tcp_input.c revision 1.330 1 /* $NetBSD: tcp_input.c,v 1.330 2013/11/12 09:02:05 kefren Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.330 2013/11/12 09:02:05 kefren Exp $");
152
153 #include "opt_inet.h"
154 #include "opt_ipsec.h"
155 #include "opt_inet_csum.h"
156 #include "opt_tcp_debug.h"
157
158 #include <sys/param.h>
159 #include <sys/systm.h>
160 #include <sys/malloc.h>
161 #include <sys/mbuf.h>
162 #include <sys/protosw.h>
163 #include <sys/socket.h>
164 #include <sys/socketvar.h>
165 #include <sys/errno.h>
166 #include <sys/syslog.h>
167 #include <sys/pool.h>
168 #include <sys/domain.h>
169 #include <sys/kernel.h>
170 #ifdef TCP_SIGNATURE
171 #include <sys/md5.h>
172 #endif
173 #include <sys/lwp.h> /* for lwp0 */
174 #include <sys/cprng.h>
175
176 #include <net/if.h>
177 #include <net/route.h>
178 #include <net/if_types.h>
179
180 #include <netinet/in.h>
181 #include <netinet/in_systm.h>
182 #include <netinet/ip.h>
183 #include <netinet/in_pcb.h>
184 #include <netinet/in_var.h>
185 #include <netinet/ip_var.h>
186 #include <netinet/in_offload.h>
187
188 #ifdef INET6
189 #ifndef INET
190 #include <netinet/in.h>
191 #endif
192 #include <netinet/ip6.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_pcb.h>
195 #include <netinet6/ip6_var.h>
196 #include <netinet6/in6_var.h>
197 #include <netinet/icmp6.h>
198 #include <netinet6/nd6.h>
199 #ifdef TCP_SIGNATURE
200 #include <netinet6/scope6_var.h>
201 #endif
202 #endif
203
204 #ifndef INET6
205 /* always need ip6.h for IP6_EXTHDR_GET */
206 #include <netinet/ip6.h>
207 #endif
208
209 #include <netinet/tcp.h>
210 #include <netinet/tcp_fsm.h>
211 #include <netinet/tcp_seq.h>
212 #include <netinet/tcp_timer.h>
213 #include <netinet/tcp_var.h>
214 #include <netinet/tcp_private.h>
215 #include <netinet/tcpip.h>
216 #include <netinet/tcp_congctl.h>
217 #include <netinet/tcp_debug.h>
218
219 #ifdef INET6
220 #include "faith.h"
221 #if defined(NFAITH) && NFAITH > 0
222 #include <net/if_faith.h>
223 #endif
224 #endif /* INET6 */
225
226 #ifdef IPSEC
227 #include <netipsec/ipsec.h>
228 #include <netipsec/ipsec_var.h>
229 #include <netipsec/ipsec_private.h>
230 #include <netipsec/key.h>
231 #ifdef INET6
232 #include <netipsec/ipsec6.h>
233 #endif
234 #endif /* IPSEC*/
235
236 #include <netinet/tcp_vtw.h>
237
238 int tcprexmtthresh = 3;
239 int tcp_log_refused;
240
241 int tcp_do_autorcvbuf = 1;
242 int tcp_autorcvbuf_inc = 16 * 1024;
243 int tcp_autorcvbuf_max = 256 * 1024;
244 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
245
246 static int tcp_rst_ppslim_count = 0;
247 static struct timeval tcp_rst_ppslim_last;
248 static int tcp_ackdrop_ppslim_count = 0;
249 static struct timeval tcp_ackdrop_ppslim_last;
250
251 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
252
253 /* for modulo comparisons of timestamps */
254 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
255 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
256
257 /*
258 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
259 */
260 #ifdef INET6
261 static inline void
262 nd6_hint(struct tcpcb *tp)
263 {
264 struct rtentry *rt;
265
266 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
267 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
268 nd6_nud_hint(rt, NULL, 0);
269 }
270 #else
271 static inline void
272 nd6_hint(struct tcpcb *tp)
273 {
274 }
275 #endif
276
277 /*
278 * Compute ACK transmission behavior. Delay the ACK unless
279 * we have already delayed an ACK (must send an ACK every two segments).
280 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
281 * option is enabled.
282 */
283 static void
284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
285 {
286
287 if (tp->t_flags & TF_DELACK ||
288 (tcp_ack_on_push && th->th_flags & TH_PUSH))
289 tp->t_flags |= TF_ACKNOW;
290 else
291 TCP_SET_DELACK(tp);
292 }
293
294 static void
295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
296 {
297
298 /*
299 * If we had a pending ICMP message that refers to data that have
300 * just been acknowledged, disregard the recorded ICMP message.
301 */
302 if ((tp->t_flags & TF_PMTUD_PEND) &&
303 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
304 tp->t_flags &= ~TF_PMTUD_PEND;
305
306 /*
307 * Keep track of the largest chunk of data
308 * acknowledged since last PMTU update
309 */
310 if (tp->t_pmtud_mss_acked < acked)
311 tp->t_pmtud_mss_acked = acked;
312 }
313
314 /*
315 * Convert TCP protocol fields to host order for easier processing.
316 */
317 static void
318 tcp_fields_to_host(struct tcphdr *th)
319 {
320
321 NTOHL(th->th_seq);
322 NTOHL(th->th_ack);
323 NTOHS(th->th_win);
324 NTOHS(th->th_urp);
325 }
326
327 /*
328 * ... and reverse the above.
329 */
330 static void
331 tcp_fields_to_net(struct tcphdr *th)
332 {
333
334 HTONL(th->th_seq);
335 HTONL(th->th_ack);
336 HTONS(th->th_win);
337 HTONS(th->th_urp);
338 }
339
340 #ifdef TCP_CSUM_COUNTERS
341 #include <sys/device.h>
342
343 #if defined(INET)
344 extern struct evcnt tcp_hwcsum_ok;
345 extern struct evcnt tcp_hwcsum_bad;
346 extern struct evcnt tcp_hwcsum_data;
347 extern struct evcnt tcp_swcsum;
348 #endif /* defined(INET) */
349 #if defined(INET6)
350 extern struct evcnt tcp6_hwcsum_ok;
351 extern struct evcnt tcp6_hwcsum_bad;
352 extern struct evcnt tcp6_hwcsum_data;
353 extern struct evcnt tcp6_swcsum;
354 #endif /* defined(INET6) */
355
356 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
357
358 #else
359
360 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
361
362 #endif /* TCP_CSUM_COUNTERS */
363
364 #ifdef TCP_REASS_COUNTERS
365 #include <sys/device.h>
366
367 extern struct evcnt tcp_reass_;
368 extern struct evcnt tcp_reass_empty;
369 extern struct evcnt tcp_reass_iteration[8];
370 extern struct evcnt tcp_reass_prependfirst;
371 extern struct evcnt tcp_reass_prepend;
372 extern struct evcnt tcp_reass_insert;
373 extern struct evcnt tcp_reass_inserttail;
374 extern struct evcnt tcp_reass_append;
375 extern struct evcnt tcp_reass_appendtail;
376 extern struct evcnt tcp_reass_overlaptail;
377 extern struct evcnt tcp_reass_overlapfront;
378 extern struct evcnt tcp_reass_segdup;
379 extern struct evcnt tcp_reass_fragdup;
380
381 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
382
383 #else
384
385 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
386
387 #endif /* TCP_REASS_COUNTERS */
388
389 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
390 int *);
391 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
392 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
393
394 #ifdef INET
395 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
396 #endif
397 #ifdef INET6
398 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
399 #endif
400
401 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
402
403 #if defined(MBUFTRACE)
404 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
405 #endif /* defined(MBUFTRACE) */
406
407 static struct pool tcpipqent_pool;
408
409 void
410 tcpipqent_init(void)
411 {
412
413 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
414 NULL, IPL_VM);
415 }
416
417 struct ipqent *
418 tcpipqent_alloc(void)
419 {
420 struct ipqent *ipqe;
421 int s;
422
423 s = splvm();
424 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
425 splx(s);
426
427 return ipqe;
428 }
429
430 void
431 tcpipqent_free(struct ipqent *ipqe)
432 {
433 int s;
434
435 s = splvm();
436 pool_put(&tcpipqent_pool, ipqe);
437 splx(s);
438 }
439
440 static int
441 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
442 {
443 struct ipqent *p, *q, *nq, *tiqe = NULL;
444 struct socket *so = NULL;
445 int pkt_flags;
446 tcp_seq pkt_seq;
447 unsigned pkt_len;
448 u_long rcvpartdupbyte = 0;
449 u_long rcvoobyte;
450 #ifdef TCP_REASS_COUNTERS
451 u_int count = 0;
452 #endif
453 uint64_t *tcps;
454
455 if (tp->t_inpcb)
456 so = tp->t_inpcb->inp_socket;
457 #ifdef INET6
458 else if (tp->t_in6pcb)
459 so = tp->t_in6pcb->in6p_socket;
460 #endif
461
462 TCP_REASS_LOCK_CHECK(tp);
463
464 /*
465 * Call with th==0 after become established to
466 * force pre-ESTABLISHED data up to user socket.
467 */
468 if (th == 0)
469 goto present;
470
471 m_claimm(m, &tcp_reass_mowner);
472
473 rcvoobyte = *tlen;
474 /*
475 * Copy these to local variables because the tcpiphdr
476 * gets munged while we are collapsing mbufs.
477 */
478 pkt_seq = th->th_seq;
479 pkt_len = *tlen;
480 pkt_flags = th->th_flags;
481
482 TCP_REASS_COUNTER_INCR(&tcp_reass_);
483
484 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
485 /*
486 * When we miss a packet, the vast majority of time we get
487 * packets that follow it in order. So optimize for that.
488 */
489 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
490 p->ipqe_len += pkt_len;
491 p->ipqe_flags |= pkt_flags;
492 m_cat(p->ipre_mlast, m);
493 TRAVERSE(p->ipre_mlast);
494 m = NULL;
495 tiqe = p;
496 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
497 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
498 goto skip_replacement;
499 }
500 /*
501 * While we're here, if the pkt is completely beyond
502 * anything we have, just insert it at the tail.
503 */
504 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
505 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
506 goto insert_it;
507 }
508 }
509
510 q = TAILQ_FIRST(&tp->segq);
511
512 if (q != NULL) {
513 /*
514 * If this segment immediately precedes the first out-of-order
515 * block, simply slap the segment in front of it and (mostly)
516 * skip the complicated logic.
517 */
518 if (pkt_seq + pkt_len == q->ipqe_seq) {
519 q->ipqe_seq = pkt_seq;
520 q->ipqe_len += pkt_len;
521 q->ipqe_flags |= pkt_flags;
522 m_cat(m, q->ipqe_m);
523 q->ipqe_m = m;
524 q->ipre_mlast = m; /* last mbuf may have changed */
525 TRAVERSE(q->ipre_mlast);
526 tiqe = q;
527 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
528 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
529 goto skip_replacement;
530 }
531 } else {
532 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
533 }
534
535 /*
536 * Find a segment which begins after this one does.
537 */
538 for (p = NULL; q != NULL; q = nq) {
539 nq = TAILQ_NEXT(q, ipqe_q);
540 #ifdef TCP_REASS_COUNTERS
541 count++;
542 #endif
543 /*
544 * If the received segment is just right after this
545 * fragment, merge the two together and then check
546 * for further overlaps.
547 */
548 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
549 #ifdef TCPREASS_DEBUG
550 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
551 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
552 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
553 #endif
554 pkt_len += q->ipqe_len;
555 pkt_flags |= q->ipqe_flags;
556 pkt_seq = q->ipqe_seq;
557 m_cat(q->ipre_mlast, m);
558 TRAVERSE(q->ipre_mlast);
559 m = q->ipqe_m;
560 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
561 goto free_ipqe;
562 }
563 /*
564 * If the received segment is completely past this
565 * fragment, we need to go the next fragment.
566 */
567 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 p = q;
569 continue;
570 }
571 /*
572 * If the fragment is past the received segment,
573 * it (or any following) can't be concatenated.
574 */
575 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
576 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
577 break;
578 }
579
580 /*
581 * We've received all the data in this segment before.
582 * mark it as a duplicate and return.
583 */
584 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
585 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
586 tcps = TCP_STAT_GETREF();
587 tcps[TCP_STAT_RCVDUPPACK]++;
588 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
589 TCP_STAT_PUTREF();
590 tcp_new_dsack(tp, pkt_seq, pkt_len);
591 m_freem(m);
592 if (tiqe != NULL) {
593 tcpipqent_free(tiqe);
594 }
595 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
596 goto out;
597 }
598 /*
599 * Received segment completely overlaps this fragment
600 * so we drop the fragment (this keeps the temporal
601 * ordering of segments correct).
602 */
603 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
604 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
605 rcvpartdupbyte += q->ipqe_len;
606 m_freem(q->ipqe_m);
607 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
608 goto free_ipqe;
609 }
610 /*
611 * RX'ed segment extends past the end of the
612 * fragment. Drop the overlapping bytes. Then
613 * merge the fragment and segment then treat as
614 * a longer received packet.
615 */
616 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
617 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
618 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
619 #ifdef TCPREASS_DEBUG
620 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
621 tp, overlap,
622 pkt_seq, pkt_seq + pkt_len, pkt_len);
623 #endif
624 m_adj(m, overlap);
625 rcvpartdupbyte += overlap;
626 m_cat(q->ipre_mlast, m);
627 TRAVERSE(q->ipre_mlast);
628 m = q->ipqe_m;
629 pkt_seq = q->ipqe_seq;
630 pkt_len += q->ipqe_len - overlap;
631 rcvoobyte -= overlap;
632 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
633 goto free_ipqe;
634 }
635 /*
636 * RX'ed segment extends past the front of the
637 * fragment. Drop the overlapping bytes on the
638 * received packet. The packet will then be
639 * contatentated with this fragment a bit later.
640 */
641 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
642 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
643 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
644 #ifdef TCPREASS_DEBUG
645 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
646 tp, overlap,
647 pkt_seq, pkt_seq + pkt_len, pkt_len);
648 #endif
649 m_adj(m, -overlap);
650 pkt_len -= overlap;
651 rcvpartdupbyte += overlap;
652 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
653 rcvoobyte -= overlap;
654 }
655 /*
656 * If the received segment immediates precedes this
657 * fragment then tack the fragment onto this segment
658 * and reinsert the data.
659 */
660 if (q->ipqe_seq == pkt_seq + pkt_len) {
661 #ifdef TCPREASS_DEBUG
662 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
663 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
664 pkt_seq, pkt_seq + pkt_len, pkt_len);
665 #endif
666 pkt_len += q->ipqe_len;
667 pkt_flags |= q->ipqe_flags;
668 m_cat(m, q->ipqe_m);
669 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
670 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
671 tp->t_segqlen--;
672 KASSERT(tp->t_segqlen >= 0);
673 KASSERT(tp->t_segqlen != 0 ||
674 (TAILQ_EMPTY(&tp->segq) &&
675 TAILQ_EMPTY(&tp->timeq)));
676 if (tiqe == NULL) {
677 tiqe = q;
678 } else {
679 tcpipqent_free(q);
680 }
681 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
682 break;
683 }
684 /*
685 * If the fragment is before the segment, remember it.
686 * When this loop is terminated, p will contain the
687 * pointer to fragment that is right before the received
688 * segment.
689 */
690 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
691 p = q;
692
693 continue;
694
695 /*
696 * This is a common operation. It also will allow
697 * to save doing a malloc/free in most instances.
698 */
699 free_ipqe:
700 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
701 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
702 tp->t_segqlen--;
703 KASSERT(tp->t_segqlen >= 0);
704 KASSERT(tp->t_segqlen != 0 ||
705 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
706 if (tiqe == NULL) {
707 tiqe = q;
708 } else {
709 tcpipqent_free(q);
710 }
711 }
712
713 #ifdef TCP_REASS_COUNTERS
714 if (count > 7)
715 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
716 else if (count > 0)
717 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
718 #endif
719
720 insert_it:
721
722 /*
723 * Allocate a new queue entry since the received segment did not
724 * collapse onto any other out-of-order block; thus we are allocating
725 * a new block. If it had collapsed, tiqe would not be NULL and
726 * we would be reusing it.
727 * XXX If we can't, just drop the packet. XXX
728 */
729 if (tiqe == NULL) {
730 tiqe = tcpipqent_alloc();
731 if (tiqe == NULL) {
732 TCP_STATINC(TCP_STAT_RCVMEMDROP);
733 m_freem(m);
734 goto out;
735 }
736 }
737
738 /*
739 * Update the counters.
740 */
741 tcps = TCP_STAT_GETREF();
742 tcps[TCP_STAT_RCVOOPACK]++;
743 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
744 if (rcvpartdupbyte) {
745 tcps[TCP_STAT_RCVPARTDUPPACK]++;
746 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
747 }
748 TCP_STAT_PUTREF();
749
750 /*
751 * Insert the new fragment queue entry into both queues.
752 */
753 tiqe->ipqe_m = m;
754 tiqe->ipre_mlast = m;
755 tiqe->ipqe_seq = pkt_seq;
756 tiqe->ipqe_len = pkt_len;
757 tiqe->ipqe_flags = pkt_flags;
758 if (p == NULL) {
759 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
760 #ifdef TCPREASS_DEBUG
761 if (tiqe->ipqe_seq != tp->rcv_nxt)
762 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
763 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
764 #endif
765 } else {
766 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
767 #ifdef TCPREASS_DEBUG
768 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
769 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
770 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
771 #endif
772 }
773 tp->t_segqlen++;
774
775 skip_replacement:
776
777 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
778
779 present:
780 /*
781 * Present data to user, advancing rcv_nxt through
782 * completed sequence space.
