Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.336
      1 /*	$NetBSD: tcp_input.c,v 1.336 2015/02/14 12:57:53 he Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.336 2015/02/14 12:57:53 he Exp $");
    152 
    153 #include "opt_inet.h"
    154 #include "opt_ipsec.h"
    155 #include "opt_inet_csum.h"
    156 #include "opt_tcp_debug.h"
    157 
    158 #include <sys/param.h>
    159 #include <sys/systm.h>
    160 #include <sys/malloc.h>
    161 #include <sys/mbuf.h>
    162 #include <sys/protosw.h>
    163 #include <sys/socket.h>
    164 #include <sys/socketvar.h>
    165 #include <sys/errno.h>
    166 #include <sys/syslog.h>
    167 #include <sys/pool.h>
    168 #include <sys/domain.h>
    169 #include <sys/kernel.h>
    170 #ifdef TCP_SIGNATURE
    171 #include <sys/md5.h>
    172 #endif
    173 #include <sys/lwp.h> /* for lwp0 */
    174 #include <sys/cprng.h>
    175 
    176 #include <net/if.h>
    177 #include <net/route.h>
    178 #include <net/if_types.h>
    179 
    180 #include <netinet/in.h>
    181 #include <netinet/in_systm.h>
    182 #include <netinet/ip.h>
    183 #include <netinet/in_pcb.h>
    184 #include <netinet/in_var.h>
    185 #include <netinet/ip_var.h>
    186 #include <netinet/in_offload.h>
    187 
    188 #ifdef INET6
    189 #ifndef INET
    190 #include <netinet/in.h>
    191 #endif
    192 #include <netinet/ip6.h>
    193 #include <netinet6/ip6_var.h>
    194 #include <netinet6/in6_pcb.h>
    195 #include <netinet6/ip6_var.h>
    196 #include <netinet6/in6_var.h>
    197 #include <netinet/icmp6.h>
    198 #include <netinet6/nd6.h>
    199 #ifdef TCP_SIGNATURE
    200 #include <netinet6/scope6_var.h>
    201 #endif
    202 #endif
    203 
    204 #ifndef INET6
    205 /* always need ip6.h for IP6_EXTHDR_GET */
    206 #include <netinet/ip6.h>
    207 #endif
    208 
    209 #include <netinet/tcp.h>
    210 #include <netinet/tcp_fsm.h>
    211 #include <netinet/tcp_seq.h>
    212 #include <netinet/tcp_timer.h>
    213 #include <netinet/tcp_var.h>
    214 #include <netinet/tcp_private.h>
    215 #include <netinet/tcpip.h>
    216 #include <netinet/tcp_congctl.h>
    217 #include <netinet/tcp_debug.h>
    218 
    219 #ifdef INET6
    220 #include "faith.h"
    221 #if defined(NFAITH) && NFAITH > 0
    222 #include <net/if_faith.h>
    223 #endif
    224 #endif	/* INET6 */
    225 
    226 #ifdef IPSEC
    227 #include <netipsec/ipsec.h>
    228 #include <netipsec/ipsec_var.h>
    229 #include <netipsec/ipsec_private.h>
    230 #include <netipsec/key.h>
    231 #ifdef INET6
    232 #include <netipsec/ipsec6.h>
    233 #endif
    234 #endif	/* IPSEC*/
    235 
    236 #include <netinet/tcp_vtw.h>
    237 
    238 int	tcprexmtthresh = 3;
    239 int	tcp_log_refused;
    240 
    241 int	tcp_do_autorcvbuf = 1;
    242 int	tcp_autorcvbuf_inc = 16 * 1024;
    243 int	tcp_autorcvbuf_max = 256 * 1024;
    244 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    245 
    246 static int tcp_rst_ppslim_count = 0;
    247 static struct timeval tcp_rst_ppslim_last;
    248 static int tcp_ackdrop_ppslim_count = 0;
    249 static struct timeval tcp_ackdrop_ppslim_last;
    250 
    251 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    252 
    253 /* for modulo comparisons of timestamps */
    254 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    255 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    256 
    257 /*
    258  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    259  */
    260 #ifdef INET6
    261 static inline void
    262 nd6_hint(struct tcpcb *tp)
    263 {
    264 	struct rtentry *rt;
    265 
    266 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    267 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    268 		nd6_nud_hint(rt, NULL, 0);
    269 }
    270 #else
    271 static inline void
    272 nd6_hint(struct tcpcb *tp)
    273 {
    274 }
    275 #endif
    276 
    277 /*
    278  * Compute ACK transmission behavior.  Delay the ACK unless
    279  * we have already delayed an ACK (must send an ACK every two segments).
    280  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    281  * option is enabled.
    282  */
    283 static void
    284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    285 {
    286 
    287 	if (tp->t_flags & TF_DELACK ||
    288 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    289 		tp->t_flags |= TF_ACKNOW;
    290 	else
    291 		TCP_SET_DELACK(tp);
    292 }
    293 
    294 static void
    295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    296 {
    297 
    298 	/*
    299 	 * If we had a pending ICMP message that refers to data that have
    300 	 * just been acknowledged, disregard the recorded ICMP message.
    301 	 */
    302 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    303 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    304 		tp->t_flags &= ~TF_PMTUD_PEND;
    305 
    306 	/*
    307 	 * Keep track of the largest chunk of data
    308 	 * acknowledged since last PMTU update
    309 	 */
    310 	if (tp->t_pmtud_mss_acked < acked)
    311 		tp->t_pmtud_mss_acked = acked;
    312 }
    313 
    314 /*
    315  * Convert TCP protocol fields to host order for easier processing.
    316  */
    317 static void
    318 tcp_fields_to_host(struct tcphdr *th)
    319 {
    320 
    321 	NTOHL(th->th_seq);
    322 	NTOHL(th->th_ack);
    323 	NTOHS(th->th_win);
    324 	NTOHS(th->th_urp);
    325 }
    326 
    327 /*
    328  * ... and reverse the above.
    329  */
    330 static void
    331 tcp_fields_to_net(struct tcphdr *th)
    332 {
    333 
    334 	HTONL(th->th_seq);
    335 	HTONL(th->th_ack);
    336 	HTONS(th->th_win);
    337 	HTONS(th->th_urp);
    338 }
    339 
    340 #ifdef TCP_CSUM_COUNTERS
    341 #include <sys/device.h>
    342 
    343 #if defined(INET)
    344 extern struct evcnt tcp_hwcsum_ok;
    345 extern struct evcnt tcp_hwcsum_bad;
    346 extern struct evcnt tcp_hwcsum_data;
    347 extern struct evcnt tcp_swcsum;
    348 #endif /* defined(INET) */
    349 #if defined(INET6)
    350 extern struct evcnt tcp6_hwcsum_ok;
    351 extern struct evcnt tcp6_hwcsum_bad;
    352 extern struct evcnt tcp6_hwcsum_data;
    353 extern struct evcnt tcp6_swcsum;
    354 #endif /* defined(INET6) */
    355 
    356 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    357 
    358 #else
    359 
    360 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    361 
    362 #endif /* TCP_CSUM_COUNTERS */
    363 
    364 #ifdef TCP_REASS_COUNTERS
    365 #include <sys/device.h>
    366 
    367 extern struct evcnt tcp_reass_;
    368 extern struct evcnt tcp_reass_empty;
    369 extern struct evcnt tcp_reass_iteration[8];
    370 extern struct evcnt tcp_reass_prependfirst;
    371 extern struct evcnt tcp_reass_prepend;
    372 extern struct evcnt tcp_reass_insert;
    373 extern struct evcnt tcp_reass_inserttail;
    374 extern struct evcnt tcp_reass_append;
    375 extern struct evcnt tcp_reass_appendtail;
    376 extern struct evcnt tcp_reass_overlaptail;
    377 extern struct evcnt tcp_reass_overlapfront;
    378 extern struct evcnt tcp_reass_segdup;
    379 extern struct evcnt tcp_reass_fragdup;
    380 
    381 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    382 
    383 #else
    384 
    385 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    386 
    387 #endif /* TCP_REASS_COUNTERS */
    388 
    389 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    390     int *);
    391 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    392     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    393 
    394 #ifdef INET
    395 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    396 #endif
    397 #ifdef INET6
    398 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    399 #endif
    400 
    401 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    402 
    403 #if defined(MBUFTRACE)
    404 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    405 #endif /* defined(MBUFTRACE) */
    406 
    407 static struct pool tcpipqent_pool;
    408 
    409 void
    410 tcpipqent_init(void)
    411 {
    412 
    413 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    414 	    NULL, IPL_VM);
    415 }
    416 
    417 struct ipqent *
    418 tcpipqent_alloc(void)
    419 {
    420 	struct ipqent *ipqe;
    421 	int s;
    422 
    423 	s = splvm();
    424 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    425 	splx(s);
    426 
    427 	return ipqe;
    428 }
    429 
    430 void
    431 tcpipqent_free(struct ipqent *ipqe)
    432 {
    433 	int s;
    434 
    435 	s = splvm();
    436 	pool_put(&tcpipqent_pool, ipqe);
    437 	splx(s);
    438 }
    439 
    440 static int
    441 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    442 {
    443 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    444 	struct socket *so = NULL;
    445 	int pkt_flags;
    446 	tcp_seq pkt_seq;
    447 	unsigned pkt_len;
    448 	u_long rcvpartdupbyte = 0;
    449 	u_long rcvoobyte;
    450 #ifdef TCP_REASS_COUNTERS
    451 	u_int count = 0;
    452 #endif
    453 	uint64_t *tcps;
    454 
    455 	if (tp->t_inpcb)
    456 		so = tp->t_inpcb->inp_socket;
    457 #ifdef INET6
    458 	else if (tp->t_in6pcb)
    459 		so = tp->t_in6pcb->in6p_socket;
    460 #endif
    461 
    462 	TCP_REASS_LOCK_CHECK(tp);
    463 
    464 	/*
    465 	 * Call with th==0 after become established to
    466 	 * force pre-ESTABLISHED data up to user socket.
    467 	 */
    468 	if (th == 0)
    469 		goto present;
    470 
    471 	m_claimm(m, &tcp_reass_mowner);
    472 
    473 	rcvoobyte = *tlen;
    474 	/*
    475 	 * Copy these to local variables because the tcpiphdr
    476 	 * gets munged while we are collapsing mbufs.
    477 	 */
    478 	pkt_seq = th->th_seq;
    479 	pkt_len = *tlen;
    480 	pkt_flags = th->th_flags;
    481 
    482 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    483 
    484 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    485 		/*
    486 		 * When we miss a packet, the vast majority of time we get
    487 		 * packets that follow it in order.  So optimize for that.
    488 		 */
    489 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    490 			p->ipqe_len += pkt_len;
    491 			p->ipqe_flags |= pkt_flags;
    492 			m_cat(p->ipre_mlast, m);
    493 			TRAVERSE(p->ipre_mlast);
    494 			m = NULL;
    495 			tiqe = p;
    496 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    497 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    498 			goto skip_replacement;
    499 		}
    500 		/*
    501 		 * While we're here, if the pkt is completely beyond
    502 		 * anything we have, just insert it at the tail.
    503 		 */
    504 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    505 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    506 			goto insert_it;
    507 		}
    508 	}
    509 
    510 	q = TAILQ_FIRST(&tp->segq);
    511 
    512 	if (q != NULL) {
    513 		/*
    514 		 * If this segment immediately precedes the first out-of-order
    515 		 * block, simply slap the segment in front of it and (mostly)
    516 		 * skip the complicated logic.
    517 		 */
    518 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    519 			q->ipqe_seq = pkt_seq;
    520 			q->ipqe_len += pkt_len;
    521 			q->ipqe_flags |= pkt_flags;
    522 			m_cat(m, q->ipqe_m);
    523 			q->ipqe_m = m;
    524 			q->ipre_mlast = m; /* last mbuf may have changed */
    525 			TRAVERSE(q->ipre_mlast);
    526 			tiqe = q;
    527 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    528 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    529 			goto skip_replacement;
    530 		}
    531 	} else {
    532 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    533 	}
    534 
    535 	/*
    536 	 * Find a segment which begins after this one does.
    537 	 */
    538 	for (p = NULL; q != NULL; q = nq) {
    539 		nq = TAILQ_NEXT(q, ipqe_q);
    540 #ifdef TCP_REASS_COUNTERS
    541 		count++;
    542 #endif
    543 		/*
    544 		 * If the received segment is just right after this
    545 		 * fragment, merge the two together and then check
    546 		 * for further overlaps.
    547 		 */
    548 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    549 #ifdef TCPREASS_DEBUG
    550 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    551 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    552 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    553 #endif
    554 			pkt_len += q->ipqe_len;
    555 			pkt_flags |= q->ipqe_flags;
    556 			pkt_seq = q->ipqe_seq;
    557 			m_cat(q->ipre_mlast, m);
    558 			TRAVERSE(q->ipre_mlast);
    559 			m = q->ipqe_m;
    560 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    561 			goto free_ipqe;
    562 		}
    563 		/*
    564 		 * If the received segment is completely past this
    565 		 * fragment, we need to go the next fragment.
    566 		 */
    567 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    568 			p = q;
    569 			continue;
    570 		}
    571 		/*
    572 		 * If the fragment is past the received segment,
    573 		 * it (or any following) can't be concatenated.
    574 		 */
    575 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    576 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    577 			break;
    578 		}
    579 
    580 		/*
    581 		 * We've received all the data in this segment before.
    582 		 * mark it as a duplicate and return.
    583 		 */
    584 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    585 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    586 			tcps = TCP_STAT_GETREF();
    587 			tcps[TCP_STAT_RCVDUPPACK]++;
    588 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    589 			TCP_STAT_PUTREF();
    590 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    591 			m_freem(m);
    592 			if (tiqe != NULL) {
    593 				tcpipqent_free(tiqe);
    594 			}
    595 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    596 			goto out;
    597 		}
    598 		/*
    599 		 * Received segment completely overlaps this fragment
    600 		 * so we drop the fragment (this keeps the temporal
    601 		 * ordering of segments correct).
    602 		 */
    603 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    604 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    605 			rcvpartdupbyte += q->ipqe_len;
    606 			m_freem(q->ipqe_m);
    607 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    608 			goto free_ipqe;
    609 		}
    610 		/*
    611 		 * RX'ed segment extends past the end of the
    612 		 * fragment.  Drop the overlapping bytes.  Then
    613 		 * merge the fragment and segment then treat as
    614 		 * a longer received packet.
    615 		 */
    616 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    617 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    618 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    619 #ifdef TCPREASS_DEBUG
    620 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    621 			       tp, overlap,
    622 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    623 #endif
    624 			m_adj(m, overlap);
    625 			rcvpartdupbyte += overlap;
    626 			m_cat(q->ipre_mlast, m);
    627 			TRAVERSE(q->ipre_mlast);
    628 			m = q->ipqe_m;
    629 			pkt_seq = q->ipqe_seq;
    630 			pkt_len += q->ipqe_len - overlap;
    631 			rcvoobyte -= overlap;
    632 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    633 			goto free_ipqe;
    634 		}
    635 		/*
    636 		 * RX'ed segment extends past the front of the
    637 		 * fragment.  Drop the overlapping bytes on the
    638 		 * received packet.  The packet will then be
    639 		 * contatentated with this fragment a bit later.
    640 		 */
    641 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    642 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    643 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    644 #ifdef TCPREASS_DEBUG
    645 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    646 			       tp, overlap,
    647 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    648 #endif
    649 			m_adj(m, -overlap);
    650 			pkt_len -= overlap;
    651 			rcvpartdupbyte += overlap;
    652 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    653 			rcvoobyte -= overlap;
    654 		}
    655 		/*
    656 		 * If the received segment immediates precedes this
    657 		 * fragment then tack the fragment onto this segment
    658 		 * and reinsert the data.
    659 		 */
    660 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    661 #ifdef TCPREASS_DEBUG
    662 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    663 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    664 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    665 #endif
    666 			pkt_len += q->ipqe_len;
    667 			pkt_flags |= q->ipqe_flags;
    668 			m_cat(m, q->ipqe_m);
    669 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    670 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    671 			tp->t_segqlen--;
    672 			KASSERT(tp->t_segqlen >= 0);
    673 			KASSERT(tp->t_segqlen != 0 ||
    674 			    (TAILQ_EMPTY(&tp->segq) &&
    675 			    TAILQ_EMPTY(&tp->timeq)));
    676 			if (tiqe == NULL) {
    677 				tiqe = q;
    678 			} else {
    679 				tcpipqent_free(q);
    680 			}
    681 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    682 			break;
    683 		}
    684 		/*
    685 		 * If the fragment is before the segment, remember it.
    686 		 * When this loop is terminated, p will contain the
    687 		 * pointer to fragment that is right before the received
    688 		 * segment.
    689 		 */
    690 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    691 			p = q;
    692 
    693 		continue;
    694 
    695 		/*
    696 		 * This is a common operation.  It also will allow
    697 		 * to save doing a malloc/free in most instances.
    698 		 */
    699 	  free_ipqe:
    700 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    701 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    702 		tp->t_segqlen--;
    703 		KASSERT(tp->t_segqlen >= 0);
    704 		KASSERT(tp->t_segqlen != 0 ||
    705 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    706 		if (tiqe == NULL) {
    707 			tiqe = q;
    708 		} else {
    709 			tcpipqent_free(q);
    710 		}
    711 	}
    712 
    713 #ifdef TCP_REASS_COUNTERS
    714 	if (count > 7)
    715 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    716 	else if (count > 0)
    717 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    718 #endif
    719 
    720     insert_it:
    721 
    722 	/*
    723 	 * Allocate a new queue entry since the received segment did not
    724 	 * collapse onto any other out-of-order block; thus we are allocating
    725 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    726 	 * we would be reusing it.
    727 	 * XXX If we can't, just drop the packet.  XXX
    728 	 */
    729 	if (tiqe == NULL) {
    730 		tiqe = tcpipqent_alloc();
    731 		if (tiqe == NULL) {
    732 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    733 			m_freem(m);
    734 			goto out;
    735 		}
    736 	}
    737 
    738 	/*
    739 	 * Update the counters.
    740 	 */
    741 	tp->t_rcvoopack++;
    742 	tcps = TCP_STAT_GETREF();
    743 	tcps[TCP_STAT_RCVOOPACK]++;
    744 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    745 	if (rcvpartdupbyte) {
    746 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    747 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    748 	}
    749 	TCP_STAT_PUTREF();
    750 
    751 	/*
    752 	 * Insert the new fragment queue entry into both queues.
    753 	 */
    754 	tiqe->ipqe_m = m;
    755 	tiqe->ipre_mlast = m;
    756 	tiqe->ipqe_seq = pkt_seq;
    757 	tiqe->ipqe_len = pkt_len;
    758 	tiqe->ipqe_flags = pkt_flags;
    759 	if (p == NULL) {
    760 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    761 #ifdef TCPREASS_DEBUG
    762 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    763 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    764 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    765 #endif
    766 	} else {
    767 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    768 #ifdef TCPREASS_DEBUG
    769 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    770 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    771 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    772 #endif
    773 	}
    774 	tp->t_segqlen++;
    775 
    776 skip_replacement:
    777 
    778 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    779 
    780 present:
    781 	/*
    782 	 * Present data to user, advancing rcv_nxt through
    783 	 * completed sequence space.
