields_to_net(th);
   2449 				goto findpcb;
   2450 			}
   2451 			/*
   2452 			 * If window is closed can only take segments at
   2453 			 * window edge, and have to drop data and PUSH from
   2454 			 * incoming segments.  Continue processing, but
   2455 			 * remember to ack.  Otherwise, drop segment
   2456 			 * and (if not RST) ack.
   2457 			 */
   2458 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2459 				tp->t_flags |= TF_ACKNOW;
   2460 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2461 			} else
   2462 				goto dropafterack;
   2463 		} else
   2464 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2465 		m_adj(m, -todrop);
   2466 		tlen -= todrop;
   2467 		tiflags &= ~(TH_PUSH|TH_FIN);
   2468 	}
   2469 
   2470 	/*
   2471 	 * If last ACK falls within this segment's sequence numbers,
   2472 	 *  record the timestamp.
   2473 	 * NOTE:
   2474 	 * 1) That the test incorporates suggestions from the latest
   2475 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2476 	 * 2) That updating only on newer timestamps interferes with
   2477 	 *    our earlier PAWS tests, so this check should be solely
   2478 	 *    predicated on the sequence space of this segment.
   2479 	 * 3) That we modify the segment boundary check to be
   2480 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2481 	 *    instead of RFC1323's
   2482 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2483 	 *    This modified check allows us to overcome RFC1323's
   2484 	 *    limitations as described in Stevens TCP/IP Illustrated
   2485 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2486 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2487 	 */
   2488 	if (opti.ts_present &&
   2489 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2490 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2491 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2492 		tp->ts_recent_age = tcp_now;
   2493 		tp->ts_recent = opti.ts_val;
   2494 	}
   2495 
   2496 	/*
   2497 	 * If the RST bit is set examine the state:
   2498 	 *    SYN_RECEIVED STATE:
   2499 	 *	If passive open, return to LISTEN state.
   2500 	 *	If active open, inform user that connection was refused.
   2501 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2502 	 *	Inform user that connection was reset, and close tcb.
   2503 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2504 	 *	Close the tcb.
   2505 	 */
   2506 	if (tiflags & TH_RST) {
   2507 		if (th->th_seq != tp->rcv_nxt)
   2508 			goto dropafterack_ratelim;
   2509 
   2510 		switch (tp->t_state) {
   2511 		case TCPS_SYN_RECEIVED:
   2512 			so->so_error = ECONNREFUSED;
   2513 			goto close;
   2514 
   2515 		case TCPS_ESTABLISHED:
   2516 		case TCPS_FIN_WAIT_1:
   2517 		case TCPS_FIN_WAIT_2:
   2518 		case TCPS_CLOSE_WAIT:
   2519 			so->so_error = ECONNRESET;
   2520 		close:
   2521 			tp->t_state = TCPS_CLOSED;
   2522 			TCP_STATINC(TCP_STAT_DROPS);
   2523 			tp = tcp_close(tp);
   2524 			goto drop;
   2525 
   2526 		case TCPS_CLOSING:
   2527 		case TCPS_LAST_ACK:
   2528 		case TCPS_TIME_WAIT:
   2529 			tp = tcp_close(tp);
   2530 			goto drop;
   2531 		}
   2532 	}
   2533 
   2534 	/*
   2535 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2536 	 * we must be in a synchronized state.  RFC791 states (under RST
   2537 	 * generation) that any unacceptable segment (an out-of-order SYN
   2538 	 * qualifies) received in a synchronized state must elicit only an
   2539 	 * empty acknowledgment segment ... and the connection remains in
   2540 	 * the same state.
   2541 	 */
   2542 	if (tiflags & TH_SYN) {
   2543 		if (tp->rcv_nxt == th->th_seq) {
   2544 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2545 			    TH_ACK);
   2546 			if (tcp_saveti)
   2547 				m_freem(tcp_saveti);
   2548 			return;
   2549 		}
   2550 
   2551 		goto dropafterack_ratelim;
   2552 	}
   2553 
   2554 	/*
   2555 	 * If the ACK bit is off we drop the segment and return.
   2556 	 */
   2557 	if ((tiflags & TH_ACK) == 0) {
   2558 		if (tp->t_flags & TF_ACKNOW)
   2559 			goto dropafterack;
   2560 		else
   2561 			goto drop;
   2562 	}
   2563 
   2564 	/*
   2565 	 * Ack processing.
   2566 	 */
   2567 	switch (tp->t_state) {
   2568 
   2569 	/*
   2570 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2571 	 * ESTABLISHED state and continue processing, otherwise
   2572 	 * send an RST.
   2573 	 */
   2574 	case TCPS_SYN_RECEIVED:
   2575 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2576 		    SEQ_GT(th->th_ack, tp->snd_max))
   2577 			goto dropwithreset;
   2578 		TCP_STATINC(TCP_STAT_CONNECTS);
   2579 		soisconnected(so);
   2580 		tcp_established(tp);
   2581 		/* Do window scaling? */
   2582 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2583 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2584 			tp->snd_scale = tp->requested_s_scale;
   2585 			tp->rcv_scale = tp->request_r_scale;
   2586 		}
   2587 		TCP_REASS_LOCK(tp);
   2588 		(void) tcp_reass(tp, NULL, (struct mbuf *)0, &tlen);
   2589 		tp->snd_wl1 = th->th_seq - 1;
   2590 		/* fall into ... */
   2591 
   2592 	/*
   2593 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2594 	 * ACKs.  If the ack is in the range
   2595 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2596 	 * then advance tp->snd_una to th->th_ack and drop
   2597 	 * data from the retransmission queue.  If this ACK reflects
   2598 	 * more up to date window information we update our window information.
   2599 	 */
   2600 	case TCPS_ESTABLISHED:
   2601 	case TCPS_FIN_WAIT_1:
   2602 	case TCPS_FIN_WAIT_2:
   2603 	case TCPS_CLOSE_WAIT:
   2604 	case TCPS_CLOSING:
   2605 	case TCPS_LAST_ACK:
   2606 	case TCPS_TIME_WAIT:
   2607 
   2608 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2609 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2610 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2611 				/*
   2612 				 * If we have outstanding data (other than
   2613 				 * a window probe), this is a completely
   2614 				 * duplicate ack (ie, window info didn't
   2615 				 * change), the ack is the biggest we've
   2616 				 * seen and we've seen exactly our rexmt
   2617 				 * threshhold of them, assume a packet
   2618 				 * has been dropped and retransmit it.
   2619 				 * Kludge snd_nxt & the congestion
   2620 				 * window so we send only this one
   2621 				 * packet.
   2622 				 */
   2623 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2624 				    th->th_ack != tp->snd_una)
   2625 					tp->t_dupacks = 0;
   2626 				else if (tp->t_partialacks < 0 &&
   2627 					 (++tp->t_dupacks == tcprexmtthresh ||
   2628 					 TCP_FACK_FASTRECOV(tp))) {
   2629 					/*
   2630 					 * Do the fast retransmit, and adjust
   2631 					 * congestion control paramenters.
   2632 					 */
   2633 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2634 						/* False fast retransmit */
   2635 						break;
   2636 					} else
   2637 						goto drop;
   2638 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2639 					tp->snd_cwnd += tp->t_segsz;
   2640 					KERNEL_LOCK(1, NULL);
   2641 					(void) tcp_output(tp);
   2642 					KERNEL_UNLOCK_ONE(NULL);
   2643 					goto drop;
   2644 				}
   2645 			} else {
   2646 				/*
   2647 				 * If the ack appears to be very old, only
   2648 				 * allow data that is in-sequence.  This
   2649 				 * makes it somewhat more difficult to insert
   2650 				 * forged data by guessing sequence numbers.
   2651 				 * Sent an ack to try to update the send
   2652 				 * sequence number on the other side.
   2653 				 */
   2654 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2655 				    SEQ_LT(th->th_ack,
   2656 				    tp->snd_una - tp->max_sndwnd))
   2657 					goto dropafterack;
   2658 			}
   2659 			break;
   2660 		}
   2661 		/*
   2662 		 * If the congestion window was inflated to account
   2663 		 * for the other side's cached packets, retract it.
   2664 		 */
   2665 		/* XXX: make SACK have his own congestion control
   2666 		 * struct -- rpaulo */
   2667 		if (TCP_SACK_ENABLED(tp))
   2668 			tcp_sack_newack(tp, th);
   2669 		else
   2670 			tp->t_congctl->fast_retransmit_newack(tp, th);
   2671 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2672 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2673 			goto dropafterack;
   2674 		}
   2675 		acked = th->th_ack - tp->snd_una;
   2676 		tcps = TCP_STAT_GETREF();
   2677 		tcps[TCP_STAT_RCVACKPACK]++;
   2678 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2679 		TCP_STAT_PUTREF();
   2680 
   2681 		/*
   2682 		 * If we have a timestamp reply, update smoothed
   2683 		 * round trip time.  If no timestamp is present but
   2684 		 * transmit timer is running and timed sequence
   2685 		 * number was acked, update smoothed round trip time.
   2686 		 * Since we now have an rtt measurement, cancel the
   2687 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2688 		 * Recompute the initial retransmit timer.
   2689 		 */
   2690 		if (ts_rtt)
   2691 			tcp_xmit_timer(tp, ts_rtt - 1);
   2692 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2693 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2694 
   2695 		/*
   2696 		 * If all outstanding data is acked, stop retransmit
   2697 		 * timer and remember to restart (more output or persist).
   2698 		 * If there is more data to be acked, restart retransmit
   2699 		 * timer, using current (possibly backed-off) value.
   2700 		 */
   2701 		if (th->th_ack == tp->snd_max) {
   2702 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2703 			needoutput = 1;
   2704 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2705 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2706 
   2707 		/*
   2708 		 * New data has been acked, adjust the congestion window.
