tcp_input.c revision 1.34 1 /* $NetBSD: tcp_input.c,v 1.34 1997/11/08 02:35:22 kml Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
36 */
37
38 /*
39 * TODO list for SYN cache stuff:
40 *
41 * (a) The definition of "struct syn_cache" says:
42 *
43 * This structure should not exceeed 32 bytes.
44 *
45 * but it's 40 bytes on the Alpha. Can reduce memory use one
46 * of two ways:
47 *
48 * (1) Use a dynamically-sized hash table, and handle
49 * collisions by rehashing. Then sc_next is unnecessary.
50 *
51 * (2) Allocate syn_cache structures in pages (or some other
52 * large chunk). This would probably be desirable for
53 * maintaining locality of reference anyway.
54 *
55 * If you do this, you can change sc_next to a page/index
56 * value, and make it a 32-bit (or maybe even 16-bit)
57 * integer, thus partly obviating the need for the previous
58 * hack.
59 *
60 * It's also worth noting this this is necessary for IPv6, as well,
61 * where we use 32 bytes just for the IP addresses, so eliminating
62 * wastage is going to become more important. (BTW, has anyone
63 * integreated these changes with one fo the IPv6 status that are
64 * available?)
65 *
66 * (b) Find room for a "state" field, which is needed to keep a
67 * compressed state for TIME_WAIT TCBs. It's been noted already
68 * that this is fairly important for very high-volume web and
69 * mail servers, which use a large number of short-lived
70 * connections.
71 */
72
73 #ifndef TUBA_INCLUDE
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/errno.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/tcp.h>
92 #include <netinet/tcp_fsm.h>
93 #include <netinet/tcp_seq.h>
94 #include <netinet/tcp_timer.h>
95 #include <netinet/tcp_var.h>
96 #include <netinet/tcpip.h>
97 #include <netinet/tcp_debug.h>
98
99 #include <machine/stdarg.h>
100
101 int tcprexmtthresh = 3;
102 struct tcpiphdr tcp_saveti;
103
104 extern u_long sb_max;
105
106 #endif /* TUBA_INCLUDE */
107 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
108
109 /* for modulo comparisons of timestamps */
110 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
111 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
112
113 /*
114 * Insert segment ti into reassembly queue of tcp with
115 * control block tp. Return TH_FIN if reassembly now includes
116 * a segment with FIN. The macro form does the common case inline
117 * (segment is the next to be received on an established connection,
118 * and the queue is empty), avoiding linkage into and removal
119 * from the queue and repetition of various conversions.
120 * Set DELACK for segments received in order, but ack immediately
121 * when segments are out of order (so fast retransmit can work).
122 */
123 #define TCP_REASS(tp, ti, m, so, flags) { \
124 if ((ti)->ti_seq == (tp)->rcv_nxt && \
125 (tp)->segq.lh_first == NULL && \
126 (tp)->t_state == TCPS_ESTABLISHED) { \
127 if ((ti)->ti_flags & TH_PUSH) \
128 tp->t_flags |= TF_ACKNOW; \
129 else \
130 tp->t_flags |= TF_DELACK; \
131 (tp)->rcv_nxt += (ti)->ti_len; \
132 flags = (ti)->ti_flags & TH_FIN; \
133 tcpstat.tcps_rcvpack++;\
134 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
135 sbappend(&(so)->so_rcv, (m)); \
136 sorwakeup(so); \
137 } else { \
138 (flags) = tcp_reass((tp), (ti), (m)); \
139 tp->t_flags |= TF_ACKNOW; \
140 } \
141 }
142 #ifndef TUBA_INCLUDE
143
144 int
145 tcp_reass(tp, ti, m)
146 register struct tcpcb *tp;
147 register struct tcpiphdr *ti;
148 struct mbuf *m;
149 {
150 register struct ipqent *p, *q, *nq, *tiqe;
151 struct socket *so = tp->t_inpcb->inp_socket;
152 int flags;
153
154 /*
155 * Call with ti==0 after become established to
156 * force pre-ESTABLISHED data up to user socket.
157 */
158 if (ti == 0)
159 goto present;
160
161 /*
162 * Allocate a new queue entry, before we throw away any data.