    784 	 */
    785 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    786 		goto out;
    787 	q = TAILQ_FIRST(&tp->segq);
    788 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    789 		goto out;
    790 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    791 		goto out;
    792 
    793 	tp->rcv_nxt += q->ipqe_len;
    794 	pkt_flags = q->ipqe_flags & TH_FIN;
    795 	nd6_hint(tp);
    796 
    797 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    798 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    799 	tp->t_segqlen--;
    800 	KASSERT(tp->t_segqlen >= 0);
    801 	KASSERT(tp->t_segqlen != 0 ||
    802 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    803 	if (so->so_state & SS_CANTRCVMORE)
    804 		m_freem(q->ipqe_m);
    805 	else
    806 		sbappendstream(&so->so_rcv, q->ipqe_m);
    807 	tcpipqent_free(q);
    808 	TCP_REASS_UNLOCK(tp);
    809 	sorwakeup(so);
    810 	return (pkt_flags);
    811 out:
    812 	TCP_REASS_UNLOCK(tp);
    813 	return (0);
    814 }
    815 
    816 #ifdef INET6
    817 int
    818 tcp6_input(struct mbuf **mp, int *offp, int proto)
    819 {
    820 	struct mbuf *m = *mp;
    821 
    822 	/*
    823 	 * draft-itojun-ipv6-tcp-to-anycast
    824 	 * better place to put this in?
    825 	 */
    826 	if (m->m_flags & M_ANYCAST6) {
    827 		struct ip6_hdr *ip6;
    828 		if (m->m_len < sizeof(struct ip6_hdr)) {
    829 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    830 				TCP_STATINC(TCP_STAT_RCVSHORT);
    831 				return IPPROTO_DONE;
    832 			}
    833 		}
    834 		ip6 = mtod(m, struct ip6_hdr *);
    835 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    836 		    (char *)&ip6->ip6_dst - (char *)ip6);
    837 		return IPPROTO_DONE;
    838 	}
    839 
    840 	tcp_input(m, *offp, proto);
    841 	return IPPROTO_DONE;
    842 }
    843 #endif
    844 
    845 #ifdef INET
    846 static void
    847 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    848 {
    849 	char src[INET_ADDRSTRLEN];
    850 	char dst[INET_ADDRSTRLEN];
    851 
    852 	if (ip) {
    853 		in_print(src, sizeof(src), &ip->ip_src);
    854 		in_print(dst, sizeof(dst), &ip->ip_dst);
    855 	}
    856 	else {
    857 		strlcpy(src, "(unknown)", sizeof(src));
    858 		strlcpy(dst, "(unknown)", sizeof(dst));
    859 	}
    860 	log(LOG_INFO,
    861 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    862 	    dst, ntohs(th->th_dport),
    863 	    src, ntohs(th->th_sport));
    864 }
    865 #endif
    866 
    867 #ifdef INET6
    868 static void
    869 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    870 {
    871 	char src[INET6_ADDRSTRLEN];
    872 	char dst[INET6_ADDRSTRLEN];
    873 
    874 	if (ip6) {
    875 		in6_print(src, sizeof(src), &ip6->ip6_src);
    876 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    877 	}
    878 	else {
    879 		strlcpy(src, "(unknown v6)", sizeof(src));
    880 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    881 	}
    882 	log(LOG_INFO,
    883 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    884 	    dst, ntohs(th->th_dport),
    885 	    src, ntohs(th->th_sport));
    886 }
    887 #endif
    888 
    889 /*
    890  * Checksum extended TCP header and data.
    891  */
    892 int
    893 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    894     int toff, int off, int tlen)
    895 {
    896 
    897 	/*
    898 	 * XXX it's better to record and check if this mbuf is
    899 	 * already checked.
    900 	 */
    901 
    902 	switch (af) {
    903 #ifdef INET
    904 	case AF_INET:
    905 		switch (m->m_pkthdr.csum_flags &
    906 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    907 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    908 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    909 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    910 			goto badcsum;
    911 
    912 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    913 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    914 
    915 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    916 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    917 				const struct ip *ip =
    918 				    mtod(m, const struct ip *);
    919 
    920 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    921 				    ip->ip_dst.s_addr,
    922 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    923 			}
    924 			if ((hw_csum ^ 0xffff) != 0)
    925 				goto badcsum;
    926 			break;
    927 		}
    928 
    929 		case M_CSUM_TCPv4:
    930 			/* Checksum was okay. */
    931 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    932 			break;
    933 
    934 		default:
    935 			/*
    936 			 * Must compute it ourselves.  Maybe skip checksum
    937 			 * on loopback interfaces.
    938 			 */
    939 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    940 					     IFF_LOOPBACK) ||
    941 					   tcp_do_loopback_cksum)) {
    942 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    943 				if (in4_cksum(m, IPPROTO_TCP, toff,
    944 					      tlen + off) != 0)
    945 					goto badcsum;
    946 			}
    947 			break;
    948 		}
    949 		break;
    950 #endif /* INET4 */
    951 
    952 #ifdef INET6
    953 	case AF_INET6:
    954 		switch (m->m_pkthdr.csum_flags &
    955 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    956 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    957 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    958 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    959 			goto badcsum;
    960 
    961 #if 0 /* notyet */
    962 		case M_CSUM_TCPv6|M_CSUM_DATA:
    963 #endif
    964 
    965 		case M_CSUM_TCPv6:
    966 			/* Checksum was okay. */
    967 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    968 			break;
    969 
    970 		default:
    971 			/*
    972 			 * Must compute it ourselves.  Maybe skip checksum
    973 			 * on loopback interfaces.
    974 			 */
    975 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    976 			    tcp_do_loopback_cksum)) {
    977 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    978 				if (in6_cksum(m, IPPROTO_TCP, toff,
    979 				    tlen + off) != 0)
    980 					goto badcsum;
    981 			}
    982 		}
    983 		break;
    984 #endif /* INET6 */
    985 	}
    986 
    987 	return 0;
    988 
    989 badcsum:
    990 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    991 	return -1;
    992 }
    993 
    994 /* When a packet arrives addressed to a vestigial tcpbp, we
    995  * nevertheless have to respond to it per the spec.
    996  */
    997 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
    998 			  struct mbuf *m, int tlen, int multicast)
    999 {
   1000 	int		tiflags;
   1001 	int		todrop;
   1002 	uint32_t	t_flags = 0;
   1003 	uint64_t	*tcps;
   1004 
   1005 	tiflags = th->th_flags;
   1006 	todrop  = vp->rcv_nxt - th->th_seq;
   1007 
   1008 	if (todrop > 0) {
   1009 		if (tiflags & TH_SYN) {
   1010 			tiflags &= ~TH_SYN;
   1011 			++th->th_seq;
   1012 			if (th->th_urp > 1)
   1013 				--th->th_urp;
   1014 			else {
   1015 				tiflags &= ~TH_URG;
   1016 				th->th_urp = 0;
   1017 			}
   1018 			--todrop;
   1019 		}
   1020 		if (todrop > tlen ||
   1021 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1022 			/*
   1023 			 * Any valid FIN or RST must be to the left of the
   1024 			 * window.  At this point the FIN or RST must be a
   1025 			 * duplicate or out of sequence; drop it.
   1026 			 */
   1027 			if (tiflags & TH_RST)
   1028 				goto drop;
   1029 			tiflags &= ~(TH_FIN|TH_RST);
   1030 			/*
   1031 			 * Send an ACK to resynchronize and drop any data.
   1032 			 * But keep on processing for RST or ACK.
   1033 			 */
   1034 			t_flags |= TF_ACKNOW;
   1035 			todrop = tlen;
   1036 			tcps = TCP_STAT_GETREF();
   1037 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1038 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1039 			TCP_STAT_PUTREF();
   1040 		} else if ((tiflags & TH_RST)
   1041 			   && th->th_seq != vp->rcv_nxt) {
   1042 			/*
   1043 			 * Test for reset before adjusting the sequence
   1044 			 * number for overlapping data.
   1045 			 */
   1046 			goto dropafterack_ratelim;
   1047 		} else {
   1048 			tcps = TCP_STAT_GETREF();
   1049 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1050 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1051 			TCP_STAT_PUTREF();
   1052 		}
   1053 
   1054 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1055 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1056 
   1057 		th->th_seq += todrop;
   1058 		tlen -= todrop;
   1059 
   1060 		if (th->th_urp > todrop)
   1061 			th->th_urp -= todrop;
   1062 		else {
   1063 			tiflags &= ~TH_URG;
   1064 			th->th_urp = 0;
   1065 		}
   1066 	}
   1067 
   1068 	/*
   1069 	 * If new data are received on a connection after the
   1070 	 * user processes are gone, then RST the other end.
   1071 	 */
   1072 	if (tlen) {
   1073 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1074 		goto dropwithreset;
   1075 	}
   1076 
   1077 	/*
   1078 	 * If segment ends after window, drop trailing data
   1079 	 * (and PUSH and FIN); if nothing left, just ACK.
   1080 	 */
   1081 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
   1082 
   1083 	if (todrop > 0) {
   1084 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1085 		if (todrop >= tlen) {
   1086 			/*
   1087 			 * The segment actually starts after the window.
   1088 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1089 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1090 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1091 			 */
   1092 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1093 			/*
   1094 			 * If a new connection request is received
   1095 			 * while in TIME_WAIT, drop the old connection
   1096 			 * and start over if the sequence numbers
   1097 			 * are above the previous ones.
   1098 			 */
   1099 			if ((tiflags & TH_SYN)
   1100 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1101 				/* We only support this in the !NOFDREF case, which
   1102 				 * is to say: not here.
   1103 				 */
   1104 				goto dropwithreset;
   1105 			}
   1106 			/*
   1107 			 * If window is closed can only take segments at
   1108 			 * window edge, and have to drop data and PUSH from
   1109 			 * incoming segments.  Continue processing, but
   1110 			 * remember to ack.  Otherwise, drop segment
   1111 			 * and (if not RST) ack.
   1112 			 */
   1113 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1114 				t_flags |= TF_ACKNOW;
   1115 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1116 			} else
   1117 				goto dropafterack;
   1118 		} else
   1119 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1120 		m_adj(m, -todrop);
   1121 		tlen -= todrop;
   1122 		tiflags &= ~(TH_PUSH|TH_FIN);
   1123 	}
   1124 
   1125 	if (tiflags & TH_RST) {
   1126 		if (th->th_seq != vp->rcv_nxt)
   1127 			goto dropafterack_ratelim;
   1128 
   1129 		vtw_del(vp->ctl, vp->vtw);
   1130 		goto drop;
   1131 	}
   1132 
   1133 	/*
   1134 	 * If the ACK bit is off we drop the segment and return.
   1135 	 */
   1136 	if ((tiflags & TH_ACK) == 0) {
   1137 		if (t_flags & TF_ACKNOW)
   1138 			goto dropafterack;
   1139 		else
   1140 			goto drop;
   1141 	}
   1142 
   1143 	/*
   1144 	 * In TIME_WAIT state the only thing that should arrive
   1145 	 * is a retransmission of the remote FIN.  Acknowledge
   1146 	 * it and restart the finack timer.
   1147 	 */
   1148 	vtw_restart(vp);
   1149 	goto dropafterack;
   1150 
   1151 dropafterack:
   1152 	/*
   1153 	 * Generate an ACK dropping incoming segment if it occupies
   1154 	 * sequence space, where the ACK reflects our state.
   1155 	 */
   1156 	if (tiflags & TH_RST)
   1157 		goto drop;
   1158 	goto dropafterack2;
   1159 
   1160 dropafterack_ratelim:
   1161 	/*
   1162 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1163 	 */
   1164 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1165 			 tcp_ackdrop_ppslim) == 0) {
   1166 		/* XXX stat */
   1167 		goto drop;
   1168 	}
   1169 	/* ...fall into dropafterack2... */
   1170 
   1171 dropafterack2:
   1172 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
   1173 			  TH_ACK);
   1174 	return;
   1175 
   1176 dropwithreset:
   1177 	/*
   1178 	 * Generate a RST, dropping incoming segment.
   1179 	 * Make ACK acceptable to originator of segment.
   1180 	 */
   1181 	if (tiflags & TH_RST)
   1182 		goto drop;
   1183 
   1184 	if (tiflags & TH_ACK)
   1185 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1186 	else {
   1187 		if (tiflags & TH_SYN)
   1188 			++tlen;
   1189 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1190 				  TH_RST|TH_ACK);
   1191 	}
   1192 	return;
   1193 drop:
   1194 	m_freem(m);
   1195 }
   1196 
   1197 /*
   1198  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1199  */
   1200 void
   1201 tcp_input(struct mbuf *m, ...)
   1202 {
   1203 	struct tcphdr *th;
   1204 	struct ip *ip;
   1205 	struct inpcb *inp;
   1206 #ifdef INET6
   1207 	struct ip6_hdr *ip6;
   1208 	struct in6pcb *in6p;
   1209 #endif
   1210 	u_int8_t *optp = NULL;
   1211 	int optlen = 0;
   1212 	int len, tlen, toff, hdroptlen = 0;
   1213 	struct tcpcb *tp = 0;
   1214 	int tiflags;
   1215 	struct socket *so = NULL;
   1216 	int todrop, acked, ourfinisacked, needoutput = 0;
   1217 	bool dupseg;
   1218 #ifdef TCP_DEBUG
   1219 	short ostate = 0;
   1220 #endif
   1221 	u_long tiwin;
   1222 	struct tcp_opt_info opti;
   1223 	int off, iphlen;
   1224 	va_list ap;
   1225 	int af;		/* af on the wire */
   1226 	struct mbuf *tcp_saveti = NULL;
   1227 	uint32_t ts_rtt;
   1228 	uint8_t iptos;
   1229 	uint64_t *tcps;
   1230 	vestigial_inpcb_t vestige;
   1231 
   1232 	vestige.valid = 0;
   1233 
   1234 	MCLAIM(m, &tcp_rx_mowner);
   1235 	va_start(ap, m);
   1236 	toff = va_arg(ap, int);
   1237 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1238 	va_end(ap);
   1239 
   1240 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1241 
   1242 	memset(&opti, 0, sizeof(opti));
   1243 	opti.ts_present = 0;
   1244 	opti.maxseg = 0;
   1245 
   1246 	/*
   1247 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1248 	 *
   1249 	 * TCP is, by definition, unicast, so we reject all
   1250 	 * multicast outright.
   1251 	 *
   1252 	 * Note, there are additional src/dst address checks in
   1253 	 * the AF-specific code below.
   1254 	 */
   1255 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1256 		/* XXX stat */
   1257 		goto drop;
   1258 	}
   1259 #ifdef INET6
   1260 	if (m->m_flags & M_ANYCAST6) {
   1261 		/* XXX stat */
   1262 		goto drop;
   1263 	}
   1264 #endif
   1265 
   1266 	/*
   1267 	 * Get IP and TCP header.
   1268 	 * Note: IP leaves IP header in first mbuf.
   1269 	 */
   1270 	ip = mtod(m, struct ip *);
   1271 	switch (ip->ip_v) {
   1272 #ifdef INET
   1273 	case 4:
   1274 #ifdef INET6
   1275 		ip6 = NULL;
   1276 #endif
   1277 		af = AF_INET;
   1278 		iphlen = sizeof(struct ip);
   1279 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1280 			sizeof(struct tcphdr));
   1281 		if (th == NULL) {
   1282 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1283 			return;
   1284 		}
   1285 		/* We do the checksum after PCB lookup... */
   1286 		len = ntohs(ip->ip_len);
   1287 		tlen = len - toff;
   1288 		iptos = ip->ip_tos;
   1289 		break;
   1290 #endif
   1291 #ifdef INET6
   1292 	case 6:
   1293 		ip = NULL;
   1294 		iphlen = sizeof(struct ip6_hdr);
   1295 		af = AF_INET6;
   1296 		ip6 = mtod(m, struct ip6_hdr *);
   1297 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1298 			sizeof(struct tcphdr));
   1299 		if (th == NULL) {
   1300 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1301 			return;
   1302 		}
   1303 
   1304 		/* Be proactive about malicious use of IPv4 mapped address */
   1305 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1306 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1307 			/* XXX stat */
   1308 			goto drop;
   1309 		}
   1310 
   1311 		/*
   1312 		 * Be proactive about unspecified IPv6 address in source.
   1313 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1314 		 * unspecified IPv6 address can be used to confuse us.
   1315 		 *
   1316 		 * Note that packets with unspecified IPv6 destination is
   1317 		 * already dropped in ip6_input.
   1318 		 */
   1319 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1320 			/* XXX stat */
   1321 			goto drop;
   1322 		}
   1323 
   1324 		/*
   1325 		 * Make sure destination address is not multicast.
   1326 		 * Source address checked in ip6_input().
   1327 		 */
   1328 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1329 			/* XXX stat */
   1330 			goto drop;
   1331 		}
   1332 
   1333 		/* We do the checksum after PCB lookup... */
   1334 		len = m->m_pkthdr.len;
   1335 		tlen = len - toff;
   1336 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1337 		break;
   1338 #endif
   1339 	default:
   1340 		m_freem(m);
   1341 		return;
   1342 	}
   1343 
   1344 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1345 
   1346 	/*
   1347 	 * Check that TCP offset makes sense,
   1348 	 * pull out TCP options and adjust length.		XXX
   1349 	 */
   1350 	off = th->th_off << 2;
   1351 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1352 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1353 		goto drop;
   1354 	}
   1355 	tlen -= off;
   1356 
   1357 	/*
   1358 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1359 	 * length throughout the function.  Other functions can use
   1360 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1361 	 * rja
   1362 	 */
   1363 
   1364 	if (off > sizeof (struct tcphdr)) {
   1365 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1366 		if (th == NULL) {
   1367 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1368 			return;
   1369 		}
   1370 		/*
   1371 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1372 		 * (as they're before toff) and we don't need to update those.
   1373 		 */
   1374 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1375 		optlen = off - sizeof (struct tcphdr);
   1376 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1377 		/*
   1378 		 * Do quick retrieval of timestamp options ("options
   1379 		 * prediction?").  If timestamp is the only option and it's
   1380 		 * formatted as recommended in RFC 1323 appendix A, we
   1381 		 * quickly get the values now and not bother calling
   1382 		 * tcp_dooptions(), etc.
   1383 		 */
   1384 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1385 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1386 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1387 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1388 		     (th->th_flags & TH_SYN) == 0) {
   1389 			opti.ts_present = 1;
   1390 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1391 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1392 			optp = NULL;	/* we've parsed the options */
   1393 		}
   1394 	}
   1395 	tiflags = th->th_flags;
   1396 
   1397 	/*
   1398 	 * Locate pcb for segment.