   2709 		 */
   2710 		tp->t_congctl->newack(tp, th);
   2711 
   2712 		nd6_hint(tp);
   2713 		if (acked > so->so_snd.sb_cc) {
   2714 			tp->snd_wnd -= so->so_snd.sb_cc;
   2715 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2716 			ourfinisacked = 1;
   2717 		} else {
   2718 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2719 				tp->t_lastm = NULL;
   2720 			sbdrop(&so->so_snd, acked);
   2721 			tp->t_lastoff -= acked;
   2722 			tp->snd_wnd -= acked;
   2723 			ourfinisacked = 0;
   2724 		}
   2725 		sowwakeup(so);
   2726 
   2727 		icmp_check(tp, th, acked);
   2728 
   2729 		tp->snd_una = th->th_ack;
   2730 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2731 			tp->snd_fack = tp->snd_una;
   2732 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2733 			tp->snd_nxt = tp->snd_una;
   2734 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2735 			tp->snd_high = tp->snd_una;
   2736 
   2737 		switch (tp->t_state) {
   2738 
   2739 		/*
   2740 		 * In FIN_WAIT_1 STATE in addition to the processing
   2741 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2742 		 * then enter FIN_WAIT_2.
   2743 		 */
   2744 		case TCPS_FIN_WAIT_1:
   2745 			if (ourfinisacked) {
   2746 				/*
   2747 				 * If we can't receive any more
   2748 				 * data, then closing user can proceed.
   2749 				 * Starting the timer is contrary to the
   2750 				 * specification, but if we don't get a FIN
   2751 				 * we'll hang forever.
   2752 				 */
   2753 				if (so->so_state & SS_CANTRCVMORE) {
   2754 					soisdisconnected(so);
   2755 					if (tp->t_maxidle > 0)
   2756 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2757 						    tp->t_maxidle);
   2758 				}
   2759 				tp->t_state = TCPS_FIN_WAIT_2;
   2760 			}
   2761 			break;
   2762 
   2763 	 	/*
   2764 		 * In CLOSING STATE in addition to the processing for
   2765 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2766 		 * then enter the TIME-WAIT state, otherwise ignore
   2767 		 * the segment.
   2768 		 */
   2769 		case TCPS_CLOSING:
   2770 			if (ourfinisacked) {
   2771 				tp->t_state = TCPS_TIME_WAIT;
   2772 				tcp_canceltimers(tp);
   2773 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2774 				soisdisconnected(so);
   2775 			}
   2776 			break;
   2777 
   2778 		/*
   2779 		 * In LAST_ACK, we may still be waiting for data to drain
   2780 		 * and/or to be acked, as well as for the ack of our FIN.
   2781 		 * If our FIN is now acknowledged, delete the TCB,
   2782 		 * enter the closed state and return.
   2783 		 */
   2784 		case TCPS_LAST_ACK:
   2785 			if (ourfinisacked) {
   2786 				tp = tcp_close(tp);
   2787 				goto drop;
   2788 			}
   2789 			break;
   2790 
   2791 		/*
   2792 		 * In TIME_WAIT state the only thing that should arrive
   2793 		 * is a retransmission of the remote FIN.  Acknowledge
   2794 		 * it and restart the finack timer.
   2795 		 */
   2796 		case TCPS_TIME_WAIT:
   2797 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2798 			goto dropafterack;
   2799 		}
   2800 	}
   2801 
   2802 step6:
   2803 	/*
   2804 	 * Update window information.
   2805 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2806 	 */
   2807 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2808 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2809 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2810 		/* keep track of pure window updates */
   2811 		if (tlen == 0 &&
   2812 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2813 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2814 		tp->snd_wnd = tiwin;
   2815 		tp->snd_wl1 = th->th_seq;
   2816 		tp->snd_wl2 = th->th_ack;
   2817 		if (tp->snd_wnd > tp->max_sndwnd)
   2818 			tp->max_sndwnd = tp->snd_wnd;
   2819 		needoutput = 1;
   2820 	}
   2821 
   2822 	/*
   2823 	 * Process segments with URG.
   2824 	 */
   2825 	if ((tiflags & TH_URG) && th->th_urp &&
   2826 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2827 		/*
   2828 		 * This is a kludge, but if we receive and accept
   2829 		 * random urgent pointers, we'll crash in
   2830 		 * soreceive.  It's hard to imagine someone
   2831 		 * actually wanting to send this much urgent data.
   2832 		 */
   2833 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2834 			th->th_urp = 0;			/* XXX */
   2835 			tiflags &= ~TH_URG;		/* XXX */
   2836 			goto dodata;			/* XXX */
   2837 		}
   2838 		/*
   2839 		 * If this segment advances the known urgent pointer,
   2840 		 * then mark the data stream.  This should not happen
   2841 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2842 		 * a FIN has been received from the remote side.
   2843 		 * In these states we ignore the URG.
   2844 		 *
   2845 		 * According to RFC961 (Assigned Protocols),
   2846 		 * the urgent pointer points to the last octet
   2847 		 * of urgent data.  We continue, however,
   2848 		 * to consider it to indicate the first octet
   2849 		 * of data past the urgent section as the original
   2850 		 * spec states (in one of two places).
   2851 		 */
   2852 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2853 			tp->rcv_up = th->th_seq + th->th_urp;
   2854 			so->so_oobmark = so->so_rcv.sb_cc +
   2855 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2856 			if (so->so_oobmark == 0)
   2857 				so->so_state |= SS_RCVATMARK;
   2858 			sohasoutofband(so);
   2859 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2860 		}
   2861 		/*
   2862 		 * Remove out of band data so doesn't get presented to user.
   2863 		 * This can happen independent of advancing the URG pointer,
   2864 		 * but if two URG's are pending at once, some out-of-band
   2865 		 * data may creep in... ick.
   2866 		 */
   2867 		if (th->th_urp <= (u_int16_t) tlen
   2868 #ifdef SO_OOBINLINE
   2869 		     && (so->so_options & SO_OOBINLINE) == 0
   2870 #endif
   2871 		     )
   2872 			tcp_pulloutofband(so, th, m, hdroptlen);
   2873 	} else
   2874 		/*
   2875 		 * If no out of band data is expected,
   2876 		 * pull receive urgent pointer along
   2877 		 * with the receive window.
   2878 		 */
   2879 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2880 			tp->rcv_up = tp->rcv_nxt;
   2881 dodata:							/* XXX */
   2882 
   2883 	/*
   2884 	 * Process the segment text, merging it into the TCP sequencing queue,
   2885 	 * and arranging for acknowledgement of receipt if necessary.
   2886 	 * This process logically involves adjusting tp->rcv_wnd as data
   2887 	 * is presented to the user (this happens in tcp_usrreq.c,
   2888 	 * case PRU_RCVD).  If a FIN has already been received on this
   2889 	 * connection then we just ignore the text.
   2890 	 */
   2891 	if ((tlen || (tiflags & TH_FIN)) &&
   2892 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2893 		/*
   2894 		 * Insert segment ti into reassembly queue of tcp with
   2895 		 * control block tp.  Return TH_FIN if reassembly now includes
   2896 		 * a segment with FIN.  The macro form does the common case
   2897 		 * inline (segment is the next to be received on an
   2898 		 * established connection, and the queue is empty),
   2899 		 * avoiding linkage into and removal from the queue and
   2900 		 * repetition of various conversions.
   2901 		 * Set DELACK for segments received in order, but ack
   2902 		 * immediately when segments are out of order
   2903 		 * (so fast retransmit can work).
   2904 		 */
   2905 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2906 		TCP_REASS_LOCK(tp);
   2907 		if (th->th_seq == tp->rcv_nxt &&
   2908 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2909 		    tp->t_state == TCPS_ESTABLISHED) {
   2910 			tcp_setup_ack(tp, th);
   2911 			tp->rcv_nxt += tlen;
   2912 			tiflags = th->th_flags & TH_FIN;
   2913 			tcps = TCP_STAT_GETREF();
   2914 			tcps[TCP_STAT_RCVPACK]++;
   2915 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2916 			TCP_STAT_PUTREF();
   2917 			nd6_hint(tp);
   2918 			if (so->so_state & SS_CANTRCVMORE)
   2919 				m_freem(m);
   2920 			else {
   2921 				m_adj(m, hdroptlen);
   2922 				sbappendstream(&(so)->so_rcv, m);
   2923 			}
   2924 			TCP_REASS_UNLOCK(tp);
   2925 			sorwakeup(so);
   2926 		} else {
   2927 			m_adj(m, hdroptlen);
   2928 			tiflags = tcp_reass(tp, th, m, &tlen);
   2929 			tp->t_flags |= TF_ACKNOW;
   2930 		}
   2931 
   2932 		/*
   2933 		 * Note the amount of data that peer has sent into
   2934 		 * our window, in order to estimate the sender's
   2935 		 * buffer size.
   2936 		 */
   2937 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2938 	} else {
   2939 		m_freem(m);
   2940 		m = NULL;
   2941 		tiflags &= ~TH_FIN;
   2942 	}
   2943 
   2944 	/*
   2945 	 * If FIN is received ACK the FIN and let the user know
   2946 	 * that the connection is closing.  Ignore a FIN received before
   2947 	 * the connection is fully established.
   2948 	 */
   2949 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2950 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2951 			socantrcvmore(so);
   2952 			tp->t_flags |= TF_ACKNOW;
   2953 			tp->rcv_nxt++;
   2954 		}
   2955 		switch (tp->t_state) {
   2956 
   2957 	 	/*
   2958 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2959 		 */
   2960 		case TCPS_ESTABLISHED:
   2961 			tp->t_state = TCPS_CLOSE_WAIT;
   2962 			break;
   2963 
   2964 	 	/*
   2965 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2966 		 * enter the CLOSING state.
   2967 		 */
   2968 		case TCPS_FIN_WAIT_1:
   2969 			tp->t_state = TCPS_CLOSING;
   2970 			break;
   2971 
   2972 	 	/*
   2973 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2974 		 * starting the time-wait timer, turning off the other
   2975 		 * standard timers.
   2976 		 */
   2977 		case TCPS_FIN_WAIT_2:
   2978 			tp->t_state = TCPS_TIME_WAIT;
   2979 			tcp_canceltimers(tp);
   2980 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2981 			soisdisconnected(so);
   2982 			break;
   2983 
   2984 		/*
   2985 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2986 		 */
   2987 		case TCPS_TIME_WAIT:
   2988 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2989 			break;
   2990 		}
   2991 	}
   2992 #ifdef TCP_DEBUG
   2993 	if (so->so_options & SO_DEBUG)
   2994 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2995 #endif
   2996 
   2997 	/*
   2998 	 * Return any desired output.