163 * If we can't, just drop the packet. XXX
164 */
165 MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
166 if (tiqe == NULL) {
167 tcpstat.tcps_rcvmemdrop++;
168 m_freem(m);
169 return (0);
170 }
171
172 /*
173 * Find a segment which begins after this one does.
174 */
175 for (p = NULL, q = tp->segq.lh_first; q != NULL;
176 p = q, q = q->ipqe_q.le_next)
177 if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
178 break;
179
180 /*
181 * If there is a preceding segment, it may provide some of
182 * our data already. If so, drop the data from the incoming
183 * segment. If it provides all of our data, drop us.
184 */
185 if (p != NULL) {
186 register struct tcpiphdr *phdr = p->ipqe_tcp;
187 register int i;
188
189 /* conversion to int (in i) handles seq wraparound */
190 i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
191 if (i > 0) {
192 if (i >= ti->ti_len) {
193 tcpstat.tcps_rcvduppack++;
194 tcpstat.tcps_rcvdupbyte += ti->ti_len;
195 m_freem(m);
196 FREE(tiqe, M_IPQ);
197 return (0);
198 }
199 m_adj(m, i);
200 ti->ti_len -= i;
201 ti->ti_seq += i;
202 }
203 }
204 tcpstat.tcps_rcvoopack++;
205 tcpstat.tcps_rcvoobyte += ti->ti_len;
206
207 /*
208 * While we overlap succeeding segments trim them or,
209 * if they are completely covered, dequeue them.
210 */
211 for (; q != NULL; q = nq) {
212 register struct tcpiphdr *qhdr = q->ipqe_tcp;
213 register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
214
215 if (i <= 0)
216 break;
217 if (i < qhdr->ti_len) {
218 qhdr->ti_seq += i;
219 qhdr->ti_len -= i;
220 m_adj(q->ipqe_m, i);
221 break;
222 }
223 nq = q->ipqe_q.le_next;
224 m_freem(q->ipqe_m);
225 LIST_REMOVE(q, ipqe_q);
226 FREE(q, M_IPQ);
227 }
228
229 /* Insert the new fragment queue entry into place. */
230 tiqe->ipqe_m = m;
231 tiqe->ipqe_tcp = ti;
232 if (p == NULL) {
233 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
234 } else {
235 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
236 }
237
238 present:
239 /*
240 * Present data to user, advancing rcv_nxt through
241 * completed sequence space.
242 */
243 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
244 return (0);
245 q = tp->segq.lh_first;
246 if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
247 return (0);
248 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
249 return (0);
250 do {
251 tp->rcv_nxt += q->ipqe_tcp->ti_len;
252 flags = q->ipqe_tcp->ti_flags & TH_FIN;
253
254 nq = q->ipqe_q.le_next;
255 LIST_REMOVE(q, ipqe_q);
256 if (so->so_state & SS_CANTRCVMORE)
257 m_freem(q->ipqe_m);
258 else
259 sbappend(&so->so_rcv, q->ipqe_m);
260 FREE(q, M_IPQ);
261 q = nq;
262 } while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
263 sorwakeup(so);
264 return (flags);
265 }
266
267 /*
268 * TCP input routine, follows pages 65-76 of the
269 * protocol specification dated September, 1981 very closely.
270 */
271 void
272 #if __STDC__
273 tcp_input(struct mbuf *m, ...)
274 #else
275 tcp_input(m, va_alist)
276 register struct mbuf *m;
277 #endif
278 {
279 register struct tcpiphdr *ti;
280 register struct inpcb *inp;
281 caddr_t optp = NULL;
282 int optlen = 0;
283 int len, tlen, off, hdroptlen;
284 register struct tcpcb *tp = 0;
285 register int tiflags;
286 struct socket *so = NULL;
287 int todrop, acked, ourfinisacked, needoutput = 0;
288 short ostate = 0;
289 int iss = 0;
290 u_long tiwin;
291 struct tcp_opt_info opti;
292 int iphlen;
293 va_list ap;
294
295 va_start(ap, m);
296 iphlen = va_arg(ap, int);
297 va_end(ap);
298
299 tcpstat.tcps_rcvtotal++;
300
301 opti.ts_present = 0;
302 opti.maxseg = 0;
303
304 /*
305 * Get IP and TCP header together in first mbuf.
306 * Note: IP leaves IP header in first mbuf.