   1399 	 */
   1400 findpcb:
   1401 	inp = NULL;
   1402 #ifdef INET6
   1403 	in6p = NULL;
   1404 #endif
   1405 	switch (af) {
   1406 #ifdef INET
   1407 	case AF_INET:
   1408 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1409 					   ip->ip_dst, th->th_dport,
   1410 					   &vestige);
   1411 		if (inp == 0 && !vestige.valid) {
   1412 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1413 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1414 		}
   1415 #ifdef INET6
   1416 		if (inp == 0 && !vestige.valid) {
   1417 			struct in6_addr s, d;
   1418 
   1419 			/* mapped addr case */
   1420 			memset(&s, 0, sizeof(s));
   1421 			s.s6_addr16[5] = htons(0xffff);
   1422 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1423 			memset(&d, 0, sizeof(d));
   1424 			d.s6_addr16[5] = htons(0xffff);
   1425 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1426 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1427 						     th->th_sport, &d, th->th_dport,
   1428 						     0, &vestige);
   1429 			if (in6p == 0 && !vestige.valid) {
   1430 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1431 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1432 				    th->th_dport, 0);
   1433 			}
   1434 		}
   1435 #endif
   1436 #ifndef INET6
   1437 		if (inp == 0 && !vestige.valid)
   1438 #else
   1439 		if (inp == 0 && in6p == 0 && !vestige.valid)
   1440 #endif
   1441 		{
   1442 			TCP_STATINC(TCP_STAT_NOPORT);
   1443 			if (tcp_log_refused &&
   1444 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1445 				tcp4_log_refused(ip, th);
   1446 			}
   1447 			tcp_fields_to_host(th);
   1448 			goto dropwithreset_ratelim;
   1449 		}
   1450 #if defined(IPSEC)
   1451 		if (ipsec_used) {
   1452 			if (inp &&
   1453 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
   1454 			    && ipsec4_in_reject(m, inp)) {
   1455 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1456 				goto drop;
   1457 			}
   1458 #ifdef INET6
   1459 			else if (in6p &&
   1460 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1461 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1462 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1463 				goto drop;
   1464 			}
   1465 #endif
   1466 		}
   1467 #endif /*IPSEC*/
   1468 		break;
   1469 #endif /*INET*/
   1470 #ifdef INET6
   1471 	case AF_INET6:
   1472 	    {
   1473 		int faith;
   1474 
   1475 #if defined(NFAITH) && NFAITH > 0
   1476 		faith = faithprefix(&ip6->ip6_dst);
   1477 #else
   1478 		faith = 0;
   1479 #endif
   1480 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1481 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1482 		if (!in6p && !vestige.valid) {
   1483 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1484 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1485 				th->th_dport, faith);
   1486 		}
   1487 		if (!in6p && !vestige.valid) {
   1488 			TCP_STATINC(TCP_STAT_NOPORT);
   1489 			if (tcp_log_refused &&
   1490 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1491 				tcp6_log_refused(ip6, th);
   1492 			}
   1493 			tcp_fields_to_host(th);
   1494 			goto dropwithreset_ratelim;
   1495 		}
   1496 #if defined(IPSEC)
   1497 		if (ipsec_used && in6p
   1498 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1499 		    && ipsec6_in_reject(m, in6p)) {
   1500 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1501 			goto drop;
   1502 		}
   1503 #endif /*IPSEC*/
   1504 		break;
   1505 	    }
   1506 #endif
   1507 	}
   1508 
   1509 	/*
   1510 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1511 	 * all data in the incoming segment is discarded.
   1512 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1513 	 * but should either do a listen or a connect soon.
   1514 	 */
   1515 	tp = NULL;
   1516 	so = NULL;
   1517 	if (inp) {
   1518 		/* Check the minimum TTL for socket. */
   1519 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1520 			goto drop;
   1521 
   1522 		tp = intotcpcb(inp);
   1523 		so = inp->inp_socket;
   1524 	}
   1525 #ifdef INET6
   1526 	else if (in6p) {
   1527 		tp = in6totcpcb(in6p);
   1528 		so = in6p->in6p_socket;
   1529 	}
   1530 #endif
   1531 	else if (vestige.valid) {
   1532 		int mc = 0;
   1533 
   1534 		/* We do not support the resurrection of vtw tcpcps.
   1535 		 */
   1536 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1537 			goto badcsum;
   1538 
   1539 		switch (af) {
   1540 #ifdef INET6
   1541 		case AF_INET6:
   1542 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
   1543 			break;
   1544 #endif
   1545 
   1546 		case AF_INET:
   1547 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
   1548 			      || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
   1549 			break;
   1550 		}
   1551 
   1552 		tcp_fields_to_host(th);
   1553 		tcp_vtw_input(th, &vestige, m, tlen, mc);
   1554 		m = 0;
   1555 		goto drop;
   1556 	}
   1557 
   1558 	if (tp == 0) {
   1559 		tcp_fields_to_host(th);
   1560 		goto dropwithreset_ratelim;
   1561 	}
   1562 	if (tp->t_state == TCPS_CLOSED)
   1563 		goto drop;
   1564 
   1565 	KASSERT(so->so_lock == softnet_lock);
   1566 	KASSERT(solocked(so));
   1567 
   1568 	/*
   1569 	 * Checksum extended TCP header and data.
   1570 	 */
   1571 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1572 		goto badcsum;
   1573 
   1574 	tcp_fields_to_host(th);
   1575 
   1576 	/* Unscale the window into a 32-bit value. */
   1577 	if ((tiflags & TH_SYN) == 0)
   1578 		tiwin = th->th_win << tp->snd_scale;
   1579 	else
   1580 		tiwin = th->th_win;
   1581 
   1582 #ifdef INET6
   1583 	/* save packet options if user wanted */
   1584 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1585 		if (in6p->in6p_options) {
   1586 			m_freem(in6p->in6p_options);
   1587 			in6p->in6p_options = 0;
   1588 		}
   1589 		KASSERT(ip6 != NULL);
   1590 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1591 	}
   1592 #endif
   1593 
   1594 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1595 		union syn_cache_sa src;
   1596 		union syn_cache_sa dst;
   1597 
   1598 		memset(&src, 0, sizeof(src));
   1599 		memset(&dst, 0, sizeof(dst));
   1600 		switch (af) {
   1601 #ifdef INET
   1602 		case AF_INET:
   1603 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1604 			src.sin.sin_family = AF_INET;
   1605 			src.sin.sin_addr = ip->ip_src;
   1606 			src.sin.sin_port = th->th_sport;
   1607 
   1608 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1609 			dst.sin.sin_family = AF_INET;
   1610 			dst.sin.sin_addr = ip->ip_dst;
   1611 			dst.sin.sin_port = th->th_dport;
   1612 			break;
   1613 #endif
   1614 #ifdef INET6
   1615 		case AF_INET6:
   1616 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1617 			src.sin6.sin6_family = AF_INET6;
   1618 			src.sin6.sin6_addr = ip6->ip6_src;
   1619 			src.sin6.sin6_port = th->th_sport;
   1620 
   1621 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1622 			dst.sin6.sin6_family = AF_INET6;
   1623 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1624 			dst.sin6.sin6_port = th->th_dport;
   1625 			break;
   1626 #endif /* INET6 */
   1627 		default:
   1628 			goto badsyn;	/*sanity*/
   1629 		}
   1630 
   1631 		if (so->so_options & SO_DEBUG) {
   1632 #ifdef TCP_DEBUG
   1633 			ostate = tp->t_state;
   1634 #endif
   1635 
   1636 			tcp_saveti = NULL;
   1637 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1638 				goto nosave;
   1639 
   1640 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1641 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1642 				if (!tcp_saveti)
   1643 					goto nosave;
   1644 			} else {
   1645 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1646 				if (!tcp_saveti)
   1647 					goto nosave;
   1648 				MCLAIM(m, &tcp_mowner);
   1649 				tcp_saveti->m_len = iphlen;
   1650 				m_copydata(m, 0, iphlen,
   1651 				    mtod(tcp_saveti, void *));
   1652 			}
   1653 
   1654 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1655 				m_freem(tcp_saveti);
   1656 				tcp_saveti = NULL;
   1657 			} else {
   1658 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1659 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1660 				    sizeof(struct tcphdr));
   1661 			}
   1662 	nosave:;
   1663 		}
   1664 		if (so->so_options & SO_ACCEPTCONN) {
   1665 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1666 				if (tiflags & TH_RST) {
   1667 					syn_cache_reset(&src.sa, &dst.sa, th);
   1668 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1669 				    (TH_ACK|TH_SYN)) {
   1670 					/*
   1671 					 * Received a SYN,ACK.  This should
   1672 					 * never happen while we are in
   1673 					 * LISTEN.  Send an RST.
   1674 					 */
   1675 					goto badsyn;
   1676 				} else if (tiflags & TH_ACK) {
   1677 					so = syn_cache_get(&src.sa, &dst.sa,
   1678 						th, toff, tlen, so, m);
   1679 					if (so == NULL) {
   1680 						/*
   1681 						 * We don't have a SYN for
   1682 						 * this ACK; send an RST.
   1683 						 */
   1684 						goto badsyn;
   1685 					} else if (so ==
   1686 					    (struct socket *)(-1)) {
   1687 						/*
   1688 						 * We were unable to create
   1689 						 * the connection.  If the
   1690 						 * 3-way handshake was
   1691 						 * completed, and RST has
   1692 						 * been sent to the peer.
   1693 						 * Since the mbuf might be
   1694 						 * in use for the reply,
   1695 						 * do not free it.
   1696 						 */
   1697 						m = NULL;
   1698 					} else {
   1699 						/*
   1700 						 * We have created a
   1701 						 * full-blown connection.
   1702 						 */
   1703 						tp = NULL;
   1704 						inp = NULL;
   1705 #ifdef INET6
   1706 						in6p = NULL;
   1707 #endif
   1708 						switch (so->so_proto->pr_domain->dom_family) {
   1709 #ifdef INET
   1710 						case AF_INET:
   1711 							inp = sotoinpcb(so);
   1712 							tp = intotcpcb(inp);
   1713 							break;
   1714 #endif
   1715 #ifdef INET6
   1716 						case AF_INET6:
   1717 							in6p = sotoin6pcb(so);
   1718 							tp = in6totcpcb(in6p);
   1719 							break;
   1720 #endif
   1721 						}
   1722 						if (tp == NULL)
   1723 							goto badsyn;	/*XXX*/
   1724 						tiwin <<= tp->snd_scale;
   1725 						goto after_listen;
   1726 					}
   1727 				} else {
   1728 					/*
   1729 					 * None of RST, SYN or ACK was set.
   1730 					 * This is an invalid packet for a
   1731 					 * TCB in LISTEN state.  Send a RST.
   1732 					 */
   1733 					goto badsyn;
   1734 				}
   1735 			} else {
   1736 				/*
   1737 				 * Received a SYN.
   1738 				 *
   1739 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1740 				 */
   1741 				if (m->m_flags & (M_BCAST|M_MCAST))
   1742 					goto drop;
   1743 
   1744 				switch (af) {
   1745 #ifdef INET6
   1746 				case AF_INET6:
   1747 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1748 						goto drop;
   1749 					break;
   1750 #endif /* INET6 */
   1751 				case AF_INET:
   1752 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1753 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1754 						goto drop;
   1755 				break;
   1756 				}
   1757 
   1758 #ifdef INET6
   1759 				/*
   1760 				 * If deprecated address is forbidden, we do
   1761 				 * not accept SYN to deprecated interface
   1762 				 * address to prevent any new inbound
   1763 				 * connection from getting established.
   1764 				 * When we do not accept SYN, we send a TCP
   1765 				 * RST, with deprecated source address (instead
   1766 				 * of dropping it).  We compromise it as it is
   1767 				 * much better for peer to send a RST, and
   1768 				 * RST will be the final packet for the
   1769 				 * exchange.
   1770 				 *
   1771 				 * If we do not forbid deprecated addresses, we
   1772 				 * accept the SYN packet.  RFC2462 does not
   1773 				 * suggest dropping SYN in this case.
   1774 				 * If we decipher RFC2462 5.5.4, it says like
   1775 				 * this:
   1776 				 * 1. use of deprecated addr with existing
   1777 				 *    communication is okay - "SHOULD continue
   1778 				 *    to be used"
   1779 				 * 2. use of it with new communication:
   1780 				 *   (2a) "SHOULD NOT be used if alternate
   1781 				 *        address with sufficient scope is
   1782 				 *        available"
   1783 				 *   (2b) nothing mentioned otherwise.
   1784 				 * Here we fall into (2b) case as we have no
   1785 				 * choice in our source address selection - we
   1786 				 * must obey the peer.
   1787 				 *
   1788 				 * The wording in RFC2462 is confusing, and
   1789 				 * there are multiple description text for
   1790 				 * deprecated address handling - worse, they
   1791 				 * are not exactly the same.  I believe 5.5.4
   1792 				 * is the best one, so we follow 5.5.4.
   1793 				 */
   1794 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1795 					struct in6_ifaddr *ia6;
   1796 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1797 					    &ip6->ip6_dst)) &&
   1798 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1799 						tp = NULL;
   1800 						goto dropwithreset;
   1801 					}
   1802 				}
   1803 #endif
   1804 
   1805 #if defined(IPSEC)
   1806 				if (ipsec_used) {
   1807 					switch (af) {
   1808 #ifdef INET
   1809 					case AF_INET:
   1810 						if (!ipsec4_in_reject_so(m, so))
   1811 							break;
   1812 						IPSEC_STATINC(
   1813 						    IPSEC_STAT_IN_POLVIO);
   1814 						tp = NULL;
   1815 						goto dropwithreset;
   1816 #endif
   1817 #ifdef INET6
   1818 					case AF_INET6:
   1819 						if (!ipsec6_in_reject_so(m, so))
   1820 							break;
   1821 						IPSEC6_STATINC(
   1822 						    IPSEC_STAT_IN_POLVIO);
   1823 						tp = NULL;
   1824 						goto dropwithreset;
   1825 #endif /*INET6*/
   1826 					}
   1827 				}
   1828 #endif /*IPSEC*/
   1829 
   1830 				/*
   1831 				 * LISTEN socket received a SYN
   1832 				 * from itself?  This can't possibly
   1833 				 * be valid; drop the packet.
   1834 				 */
   1835 				if (th->th_sport == th->th_dport) {
   1836 					int i;
   1837 
   1838 					switch (af) {
   1839 #ifdef INET
   1840 					case AF_INET:
   1841 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1842 						break;
   1843 #endif
   1844 #ifdef INET6
   1845 					case AF_INET6:
   1846 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1847 						break;
   1848 #endif
   1849 					default:
   1850 						i = 1;
   1851 					}
   1852 					if (i) {
   1853 						TCP_STATINC(TCP_STAT_BADSYN);
   1854 						goto drop;
   1855 					}
   1856 				}
   1857 
   1858 				/*
   1859 				 * SYN looks ok; create compressed TCP
   1860 				 * state for it.
   1861 				 */
   1862 				if (so->so_qlen <= so->so_qlimit &&
   1863 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1864 						so, m, optp, optlen, &opti))
   1865 					m = NULL;
   1866 			}
   1867 			goto drop;
   1868 		}
   1869 	}
   1870 
   1871 after_listen:
   1872 #ifdef DIAGNOSTIC
   1873 	/*
   1874 	 * Should not happen now that all embryonic connections
   1875 	 * are handled with compressed state.
   1876 	 */
   1877 	if (tp->t_state == TCPS_LISTEN)
   1878 		panic("tcp_input: TCPS_LISTEN");
   1879 #endif
   1880 
   1881 	/*
   1882 	 * Segment received on connection.
   1883 	 * Reset idle time and keep-alive timer.
   1884 	 */
   1885 	tp->t_rcvtime = tcp_now;
   1886 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1887 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1888 
   1889 	/*
   1890 	 * Process options.
   1891 	 */
   1892 #ifdef TCP_SIGNATURE
   1893 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1894 #else
   1895 	if (optp)
   1896 #endif
   1897 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1898 			goto drop;
   1899 
   1900 	if (TCP_SACK_ENABLED(tp)) {
   1901 		tcp_del_sackholes(tp, th);
   1902 	}
   1903 
   1904 	if (TCP_ECN_ALLOWED(tp)) {
   1905 		if (tiflags & TH_CWR) {
   1906 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1907 		}
   1908 		switch (iptos & IPTOS_ECN_MASK) {
   1909 		case IPTOS_ECN_CE:
   1910 			tp->t_flags |= TF_ECN_SND_ECE;
   1911 			TCP_STATINC(TCP_STAT_ECN_CE);
   1912 			break;
   1913 		case IPTOS_ECN_ECT0:
   1914 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1915 			break;
   1916 		case IPTOS_ECN_ECT1:
   1917 			/* XXX: ignore for now -- rpaulo */
   1918 			break;
   1919 		}
   1920 		/*
   1921 		 * Congestion experienced.
   1922 		 * Ignore if we are already trying to recover.
   1923 		 */
   1924 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1925 			tp->t_congctl->cong_exp(tp);
   1926 	}
   1927 
   1928 	if (opti.ts_present && opti.ts_ecr) {
   1929 		/*
   1930 		 * Calculate the RTT from the returned time stamp and the
   1931 		 * connection's time base.  If the time stamp is later than
   1932 		 * the current time, or is extremely old, fall back to non-1323
   1933 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1934 		 * at the same time.
   1935 		 *
   1936 		 * Note that ts_rtt is in units of slow ticks (500
   1937 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1938 		 * observed values will have large quantization noise.
   1939 		 * Our smoothed RTT is then the fraction of observed
   1940 		 * samples that are 1 tick instead of 0 (times 500
   1941 		 * ms).
   1942 		 *
   1943 		 * ts_rtt is increased by 1 to denote a valid sample,
   1944 		 * with 0 indicating an invalid measurement.  This
   1945 		 * extra 1 must be removed when ts_rtt is used, or
   1946 		 * else an an erroneous extra 500 ms will result.
   1947 		 */
   1948 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1949 		if (ts_rtt > TCP_PAWS_IDLE)
   1950 			ts_rtt = 0;
   1951 	} else {
   1952 		ts_rtt = 0;
   1953 	}
   1954 
   1955 	/*
   1956 	 * Header prediction: check for the two common cases
   1957 	 * of a uni-directional data xfer.  If the packet has
   1958 	 * no control flags, is in-sequence, the window didn't
   1959 	 * change and we're not retransmitting, it's a
   1960 	 * candidate.  If the length is zero and the ack moved
   1961 	 * forward, we're the sender side of the xfer.  Just
   1962 	 * free the data acked & wake any higher level process
   1963 	 * that was blocked waiting for space.  If the length
   1964 	 * is non-zero and the ack didn't move, we're the
   1965 	 * receiver side.  If we're getting packets in-order
   1966 	 * (the reassembly queue is empty), add the data to
   1967 	 * the socket buffer and note that we need a delayed ack.
   1968 	 */
   1969 	if (tp->t_state == TCPS_ESTABLISHED &&
   1970 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1971 	        == TH_ACK &&
   1972 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1973 	    th->th_seq == tp->rcv_nxt &&
   1974 	    tiwin && tiwin == tp->snd_wnd &&
   1975 	    tp->snd_nxt == tp->snd_max) {
   1976 
   1977 		/*
   1978 		 * If last ACK falls within this segment's sequence numbers,
   1979 		 * record the timestamp.
   1980 		 * NOTE that the test is modified according to the latest
   1981 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1982 		 *
   1983 		 * note that we already know
   1984 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1985 		 */
   1986 		if (opti.ts_present &&
   1987 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1988 			tp->ts_recent_age = tcp_now;
   1989 			tp->ts_recent = opti.ts_val;
   1990 		}
   1991 
   1992 		if (tlen == 0) {
   1993 			/* Ack prediction. */
   1994 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1995 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1996 			    tp->snd_cwnd >= tp->snd_wnd &&
   1997 			    tp->t_partialacks < 0) {
   1998 				/*
   1999 				 * this is a pure ack for outstanding data.