   2999 	 */
   3000 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   3001 		KERNEL_LOCK(1, NULL);
   3002 		(void) tcp_output(tp);
   3003 		KERNEL_UNLOCK_ONE(NULL);
   3004 	}
   3005 	if (tcp_saveti)
   3006 		m_freem(tcp_saveti);
   3007 
   3008 	if (tp->t_state == TCPS_TIME_WAIT
   3009 	    && (so->so_state & SS_NOFDREF)
   3010 	    && (tp->t_inpcb || af != AF_INET)
   3011 	    && (tp->t_in6pcb || af != AF_INET6)
   3012 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   3013 	    && TAILQ_EMPTY(&tp->segq)
   3014 	    && vtw_add(af, tp)) {
   3015 		;
   3016 	}
   3017 	return;
   3018 
   3019 badsyn:
   3020 	/*
   3021 	 * Received a bad SYN.  Increment counters and dropwithreset.
   3022 	 */
   3023 	TCP_STATINC(TCP_STAT_BADSYN);
   3024 	tp = NULL;
   3025 	goto dropwithreset;
   3026 
   3027 dropafterack:
   3028 	/*
   3029 	 * Generate an ACK dropping incoming segment if it occupies
   3030 	 * sequence space, where the ACK reflects our state.
   3031 	 */
   3032 	if (tiflags & TH_RST)
   3033 		goto drop;
   3034 	goto dropafterack2;
   3035 
   3036 dropafterack_ratelim:
   3037 	/*
   3038 	 * We may want to rate-limit ACKs against SYN/RST attack.
   3039 	 */
   3040 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   3041 	    tcp_ackdrop_ppslim) == 0) {
   3042 		/* XXX stat */
   3043 		goto drop;
   3044 	}
   3045 	/* ...fall into dropafterack2... */
   3046 
   3047 dropafterack2:
   3048 	m_freem(m);
   3049 	tp->t_flags |= TF_ACKNOW;
   3050 	KERNEL_LOCK(1, NULL);
   3051 	(void) tcp_output(tp);
   3052 	KERNEL_UNLOCK_ONE(NULL);
   3053 	if (tcp_saveti)
   3054 		m_freem(tcp_saveti);
   3055 	return;
   3056 
   3057 dropwithreset_ratelim:
   3058 	/*
   3059 	 * We may want to rate-limit RSTs in certain situations,
   3060 	 * particularly if we are sending an RST in response to
   3061 	 * an attempt to connect to or otherwise communicate with
   3062 	 * a port for which we have no socket.
   3063 	 */
   3064 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   3065 	    tcp_rst_ppslim) == 0) {
   3066 		/* XXX stat */
   3067 		goto drop;
   3068 	}
   3069 	/* ...fall into dropwithreset... */
   3070 
   3071 dropwithreset:
   3072 	/*
   3073 	 * Generate a RST, dropping incoming segment.
   3074 	 * Make ACK acceptable to originator of segment.
   3075 	 */
   3076 	if (tiflags & TH_RST)
   3077 		goto drop;
   3078 
   3079 	switch (af) {
   3080 #ifdef INET6
   3081 	case AF_INET6:
   3082 		/* For following calls to tcp_respond */
   3083 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   3084 			goto drop;
   3085 		break;
   3086 #endif /* INET6 */
   3087 	case AF_INET:
   3088 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   3089 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   3090 			goto drop;
   3091 	}
   3092 
   3093 	if (tiflags & TH_ACK)
   3094 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3095 	else {
   3096 		if (tiflags & TH_SYN)
   3097 			tlen++;
   3098 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3099 		    TH_RST|TH_ACK);
   3100 	}
   3101 	if (tcp_saveti)
   3102 		m_freem(tcp_saveti);
   3103 	return;
   3104 
   3105 badcsum:
   3106 drop:
   3107 	/*
   3108 	 * Drop space held by incoming segment and return.
   3109 	 */
   3110 	if (tp) {
   3111 		if (tp->t_inpcb)
   3112 			so = tp->t_inpcb->inp_socket;
   3113 #ifdef INET6
   3114 		else if (tp->t_in6pcb)
   3115 			so = tp->t_in6pcb->in6p_socket;
   3116 #endif
   3117 		else
   3118 			so = NULL;
   3119 #ifdef TCP_DEBUG
   3120 		if (so && (so->so_options & SO_DEBUG) != 0)
   3121 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3122 #endif
   3123 	}
   3124 	if (tcp_saveti)
   3125 		m_freem(tcp_saveti);
   3126 	m_freem(m);
   3127 	return;
   3128 }
   3129 
   3130 #ifdef TCP_SIGNATURE
   3131 int
   3132 tcp_signature_apply(void *fstate, void *data, u_int len)
   3133 {
   3134 
   3135 	MD5Update(fstate, (u_char *)data, len);
   3136 	return (0);
   3137 }
   3138 
   3139 struct secasvar *
   3140 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   3141 {
   3142 	struct secasvar *sav;
   3143 #ifdef FAST_IPSEC
   3144 	union sockaddr_union dst;
   3145 #endif
   3146 	struct ip *ip;
   3147 	struct ip6_hdr *ip6;
   3148 
   3149 	ip = mtod(m, struct ip *);
   3150 	switch (ip->ip_v) {
   3151 	case 4:
   3152 		ip = mtod(m, struct ip *);
   3153 		ip6 = NULL;
   3154 		break;
   3155 	case 6:
   3156 		ip = NULL;
   3157 		ip6 = mtod(m, struct ip6_hdr *);
   3158 		break;
   3159 	default:
   3160 		return (NULL);
   3161 	}
   3162 
   3163 #ifdef FAST_IPSEC
   3164 	/* Extract the destination from the IP header in the mbuf. */
   3165 	memset(&dst, 0, sizeof(union sockaddr_union));
   3166 	if (ip !=NULL) {
   3167 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   3168 		dst.sa.sa_family = AF_INET;
   3169 		dst.sin.sin_addr = ip->ip_dst;
   3170 	} else {
   3171 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3172 		dst.sa.sa_family = AF_INET6;
   3173 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3174 	}
   3175 
   3176 	/*
   3177 	 * Look up an SADB entry which matches the address of the peer.
   3178 	 */
   3179 	sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI));
   3180 #else
   3181 	if (ip)
   3182 		sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
   3183 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   3184 		    htonl(TCP_SIG_SPI), 0, 0);
   3185 	else
   3186 		sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   3187 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   3188 		    htonl(TCP_SIG_SPI), 0, 0);
   3189 #endif
   3190 
   3191 	return (sav);	/* freesav must be performed by caller */
   3192 }
   3193 
   3194 int
   3195 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3196     struct secasvar *sav, char *sig)
   3197 {
   3198 	MD5_CTX ctx;
   3199 	struct ip *ip;
   3200 	struct ipovly *ipovly;
   3201 	struct ip6_hdr *ip6;
   3202 	struct ippseudo ippseudo;
   3203 	struct ip6_hdr_pseudo ip6pseudo;
   3204 	struct tcphdr th0;
   3205 	int l, tcphdrlen;
   3206 
   3207 	if (sav == NULL)
   3208 		return (-1);
   3209 
   3210 	tcphdrlen = th->th_off * 4;
   3211 
   3212 	switch (mtod(m, struct ip *)->ip_v) {
   3213 	case 4:
   3214 		ip = mtod(m, struct ip *);
   3215 		ip6 = NULL;
   3216 		break;
   3217 	case 6:
   3218 		ip = NULL;
   3219 		ip6 = mtod(m, struct ip6_hdr *);
   3220 		break;
   3221 	default:
   3222 		return (-1);
   3223 	}
   3224 
   3225 	MD5Init(&ctx);
   3226 
   3227 	if (ip) {
   3228 		memset(&ippseudo, 0, sizeof(ippseudo));
   3229 		ipovly = (struct ipovly *)ip;
   3230 		ippseudo.ippseudo_src = ipovly->ih_src;
   3231 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3232 		ippseudo.ippseudo_pad = 0;
   3233 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3234 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3235 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3236 	} else {
   3237 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3238 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3239 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3240 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3241 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3242 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3243 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3244 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3245 	}
   3246 
   3247 	th0 = *th;
   3248 	th0.th_sum = 0;
   3249 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3250 
   3251 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3252 	if (l > 0)
   3253 		m_apply(m, thoff + tcphdrlen,
   3254 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3255 		    tcp_signature_apply, &ctx);
   3256 
   3257 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3258 	MD5Final(sig, &ctx);
   3259 
   3260 	return (0);
   3261 }
   3262 #endif
   3263 
   3264 /*
   3265  * tcp_dooptions: parse and process tcp options.
   3266  *
   3267  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3268  * otherwise returns 0.