307 */
308 ti = mtod(m, struct tcpiphdr *);
309 if (iphlen > sizeof (struct ip))
310 ip_stripoptions(m, (struct mbuf *)0);
311 if (m->m_len < sizeof (struct tcpiphdr)) {
312 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
313 tcpstat.tcps_rcvshort++;
314 return;
315 }
316 ti = mtod(m, struct tcpiphdr *);
317 }
318
319 /*
320 * Checksum extended TCP header and data.
321 */
322 tlen = ((struct ip *)ti)->ip_len;
323 len = sizeof (struct ip) + tlen;
324 bzero(ti->ti_x1, sizeof ti->ti_x1);
325 ti->ti_len = (u_int16_t)tlen;
326 HTONS(ti->ti_len);
327 if ((ti->ti_sum = in_cksum(m, len)) != 0) {
328 tcpstat.tcps_rcvbadsum++;
329 goto drop;
330 }
331 #endif /* TUBA_INCLUDE */
332
333 /*
334 * Check that TCP offset makes sense,
335 * pull out TCP options and adjust length. XXX
336 */
337 off = ti->ti_off << 2;
338 if (off < sizeof (struct tcphdr) || off > tlen) {
339 tcpstat.tcps_rcvbadoff++;
340 goto drop;
341 }
342 tlen -= off;
343 ti->ti_len = tlen;
344 if (off > sizeof (struct tcphdr)) {
345 if (m->m_len < sizeof(struct ip) + off) {
346 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
347 tcpstat.tcps_rcvshort++;
348 return;
349 }
350 ti = mtod(m, struct tcpiphdr *);
351 }
352 optlen = off - sizeof (struct tcphdr);
353 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
354 /*
355 * Do quick retrieval of timestamp options ("options
356 * prediction?"). If timestamp is the only option and it's
357 * formatted as recommended in RFC 1323 appendix A, we
358 * quickly get the values now and not bother calling
359 * tcp_dooptions(), etc.
360 */
361 if ((optlen == TCPOLEN_TSTAMP_APPA ||
362 (optlen > TCPOLEN_TSTAMP_APPA &&
363 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
364 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
365 (ti->ti_flags & TH_SYN) == 0) {
366 opti.ts_present = 1;
367 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
368 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
369 optp = NULL; /* we've parsed the options */
370 }
371 }
372 tiflags = ti->ti_flags;
373
374 /*
375 * Convert TCP protocol specific fields to host format.
376 */
377 NTOHL(ti->ti_seq);
378 NTOHL(ti->ti_ack);
379 NTOHS(ti->ti_win);
380 NTOHS(ti->ti_urp);
381
382 /*
383 * Locate pcb for segment.
384 */
385 findpcb:
386 inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
387 ti->ti_dst, ti->ti_dport);
388 if (inp == 0) {
389 ++tcpstat.tcps_pcbhashmiss;
390 inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
391 if (inp == 0) {
392 ++tcpstat.tcps_noport;
393 goto dropwithreset;
394 }
395 }
396
397 /*
398 * If the state is CLOSED (i.e., TCB does not exist) then
399 * all data in the incoming segment is discarded.
400 * If the TCB exists but is in CLOSED state, it is embryonic,
401 * but should either do a listen or a connect soon.
402 */
403 tp = intotcpcb(inp);
404 if (tp == 0)
405 goto dropwithreset;
406 if (tp->t_state == TCPS_CLOSED)
407 goto drop;
408
409 /* Unscale the window into a 32-bit value. */
410 if ((tiflags & TH_SYN) == 0)
411 tiwin = ti->ti_win << tp->snd_scale;
412 else
413 tiwin = ti->ti_win;
414
415 so = inp->inp_socket;
416 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
417 if (so->so_options & SO_DEBUG) {
418 ostate = tp->t_state;
419 tcp_saveti = *ti;
420 }
421 if (so->so_options & SO_ACCEPTCONN) {
422 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
423 if (tiflags & TH_RST)
424 syn_cache_reset(ti);
425 else if (tiflags & TH_ACK) {
426 so = syn_cache_get(so, m);
427 if (so == NULL) {
428 /*
429 * We don't have a SYN for
430 * this ACK; send an RST.