   2000 				 */
   2001 				if (ts_rtt)
   2002 					tcp_xmit_timer(tp, ts_rtt - 1);
   2003 				else if (tp->t_rtttime &&
   2004 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   2005 					tcp_xmit_timer(tp,
   2006 					  tcp_now - tp->t_rtttime);
   2007 				acked = th->th_ack - tp->snd_una;
   2008 				tcps = TCP_STAT_GETREF();
   2009 				tcps[TCP_STAT_PREDACK]++;
   2010 				tcps[TCP_STAT_RCVACKPACK]++;
   2011 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   2012 				TCP_STAT_PUTREF();
   2013 				nd6_hint(tp);
   2014 
   2015 				if (acked > (tp->t_lastoff - tp->t_inoff))
   2016 					tp->t_lastm = NULL;
   2017 				sbdrop(&so->so_snd, acked);
   2018 				tp->t_lastoff -= acked;
   2019 
   2020 				icmp_check(tp, th, acked);
   2021 
   2022 				tp->snd_una = th->th_ack;
   2023 				tp->snd_fack = tp->snd_una;
   2024 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   2025 					tp->snd_high = tp->snd_una;
   2026 				m_freem(m);
   2027 
   2028 				/*
   2029 				 * If all outstanding data are acked, stop
   2030 				 * retransmit timer, otherwise restart timer
   2031 				 * using current (possibly backed-off) value.
   2032 				 * If process is waiting for space,
   2033 				 * wakeup/selnotify/signal.  If data
   2034 				 * are ready to send, let tcp_output
   2035 				 * decide between more output or persist.
   2036 				 */
   2037 				if (tp->snd_una == tp->snd_max)
   2038 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2039 				else if (TCP_TIMER_ISARMED(tp,
   2040 				    TCPT_PERSIST) == 0)
   2041 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   2042 					    tp->t_rxtcur);
   2043 
   2044 				sowwakeup(so);
   2045 				if (so->so_snd.sb_cc) {
   2046 					KERNEL_LOCK(1, NULL);
   2047 					(void) tcp_output(tp);
   2048 					KERNEL_UNLOCK_ONE(NULL);
   2049 				}
   2050 				if (tcp_saveti)
   2051 					m_freem(tcp_saveti);
   2052 				return;
   2053 			}
   2054 		} else if (th->th_ack == tp->snd_una &&
   2055 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2056 		    tlen <= sbspace(&so->so_rcv)) {
   2057 			int newsize = 0;	/* automatic sockbuf scaling */
   2058 
   2059 			/*
   2060 			 * this is a pure, in-sequence data packet
   2061 			 * with nothing on the reassembly queue and
   2062 			 * we have enough buffer space to take it.
   2063 			 */
   2064 			tp->rcv_nxt += tlen;
   2065 			tcps = TCP_STAT_GETREF();
   2066 			tcps[TCP_STAT_PREDDAT]++;
   2067 			tcps[TCP_STAT_RCVPACK]++;
   2068 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2069 			TCP_STAT_PUTREF();
   2070 			nd6_hint(tp);
   2071 
   2072 		/*
   2073 		 * Automatic sizing enables the performance of large buffers
   2074 		 * and most of the efficiency of small ones by only allocating
   2075 		 * space when it is needed.
   2076 		 *
   2077 		 * On the receive side the socket buffer memory is only rarely
   2078 		 * used to any significant extent.  This allows us to be much
   2079 		 * more aggressive in scaling the receive socket buffer.  For
   2080 		 * the case that the buffer space is actually used to a large
   2081 		 * extent and we run out of kernel memory we can simply drop
   2082 		 * the new segments; TCP on the sender will just retransmit it
   2083 		 * later.  Setting the buffer size too big may only consume too
   2084 		 * much kernel memory if the application doesn't read() from
   2085 		 * the socket or packet loss or reordering makes use of the
   2086 		 * reassembly queue.
   2087 		 *
   2088 		 * The criteria to step up the receive buffer one notch are:
   2089 		 *  1. the number of bytes received during the time it takes
   2090 		 *     one timestamp to be reflected back to us (the RTT);
   2091 		 *  2. received bytes per RTT is within seven eighth of the
   2092 		 *     current socket buffer size;
   2093 		 *  3. receive buffer size has not hit maximal automatic size;
   2094 		 *
   2095 		 * This algorithm does one step per RTT at most and only if
   2096 		 * we receive a bulk stream w/o packet losses or reorderings.
   2097 		 * Shrinking the buffer during idle times is not necessary as
   2098 		 * it doesn't consume any memory when idle.
   2099 		 *
   2100 		 * TODO: Only step up if the application is actually serving
   2101 		 * the buffer to better manage the socket buffer resources.
   2102 		 */
   2103 			if (tcp_do_autorcvbuf &&
   2104 			    opti.ts_ecr &&
   2105 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2106 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2107 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2108 					if (tp->rfbuf_cnt >
   2109 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2110 					    so->so_rcv.sb_hiwat <
   2111 					    tcp_autorcvbuf_max) {
   2112 						newsize =
   2113 						    min(so->so_rcv.sb_hiwat +
   2114 						    tcp_autorcvbuf_inc,
   2115 						    tcp_autorcvbuf_max);
   2116 					}
   2117 					/* Start over with next RTT. */
   2118 					tp->rfbuf_ts = 0;
   2119 					tp->rfbuf_cnt = 0;
   2120 				} else
   2121 					tp->rfbuf_cnt += tlen;	/* add up */
   2122 			}
   2123 
   2124 			/*
   2125 			 * Drop TCP, IP headers and TCP options then add data
   2126 			 * to socket buffer.
   2127 			 */
   2128 			if (so->so_state & SS_CANTRCVMORE)
   2129 				m_freem(m);
   2130 			else {
   2131 				/*
   2132 				 * Set new socket buffer size.
   2133 				 * Give up when limit is reached.
   2134 				 */
   2135 				if (newsize)
   2136 					if (!sbreserve(&so->so_rcv,
   2137 					    newsize, so))
   2138 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2139 				m_adj(m, toff + off);
   2140 				sbappendstream(&so->so_rcv, m);
   2141 			}
   2142 			sorwakeup(so);
   2143 			tcp_setup_ack(tp, th);
   2144 			if (tp->t_flags & TF_ACKNOW) {
   2145 				KERNEL_LOCK(1, NULL);
   2146 				(void) tcp_output(tp);
   2147 				KERNEL_UNLOCK_ONE(NULL);
   2148 			}
   2149 			if (tcp_saveti)
   2150 				m_freem(tcp_saveti);
   2151 			return;
   2152 		}
   2153 	}
   2154 
   2155 	/*
   2156 	 * Compute mbuf offset to TCP data segment.
   2157 	 */
   2158 	hdroptlen = toff + off;
   2159 
   2160 	/*
   2161 	 * Calculate amount of space in receive window,
   2162 	 * and then do TCP input processing.
   2163 	 * Receive window is amount of space in rcv queue,
   2164 	 * but not less than advertised window.
   2165 	 */
   2166 	{ int win;
   2167 
   2168 	win = sbspace(&so->so_rcv);
   2169 	if (win < 0)
   2170 		win = 0;
   2171 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2172 	}
   2173 
   2174 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2175 	tp->rfbuf_ts = 0;
   2176 	tp->rfbuf_cnt = 0;
   2177 
   2178 	switch (tp->t_state) {
   2179 	/*
   2180 	 * If the state is SYN_SENT:
   2181 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2182 	 *	if seg contains a RST, then drop the connection.
   2183 	 *	if seg does not contain SYN, then drop it.
   2184 	 * Otherwise this is an acceptable SYN segment
   2185 	 *	initialize tp->rcv_nxt and tp->irs
   2186 	 *	if seg contains ack then advance tp->snd_una
   2187 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2188 	 *	    is ECN capable.
   2189 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2190 	 *	arrange for segment to be acked (eventually)
   2191 	 *	continue processing rest of data/controls, beginning with URG
   2192 	 */
   2193 	case TCPS_SYN_SENT:
   2194 		if ((tiflags & TH_ACK) &&
   2195 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2196 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2197 			goto dropwithreset;
   2198 		if (tiflags & TH_RST) {
   2199 			if (tiflags & TH_ACK)
   2200 				tp = tcp_drop(tp, ECONNREFUSED);
   2201 			goto drop;
   2202 		}
   2203 		if ((tiflags & TH_SYN) == 0)
   2204 			goto drop;
   2205 		if (tiflags & TH_ACK) {
   2206 			tp->snd_una = th->th_ack;
   2207 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2208 				tp->snd_nxt = tp->snd_una;
   2209 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2210 				tp->snd_high = tp->snd_una;
   2211 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2212 
   2213 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2214 				tp->t_flags |= TF_ECN_PERMIT;
   2215 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2216 			}
   2217 
   2218 		}
   2219 		tp->irs = th->th_seq;
   2220 		tcp_rcvseqinit(tp);
   2221 		tp->t_flags |= TF_ACKNOW;
   2222 		tcp_mss_from_peer(tp, opti.maxseg);
   2223 
   2224 		/*
   2225 		 * Initialize the initial congestion window.  If we
   2226 		 * had to retransmit the SYN, we must initialize cwnd
   2227 		 * to 1 segment (i.e. the Loss Window).
   2228 		 */
   2229 		if (tp->t_flags & TF_SYN_REXMT)
   2230 			tp->snd_cwnd = tp->t_peermss;
   2231 		else {
   2232 			int ss = tcp_init_win;
   2233 #ifdef INET
   2234 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2235 				ss = tcp_init_win_local;
   2236 #endif
   2237 #ifdef INET6
   2238 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2239 				ss = tcp_init_win_local;
   2240 #endif
   2241 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2242 		}
   2243 
   2244 		tcp_rmx_rtt(tp);
   2245 		if (tiflags & TH_ACK) {
   2246 			TCP_STATINC(TCP_STAT_CONNECTS);
   2247 			/*
   2248 			 * move tcp_established before soisconnected
   2249 			 * because upcall handler can drive tcp_output
   2250 			 * functionality.
   2251 			 * XXX we might call soisconnected at the end of
   2252 			 * all processing
   2253 			 */
   2254 			tcp_established(tp);
   2255 			soisconnected(so);
   2256 			/* Do window scaling on this connection? */
   2257 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2258 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2259 				tp->snd_scale = tp->requested_s_scale;
   2260 				tp->rcv_scale = tp->request_r_scale;
   2261 			}
   2262 			TCP_REASS_LOCK(tp);
   2263 			(void) tcp_reass(tp, NULL, NULL, &tlen);
   2264 			/*
   2265 			 * if we didn't have to retransmit the SYN,
   2266 			 * use its rtt as our initial srtt & rtt var.
   2267 			 */
   2268 			if (tp->t_rtttime)
   2269 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2270 		} else
   2271 			tp->t_state = TCPS_SYN_RECEIVED;
   2272 
   2273 		/*
   2274 		 * Advance th->th_seq to correspond to first data byte.
   2275 		 * If data, trim to stay within window,
   2276 		 * dropping FIN if necessary.
   2277 		 */
   2278 		th->th_seq++;
   2279 		if (tlen > tp->rcv_wnd) {
   2280 			todrop = tlen - tp->rcv_wnd;
   2281 			m_adj(m, -todrop);
   2282 			tlen = tp->rcv_wnd;
   2283 			tiflags &= ~TH_FIN;
   2284 			tcps = TCP_STAT_GETREF();
   2285 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2286 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2287 			TCP_STAT_PUTREF();
   2288 		}
   2289 		tp->snd_wl1 = th->th_seq - 1;
   2290 		tp->rcv_up = th->th_seq;
   2291 		goto step6;
   2292 
   2293 	/*
   2294 	 * If the state is SYN_RECEIVED:
   2295 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2296 	 *	and generate an RST.  See page 36, rfc793
   2297 	 */
   2298 	case TCPS_SYN_RECEIVED:
   2299 		if ((tiflags & TH_ACK) &&
   2300 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2301 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2302 			goto dropwithreset;
   2303 		break;
   2304 	}
   2305 
   2306 	/*
   2307 	 * States other than LISTEN or SYN_SENT.
   2308 	 * First check timestamp, if present.
   2309 	 * Then check that at least some bytes of segment are within
   2310 	 * receive window.  If segment begins before rcv_nxt,
   2311 	 * drop leading data (and SYN); if nothing left, just ack.
   2312 	 *
   2313 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2314 	 * and it's less than ts_recent, drop it.
   2315 	 */
   2316 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2317 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2318 
   2319 		/* Check to see if ts_recent is over 24 days old.  */
   2320 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2321 			/*
   2322 			 * Invalidate ts_recent.  If this segment updates
   2323 			 * ts_recent, the age will be reset later and ts_recent
   2324 			 * will get a valid value.  If it does not, setting
   2325 			 * ts_recent to zero will at least satisfy the
   2326 			 * requirement that zero be placed in the timestamp
   2327 			 * echo reply when ts_recent isn't valid.  The
   2328 			 * age isn't reset until we get a valid ts_recent
   2329 			 * because we don't want out-of-order segments to be
   2330 			 * dropped when ts_recent is old.
   2331 			 */
   2332 			tp->ts_recent = 0;
   2333 		} else {
   2334 			tcps = TCP_STAT_GETREF();
   2335 			tcps[TCP_STAT_RCVDUPPACK]++;
   2336 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2337 			tcps[TCP_STAT_PAWSDROP]++;
   2338 			TCP_STAT_PUTREF();
   2339 			tcp_new_dsack(tp, th->th_seq, tlen);
   2340 			goto dropafterack;
   2341 		}
   2342 	}
   2343 
   2344 	todrop = tp->rcv_nxt - th->th_seq;
   2345 	dupseg = false;
   2346 	if (todrop > 0) {
   2347 		if (tiflags & TH_SYN) {
   2348 			tiflags &= ~TH_SYN;
   2349 			th->th_seq++;
   2350 			if (th->th_urp > 1)
   2351 				th->th_urp--;
   2352 			else {
   2353 				tiflags &= ~TH_URG;
   2354 				th->th_urp = 0;
   2355 			}
   2356 			todrop--;
   2357 		}
   2358 		if (todrop > tlen ||
   2359 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2360 			/*
   2361 			 * Any valid FIN or RST must be to the left of the
   2362 			 * window.  At this point the FIN or RST must be a
   2363 			 * duplicate or out of sequence; drop it.
   2364 			 */
   2365 			if (tiflags & TH_RST)
   2366 				goto drop;
   2367 			tiflags &= ~(TH_FIN|TH_RST);
   2368 			/*
   2369 			 * Send an ACK to resynchronize and drop any data.
   2370 			 * But keep on processing for RST or ACK.
   2371 			 */
   2372 			tp->t_flags |= TF_ACKNOW;
   2373 			todrop = tlen;
   2374 			dupseg = true;
   2375 			tcps = TCP_STAT_GETREF();
   2376 			tcps[TCP_STAT_RCVDUPPACK]++;
   2377 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2378 			TCP_STAT_PUTREF();
   2379 		} else if ((tiflags & TH_RST) &&
   2380 			   th->th_seq != tp->rcv_nxt) {
   2381 			/*
   2382 			 * Test for reset before adjusting the sequence
   2383 			 * number for overlapping data.
   2384 			 */
   2385 			goto dropafterack_ratelim;
   2386 		} else {
   2387 			tcps = TCP_STAT_GETREF();
   2388 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2389 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2390 			TCP_STAT_PUTREF();
   2391 		}
   2392 		tcp_new_dsack(tp, th->th_seq, todrop);
   2393 		hdroptlen += todrop;	/*drop from head afterwards*/
   2394 		th->th_seq += todrop;
   2395 		tlen -= todrop;
   2396 		if (th->th_urp > todrop)
   2397 			th->th_urp -= todrop;
   2398 		else {
   2399 			tiflags &= ~TH_URG;
   2400 			th->th_urp = 0;
   2401 		}
   2402 	}
   2403 
   2404 	/*
   2405 	 * If new data are received on a connection after the
   2406 	 * user processes are gone, then RST the other end.
   2407 	 */
   2408 	if ((so->so_state & SS_NOFDREF) &&
   2409 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2410 		tp = tcp_close(tp);
   2411 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2412 		goto dropwithreset;
   2413 	}
   2414 
   2415 	/*
   2416 	 * If segment ends after window, drop trailing data
   2417 	 * (and PUSH and FIN); if nothing left, just ACK.
   2418 	 */
   2419 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2420 	if (todrop > 0) {
   2421 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2422 		if (todrop >= tlen) {
   2423 			/*
   2424 			 * The segment actually starts after the window.
   2425 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2426 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2427 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2428 			 */
   2429 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2430 			/*
   2431 			 * If a new connection request is received
   2432 			 * while in TIME_WAIT, drop the old connection
   2433 			 * and start over if the sequence numbers
   2434 			 * are above the previous ones.
   2435 			 *
   2436 			 * NOTE: We will checksum the packet again, and
   2437 			 * so we need to put the header fields back into
   2438 			 * network order!
   2439 			 * XXX This kind of sucks, but we don't expect
   2440 			 * XXX this to happen very often, so maybe it
   2441 			 * XXX doesn't matter so much.
   2442 			 */
   2443 			if (tiflags & TH_SYN &&
   2444 			    tp->t_state == TCPS_TIME_WAIT &&
   2445 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2446 				tp = tcp_close(tp);
   2447 				tcp_fields_to_net(th);
   2448 				goto findpcb;
   2449 			}
   2450 			/*
   2451 			 * If window is closed can only take segments at
   2452 			 * window edge, and have to drop data and PUSH from
   2453 			 * incoming segments.  Continue processing, but
   2454 			 * remember to ack.  Otherwise, drop segment
   2455 			 * and (if not RST) ack.
   2456 			 */
   2457 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2458 				tp->t_flags |= TF_ACKNOW;
   2459 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2460 			} else
   2461 				goto dropafterack;
   2462 		} else
   2463 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2464 		m_adj(m, -todrop);
   2465 		tlen -= todrop;
   2466 		tiflags &= ~(TH_PUSH|TH_FIN);
   2467 	}
   2468 
   2469 	/*
   2470 	 * If last ACK falls within this segment's sequence numbers,
   2471 	 *  record the timestamp.
   2472 	 * NOTE:
   2473 	 * 1) That the test incorporates suggestions from the latest
   2474 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2475 	 * 2) That updating only on newer timestamps interferes with
   2476 	 *    our earlier PAWS tests, so this check should be solely
   2477 	 *    predicated on the sequence space of this segment.
   2478 	 * 3) That we modify the segment boundary check to be
   2479 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2480 	 *    instead of RFC1323's
   2481 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2482 	 *    This modified check allows us to overcome RFC1323's
   2483 	 *    limitations as described in Stevens TCP/IP Illustrated
   2484 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2485 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2486 	 */
   2487 	if (opti.ts_present &&
   2488 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2489 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2490 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2491 		tp->ts_recent_age = tcp_now;
   2492 		tp->ts_recent = opti.ts_val;
   2493 	}
   2494 
   2495 	/*
   2496 	 * If the RST bit is set examine the state:
   2497 	 *    SYN_RECEIVED STATE:
   2498 	 *	If passive open, return to LISTEN state.
   2499 	 *	If active open, inform user that connection was refused.
   2500 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2501 	 *	Inform user that connection was reset, and close tcb.
   2502 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2503 	 *	Close the tcb.