   3269  */
   3270 
   3271 static int
   3272 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3273     struct tcphdr *th,
   3274     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3275 {
   3276 	u_int16_t mss;
   3277 	int opt, optlen = 0;
   3278 #ifdef TCP_SIGNATURE
   3279 	void *sigp = NULL;
   3280 	char sigbuf[TCP_SIGLEN];
   3281 	struct secasvar *sav = NULL;
   3282 #endif
   3283 
   3284 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3285 		opt = cp[0];
   3286 		if (opt == TCPOPT_EOL)
   3287 			break;
   3288 		if (opt == TCPOPT_NOP)
   3289 			optlen = 1;
   3290 		else {
   3291 			if (cnt < 2)
   3292 				break;
   3293 			optlen = cp[1];
   3294 			if (optlen < 2 || optlen > cnt)
   3295 				break;
   3296 		}
   3297 		switch (opt) {
   3298 
   3299 		default:
   3300 			continue;
   3301 
   3302 		case TCPOPT_MAXSEG:
   3303 			if (optlen != TCPOLEN_MAXSEG)
   3304 				continue;
   3305 			if (!(th->th_flags & TH_SYN))
   3306 				continue;
   3307 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3308 				continue;
   3309 			bcopy(cp + 2, &mss, sizeof(mss));
   3310 			oi->maxseg = ntohs(mss);
   3311 			break;
   3312 
   3313 		case TCPOPT_WINDOW:
   3314 			if (optlen != TCPOLEN_WINDOW)
   3315 				continue;
   3316 			if (!(th->th_flags & TH_SYN))
   3317 				continue;
   3318 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3319 				continue;
   3320 			tp->t_flags |= TF_RCVD_SCALE;
   3321 			tp->requested_s_scale = cp[2];
   3322 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3323 #if 0	/*XXX*/
   3324 				char *p;
   3325 
   3326 				if (ip)
   3327 					p = ntohl(ip->ip_src);
   3328 #ifdef INET6
   3329 				else if (ip6)
   3330 					p = ip6_sprintf(&ip6->ip6_src);
   3331 #endif
   3332 				else
   3333 					p = "(unknown)";
   3334 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3335 				    "assuming %d\n",
   3336 				    tp->requested_s_scale, p,
   3337 				    TCP_MAX_WINSHIFT);
   3338 #else
   3339 				log(LOG_ERR, "TCP: invalid wscale %d, "
   3340 				    "assuming %d\n",
   3341 				    tp->requested_s_scale,
   3342 				    TCP_MAX_WINSHIFT);
   3343 #endif
   3344 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3345 			}
   3346 			break;
   3347 
   3348 		case TCPOPT_TIMESTAMP:
   3349 			if (optlen != TCPOLEN_TIMESTAMP)
   3350 				continue;
   3351 			oi->ts_present = 1;
   3352 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3353 			NTOHL(oi->ts_val);
   3354 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3355 			NTOHL(oi->ts_ecr);
   3356 
   3357 			if (!(th->th_flags & TH_SYN))
   3358 				continue;
   3359 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3360 				continue;
   3361 			/*
   3362 			 * A timestamp received in a SYN makes
   3363 			 * it ok to send timestamp requests and replies.
   3364 			 */
   3365 			tp->t_flags |= TF_RCVD_TSTMP;
   3366 			tp->ts_recent = oi->ts_val;
   3367 			tp->ts_recent_age = tcp_now;
   3368                         break;
   3369 
   3370 		case TCPOPT_SACK_PERMITTED:
   3371 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3372 				continue;
   3373 			if (!(th->th_flags & TH_SYN))
   3374 				continue;
   3375 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3376 				continue;
   3377 			if (tcp_do_sack) {
   3378 				tp->t_flags |= TF_SACK_PERMIT;
   3379 				tp->t_flags |= TF_WILL_SACK;
   3380 			}
   3381 			break;
   3382 
   3383 		case TCPOPT_SACK:
   3384 			tcp_sack_option(tp, th, cp, optlen);
   3385 			break;
   3386 #ifdef TCP_SIGNATURE
   3387 		case TCPOPT_SIGNATURE:
   3388 			if (optlen != TCPOLEN_SIGNATURE)
   3389 				continue;
   3390 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3391 				return (-1);
   3392 
   3393 			sigp = sigbuf;
   3394 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3395 			tp->t_flags |= TF_SIGNATURE;
   3396 			break;
   3397 #endif
   3398 		}
   3399 	}
   3400 
   3401 #ifdef TCP_SIGNATURE
   3402 	if (tp->t_flags & TF_SIGNATURE) {
   3403 
   3404 		sav = tcp_signature_getsav(m, th);
   3405 
   3406 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3407 			return (-1);
   3408 	}
   3409 
   3410 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE)) {
   3411 		if (sav == NULL)
   3412 			return (-1);
   3413 #ifdef FAST_IPSEC
   3414 		KEY_FREESAV(&sav);
   3415 #else
   3416 		key_freesav(sav);
   3417 #endif
   3418 		return (-1);
   3419 	}
   3420 
   3421 	if (sigp) {
   3422 		char sig[TCP_SIGLEN];
   3423 
   3424 		tcp_fields_to_net(th);
   3425 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3426 			tcp_fields_to_host(th);
   3427 			if (sav == NULL)
   3428 				return (-1);
   3429 #ifdef FAST_IPSEC
   3430 			KEY_FREESAV(&sav);
   3431 #else
   3432 			key_freesav(sav);
   3433 #endif
   3434 			return (-1);
   3435 		}
   3436 		tcp_fields_to_host(th);
   3437 
   3438 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3439 			TCP_STATINC(TCP_STAT_BADSIG);
   3440 			if (sav == NULL)
   3441 				return (-1);
   3442 #ifdef FAST_IPSEC
   3443 			KEY_FREESAV(&sav);
   3444 #else
   3445 			key_freesav(sav);
   3446 #endif
   3447 			return (-1);
   3448 		} else
   3449 			TCP_STATINC(TCP_STAT_GOODSIG);
   3450 
   3451 		key_sa_recordxfer(sav, m);
   3452 #ifdef FAST_IPSEC
   3453 		KEY_FREESAV(&sav);
   3454 #else
   3455 		key_freesav(sav);
   3456 #endif
   3457 	}
   3458 #endif
   3459 
   3460 	return (0);
   3461 }
   3462 
   3463 /*
   3464  * Pull out of band byte out of a segment so
   3465  * it doesn't appear in the user's data queue.
   3466  * It is still reflected in the segment length for
   3467  * sequencing purposes.
   3468  */
   3469 void
   3470 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3471     struct mbuf *m, int off)
   3472 {
   3473 	int cnt = off + th->th_urp - 1;
   3474 
   3475 	while (cnt >= 0) {
   3476 		if (m->m_len > cnt) {
   3477 			char *cp = mtod(m, char *) + cnt;
   3478 			struct tcpcb *tp = sototcpcb(so);
   3479 
   3480 			tp->t_iobc = *cp;
   3481 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3482 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3483 			m->m_len--;
   3484 			return;
   3485 		}
   3486 		cnt -= m->m_len;
   3487 		m = m->m_next;
   3488 		if (m == 0)
   3489 			break;
   3490 	}
   3491 	panic("tcp_pulloutofband");
   3492 }
   3493 
   3494 /*
   3495  * Collect new round-trip time estimate
   3496  * and update averages and current timeout.
   3497  *
   3498  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3499  * difference of two timestamps.
   3500  */
   3501 void
   3502 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3503 {
   3504 	int32_t delta;
   3505 
   3506 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3507 	if (tp->t_srtt != 0) {
   3508 		/*
   3509 		 * Compute the amount to add to srtt for smoothing,
   3510 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3511 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3512 		 * shift left 5 bits, subtract srtt to get the
   3513 		 * diference, and then shift right by TCP_RTT_SHIFT
   3514 		 * (3) to obtain 1/8 of the difference.
   3515 		 */
   3516 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3517 		/*
   3518 		 * This can never happen, because delta's lowest
   3519 		 * possible value is 1/8 of t_srtt.  But if it does,
   3520 		 * set srtt to some reasonable value, here chosen
   3521 		 * as 1/8 tick.
   3522 		 */
   3523 		if ((tp->t_srtt += delta) <= 0)
   3524 			tp->t_srtt = 1 << 2;
   3525 		/*
   3526 		 * RFC2988 requires that rttvar be updated first.
   3527 		 * This code is compliant because "delta" is the old
   3528 		 * srtt minus the new observation (scaled).
   3529 		 *
   3530 		 * RFC2988 says:
   3531 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3532 		 *
   3533 		 * delta is in units of 1/32 ticks, and has then been
   3534 		 * divided by 8.  This is equivalent to being in 1/16s
   3535 		 * units and divided by 4.  Subtract from it 1/4 of
   3536 		 * the existing rttvar to form the (signed) amount to
   3537 		 * adjust.
   3538 		 */
   3539 		if (delta < 0)
   3540 			delta = -delta;
   3541 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3542 		/*
   3543 		 * As with srtt, this should never happen.  There is
   3544 		 * no support in RFC2988 for this operation.  But 1/4s
   3545 		 * as rttvar when faced with something arguably wrong
   3546 		 * is ok.
   3547 		 */
   3548 		if ((tp->t_rttvar += delta) <= 0)
   3549 			tp->t_rttvar = 1 << 2;
   3550 
   3551 		/*
   3552 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3553 		 * Problem is: it doesn't work.  Disabled by defaulting
   3554 		 * tcp_rttlocal to 0; see corresponding code in
   3555 		 * tcp_subr that selects local vs remote in a different way.
   3556 		 *
   3557 		 * The static branch prediction hint here should be removed
   3558 		 * when the rtt estimator is fixed and the rtt_enable code
   3559 		 * is turned back on.
   3560 		 */
   3561 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3562 		    && tp->t_srtt > tcp_msl_remote_threshold
   3563 		    && tp->t_msl  < tcp_msl_remote) {
   3564 			tp->t_msl = tcp_msl_remote;
   3565 		}
   3566 	} else {
   3567 		/*
   3568 		 * This is the first measurement.  Per RFC2988, 2.2,
   3569 		 * set rtt=R and srtt=R/2.
   3570 		 * For srtt, storage representation is 1/32 ticks,
   3571 		 * so shift left by 5.
   3572 		 * For rttvar, storage representation is 1/16 ticks,
   3573 		 * So shift left by 4, but then right by 1 to halve.
   3574 		 */
   3575 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3576 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3577 	}
   3578 	tp->t_rtttime = 0;
   3579 	tp->t_rxtshift = 0;
   3580 
   3581 	/*
   3582 	 * the retransmit should happen at rtt + 4 * rttvar.
   3583 	 * Because of the way we do the smoothing, srtt and rttvar
   3584 	 * will each average +1/2 tick of bias.  When we compute
   3585 	 * the retransmit timer, we want 1/2 tick of rounding and
   3586 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3587 	 * firing of the timer.  The bias will give us exactly the
   3588 	 * 1.5 tick we need.  But, because the bias is
   3589 	 * statistical, we have to test that we don't drop below
   3590 	 * the minimum feasible timer (which is 2 ticks).
   3591 	 */
   3592 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3593 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3594 
   3595 	/*
   3596 	 * We received an ack for a packet that wasn't retransmitted;
   3597 	 * it is probably safe to discard any error indications we've
   3598 	 * received recently.  This isn't quite right, but close enough
   3599 	 * for now (a route might have failed after we sent a segment,
   3600 	 * and the return path might not be symmetrical).
   3601 	 */
   3602 	tp->t_softerror = 0;
   3603 }
   3604 
   3605 
   3606 /*
   3607  * TCP compressed state engine.  Currently used to hold compressed
   3608  * state for SYN_RECEIVED.