783 */
784 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
785 goto out;
786 q = TAILQ_FIRST(&tp->segq);
787 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
788 goto out;
789 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
790 goto out;
791
792 tp->rcv_nxt += q->ipqe_len;
793 pkt_flags = q->ipqe_flags & TH_FIN;
794 nd6_hint(tp);
795
796 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
797 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
798 tp->t_segqlen--;
799 KASSERT(tp->t_segqlen >= 0);
800 KASSERT(tp->t_segqlen != 0 ||
801 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
802 if (so->so_state & SS_CANTRCVMORE)
803 m_freem(q->ipqe_m);
804 else
805 sbappendstream(&so->so_rcv, q->ipqe_m);
806 tcpipqent_free(q);
807 TCP_REASS_UNLOCK(tp);
808 sorwakeup(so);
809 return (pkt_flags);
810 out:
811 TCP_REASS_UNLOCK(tp);
812 return (0);
813 }
814
815 #ifdef INET6
816 int
817 tcp6_input(struct mbuf **mp, int *offp, int proto)
818 {
819 struct mbuf *m = *mp;
820
821 /*
822 * draft-itojun-ipv6-tcp-to-anycast
823 * better place to put this in?
824 */
825 if (m->m_flags & M_ANYCAST6) {
826 struct ip6_hdr *ip6;
827 if (m->m_len < sizeof(struct ip6_hdr)) {
828 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
829 TCP_STATINC(TCP_STAT_RCVSHORT);
830 return IPPROTO_DONE;
831 }
832 }
833 ip6 = mtod(m, struct ip6_hdr *);
834 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
835 (char *)&ip6->ip6_dst - (char *)ip6);
836 return IPPROTO_DONE;
837 }
838
839 tcp_input(m, *offp, proto);
840 return IPPROTO_DONE;
841 }
842 #endif
843
844 #ifdef INET
845 static void
846 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
847 {
848 char src[4*sizeof "123"];
849 char dst[4*sizeof "123"];
850
851 if (ip) {
852 strlcpy(src, inet_ntoa(ip->ip_src), sizeof(src));
853 strlcpy(dst, inet_ntoa(ip->ip_dst), sizeof(dst));
854 }
855 else {
856 strlcpy(src, "(unknown)", sizeof(src));
857 strlcpy(dst, "(unknown)", sizeof(dst));
858 }
859 log(LOG_INFO,
860 "Connection attempt to TCP %s:%d from %s:%d\n",
861 dst, ntohs(th->th_dport),
862 src, ntohs(th->th_sport));
863 }
864 #endif
865
866 #ifdef INET6
867 static void
868 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
869 {
870 char src[INET6_ADDRSTRLEN];
871 char dst[INET6_ADDRSTRLEN];
872
873 if (ip6) {
874 strlcpy(src, ip6_sprintf(&ip6->ip6_src), sizeof(src));
875 strlcpy(dst, ip6_sprintf(&ip6->ip6_dst), sizeof(dst));
876 }
877 else {
878 strlcpy(src, "(unknown v6)", sizeof(src));
879 strlcpy(dst, "(unknown v6)", sizeof(dst));
880 }
881 log(LOG_INFO,
882 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
883 dst, ntohs(th->th_dport),
884 src, ntohs(th->th_sport));
885 }
886 #endif
887
888 /*
889 * Checksum extended TCP header and data.
890 */
891 int
892 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
893 int toff, int off, int tlen)
894 {
895
896 /*
897 * XXX it's better to record and check if this mbuf is
898 * already checked.
899 */
900
901 switch (af) {
902 #ifdef INET
903 case AF_INET:
904 switch (m->m_pkthdr.csum_flags &
905 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
906 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
907 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
908 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
909 goto badcsum;
910
911 case M_CSUM_TCPv4|M_CSUM_DATA: {
912 u_int32_t hw_csum = m->m_pkthdr.csum_data;
913
914 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
915 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
916 const struct ip *ip =
917 mtod(m, const struct ip *);
918
919 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
920 ip->ip_dst.s_addr,
921 htons(hw_csum + tlen + off + IPPROTO_TCP));
922 }
923 if ((hw_csum ^ 0xffff) != 0)
924 goto badcsum;
925 break;
926 }
927
928 case M_CSUM_TCPv4:
929 /* Checksum was okay. */
930 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
931 break;
932
933 default:
934 /*
935 * Must compute it ourselves. Maybe skip checksum
936 * on loopback interfaces.
937 */
938 if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
939 IFF_LOOPBACK) ||
940 tcp_do_loopback_cksum)) {
941 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
942 if (in4_cksum(m, IPPROTO_TCP, toff,
943 tlen + off) != 0)
944 goto badcsum;
945 }
946 break;
947 }
948 break;
949 #endif /* INET4 */
950
951 #ifdef INET6
952 case AF_INET6:
953 switch (m->m_pkthdr.csum_flags &
954 ((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
955 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
956 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
957 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
958 goto badcsum;
959
960 #if 0 /* notyet */
961 case M_CSUM_TCPv6|M_CSUM_DATA:
962 #endif
963
964 case M_CSUM_TCPv6:
965 /* Checksum was okay. */
966 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
967 break;
968
969 default:
970 /*
971 * Must compute it ourselves. Maybe skip checksum
972 * on loopback interfaces.
973 */
974 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
975 tcp_do_loopback_cksum)) {
976 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
977 if (in6_cksum(m, IPPROTO_TCP, toff,
978 tlen + off) != 0)
979 goto badcsum;
980 }
981 }
982 break;
983 #endif /* INET6 */
984 }
985
986 return 0;
987
988 badcsum:
989 TCP_STATINC(TCP_STAT_RCVBADSUM);
990 return -1;
991 }
992
993 /* When a packet arrives addressed to a vestigial tcpbp, we
994 * nevertheless have to respond to it per the spec.
995 */
996 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
997 struct mbuf *m, int tlen, int multicast)
998 {
999 int tiflags;
1000 int todrop;
1001 uint32_t t_flags = 0;
1002 uint64_t *tcps;
1003
1004 tiflags = th->th_flags;
1005 todrop = vp->rcv_nxt - th->th_seq;
1006
1007 if (todrop > 0) {
1008 if (tiflags & TH_SYN) {
1009 tiflags &= ~TH_SYN;
1010 ++th->th_seq;
1011 if (th->th_urp > 1)
1012 --th->th_urp;
1013 else {
1014 tiflags &= ~TH_URG;
1015 th->th_urp = 0;
1016 }
1017 --todrop;
1018 }
1019 if (todrop > tlen ||
1020 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1021 /*
1022 * Any valid FIN or RST must be to the left of the
1023 * window. At this point the FIN or RST must be a
1024 * duplicate or out of sequence; drop it.
1025 */
1026 if (tiflags & TH_RST)
1027 goto drop;
1028 tiflags &= ~(TH_FIN|TH_RST);
1029 /*
1030 * Send an ACK to resynchronize and drop any data.
1031 * But keep on processing for RST or ACK.
1032 */
1033 t_flags |= TF_ACKNOW;
1034 todrop = tlen;
1035 tcps = TCP_STAT_GETREF();
1036 tcps[TCP_STAT_RCVDUPPACK] += 1;
1037 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1038 TCP_STAT_PUTREF();
1039 } else if ((tiflags & TH_RST)
1040 && th->th_seq != vp->rcv_nxt) {
1041 /*
1042 * Test for reset before adjusting the sequence
1043 * number for overlapping data.
1044 */
1045 goto dropafterack_ratelim;
1046 } else {
1047 tcps = TCP_STAT_GETREF();
1048 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1049 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1050 TCP_STAT_PUTREF();
1051 }
1052
1053 // tcp_new_dsack(tp, th->th_seq, todrop);
1054 // hdroptlen += todrop; /*drop from head afterwards*/
1055
1056 th->th_seq += todrop;
1057 tlen -= todrop;
1058
1059 if (th->th_urp > todrop)
1060 th->th_urp -= todrop;
1061 else {
1062 tiflags &= ~TH_URG;
1063 th->th_urp = 0;
1064 }
1065 }
1066
1067 /*
1068 * If new data are received on a connection after the
1069 * user processes are gone, then RST the other end.
1070 */
1071 if (tlen) {
1072 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1073 goto dropwithreset;
1074 }
1075
1076 /*
1077 * If segment ends after window, drop trailing data
1078 * (and PUSH and FIN); if nothing left, just ACK.
1079 */
1080 todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1081
1082 if (todrop > 0) {
1083 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1084 if (todrop >= tlen) {
1085 /*
1086 * The segment actually starts after the window.
1087 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1088 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1089 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1090 */
1091 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1092 /*
1093 * If a new connection request is received
1094 * while in TIME_WAIT, drop the old connection
1095 * and start over if the sequence numbers
1096 * are above the previous ones.
1097 */
1098 if ((tiflags & TH_SYN)
1099 && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1100 /* We only support this in the !NOFDREF case, which
1101 * is to say: not here.
1102 */
1103 goto dropwithreset;;
1104 }
1105 /*
1106 * If window is closed can only take segments at
1107 * window edge, and have to drop data and PUSH from
1108 * incoming segments. Continue processing, but
1109 * remember to ack. Otherwise, drop segment
1110 * and (if not RST) ack.
1111 */
1112 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1113 t_flags |= TF_ACKNOW;
1114 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1115 } else
1116 goto dropafterack;
1117 } else
1118 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1119 m_adj(m, -todrop);
1120 tlen -= todrop;
1121 tiflags &= ~(TH_PUSH|TH_FIN);
1122 }
1123
1124 if (tiflags & TH_RST) {
1125 if (th->th_seq != vp->rcv_nxt)
1126 goto dropafterack_ratelim;
1127
1128 vtw_del(vp->ctl, vp->vtw);
1129 goto drop;
1130 }
1131
1132 /*
1133 * If the ACK bit is off we drop the segment and return.
1134 */
1135 if ((tiflags & TH_ACK) == 0) {
1136 if (t_flags & TF_ACKNOW)
1137 goto dropafterack;
1138 else
1139 goto drop;
1140 }
1141
1142 /*
1143 * In TIME_WAIT state the only thing that should arrive
1144 * is a retransmission of the remote FIN. Acknowledge
1145 * it and restart the finack timer.
1146 */
1147 vtw_restart(vp);
1148 goto dropafterack;
1149
1150 dropafterack:
1151 /*
1152 * Generate an ACK dropping incoming segment if it occupies
1153 * sequence space, where the ACK reflects our state.
1154 */
1155 if (tiflags & TH_RST)
1156 goto drop;
1157 goto dropafterack2;
1158
1159 dropafterack_ratelim:
1160 /*
1161 * We may want to rate-limit ACKs against SYN/RST attack.
1162 */
1163 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1164 tcp_ackdrop_ppslim) == 0) {
1165 /* XXX stat */
1166 goto drop;
1167 }
1168 /* ...fall into dropafterack2... */
1169
1170 dropafterack2:
1171 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1172 TH_ACK);
1173 return;
1174
1175 dropwithreset:
1176 /*
1177 * Generate a RST, dropping incoming segment.
1178 * Make ACK acceptable to originator of segment.
1179 */
1180 if (tiflags & TH_RST)
1181 goto drop;
1182
1183 if (tiflags & TH_ACK)
1184 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1185 else {
1186 if (tiflags & TH_SYN)
1187 ++tlen;
1188 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1189 TH_RST|TH_ACK);
1190 }
1191 return;
1192 drop:
1193 m_freem(m);
1194 }
1195
1196 /*
1197 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1198 */
1199 void
1200 tcp_input(struct mbuf *m, ...)
1201 {
1202 struct tcphdr *th;
1203 struct ip *ip;
1204 struct inpcb *inp;
1205 #ifdef INET6
1206 struct ip6_hdr *ip6;
1207 struct in6pcb *in6p;
1208 #endif
1209 u_int8_t *optp = NULL;
1210 int optlen = 0;
1211 int len, tlen, toff, hdroptlen = 0;
1212 struct tcpcb *tp = 0;
1213 int tiflags;
1214 struct socket *so = NULL;
1215 int todrop, acked, ourfinisacked, needoutput = 0;
1216 bool dupseg;
1217 #ifdef TCP_DEBUG
1218 short ostate = 0;
1219 #endif
1220 u_long tiwin;
1221 struct tcp_opt_info opti;
1222 int off, iphlen;
1223 va_list ap;
1224 int af; /* af on the wire */
1225 struct mbuf *tcp_saveti = NULL;
1226 uint32_t ts_rtt;
1227 uint8_t iptos;
1228 uint64_t *tcps;
1229 vestigial_inpcb_t vestige;
1230
1231 vestige.valid = 0;
1232
1233 MCLAIM(m, &tcp_rx_mowner);
1234 va_start(ap, m);
1235 toff = va_arg(ap, int);
1236 (void)va_arg(ap, int); /* ignore value, advance ap */
1237 va_end(ap);
1238
1239 TCP_STATINC(TCP_STAT_RCVTOTAL);
1240
1241 memset(&opti, 0, sizeof(opti));
1242 opti.ts_present = 0;
1243 opti.maxseg = 0;
1244
1245 /*
1246 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1247 *
1248 * TCP is, by definition, unicast, so we reject all
1249 * multicast outright.
1250 *
1251 * Note, there are additional src/dst address checks in
1252 * the AF-specific code below.
1253 */
1254 if (m->m_flags & (M_BCAST|M_MCAST)) {
1255 /* XXX stat */
1256 goto drop;
1257 }
1258 #ifdef INET6
1259 if (m->m_flags & M_ANYCAST6) {
1260 /* XXX stat */
1261 goto drop;
1262 }
1263 #endif
1264
1265 /*
1266 * Get IP and TCP header.
1267 * Note: IP leaves IP header in first mbuf.
1268 */
1269 ip = mtod(m, struct ip *);
1270 switch (ip->ip_v) {
1271 #ifdef INET
1272 case 4:
1273 #ifdef INET6
1274 ip6 = NULL;
1275 #endif
1276 af = AF_INET;
1277 iphlen = sizeof(struct ip);
1278 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1279 sizeof(struct tcphdr));
1280 if (th == NULL) {
1281 TCP_STATINC(TCP_STAT_RCVSHORT);
1282 return;
1283 }
1284 /* We do the checksum after PCB lookup... */
1285 len = ntohs(ip->ip_len);
1286 tlen = len - toff;
1287 iptos = ip->ip_tos;
1288 break;
1289 #endif
1290 #ifdef INET6
1291 case 6:
1292 ip = NULL;
1293 iphlen = sizeof(struct ip6_hdr);
1294 af = AF_INET6;
1295 ip6 = mtod(m, struct ip6_hdr *);
1296 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1297 sizeof(struct tcphdr));
1298 if (th == NULL) {
1299 TCP_STATINC(TCP_STAT_RCVSHORT);
1300 return;
1301 }
1302
1303 /* Be proactive about malicious use of IPv4 mapped address */
1304 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1305 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1306 /* XXX stat */
1307 goto drop;
1308 }
1309
1310 /*
1311 * Be proactive about unspecified IPv6 address in source.
1312 * As we use all-zero to indicate unbounded/unconnected pcb,
1313 * unspecified IPv6 address can be used to confuse us.
1314 *
1315 * Note that packets with unspecified IPv6 destination is
1316 * already dropped in ip6_input.
1317 */
1318 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1319 /* XXX stat */
1320 goto drop;
1321 }
1322
1323 /*
1324 * Make sure destination address is not multicast.
1325 * Source address checked in ip6_input().
1326 */
1327 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1328 /* XXX stat */
1329 goto drop;
1330 }
1331
1332 /* We do the checksum after PCB lookup... */
1333 len = m->m_pkthdr.len;
1334 tlen = len - toff;
1335 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1336 break;
1337 #endif
1338 default:
1339 m_freem(m);
1340 return;
1341 }
1342
1343 KASSERT(TCP_HDR_ALIGNED_P(th));
1344
1345 /*
1346 * Check that TCP offset makes sense,
1347 * pull out TCP options and adjust length. XXX
1348 */
1349 off = th->th_off << 2;
1350 if (off < sizeof (struct tcphdr) || off > tlen) {
1351 TCP_STATINC(TCP_STAT_RCVBADOFF);
1352 goto drop;
1353 }
1354 tlen -= off;
1355
1356 /*
1357 * tcp_input() has been modified to use tlen to mean the TCP data
1358 * length throughout the function. Other functions can use
1359 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1360 * rja
1361 */
1362
1363 if (off > sizeof (struct tcphdr)) {
1364 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1365 if (th == NULL) {
1366 TCP_STATINC(TCP_STAT_RCVSHORT);
1367 return;
1368 }
1369 /*
1370 * NOTE: ip/ip6 will not be affected by m_pulldown()
1371 * (as they're before toff) and we don't need to update those.
1372 */
1373 KASSERT(TCP_HDR_ALIGNED_P(th));
1374 optlen = off - sizeof (struct tcphdr);
1375 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1376 /*
1377 * Do quick retrieval of timestamp options ("options
1378 * prediction?"). If timestamp is the only option and it's
1379 * formatted as recommended in RFC 1323 appendix A, we
1380 * quickly get the values now and not bother calling
1381 * tcp_dooptions(), etc.
1382 */
1383 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1384 (optlen > TCPOLEN_TSTAMP_APPA &&
1385 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1386 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1387 (th->th_flags & TH_SYN) == 0) {
1388 opti.ts_present = 1;
1389 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1390 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1391 optp = NULL; /* we've parsed the options */
1392 }
1393 }
1394 tiflags = th->th_flags;
1395
1396 /*
1397 * Locate pcb for segment.