431 */
432 tcpstat.tcps_badsyn++;
433 tp = NULL;
434 goto dropwithreset;
435 } else if (so ==
436 (struct socket *)(-1)) {
437 /*
438 * We were unable to create
439 * the connection. If the
440 * 3-way handshake was
441 * completeed, and RST has
442 * been sent to the peer.
443 * Since the mbuf might be
444 * in use for the reply,
445 * do not free it.
446 */
447 m = NULL;
448 } else {
449 /*
450 * We have created a
451 * full-blown connection.
452 */
453 inp = sotoinpcb(so);
454 tp = intotcpcb(inp);
455 tiwin <<= tp->snd_scale;
456 goto after_listen;
457 }
458 }
459 } else {
460 /*
461 * Received a SYN; create compressed
462 * TCP state for it.
463 */
464 if (so->so_qlen <= so->so_qlimit &&
465 syn_cache_add(so, m, optp, optlen, &opti))
466 m = NULL;
467 }
468 goto drop;
469 }
470 }
471
472 after_listen:
473 #ifdef DIAGNOSTIC
474 /*
475 * Should not happen now that all embryonic connections
476 * are handled with compressed state.
477 */
478 if (tp->t_state == TCPS_LISTEN)
479 panic("tcp_input: TCPS_LISTEN");
480 #endif
481
482 /*
483 * Segment received on connection.
484 * Reset idle time and keep-alive timer.
485 */
486 tp->t_idle = 0;
487 if (TCPS_HAVEESTABLISHED(tp->t_state))
488 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
489
490 /*
491 * Process options.
492 */
493 if (optp)
494 tcp_dooptions(tp, optp, optlen, ti, &opti);
495
496 /*
497 * Header prediction: check for the two common cases
498 * of a uni-directional data xfer. If the packet has
499 * no control flags, is in-sequence, the window didn't
500 * change and we're not retransmitting, it's a
501 * candidate. If the length is zero and the ack moved
502 * forward, we're the sender side of the xfer. Just
503 * free the data acked & wake any higher level process
504 * that was blocked waiting for space. If the length
505 * is non-zero and the ack didn't move, we're the
506 * receiver side. If we're getting packets in-order
507 * (the reassembly queue is empty), add the data to
508 * the socket buffer and note that we need a delayed ack.
509 */
510 if (tp->t_state == TCPS_ESTABLISHED &&
511 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
512 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
513 ti->ti_seq == tp->rcv_nxt &&
514 tiwin && tiwin == tp->snd_wnd &&
515 tp->snd_nxt == tp->snd_max) {
516
517 /*
518 * If last ACK falls within this segment's sequence numbers,
519 * record the timestamp.
520 */
521 if (opti.ts_present &&
522 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
523 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
524 tp->ts_recent_age = tcp_now;
525 tp->ts_recent = opti.ts_val;
526 }
527
528 if (ti->ti_len == 0) {
529 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
530 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
531 tp->snd_cwnd >= tp->snd_wnd &&
532 tp->t_dupacks < tcprexmtthresh) {
533 /*
534 * this is a pure ack for outstanding data.
535 */
536 ++tcpstat.tcps_predack;
537 if (opti.ts_present)
538 tcp_xmit_timer(tp,
539 tcp_now-opti.ts_ecr+1);
540 else if (tp->t_rtt &&
541 SEQ_GT(ti->ti_ack, tp->t_rtseq))
542 tcp_xmit_timer(tp, tp->t_rtt);
543 acked = ti->ti_ack - tp->snd_una;
544 tcpstat.tcps_rcvackpack++;
545 tcpstat.tcps_rcvackbyte += acked;
546 sbdrop(&so->so_snd, acked);
547 tp->snd_una = ti->ti_ack;
548 m_freem(m);
549
550 /*
551 * If all outstanding data are acked, stop
552 * retransmit timer, otherwise restart timer
553 * using current (possibly backed-off) value.
554 * If process is waiting for space,
555 * wakeup/selwakeup/signal. If data
556 * are ready to send, let tcp_output
557 * decide between more output or persist.