   3609  */
   3610 
   3611 u_long	syn_cache_count;
   3612 u_int32_t syn_hash1, syn_hash2;
   3613 
   3614 #define SYN_HASH(sa, sp, dp) \
   3615 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3616 				     ((u_int32_t)(sp)))^syn_hash2)))
   3617 #ifndef INET6
   3618 #define	SYN_HASHALL(hash, src, dst) \
   3619 do {									\
   3620 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3621 		((const struct sockaddr_in *)(src))->sin_port,		\
   3622 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3623 } while (/*CONSTCOND*/ 0)
   3624 #else
   3625 #define SYN_HASH6(sa, sp, dp) \
   3626 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3627 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3628 	 & 0x7fffffff)
   3629 
   3630 #define SYN_HASHALL(hash, src, dst) \
   3631 do {									\
   3632 	switch ((src)->sa_family) {					\
   3633 	case AF_INET:							\
   3634 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3635 			((const struct sockaddr_in *)(src))->sin_port,	\
   3636 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3637 		break;							\
   3638 	case AF_INET6:							\
   3639 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3640 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3641 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3642 		break;							\
   3643 	default:							\
   3644 		hash = 0;						\
   3645 	}								\
   3646 } while (/*CONSTCOND*/0)
   3647 #endif /* INET6 */
   3648 
   3649 static struct pool syn_cache_pool;
   3650 
   3651 /*
   3652  * We don't estimate RTT with SYNs, so each packet starts with the default
   3653  * RTT and each timer step has a fixed timeout value.
   3654  */
   3655 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3656 do {									\
   3657 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3658 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3659 	    TCPTV_REXMTMAX);						\
   3660 	callout_reset(&(sc)->sc_timer,					\
   3661 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3662 } while (/*CONSTCOND*/0)
   3663 
   3664 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3665 
   3666 static inline void
   3667 syn_cache_rm(struct syn_cache *sc)
   3668 {
   3669 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3670 	    sc, sc_bucketq);
   3671 	sc->sc_tp = NULL;
   3672 	LIST_REMOVE(sc, sc_tpq);
   3673 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3674 	callout_stop(&sc->sc_timer);
   3675 	syn_cache_count--;
   3676 }
   3677 
   3678 static inline void
   3679 syn_cache_put(struct syn_cache *sc)
   3680 {
   3681 	if (sc->sc_ipopts)
   3682 		(void) m_free(sc->sc_ipopts);
   3683 	rtcache_free(&sc->sc_route);
   3684 	sc->sc_flags |= SCF_DEAD;
   3685 	if (!callout_invoking(&sc->sc_timer))
   3686 		callout_schedule(&(sc)->sc_timer, 1);
   3687 }
   3688 
   3689 void
   3690 syn_cache_init(void)
   3691 {
   3692 	int i;
   3693 
   3694 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3695 	    "synpl", NULL, IPL_SOFTNET);
   3696 
   3697 	/* Initialize the hash buckets. */
   3698 	for (i = 0; i < tcp_syn_cache_size; i++)
   3699 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3700 }
   3701 
   3702 void
   3703 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3704 {
   3705 	struct syn_cache_head *scp;
   3706 	struct syn_cache *sc2;
   3707 	int s;
   3708 
   3709 	/*
   3710 	 * If there are no entries in the hash table, reinitialize
   3711 	 * the hash secrets.
   3712 	 */
   3713 	if (syn_cache_count == 0) {
   3714 		syn_hash1 = cprng_fast32();
   3715 		syn_hash2 = cprng_fast32();
   3716 	}
   3717 
   3718 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3719 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3720 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3721 
   3722 	/*
   3723 	 * Make sure that we don't overflow the per-bucket
   3724 	 * limit or the total cache size limit.
   3725 	 */
   3726 	s = splsoftnet();
   3727 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3728 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3729 		/*
   3730 		 * The bucket is full.  Toss the oldest element in the
   3731 		 * bucket.  This will be the first entry in the bucket.
   3732 		 */
   3733 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3734 #ifdef DIAGNOSTIC
   3735 		/*
   3736 		 * This should never happen; we should always find an
   3737 		 * entry in our bucket.
   3738 		 */
   3739 		if (sc2 == NULL)
   3740 			panic("syn_cache_insert: bucketoverflow: impossible");
   3741 #endif
   3742 		syn_cache_rm(sc2);
   3743 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3744 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3745 		struct syn_cache_head *scp2, *sce;
   3746 
   3747 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3748 		/*
   3749 		 * The cache is full.  Toss the oldest entry in the
   3750 		 * first non-empty bucket we can find.
   3751 		 *
   3752 		 * XXX We would really like to toss the oldest
   3753 		 * entry in the cache, but we hope that this
   3754 		 * condition doesn't happen very often.
   3755 		 */
   3756 		scp2 = scp;
   3757 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3758 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3759 			for (++scp2; scp2 != scp; scp2++) {
   3760 				if (scp2 >= sce)
   3761 					scp2 = &tcp_syn_cache[0];
   3762 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3763 					break;
   3764 			}
   3765 #ifdef DIAGNOSTIC
   3766 			/*
   3767 			 * This should never happen; we should always find a
   3768 			 * non-empty bucket.
   3769 			 */
   3770 			if (scp2 == scp)
   3771 				panic("syn_cache_insert: cacheoverflow: "
   3772 				    "impossible");
   3773 #endif
   3774 		}
   3775 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3776 		syn_cache_rm(sc2);
   3777 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3778 	}
   3779 
   3780 	/*
   3781 	 * Initialize the entry's timer.
   3782 	 */
   3783 	sc->sc_rxttot = 0;
   3784 	sc->sc_rxtshift = 0;
   3785 	SYN_CACHE_TIMER_ARM(sc);
   3786 
   3787 	/* Link it from tcpcb entry */
   3788 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3789 
   3790 	/* Put it into the bucket. */
   3791 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3792 	scp->sch_length++;
   3793 	syn_cache_count++;
   3794 
   3795 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3796 	splx(s);
   3797 }
   3798 
   3799 /*
   3800  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3801  * If we have retransmitted an entry the maximum number of times, expire
   3802  * that entry.
   3803  */
   3804 void
   3805 syn_cache_timer(void *arg)
   3806 {
   3807 	struct syn_cache *sc = arg;
   3808 
   3809 	mutex_enter(softnet_lock);
   3810 	KERNEL_LOCK(1, NULL);
   3811 	callout_ack(&sc->sc_timer);
   3812 
   3813 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3814 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3815 		callout_destroy(&sc->sc_timer);
   3816 		pool_put(&syn_cache_pool, sc);
   3817 		KERNEL_UNLOCK_ONE(NULL);
   3818 		mutex_exit(softnet_lock);
   3819 		return;
   3820 	}
   3821 
   3822 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3823 		/* Drop it -- too many retransmissions. */
   3824 		goto dropit;
   3825 	}
   3826 
   3827 	/*
   3828 	 * Compute the total amount of time this entry has
   3829 	 * been on a queue.  If this entry has been on longer
   3830 	 * than the keep alive timer would allow, expire it.
   3831 	 */
   3832 	sc->sc_rxttot += sc->sc_rxtcur;
   3833 	if (sc->sc_rxttot >= tcp_keepinit)
   3834 		goto dropit;
   3835 
   3836 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3837 	(void) syn_cache_respond(sc, NULL);
   3838 
   3839 	/* Advance the timer back-off. */
   3840 	sc->sc_rxtshift++;
   3841 	SYN_CACHE_TIMER_ARM(sc);
   3842 
   3843 	KERNEL_UNLOCK_ONE(NULL);
   3844 	mutex_exit(softnet_lock);
   3845 	return;
   3846 
   3847  dropit:
   3848 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3849 	syn_cache_rm(sc);
   3850 	if (sc->sc_ipopts)
   3851 		(void) m_free(sc->sc_ipopts);
   3852 	rtcache_free(&sc->sc_route);
   3853 	callout_destroy(&sc->sc_timer);
   3854 	pool_put(&syn_cache_pool, sc);
   3855 	KERNEL_UNLOCK_ONE(NULL);
   3856 	mutex_exit(softnet_lock);
   3857 }
   3858 
   3859 /*
   3860  * Remove syn cache created by the specified tcb entry,
   3861  * because this does not make sense to keep them
   3862  * (if there's no tcb entry, syn cache entry will never be used)
   3863  */
   3864 void
   3865 syn_cache_cleanup(struct tcpcb *tp)
   3866 {
   3867 	struct syn_cache *sc, *nsc;
   3868 	int s;
   3869 
   3870 	s = splsoftnet();
   3871 
   3872 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3873 		nsc = LIST_NEXT(sc, sc_tpq);
   3874 
   3875 #ifdef DIAGNOSTIC
   3876 		if (sc->sc_tp != tp)
   3877 			panic("invalid sc_tp in syn_cache_cleanup");
   3878 #endif
   3879 		syn_cache_rm(sc);
   3880 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3881 	}
   3882 	/* just for safety */
   3883 	LIST_INIT(&tp->t_sc);
   3884 
   3885 	splx(s);
   3886 }
   3887 
   3888 /*
   3889  * Find an entry in the syn cache.
   3890  */
   3891 struct syn_cache *
   3892 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3893     struct syn_cache_head **headp)
   3894 {
   3895 	struct syn_cache *sc;
   3896 	struct syn_cache_head *scp;
   3897 	u_int32_t hash;
   3898 	int s;
   3899 
   3900 	SYN_HASHALL(hash, src, dst);
   3901 
   3902 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3903 	*headp = scp;
   3904 	s = splsoftnet();
   3905 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3906 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3907 		if (sc->sc_hash != hash)
   3908 			continue;
   3909 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3910 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3911 			splx(s);
   3912 			return (sc);
   3913 		}
   3914 	}
   3915 	splx(s);
   3916 	return (NULL);
   3917 }
   3918 
   3919 /*
   3920  * This function gets called when we receive an ACK for a
   3921  * socket in the LISTEN state.  We look up the connection
   3922  * in the syn cache, and if its there, we pull it out of
   3923  * the cache and turn it into a full-blown connection in
   3924  * the SYN-RECEIVED state.