1398 */
1399 findpcb:
1400 inp = NULL;
1401 #ifdef INET6
1402 in6p = NULL;
1403 #endif
1404 switch (af) {
1405 #ifdef INET
1406 case AF_INET:
1407 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1408 ip->ip_dst, th->th_dport,
1409 &vestige);
1410 if (inp == 0 && !vestige.valid) {
1411 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1412 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1413 }
1414 #ifdef INET6
1415 if (inp == 0 && !vestige.valid) {
1416 struct in6_addr s, d;
1417
1418 /* mapped addr case */
1419 memset(&s, 0, sizeof(s));
1420 s.s6_addr16[5] = htons(0xffff);
1421 bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
1422 memset(&d, 0, sizeof(d));
1423 d.s6_addr16[5] = htons(0xffff);
1424 bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
1425 in6p = in6_pcblookup_connect(&tcbtable, &s,
1426 th->th_sport, &d, th->th_dport,
1427 0, &vestige);
1428 if (in6p == 0 && !vestige.valid) {
1429 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1430 in6p = in6_pcblookup_bind(&tcbtable, &d,
1431 th->th_dport, 0);
1432 }
1433 }
1434 #endif
1435 #ifndef INET6
1436 if (inp == 0 && !vestige.valid)
1437 #else
1438 if (inp == 0 && in6p == 0 && !vestige.valid)
1439 #endif
1440 {
1441 TCP_STATINC(TCP_STAT_NOPORT);
1442 if (tcp_log_refused &&
1443 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1444 tcp4_log_refused(ip, th);
1445 }
1446 tcp_fields_to_host(th);
1447 goto dropwithreset_ratelim;
1448 }
1449 #if defined(IPSEC)
1450 if (inp && (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0 &&
1451 ipsec4_in_reject(m, inp)) {
1452 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1453 goto drop;
1454 }
1455 #ifdef INET6
1456 else if (in6p &&
1457 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0 &&
1458 ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1459 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1460 goto drop;
1461 }
1462 #endif
1463 #endif /*IPSEC*/
1464 break;
1465 #endif /*INET*/
1466 #ifdef INET6
1467 case AF_INET6:
1468 {
1469 int faith;
1470
1471 #if defined(NFAITH) && NFAITH > 0
1472 faith = faithprefix(&ip6->ip6_dst);
1473 #else
1474 faith = 0;
1475 #endif
1476 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1477 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1478 if (!in6p && !vestige.valid) {
1479 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1480 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1481 th->th_dport, faith);
1482 }
1483 if (!in6p && !vestige.valid) {
1484 TCP_STATINC(TCP_STAT_NOPORT);
1485 if (tcp_log_refused &&
1486 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1487 tcp6_log_refused(ip6, th);
1488 }
1489 tcp_fields_to_host(th);
1490 goto dropwithreset_ratelim;
1491 }
1492 #if defined(IPSEC)
1493 if (in6p
1494 && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1495 && ipsec6_in_reject(m, in6p)) {
1496 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1497 goto drop;
1498 }
1499 #endif /*IPSEC*/
1500 break;
1501 }
1502 #endif
1503 }
1504
1505 /*
1506 * If the state is CLOSED (i.e., TCB does not exist) then
1507 * all data in the incoming segment is discarded.
1508 * If the TCB exists but is in CLOSED state, it is embryonic,
1509 * but should either do a listen or a connect soon.
1510 */
1511 tp = NULL;
1512 so = NULL;
1513 if (inp) {
1514 /* Check the minimum TTL for socket. */
1515 if (ip->ip_ttl < inp->inp_ip_minttl)
1516 goto drop;
1517
1518 tp = intotcpcb(inp);
1519 so = inp->inp_socket;
1520 }
1521 #ifdef INET6
1522 else if (in6p) {
1523 tp = in6totcpcb(in6p);
1524 so = in6p->in6p_socket;
1525 }
1526 #endif
1527 else if (vestige.valid) {
1528 int mc = 0;
1529
1530 /* We do not support the resurrection of vtw tcpcps.
1531 */
1532 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1533 goto badcsum;
1534
1535 switch (af) {
1536 #ifdef INET6
1537 case AF_INET6:
1538 mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1539 break;
1540 #endif
1541
1542 case AF_INET:
1543 mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1544 || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
1545 break;
1546 }
1547
1548 tcp_fields_to_host(th);
1549 tcp_vtw_input(th, &vestige, m, tlen, mc);
1550 m = 0;
1551 goto drop;
1552 }
1553
1554 if (tp == 0) {
1555 tcp_fields_to_host(th);
1556 goto dropwithreset_ratelim;
1557 }
1558 if (tp->t_state == TCPS_CLOSED)
1559 goto drop;
1560
1561 KASSERT(so->so_lock == softnet_lock);
1562 KASSERT(solocked(so));
1563
1564 /*
1565 * Checksum extended TCP header and data.
1566 */
1567 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1568 goto badcsum;
1569
1570 tcp_fields_to_host(th);
1571
1572 /* Unscale the window into a 32-bit value. */
1573 if ((tiflags & TH_SYN) == 0)
1574 tiwin = th->th_win << tp->snd_scale;
1575 else
1576 tiwin = th->th_win;
1577
1578 #ifdef INET6
1579 /* save packet options if user wanted */
1580 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1581 if (in6p->in6p_options) {
1582 m_freem(in6p->in6p_options);
1583 in6p->in6p_options = 0;
1584 }
1585 KASSERT(ip6 != NULL);
1586 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1587 }
1588 #endif
1589
1590 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1591 union syn_cache_sa src;
1592 union syn_cache_sa dst;
1593
1594 memset(&src, 0, sizeof(src));
1595 memset(&dst, 0, sizeof(dst));
1596 switch (af) {
1597 #ifdef INET
1598 case AF_INET:
1599 src.sin.sin_len = sizeof(struct sockaddr_in);
1600 src.sin.sin_family = AF_INET;
1601 src.sin.sin_addr = ip->ip_src;
1602 src.sin.sin_port = th->th_sport;
1603
1604 dst.sin.sin_len = sizeof(struct sockaddr_in);
1605 dst.sin.sin_family = AF_INET;
1606 dst.sin.sin_addr = ip->ip_dst;
1607 dst.sin.sin_port = th->th_dport;
1608 break;
1609 #endif
1610 #ifdef INET6
1611 case AF_INET6:
1612 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1613 src.sin6.sin6_family = AF_INET6;
1614 src.sin6.sin6_addr = ip6->ip6_src;
1615 src.sin6.sin6_port = th->th_sport;
1616
1617 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1618 dst.sin6.sin6_family = AF_INET6;
1619 dst.sin6.sin6_addr = ip6->ip6_dst;
1620 dst.sin6.sin6_port = th->th_dport;
1621 break;
1622 #endif /* INET6 */
1623 default:
1624 goto badsyn; /*sanity*/
1625 }
1626
1627 if (so->so_options & SO_DEBUG) {
1628 #ifdef TCP_DEBUG
1629 ostate = tp->t_state;
1630 #endif
1631
1632 tcp_saveti = NULL;
1633 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1634 goto nosave;
1635
1636 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1637 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1638 if (!tcp_saveti)
1639 goto nosave;
1640 } else {
1641 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1642 if (!tcp_saveti)
1643 goto nosave;
1644 MCLAIM(m, &tcp_mowner);
1645 tcp_saveti->m_len = iphlen;
1646 m_copydata(m, 0, iphlen,
1647 mtod(tcp_saveti, void *));
1648 }
1649
1650 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1651 m_freem(tcp_saveti);
1652 tcp_saveti = NULL;
1653 } else {
1654 tcp_saveti->m_len += sizeof(struct tcphdr);
1655 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1656 sizeof(struct tcphdr));
1657 }
1658 nosave:;
1659 }
1660 if (so->so_options & SO_ACCEPTCONN) {
1661 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1662 if (tiflags & TH_RST) {
1663 syn_cache_reset(&src.sa, &dst.sa, th);
1664 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1665 (TH_ACK|TH_SYN)) {
1666 /*
1667 * Received a SYN,ACK. This should
1668 * never happen while we are in
1669 * LISTEN. Send an RST.
1670 */
1671 goto badsyn;
1672 } else if (tiflags & TH_ACK) {
1673 so = syn_cache_get(&src.sa, &dst.sa,
1674 th, toff, tlen, so, m);
1675 if (so == NULL) {
1676 /*
1677 * We don't have a SYN for
1678 * this ACK; send an RST.
1679 */
1680 goto badsyn;
1681 } else if (so ==
1682 (struct socket *)(-1)) {
1683 /*
1684 * We were unable to create
1685 * the connection. If the
1686 * 3-way handshake was
1687 * completed, and RST has
1688 * been sent to the peer.
1689 * Since the mbuf might be
1690 * in use for the reply,
1691 * do not free it.
1692 */
1693 m = NULL;
1694 } else {
1695 /*
1696 * We have created a
1697 * full-blown connection.
1698 */
1699 tp = NULL;
1700 inp = NULL;
1701 #ifdef INET6
1702 in6p = NULL;
1703 #endif
1704 switch (so->so_proto->pr_domain->dom_family) {
1705 #ifdef INET
1706 case AF_INET:
1707 inp = sotoinpcb(so);
1708 tp = intotcpcb(inp);
1709 break;
1710 #endif
1711 #ifdef INET6
1712 case AF_INET6:
1713 in6p = sotoin6pcb(so);
1714 tp = in6totcpcb(in6p);
1715 break;
1716 #endif
1717 }
1718 if (tp == NULL)
1719 goto badsyn; /*XXX*/
1720 tiwin <<= tp->snd_scale;
1721 goto after_listen;
1722 }
1723 } else {
1724 /*
1725 * None of RST, SYN or ACK was set.
1726 * This is an invalid packet for a
1727 * TCB in LISTEN state. Send a RST.
1728 */
1729 goto badsyn;
1730 }
1731 } else {
1732 /*
1733 * Received a SYN.
1734 *
1735 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1736 */
1737 if (m->m_flags & (M_BCAST|M_MCAST))
1738 goto drop;
1739
1740 switch (af) {
1741 #ifdef INET6
1742 case AF_INET6:
1743 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1744 goto drop;
1745 break;
1746 #endif /* INET6 */
1747 case AF_INET:
1748 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1749 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
1750 goto drop;
1751 break;
1752 }
1753
1754 #ifdef INET6
1755 /*
1756 * If deprecated address is forbidden, we do
1757 * not accept SYN to deprecated interface
1758 * address to prevent any new inbound
1759 * connection from getting established.
1760 * When we do not accept SYN, we send a TCP
1761 * RST, with deprecated source address (instead
1762 * of dropping it). We compromise it as it is
1763 * much better for peer to send a RST, and
1764 * RST will be the final packet for the
1765 * exchange.
1766 *
1767 * If we do not forbid deprecated addresses, we
1768 * accept the SYN packet. RFC2462 does not
1769 * suggest dropping SYN in this case.
1770 * If we decipher RFC2462 5.5.4, it says like
1771 * this:
1772 * 1. use of deprecated addr with existing
1773 * communication is okay - "SHOULD continue
1774 * to be used"
1775 * 2. use of it with new communication:
1776 * (2a) "SHOULD NOT be used if alternate
1777 * address with sufficient scope is
1778 * available"
1779 * (2b) nothing mentioned otherwise.
1780 * Here we fall into (2b) case as we have no
1781 * choice in our source address selection - we
1782 * must obey the peer.
1783 *
1784 * The wording in RFC2462 is confusing, and
1785 * there are multiple description text for
1786 * deprecated address handling - worse, they
1787 * are not exactly the same. I believe 5.5.4
1788 * is the best one, so we follow 5.5.4.
1789 */
1790 if (af == AF_INET6 && !ip6_use_deprecated) {
1791 struct in6_ifaddr *ia6;
1792 if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
1793 &ip6->ip6_dst)) &&
1794 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1795 tp = NULL;
1796 goto dropwithreset;
1797 }
1798 }
1799 #endif
1800
1801 #if defined(IPSEC)
1802 switch (af) {
1803 #ifdef INET
1804 case AF_INET:
1805 if (ipsec4_in_reject_so(m, so)) {
1806 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1807 tp = NULL;
1808 goto dropwithreset;
1809 }
1810 break;
1811 #endif
1812 #ifdef INET6
1813 case AF_INET6:
1814 if (ipsec6_in_reject_so(m, so)) {
1815 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1816 tp = NULL;
1817 goto dropwithreset;
1818 }
1819 break;
1820 #endif /*INET6*/
1821 }
1822 #endif /*IPSEC*/
1823
1824 /*
1825 * LISTEN socket received a SYN
1826 * from itself? This can't possibly
1827 * be valid; drop the packet.
1828 */
1829 if (th->th_sport == th->th_dport) {
1830 int i;
1831
1832 switch (af) {
1833 #ifdef INET
1834 case AF_INET:
1835 i = in_hosteq(ip->ip_src, ip->ip_dst);
1836 break;
1837 #endif
1838 #ifdef INET6
1839 case AF_INET6:
1840 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1841 break;
1842 #endif
1843 default:
1844 i = 1;
1845 }
1846 if (i) {
1847 TCP_STATINC(TCP_STAT_BADSYN);
1848 goto drop;
1849 }
1850 }
1851
1852 /*
1853 * SYN looks ok; create compressed TCP
1854 * state for it.
1855 */
1856 if (so->so_qlen <= so->so_qlimit &&
1857 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1858 so, m, optp, optlen, &opti))
1859 m = NULL;
1860 }
1861 goto drop;
1862 }
1863 }
1864
1865 after_listen:
1866 #ifdef DIAGNOSTIC
1867 /*
1868 * Should not happen now that all embryonic connections
1869 * are handled with compressed state.
1870 */
1871 if (tp->t_state == TCPS_LISTEN)
1872 panic("tcp_input: TCPS_LISTEN");
1873 #endif
1874
1875 /*
1876 * Segment received on connection.
1877 * Reset idle time and keep-alive timer.
1878 */
1879 tp->t_rcvtime = tcp_now;
1880 if (TCPS_HAVEESTABLISHED(tp->t_state))
1881 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1882
1883 /*
1884 * Process options.
1885 */
1886 #ifdef TCP_SIGNATURE
1887 if (optp || (tp->t_flags & TF_SIGNATURE))
1888 #else
1889 if (optp)
1890 #endif
1891 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1892 goto drop;
1893
1894 if (TCP_SACK_ENABLED(tp)) {
1895 tcp_del_sackholes(tp, th);
1896 }
1897
1898 if (TCP_ECN_ALLOWED(tp)) {
1899 if (tiflags & TH_CWR) {
1900 tp->t_flags &= ~TF_ECN_SND_ECE;
1901 }
1902 switch (iptos & IPTOS_ECN_MASK) {
1903 case IPTOS_ECN_CE:
1904 tp->t_flags |= TF_ECN_SND_ECE;
1905 TCP_STATINC(TCP_STAT_ECN_CE);
1906 break;
1907 case IPTOS_ECN_ECT0:
1908 TCP_STATINC(TCP_STAT_ECN_ECT);
1909 break;
1910 case IPTOS_ECN_ECT1:
1911 /* XXX: ignore for now -- rpaulo */
1912 break;
1913 }
1914 /*
1915 * Congestion experienced.
1916 * Ignore if we are already trying to recover.
1917 */
1918 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1919 tp->t_congctl->cong_exp(tp);
1920 }
1921
1922 if (opti.ts_present && opti.ts_ecr) {
1923 /*
1924 * Calculate the RTT from the returned time stamp and the
1925 * connection's time base. If the time stamp is later than
1926 * the current time, or is extremely old, fall back to non-1323
1927 * RTT calculation. Since ts_rtt is unsigned, we can test both
1928 * at the same time.
1929 *
1930 * Note that ts_rtt is in units of slow ticks (500
1931 * ms). Since most earthbound RTTs are < 500 ms,
1932 * observed values will have large quantization noise.
1933 * Our smoothed RTT is then the fraction of observed
1934 * samples that are 1 tick instead of 0 (times 500
1935 * ms).
1936 *
1937 * ts_rtt is increased by 1 to denote a valid sample,
1938 * with 0 indicating an invalid measurement. This
1939 * extra 1 must be removed when ts_rtt is used, or
1940 * else an an erroneous extra 500 ms will result.
1941 */
1942 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1943 if (ts_rtt > TCP_PAWS_IDLE)
1944 ts_rtt = 0;
1945 } else {
1946 ts_rtt = 0;
1947 }
1948
1949 /*
1950 * Header prediction: check for the two common cases
1951 * of a uni-directional data xfer. If the packet has
1952 * no control flags, is in-sequence, the window didn't
1953 * change and we're not retransmitting, it's a
1954 * candidate. If the length is zero and the ack moved
1955 * forward, we're the sender side of the xfer. Just
1956 * free the data acked & wake any higher level process
1957 * that was blocked waiting for space. If the length
1958 * is non-zero and the ack didn't move, we're the
1959 * receiver side. If we're getting packets in-order
1960 * (the reassembly queue is empty), add the data to
1961 * the socket buffer and note that we need a delayed ack.
1962 */
1963 if (tp->t_state == TCPS_ESTABLISHED &&
1964 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1965 == TH_ACK &&
1966 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1967 th->th_seq == tp->rcv_nxt &&
1968 tiwin && tiwin == tp->snd_wnd &&
1969 tp->snd_nxt == tp->snd_max) {
1970
1971 /*
1972 * If last ACK falls within this segment's sequence numbers,
1973 * record the timestamp.
1974 * NOTE that the test is modified according to the latest
1975 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1976 *
1977 * note that we already know
1978 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1979 */
1980 if (opti.ts_present &&
1981 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1982 tp->ts_recent_age = tcp_now;
1983 tp->ts_recent = opti.ts_val;
1984 }
1985
1986 if (tlen == 0) {
1987 /* Ack prediction. */
1988 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1989 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1990 tp->snd_cwnd >= tp->snd_wnd &&
1991 tp->t_partialacks < 0) {
1992 /*
1993 * this is a pure ack for outstanding data.
1994 */
1995 if (ts_rtt)
1996 tcp_xmit_timer(tp, ts_rtt - 1);
1997 else if (tp->t_rtttime &&
1998 SEQ_GT(th->th_ack, tp->t_rtseq))
1999 tcp_xmit_timer(tp,
2000 tcp_now - tp->t_rtttime);
2001 acked = th->th_ack - tp->snd_una;
2002 tcps = TCP_STAT_GETREF();
2003 tcps[TCP_STAT_PREDACK]++;
2004 tcps[TCP_STAT_RCVACKPACK]++;
2005 tcps[TCP_STAT_RCVACKBYTE] += acked;
2006 TCP_STAT_PUTREF();
2007 nd6_hint(tp);
2008
2009 if (acked > (tp->t_lastoff - tp->t_inoff))
2010 tp->t_lastm = NULL;
2011 sbdrop(&so->so_snd, acked);
2012 tp->t_lastoff -= acked;
2013
2014 icmp_check(tp, th, acked);
2015
2016 tp->snd_una = th->th_ack;
2017 tp->snd_fack = tp->snd_una;
2018 if (SEQ_LT(tp->snd_high, tp->snd_una))
2019 tp->snd_high = tp->snd_una;
2020 m_freem(m);
2021
2022 /*
2023 * If all outstanding data are acked, stop
2024 * retransmit timer, otherwise restart timer
2025 * using current (possibly backed-off) value.