   2504 	 */
   2505 	if (tiflags & TH_RST) {
   2506 		if (th->th_seq != tp->rcv_nxt)
   2507 			goto dropafterack_ratelim;
   2508 
   2509 		switch (tp->t_state) {
   2510 		case TCPS_SYN_RECEIVED:
   2511 			so->so_error = ECONNREFUSED;
   2512 			goto close;
   2513 
   2514 		case TCPS_ESTABLISHED:
   2515 		case TCPS_FIN_WAIT_1:
   2516 		case TCPS_FIN_WAIT_2:
   2517 		case TCPS_CLOSE_WAIT:
   2518 			so->so_error = ECONNRESET;
   2519 		close:
   2520 			tp->t_state = TCPS_CLOSED;
   2521 			TCP_STATINC(TCP_STAT_DROPS);
   2522 			tp = tcp_close(tp);
   2523 			goto drop;
   2524 
   2525 		case TCPS_CLOSING:
   2526 		case TCPS_LAST_ACK:
   2527 		case TCPS_TIME_WAIT:
   2528 			tp = tcp_close(tp);
   2529 			goto drop;
   2530 		}
   2531 	}
   2532 
   2533 	/*
   2534 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2535 	 * we must be in a synchronized state.  RFC791 states (under RST
   2536 	 * generation) that any unacceptable segment (an out-of-order SYN
   2537 	 * qualifies) received in a synchronized state must elicit only an
   2538 	 * empty acknowledgment segment ... and the connection remains in
   2539 	 * the same state.
   2540 	 */
   2541 	if (tiflags & TH_SYN) {
   2542 		if (tp->rcv_nxt == th->th_seq) {
   2543 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2544 			    TH_ACK);
   2545 			if (tcp_saveti)
   2546 				m_freem(tcp_saveti);
   2547 			return;
   2548 		}
   2549 
   2550 		goto dropafterack_ratelim;
   2551 	}
   2552 
   2553 	/*
   2554 	 * If the ACK bit is off we drop the segment and return.
   2555 	 */
   2556 	if ((tiflags & TH_ACK) == 0) {
   2557 		if (tp->t_flags & TF_ACKNOW)
   2558 			goto dropafterack;
   2559 		else
   2560 			goto drop;
   2561 	}
   2562 
   2563 	/*
   2564 	 * Ack processing.
   2565 	 */
   2566 	switch (tp->t_state) {
   2567 
   2568 	/*
   2569 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2570 	 * ESTABLISHED state and continue processing, otherwise
   2571 	 * send an RST.
   2572 	 */
   2573 	case TCPS_SYN_RECEIVED:
   2574 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2575 		    SEQ_GT(th->th_ack, tp->snd_max))
   2576 			goto dropwithreset;
   2577 		TCP_STATINC(TCP_STAT_CONNECTS);
   2578 		soisconnected(so);
   2579 		tcp_established(tp);
   2580 		/* Do window scaling? */
   2581 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2582 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2583 			tp->snd_scale = tp->requested_s_scale;
   2584 			tp->rcv_scale = tp->request_r_scale;
   2585 		}
   2586 		TCP_REASS_LOCK(tp);
   2587 		(void) tcp_reass(tp, NULL, NULL, &tlen);
   2588 		tp->snd_wl1 = th->th_seq - 1;
   2589 		/* fall into ... */
   2590 
   2591 	/*
   2592 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2593 	 * ACKs.  If the ack is in the range
   2594 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2595 	 * then advance tp->snd_una to th->th_ack and drop
   2596 	 * data from the retransmission queue.  If this ACK reflects
   2597 	 * more up to date window information we update our window information.
   2598 	 */
   2599 	case TCPS_ESTABLISHED:
   2600 	case TCPS_FIN_WAIT_1:
   2601 	case TCPS_FIN_WAIT_2:
   2602 	case TCPS_CLOSE_WAIT:
   2603 	case TCPS_CLOSING:
   2604 	case TCPS_LAST_ACK:
   2605 	case TCPS_TIME_WAIT:
   2606 
   2607 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2608 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2609 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2610 				/*
   2611 				 * If we have outstanding data (other than
   2612 				 * a window probe), this is a completely
   2613 				 * duplicate ack (ie, window info didn't
   2614 				 * change), the ack is the biggest we've
   2615 				 * seen and we've seen exactly our rexmt
   2616 				 * threshhold of them, assume a packet
   2617 				 * has been dropped and retransmit it.
   2618 				 * Kludge snd_nxt & the congestion
   2619 				 * window so we send only this one
   2620 				 * packet.
   2621 				 */
   2622 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2623 				    th->th_ack != tp->snd_una)
   2624 					tp->t_dupacks = 0;
   2625 				else if (tp->t_partialacks < 0 &&
   2626 					 (++tp->t_dupacks == tcprexmtthresh ||
   2627 					 TCP_FACK_FASTRECOV(tp))) {
   2628 					/*
   2629 					 * Do the fast retransmit, and adjust
   2630 					 * congestion control paramenters.
   2631 					 */
   2632 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2633 						/* False fast retransmit */
   2634 						break;
   2635 					} else
   2636 						goto drop;
   2637 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2638 					tp->snd_cwnd += tp->t_segsz;
   2639 					KERNEL_LOCK(1, NULL);
   2640 					(void) tcp_output(tp);
   2641 					KERNEL_UNLOCK_ONE(NULL);
   2642 					goto drop;
   2643 				}
   2644 			} else {
   2645 				/*
   2646 				 * If the ack appears to be very old, only
   2647 				 * allow data that is in-sequence.  This
   2648 				 * makes it somewhat more difficult to insert
   2649 				 * forged data by guessing sequence numbers.
   2650 				 * Sent an ack to try to update the send
   2651 				 * sequence number on the other side.
   2652 				 */
   2653 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2654 				    SEQ_LT(th->th_ack,
   2655 				    tp->snd_una - tp->max_sndwnd))
   2656 					goto dropafterack;
   2657 			}
   2658 			break;
   2659 		}
   2660 		/*
   2661 		 * If the congestion window was inflated to account
   2662 		 * for the other side's cached packets, retract it.
   2663 		 */
   2664 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2665 
   2666 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2667 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2668 			goto dropafterack;
   2669 		}
   2670 		acked = th->th_ack - tp->snd_una;
   2671 		tcps = TCP_STAT_GETREF();
   2672 		tcps[TCP_STAT_RCVACKPACK]++;
   2673 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2674 		TCP_STAT_PUTREF();
   2675 
   2676 		/*
   2677 		 * If we have a timestamp reply, update smoothed
   2678 		 * round trip time.  If no timestamp is present but
   2679 		 * transmit timer is running and timed sequence
   2680 		 * number was acked, update smoothed round trip time.
   2681 		 * Since we now have an rtt measurement, cancel the
   2682 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2683 		 * Recompute the initial retransmit timer.
   2684 		 */
   2685 		if (ts_rtt)
   2686 			tcp_xmit_timer(tp, ts_rtt - 1);
   2687 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2688 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2689 
   2690 		/*
   2691 		 * If all outstanding data is acked, stop retransmit
   2692 		 * timer and remember to restart (more output or persist).
   2693 		 * If there is more data to be acked, restart retransmit
   2694 		 * timer, using current (possibly backed-off) value.
   2695 		 */
   2696 		if (th->th_ack == tp->snd_max) {
   2697 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2698 			needoutput = 1;
   2699 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2700 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2701 
   2702 		/*
   2703 		 * New data has been acked, adjust the congestion window.
   2704 		 */
   2705 		tp->t_congctl->newack(tp, th);
   2706 
   2707 		nd6_hint(tp);
   2708 		if (acked > so->so_snd.sb_cc) {
   2709 			tp->snd_wnd -= so->so_snd.sb_cc;
   2710 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2711 			ourfinisacked = 1;
   2712 		} else {
   2713 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2714 				tp->t_lastm = NULL;
   2715 			sbdrop(&so->so_snd, acked);
   2716 			tp->t_lastoff -= acked;
   2717 			tp->snd_wnd -= acked;
   2718 			ourfinisacked = 0;
   2719 		}
   2720 		sowwakeup(so);
   2721 
   2722 		icmp_check(tp, th, acked);
   2723 
   2724 		tp->snd_una = th->th_ack;
   2725 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2726 			tp->snd_fack = tp->snd_una;
   2727 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2728 			tp->snd_nxt = tp->snd_una;
   2729 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2730 			tp->snd_high = tp->snd_una;
   2731 
   2732 		switch (tp->t_state) {
   2733 
   2734 		/*
   2735 		 * In FIN_WAIT_1 STATE in addition to the processing
   2736 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2737 		 * then enter FIN_WAIT_2.
   2738 		 */
   2739 		case TCPS_FIN_WAIT_1:
   2740 			if (ourfinisacked) {
   2741 				/*
   2742 				 * If we can't receive any more
   2743 				 * data, then closing user can proceed.
   2744 				 * Starting the timer is contrary to the
   2745 				 * specification, but if we don't get a FIN
   2746 				 * we'll hang forever.
   2747 				 */
   2748 				if (so->so_state & SS_CANTRCVMORE) {
   2749 					soisdisconnected(so);
   2750 					if (tp->t_maxidle > 0)
   2751 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2752 						    tp->t_maxidle);
   2753 				}
   2754 				tp->t_state = TCPS_FIN_WAIT_2;
   2755 			}
   2756 			break;
   2757 
   2758 	 	/*
   2759 		 * In CLOSING STATE in addition to the processing for
   2760 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2761 		 * then enter the TIME-WAIT state, otherwise ignore
   2762 		 * the segment.
   2763 		 */
   2764 		case TCPS_CLOSING:
   2765 			if (ourfinisacked) {
   2766 				tp->t_state = TCPS_TIME_WAIT;
   2767 				tcp_canceltimers(tp);
   2768 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2769 				soisdisconnected(so);
   2770 			}
   2771 			break;
   2772 
   2773 		/*
   2774 		 * In LAST_ACK, we may still be waiting for data to drain
   2775 		 * and/or to be acked, as well as for the ack of our FIN.
   2776 		 * If our FIN is now acknowledged, delete the TCB,
   2777 		 * enter the closed state and return.
   2778 		 */
   2779 		case TCPS_LAST_ACK:
   2780 			if (ourfinisacked) {
   2781 				tp = tcp_close(tp);
   2782 				goto drop;
   2783 			}
   2784 			break;
   2785 
   2786 		/*
   2787 		 * In TIME_WAIT state the only thing that should arrive
   2788 		 * is a retransmission of the remote FIN.  Acknowledge
   2789 		 * it and restart the finack timer.
   2790 		 */
   2791 		case TCPS_TIME_WAIT:
   2792 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2793 			goto dropafterack;
   2794 		}
   2795 	}
   2796 
   2797 step6:
   2798 	/*
   2799 	 * Update window information.
   2800 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2801 	 */
   2802 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2803 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2804 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2805 		/* keep track of pure window updates */
   2806 		if (tlen == 0 &&
   2807 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2808 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2809 		tp->snd_wnd = tiwin;
   2810 		tp->snd_wl1 = th->th_seq;
   2811 		tp->snd_wl2 = th->th_ack;
   2812 		if (tp->snd_wnd > tp->max_sndwnd)
   2813 			tp->max_sndwnd = tp->snd_wnd;
   2814 		needoutput = 1;
   2815 	}
   2816 
   2817 	/*
   2818 	 * Process segments with URG.
   2819 	 */
   2820 	if ((tiflags & TH_URG) && th->th_urp &&
   2821 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2822 		/*
   2823 		 * This is a kludge, but if we receive and accept
   2824 		 * random urgent pointers, we'll crash in
   2825 		 * soreceive.  It's hard to imagine someone
   2826 		 * actually wanting to send this much urgent data.
   2827 		 */
   2828 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2829 			th->th_urp = 0;			/* XXX */
   2830 			tiflags &= ~TH_URG;		/* XXX */
   2831 			goto dodata;			/* XXX */
   2832 		}
   2833 		/*
   2834 		 * If this segment advances the known urgent pointer,
   2835 		 * then mark the data stream.  This should not happen
   2836 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2837 		 * a FIN has been received from the remote side.
   2838 		 * In these states we ignore the URG.
   2839 		 *
   2840 		 * According to RFC961 (Assigned Protocols),
   2841 		 * the urgent pointer points to the last octet
   2842 		 * of urgent data.  We continue, however,
   2843 		 * to consider it to indicate the first octet
   2844 		 * of data past the urgent section as the original
   2845 		 * spec states (in one of two places).
   2846 		 */
   2847 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2848 			tp->rcv_up = th->th_seq + th->th_urp;
   2849 			so->so_oobmark = so->so_rcv.sb_cc +
   2850 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2851 			if (so->so_oobmark == 0)
   2852 				so->so_state |= SS_RCVATMARK;
   2853 			sohasoutofband(so);
   2854 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2855 		}
   2856 		/*
   2857 		 * Remove out of band data so doesn't get presented to user.
   2858 		 * This can happen independent of advancing the URG pointer,
   2859 		 * but if two URG's are pending at once, some out-of-band
   2860 		 * data may creep in... ick.
   2861 		 */
   2862 		if (th->th_urp <= (u_int16_t) tlen
   2863 #ifdef SO_OOBINLINE
   2864 		     && (so->so_options & SO_OOBINLINE) == 0
   2865 #endif
   2866 		     )
   2867 			tcp_pulloutofband(so, th, m, hdroptlen);
   2868 	} else
   2869 		/*
   2870 		 * If no out of band data is expected,
   2871 		 * pull receive urgent pointer along
   2872 		 * with the receive window.
   2873 		 */
   2874 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2875 			tp->rcv_up = tp->rcv_nxt;
   2876 dodata:							/* XXX */
   2877 
   2878 	/*
   2879 	 * Process the segment text, merging it into the TCP sequencing queue,
   2880 	 * and arranging for acknowledgement of receipt if necessary.
   2881 	 * This process logically involves adjusting tp->rcv_wnd as data
   2882 	 * is presented to the user (this happens in tcp_usrreq.c,
   2883 	 * tcp_rcvd()).  If a FIN has already been received on this
   2884 	 * connection then we just ignore the text.
   2885 	 */
   2886 	if ((tlen || (tiflags & TH_FIN)) &&
   2887 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2888 		/*
   2889 		 * Insert segment ti into reassembly queue of tcp with
   2890 		 * control block tp.  Return TH_FIN if reassembly now includes
   2891 		 * a segment with FIN.  The macro form does the common case
   2892 		 * inline (segment is the next to be received on an
   2893 		 * established connection, and the queue is empty),
   2894 		 * avoiding linkage into and removal from the queue and
   2895 		 * repetition of various conversions.
   2896 		 * Set DELACK for segments received in order, but ack
   2897 		 * immediately when segments are out of order
   2898 		 * (so fast retransmit can work).
   2899 		 */
   2900 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2901 		TCP_REASS_LOCK(tp);
   2902 		if (th->th_seq == tp->rcv_nxt &&
   2903 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2904 		    tp->t_state == TCPS_ESTABLISHED) {
   2905 			tcp_setup_ack(tp, th);
   2906 			tp->rcv_nxt += tlen;
   2907 			tiflags = th->th_flags & TH_FIN;
   2908 			tcps = TCP_STAT_GETREF();
   2909 			tcps[TCP_STAT_RCVPACK]++;
   2910 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2911 			TCP_STAT_PUTREF();
   2912 			nd6_hint(tp);
   2913 			if (so->so_state & SS_CANTRCVMORE)
   2914 				m_freem(m);
   2915 			else {
   2916 				m_adj(m, hdroptlen);
   2917 				sbappendstream(&(so)->so_rcv, m);
   2918 			}
   2919 			TCP_REASS_UNLOCK(tp);
   2920 			sorwakeup(so);
   2921 		} else {
   2922 			m_adj(m, hdroptlen);
   2923 			tiflags = tcp_reass(tp, th, m, &tlen);
   2924 			tp->t_flags |= TF_ACKNOW;
   2925 		}
   2926 
   2927 		/*
   2928 		 * Note the amount of data that peer has sent into
   2929 		 * our window, in order to estimate the sender's
   2930 		 * buffer size.
   2931 		 */
   2932 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2933 	} else {
   2934 		m_freem(m);
   2935 		m = NULL;
   2936 		tiflags &= ~TH_FIN;
   2937 	}
   2938 
   2939 	/*
   2940 	 * If FIN is received ACK the FIN and let the user know
   2941 	 * that the connection is closing.  Ignore a FIN received before
   2942 	 * the connection is fully established.
   2943 	 */
   2944 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2945 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2946 			socantrcvmore(so);
   2947 			tp->t_flags |= TF_ACKNOW;
   2948 			tp->rcv_nxt++;
   2949 		}
   2950 		switch (tp->t_state) {
   2951 
   2952 	 	/*
   2953 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2954 		 */
   2955 		case TCPS_ESTABLISHED:
   2956 			tp->t_state = TCPS_CLOSE_WAIT;
   2957 			break;
   2958 
   2959 	 	/*
   2960 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2961 		 * enter the CLOSING state.
   2962 		 */
   2963 		case TCPS_FIN_WAIT_1:
   2964 			tp->t_state = TCPS_CLOSING;
   2965 			break;
   2966 
   2967 	 	/*
   2968 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2969 		 * starting the time-wait timer, turning off the other
   2970 		 * standard timers.
   2971 		 */
   2972 		case TCPS_FIN_WAIT_2:
   2973 			tp->t_state = TCPS_TIME_WAIT;
   2974 			tcp_canceltimers(tp);
   2975 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2976 			soisdisconnected(so);
   2977 			break;
   2978 
   2979 		/*
   2980 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2981 		 */
   2982 		case TCPS_TIME_WAIT:
   2983 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2984 			break;
   2985 		}
   2986 	}
   2987 #ifdef TCP_DEBUG
   2988 	if (so->so_options & SO_DEBUG)
   2989 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2990 #endif
   2991 
   2992 	/*
   2993 	 * Return any desired output.
   2994 	 */
   2995 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2996 		KERNEL_LOCK(1, NULL);
   2997 		(void) tcp_output(tp);
   2998 		KERNEL_UNLOCK_ONE(NULL);
   2999 	}
   3000 	if (tcp_saveti)
   3001 		m_freem(tcp_saveti);
   3002 
   3003 	if (tp->t_state == TCPS_TIME_WAIT
   3004 	    && (so->so_state & SS_NOFDREF)
   3005 	    && (tp->t_inpcb || af != AF_INET)
   3006 	    && (tp->t_in6pcb || af != AF_INET6)
   3007 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   3008 	    && TAILQ_EMPTY(&tp->segq)
   3009 	    && vtw_add(af, tp)) {
   3010 		;
   3011 	}
   3012 	return;
   3013 
   3014 badsyn:
   3015 	/*
   3016 	 * Received a bad SYN.  Increment counters and dropwithreset.
   3017 	 */
   3018 	TCP_STATINC(TCP_STAT_BADSYN);
   3019 	tp = NULL;
   3020 	goto dropwithreset;
   3021 
   3022 dropafterack:
   3023 	/*
   3024 	 * Generate an ACK dropping incoming segment if it occupies
   3025 	 * sequence space, where the ACK reflects our state.
   3026 	 */
   3027 	if (tiflags & TH_RST)
   3028 		goto drop;
   3029 	goto dropafterack2;
   3030 
   3031 dropafterack_ratelim:
   3032 	/*
   3033 	 * We may want to rate-limit ACKs against SYN/RST attack.
   3034 	 */
   3035 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   3036 	    tcp_ackdrop_ppslim) == 0) {
   3037 		/* XXX stat */
   3038 		goto drop;
   3039 	}
   3040 	/* ...fall into dropafterack2... */
   3041 
   3042 dropafterack2:
   3043 	m_freem(m);
   3044 	tp->t_flags |= TF_ACKNOW;
   3045 	KERNEL_LOCK(1, NULL);
   3046 	(void) tcp_output(tp);
   3047 	KERNEL_UNLOCK_ONE(NULL);
   3048 	if (tcp_saveti)
   3049 		m_freem(tcp_saveti);
   3050 	return;
   3051 
   3052 dropwithreset_ratelim:
   3053 	/*
   3054 	 * We may want to rate-limit RSTs in certain situations,
   3055 	 * particularly if we are sending an RST in response to
   3056 	 * an attempt to connect to or otherwise communicate with
   3057 	 * a port for which we have no socket.