   3925  *
   3926  * The return values may not be immediately obvious, and their effects
   3927  * can be subtle, so here they are:
   3928  *
   3929  *	NULL	SYN was not found in cache; caller should drop the
   3930  *		packet and send an RST.
   3931  *
   3932  *	-1	We were unable to create the new connection, and are
   3933  *		aborting it.  An ACK,RST is being sent to the peer
   3934  *		(unless we got screwey sequence numbners; see below),
   3935  *		because the 3-way handshake has been completed.  Caller
   3936  *		should not free the mbuf, since we may be using it.  If
   3937  *		we are not, we will free it.
   3938  *
   3939  *	Otherwise, the return value is a pointer to the new socket
   3940  *	associated with the connection.
   3941  */
   3942 struct socket *
   3943 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3944     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3945     struct socket *so, struct mbuf *m)
   3946 {
   3947 	struct syn_cache *sc;
   3948 	struct syn_cache_head *scp;
   3949 	struct inpcb *inp = NULL;
   3950 #ifdef INET6
   3951 	struct in6pcb *in6p = NULL;
   3952 #endif
   3953 	struct tcpcb *tp = 0;
   3954 	struct mbuf *am;
   3955 	int s;
   3956 	struct socket *oso;
   3957 
   3958 	s = splsoftnet();
   3959 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3960 		splx(s);
   3961 		return (NULL);
   3962 	}
   3963 
   3964 	/*
   3965 	 * Verify the sequence and ack numbers.  Try getting the correct
   3966 	 * response again.
   3967 	 */
   3968 	if ((th->th_ack != sc->sc_iss + 1) ||
   3969 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3970 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3971 		(void) syn_cache_respond(sc, m);
   3972 		splx(s);
   3973 		return ((struct socket *)(-1));
   3974 	}
   3975 
   3976 	/* Remove this cache entry */
   3977 	syn_cache_rm(sc);
   3978 	splx(s);
   3979 
   3980 	/*
   3981 	 * Ok, create the full blown connection, and set things up
   3982 	 * as they would have been set up if we had created the
   3983 	 * connection when the SYN arrived.  If we can't create
   3984 	 * the connection, abort it.
   3985 	 */
   3986 	/*
   3987 	 * inp still has the OLD in_pcb stuff, set the
   3988 	 * v6-related flags on the new guy, too.   This is
   3989 	 * done particularly for the case where an AF_INET6
   3990 	 * socket is bound only to a port, and a v4 connection
   3991 	 * comes in on that port.
   3992 	 * we also copy the flowinfo from the original pcb
   3993 	 * to the new one.
   3994 	 */
   3995 	oso = so;
   3996 	so = sonewconn(so, SS_ISCONNECTED);
   3997 	if (so == NULL)
   3998 		goto resetandabort;
   3999 
   4000 	switch (so->so_proto->pr_domain->dom_family) {
   4001 #ifdef INET
   4002 	case AF_INET:
   4003 		inp = sotoinpcb(so);
   4004 		break;
   4005 #endif
   4006 #ifdef INET6
   4007 	case AF_INET6:
   4008 		in6p = sotoin6pcb(so);
   4009 		break;
   4010 #endif
   4011 	}
   4012 	switch (src->sa_family) {
   4013 #ifdef INET
   4014 	case AF_INET:
   4015 		if (inp) {
   4016 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   4017 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   4018 			inp->inp_options = ip_srcroute();
   4019 			in_pcbstate(inp, INP_BOUND);
   4020 			if (inp->inp_options == NULL) {
   4021 				inp->inp_options = sc->sc_ipopts;
   4022 				sc->sc_ipopts = NULL;
   4023 			}
   4024 		}
   4025 #ifdef INET6
   4026 		else if (in6p) {
   4027 			/* IPv4 packet to AF_INET6 socket */
   4028 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   4029 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   4030 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   4031 				&in6p->in6p_laddr.s6_addr32[3],
   4032 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   4033 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   4034 			in6totcpcb(in6p)->t_family = AF_INET;
   4035 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   4036 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   4037 			else
   4038 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   4039 			in6_pcbstate(in6p, IN6P_BOUND);
   4040 		}
   4041 #endif
   4042 		break;
   4043 #endif
   4044 #ifdef INET6
   4045 	case AF_INET6:
   4046 		if (in6p) {
   4047 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   4048 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   4049 			in6_pcbstate(in6p, IN6P_BOUND);
   4050 		}
   4051 		break;
   4052 #endif
   4053 	}
   4054 #ifdef INET6
   4055 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   4056 		struct in6pcb *oin6p = sotoin6pcb(oso);
   4057 		/* inherit socket options from the listening socket */
   4058 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   4059 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   4060 			m_freem(in6p->in6p_options);
   4061 			in6p->in6p_options = 0;
   4062 		}
   4063 		ip6_savecontrol(in6p, &in6p->in6p_options,
   4064 			mtod(m, struct ip6_hdr *), m);
   4065 	}
   4066 #endif
   4067 
   4068 #if defined(IPSEC) || defined(FAST_IPSEC)
   4069 	/*
   4070 	 * we make a copy of policy, instead of sharing the policy,
   4071 	 * for better behavior in terms of SA lookup and dead SA removal.
   4072 	 */
   4073 	if (inp) {
   4074 		/* copy old policy into new socket's */
   4075 		if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
   4076 			printf("tcp_input: could not copy policy\n");
   4077 	}
   4078 #ifdef INET6
   4079 	else if (in6p) {
   4080 		/* copy old policy into new socket's */
   4081 		if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   4082 		    in6p->in6p_sp))
   4083 			printf("tcp_input: could not copy policy\n");
   4084 	}
   4085 #endif
   4086 #endif
   4087 
   4088 	/*
   4089 	 * Give the new socket our cached route reference.
   4090 	 */
   4091 	if (inp) {
   4092 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   4093 		rtcache_free(&sc->sc_route);
   4094 	}
   4095 #ifdef INET6
   4096 	else {
   4097 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   4098 		rtcache_free(&sc->sc_route);
   4099 	}
   4100 #endif
   4101 
   4102 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   4103 	if (am == NULL)
   4104 		goto resetandabort;
   4105 	MCLAIM(am, &tcp_mowner);
   4106 	am->m_len = src->sa_len;
   4107 	bcopy(src, mtod(am, void *), src->sa_len);
   4108 	if (inp) {
   4109 		if (in_pcbconnect(inp, am, &lwp0)) {
   4110 			(void) m_free(am);
   4111 			goto resetandabort;
   4112 		}
   4113 	}
   4114 #ifdef INET6
   4115 	else if (in6p) {
   4116 		if (src->sa_family == AF_INET) {
   4117 			/* IPv4 packet to AF_INET6 socket */
   4118 			struct sockaddr_in6 *sin6;
   4119 			sin6 = mtod(am, struct sockaddr_in6 *);
   4120 			am->m_len = sizeof(*sin6);
   4121 			memset(sin6, 0, sizeof(*sin6));
   4122 			sin6->sin6_family = AF_INET6;
   4123 			sin6->sin6_len = sizeof(*sin6);
   4124 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   4125 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   4126 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   4127 				&sin6->sin6_addr.s6_addr32[3],
   4128 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   4129 		}
   4130 		if (in6_pcbconnect(in6p, am, NULL)) {
   4131 			(void) m_free(am);
   4132 			goto resetandabort;
   4133 		}
   4134 	}
   4135 #endif
   4136 	else {
   4137 		(void) m_free(am);
   4138 		goto resetandabort;
   4139 	}
   4140 	(void) m_free(am);
   4141 
   4142 	if (inp)
   4143 		tp = intotcpcb(inp);
   4144 #ifdef INET6
   4145 	else if (in6p)
   4146 		tp = in6totcpcb(in6p);
   4147 #endif
   4148 	else
   4149 		tp = NULL;
   4150 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   4151 	if (sc->sc_request_r_scale != 15) {
   4152 		tp->requested_s_scale = sc->sc_requested_s_scale;
   4153 		tp->request_r_scale = sc->sc_request_r_scale;
   4154 		tp->snd_scale = sc->sc_requested_s_scale;
   4155 		tp->rcv_scale = sc->sc_request_r_scale;
   4156 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   4157 	}
   4158 	if (sc->sc_flags & SCF_TIMESTAMP)
   4159 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   4160 	tp->ts_timebase = sc->sc_timebase;
   4161 
   4162 	tp->t_template = tcp_template(tp);
   4163 	if (tp->t_template == 0) {
   4164 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   4165 		so = NULL;
   4166 		m_freem(m);
   4167 		goto abort;
   4168 	}
   4169 
   4170 	tp->iss = sc->sc_iss;
   4171 	tp->irs = sc->sc_irs;
   4172 	tcp_sendseqinit(tp);
   4173 	tcp_rcvseqinit(tp);
   4174 	tp->t_state = TCPS_SYN_RECEIVED;
   4175 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4176 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4177 
   4178 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4179 		tp->t_flags |= TF_WILL_SACK;
   4180 
   4181 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4182 		tp->t_flags |= TF_ECN_PERMIT;
   4183 
   4184 #ifdef TCP_SIGNATURE
   4185 	if (sc->sc_flags & SCF_SIGNATURE)
   4186 		tp->t_flags |= TF_SIGNATURE;
   4187 #endif
   4188 
   4189 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4190 	tp->t_ourmss = sc->sc_ourmaxseg;
   4191 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4192 
   4193 	/*
   4194 	 * Initialize the initial congestion window.  If we
   4195 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4196 	 * to 1 segment (i.e. the Loss Window).
   4197 	 */
   4198 	if (sc->sc_rxtshift)
   4199 		tp->snd_cwnd = tp->t_peermss;
   4200 	else {
   4201 		int ss = tcp_init_win;
   4202 #ifdef INET
   4203 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4204 			ss = tcp_init_win_local;
   4205 #endif
   4206 #ifdef INET6
   4207 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4208 			ss = tcp_init_win_local;
   4209 #endif
   4210 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4211 	}
   4212 
   4213 	tcp_rmx_rtt(tp);
   4214 	tp->snd_wl1 = sc->sc_irs;
   4215 	tp->rcv_up = sc->sc_irs + 1;
   4216 
   4217 	/*
   4218 	 * This is what whould have happened in tcp_output() when
   4219 	 * the SYN,ACK was sent.