2026 * If process is waiting for space,
2027 * wakeup/selnotify/signal. If data
2028 * are ready to send, let tcp_output
2029 * decide between more output or persist.
2030 */
2031 if (tp->snd_una == tp->snd_max)
2032 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2033 else if (TCP_TIMER_ISARMED(tp,
2034 TCPT_PERSIST) == 0)
2035 TCP_TIMER_ARM(tp, TCPT_REXMT,
2036 tp->t_rxtcur);
2037
2038 sowwakeup(so);
2039 if (so->so_snd.sb_cc) {
2040 KERNEL_LOCK(1, NULL);
2041 (void) tcp_output(tp);
2042 KERNEL_UNLOCK_ONE(NULL);
2043 }
2044 if (tcp_saveti)
2045 m_freem(tcp_saveti);
2046 return;
2047 }
2048 } else if (th->th_ack == tp->snd_una &&
2049 TAILQ_FIRST(&tp->segq) == NULL &&
2050 tlen <= sbspace(&so->so_rcv)) {
2051 int newsize = 0; /* automatic sockbuf scaling */
2052
2053 /*
2054 * this is a pure, in-sequence data packet
2055 * with nothing on the reassembly queue and
2056 * we have enough buffer space to take it.
2057 */
2058 tp->rcv_nxt += tlen;
2059 tcps = TCP_STAT_GETREF();
2060 tcps[TCP_STAT_PREDDAT]++;
2061 tcps[TCP_STAT_RCVPACK]++;
2062 tcps[TCP_STAT_RCVBYTE] += tlen;
2063 TCP_STAT_PUTREF();
2064 nd6_hint(tp);
2065
2066 /*
2067 * Automatic sizing enables the performance of large buffers
2068 * and most of the efficiency of small ones by only allocating
2069 * space when it is needed.
2070 *
2071 * On the receive side the socket buffer memory is only rarely
2072 * used to any significant extent. This allows us to be much
2073 * more aggressive in scaling the receive socket buffer. For
2074 * the case that the buffer space is actually used to a large
2075 * extent and we run out of kernel memory we can simply drop
2076 * the new segments; TCP on the sender will just retransmit it
2077 * later. Setting the buffer size too big may only consume too
2078 * much kernel memory if the application doesn't read() from
2079 * the socket or packet loss or reordering makes use of the
2080 * reassembly queue.
2081 *
2082 * The criteria to step up the receive buffer one notch are:
2083 * 1. the number of bytes received during the time it takes
2084 * one timestamp to be reflected back to us (the RTT);
2085 * 2. received bytes per RTT is within seven eighth of the
2086 * current socket buffer size;
2087 * 3. receive buffer size has not hit maximal automatic size;
2088 *
2089 * This algorithm does one step per RTT at most and only if
2090 * we receive a bulk stream w/o packet losses or reorderings.
2091 * Shrinking the buffer during idle times is not necessary as
2092 * it doesn't consume any memory when idle.
2093 *
2094 * TODO: Only step up if the application is actually serving
2095 * the buffer to better manage the socket buffer resources.
2096 */
2097 if (tcp_do_autorcvbuf &&
2098 opti.ts_ecr &&
2099 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2100 if (opti.ts_ecr > tp->rfbuf_ts &&
2101 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2102 if (tp->rfbuf_cnt >
2103 (so->so_rcv.sb_hiwat / 8 * 7) &&
2104 so->so_rcv.sb_hiwat <
2105 tcp_autorcvbuf_max) {
2106 newsize =
2107 min(so->so_rcv.sb_hiwat +
2108 tcp_autorcvbuf_inc,
2109 tcp_autorcvbuf_max);
2110 }
2111 /* Start over with next RTT. */
2112 tp->rfbuf_ts = 0;
2113 tp->rfbuf_cnt = 0;
2114 } else
2115 tp->rfbuf_cnt += tlen; /* add up */
2116 }
2117
2118 /*
2119 * Drop TCP, IP headers and TCP options then add data
2120 * to socket buffer.
2121 */
2122 if (so->so_state & SS_CANTRCVMORE)
2123 m_freem(m);
2124 else {
2125 /*
2126 * Set new socket buffer size.
2127 * Give up when limit is reached.
2128 */
2129 if (newsize)
2130 if (!sbreserve(&so->so_rcv,
2131 newsize, so))
2132 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2133 m_adj(m, toff + off);
2134 sbappendstream(&so->so_rcv, m);
2135 }
2136 sorwakeup(so);
2137 tcp_setup_ack(tp, th);
2138 if (tp->t_flags & TF_ACKNOW) {
2139 KERNEL_LOCK(1, NULL);
2140 (void) tcp_output(tp);
2141 KERNEL_UNLOCK_ONE(NULL);
2142 }
2143 if (tcp_saveti)
2144 m_freem(tcp_saveti);
2145 return;
2146 }
2147 }
2148
2149 /*
2150 * Compute mbuf offset to TCP data segment.
2151 */
2152 hdroptlen = toff + off;
2153
2154 /*
2155 * Calculate amount of space in receive window,
2156 * and then do TCP input processing.
2157 * Receive window is amount of space in rcv queue,
2158 * but not less than advertised window.
2159 */
2160 { int win;
2161
2162 win = sbspace(&so->so_rcv);
2163 if (win < 0)
2164 win = 0;
2165 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2166 }
2167
2168 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2169 tp->rfbuf_ts = 0;
2170 tp->rfbuf_cnt = 0;
2171
2172 switch (tp->t_state) {
2173 /*
2174 * If the state is SYN_SENT:
2175 * if seg contains an ACK, but not for our SYN, drop the input.
2176 * if seg contains a RST, then drop the connection.
2177 * if seg does not contain SYN, then drop it.
2178 * Otherwise this is an acceptable SYN segment
2179 * initialize tp->rcv_nxt and tp->irs
2180 * if seg contains ack then advance tp->snd_una
2181 * if seg contains a ECE and ECN support is enabled, the stream
2182 * is ECN capable.
2183 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2184 * arrange for segment to be acked (eventually)
2185 * continue processing rest of data/controls, beginning with URG
2186 */
2187 case TCPS_SYN_SENT:
2188 if ((tiflags & TH_ACK) &&
2189 (SEQ_LEQ(th->th_ack, tp->iss) ||
2190 SEQ_GT(th->th_ack, tp->snd_max)))
2191 goto dropwithreset;
2192 if (tiflags & TH_RST) {
2193 if (tiflags & TH_ACK)
2194 tp = tcp_drop(tp, ECONNREFUSED);
2195 goto drop;
2196 }
2197 if ((tiflags & TH_SYN) == 0)
2198 goto drop;
2199 if (tiflags & TH_ACK) {
2200 tp->snd_una = th->th_ack;
2201 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2202 tp->snd_nxt = tp->snd_una;
2203 if (SEQ_LT(tp->snd_high, tp->snd_una))
2204 tp->snd_high = tp->snd_una;
2205 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2206
2207 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2208 tp->t_flags |= TF_ECN_PERMIT;
2209 TCP_STATINC(TCP_STAT_ECN_SHS);
2210 }
2211
2212 }
2213 tp->irs = th->th_seq;
2214 tcp_rcvseqinit(tp);
2215 tp->t_flags |= TF_ACKNOW;
2216 tcp_mss_from_peer(tp, opti.maxseg);
2217
2218 /*
2219 * Initialize the initial congestion window. If we
2220 * had to retransmit the SYN, we must initialize cwnd
2221 * to 1 segment (i.e. the Loss Window).
2222 */
2223 if (tp->t_flags & TF_SYN_REXMT)
2224 tp->snd_cwnd = tp->t_peermss;
2225 else {
2226 int ss = tcp_init_win;
2227 #ifdef INET
2228 if (inp != NULL && in_localaddr(inp->inp_faddr))
2229 ss = tcp_init_win_local;
2230 #endif
2231 #ifdef INET6
2232 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2233 ss = tcp_init_win_local;
2234 #endif
2235 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2236 }
2237
2238 tcp_rmx_rtt(tp);
2239 if (tiflags & TH_ACK) {
2240 TCP_STATINC(TCP_STAT_CONNECTS);
2241 /*
2242 * move tcp_established before soisconnected
2243 * because upcall handler can drive tcp_output
2244 * functionality.
2245 * XXX we might call soisconnected at the end of
2246 * all processing
2247 */
2248 tcp_established(tp);
2249 soisconnected(so);
2250 /* Do window scaling on this connection? */
2251 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2252 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2253 tp->snd_scale = tp->requested_s_scale;
2254 tp->rcv_scale = tp->request_r_scale;
2255 }
2256 TCP_REASS_LOCK(tp);
2257 (void) tcp_reass(tp, NULL, NULL, &tlen);
2258 /*
2259 * if we didn't have to retransmit the SYN,
2260 * use its rtt as our initial srtt & rtt var.
2261 */
2262 if (tp->t_rtttime)
2263 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2264 } else
2265 tp->t_state = TCPS_SYN_RECEIVED;
2266
2267 /*
2268 * Advance th->th_seq to correspond to first data byte.
2269 * If data, trim to stay within window,
2270 * dropping FIN if necessary.
2271 */
2272 th->th_seq++;
2273 if (tlen > tp->rcv_wnd) {
2274 todrop = tlen - tp->rcv_wnd;
2275 m_adj(m, -todrop);
2276 tlen = tp->rcv_wnd;
2277 tiflags &= ~TH_FIN;
2278 tcps = TCP_STAT_GETREF();
2279 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2280 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2281 TCP_STAT_PUTREF();
2282 }
2283 tp->snd_wl1 = th->th_seq - 1;
2284 tp->rcv_up = th->th_seq;
2285 goto step6;
2286
2287 /*
2288 * If the state is SYN_RECEIVED:
2289 * If seg contains an ACK, but not for our SYN, drop the input
2290 * and generate an RST. See page 36, rfc793
2291 */
2292 case TCPS_SYN_RECEIVED:
2293 if ((tiflags & TH_ACK) &&
2294 (SEQ_LEQ(th->th_ack, tp->iss) ||
2295 SEQ_GT(th->th_ack, tp->snd_max)))
2296 goto dropwithreset;
2297 break;
2298 }
2299
2300 /*
2301 * States other than LISTEN or SYN_SENT.
2302 * First check timestamp, if present.
2303 * Then check that at least some bytes of segment are within
2304 * receive window. If segment begins before rcv_nxt,
2305 * drop leading data (and SYN); if nothing left, just ack.
2306 *
2307 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2308 * and it's less than ts_recent, drop it.
2309 */
2310 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2311 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2312
2313 /* Check to see if ts_recent is over 24 days old. */
2314 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2315 /*
2316 * Invalidate ts_recent. If this segment updates
2317 * ts_recent, the age will be reset later and ts_recent
2318 * will get a valid value. If it does not, setting
2319 * ts_recent to zero will at least satisfy the
2320 * requirement that zero be placed in the timestamp
2321 * echo reply when ts_recent isn't valid. The
2322 * age isn't reset until we get a valid ts_recent
2323 * because we don't want out-of-order segments to be
2324 * dropped when ts_recent is old.
2325 */
2326 tp->ts_recent = 0;
2327 } else {
2328 tcps = TCP_STAT_GETREF();
2329 tcps[TCP_STAT_RCVDUPPACK]++;
2330 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2331 tcps[TCP_STAT_PAWSDROP]++;
2332 TCP_STAT_PUTREF();
2333 tcp_new_dsack(tp, th->th_seq, tlen);
2334 goto dropafterack;
2335 }
2336 }
2337
2338 todrop = tp->rcv_nxt - th->th_seq;
2339 dupseg = false;
2340 if (todrop > 0) {
2341 if (tiflags & TH_SYN) {
2342 tiflags &= ~TH_SYN;
2343 th->th_seq++;
2344 if (th->th_urp > 1)
2345 th->th_urp--;
2346 else {
2347 tiflags &= ~TH_URG;
2348 th->th_urp = 0;
2349 }
2350 todrop--;
2351 }
2352 if (todrop > tlen ||
2353 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2354 /*
2355 * Any valid FIN or RST must be to the left of the
2356 * window. At this point the FIN or RST must be a
2357 * duplicate or out of sequence; drop it.
2358 */
2359 if (tiflags & TH_RST)
2360 goto drop;
2361 tiflags &= ~(TH_FIN|TH_RST);
2362 /*
2363 * Send an ACK to resynchronize and drop any data.
2364 * But keep on processing for RST or ACK.
2365 */
2366 tp->t_flags |= TF_ACKNOW;
2367 todrop = tlen;
2368 dupseg = true;
2369 tcps = TCP_STAT_GETREF();
2370 tcps[TCP_STAT_RCVDUPPACK]++;
2371 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2372 TCP_STAT_PUTREF();
2373 } else if ((tiflags & TH_RST) &&
2374 th->th_seq != tp->rcv_nxt) {
2375 /*
2376 * Test for reset before adjusting the sequence
2377 * number for overlapping data.
2378 */
2379 goto dropafterack_ratelim;
2380 } else {
2381 tcps = TCP_STAT_GETREF();
2382 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2383 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2384 TCP_STAT_PUTREF();
2385 }
2386 tcp_new_dsack(tp, th->th_seq, todrop);
2387 hdroptlen += todrop; /*drop from head afterwards*/
2388 th->th_seq += todrop;
2389 tlen -= todrop;
2390 if (th->th_urp > todrop)
2391 th->th_urp -= todrop;
2392 else {
2393 tiflags &= ~TH_URG;
2394 th->th_urp = 0;
2395 }
2396 }
2397
2398 /*
2399 * If new data are received on a connection after the
2400 * user processes are gone, then RST the other end.
2401 */
2402 if ((so->so_state & SS_NOFDREF) &&
2403 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2404 tp = tcp_close(tp);
2405 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2406 goto dropwithreset;
2407 }
2408
2409 /*
2410 * If segment ends after window, drop trailing data
2411 * (and PUSH and FIN); if nothing left, just ACK.
2412 */
2413 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2414 if (todrop > 0) {
2415 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2416 if (todrop >= tlen) {
2417 /*
2418 * The segment actually starts after the window.
2419 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2420 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2421 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2422 */
2423 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2424 /*
2425 * If a new connection request is received
2426 * while in TIME_WAIT, drop the old connection
2427 * and start over if the sequence numbers
2428 * are above the previous ones.
2429 *
2430 * NOTE: We will checksum the packet again, and
2431 * so we need to put the header fields back into
2432 * network order!
2433 * XXX This kind of sucks, but we don't expect
2434 * XXX this to happen very often, so maybe it
2435 * XXX doesn't matter so much.
2436 */
2437 if (tiflags & TH_SYN &&
2438 tp->t_state == TCPS_TIME_WAIT &&
2439 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2440 tp = tcp_close(tp);
2441 tcp_fields_to_net(th);
2442 goto findpcb;
2443 }
2444 /*
2445 * If window is closed can only take segments at
2446 * window edge, and have to drop data and PUSH from
2447 * incoming segments. Continue processing, but
2448 * remember to ack. Otherwise, drop segment
2449 * and (if not RST) ack.
2450 */
2451 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2452 tp->t_flags |= TF_ACKNOW;
2453 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2454 } else
2455 goto dropafterack;
2456 } else
2457 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2458 m_adj(m, -todrop);
2459 tlen -= todrop;
2460 tiflags &= ~(TH_PUSH|TH_FIN);
2461 }
2462
2463 /*
2464 * If last ACK falls within this segment's sequence numbers,
2465 * record the timestamp.
2466 * NOTE:
2467 * 1) That the test incorporates suggestions from the latest
2468 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2469 * 2) That updating only on newer timestamps interferes with
2470 * our earlier PAWS tests, so this check should be solely
2471 * predicated on the sequence space of this segment.
2472 * 3) That we modify the segment boundary check to be
2473 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2474 * instead of RFC1323's
2475 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2476 * This modified check allows us to overcome RFC1323's
2477 * limitations as described in Stevens TCP/IP Illustrated
2478 * Vol. 2 p.869. In such cases, we can still calculate the
2479 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2480 */
2481 if (opti.ts_present &&
2482 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2483 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2484 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2485 tp->ts_recent_age = tcp_now;
2486 tp->ts_recent = opti.ts_val;
2487 }
2488
2489 /*
2490 * If the RST bit is set examine the state:
2491 * SYN_RECEIVED STATE:
2492 * If passive open, return to LISTEN state.
2493 * If active open, inform user that connection was refused.
2494 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2495 * Inform user that connection was reset, and close tcb.
2496 * CLOSING, LAST_ACK, TIME_WAIT STATES
2497 * Close the tcb.
2498 */
2499 if (tiflags & TH_RST) {
2500 if (th->th_seq != tp->rcv_nxt)
2501 goto dropafterack_ratelim;
2502
2503 switch (tp->t_state) {
2504 case TCPS_SYN_RECEIVED:
2505 so->so_error = ECONNREFUSED;
2506 goto close;
2507
2508 case TCPS_ESTABLISHED:
2509 case TCPS_FIN_WAIT_1:
2510 case TCPS_FIN_WAIT_2:
2511 case TCPS_CLOSE_WAIT:
2512 so->so_error = ECONNRESET;
2513 close:
2514 tp->t_state = TCPS_CLOSED;
2515 TCP_STATINC(TCP_STAT_DROPS);
2516 tp = tcp_close(tp);
2517 goto drop;
2518
2519 case TCPS_CLOSING:
2520 case TCPS_LAST_ACK:
2521 case TCPS_TIME_WAIT:
2522 tp = tcp_close(tp);
2523 goto drop;
2524 }
2525 }
2526
2527 /*
2528 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2529 * we must be in a synchronized state. RFC791 states (under RST
2530 * generation) that any unacceptable segment (an out-of-order SYN
2531 * qualifies) received in a synchronized state must elicit only an
2532 * empty acknowledgment segment ... and the connection remains in
2533 * the same state.