558 */
559 if (tp->snd_una == tp->snd_max)
560 tp->t_timer[TCPT_REXMT] = 0;
561 else if (tp->t_timer[TCPT_PERSIST] == 0)
562 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
563
564 if (sb_notify(&so->so_snd))
565 sowwakeup(so);
566 if (so->so_snd.sb_cc)
567 (void) tcp_output(tp);
568 return;
569 }
570 } else if (ti->ti_ack == tp->snd_una &&
571 tp->segq.lh_first == NULL &&
572 ti->ti_len <= sbspace(&so->so_rcv)) {
573 /*
574 * this is a pure, in-sequence data packet
575 * with nothing on the reassembly queue and
576 * we have enough buffer space to take it.
577 */
578 ++tcpstat.tcps_preddat;
579 tp->rcv_nxt += ti->ti_len;
580 tcpstat.tcps_rcvpack++;
581 tcpstat.tcps_rcvbyte += ti->ti_len;
582 /*
583 * Drop TCP, IP headers and TCP options then add data
584 * to socket buffer.
585 */
586 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
587 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
588 sbappend(&so->so_rcv, m);
589 sorwakeup(so);
590 if (ti->ti_flags & TH_PUSH)
591 tp->t_flags |= TF_ACKNOW;
592 else
593 tp->t_flags |= TF_DELACK;
594 return;
595 }
596 }
597
598 /*
599 * Drop TCP, IP headers and TCP options.
600 */
601 hdroptlen = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
602 m->m_data += hdroptlen;
603 m->m_len -= hdroptlen;
604
605 /*
606 * Calculate amount of space in receive window,
607 * and then do TCP input processing.
608 * Receive window is amount of space in rcv queue,
609 * but not less than advertised window.
610 */
611 { int win;
612
613 win = sbspace(&so->so_rcv);
614 if (win < 0)
615 win = 0;
616 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
617 }
618
619 switch (tp->t_state) {
620
621 /*
622 * If the state is SYN_SENT:
623 * if seg contains an ACK, but not for our SYN, drop the input.
624 * if seg contains a RST, then drop the connection.
625 * if seg does not contain SYN, then drop it.
626 * Otherwise this is an acceptable SYN segment
627 * initialize tp->rcv_nxt and tp->irs
628 * if seg contains ack then advance tp->snd_una
629 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
630 * arrange for segment to be acked (eventually)
631 * continue processing rest of data/controls, beginning with URG
632 */
633 case TCPS_SYN_SENT:
634 if ((tiflags & TH_ACK) &&
635 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
636 SEQ_GT(ti->ti_ack, tp->snd_max)))
637 goto dropwithreset;
638 if (tiflags & TH_RST) {
639 if (tiflags & TH_ACK)
640 tp = tcp_drop(tp, ECONNREFUSED);
641 goto drop;
642 }
643 if ((tiflags & TH_SYN) == 0)
644 goto drop;
645 if (tiflags & TH_ACK) {
646 tp->snd_una = ti->ti_ack;
647 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
648 tp->snd_nxt = tp->snd_una;
649 }
650 tp->t_timer[TCPT_REXMT] = 0;
651 tp->irs = ti->ti_seq;
652 tcp_rcvseqinit(tp);
653 tp->t_flags |= TF_ACKNOW;
654 tcp_mss_from_peer(tp, opti.maxseg);
655 tcp_rmx_rtt(tp);
656 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
657 tcpstat.tcps_connects++;
658 soisconnected(so);
659 tcp_established(tp);
660 /* Do window scaling on this connection? */
661 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
662 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
663 tp->snd_scale = tp->requested_s_scale;
664 tp->rcv_scale = tp->request_r_scale;
665 }
666 (void) tcp_reass(tp, (struct tcpiphdr *)0,
667 (struct mbuf *)0);
668 /*
669 * if we didn't have to retransmit the SYN,
670 * use its rtt as our initial srtt & rtt var.
671 */
672 if (tp->t_rtt)
673 tcp_xmit_timer(tp, tp->t_rtt);
674 } else
675 tp->t_state = TCPS_SYN_RECEIVED;
676
677 /*
678 * Advance ti->ti_seq to correspond to first data byte.
679 * If data, trim to stay within window,
680 * dropping FIN if necessary.