   4220 	 */
   4221 	tp->snd_up = tp->snd_una;
   4222 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4223 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4224 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4225 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4226 	tp->last_ack_sent = tp->rcv_nxt;
   4227 	tp->t_partialacks = -1;
   4228 	tp->t_dupacks = 0;
   4229 
   4230 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4231 	s = splsoftnet();
   4232 	syn_cache_put(sc);
   4233 	splx(s);
   4234 	return (so);
   4235 
   4236 resetandabort:
   4237 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4238 abort:
   4239 	if (so != NULL) {
   4240 		(void) soqremque(so, 1);
   4241 		(void) soabort(so);
   4242 		mutex_enter(softnet_lock);
   4243 	}
   4244 	s = splsoftnet();
   4245 	syn_cache_put(sc);
   4246 	splx(s);
   4247 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4248 	return ((struct socket *)(-1));
   4249 }
   4250 
   4251 /*
   4252  * This function is called when we get a RST for a
   4253  * non-existent connection, so that we can see if the
   4254  * connection is in the syn cache.  If it is, zap it.
   4255  */
   4256 
   4257 void
   4258 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4259 {
   4260 	struct syn_cache *sc;
   4261 	struct syn_cache_head *scp;
   4262 	int s = splsoftnet();
   4263 
   4264 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4265 		splx(s);
   4266 		return;
   4267 	}
   4268 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4269 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4270 		splx(s);
   4271 		return;
   4272 	}
   4273 	syn_cache_rm(sc);
   4274 	TCP_STATINC(TCP_STAT_SC_RESET);
   4275 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4276 	splx(s);
   4277 }
   4278 
   4279 void
   4280 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4281     struct tcphdr *th)
   4282 {
   4283 	struct syn_cache *sc;
   4284 	struct syn_cache_head *scp;
   4285 	int s;
   4286 
   4287 	s = splsoftnet();
   4288 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4289 		splx(s);
   4290 		return;
   4291 	}
   4292 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4293 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4294 		splx(s);
   4295 		return;
   4296 	}
   4297 
   4298 	/*
   4299 	 * If we've retransmitted 3 times and this is our second error,
   4300 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4301 	 * This prevents us from incorrectly nuking an entry during a
   4302 	 * spurious network outage.
   4303 	 *
   4304 	 * See tcp_notify().
   4305 	 */
   4306 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4307 		sc->sc_flags |= SCF_UNREACH;
   4308 		splx(s);
   4309 		return;
   4310 	}
   4311 
   4312 	syn_cache_rm(sc);
   4313 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4314 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4315 	splx(s);
   4316 }
   4317 
   4318 /*
   4319  * Given a LISTEN socket and an inbound SYN request, add
   4320  * this to the syn cache, and send back a segment:
   4321  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4322  * to the source.
   4323  *
   4324  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4325  * Doing so would require that we hold onto the data and deliver it
   4326  * to the application.  However, if we are the target of a SYN-flood
   4327  * DoS attack, an attacker could send data which would eventually
   4328  * consume all available buffer space if it were ACKed.  By not ACKing
   4329  * the data, we avoid this DoS scenario.
   4330  */
   4331 
   4332 int
   4333 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4334     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4335     int optlen, struct tcp_opt_info *oi)
   4336 {
   4337 	struct tcpcb tb, *tp;
   4338 	long win;
   4339 	struct syn_cache *sc;
   4340 	struct syn_cache_head *scp;
   4341 	struct mbuf *ipopts;
   4342 	struct tcp_opt_info opti;
   4343 	int s;
   4344 
   4345 	tp = sototcpcb(so);
   4346 
   4347 	memset(&opti, 0, sizeof(opti));
   4348 
   4349 	/*
   4350 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4351 	 *
   4352 	 * Note this check is performed in tcp_input() very early on.
   4353 	 */
   4354 
   4355 	/*
   4356 	 * Initialize some local state.
   4357 	 */
   4358 	win = sbspace(&so->so_rcv);
   4359 	if (win > TCP_MAXWIN)
   4360 		win = TCP_MAXWIN;
   4361 
   4362 	switch (src->sa_family) {
   4363 #ifdef INET
   4364 	case AF_INET:
   4365 		/*
   4366 		 * Remember the IP options, if any.
   4367 		 */
   4368 		ipopts = ip_srcroute();
   4369 		break;
   4370 #endif
   4371 	default:
   4372 		ipopts = NULL;
   4373 	}
   4374 
   4375 #ifdef TCP_SIGNATURE
   4376 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4377 #else
   4378 	if (optp)
   4379 #endif
   4380 	{
   4381 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4382 #ifdef TCP_SIGNATURE
   4383 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4384 #endif
   4385 		tb.t_state = TCPS_LISTEN;
   4386 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4387 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4388 			return (0);
   4389 	} else
   4390 		tb.t_flags = 0;
   4391 
   4392 	/*
   4393 	 * See if we already have an entry for this connection.
   4394 	 * If we do, resend the SYN,ACK.  We do not count this
   4395 	 * as a retransmission (XXX though maybe we should).
   4396 	 */
   4397 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4398 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4399 		if (ipopts) {
   4400 			/*
   4401 			 * If we were remembering a previous source route,
   4402 			 * forget it and use the new one we've been given.
   4403 			 */
   4404 			if (sc->sc_ipopts)
   4405 				(void) m_free(sc->sc_ipopts);
   4406 			sc->sc_ipopts = ipopts;
   4407 		}
   4408 		sc->sc_timestamp = tb.ts_recent;
   4409 		if (syn_cache_respond(sc, m) == 0) {
   4410 			uint64_t *tcps = TCP_STAT_GETREF();
   4411 			tcps[TCP_STAT_SNDACKS]++;
   4412 			tcps[TCP_STAT_SNDTOTAL]++;
   4413 			TCP_STAT_PUTREF();
   4414 		}
   4415 		return (1);
   4416 	}
   4417 
   4418 	s = splsoftnet();
   4419 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4420 	splx(s);
   4421 	if (sc == NULL) {
   4422 		if (ipopts)
   4423 			(void) m_free(ipopts);
   4424 		return (0);
   4425 	}
   4426 
   4427 	/*
   4428 	 * Fill in the cache, and put the necessary IP and TCP
   4429 	 * options into the reply.
   4430 	 */
   4431 	memset(sc, 0, sizeof(struct syn_cache));
   4432 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4433 	bcopy(src, &sc->sc_src, src->sa_len);
   4434 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4435 	sc->sc_flags = 0;
   4436 	sc->sc_ipopts = ipopts;
   4437 	sc->sc_irs = th->th_seq;
   4438 	switch (src->sa_family) {
   4439 #ifdef INET
   4440 	case AF_INET:
   4441 	    {
   4442 		struct sockaddr_in *srcin = (void *) src;
   4443 		struct sockaddr_in *dstin = (void *) dst;
   4444 
   4445 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4446 		    &srcin->sin_addr, dstin->sin_port,
   4447 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4448 		break;
   4449 	    }
   4450 #endif /* INET */
   4451 #ifdef INET6
   4452 	case AF_INET6:
   4453 	    {
   4454 		struct sockaddr_in6 *srcin6 = (void *) src;
   4455 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4456 
   4457 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4458 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4459 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4460 		break;
   4461 	    }
   4462 #endif /* INET6 */
   4463 	}
   4464 	sc->sc_peermaxseg = oi->maxseg;
   4465 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4466 						m->m_pkthdr.rcvif : NULL,
   4467 						sc->sc_src.sa.sa_family);
   4468 	sc->sc_win = win;
   4469 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4470 	sc->sc_timestamp = tb.ts_recent;
   4471 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4472 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4473 		sc->sc_flags |= SCF_TIMESTAMP;
   4474 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4475 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4476 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4477 		sc->sc_request_r_scale = 0;
   4478 		/*
   4479 		 * Pick the smallest possible scaling factor that
   4480 		 * will still allow us to scale up to sb_max.
   4481 		 *
   4482 		 * We do this because there are broken firewalls that
   4483 		 * will corrupt the window scale option, leading to
   4484 		 * the other endpoint believing that our advertised
   4485 		 * window is unscaled.  At scale factors larger than
   4486 		 * 5 the unscaled window will drop below 1500 bytes,
   4487 		 * leading to serious problems when traversing these
   4488 		 * broken firewalls.
   4489 		 *
   4490 		 * With the default sbmax of 256K, a scale factor
   4491 		 * of 3 will be chosen by this algorithm.  Those who
   4492 		 * choose a larger sbmax should watch out
   4493 		 * for the compatiblity problems mentioned above.
   4494 		 *
   4495 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4496 		 * or <SYN,ACK>) segment itself is never scaled.
   4497 		 */
   4498 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4499 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4500 			sc->sc_request_r_scale++;
   4501 	} else {
   4502 		sc->sc_requested_s_scale = 15;
   4503 		sc->sc_request_r_scale = 15;
   4504 	}
   4505 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4506 		sc->sc_flags |= SCF_SACK_PERMIT;
   4507 
   4508 	/*
   4509 	 * ECN setup packet recieved.