2534 */
2535 if (tiflags & TH_SYN) {
2536 if (tp->rcv_nxt == th->th_seq) {
2537 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2538 TH_ACK);
2539 if (tcp_saveti)
2540 m_freem(tcp_saveti);
2541 return;
2542 }
2543
2544 goto dropafterack_ratelim;
2545 }
2546
2547 /*
2548 * If the ACK bit is off we drop the segment and return.
2549 */
2550 if ((tiflags & TH_ACK) == 0) {
2551 if (tp->t_flags & TF_ACKNOW)
2552 goto dropafterack;
2553 else
2554 goto drop;
2555 }
2556
2557 /*
2558 * Ack processing.
2559 */
2560 switch (tp->t_state) {
2561
2562 /*
2563 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2564 * ESTABLISHED state and continue processing, otherwise
2565 * send an RST.
2566 */
2567 case TCPS_SYN_RECEIVED:
2568 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2569 SEQ_GT(th->th_ack, tp->snd_max))
2570 goto dropwithreset;
2571 TCP_STATINC(TCP_STAT_CONNECTS);
2572 soisconnected(so);
2573 tcp_established(tp);
2574 /* Do window scaling? */
2575 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2576 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2577 tp->snd_scale = tp->requested_s_scale;
2578 tp->rcv_scale = tp->request_r_scale;
2579 }
2580 TCP_REASS_LOCK(tp);
2581 (void) tcp_reass(tp, NULL, NULL, &tlen);
2582 tp->snd_wl1 = th->th_seq - 1;
2583 /* fall into ... */
2584
2585 /*
2586 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2587 * ACKs. If the ack is in the range
2588 * tp->snd_una < th->th_ack <= tp->snd_max
2589 * then advance tp->snd_una to th->th_ack and drop
2590 * data from the retransmission queue. If this ACK reflects
2591 * more up to date window information we update our window information.
2592 */
2593 case TCPS_ESTABLISHED:
2594 case TCPS_FIN_WAIT_1:
2595 case TCPS_FIN_WAIT_2:
2596 case TCPS_CLOSE_WAIT:
2597 case TCPS_CLOSING:
2598 case TCPS_LAST_ACK:
2599 case TCPS_TIME_WAIT:
2600
2601 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2602 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2603 TCP_STATINC(TCP_STAT_RCVDUPACK);
2604 /*
2605 * If we have outstanding data (other than
2606 * a window probe), this is a completely
2607 * duplicate ack (ie, window info didn't
2608 * change), the ack is the biggest we've
2609 * seen and we've seen exactly our rexmt
2610 * threshhold of them, assume a packet
2611 * has been dropped and retransmit it.
2612 * Kludge snd_nxt & the congestion
2613 * window so we send only this one
2614 * packet.
2615 */
2616 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2617 th->th_ack != tp->snd_una)
2618 tp->t_dupacks = 0;
2619 else if (tp->t_partialacks < 0 &&
2620 (++tp->t_dupacks == tcprexmtthresh ||
2621 TCP_FACK_FASTRECOV(tp))) {
2622 /*
2623 * Do the fast retransmit, and adjust
2624 * congestion control paramenters.
2625 */
2626 if (tp->t_congctl->fast_retransmit(tp, th)) {
2627 /* False fast retransmit */
2628 break;
2629 } else
2630 goto drop;
2631 } else if (tp->t_dupacks > tcprexmtthresh) {
2632 tp->snd_cwnd += tp->t_segsz;
2633 KERNEL_LOCK(1, NULL);
2634 (void) tcp_output(tp);
2635 KERNEL_UNLOCK_ONE(NULL);
2636 goto drop;
2637 }
2638 } else {
2639 /*
2640 * If the ack appears to be very old, only
2641 * allow data that is in-sequence. This
2642 * makes it somewhat more difficult to insert
2643 * forged data by guessing sequence numbers.
2644 * Sent an ack to try to update the send
2645 * sequence number on the other side.
2646 */
2647 if (tlen && th->th_seq != tp->rcv_nxt &&
2648 SEQ_LT(th->th_ack,
2649 tp->snd_una - tp->max_sndwnd))
2650 goto dropafterack;
2651 }
2652 break;
2653 }
2654 /*
2655 * If the congestion window was inflated to account
2656 * for the other side's cached packets, retract it.
2657 */
2658 tp->t_congctl->fast_retransmit_newack(tp, th);
2659
2660 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2661 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2662 goto dropafterack;
2663 }
2664 acked = th->th_ack - tp->snd_una;
2665 tcps = TCP_STAT_GETREF();
2666 tcps[TCP_STAT_RCVACKPACK]++;
2667 tcps[TCP_STAT_RCVACKBYTE] += acked;
2668 TCP_STAT_PUTREF();
2669
2670 /*
2671 * If we have a timestamp reply, update smoothed
2672 * round trip time. If no timestamp is present but
2673 * transmit timer is running and timed sequence
2674 * number was acked, update smoothed round trip time.
2675 * Since we now have an rtt measurement, cancel the
2676 * timer backoff (cf., Phil Karn's retransmit alg.).
2677 * Recompute the initial retransmit timer.
2678 */
2679 if (ts_rtt)
2680 tcp_xmit_timer(tp, ts_rtt - 1);
2681 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2682 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2683
2684 /*
2685 * If all outstanding data is acked, stop retransmit
2686 * timer and remember to restart (more output or persist).
2687 * If there is more data to be acked, restart retransmit
2688 * timer, using current (possibly backed-off) value.
2689 */
2690 if (th->th_ack == tp->snd_max) {
2691 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2692 needoutput = 1;
2693 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2694 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2695
2696 /*
2697 * New data has been acked, adjust the congestion window.
2698 */
2699 tp->t_congctl->newack(tp, th);
2700
2701 nd6_hint(tp);
2702 if (acked > so->so_snd.sb_cc) {
2703 tp->snd_wnd -= so->so_snd.sb_cc;
2704 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2705 ourfinisacked = 1;
2706 } else {
2707 if (acked > (tp->t_lastoff - tp->t_inoff))
2708 tp->t_lastm = NULL;
2709 sbdrop(&so->so_snd, acked);
2710 tp->t_lastoff -= acked;
2711 tp->snd_wnd -= acked;
2712 ourfinisacked = 0;
2713 }
2714 sowwakeup(so);
2715
2716 icmp_check(tp, th, acked);
2717
2718 tp->snd_una = th->th_ack;
2719 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2720 tp->snd_fack = tp->snd_una;
2721 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2722 tp->snd_nxt = tp->snd_una;
2723 if (SEQ_LT(tp->snd_high, tp->snd_una))
2724 tp->snd_high = tp->snd_una;
2725
2726 switch (tp->t_state) {
2727
2728 /*
2729 * In FIN_WAIT_1 STATE in addition to the processing
2730 * for the ESTABLISHED state if our FIN is now acknowledged
2731 * then enter FIN_WAIT_2.
2732 */
2733 case TCPS_FIN_WAIT_1:
2734 if (ourfinisacked) {
2735 /*
2736 * If we can't receive any more
2737 * data, then closing user can proceed.
2738 * Starting the timer is contrary to the
2739 * specification, but if we don't get a FIN
2740 * we'll hang forever.
2741 */
2742 if (so->so_state & SS_CANTRCVMORE) {
2743 soisdisconnected(so);
2744 if (tp->t_maxidle > 0)
2745 TCP_TIMER_ARM(tp, TCPT_2MSL,
2746 tp->t_maxidle);
2747 }
2748 tp->t_state = TCPS_FIN_WAIT_2;
2749 }
2750 break;
2751
2752 /*
2753 * In CLOSING STATE in addition to the processing for
2754 * the ESTABLISHED state if the ACK acknowledges our FIN
2755 * then enter the TIME-WAIT state, otherwise ignore
2756 * the segment.
2757 */
2758 case TCPS_CLOSING:
2759 if (ourfinisacked) {
2760 tp->t_state = TCPS_TIME_WAIT;
2761 tcp_canceltimers(tp);
2762 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2763 soisdisconnected(so);
2764 }
2765 break;
2766
2767 /*
2768 * In LAST_ACK, we may still be waiting for data to drain
2769 * and/or to be acked, as well as for the ack of our FIN.
2770 * If our FIN is now acknowledged, delete the TCB,
2771 * enter the closed state and return.
2772 */
2773 case TCPS_LAST_ACK:
2774 if (ourfinisacked) {
2775 tp = tcp_close(tp);
2776 goto drop;
2777 }
2778 break;
2779
2780 /*
2781 * In TIME_WAIT state the only thing that should arrive
2782 * is a retransmission of the remote FIN. Acknowledge
2783 * it and restart the finack timer.
2784 */
2785 case TCPS_TIME_WAIT:
2786 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2787 goto dropafterack;
2788 }
2789 }
2790
2791 step6:
2792 /*
2793 * Update window information.
2794 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2795 */
2796 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2797 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2798 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2799 /* keep track of pure window updates */
2800 if (tlen == 0 &&
2801 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2802 TCP_STATINC(TCP_STAT_RCVWINUPD);
2803 tp->snd_wnd = tiwin;
2804 tp->snd_wl1 = th->th_seq;
2805 tp->snd_wl2 = th->th_ack;
2806 if (tp->snd_wnd > tp->max_sndwnd)
2807 tp->max_sndwnd = tp->snd_wnd;
2808 needoutput = 1;
2809 }
2810
2811 /*
2812 * Process segments with URG.
2813 */
2814 if ((tiflags & TH_URG) && th->th_urp &&
2815 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2816 /*
2817 * This is a kludge, but if we receive and accept
2818 * random urgent pointers, we'll crash in
2819 * soreceive. It's hard to imagine someone
2820 * actually wanting to send this much urgent data.
2821 */
2822 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2823 th->th_urp = 0; /* XXX */
2824 tiflags &= ~TH_URG; /* XXX */
2825 goto dodata; /* XXX */
2826 }
2827 /*
2828 * If this segment advances the known urgent pointer,
2829 * then mark the data stream. This should not happen
2830 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2831 * a FIN has been received from the remote side.
2832 * In these states we ignore the URG.
2833 *
2834 * According to RFC961 (Assigned Protocols),
2835 * the urgent pointer points to the last octet
2836 * of urgent data. We continue, however,
2837 * to consider it to indicate the first octet
2838 * of data past the urgent section as the original
2839 * spec states (in one of two places).
2840 */
2841 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2842 tp->rcv_up = th->th_seq + th->th_urp;
2843 so->so_oobmark = so->so_rcv.sb_cc +
2844 (tp->rcv_up - tp->rcv_nxt) - 1;
2845 if (so->so_oobmark == 0)
2846 so->so_state |= SS_RCVATMARK;
2847 sohasoutofband(so);
2848 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2849 }
2850 /*
2851 * Remove out of band data so doesn't get presented to user.
2852 * This can happen independent of advancing the URG pointer,
2853 * but if two URG's are pending at once, some out-of-band
2854 * data may creep in... ick.
2855 */
2856 if (th->th_urp <= (u_int16_t) tlen
2857 #ifdef SO_OOBINLINE
2858 && (so->so_options & SO_OOBINLINE) == 0
2859 #endif
2860 )
2861 tcp_pulloutofband(so, th, m, hdroptlen);
2862 } else
2863 /*
2864 * If no out of band data is expected,
2865 * pull receive urgent pointer along
2866 * with the receive window.
2867 */
2868 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2869 tp->rcv_up = tp->rcv_nxt;
2870 dodata: /* XXX */
2871
2872 /*
2873 * Process the segment text, merging it into the TCP sequencing queue,
2874 * and arranging for acknowledgement of receipt if necessary.
2875 * This process logically involves adjusting tp->rcv_wnd as data
2876 * is presented to the user (this happens in tcp_usrreq.c,
2877 * case PRU_RCVD). If a FIN has already been received on this
2878 * connection then we just ignore the text.
2879 */
2880 if ((tlen || (tiflags & TH_FIN)) &&
2881 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2882 /*
2883 * Insert segment ti into reassembly queue of tcp with
2884 * control block tp. Return TH_FIN if reassembly now includes
2885 * a segment with FIN. The macro form does the common case
2886 * inline (segment is the next to be received on an
2887 * established connection, and the queue is empty),
2888 * avoiding linkage into and removal from the queue and
2889 * repetition of various conversions.
2890 * Set DELACK for segments received in order, but ack
2891 * immediately when segments are out of order
2892 * (so fast retransmit can work).
2893 */
2894 /* NOTE: this was TCP_REASS() macro, but used only once */
2895 TCP_REASS_LOCK(tp);
2896 if (th->th_seq == tp->rcv_nxt &&
2897 TAILQ_FIRST(&tp->segq) == NULL &&
2898 tp->t_state == TCPS_ESTABLISHED) {
2899 tcp_setup_ack(tp, th);
2900 tp->rcv_nxt += tlen;
2901 tiflags = th->th_flags & TH_FIN;
2902 tcps = TCP_STAT_GETREF();
2903 tcps[TCP_STAT_RCVPACK]++;
2904 tcps[TCP_STAT_RCVBYTE] += tlen;
2905 TCP_STAT_PUTREF();
2906 nd6_hint(tp);
2907 if (so->so_state & SS_CANTRCVMORE)
2908 m_freem(m);
2909 else {
2910 m_adj(m, hdroptlen);
2911 sbappendstream(&(so)->so_rcv, m);
2912 }
2913 TCP_REASS_UNLOCK(tp);
2914 sorwakeup(so);
2915 } else {
2916 m_adj(m, hdroptlen);
2917 tiflags = tcp_reass(tp, th, m, &tlen);
2918 tp->t_flags |= TF_ACKNOW;
2919 }
2920
2921 /*
2922 * Note the amount of data that peer has sent into
2923 * our window, in order to estimate the sender's
2924 * buffer size.
2925 */
2926 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2927 } else {
2928 m_freem(m);
2929 m = NULL;
2930 tiflags &= ~TH_FIN;
2931 }
2932
2933 /*
2934 * If FIN is received ACK the FIN and let the user know
2935 * that the connection is closing. Ignore a FIN received before
2936 * the connection is fully established.
2937 */
2938 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2939 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2940 socantrcvmore(so);
2941 tp->t_flags |= TF_ACKNOW;
2942 tp->rcv_nxt++;
2943 }
2944 switch (tp->t_state) {
2945
2946 /*
2947 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2948 */
2949 case TCPS_ESTABLISHED:
2950 tp->t_state = TCPS_CLOSE_WAIT;
2951 break;
2952
2953 /*
2954 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2955 * enter the CLOSING state.
2956 */
2957 case TCPS_FIN_WAIT_1:
2958 tp->t_state = TCPS_CLOSING;
2959 break;
2960
2961 /*
2962 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2963 * starting the time-wait timer, turning off the other
2964 * standard timers.
2965 */
2966 case TCPS_FIN_WAIT_2:
2967 tp->t_state = TCPS_TIME_WAIT;
2968 tcp_canceltimers(tp);
2969 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2970 soisdisconnected(so);
2971 break;
2972
2973 /*
2974 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2975 */
2976 case TCPS_TIME_WAIT:
2977 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2978 break;
2979 }
2980 }
2981 #ifdef TCP_DEBUG
2982 if (so->so_options & SO_DEBUG)
2983 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2984 #endif
2985
2986 /*
2987 * Return any desired output.
2988 */
2989 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2990 KERNEL_LOCK(1, NULL);
2991 (void) tcp_output(tp);
2992 KERNEL_UNLOCK_ONE(NULL);
2993 }
2994 if (tcp_saveti)
2995 m_freem(tcp_saveti);
2996
2997 if (tp->t_state == TCPS_TIME_WAIT
2998 && (so->so_state & SS_NOFDREF)
2999 && (tp->t_inpcb || af != AF_INET)
3000 && (tp->t_in6pcb || af != AF_INET6)
3001 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3002 && TAILQ_EMPTY(&tp->segq)
3003 && vtw_add(af, tp)) {
3004 ;
3005 }
3006 return;
3007
3008 badsyn:
3009 /*
3010 * Received a bad SYN. Increment counters and dropwithreset.
3011 */
3012 TCP_STATINC(TCP_STAT_BADSYN);
3013 tp = NULL;
3014 goto dropwithreset;
3015
3016 dropafterack:
3017 /*
3018 * Generate an ACK dropping incoming segment if it occupies
3019 * sequence space, where the ACK reflects our state.
3020 */
3021 if (tiflags & TH_RST)
3022 goto drop;
3023 goto dropafterack2;
3024
3025 dropafterack_ratelim:
3026 /*
3027 * We may want to rate-limit ACKs against SYN/RST attack.
3028 */
3029 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3030 tcp_ackdrop_ppslim) == 0) {
3031 /* XXX stat */
3032 goto drop;
3033 }
3034 /* ...fall into dropafterack2... */
3035
3036 dropafterack2:
3037 m_freem(m);
3038 tp->t_flags |= TF_ACKNOW;
3039 KERNEL_LOCK(1, NULL);
3040 (void) tcp_output(tp);
3041 KERNEL_UNLOCK_ONE(NULL);
3042 if (tcp_saveti)
3043 m_freem(tcp_saveti);
3044 return;
3045
3046 dropwithreset_ratelim:
3047 /*
3048 * We may want to rate-limit RSTs in certain situations,
3049 * particularly if we are sending an RST in response to
3050 * an attempt to connect to or otherwise communicate with
3051 * a port for which we have no socket.
3052 */
3053 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3054 tcp_rst_ppslim) == 0) {
3055 /* XXX stat */
3056 goto drop;
3057 }
3058 /* ...fall into dropwithreset... */
3059
3060 dropwithreset:
3061 /*
3062 * Generate a RST, dropping incoming segment.
3063 * Make ACK acceptable to originator of segment.