   3058 	 */
   3059 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   3060 	    tcp_rst_ppslim) == 0) {
   3061 		/* XXX stat */
   3062 		goto drop;
   3063 	}
   3064 	/* ...fall into dropwithreset... */
   3065 
   3066 dropwithreset:
   3067 	/*
   3068 	 * Generate a RST, dropping incoming segment.
   3069 	 * Make ACK acceptable to originator of segment.
   3070 	 */
   3071 	if (tiflags & TH_RST)
   3072 		goto drop;
   3073 
   3074 	switch (af) {
   3075 #ifdef INET6
   3076 	case AF_INET6:
   3077 		/* For following calls to tcp_respond */
   3078 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   3079 			goto drop;
   3080 		break;
   3081 #endif /* INET6 */
   3082 	case AF_INET:
   3083 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   3084 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   3085 			goto drop;
   3086 	}
   3087 
   3088 	if (tiflags & TH_ACK)
   3089 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3090 	else {
   3091 		if (tiflags & TH_SYN)
   3092 			tlen++;
   3093 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3094 		    TH_RST|TH_ACK);
   3095 	}
   3096 	if (tcp_saveti)
   3097 		m_freem(tcp_saveti);
   3098 	return;
   3099 
   3100 badcsum:
   3101 drop:
   3102 	/*
   3103 	 * Drop space held by incoming segment and return.
   3104 	 */
   3105 	if (tp) {
   3106 		if (tp->t_inpcb)
   3107 			so = tp->t_inpcb->inp_socket;
   3108 #ifdef INET6
   3109 		else if (tp->t_in6pcb)
   3110 			so = tp->t_in6pcb->in6p_socket;
   3111 #endif
   3112 		else
   3113 			so = NULL;
   3114 #ifdef TCP_DEBUG
   3115 		if (so && (so->so_options & SO_DEBUG) != 0)
   3116 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3117 #endif
   3118 	}
   3119 	if (tcp_saveti)
   3120 		m_freem(tcp_saveti);
   3121 	m_freem(m);
   3122 	return;
   3123 }
   3124 
   3125 #ifdef TCP_SIGNATURE
   3126 int
   3127 tcp_signature_apply(void *fstate, void *data, u_int len)
   3128 {
   3129 
   3130 	MD5Update(fstate, (u_char *)data, len);
   3131 	return (0);
   3132 }
   3133 
   3134 struct secasvar *
   3135 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   3136 {
   3137 	struct ip *ip;
   3138 	struct ip6_hdr *ip6;
   3139 
   3140 	ip = mtod(m, struct ip *);
   3141 	switch (ip->ip_v) {
   3142 	case 4:
   3143 		ip = mtod(m, struct ip *);
   3144 		ip6 = NULL;
   3145 		break;
   3146 	case 6:
   3147 		ip = NULL;
   3148 		ip6 = mtod(m, struct ip6_hdr *);
   3149 		break;
   3150 	default:
   3151 		return (NULL);
   3152 	}
   3153 
   3154 #ifdef IPSEC
   3155 	if (ipsec_used) {
   3156 		union sockaddr_union dst;
   3157 		/* Extract the destination from the IP header in the mbuf. */
   3158 		memset(&dst, 0, sizeof(union sockaddr_union));
   3159 		if (ip != NULL) {
   3160 			dst.sa.sa_len = sizeof(struct sockaddr_in);
   3161 			dst.sa.sa_family = AF_INET;
   3162 			dst.sin.sin_addr = ip->ip_dst;
   3163 		} else {
   3164 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3165 			dst.sa.sa_family = AF_INET6;
   3166 			dst.sin6.sin6_addr = ip6->ip6_dst;
   3167 		}
   3168 
   3169 		/*
   3170 		 * Look up an SADB entry which matches the address of the peer.
   3171 		 */
   3172 		return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3173 	}
   3174 	return NULL;
   3175 #else
   3176 	if (ip)
   3177 		return key_allocsa(AF_INET, (void *)&ip->ip_src,
   3178 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   3179 		    htonl(TCP_SIG_SPI), 0, 0);
   3180 	else
   3181 		return key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   3182 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   3183 		    htonl(TCP_SIG_SPI), 0, 0);
   3184 #endif
   3185 }
   3186 
   3187 int
   3188 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3189     struct secasvar *sav, char *sig)
   3190 {
   3191 	MD5_CTX ctx;
   3192 	struct ip *ip;
   3193 	struct ipovly *ipovly;
   3194 	struct ip6_hdr *ip6;
   3195 	struct ippseudo ippseudo;
   3196 	struct ip6_hdr_pseudo ip6pseudo;
   3197 	struct tcphdr th0;
   3198 	int l, tcphdrlen;
   3199 
   3200 	if (sav == NULL)
   3201 		return (-1);
   3202 
   3203 	tcphdrlen = th->th_off * 4;
   3204 
   3205 	switch (mtod(m, struct ip *)->ip_v) {
   3206 	case 4:
   3207 		ip = mtod(m, struct ip *);
   3208 		ip6 = NULL;
   3209 		break;
   3210 	case 6:
   3211 		ip = NULL;
   3212 		ip6 = mtod(m, struct ip6_hdr *);
   3213 		break;
   3214 	default:
   3215 		return (-1);
   3216 	}
   3217 
   3218 	MD5Init(&ctx);
   3219 
   3220 	if (ip) {
   3221 		memset(&ippseudo, 0, sizeof(ippseudo));
   3222 		ipovly = (struct ipovly *)ip;
   3223 		ippseudo.ippseudo_src = ipovly->ih_src;
   3224 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3225 		ippseudo.ippseudo_pad = 0;
   3226 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3227 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3228 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3229 	} else {
   3230 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3231 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3232 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3233 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3234 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3235 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3236 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3237 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3238 	}
   3239 
   3240 	th0 = *th;
   3241 	th0.th_sum = 0;
   3242 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3243 
   3244 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3245 	if (l > 0)
   3246 		m_apply(m, thoff + tcphdrlen,
   3247 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3248 		    tcp_signature_apply, &ctx);
   3249 
   3250 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3251 	MD5Final(sig, &ctx);
   3252 
   3253 	return (0);
   3254 }
   3255 #endif
   3256 
   3257 /*
   3258  * tcp_dooptions: parse and process tcp options.
   3259  *
   3260  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3261  * otherwise returns 0.
   3262  */
   3263 
   3264 static int
   3265 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3266     struct tcphdr *th,
   3267     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3268 {
   3269 	u_int16_t mss;
   3270 	int opt, optlen = 0;
   3271 #ifdef TCP_SIGNATURE
   3272 	void *sigp = NULL;
   3273 	char sigbuf[TCP_SIGLEN];
   3274 	struct secasvar *sav = NULL;
   3275 #endif
   3276 
   3277 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3278 		opt = cp[0];
   3279 		if (opt == TCPOPT_EOL)
   3280 			break;
   3281 		if (opt == TCPOPT_NOP)
   3282 			optlen = 1;
   3283 		else {
   3284 			if (cnt < 2)
   3285 				break;
   3286 			optlen = cp[1];
   3287 			if (optlen < 2 || optlen > cnt)
   3288 				break;
   3289 		}
   3290 		switch (opt) {
   3291 
   3292 		default:
   3293 			continue;
   3294 
   3295 		case TCPOPT_MAXSEG:
   3296 			if (optlen != TCPOLEN_MAXSEG)
   3297 				continue;
   3298 			if (!(th->th_flags & TH_SYN))
   3299 				continue;
   3300 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3301 				continue;
   3302 			bcopy(cp + 2, &mss, sizeof(mss));
   3303 			oi->maxseg = ntohs(mss);
   3304 			break;
   3305 
   3306 		case TCPOPT_WINDOW:
   3307 			if (optlen != TCPOLEN_WINDOW)
   3308 				continue;
   3309 			if (!(th->th_flags & TH_SYN))
   3310 				continue;
   3311 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3312 				continue;
   3313 			tp->t_flags |= TF_RCVD_SCALE;
   3314 			tp->requested_s_scale = cp[2];
   3315 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3316 				char buf[INET6_ADDRSTRLEN];
   3317 				struct ip *ip = mtod(m, struct ip *);
   3318 #ifdef INET6
   3319 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3320 #endif
   3321 				if (ip)
   3322 					in_print(buf, sizeof(buf),
   3323 					    &ip->ip_src);
   3324 #ifdef INET6
   3325 				else if (ip6)
   3326 					in6_print(buf, sizeof(buf),
   3327 					    &ip6->ip6_src);
   3328 #endif
   3329 				else
   3330 					strlcpy(buf, "(unknown)", sizeof(buf));
   3331 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3332 				    "assuming %d\n",
   3333 				    tp->requested_s_scale, buf,
   3334 				    TCP_MAX_WINSHIFT);
   3335 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3336 			}
   3337 			break;
   3338 
   3339 		case TCPOPT_TIMESTAMP:
   3340 			if (optlen != TCPOLEN_TIMESTAMP)
   3341 				continue;
   3342 			oi->ts_present = 1;
   3343 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3344 			NTOHL(oi->ts_val);
   3345 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3346 			NTOHL(oi->ts_ecr);
   3347 
   3348 			if (!(th->th_flags & TH_SYN))
   3349 				continue;
   3350 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3351 				continue;
   3352 			/*
   3353 			 * A timestamp received in a SYN makes
   3354 			 * it ok to send timestamp requests and replies.
   3355 			 */
   3356 			tp->t_flags |= TF_RCVD_TSTMP;
   3357 			tp->ts_recent = oi->ts_val;
   3358 			tp->ts_recent_age = tcp_now;
   3359                         break;
   3360 
   3361 		case TCPOPT_SACK_PERMITTED:
   3362 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3363 				continue;
   3364 			if (!(th->th_flags & TH_SYN))
   3365 				continue;
   3366 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3367 				continue;
   3368 			if (tcp_do_sack) {
   3369 				tp->t_flags |= TF_SACK_PERMIT;
   3370 				tp->t_flags |= TF_WILL_SACK;
   3371 			}
   3372 			break;
   3373 
   3374 		case TCPOPT_SACK:
   3375 			tcp_sack_option(tp, th, cp, optlen);
   3376 			break;
   3377 #ifdef TCP_SIGNATURE
   3378 		case TCPOPT_SIGNATURE:
   3379 			if (optlen != TCPOLEN_SIGNATURE)
   3380 				continue;
   3381 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3382 				return (-1);
   3383 
   3384 			sigp = sigbuf;
   3385 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3386 			tp->t_flags |= TF_SIGNATURE;
   3387 			break;
   3388 #endif
   3389 		}
   3390 	}
   3391 
   3392 #ifndef TCP_SIGNATURE
   3393 	return 0;
   3394 #else
   3395 	if (tp->t_flags & TF_SIGNATURE) {
   3396 
   3397 		sav = tcp_signature_getsav(m, th);
   3398 
   3399 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3400 			return (-1);
   3401 	}
   3402 
   3403 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3404 		goto out;
   3405 
   3406 	if (sigp) {
   3407 		char sig[TCP_SIGLEN];
   3408 
   3409 		tcp_fields_to_net(th);
   3410 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3411 			tcp_fields_to_host(th);
   3412 			goto out;
   3413 		}
   3414 		tcp_fields_to_host(th);
   3415 
   3416 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3417 			TCP_STATINC(TCP_STAT_BADSIG);
   3418 			goto out;
   3419 		} else
   3420 			TCP_STATINC(TCP_STAT_GOODSIG);
   3421 
   3422 		key_sa_recordxfer(sav, m);
   3423 		KEY_FREESAV(&sav);
   3424 	}
   3425 	return 0;
   3426 out:
   3427 	if (sav != NULL)
   3428 		KEY_FREESAV(&sav);
   3429 	return -1;
   3430 #endif
   3431 }
   3432 
   3433 /*
   3434  * Pull out of band byte out of a segment so
   3435  * it doesn't appear in the user's data queue.
   3436  * It is still reflected in the segment length for
   3437  * sequencing purposes.
   3438  */
   3439 void
   3440 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3441     struct mbuf *m, int off)
   3442 {
   3443 	int cnt = off + th->th_urp - 1;
   3444 
   3445 	while (cnt >= 0) {
   3446 		if (m->m_len > cnt) {
   3447 			char *cp = mtod(m, char *) + cnt;
   3448 			struct tcpcb *tp = sototcpcb(so);
   3449 
   3450 			tp->t_iobc = *cp;
   3451 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3452 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3453 			m->m_len--;
   3454 			return;
   3455 		}
   3456 		cnt -= m->m_len;
   3457 		m = m->m_next;
   3458 		if (m == 0)
   3459 			break;
   3460 	}
   3461 	panic("tcp_pulloutofband");
   3462 }
   3463 
   3464 /*
   3465  * Collect new round-trip time estimate
   3466  * and update averages and current timeout.
   3467  *
   3468  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3469  * difference of two timestamps.
   3470  */
   3471 void
   3472 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3473 {
   3474 	int32_t delta;
   3475 
   3476 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3477 	if (tp->t_srtt != 0) {
   3478 		/*
   3479 		 * Compute the amount to add to srtt for smoothing,
   3480 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3481 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3482 		 * shift left 5 bits, subtract srtt to get the
   3483 		 * diference, and then shift right by TCP_RTT_SHIFT
   3484 		 * (3) to obtain 1/8 of the difference.
   3485 		 */
   3486 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3487 		/*
   3488 		 * This can never happen, because delta's lowest
   3489 		 * possible value is 1/8 of t_srtt.  But if it does,
   3490 		 * set srtt to some reasonable value, here chosen
   3491 		 * as 1/8 tick.
   3492 		 */
   3493 		if ((tp->t_srtt += delta) <= 0)
   3494 			tp->t_srtt = 1 << 2;
   3495 		/*
   3496 		 * RFC2988 requires that rttvar be updated first.
   3497 		 * This code is compliant because "delta" is the old
   3498 		 * srtt minus the new observation (scaled).
   3499 		 *
   3500 		 * RFC2988 says:
   3501 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3502 		 *
   3503 		 * delta is in units of 1/32 ticks, and has then been
   3504 		 * divided by 8.  This is equivalent to being in 1/16s
   3505 		 * units and divided by 4.  Subtract from it 1/4 of
   3506 		 * the existing rttvar to form the (signed) amount to
   3507 		 * adjust.
   3508 		 */
   3509 		if (delta < 0)
   3510 			delta = -delta;
   3511 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3512 		/*
   3513 		 * As with srtt, this should never happen.  There is
   3514 		 * no support in RFC2988 for this operation.  But 1/4s
   3515 		 * as rttvar when faced with something arguably wrong
   3516 		 * is ok.
   3517 		 */
   3518 		if ((tp->t_rttvar += delta) <= 0)
   3519 			tp->t_rttvar = 1 << 2;
   3520 
   3521 		/*
   3522 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3523 		 * Problem is: it doesn't work.  Disabled by defaulting
   3524 		 * tcp_rttlocal to 0; see corresponding code in
   3525 		 * tcp_subr that selects local vs remote in a different way.
   3526 		 *
   3527 		 * The static branch prediction hint here should be removed
   3528 		 * when the rtt estimator is fixed and the rtt_enable code
   3529 		 * is turned back on.
   3530 		 */
   3531 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3532 		    && tp->t_srtt > tcp_msl_remote_threshold
   3533 		    && tp->t_msl  < tcp_msl_remote) {
   3534 			tp->t_msl = tcp_msl_remote;
   3535 		}
   3536 	} else {
   3537 		/*
   3538 		 * This is the first measurement.  Per RFC2988, 2.2,
   3539 		 * set rtt=R and srtt=R/2.
   3540 		 * For srtt, storage representation is 1/32 ticks,
   3541 		 * so shift left by 5.
   3542 		 * For rttvar, storage representation is 1/16 ticks,
   3543 		 * So shift left by 4, but then right by 1 to halve.
   3544 		 */
   3545 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3546 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3547 	}
   3548 	tp->t_rtttime = 0;
   3549 	tp->t_rxtshift = 0;
   3550 
   3551 	/*
   3552 	 * the retransmit should happen at rtt + 4 * rttvar.
   3553 	 * Because of the way we do the smoothing, srtt and rttvar
   3554 	 * will each average +1/2 tick of bias.  When we compute
   3555 	 * the retransmit timer, we want 1/2 tick of rounding and
   3556 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3557 	 * firing of the timer.  The bias will give us exactly the
   3558 	 * 1.5 tick we need.  But, because the bias is
   3559 	 * statistical, we have to test that we don't drop below
   3560 	 * the minimum feasible timer (which is 2 ticks).
   3561 	 */
   3562 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3563 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3564 
   3565 	/*
   3566 	 * We received an ack for a packet that wasn't retransmitted;
   3567 	 * it is probably safe to discard any error indications we've
   3568 	 * received recently.  This isn't quite right, but close enough
   3569 	 * for now (a route might have failed after we sent a segment,
   3570 	 * and the return path might not be symmetrical).
   3571 	 */
   3572 	tp->t_softerror = 0;
   3573 }
   3574 
   3575 
   3576 /*
   3577  * TCP compressed state engine.  Currently used to hold compressed
   3578  * state for SYN_RECEIVED.
   3579  */
   3580 
   3581 u_long	syn_cache_count;
   3582 u_int32_t syn_hash1, syn_hash2;
   3583 
   3584 #define SYN_HASH(sa, sp, dp) \
   3585 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3586 				     ((u_int32_t)(sp)))^syn_hash2)))
   3587 #ifndef INET6
   3588 #define	SYN_HASHALL(hash, src, dst) \
   3589 do {									\
   3590 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3591 		((const struct sockaddr_in *)(src))->sin_port,		\
   3592 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3593 } while (/*CONSTCOND*/ 0)
   3594 #else
   3595 #define SYN_HASH6(sa, sp, dp) \
   3596 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3597 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3598 	 & 0x7fffffff)
   3599 
   3600 #define SYN_HASHALL(hash, src, dst) \
   3601 do {									\
   3602 	switch ((src)->sa_family) {					\
   3603 	case AF_INET:							\
   3604 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3605 			((const struct sockaddr_in *)(src))->sin_port,	\
   3606 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3607 		break;							\
   3608 	case AF_INET6:							\
   3609 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3610 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3611 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3612 		break;							\
   3613 	default:							\
   3614 		hash = 0;						\
   3615 	}								\
   3616 } while (/*CONSTCOND*/0)
   3617 #endif /* INET6 */
   3618 
   3619 static struct pool syn_cache_pool;
   3620 
   3621 /*
   3622  * We don't estimate RTT with SYNs, so each packet starts with the default
   3623  * RTT and each timer step has a fixed timeout value.