   4510 	 */
   4511 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4512 		sc->sc_flags |= SCF_ECN_PERMIT;
   4513 
   4514 #ifdef TCP_SIGNATURE
   4515 	if (tb.t_flags & TF_SIGNATURE)
   4516 		sc->sc_flags |= SCF_SIGNATURE;
   4517 #endif
   4518 	sc->sc_tp = tp;
   4519 	if (syn_cache_respond(sc, m) == 0) {
   4520 		uint64_t *tcps = TCP_STAT_GETREF();
   4521 		tcps[TCP_STAT_SNDACKS]++;
   4522 		tcps[TCP_STAT_SNDTOTAL]++;
   4523 		TCP_STAT_PUTREF();
   4524 		syn_cache_insert(sc, tp);
   4525 	} else {
   4526 		s = splsoftnet();
   4527 		/*
   4528 		 * syn_cache_put() will try to schedule the timer, so
   4529 		 * we need to initialize it
   4530 		 */
   4531 		SYN_CACHE_TIMER_ARM(sc);
   4532 		syn_cache_put(sc);
   4533 		splx(s);
   4534 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4535 	}
   4536 	return (1);
   4537 }
   4538 
   4539 int
   4540 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4541 {
   4542 #ifdef INET6
   4543 	struct rtentry *rt;
   4544 #endif
   4545 	struct route *ro;
   4546 	u_int8_t *optp;
   4547 	int optlen, error;
   4548 	u_int16_t tlen;
   4549 	struct ip *ip = NULL;
   4550 #ifdef INET6
   4551 	struct ip6_hdr *ip6 = NULL;
   4552 #endif
   4553 	struct tcpcb *tp = NULL;
   4554 	struct tcphdr *th;
   4555 	u_int hlen;
   4556 	struct socket *so;
   4557 
   4558 	ro = &sc->sc_route;
   4559 	switch (sc->sc_src.sa.sa_family) {
   4560 	case AF_INET:
   4561 		hlen = sizeof(struct ip);
   4562 		break;
   4563 #ifdef INET6
   4564 	case AF_INET6:
   4565 		hlen = sizeof(struct ip6_hdr);
   4566 		break;
   4567 #endif
   4568 	default:
   4569 		if (m)
   4570 			m_freem(m);
   4571 		return (EAFNOSUPPORT);
   4572 	}
   4573 
   4574 	/* Compute the size of the TCP options. */
   4575 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4576 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4577 #ifdef TCP_SIGNATURE
   4578 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4579 #endif
   4580 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4581 
   4582 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4583 
   4584 	/*
   4585 	 * Create the IP+TCP header from scratch.
   4586 	 */
   4587 	if (m)
   4588 		m_freem(m);
   4589 #ifdef DIAGNOSTIC
   4590 	if (max_linkhdr + tlen > MCLBYTES)
   4591 		return (ENOBUFS);
   4592 #endif
   4593 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4594 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4595 		MCLGET(m, M_DONTWAIT);
   4596 		if ((m->m_flags & M_EXT) == 0) {
   4597 			m_freem(m);
   4598 			m = NULL;
   4599 		}
   4600 	}
   4601 	if (m == NULL)
   4602 		return (ENOBUFS);
   4603 	MCLAIM(m, &tcp_tx_mowner);
   4604 
   4605 	/* Fixup the mbuf. */
   4606 	m->m_data += max_linkhdr;
   4607 	m->m_len = m->m_pkthdr.len = tlen;
   4608 	if (sc->sc_tp) {
   4609 		tp = sc->sc_tp;
   4610 		if (tp->t_inpcb)
   4611 			so = tp->t_inpcb->inp_socket;
   4612 #ifdef INET6
   4613 		else if (tp->t_in6pcb)
   4614 			so = tp->t_in6pcb->in6p_socket;
   4615 #endif
   4616 		else
   4617 			so = NULL;
   4618 	} else
   4619 		so = NULL;
   4620 	m->m_pkthdr.rcvif = NULL;
   4621 	memset(mtod(m, u_char *), 0, tlen);
   4622 
   4623 	switch (sc->sc_src.sa.sa_family) {
   4624 	case AF_INET:
   4625 		ip = mtod(m, struct ip *);
   4626 		ip->ip_v = 4;
   4627 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4628 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4629 		ip->ip_p = IPPROTO_TCP;
   4630 		th = (struct tcphdr *)(ip + 1);
   4631 		th->th_dport = sc->sc_src.sin.sin_port;
   4632 		th->th_sport = sc->sc_dst.sin.sin_port;
   4633 		break;
   4634 #ifdef INET6
   4635 	case AF_INET6:
   4636 		ip6 = mtod(m, struct ip6_hdr *);
   4637 		ip6->ip6_vfc = IPV6_VERSION;
   4638 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4639 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4640 		ip6->ip6_nxt = IPPROTO_TCP;
   4641 		/* ip6_plen will be updated in ip6_output() */
   4642 		th = (struct tcphdr *)(ip6 + 1);
   4643 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4644 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4645 		break;
   4646 #endif
   4647 	default:
   4648 		th = NULL;
   4649 	}
   4650 
   4651 	th->th_seq = htonl(sc->sc_iss);
   4652 	th->th_ack = htonl(sc->sc_irs + 1);
   4653 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4654 	th->th_flags = TH_SYN|TH_ACK;
   4655 	th->th_win = htons(sc->sc_win);
   4656 	/* th_sum already 0 */
   4657 	/* th_urp already 0 */
   4658 
   4659 	/* Tack on the TCP options. */
   4660 	optp = (u_int8_t *)(th + 1);
   4661 	*optp++ = TCPOPT_MAXSEG;
   4662 	*optp++ = 4;
   4663 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4664 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4665 
   4666 	if (sc->sc_request_r_scale != 15) {
   4667 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4668 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4669 		    sc->sc_request_r_scale);
   4670 		optp += 4;
   4671 	}
   4672 
   4673 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4674 		u_int32_t *lp = (u_int32_t *)(optp);
   4675 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4676 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4677 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4678 		*lp   = htonl(sc->sc_timestamp);
   4679 		optp += TCPOLEN_TSTAMP_APPA;
   4680 	}
   4681 
   4682 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4683 		u_int8_t *p = optp;
   4684 
   4685 		/* Let the peer know that we will SACK. */
   4686 		p[0] = TCPOPT_SACK_PERMITTED;
   4687 		p[1] = 2;
   4688 		p[2] = TCPOPT_NOP;
   4689 		p[3] = TCPOPT_NOP;
   4690 		optp += 4;
   4691 	}
   4692 
   4693 	/*
   4694 	 * Send ECN SYN-ACK setup packet.
   4695 	 * Routes can be asymetric, so, even if we receive a packet
   4696 	 * with ECE and CWR set, we must not assume no one will block
   4697 	 * the ECE packet we are about to send.
   4698 	 */
   4699 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4700 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4701 		th->th_flags |= TH_ECE;
   4702 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4703 
   4704 		/*
   4705 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4706 		 *
   4707 		 * "[...] a TCP node MAY respond to an ECN-setup
   4708 		 * SYN packet by setting ECT in the responding
   4709 		 * ECN-setup SYN/ACK packet, indicating to routers
   4710 		 * that the SYN/ACK packet is ECN-Capable.
   4711 		 * This allows a congested router along the path
   4712 		 * to mark the packet instead of dropping the
   4713 		 * packet as an indication of congestion."
   4714 		 *
   4715 		 * "[...] There can be a great benefit in setting
   4716 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4717 		 * Congestion is  most likely to occur in
   4718 		 * the server-to-client direction.  As a result,
   4719 		 * setting an ECN-capable codepoint in SYN/ACK
   4720 		 * packets can reduce the occurence of three-second
   4721 		 * retransmit timeouts resulting from the drop
   4722 		 * of SYN/ACK packets."
   4723 		 *
   4724 		 * Page 4 and 6, January 2006.
   4725 		 */
   4726 
   4727 		switch (sc->sc_src.sa.sa_family) {
   4728 #ifdef INET
   4729 		case AF_INET:
   4730 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4731 			break;
   4732 #endif
   4733 #ifdef INET6
   4734 		case AF_INET6:
   4735 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4736 			break;
   4737 #endif
   4738 		}
   4739 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4740 	}
   4741 
   4742 #ifdef TCP_SIGNATURE
   4743 	if (sc->sc_flags & SCF_SIGNATURE) {
   4744 		struct secasvar *sav;
   4745 		u_int8_t *sigp;
   4746 
   4747 		sav = tcp_signature_getsav(m, th);
   4748 
   4749 		if (sav == NULL) {
   4750 			if (m)
   4751 				m_freem(m);
   4752 			return (EPERM);
   4753 		}
   4754 
   4755 		*optp++ = TCPOPT_SIGNATURE;
   4756 		*optp++ = TCPOLEN_SIGNATURE;
   4757 		sigp = optp;
   4758 		memset(optp, 0, TCP_SIGLEN);
   4759 		optp += TCP_SIGLEN;
   4760 		*optp++ = TCPOPT_NOP;
   4761 		*optp++ = TCPOPT_EOL;
   4762 
   4763 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4764 
   4765 		key_sa_recordxfer(sav, m);
   4766 #ifdef FAST_IPSEC
   4767 		KEY_FREESAV(&sav);
   4768 #else
   4769 		key_freesav(sav);
   4770 #endif
   4771 	}
   4772 #endif
   4773 
   4774 	/* Compute the packet's checksum. */
   4775 	switch (sc->sc_src.sa.sa_family) {
   4776 	case AF_INET:
   4777 		ip->ip_len = htons(tlen - hlen);
   4778 		th->th_sum = 0;
   4779 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4780 		break;
   4781 #ifdef INET6
   4782 	case AF_INET6:
   4783 		ip6->ip6_plen = htons(tlen - hlen);
   4784 		th->th_sum = 0;
   4785 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4786 		break;
   4787 #endif
   4788 	}
   4789 
   4790 	/*
   4791 	 * Fill in some straggling IP bits.  Note the stack expects
   4792 	 * ip_len to be in host order, for convenience.
   4793 	 */
   4794 	switch (sc->sc_src.sa.sa_family) {
   4795 #ifdef INET
   4796 	case AF_INET:
   4797 		ip->ip_len = htons(tlen);
   4798 		ip->ip_ttl = ip_defttl;
   4799 		/* XXX tos? */
   4800 		break;
   4801 #endif
   4802 #ifdef INET6
   4803 	case AF_INET6:
   4804 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4805 		ip6->ip6_vfc |= IPV6_VERSION;
   4806 		ip6->ip6_plen = htons(tlen - hlen);
   4807 		/* ip6_hlim will be initialized afterwards */
   4808 		/* XXX flowlabel? */
   4809 		break;
   4810 #endif
   4811 	}
   4812 
   4813 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4814 	tp = sc->sc_tp;
   4815 
   4816 	switch (sc->sc_src.sa.sa_family) {
   4817 #ifdef INET
   4818 	case AF_INET:
   4819 		error = ip_output(m, sc->sc_ipopts, ro,
   4820 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4821 		    NULL, so);
   4822 		break;
   4823 #endif
   4824 #ifdef INET6
   4825 	case AF_INET6:
   4826 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4827 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
   4828 				                                    : NULL);
   4829 
   4830 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4831 		break;
   4832 #endif
   4833 	default:
   4834 		error = EAFNOSUPPORT;
   4835 		break;
   4836 	}
   4837 	return (error);
   4838 }
   4839