3064 */
3065 if (tiflags & TH_RST)
3066 goto drop;
3067
3068 switch (af) {
3069 #ifdef INET6
3070 case AF_INET6:
3071 /* For following calls to tcp_respond */
3072 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3073 goto drop;
3074 break;
3075 #endif /* INET6 */
3076 case AF_INET:
3077 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3078 in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
3079 goto drop;
3080 }
3081
3082 if (tiflags & TH_ACK)
3083 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3084 else {
3085 if (tiflags & TH_SYN)
3086 tlen++;
3087 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3088 TH_RST|TH_ACK);
3089 }
3090 if (tcp_saveti)
3091 m_freem(tcp_saveti);
3092 return;
3093
3094 badcsum:
3095 drop:
3096 /*
3097 * Drop space held by incoming segment and return.
3098 */
3099 if (tp) {
3100 if (tp->t_inpcb)
3101 so = tp->t_inpcb->inp_socket;
3102 #ifdef INET6
3103 else if (tp->t_in6pcb)
3104 so = tp->t_in6pcb->in6p_socket;
3105 #endif
3106 else
3107 so = NULL;
3108 #ifdef TCP_DEBUG
3109 if (so && (so->so_options & SO_DEBUG) != 0)
3110 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3111 #endif
3112 }
3113 if (tcp_saveti)
3114 m_freem(tcp_saveti);
3115 m_freem(m);
3116 return;
3117 }
3118
3119 #ifdef TCP_SIGNATURE
3120 int
3121 tcp_signature_apply(void *fstate, void *data, u_int len)
3122 {
3123
3124 MD5Update(fstate, (u_char *)data, len);
3125 return (0);
3126 }
3127
3128 struct secasvar *
3129 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3130 {
3131 struct secasvar *sav;
3132 #ifdef IPSEC
3133 union sockaddr_union dst;
3134 #endif
3135 struct ip *ip;
3136 struct ip6_hdr *ip6;
3137
3138 ip = mtod(m, struct ip *);
3139 switch (ip->ip_v) {
3140 case 4:
3141 ip = mtod(m, struct ip *);
3142 ip6 = NULL;
3143 break;
3144 case 6:
3145 ip = NULL;
3146 ip6 = mtod(m, struct ip6_hdr *);
3147 break;
3148 default:
3149 return (NULL);
3150 }
3151
3152 #ifdef IPSEC
3153 /* Extract the destination from the IP header in the mbuf. */
3154 memset(&dst, 0, sizeof(union sockaddr_union));
3155 if (ip !=NULL) {
3156 dst.sa.sa_len = sizeof(struct sockaddr_in);
3157 dst.sa.sa_family = AF_INET;
3158 dst.sin.sin_addr = ip->ip_dst;
3159 } else {
3160 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3161 dst.sa.sa_family = AF_INET6;
3162 dst.sin6.sin6_addr = ip6->ip6_dst;
3163 }
3164
3165 /*
3166 * Look up an SADB entry which matches the address of the peer.
3167 */
3168 sav = KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3169 #else
3170 if (ip)
3171 sav = key_allocsa(AF_INET, (void *)&ip->ip_src,
3172 (void *)&ip->ip_dst, IPPROTO_TCP,
3173 htonl(TCP_SIG_SPI), 0, 0);
3174 else
3175 sav = key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
3176 (void *)&ip6->ip6_dst, IPPROTO_TCP,
3177 htonl(TCP_SIG_SPI), 0, 0);
3178 #endif
3179
3180 return (sav); /* freesav must be performed by caller */
3181 }
3182
3183 int
3184 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3185 struct secasvar *sav, char *sig)
3186 {
3187 MD5_CTX ctx;
3188 struct ip *ip;
3189 struct ipovly *ipovly;
3190 struct ip6_hdr *ip6;
3191 struct ippseudo ippseudo;
3192 struct ip6_hdr_pseudo ip6pseudo;
3193 struct tcphdr th0;
3194 int l, tcphdrlen;
3195
3196 if (sav == NULL)
3197 return (-1);
3198
3199 tcphdrlen = th->th_off * 4;
3200
3201 switch (mtod(m, struct ip *)->ip_v) {
3202 case 4:
3203 ip = mtod(m, struct ip *);
3204 ip6 = NULL;
3205 break;
3206 case 6:
3207 ip = NULL;
3208 ip6 = mtod(m, struct ip6_hdr *);
3209 break;
3210 default:
3211 return (-1);
3212 }
3213
3214 MD5Init(&ctx);
3215
3216 if (ip) {
3217 memset(&ippseudo, 0, sizeof(ippseudo));
3218 ipovly = (struct ipovly *)ip;
3219 ippseudo.ippseudo_src = ipovly->ih_src;
3220 ippseudo.ippseudo_dst = ipovly->ih_dst;
3221 ippseudo.ippseudo_pad = 0;
3222 ippseudo.ippseudo_p = IPPROTO_TCP;
3223 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3224 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3225 } else {
3226 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3227 ip6pseudo.ip6ph_src = ip6->ip6_src;
3228 in6_clearscope(&ip6pseudo.ip6ph_src);
3229 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3230 in6_clearscope(&ip6pseudo.ip6ph_dst);
3231 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3232 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3233 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3234 }
3235
3236 th0 = *th;
3237 th0.th_sum = 0;
3238 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3239
3240 l = m->m_pkthdr.len - thoff - tcphdrlen;
3241 if (l > 0)
3242 m_apply(m, thoff + tcphdrlen,
3243 m->m_pkthdr.len - thoff - tcphdrlen,
3244 tcp_signature_apply, &ctx);
3245
3246 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3247 MD5Final(sig, &ctx);
3248
3249 return (0);
3250 }
3251 #endif
3252
3253 /*
3254 * tcp_dooptions: parse and process tcp options.
3255 *
3256 * returns -1 if this segment should be dropped. (eg. wrong signature)
3257 * otherwise returns 0.
3258 */
3259
3260 static int
3261 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3262 struct tcphdr *th,
3263 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3264 {
3265 u_int16_t mss;
3266 int opt, optlen = 0;
3267 #ifdef TCP_SIGNATURE
3268 void *sigp = NULL;
3269 char sigbuf[TCP_SIGLEN];
3270 struct secasvar *sav = NULL;
3271 #endif
3272
3273 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3274 opt = cp[0];
3275 if (opt == TCPOPT_EOL)
3276 break;
3277 if (opt == TCPOPT_NOP)
3278 optlen = 1;
3279 else {
3280 if (cnt < 2)
3281 break;
3282 optlen = cp[1];
3283 if (optlen < 2 || optlen > cnt)
3284 break;
3285 }
3286 switch (opt) {
3287
3288 default:
3289 continue;
3290
3291 case TCPOPT_MAXSEG:
3292 if (optlen != TCPOLEN_MAXSEG)
3293 continue;
3294 if (!(th->th_flags & TH_SYN))
3295 continue;
3296 if (TCPS_HAVERCVDSYN(tp->t_state))
3297 continue;
3298 bcopy(cp + 2, &mss, sizeof(mss));
3299 oi->maxseg = ntohs(mss);
3300 break;
3301
3302 case TCPOPT_WINDOW:
3303 if (optlen != TCPOLEN_WINDOW)
3304 continue;
3305 if (!(th->th_flags & TH_SYN))
3306 continue;
3307 if (TCPS_HAVERCVDSYN(tp->t_state))
3308 continue;
3309 tp->t_flags |= TF_RCVD_SCALE;
3310 tp->requested_s_scale = cp[2];
3311 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3312 #if 0 /*XXX*/
3313 char *p;
3314
3315 if (ip)
3316 p = ntohl(ip->ip_src);
3317 #ifdef INET6
3318 else if (ip6)
3319 p = ip6_sprintf(&ip6->ip6_src);
3320 #endif
3321 else
3322 p = "(unknown)";
3323 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3324 "assuming %d\n",
3325 tp->requested_s_scale, p,
3326 TCP_MAX_WINSHIFT);
3327 #else
3328 log(LOG_ERR, "TCP: invalid wscale %d, "
3329 "assuming %d\n",
3330 tp->requested_s_scale,
3331 TCP_MAX_WINSHIFT);
3332 #endif
3333 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3334 }
3335 break;
3336
3337 case TCPOPT_TIMESTAMP:
3338 if (optlen != TCPOLEN_TIMESTAMP)
3339 continue;
3340 oi->ts_present = 1;
3341 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3342 NTOHL(oi->ts_val);
3343 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3344 NTOHL(oi->ts_ecr);
3345
3346 if (!(th->th_flags & TH_SYN))
3347 continue;
3348 if (TCPS_HAVERCVDSYN(tp->t_state))
3349 continue;
3350 /*
3351 * A timestamp received in a SYN makes
3352 * it ok to send timestamp requests and replies.
3353 */
3354 tp->t_flags |= TF_RCVD_TSTMP;
3355 tp->ts_recent = oi->ts_val;
3356 tp->ts_recent_age = tcp_now;
3357 break;
3358
3359 case TCPOPT_SACK_PERMITTED:
3360 if (optlen != TCPOLEN_SACK_PERMITTED)
3361 continue;
3362 if (!(th->th_flags & TH_SYN))
3363 continue;
3364 if (TCPS_HAVERCVDSYN(tp->t_state))
3365 continue;
3366 if (tcp_do_sack) {
3367 tp->t_flags |= TF_SACK_PERMIT;
3368 tp->t_flags |= TF_WILL_SACK;
3369 }
3370 break;
3371
3372 case TCPOPT_SACK:
3373 tcp_sack_option(tp, th, cp, optlen);
3374 break;
3375 #ifdef TCP_SIGNATURE
3376 case TCPOPT_SIGNATURE:
3377 if (optlen != TCPOLEN_SIGNATURE)
3378 continue;
3379 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3380 return (-1);
3381
3382 sigp = sigbuf;
3383 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3384 tp->t_flags |= TF_SIGNATURE;
3385 break;
3386 #endif
3387 }
3388 }
3389
3390 #ifndef TCP_SIGNATURE
3391 return 0;
3392 #else
3393 if (tp->t_flags & TF_SIGNATURE) {
3394
3395 sav = tcp_signature_getsav(m, th);
3396
3397 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3398 return (-1);
3399 }
3400
3401 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3402 goto out;
3403
3404 if (sigp) {
3405 char sig[TCP_SIGLEN];
3406
3407 tcp_fields_to_net(th);
3408 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3409 tcp_fields_to_host(th);
3410 goto out;
3411 }
3412 tcp_fields_to_host(th);
3413
3414 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3415 TCP_STATINC(TCP_STAT_BADSIG);
3416 goto out;
3417 } else
3418 TCP_STATINC(TCP_STAT_GOODSIG);
3419
3420 key_sa_recordxfer(sav, m);
3421 KEY_FREESAV(&sav);
3422 }
3423 return 0;
3424 out:
3425 if (sav != NULL)
3426 KEY_FREESAV(&sav);
3427 return -1;
3428 #endif
3429 }
3430
3431 /*
3432 * Pull out of band byte out of a segment so
3433 * it doesn't appear in the user's data queue.
3434 * It is still reflected in the segment length for
3435 * sequencing purposes.
3436 */
3437 void
3438 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3439 struct mbuf *m, int off)
3440 {
3441 int cnt = off + th->th_urp - 1;
3442
3443 while (cnt >= 0) {
3444 if (m->m_len > cnt) {
3445 char *cp = mtod(m, char *) + cnt;
3446 struct tcpcb *tp = sototcpcb(so);
3447
3448 tp->t_iobc = *cp;
3449 tp->t_oobflags |= TCPOOB_HAVEDATA;
3450 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3451 m->m_len--;
3452 return;
3453 }
3454 cnt -= m->m_len;
3455 m = m->m_next;
3456 if (m == 0)
3457 break;
3458 }
3459 panic("tcp_pulloutofband");
3460 }
3461
3462 /*
3463 * Collect new round-trip time estimate
3464 * and update averages and current timeout.
3465 *
3466 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3467 * difference of two timestamps.
3468 */
3469 void
3470 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3471 {
3472 int32_t delta;
3473
3474 TCP_STATINC(TCP_STAT_RTTUPDATED);
3475 if (tp->t_srtt != 0) {
3476 /*
3477 * Compute the amount to add to srtt for smoothing,
3478 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3479 * srtt is stored in 1/32 slow ticks, we conceptually
3480 * shift left 5 bits, subtract srtt to get the
3481 * diference, and then shift right by TCP_RTT_SHIFT
3482 * (3) to obtain 1/8 of the difference.
3483 */
3484 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3485 /*
3486 * This can never happen, because delta's lowest
3487 * possible value is 1/8 of t_srtt. But if it does,
3488 * set srtt to some reasonable value, here chosen
3489 * as 1/8 tick.
3490 */
3491 if ((tp->t_srtt += delta) <= 0)
3492 tp->t_srtt = 1 << 2;
3493 /*
3494 * RFC2988 requires that rttvar be updated first.
3495 * This code is compliant because "delta" is the old
3496 * srtt minus the new observation (scaled).
3497 *
3498 * RFC2988 says:
3499 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3500 *
3501 * delta is in units of 1/32 ticks, and has then been
3502 * divided by 8. This is equivalent to being in 1/16s
3503 * units and divided by 4. Subtract from it 1/4 of
3504 * the existing rttvar to form the (signed) amount to
3505 * adjust.
3506 */
3507 if (delta < 0)
3508 delta = -delta;
3509 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3510 /*
3511 * As with srtt, this should never happen. There is
3512 * no support in RFC2988 for this operation. But 1/4s
3513 * as rttvar when faced with something arguably wrong
3514 * is ok.
3515 */
3516 if ((tp->t_rttvar += delta) <= 0)
3517 tp->t_rttvar = 1 << 2;
3518
3519 /*
3520 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3521 * Problem is: it doesn't work. Disabled by defaulting
3522 * tcp_rttlocal to 0; see corresponding code in
3523 * tcp_subr that selects local vs remote in a different way.
3524 *
3525 * The static branch prediction hint here should be removed
3526 * when the rtt estimator is fixed and the rtt_enable code
3527 * is turned back on.
3528 */
3529 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3530 && tp->t_srtt > tcp_msl_remote_threshold
3531 && tp->t_msl < tcp_msl_remote) {
3532 tp->t_msl = tcp_msl_remote;
3533 }
3534 } else {
3535 /*
3536 * This is the first measurement. Per RFC2988, 2.2,
3537 * set rtt=R and srtt=R/2.
3538 * For srtt, storage representation is 1/32 ticks,
3539 * so shift left by 5.
3540 * For rttvar, storage representation is 1/16 ticks,
3541 * So shift left by 4, but then right by 1 to halve.
3542 */
3543 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3544 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3545 }
3546 tp->t_rtttime = 0;
3547 tp->t_rxtshift = 0;
3548
3549 /*
3550 * the retransmit should happen at rtt + 4 * rttvar.
3551 * Because of the way we do the smoothing, srtt and rttvar
3552 * will each average +1/2 tick of bias. When we compute
3553 * the retransmit timer, we want 1/2 tick of rounding and
3554 * 1 extra tick because of +-1/2 tick uncertainty in the
3555 * firing of the timer. The bias will give us exactly the
3556 * 1.5 tick we need. But, because the bias is
3557 * statistical, we have to test that we don't drop below
3558 * the minimum feasible timer (which is 2 ticks).
3559 */
3560 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3561 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3562
3563 /*
3564 * We received an ack for a packet that wasn't retransmitted;
3565 * it is probably safe to discard any error indications we've
3566 * received recently. This isn't quite right, but close enough
3567 * for now (a route might have failed after we sent a segment,
3568 * and the return path might not be symmetrical).
3569 */
3570 tp->t_softerror = 0;
3571 }
3572
3573
3574 /*
3575 * TCP compressed state engine. Currently used to hold compressed
3576 * state for SYN_RECEIVED.
3577 */
3578
3579 u_long syn_cache_count;
3580 u_int32_t syn_hash1, syn_hash2;
3581
3582 #define SYN_HASH(sa, sp, dp) \
3583 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3584 ((u_int32_t)(sp)))^syn_hash2)))
3585 #ifndef INET6
3586 #define SYN_HASHALL(hash, src, dst) \
3587 do { \
3588 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3589 ((const struct sockaddr_in *)(src))->sin_port, \
3590 ((const struct sockaddr_in *)(dst))->sin_port); \
3591 } while (/*CONSTCOND*/ 0)
3592 #else
3593 #define SYN_HASH6(sa, sp, dp) \
3594 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3595 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3596 & 0x7fffffff)
3597
3598 #define SYN_HASHALL(hash, src, dst) \
3599 do { \
3600 switch ((src)->sa_family) { \
3601 case AF_INET: \
3602 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3603 ((const struct sockaddr_in *)(src))->sin_port, \
3604 ((const struct sockaddr_in *)(dst))->sin_port); \
3605 break; \
3606 case AF_INET6: \
3607 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3608 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3609 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3610 break; \
3611 default: \
3612 hash = 0; \
3613 } \
3614 } while (/*CONSTCOND*/0)
3615 #endif /* INET6 */
3616
3617 static struct pool syn_cache_pool;
3618
3619 /*
3620 * We don't estimate RTT with SYNs, so each packet starts with the default
3621 * RTT and each timer step has a fixed timeout value.
3622 */
3623 #define SYN_CACHE_TIMER_ARM(sc) \
3624 do { \
3625 TCPT_RANGESET((sc)->sc_rxtcur, \
3626 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3627 TCPTV_REXMTMAX); \
3628 callout_reset(&(sc)->sc_timer, \
3629 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3630 } while (/*CONSTCOND*/0)
3631
3632 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3633
3634 static inline void
3635 syn_cache_rm(struct syn_cache *sc)
3636 {
3637 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3638 sc, sc_bucketq);
3639 sc->sc_tp = NULL;
3640 LIST_REMOVE(sc, sc_tpq);
3641 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3642 callout_stop(&sc->sc_timer);
3643 syn_cache_count--;
3644 }
3645
3646 static inline void
3647 syn_cache_put(struct syn_cache *sc)
3648 {
3649 if (sc->sc_ipopts)
3650 (void) m_free(sc->sc_ipopts);
3651 rtcache_free(&sc->sc_route);
3652 sc->sc_flags |= SCF_DEAD;
3653 if (!callout_invoking(&sc->sc_timer))
3654 callout_schedule(&(sc)->sc_timer, 1);
3655 }
3656
3657 void
3658 syn_cache_init(void)
3659 {
3660 int i;
3661
3662 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3663 "synpl", NULL, IPL_SOFTNET);
3664
3665 /* Initialize the hash buckets. */
3666 for (i = 0; i < tcp_syn_cache_size; i++)
3667 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3668 }
3669
3670 void
3671 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3672 {
3673 struct syn_cache_head *scp;
3674 struct syn_cache *sc2;
3675 int s;
3676
3677 /*
3678 * If there are no entries in the hash table, reinitialize
3679 * the hash secrets.