   3624  */
   3625 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3626 do {									\
   3627 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3628 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3629 	    TCPTV_REXMTMAX);						\
   3630 	callout_reset(&(sc)->sc_timer,					\
   3631 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3632 } while (/*CONSTCOND*/0)
   3633 
   3634 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3635 
   3636 static inline void
   3637 syn_cache_rm(struct syn_cache *sc)
   3638 {
   3639 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3640 	    sc, sc_bucketq);
   3641 	sc->sc_tp = NULL;
   3642 	LIST_REMOVE(sc, sc_tpq);
   3643 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3644 	callout_stop(&sc->sc_timer);
   3645 	syn_cache_count--;
   3646 }
   3647 
   3648 static inline void
   3649 syn_cache_put(struct syn_cache *sc)
   3650 {
   3651 	if (sc->sc_ipopts)
   3652 		(void) m_free(sc->sc_ipopts);
   3653 	rtcache_free(&sc->sc_route);
   3654 	sc->sc_flags |= SCF_DEAD;
   3655 	if (!callout_invoking(&sc->sc_timer))
   3656 		callout_schedule(&(sc)->sc_timer, 1);
   3657 }
   3658 
   3659 void
   3660 syn_cache_init(void)
   3661 {
   3662 	int i;
   3663 
   3664 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3665 	    "synpl", NULL, IPL_SOFTNET);
   3666 
   3667 	/* Initialize the hash buckets. */
   3668 	for (i = 0; i < tcp_syn_cache_size; i++)
   3669 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3670 }
   3671 
   3672 void
   3673 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3674 {
   3675 	struct syn_cache_head *scp;
   3676 	struct syn_cache *sc2;
   3677 	int s;
   3678 
   3679 	/*
   3680 	 * If there are no entries in the hash table, reinitialize
   3681 	 * the hash secrets.
   3682 	 */
   3683 	if (syn_cache_count == 0) {
   3684 		syn_hash1 = cprng_fast32();
   3685 		syn_hash2 = cprng_fast32();
   3686 	}
   3687 
   3688 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3689 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3690 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3691 
   3692 	/*
   3693 	 * Make sure that we don't overflow the per-bucket
   3694 	 * limit or the total cache size limit.
   3695 	 */
   3696 	s = splsoftnet();
   3697 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3698 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3699 		/*
   3700 		 * The bucket is full.  Toss the oldest element in the
   3701 		 * bucket.  This will be the first entry in the bucket.
   3702 		 */
   3703 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3704 #ifdef DIAGNOSTIC
   3705 		/*
   3706 		 * This should never happen; we should always find an
   3707 		 * entry in our bucket.
   3708 		 */
   3709 		if (sc2 == NULL)
   3710 			panic("syn_cache_insert: bucketoverflow: impossible");
   3711 #endif
   3712 		syn_cache_rm(sc2);
   3713 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3714 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3715 		struct syn_cache_head *scp2, *sce;
   3716 
   3717 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3718 		/*
   3719 		 * The cache is full.  Toss the oldest entry in the
   3720 		 * first non-empty bucket we can find.
   3721 		 *
   3722 		 * XXX We would really like to toss the oldest
   3723 		 * entry in the cache, but we hope that this
   3724 		 * condition doesn't happen very often.
   3725 		 */
   3726 		scp2 = scp;
   3727 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3728 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3729 			for (++scp2; scp2 != scp; scp2++) {
   3730 				if (scp2 >= sce)
   3731 					scp2 = &tcp_syn_cache[0];
   3732 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3733 					break;
   3734 			}
   3735 #ifdef DIAGNOSTIC
   3736 			/*
   3737 			 * This should never happen; we should always find a
   3738 			 * non-empty bucket.
   3739 			 */
   3740 			if (scp2 == scp)
   3741 				panic("syn_cache_insert: cacheoverflow: "
   3742 				    "impossible");
   3743 #endif
   3744 		}
   3745 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3746 		syn_cache_rm(sc2);
   3747 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3748 	}
   3749 
   3750 	/*
   3751 	 * Initialize the entry's timer.
   3752 	 */
   3753 	sc->sc_rxttot = 0;
   3754 	sc->sc_rxtshift = 0;
   3755 	SYN_CACHE_TIMER_ARM(sc);
   3756 
   3757 	/* Link it from tcpcb entry */
   3758 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3759 
   3760 	/* Put it into the bucket. */
   3761 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3762 	scp->sch_length++;
   3763 	syn_cache_count++;
   3764 
   3765 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3766 	splx(s);
   3767 }
   3768 
   3769 /*
   3770  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3771  * If we have retransmitted an entry the maximum number of times, expire
   3772  * that entry.
   3773  */
   3774 void
   3775 syn_cache_timer(void *arg)
   3776 {
   3777 	struct syn_cache *sc = arg;
   3778 
   3779 	mutex_enter(softnet_lock);
   3780 	KERNEL_LOCK(1, NULL);
   3781 	callout_ack(&sc->sc_timer);
   3782 
   3783 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3784 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3785 		callout_destroy(&sc->sc_timer);
   3786 		pool_put(&syn_cache_pool, sc);
   3787 		KERNEL_UNLOCK_ONE(NULL);
   3788 		mutex_exit(softnet_lock);
   3789 		return;
   3790 	}
   3791 
   3792 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3793 		/* Drop it -- too many retransmissions. */
   3794 		goto dropit;
   3795 	}
   3796 
   3797 	/*
   3798 	 * Compute the total amount of time this entry has
   3799 	 * been on a queue.  If this entry has been on longer
   3800 	 * than the keep alive timer would allow, expire it.
   3801 	 */
   3802 	sc->sc_rxttot += sc->sc_rxtcur;
   3803 	if (sc->sc_rxttot >= tcp_keepinit)
   3804 		goto dropit;
   3805 
   3806 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3807 	(void) syn_cache_respond(sc, NULL);
   3808 
   3809 	/* Advance the timer back-off. */
   3810 	sc->sc_rxtshift++;
   3811 	SYN_CACHE_TIMER_ARM(sc);
   3812 
   3813 	KERNEL_UNLOCK_ONE(NULL);
   3814 	mutex_exit(softnet_lock);
   3815 	return;
   3816 
   3817  dropit:
   3818 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3819 	syn_cache_rm(sc);
   3820 	if (sc->sc_ipopts)
   3821 		(void) m_free(sc->sc_ipopts);
   3822 	rtcache_free(&sc->sc_route);
   3823 	callout_destroy(&sc->sc_timer);
   3824 	pool_put(&syn_cache_pool, sc);
   3825 	KERNEL_UNLOCK_ONE(NULL);
   3826 	mutex_exit(softnet_lock);
   3827 }
   3828 
   3829 /*
   3830  * Remove syn cache created by the specified tcb entry,
   3831  * because this does not make sense to keep them
   3832  * (if there's no tcb entry, syn cache entry will never be used)
   3833  */
   3834 void
   3835 syn_cache_cleanup(struct tcpcb *tp)
   3836 {
   3837 	struct syn_cache *sc, *nsc;
   3838 	int s;
   3839 
   3840 	s = splsoftnet();
   3841 
   3842 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3843 		nsc = LIST_NEXT(sc, sc_tpq);
   3844 
   3845 #ifdef DIAGNOSTIC
   3846 		if (sc->sc_tp != tp)
   3847 			panic("invalid sc_tp in syn_cache_cleanup");
   3848 #endif
   3849 		syn_cache_rm(sc);
   3850 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3851 	}
   3852 	/* just for safety */
   3853 	LIST_INIT(&tp->t_sc);
   3854 
   3855 	splx(s);
   3856 }
   3857 
   3858 /*
   3859  * Find an entry in the syn cache.
   3860  */
   3861 struct syn_cache *
   3862 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3863     struct syn_cache_head **headp)
   3864 {
   3865 	struct syn_cache *sc;
   3866 	struct syn_cache_head *scp;
   3867 	u_int32_t hash;
   3868 	int s;
   3869 
   3870 	SYN_HASHALL(hash, src, dst);
   3871 
   3872 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3873 	*headp = scp;
   3874 	s = splsoftnet();
   3875 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3876 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3877 		if (sc->sc_hash != hash)
   3878 			continue;
   3879 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3880 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3881 			splx(s);
   3882 			return (sc);
   3883 		}
   3884 	}
   3885 	splx(s);
   3886 	return (NULL);
   3887 }
   3888 
   3889 /*
   3890  * This function gets called when we receive an ACK for a
   3891  * socket in the LISTEN state.  We look up the connection
   3892  * in the syn cache, and if its there, we pull it out of
   3893  * the cache and turn it into a full-blown connection in
   3894  * the SYN-RECEIVED state.
   3895  *
   3896  * The return values may not be immediately obvious, and their effects
   3897  * can be subtle, so here they are:
   3898  *
   3899  *	NULL	SYN was not found in cache; caller should drop the
   3900  *		packet and send an RST.
   3901  *
   3902  *	-1	We were unable to create the new connection, and are
   3903  *		aborting it.  An ACK,RST is being sent to the peer
   3904  *		(unless we got screwey sequence numbners; see below),
   3905  *		because the 3-way handshake has been completed.  Caller
   3906  *		should not free the mbuf, since we may be using it.  If
   3907  *		we are not, we will free it.
   3908  *
   3909  *	Otherwise, the return value is a pointer to the new socket
   3910  *	associated with the connection.
   3911  */
   3912 struct socket *
   3913 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3914     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3915     struct socket *so, struct mbuf *m)
   3916 {
   3917 	struct syn_cache *sc;
   3918 	struct syn_cache_head *scp;
   3919 	struct inpcb *inp = NULL;
   3920 #ifdef INET6
   3921 	struct in6pcb *in6p = NULL;
   3922 #endif
   3923 	struct tcpcb *tp = 0;
   3924 	struct mbuf *am;
   3925 	int s;
   3926 	struct socket *oso;
   3927 
   3928 	s = splsoftnet();
   3929 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3930 		splx(s);
   3931 		return (NULL);
   3932 	}
   3933 
   3934 	/*
   3935 	 * Verify the sequence and ack numbers.  Try getting the correct
   3936 	 * response again.
   3937 	 */
   3938 	if ((th->th_ack != sc->sc_iss + 1) ||
   3939 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3940 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3941 		(void) syn_cache_respond(sc, m);
   3942 		splx(s);
   3943 		return ((struct socket *)(-1));
   3944 	}
   3945 
   3946 	/* Remove this cache entry */
   3947 	syn_cache_rm(sc);
   3948 	splx(s);
   3949 
   3950 	/*
   3951 	 * Ok, create the full blown connection, and set things up
   3952 	 * as they would have been set up if we had created the
   3953 	 * connection when the SYN arrived.  If we can't create
   3954 	 * the connection, abort it.
   3955 	 */
   3956 	/*
   3957 	 * inp still has the OLD in_pcb stuff, set the
   3958 	 * v6-related flags on the new guy, too.   This is
   3959 	 * done particularly for the case where an AF_INET6
   3960 	 * socket is bound only to a port, and a v4 connection
   3961 	 * comes in on that port.
   3962 	 * we also copy the flowinfo from the original pcb
   3963 	 * to the new one.
   3964 	 */
   3965 	oso = so;
   3966 	so = sonewconn(so, true);
   3967 	if (so == NULL)
   3968 		goto resetandabort;
   3969 
   3970 	switch (so->so_proto->pr_domain->dom_family) {
   3971 #ifdef INET
   3972 	case AF_INET:
   3973 		inp = sotoinpcb(so);
   3974 		break;
   3975 #endif
   3976 #ifdef INET6
   3977 	case AF_INET6:
   3978 		in6p = sotoin6pcb(so);
   3979 		break;
   3980 #endif
   3981 	}
   3982 	switch (src->sa_family) {
   3983 #ifdef INET
   3984 	case AF_INET:
   3985 		if (inp) {
   3986 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3987 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3988 			inp->inp_options = ip_srcroute();
   3989 			in_pcbstate(inp, INP_BOUND);
   3990 			if (inp->inp_options == NULL) {
   3991 				inp->inp_options = sc->sc_ipopts;
   3992 				sc->sc_ipopts = NULL;
   3993 			}
   3994 		}
   3995 #ifdef INET6
   3996 		else if (in6p) {
   3997 			/* IPv4 packet to AF_INET6 socket */
   3998 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   3999 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   4000 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   4001 				&in6p->in6p_laddr.s6_addr32[3],
   4002 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   4003 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   4004 			in6totcpcb(in6p)->t_family = AF_INET;
   4005 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   4006 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   4007 			else
   4008 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   4009 			in6_pcbstate(in6p, IN6P_BOUND);
   4010 		}
   4011 #endif
   4012 		break;
   4013 #endif
   4014 #ifdef INET6
   4015 	case AF_INET6:
   4016 		if (in6p) {
   4017 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   4018 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   4019 			in6_pcbstate(in6p, IN6P_BOUND);
   4020 		}
   4021 		break;
   4022 #endif
   4023 	}
   4024 #ifdef INET6
   4025 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   4026 		struct in6pcb *oin6p = sotoin6pcb(oso);
   4027 		/* inherit socket options from the listening socket */
   4028 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   4029 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   4030 			m_freem(in6p->in6p_options);
   4031 			in6p->in6p_options = 0;
   4032 		}
   4033 		ip6_savecontrol(in6p, &in6p->in6p_options,
   4034 			mtod(m, struct ip6_hdr *), m);
   4035 	}
   4036 #endif
   4037 
   4038 #if defined(IPSEC)
   4039 	if (ipsec_used) {
   4040 		/*
   4041 		 * we make a copy of policy, instead of sharing the policy, for
   4042 		 * better behavior in terms of SA lookup and dead SA removal.
   4043 		 */
   4044 		if (inp) {
   4045 			/* copy old policy into new socket's */
   4046 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
   4047 			    inp->inp_sp))
   4048 				printf("tcp_input: could not copy policy\n");
   4049 		}
   4050 #ifdef INET6
   4051 		else if (in6p) {
   4052 			/* copy old policy into new socket's */
   4053 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   4054 			    in6p->in6p_sp))
   4055 				printf("tcp_input: could not copy policy\n");
   4056 		}
   4057 #endif
   4058 	}
   4059 #endif
   4060 
   4061 	/*
   4062 	 * Give the new socket our cached route reference.
   4063 	 */
   4064 	if (inp) {
   4065 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   4066 		rtcache_free(&sc->sc_route);
   4067 	}
   4068 #ifdef INET6
   4069 	else {
   4070 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   4071 		rtcache_free(&sc->sc_route);
   4072 	}
   4073 #endif
   4074 
   4075 	am = m_get(M_DONTWAIT, MT_SONAME);	/* XXX */
   4076 	if (am == NULL)
   4077 		goto resetandabort;
   4078 	MCLAIM(am, &tcp_mowner);
   4079 	am->m_len = src->sa_len;
   4080 	bcopy(src, mtod(am, void *), src->sa_len);
   4081 	if (inp) {
   4082 		if (in_pcbconnect(inp, am, &lwp0)) {
   4083 			(void) m_free(am);
   4084 			goto resetandabort;
   4085 		}
   4086 	}
   4087 #ifdef INET6
   4088 	else if (in6p) {
   4089 		if (src->sa_family == AF_INET) {
   4090 			/* IPv4 packet to AF_INET6 socket */
   4091 			struct sockaddr_in6 *sin6;
   4092 			sin6 = mtod(am, struct sockaddr_in6 *);
   4093 			am->m_len = sizeof(*sin6);
   4094 			memset(sin6, 0, sizeof(*sin6));
   4095 			sin6->sin6_family = AF_INET6;
   4096 			sin6->sin6_len = sizeof(*sin6);
   4097 			sin6->sin6_port = ((struct sockaddr_in *)src)->sin_port;
   4098 			sin6->sin6_addr.s6_addr16[5] = htons(0xffff);
   4099 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   4100 				&sin6->sin6_addr.s6_addr32[3],
   4101 				sizeof(sin6->sin6_addr.s6_addr32[3]));
   4102 		}
   4103 		if (in6_pcbconnect(in6p, am, NULL)) {
   4104 			(void) m_free(am);
   4105 			goto resetandabort;
   4106 		}
   4107 	}
   4108 #endif
   4109 	else {
   4110 		(void) m_free(am);
   4111 		goto resetandabort;
   4112 	}
   4113 	(void) m_free(am);
   4114 
   4115 	if (inp)
   4116 		tp = intotcpcb(inp);
   4117 #ifdef INET6
   4118 	else if (in6p)
   4119 		tp = in6totcpcb(in6p);
   4120 #endif
   4121 	else
   4122 		tp = NULL;
   4123 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   4124 	if (sc->sc_request_r_scale != 15) {
   4125 		tp->requested_s_scale = sc->sc_requested_s_scale;
   4126 		tp->request_r_scale = sc->sc_request_r_scale;
   4127 		tp->snd_scale = sc->sc_requested_s_scale;
   4128 		tp->rcv_scale = sc->sc_request_r_scale;
   4129 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   4130 	}
   4131 	if (sc->sc_flags & SCF_TIMESTAMP)
   4132 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   4133 	tp->ts_timebase = sc->sc_timebase;
   4134 
   4135 	tp->t_template = tcp_template(tp);
   4136 	if (tp->t_template == 0) {
   4137 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   4138 		so = NULL;
   4139 		m_freem(m);
   4140 		goto abort;
   4141 	}
   4142 
   4143 	tp->iss = sc->sc_iss;
   4144 	tp->irs = sc->sc_irs;
   4145 	tcp_sendseqinit(tp);
   4146 	tcp_rcvseqinit(tp);
   4147 	tp->t_state = TCPS_SYN_RECEIVED;
   4148 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4149 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4150 
   4151 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4152 		tp->t_flags |= TF_WILL_SACK;
   4153 
   4154 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4155 		tp->t_flags |= TF_ECN_PERMIT;
   4156 
   4157 #ifdef TCP_SIGNATURE
   4158 	if (sc->sc_flags & SCF_SIGNATURE)
   4159 		tp->t_flags |= TF_SIGNATURE;
   4160 #endif
   4161 
   4162 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4163 	tp->t_ourmss = sc->sc_ourmaxseg;
   4164 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4165 
   4166 	/*
   4167 	 * Initialize the initial congestion window.  If we
   4168 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4169 	 * to 1 segment (i.e. the Loss Window).
   4170 	 */
   4171 	if (sc->sc_rxtshift)
   4172 		tp->snd_cwnd = tp->t_peermss;
   4173 	else {
   4174 		int ss = tcp_init_win;
   4175 #ifdef INET
   4176 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4177 			ss = tcp_init_win_local;
   4178 #endif
   4179 #ifdef INET6
   4180 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4181 			ss = tcp_init_win_local;
   4182 #endif
   4183 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4184 	}
   4185 
   4186 	tcp_rmx_rtt(tp);
   4187 	tp->snd_wl1 = sc->sc_irs;
   4188 	tp->rcv_up = sc->sc_irs + 1;
   4189 
   4190 	/*
   4191 	 * This is what whould have happened in tcp_output() when
   4192 	 * the SYN,ACK was sent.
   4193 	 */
   4194 	tp->snd_up = tp->snd_una;
   4195 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4196 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4197 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4198 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4199 	tp->last_ack_sent = tp->rcv_nxt;
   4200 	tp->t_partialacks = -1;
   4201 	tp->t_dupacks = 0;
   4202 
   4203 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4204 	s = splsoftnet();
   4205 	syn_cache_put(sc);
   4206 	splx(s);
   4207 	return (so);
   4208 
   4209 resetandabort:
   4210 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4211 abort:
   4212 	if (so != NULL) {
   4213 		(void) soqremque(so, 1);
   4214 		(void) soabort(so);
   4215 		mutex_enter(softnet_lock);
   4216 	}
   4217 	s = splsoftnet();
   4218 	syn_cache_put(sc);
   4219 	splx(s);
   4220 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4221 	return ((struct socket *)(-1));
   4222 }
   4223 
   4224 /*
   4225  * This function is called when we get a RST for a
   4226  * non-existent connection, so that we can see if the
   4227  * connection is in the syn cache.  If it is, zap it.