3680 */
3681 if (syn_cache_count == 0) {
3682 syn_hash1 = cprng_fast32();
3683 syn_hash2 = cprng_fast32();
3684 }
3685
3686 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3687 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3688 scp = &tcp_syn_cache[sc->sc_bucketidx];
3689
3690 /*
3691 * Make sure that we don't overflow the per-bucket
3692 * limit or the total cache size limit.
3693 */
3694 s = splsoftnet();
3695 if (scp->sch_length >= tcp_syn_bucket_limit) {
3696 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3697 /*
3698 * The bucket is full. Toss the oldest element in the
3699 * bucket. This will be the first entry in the bucket.
3700 */
3701 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3702 #ifdef DIAGNOSTIC
3703 /*
3704 * This should never happen; we should always find an
3705 * entry in our bucket.
3706 */
3707 if (sc2 == NULL)
3708 panic("syn_cache_insert: bucketoverflow: impossible");
3709 #endif
3710 syn_cache_rm(sc2);
3711 syn_cache_put(sc2); /* calls pool_put but see spl above */
3712 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3713 struct syn_cache_head *scp2, *sce;
3714
3715 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3716 /*
3717 * The cache is full. Toss the oldest entry in the
3718 * first non-empty bucket we can find.
3719 *
3720 * XXX We would really like to toss the oldest
3721 * entry in the cache, but we hope that this
3722 * condition doesn't happen very often.
3723 */
3724 scp2 = scp;
3725 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3726 sce = &tcp_syn_cache[tcp_syn_cache_size];
3727 for (++scp2; scp2 != scp; scp2++) {
3728 if (scp2 >= sce)
3729 scp2 = &tcp_syn_cache[0];
3730 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3731 break;
3732 }
3733 #ifdef DIAGNOSTIC
3734 /*
3735 * This should never happen; we should always find a
3736 * non-empty bucket.
3737 */
3738 if (scp2 == scp)
3739 panic("syn_cache_insert: cacheoverflow: "
3740 "impossible");
3741 #endif
3742 }
3743 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3744 syn_cache_rm(sc2);
3745 syn_cache_put(sc2); /* calls pool_put but see spl above */
3746 }
3747
3748 /*
3749 * Initialize the entry's timer.
3750 */
3751 sc->sc_rxttot = 0;
3752 sc->sc_rxtshift = 0;
3753 SYN_CACHE_TIMER_ARM(sc);
3754
3755 /* Link it from tcpcb entry */
3756 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3757
3758 /* Put it into the bucket. */
3759 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3760 scp->sch_length++;
3761 syn_cache_count++;
3762
3763 TCP_STATINC(TCP_STAT_SC_ADDED);
3764 splx(s);
3765 }
3766
3767 /*
3768 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3769 * If we have retransmitted an entry the maximum number of times, expire
3770 * that entry.
3771 */
3772 void
3773 syn_cache_timer(void *arg)
3774 {
3775 struct syn_cache *sc = arg;
3776
3777 mutex_enter(softnet_lock);
3778 KERNEL_LOCK(1, NULL);
3779 callout_ack(&sc->sc_timer);
3780
3781 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3782 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3783 callout_destroy(&sc->sc_timer);
3784 pool_put(&syn_cache_pool, sc);
3785 KERNEL_UNLOCK_ONE(NULL);
3786 mutex_exit(softnet_lock);
3787 return;
3788 }
3789
3790 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3791 /* Drop it -- too many retransmissions. */
3792 goto dropit;
3793 }
3794
3795 /*
3796 * Compute the total amount of time this entry has
3797 * been on a queue. If this entry has been on longer
3798 * than the keep alive timer would allow, expire it.
3799 */
3800 sc->sc_rxttot += sc->sc_rxtcur;
3801 if (sc->sc_rxttot >= tcp_keepinit)
3802 goto dropit;
3803
3804 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3805 (void) syn_cache_respond(sc, NULL);
3806
3807 /* Advance the timer back-off. */
3808 sc->sc_rxtshift++;
3809 SYN_CACHE_TIMER_ARM(sc);
3810
3811 KERNEL_UNLOCK_ONE(NULL);
3812 mutex_exit(softnet_lock);
3813 return;
3814
3815 dropit:
3816 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3817 syn_cache_rm(sc);
3818 if (sc->sc_ipopts)
3819 (void) m_free(sc->sc_ipopts);
3820 rtcache_free(&sc->sc_route);
3821 callout_destroy(&sc->sc_timer);
3822 pool_put(&syn_cache_pool, sc);
3823 KERNEL_UNLOCK_ONE(NULL);
3824 mutex_exit(softnet_lock);
3825 }
3826
3827 /*
3828 * Remove syn cache created by the specified tcb entry,
3829 * because this does not make sense to keep them
3830 * (if there's no tcb entry, syn cache entry will never be used)
3831 */
3832 void
3833 syn_cache_cleanup(struct tcpcb *tp)
3834 {
3835 struct syn_cache *sc, *nsc;
3836 int s;
3837
3838 s = splsoftnet();
3839
3840 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3841 nsc = LIST_NEXT(sc, sc_tpq);
3842
3843 #ifdef DIAGNOSTIC
3844 if (sc->sc_tp != tp)
3845 panic("invalid sc_tp in syn_cache_cleanup");
3846 #endif
3847 syn_cache_rm(sc);
3848 syn_cache_put(sc); /* calls pool_put but see spl above */
3849 }
3850 /* just for safety */
3851 LIST_INIT(&tp->t_sc);
3852
3853 splx(s);
3854 }
3855
3856 /*
3857 * Find an entry in the syn cache.
3858 */
3859 struct syn_cache *
3860 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3861 struct syn_cache_head **headp)
3862 {
3863 struct syn_cache *sc;
3864 struct syn_cache_head *scp;
3865 u_int32_t hash;
3866 int s;
3867
3868 SYN_HASHALL(hash, src, dst);
3869
3870 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3871 *headp = scp;
3872 s = splsoftnet();
3873 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3874 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3875 if (sc->sc_hash != hash)
3876 continue;
3877 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3878 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3879 splx(s);
3880 return (sc);
3881 }
3882 }
3883 splx(s);
3884 return (NULL);
3885 }
3886
3887 /*
3888 * This function gets called when we receive an ACK for a
3889 * socket in the LISTEN state. We look up the connection
3890 * in the syn cache, and if its there, we pull it out of
3891 * the cache and turn it into a full-blown connection in
3892 * the SYN-RECEIVED state.
3893 *
3894 * The return values may not be immediately obvious, and their effects
3895 * can be subtle, so here they are:
3896 *
3897 * NULL SYN was not found in cache; caller should drop the
3898 * packet and send an RST.
3899 *
3900 * -1 We were unable to create the new connection, and are
3901 * aborting it. An ACK,RST is being sent to the peer
3902 * (unless we got screwey sequence numbners; see below),
3903 * because the 3-way handshake has been completed. Caller
3904 * should not free the mbuf, since we may be using it. If
3905 * we are not, we will free it.
3906 *
3907 * Otherwise, the return value is a pointer to the new socket
3908 * associated with the connection.
3909 */
3910 struct socket *
3911 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3912 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3913 struct socket *so, struct mbuf *m)
3914 {
3915 struct syn_cache *sc;
3916 struct syn_cache_head *scp;
3917 struct inpcb *inp = NULL;
3918 #ifdef INET6
3919 struct in6pcb *in6p = NULL;
3920 #endif
3921 struct tcpcb *tp = 0;
3922 struct mbuf *am;
3923 int s;
3924 struct socket *oso;
3925
3926 s = splsoftnet();
3927 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3928 splx(s);
3929 return (NULL);
3930 }
3931
3932 /*
3933 * Verify the sequence and ack numbers. Try getting the correct
3934 * response again.
3935 */
3936 if ((th->th_ack != sc->sc_iss + 1) ||
3937 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3938 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3939 (void) syn_cache_respond(sc, m);
3940 splx(s);
3941 return ((struct socket *)(-1));
3942 }
3943
3944 /* Remove this cache entry */
3945 syn_cache_rm(sc);
3946 splx(s);
3947
3948 /*
3949 * Ok, create the full blown connection, and set things up
3950 * as they would have been set up if we had created the
3951 * connection when the SYN arrived. If we can't create
3952 * the connection, abort it.
3953 */
3954 /*
3955 * inp still has the OLD in_pcb stuff, set the
3956 * v6-related flags on the new guy, too. This is
3957 * done particularly for the case where an AF_INET6
3958 * socket is bound only to a port, and a v4 connection
3959 * comes in on that port.
3960 * we also copy the flowinfo from the original pcb
3961 * to the new one.
3962 */
3963 oso = so;
3964 so = sonewconn(so, true);
3965 if (so == NULL)
3966 goto resetandabort;
3967
3968 switch (so->so_proto->pr_domain->dom_family) {
3969 #ifdef INET
3970 case AF_INET:
3971 inp = sotoinpcb(so);
3972 break;
3973 #endif
3974 #ifdef INET6
3975 case AF_INET6:
3976 in6p = sotoin6pcb(so);
3977 break;
3978 #endif
3979 }
3980 switch (src->sa_family) {
3981 #ifdef INET
3982 case AF_INET:
3983 if (inp) {
3984 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3985 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3986 inp->inp_options = ip_srcroute();
3987 in_pcbstate(inp, INP_BOUND);
3988 if (inp->inp_options == NULL) {
3989 inp->inp_options = sc->sc_ipopts;
3990 sc->sc_ipopts = NULL;
3991 }
3992 }
3993 #ifdef INET6
3994 else if (in6p) {
3995 /* IPv4 packet to AF_INET6 socket */
3996 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3997 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3998 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3999 &in6p->in6p_laddr.s6_addr32[3],
4000 sizeof(((struct sockaddr_in *)dst)->sin_addr));
4001 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4002 in6totcpcb(in6p)->t_family = AF_INET;
4003 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4004 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4005 else
4006 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4007 in6_pcbstate(in6p, IN6P_BOUND);
4008 }
4009 #endif
4010 break;
4011 #endif
4012 #ifdef INET6
4013 case AF_INET6:
4014 if (in6p) {
4015 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4016 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4017 in6_pcbstate(in6p, IN6P_BOUND);
4018 }
4019 break;
4020 #endif
4021 }
4022 #ifdef INET6
4023 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4024 struct in6pcb *oin6p = sotoin6pcb(oso);
4025 /* inherit socket options from the listening socket */
4026 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4027 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4028 m_freem(in6p->in6p_options);
4029 in6p->in6p_options = 0;
4030 }
4031 ip6_savecontrol(in6p, &in6p->in6p_options,
4032 mtod(m, struct ip6_hdr *), m);
4033 }
4034 #endif
4035
4036 #if defined(IPSEC)
4037 /*
4038 * we make a copy of policy, instead of sharing the policy,
4039 * for better behavior in terms of SA lookup and dead SA removal.
4040 */
4041 if (inp) {
4042 /* copy old policy into new socket's */
4043 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp, inp->inp_sp))
4044 printf("tcp_input: could not copy policy\n");
4045 }
4046 #ifdef INET6
4047 else if (in6p) {
4048 /* copy old policy into new socket's */
4049 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4050 in6p->in6p_sp))
4051 printf("tcp_input: could not copy policy\n");
4052 }
4053 #endif
4054 #endif
4055
4056 /*
4057 * Give the new socket our cached route reference.
4058 */
4059 if (inp) {
4060 rtcache_copy(&inp->inp_route, &sc->sc_route);
4061 rtcache_free(&sc->sc_route);
4062 }
4063 #ifdef INET6
4064 else {
4065 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4066 rtcache_free(&sc->sc_route);
4067 }
4068 #endif
4069
4070 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
4071 if (am == NULL)
4072 goto resetandabort;
4073 MCLAIM(am, &tcp_mowner);
4074 am->m_len = src->sa_len;
4075 bcopy(src, mtod(am, void *), src->sa_len);
4076 if (inp) {
4077 if (in_pcbconnect(inp, am, &lwp0)) {
4078 (void) m_free(am);
4079 goto resetandabort;
4080 }
4081 }
4082 #ifdef INET6
4083 else if (in6p) {
4084 if (src->sa_family == AF_INET) {
4085 /* IPv4 packet to AF_INET6 socket */
4086 struct sockaddr_in6 *sin6;
4087 sin6 = mtod(am, struct sockaddr_in6 *);
4088 am->m_len = sizeof(*sin6);
4089 memset(sin6, 0, sizeof(*sin6));
4090 sin6->sin6_family = AF_INET6;
4091 sin6->sin6_len = sizeof(*sin6);
4092 sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
4093 sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
4094 bcopy(&((struct sockaddr_in *)src)->sin_addr,
4095 &sin6->sin6_addr.s6_addr32[3],
4096 sizeof(sin6->sin6_addr.s6_addr32[3]));
4097 }
4098 if (in6_pcbconnect(in6p, am, NULL)) {
4099 (void) m_free(am);
4100 goto resetandabort;
4101 }
4102 }
4103 #endif
4104 else {
4105 (void) m_free(am);
4106 goto resetandabort;
4107 }
4108 (void) m_free(am);
4109
4110 if (inp)
4111 tp = intotcpcb(inp);
4112 #ifdef INET6
4113 else if (in6p)
4114 tp = in6totcpcb(in6p);
4115 #endif
4116 else
4117 tp = NULL;
4118 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4119 if (sc->sc_request_r_scale != 15) {
4120 tp->requested_s_scale = sc->sc_requested_s_scale;
4121 tp->request_r_scale = sc->sc_request_r_scale;
4122 tp->snd_scale = sc->sc_requested_s_scale;
4123 tp->rcv_scale = sc->sc_request_r_scale;
4124 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4125 }
4126 if (sc->sc_flags & SCF_TIMESTAMP)
4127 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4128 tp->ts_timebase = sc->sc_timebase;
4129
4130 tp->t_template = tcp_template(tp);
4131 if (tp->t_template == 0) {
4132 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
4133 so = NULL;
4134 m_freem(m);
4135 goto abort;
4136 }
4137
4138 tp->iss = sc->sc_iss;
4139 tp->irs = sc->sc_irs;
4140 tcp_sendseqinit(tp);
4141 tcp_rcvseqinit(tp);
4142 tp->t_state = TCPS_SYN_RECEIVED;
4143 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4144 TCP_STATINC(TCP_STAT_ACCEPTS);
4145
4146 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4147 tp->t_flags |= TF_WILL_SACK;
4148
4149 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4150 tp->t_flags |= TF_ECN_PERMIT;
4151
4152 #ifdef TCP_SIGNATURE
4153 if (sc->sc_flags & SCF_SIGNATURE)
4154 tp->t_flags |= TF_SIGNATURE;
4155 #endif
4156
4157 /* Initialize tp->t_ourmss before we deal with the peer's! */
4158 tp->t_ourmss = sc->sc_ourmaxseg;
4159 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4160
4161 /*
4162 * Initialize the initial congestion window. If we
4163 * had to retransmit the SYN,ACK, we must initialize cwnd
4164 * to 1 segment (i.e. the Loss Window).
4165 */
4166 if (sc->sc_rxtshift)
4167 tp->snd_cwnd = tp->t_peermss;
4168 else {
4169 int ss = tcp_init_win;
4170 #ifdef INET
4171 if (inp != NULL && in_localaddr(inp->inp_faddr))
4172 ss = tcp_init_win_local;
4173 #endif
4174 #ifdef INET6
4175 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4176 ss = tcp_init_win_local;
4177 #endif
4178 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4179 }
4180
4181 tcp_rmx_rtt(tp);
4182 tp->snd_wl1 = sc->sc_irs;
4183 tp->rcv_up = sc->sc_irs + 1;
4184
4185 /*
4186 * This is what whould have happened in tcp_output() when
4187 * the SYN,ACK was sent.
4188 */
4189 tp->snd_up = tp->snd_una;
4190 tp->snd_max = tp->snd_nxt = tp->iss+1;
4191 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4192 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4193 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4194 tp->last_ack_sent = tp->rcv_nxt;
4195 tp->t_partialacks = -1;
4196 tp->t_dupacks = 0;
4197
4198 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4199 s = splsoftnet();
4200 syn_cache_put(sc);
4201 splx(s);
4202 return (so);
4203
4204 resetandabort:
4205 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4206 abort:
4207 if (so != NULL) {
4208 (void) soqremque(so, 1);
4209 (void) soabort(so);
4210 mutex_enter(softnet_lock);
4211 }
4212 s = splsoftnet();
4213 syn_cache_put(sc);
4214 splx(s);
4215 TCP_STATINC(TCP_STAT_SC_ABORTED);
4216 return ((struct socket *)(-1));
4217 }
4218
4219 /*
4220 * This function is called when we get a RST for a
4221 * non-existent connection, so that we can see if the
4222 * connection is in the syn cache. If it is, zap it.
4223 */
4224
4225 void
4226 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4227 {
4228 struct syn_cache *sc;
4229 struct syn_cache_head *scp;
4230 int s = splsoftnet();
4231
4232 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4233 splx(s);
4234 return;
4235 }
4236 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4237 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4238 splx(s);
4239 return;
4240 }
4241 syn_cache_rm(sc);
4242 TCP_STATINC(TCP_STAT_SC_RESET);
4243 syn_cache_put(sc); /* calls pool_put but see spl above */
4244 splx(s);
4245 }
4246
4247 void
4248 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4249 struct tcphdr *th)
4250 {
4251 struct syn_cache *sc;
4252 struct syn_cache_head *scp;
4253 int s;
4254
4255 s = splsoftnet();
4256 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4257 splx(s);
4258 return;
4259 }
4260 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4261 if (ntohl (th->th_seq) != sc->sc_iss) {
4262 splx(s);
4263 return;
4264 }
4265
4266 /*
4267 * If we've retransmitted 3 times and this is our second error,
4268 * we remove the entry. Otherwise, we allow it to continue on.