   4228  */
   4229 
   4230 void
   4231 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4232 {
   4233 	struct syn_cache *sc;
   4234 	struct syn_cache_head *scp;
   4235 	int s = splsoftnet();
   4236 
   4237 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4238 		splx(s);
   4239 		return;
   4240 	}
   4241 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4242 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4243 		splx(s);
   4244 		return;
   4245 	}
   4246 	syn_cache_rm(sc);
   4247 	TCP_STATINC(TCP_STAT_SC_RESET);
   4248 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4249 	splx(s);
   4250 }
   4251 
   4252 void
   4253 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4254     struct tcphdr *th)
   4255 {
   4256 	struct syn_cache *sc;
   4257 	struct syn_cache_head *scp;
   4258 	int s;
   4259 
   4260 	s = splsoftnet();
   4261 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4262 		splx(s);
   4263 		return;
   4264 	}
   4265 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4266 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4267 		splx(s);
   4268 		return;
   4269 	}
   4270 
   4271 	/*
   4272 	 * If we've retransmitted 3 times and this is our second error,
   4273 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4274 	 * This prevents us from incorrectly nuking an entry during a
   4275 	 * spurious network outage.
   4276 	 *
   4277 	 * See tcp_notify().
   4278 	 */
   4279 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4280 		sc->sc_flags |= SCF_UNREACH;
   4281 		splx(s);
   4282 		return;
   4283 	}
   4284 
   4285 	syn_cache_rm(sc);
   4286 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4287 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4288 	splx(s);
   4289 }
   4290 
   4291 /*
   4292  * Given a LISTEN socket and an inbound SYN request, add
   4293  * this to the syn cache, and send back a segment:
   4294  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4295  * to the source.
   4296  *
   4297  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4298  * Doing so would require that we hold onto the data and deliver it
   4299  * to the application.  However, if we are the target of a SYN-flood
   4300  * DoS attack, an attacker could send data which would eventually
   4301  * consume all available buffer space if it were ACKed.  By not ACKing
   4302  * the data, we avoid this DoS scenario.
   4303  */
   4304 
   4305 int
   4306 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4307     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4308     int optlen, struct tcp_opt_info *oi)
   4309 {
   4310 	struct tcpcb tb, *tp;
   4311 	long win;
   4312 	struct syn_cache *sc;
   4313 	struct syn_cache_head *scp;
   4314 	struct mbuf *ipopts;
   4315 	struct tcp_opt_info opti;
   4316 	int s;
   4317 
   4318 	tp = sototcpcb(so);
   4319 
   4320 	memset(&opti, 0, sizeof(opti));
   4321 
   4322 	/*
   4323 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4324 	 *
   4325 	 * Note this check is performed in tcp_input() very early on.
   4326 	 */
   4327 
   4328 	/*
   4329 	 * Initialize some local state.
   4330 	 */
   4331 	win = sbspace(&so->so_rcv);
   4332 	if (win > TCP_MAXWIN)
   4333 		win = TCP_MAXWIN;
   4334 
   4335 	switch (src->sa_family) {
   4336 #ifdef INET
   4337 	case AF_INET:
   4338 		/*
   4339 		 * Remember the IP options, if any.
   4340 		 */
   4341 		ipopts = ip_srcroute();
   4342 		break;
   4343 #endif
   4344 	default:
   4345 		ipopts = NULL;
   4346 	}
   4347 
   4348 #ifdef TCP_SIGNATURE
   4349 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4350 #else
   4351 	if (optp)
   4352 #endif
   4353 	{
   4354 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4355 #ifdef TCP_SIGNATURE
   4356 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4357 #endif
   4358 		tb.t_state = TCPS_LISTEN;
   4359 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4360 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4361 			return (0);
   4362 	} else
   4363 		tb.t_flags = 0;
   4364 
   4365 	/*
   4366 	 * See if we already have an entry for this connection.
   4367 	 * If we do, resend the SYN,ACK.  We do not count this
   4368 	 * as a retransmission (XXX though maybe we should).
   4369 	 */
   4370 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4371 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4372 		if (ipopts) {
   4373 			/*
   4374 			 * If we were remembering a previous source route,
   4375 			 * forget it and use the new one we've been given.
   4376 			 */
   4377 			if (sc->sc_ipopts)
   4378 				(void) m_free(sc->sc_ipopts);
   4379 			sc->sc_ipopts = ipopts;
   4380 		}
   4381 		sc->sc_timestamp = tb.ts_recent;
   4382 		if (syn_cache_respond(sc, m) == 0) {
   4383 			uint64_t *tcps = TCP_STAT_GETREF();
   4384 			tcps[TCP_STAT_SNDACKS]++;
   4385 			tcps[TCP_STAT_SNDTOTAL]++;
   4386 			TCP_STAT_PUTREF();
   4387 		}
   4388 		return (1);
   4389 	}
   4390 
   4391 	s = splsoftnet();
   4392 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4393 	splx(s);
   4394 	if (sc == NULL) {
   4395 		if (ipopts)
   4396 			(void) m_free(ipopts);
   4397 		return (0);
   4398 	}
   4399 
   4400 	/*
   4401 	 * Fill in the cache, and put the necessary IP and TCP
   4402 	 * options into the reply.
   4403 	 */
   4404 	memset(sc, 0, sizeof(struct syn_cache));
   4405 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4406 	bcopy(src, &sc->sc_src, src->sa_len);
   4407 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4408 	sc->sc_flags = 0;
   4409 	sc->sc_ipopts = ipopts;
   4410 	sc->sc_irs = th->th_seq;
   4411 	switch (src->sa_family) {
   4412 #ifdef INET
   4413 	case AF_INET:
   4414 	    {
   4415 		struct sockaddr_in *srcin = (void *) src;
   4416 		struct sockaddr_in *dstin = (void *) dst;
   4417 
   4418 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4419 		    &srcin->sin_addr, dstin->sin_port,
   4420 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4421 		break;
   4422 	    }
   4423 #endif /* INET */
   4424 #ifdef INET6
   4425 	case AF_INET6:
   4426 	    {
   4427 		struct sockaddr_in6 *srcin6 = (void *) src;
   4428 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4429 
   4430 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4431 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4432 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4433 		break;
   4434 	    }
   4435 #endif /* INET6 */
   4436 	}
   4437 	sc->sc_peermaxseg = oi->maxseg;
   4438 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4439 						m->m_pkthdr.rcvif : NULL,
   4440 						sc->sc_src.sa.sa_family);
   4441 	sc->sc_win = win;
   4442 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4443 	sc->sc_timestamp = tb.ts_recent;
   4444 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4445 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4446 		sc->sc_flags |= SCF_TIMESTAMP;
   4447 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4448 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4449 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4450 		sc->sc_request_r_scale = 0;
   4451 		/*
   4452 		 * Pick the smallest possible scaling factor that
   4453 		 * will still allow us to scale up to sb_max.
   4454 		 *
   4455 		 * We do this because there are broken firewalls that
   4456 		 * will corrupt the window scale option, leading to
   4457 		 * the other endpoint believing that our advertised
   4458 		 * window is unscaled.  At scale factors larger than
   4459 		 * 5 the unscaled window will drop below 1500 bytes,
   4460 		 * leading to serious problems when traversing these
   4461 		 * broken firewalls.
   4462 		 *
   4463 		 * With the default sbmax of 256K, a scale factor
   4464 		 * of 3 will be chosen by this algorithm.  Those who
   4465 		 * choose a larger sbmax should watch out
   4466 		 * for the compatiblity problems mentioned above.
   4467 		 *
   4468 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4469 		 * or <SYN,ACK>) segment itself is never scaled.
   4470 		 */
   4471 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4472 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4473 			sc->sc_request_r_scale++;
   4474 	} else {
   4475 		sc->sc_requested_s_scale = 15;
   4476 		sc->sc_request_r_scale = 15;
   4477 	}
   4478 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4479 		sc->sc_flags |= SCF_SACK_PERMIT;
   4480 
   4481 	/*
   4482 	 * ECN setup packet recieved.
   4483 	 */
   4484 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4485 		sc->sc_flags |= SCF_ECN_PERMIT;
   4486 
   4487 #ifdef TCP_SIGNATURE
   4488 	if (tb.t_flags & TF_SIGNATURE)
   4489 		sc->sc_flags |= SCF_SIGNATURE;
   4490 #endif
   4491 	sc->sc_tp = tp;
   4492 	if (syn_cache_respond(sc, m) == 0) {
   4493 		uint64_t *tcps = TCP_STAT_GETREF();
   4494 		tcps[TCP_STAT_SNDACKS]++;
   4495 		tcps[TCP_STAT_SNDTOTAL]++;
   4496 		TCP_STAT_PUTREF();
   4497 		syn_cache_insert(sc, tp);
   4498 	} else {
   4499 		s = splsoftnet();
   4500 		/*
   4501 		 * syn_cache_put() will try to schedule the timer, so
   4502 		 * we need to initialize it
   4503 		 */
   4504 		SYN_CACHE_TIMER_ARM(sc);
   4505 		syn_cache_put(sc);
   4506 		splx(s);
   4507 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4508 	}
   4509 	return (1);
   4510 }
   4511 
   4512 /*
   4513  * syn_cache_respond: (re)send SYN+ACK.
   4514  *
   4515  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
   4516  */
   4517 
   4518 int
   4519 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4520 {
   4521 #ifdef INET6
   4522 	struct rtentry *rt;
   4523 #endif
   4524 	struct route *ro;
   4525 	u_int8_t *optp;
   4526 	int optlen, error;
   4527 	u_int16_t tlen;
   4528 	struct ip *ip = NULL;
   4529 #ifdef INET6
   4530 	struct ip6_hdr *ip6 = NULL;
   4531 #endif
   4532 	struct tcpcb *tp = NULL;
   4533 	struct tcphdr *th;
   4534 	u_int hlen;
   4535 	struct socket *so;
   4536 
   4537 	ro = &sc->sc_route;
   4538 	switch (sc->sc_src.sa.sa_family) {
   4539 	case AF_INET:
   4540 		hlen = sizeof(struct ip);
   4541 		break;
   4542 #ifdef INET6
   4543 	case AF_INET6:
   4544 		hlen = sizeof(struct ip6_hdr);
   4545 		break;
   4546 #endif
   4547 	default:
   4548 		if (m)
   4549 			m_freem(m);
   4550 		return (EAFNOSUPPORT);
   4551 	}
   4552 
   4553 	/* Compute the size of the TCP options. */
   4554 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4555 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4556 #ifdef TCP_SIGNATURE
   4557 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4558 #endif
   4559 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4560 
   4561 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4562 
   4563 	/*
   4564 	 * Create the IP+TCP header from scratch.
   4565 	 */
   4566 	if (m)
   4567 		m_freem(m);
   4568 #ifdef DIAGNOSTIC
   4569 	if (max_linkhdr + tlen > MCLBYTES)
   4570 		return (ENOBUFS);
   4571 #endif
   4572 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4573 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4574 		MCLGET(m, M_DONTWAIT);
   4575 		if ((m->m_flags & M_EXT) == 0) {
   4576 			m_freem(m);
   4577 			m = NULL;
   4578 		}
   4579 	}
   4580 	if (m == NULL)
   4581 		return (ENOBUFS);
   4582 	MCLAIM(m, &tcp_tx_mowner);
   4583 
   4584 	/* Fixup the mbuf. */
   4585 	m->m_data += max_linkhdr;
   4586 	m->m_len = m->m_pkthdr.len = tlen;
   4587 	if (sc->sc_tp) {
   4588 		tp = sc->sc_tp;
   4589 		if (tp->t_inpcb)
   4590 			so = tp->t_inpcb->inp_socket;
   4591 #ifdef INET6
   4592 		else if (tp->t_in6pcb)
   4593 			so = tp->t_in6pcb->in6p_socket;
   4594 #endif
   4595 		else
   4596 			so = NULL;
   4597 	} else
   4598 		so = NULL;
   4599 	m->m_pkthdr.rcvif = NULL;
   4600 	memset(mtod(m, u_char *), 0, tlen);
   4601 
   4602 	switch (sc->sc_src.sa.sa_family) {
   4603 	case AF_INET:
   4604 		ip = mtod(m, struct ip *);
   4605 		ip->ip_v = 4;
   4606 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4607 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4608 		ip->ip_p = IPPROTO_TCP;
   4609 		th = (struct tcphdr *)(ip + 1);
   4610 		th->th_dport = sc->sc_src.sin.sin_port;
   4611 		th->th_sport = sc->sc_dst.sin.sin_port;
   4612 		break;
   4613 #ifdef INET6
   4614 	case AF_INET6:
   4615 		ip6 = mtod(m, struct ip6_hdr *);
   4616 		ip6->ip6_vfc = IPV6_VERSION;
   4617 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4618 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4619 		ip6->ip6_nxt = IPPROTO_TCP;
   4620 		/* ip6_plen will be updated in ip6_output() */
   4621 		th = (struct tcphdr *)(ip6 + 1);
   4622 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4623 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4624 		break;
   4625 #endif
   4626 	default:
   4627 		th = NULL;
   4628 	}
   4629 
   4630 	th->th_seq = htonl(sc->sc_iss);
   4631 	th->th_ack = htonl(sc->sc_irs + 1);
   4632 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4633 	th->th_flags = TH_SYN|TH_ACK;
   4634 	th->th_win = htons(sc->sc_win);
   4635 	/* th_sum already 0 */
   4636 	/* th_urp already 0 */
   4637 
   4638 	/* Tack on the TCP options. */
   4639 	optp = (u_int8_t *)(th + 1);
   4640 	*optp++ = TCPOPT_MAXSEG;
   4641 	*optp++ = 4;
   4642 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4643 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4644 
   4645 	if (sc->sc_request_r_scale != 15) {
   4646 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4647 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4648 		    sc->sc_request_r_scale);
   4649 		optp += 4;
   4650 	}
   4651 
   4652 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4653 		u_int32_t *lp = (u_int32_t *)(optp);
   4654 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4655 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4656 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4657 		*lp   = htonl(sc->sc_timestamp);
   4658 		optp += TCPOLEN_TSTAMP_APPA;
   4659 	}
   4660 
   4661 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4662 		u_int8_t *p = optp;
   4663 
   4664 		/* Let the peer know that we will SACK. */
   4665 		p[0] = TCPOPT_SACK_PERMITTED;
   4666 		p[1] = 2;
   4667 		p[2] = TCPOPT_NOP;
   4668 		p[3] = TCPOPT_NOP;
   4669 		optp += 4;
   4670 	}
   4671 
   4672 	/*
   4673 	 * Send ECN SYN-ACK setup packet.
   4674 	 * Routes can be asymetric, so, even if we receive a packet
   4675 	 * with ECE and CWR set, we must not assume no one will block
   4676 	 * the ECE packet we are about to send.
   4677 	 */
   4678 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4679 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4680 		th->th_flags |= TH_ECE;
   4681 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4682 
   4683 		/*
   4684 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4685 		 *
   4686 		 * "[...] a TCP node MAY respond to an ECN-setup
   4687 		 * SYN packet by setting ECT in the responding
   4688 		 * ECN-setup SYN/ACK packet, indicating to routers
   4689 		 * that the SYN/ACK packet is ECN-Capable.
   4690 		 * This allows a congested router along the path
   4691 		 * to mark the packet instead of dropping the
   4692 		 * packet as an indication of congestion."
   4693 		 *
   4694 		 * "[...] There can be a great benefit in setting
   4695 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4696 		 * Congestion is  most likely to occur in
   4697 		 * the server-to-client direction.  As a result,
   4698 		 * setting an ECN-capable codepoint in SYN/ACK
   4699 		 * packets can reduce the occurence of three-second
   4700 		 * retransmit timeouts resulting from the drop
   4701 		 * of SYN/ACK packets."
   4702 		 *
   4703 		 * Page 4 and 6, January 2006.
   4704 		 */
   4705 
   4706 		switch (sc->sc_src.sa.sa_family) {
   4707 #ifdef INET
   4708 		case AF_INET:
   4709 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4710 			break;
   4711 #endif
   4712 #ifdef INET6
   4713 		case AF_INET6:
   4714 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4715 			break;
   4716 #endif
   4717 		}
   4718 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4719 	}
   4720 
   4721 #ifdef TCP_SIGNATURE
   4722 	if (sc->sc_flags & SCF_SIGNATURE) {
   4723 		struct secasvar *sav;
   4724 		u_int8_t *sigp;
   4725 
   4726 		sav = tcp_signature_getsav(m, th);
   4727 
   4728 		if (sav == NULL) {
   4729 			if (m)
   4730 				m_freem(m);
   4731 			return (EPERM);
   4732 		}
   4733 
   4734 		*optp++ = TCPOPT_SIGNATURE;
   4735 		*optp++ = TCPOLEN_SIGNATURE;
   4736 		sigp = optp;
   4737 		memset(optp, 0, TCP_SIGLEN);
   4738 		optp += TCP_SIGLEN;
   4739 		*optp++ = TCPOPT_NOP;
   4740 		*optp++ = TCPOPT_EOL;
   4741 
   4742 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4743 
   4744 		key_sa_recordxfer(sav, m);
   4745 		KEY_FREESAV(&sav);
   4746 	}
   4747 #endif
   4748 
   4749 	/* Compute the packet's checksum. */
   4750 	switch (sc->sc_src.sa.sa_family) {
   4751 	case AF_INET:
   4752 		ip->ip_len = htons(tlen - hlen);
   4753 		th->th_sum = 0;
   4754 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4755 		break;
   4756 #ifdef INET6
   4757 	case AF_INET6:
   4758 		ip6->ip6_plen = htons(tlen - hlen);
   4759 		th->th_sum = 0;
   4760 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4761 		break;
   4762 #endif
   4763 	}
   4764 
   4765 	/*
   4766 	 * Fill in some straggling IP bits.  Note the stack expects
   4767 	 * ip_len to be in host order, for convenience.
   4768 	 */
   4769 	switch (sc->sc_src.sa.sa_family) {
   4770 #ifdef INET
   4771 	case AF_INET:
   4772 		ip->ip_len = htons(tlen);
   4773 		ip->ip_ttl = ip_defttl;
   4774 		/* XXX tos? */
   4775 		break;
   4776 #endif
   4777 #ifdef INET6
   4778 	case AF_INET6:
   4779 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4780 		ip6->ip6_vfc |= IPV6_VERSION;
   4781 		ip6->ip6_plen = htons(tlen - hlen);
   4782 		/* ip6_hlim will be initialized afterwards */
   4783 		/* XXX flowlabel? */
   4784 		break;
   4785 #endif
   4786 	}
   4787 
   4788 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4789 	tp = sc->sc_tp;
   4790 
   4791 	switch (sc->sc_src.sa.sa_family) {
   4792 #ifdef INET
   4793 	case AF_INET:
   4794 		error = ip_output(m, sc->sc_ipopts, ro,
   4795 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4796 		    NULL, so);
   4797 		break;
   4798 #endif
   4799 #ifdef INET6
   4800 	case AF_INET6:
   4801 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4802 				(rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp
   4803 				                                    : NULL);
   4804 
   4805 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4806 		break;
   4807 #endif
   4808 	default:
   4809 		error = EAFNOSUPPORT;
   4810 		break;
   4811 	}
   4812 	return (error);
   4813 }
   4814