4269 * This prevents us from incorrectly nuking an entry during a
4270 * spurious network outage.
4271 *
4272 * See tcp_notify().
4273 */
4274 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4275 sc->sc_flags |= SCF_UNREACH;
4276 splx(s);
4277 return;
4278 }
4279
4280 syn_cache_rm(sc);
4281 TCP_STATINC(TCP_STAT_SC_UNREACH);
4282 syn_cache_put(sc); /* calls pool_put but see spl above */
4283 splx(s);
4284 }
4285
4286 /*
4287 * Given a LISTEN socket and an inbound SYN request, add
4288 * this to the syn cache, and send back a segment:
4289 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4290 * to the source.
4291 *
4292 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4293 * Doing so would require that we hold onto the data and deliver it
4294 * to the application. However, if we are the target of a SYN-flood
4295 * DoS attack, an attacker could send data which would eventually
4296 * consume all available buffer space if it were ACKed. By not ACKing
4297 * the data, we avoid this DoS scenario.
4298 */
4299
4300 int
4301 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4302 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4303 int optlen, struct tcp_opt_info *oi)
4304 {
4305 struct tcpcb tb, *tp;
4306 long win;
4307 struct syn_cache *sc;
4308 struct syn_cache_head *scp;
4309 struct mbuf *ipopts;
4310 struct tcp_opt_info opti;
4311 int s;
4312
4313 tp = sototcpcb(so);
4314
4315 memset(&opti, 0, sizeof(opti));
4316
4317 /*
4318 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4319 *
4320 * Note this check is performed in tcp_input() very early on.
4321 */
4322
4323 /*
4324 * Initialize some local state.
4325 */
4326 win = sbspace(&so->so_rcv);
4327 if (win > TCP_MAXWIN)
4328 win = TCP_MAXWIN;
4329
4330 switch (src->sa_family) {
4331 #ifdef INET
4332 case AF_INET:
4333 /*
4334 * Remember the IP options, if any.
4335 */
4336 ipopts = ip_srcroute();
4337 break;
4338 #endif
4339 default:
4340 ipopts = NULL;
4341 }
4342
4343 #ifdef TCP_SIGNATURE
4344 if (optp || (tp->t_flags & TF_SIGNATURE))
4345 #else
4346 if (optp)
4347 #endif
4348 {
4349 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4350 #ifdef TCP_SIGNATURE
4351 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4352 #endif
4353 tb.t_state = TCPS_LISTEN;
4354 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4355 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4356 return (0);
4357 } else
4358 tb.t_flags = 0;
4359
4360 /*
4361 * See if we already have an entry for this connection.
4362 * If we do, resend the SYN,ACK. We do not count this
4363 * as a retransmission (XXX though maybe we should).
4364 */
4365 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4366 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4367 if (ipopts) {
4368 /*
4369 * If we were remembering a previous source route,
4370 * forget it and use the new one we've been given.
4371 */
4372 if (sc->sc_ipopts)
4373 (void) m_free(sc->sc_ipopts);
4374 sc->sc_ipopts = ipopts;
4375 }
4376 sc->sc_timestamp = tb.ts_recent;
4377 if (syn_cache_respond(sc, m) == 0) {
4378 uint64_t *tcps = TCP_STAT_GETREF();
4379 tcps[TCP_STAT_SNDACKS]++;
4380 tcps[TCP_STAT_SNDTOTAL]++;
4381 TCP_STAT_PUTREF();
4382 }
4383 return (1);
4384 }
4385
4386 s = splsoftnet();
4387 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4388 splx(s);
4389 if (sc == NULL) {
4390 if (ipopts)
4391 (void) m_free(ipopts);
4392 return (0);
4393 }
4394
4395 /*
4396 * Fill in the cache, and put the necessary IP and TCP
4397 * options into the reply.
4398 */
4399 memset(sc, 0, sizeof(struct syn_cache));
4400 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4401 bcopy(src, &sc->sc_src, src->sa_len);
4402 bcopy(dst, &sc->sc_dst, dst->sa_len);
4403 sc->sc_flags = 0;
4404 sc->sc_ipopts = ipopts;
4405 sc->sc_irs = th->th_seq;
4406 switch (src->sa_family) {
4407 #ifdef INET
4408 case AF_INET:
4409 {
4410 struct sockaddr_in *srcin = (void *) src;
4411 struct sockaddr_in *dstin = (void *) dst;
4412
4413 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4414 &srcin->sin_addr, dstin->sin_port,
4415 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4416 break;
4417 }
4418 #endif /* INET */
4419 #ifdef INET6
4420 case AF_INET6:
4421 {
4422 struct sockaddr_in6 *srcin6 = (void *) src;
4423 struct sockaddr_in6 *dstin6 = (void *) dst;
4424
4425 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4426 &srcin6->sin6_addr, dstin6->sin6_port,
4427 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4428 break;
4429 }
4430 #endif /* INET6 */
4431 }
4432 sc->sc_peermaxseg = oi->maxseg;
4433 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4434 m->m_pkthdr.rcvif : NULL,
4435 sc->sc_src.sa.sa_family);
4436 sc->sc_win = win;
4437 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4438 sc->sc_timestamp = tb.ts_recent;
4439 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4440 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4441 sc->sc_flags |= SCF_TIMESTAMP;
4442 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4443 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4444 sc->sc_requested_s_scale = tb.requested_s_scale;
4445 sc->sc_request_r_scale = 0;
4446 /*
4447 * Pick the smallest possible scaling factor that
4448 * will still allow us to scale up to sb_max.
4449 *
4450 * We do this because there are broken firewalls that
4451 * will corrupt the window scale option, leading to
4452 * the other endpoint believing that our advertised
4453 * window is unscaled. At scale factors larger than
4454 * 5 the unscaled window will drop below 1500 bytes,
4455 * leading to serious problems when traversing these
4456 * broken firewalls.
4457 *
4458 * With the default sbmax of 256K, a scale factor
4459 * of 3 will be chosen by this algorithm. Those who
4460 * choose a larger sbmax should watch out
4461 * for the compatiblity problems mentioned above.
4462 *
4463 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4464 * or <SYN,ACK>) segment itself is never scaled.
4465 */
4466 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4467 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4468 sc->sc_request_r_scale++;
4469 } else {
4470 sc->sc_requested_s_scale = 15;
4471 sc->sc_request_r_scale = 15;
4472 }
4473 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4474 sc->sc_flags |= SCF_SACK_PERMIT;
4475
4476 /*
4477 * ECN setup packet recieved.
4478 */
4479 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4480 sc->sc_flags |= SCF_ECN_PERMIT;
4481
4482 #ifdef TCP_SIGNATURE
4483 if (tb.t_flags & TF_SIGNATURE)
4484 sc->sc_flags |= SCF_SIGNATURE;
4485 #endif
4486 sc->sc_tp = tp;
4487 if (syn_cache_respond(sc, m) == 0) {
4488 uint64_t *tcps = TCP_STAT_GETREF();
4489 tcps[TCP_STAT_SNDACKS]++;
4490 tcps[TCP_STAT_SNDTOTAL]++;
4491 TCP_STAT_PUTREF();
4492 syn_cache_insert(sc, tp);
4493 } else {
4494 s = splsoftnet();
4495 /*
4496 * syn_cache_put() will try to schedule the timer, so
4497 * we need to initialize it
4498 */
4499 SYN_CACHE_TIMER_ARM(sc);
4500 syn_cache_put(sc);
4501 splx(s);
4502 TCP_STATINC(TCP_STAT_SC_DROPPED);
4503 }
4504 return (1);
4505 }
4506
4507 /*
4508 * syn_cache_respond: (re)send SYN+ACK.
4509 *
4510 * returns 0 on success. otherwise returns an errno, typically ENOBUFS.
4511 */
4512
4513 int
4514 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4515 {
4516 #ifdef INET6
4517 struct rtentry *rt;
4518 #endif
4519 struct route *ro;
4520 u_int8_t *optp;
4521 int optlen, error;
4522 u_int16_t tlen;
4523 struct ip *ip = NULL;
4524 #ifdef INET6
4525 struct ip6_hdr *ip6 = NULL;
4526 #endif
4527 struct tcpcb *tp = NULL;
4528 struct tcphdr *th;
4529 u_int hlen;
4530 struct socket *so;
4531
4532 ro = &sc->sc_route;
4533 switch (sc->sc_src.sa.sa_family) {
4534 case AF_INET:
4535 hlen = sizeof(struct ip);
4536 break;
4537 #ifdef INET6
4538 case AF_INET6:
4539 hlen = sizeof(struct ip6_hdr);
4540 break;
4541 #endif
4542 default:
4543 if (m)
4544 m_freem(m);
4545 return (EAFNOSUPPORT);
4546 }
4547
4548 /* Compute the size of the TCP options. */
4549 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
4550 ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
4551 #ifdef TCP_SIGNATURE
4552 ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
4553 #endif
4554 ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
4555
4556 tlen = hlen + sizeof(struct tcphdr) + optlen;
4557
4558 /*
4559 * Create the IP+TCP header from scratch.
4560 */
4561 if (m)
4562 m_freem(m);
4563 #ifdef DIAGNOSTIC
4564 if (max_linkhdr + tlen > MCLBYTES)
4565 return (ENOBUFS);
4566 #endif
4567 MGETHDR(m, M_DONTWAIT, MT_DATA);
4568 if (m && (max_linkhdr + tlen) > MHLEN) {
4569 MCLGET(m, M_DONTWAIT);
4570 if ((m->m_flags & M_EXT) == 0) {
4571 m_freem(m);
4572 m = NULL;
4573 }
4574 }
4575 if (m == NULL)
4576 return (ENOBUFS);
4577 MCLAIM(m, &tcp_tx_mowner);
4578
4579 /* Fixup the mbuf. */
4580 m->m_data += max_linkhdr;
4581 m->m_len = m->m_pkthdr.len = tlen;
4582 if (sc->sc_tp) {
4583 tp = sc->sc_tp;
4584 if (tp->t_inpcb)
4585 so = tp->t_inpcb->inp_socket;
4586 #ifdef INET6
4587 else if (tp->t_in6pcb)
4588 so = tp->t_in6pcb->in6p_socket;
4589 #endif
4590 else
4591 so = NULL;
4592 } else
4593 so = NULL;
4594 m->m_pkthdr.rcvif = NULL;
4595 memset(mtod(m, u_char *), 0, tlen);
4596
4597 switch (sc->sc_src.sa.sa_family) {
4598 case AF_INET:
4599 ip = mtod(m, struct ip *);
4600 ip->ip_v = 4;
4601 ip->ip_dst = sc->sc_src.sin.sin_addr;
4602 ip->ip_src = sc->sc_dst.sin.sin_addr;
4603 ip->ip_p = IPPROTO_TCP;
4604 th = (struct tcphdr *)(ip + 1);
4605 th->th_dport = sc->sc_src.sin.sin_port;
4606 th->th_sport = sc->sc_dst.sin.sin_port;
4607 break;
4608 #ifdef INET6
4609 case AF_INET6:
4610 ip6 = mtod(m, struct ip6_hdr *);
4611 ip6->ip6_vfc = IPV6_VERSION;
4612 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4613 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4614 ip6->ip6_nxt = IPPROTO_TCP;
4615 /* ip6_plen will be updated in ip6_output() */
4616 th = (struct tcphdr *)(ip6 + 1);
4617 th->th_dport = sc->sc_src.sin6.sin6_port;
4618 th->th_sport = sc->sc_dst.sin6.sin6_port;
4619 break;
4620 #endif
4621 default:
4622 th = NULL;
4623 }
4624
4625 th->th_seq = htonl(sc->sc_iss);
4626 th->th_ack = htonl(sc->sc_irs + 1);
4627 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4628 th->th_flags = TH_SYN|TH_ACK;
4629 th->th_win = htons(sc->sc_win);
4630 /* th_sum already 0 */
4631 /* th_urp already 0 */
4632
4633 /* Tack on the TCP options. */
4634 optp = (u_int8_t *)(th + 1);
4635 *optp++ = TCPOPT_MAXSEG;
4636 *optp++ = 4;
4637 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4638 *optp++ = sc->sc_ourmaxseg & 0xff;
4639
4640 if (sc->sc_request_r_scale != 15) {
4641 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4642 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4643 sc->sc_request_r_scale);
4644 optp += 4;
4645 }
4646
4647 if (sc->sc_flags & SCF_TIMESTAMP) {
4648 u_int32_t *lp = (u_int32_t *)(optp);
4649 /* Form timestamp option as shown in appendix A of RFC 1323. */
4650 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
4651 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4652 *lp = htonl(sc->sc_timestamp);
4653 optp += TCPOLEN_TSTAMP_APPA;
4654 }
4655
4656 if (sc->sc_flags & SCF_SACK_PERMIT) {
4657 u_int8_t *p = optp;
4658
4659 /* Let the peer know that we will SACK. */
4660 p[0] = TCPOPT_SACK_PERMITTED;
4661 p[1] = 2;
4662 p[2] = TCPOPT_NOP;
4663 p[3] = TCPOPT_NOP;
4664 optp += 4;
4665 }
4666
4667 /*
4668 * Send ECN SYN-ACK setup packet.
4669 * Routes can be asymetric, so, even if we receive a packet
4670 * with ECE and CWR set, we must not assume no one will block
4671 * the ECE packet we are about to send.
4672 */
4673 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4674 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4675 th->th_flags |= TH_ECE;
4676 TCP_STATINC(TCP_STAT_ECN_SHS);
4677
4678 /*
4679 * draft-ietf-tcpm-ecnsyn-00.txt
4680 *
4681 * "[...] a TCP node MAY respond to an ECN-setup
4682 * SYN packet by setting ECT in the responding
4683 * ECN-setup SYN/ACK packet, indicating to routers
4684 * that the SYN/ACK packet is ECN-Capable.
4685 * This allows a congested router along the path
4686 * to mark the packet instead of dropping the
4687 * packet as an indication of congestion."
4688 *
4689 * "[...] There can be a great benefit in setting
4690 * an ECN-capable codepoint in SYN/ACK packets [...]
4691 * Congestion is most likely to occur in
4692 * the server-to-client direction. As a result,
4693 * setting an ECN-capable codepoint in SYN/ACK
4694 * packets can reduce the occurence of three-second
4695 * retransmit timeouts resulting from the drop
4696 * of SYN/ACK packets."
4697 *
4698 * Page 4 and 6, January 2006.
4699 */
4700
4701 switch (sc->sc_src.sa.sa_family) {
4702 #ifdef INET
4703 case AF_INET:
4704 ip->ip_tos |= IPTOS_ECN_ECT0;
4705 break;
4706 #endif
4707 #ifdef INET6
4708 case AF_INET6:
4709 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4710 break;
4711 #endif
4712 }
4713 TCP_STATINC(TCP_STAT_ECN_ECT);
4714 }
4715
4716 #ifdef TCP_SIGNATURE
4717 if (sc->sc_flags & SCF_SIGNATURE) {
4718 struct secasvar *sav;
4719 u_int8_t *sigp;
4720
4721 sav = tcp_signature_getsav(m, th);
4722
4723 if (sav == NULL) {
4724 if (m)
4725 m_freem(m);
4726 return (EPERM);
4727 }
4728
4729 *optp++ = TCPOPT_SIGNATURE;
4730 *optp++ = TCPOLEN_SIGNATURE;
4731 sigp = optp;
4732 memset(optp, 0, TCP_SIGLEN);
4733 optp += TCP_SIGLEN;
4734 *optp++ = TCPOPT_NOP;
4735 *optp++ = TCPOPT_EOL;
4736
4737 (void)tcp_signature(m, th, hlen, sav, sigp);
4738
4739 key_sa_recordxfer(sav, m);
4740 KEY_FREESAV(&sav);
4741 }
4742 #endif
4743
4744 /* Compute the packet's checksum. */
4745 switch (sc->sc_src.sa.sa_family) {
4746 case AF_INET:
4747 ip->ip_len = htons(tlen - hlen);
4748 th->th_sum = 0;
4749 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4750 break;
4751 #ifdef INET6
4752 case AF_INET6:
4753 ip6->ip6_plen = htons(tlen - hlen);
4754 th->th_sum = 0;
4755 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4756 break;
4757 #endif
4758 }
4759
4760 /*
4761 * Fill in some straggling IP bits. Note the stack expects
4762 * ip_len to be in host order, for convenience.
4763 */
4764 switch (sc->sc_src.sa.sa_family) {
4765 #ifdef INET
4766 case AF_INET:
4767 ip->ip_len = htons(tlen);
4768 ip->ip_ttl = ip_defttl;
4769 /* XXX tos? */
4770 break;
4771 #endif
4772 #ifdef INET6
4773 case AF_INET6:
4774 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4775 ip6->ip6_vfc |= IPV6_VERSION;
4776 ip6->ip6_plen = htons(tlen - hlen);
4777 /* ip6_hlim will be initialized afterwards */
4778 /* XXX flowlabel? */
4779 break;
4780 #endif
4781 }
4782
4783 /* XXX use IPsec policy on listening socket, on SYN ACK */
4784 tp = sc->sc_tp;
4785
4786 switch (sc->sc_src.sa.sa_family) {
4787 #ifdef INET
4788 case AF_INET:
4789 error = ip_output(m, sc->sc_ipopts, ro,
4790 (ip_mtudisc ? IP_MTUDISC : 0),
4791 NULL, so);
4792 break;
4793 #endif
4794 #ifdef INET6
4795 case AF_INET6:
4796 ip6->ip6_hlim = in6_selecthlim(NULL,
4797 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
4798 : NULL);
4799
4800 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
4801 break;
4802 #endif
4803 default:
4804 error = EAFNOSUPPORT;
4805 break;
4806 }
4807 return (error);
4808 }
4809