681 */
682 ti->ti_seq++;
683 if (ti->ti_len > tp->rcv_wnd) {
684 todrop = ti->ti_len - tp->rcv_wnd;
685 m_adj(m, -todrop);
686 ti->ti_len = tp->rcv_wnd;
687 tiflags &= ~TH_FIN;
688 tcpstat.tcps_rcvpackafterwin++;
689 tcpstat.tcps_rcvbyteafterwin += todrop;
690 }
691 tp->snd_wl1 = ti->ti_seq - 1;
692 tp->rcv_up = ti->ti_seq;
693 goto step6;
694
695 /*
696 * If the state is SYN_RECEIVED:
697 * If seg contains an ACK, but not for our SYN, drop the input
698 * and generate an RST. See page 36, rfc793
699 */
700 case TCPS_SYN_RECEIVED:
701 if ((tiflags & TH_ACK) &&
702 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
703 SEQ_GT(ti->ti_ack, tp->snd_max)))
704 goto dropwithreset;
705 break;
706 }
707
708 /*
709 * States other than LISTEN or SYN_SENT.
710 * First check timestamp, if present.
711 * Then check that at least some bytes of segment are within
712 * receive window. If segment begins before rcv_nxt,
713 * drop leading data (and SYN); if nothing left, just ack.
714 *
715 * RFC 1323 PAWS: If we have a timestamp reply on this segment
716 * and it's less than ts_recent, drop it.
717 */
718 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
719 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
720
721 /* Check to see if ts_recent is over 24 days old. */
722 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
723 /*
724 * Invalidate ts_recent. If this segment updates
725 * ts_recent, the age will be reset later and ts_recent
726 * will get a valid value. If it does not, setting
727 * ts_recent to zero will at least satisfy the
728 * requirement that zero be placed in the timestamp
729 * echo reply when ts_recent isn't valid. The
730 * age isn't reset until we get a valid ts_recent
731 * because we don't want out-of-order segments to be
732 * dropped when ts_recent is old.
733 */
734 tp->ts_recent = 0;
735 } else {
736 tcpstat.tcps_rcvduppack++;
737 tcpstat.tcps_rcvdupbyte += ti->ti_len;
738 tcpstat.tcps_pawsdrop++;
739 goto dropafterack;
740 }
741 }
742
743 todrop = tp->rcv_nxt - ti->ti_seq;
744 if (todrop > 0) {
745 if (tiflags & TH_SYN) {
746 tiflags &= ~TH_SYN;
747 ti->ti_seq++;
748 if (ti->ti_urp > 1)
749 ti->ti_urp--;
750 else {
751 tiflags &= ~TH_URG;
752 ti->ti_urp = 0;
753 }
754 todrop--;
755 }
756 if (todrop >= ti->ti_len) {
757 /*
758 * Any valid FIN must be to the left of the
759 * window. At this point, FIN must be a
760 * duplicate or out-of-sequence, so drop it.
761 */
762 tiflags &= ~TH_FIN;
763 /*
764 * Send ACK to resynchronize, and drop any data,
765 * but keep on processing for RST or ACK.
766 */
767 tp->t_flags |= TF_ACKNOW;
768 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
769 tcpstat.tcps_rcvduppack++;
770 } else {
771 tcpstat.tcps_rcvpartduppack++;
772 tcpstat.tcps_rcvpartdupbyte += todrop;
773 }
774 m_adj(m, todrop);
775 ti->ti_seq += todrop;
776 ti->ti_len -= todrop;
777 if (ti->ti_urp > todrop)
778 ti->ti_urp -= todrop;
779 else {
780 tiflags &= ~TH_URG;
781 ti->ti_urp = 0;
782 }
783 }
784
785 /*
786 * If new data are received on a connection after the
787 * user processes are gone, then RST the other end.
788 */
789 if ((so->so_state & SS_NOFDREF) &&
790 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
791 tp = tcp_close(tp);
792 tcpstat.tcps_rcvafterclose++;
793 goto dropwithreset;
794 }
795
796 /*
797 * If segment ends after window, drop trailing data
798 * (and PUSH and FIN); if nothing left, just ACK.
799 */
800 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
801 if (todrop > 0) {
802 tcpstat.tcps_rcvpackafterwin++;
803 if (todrop >= ti->ti_len) {
804 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
805 /*
806 * If a new connection request is received
807 * while in TIME_WAIT, drop the old connection
808 * and start over if the sequence numbers
809 * are above the previous ones.
810 */
811 if (tiflags & TH_SYN &&
812 tp->t_state == TCPS_TIME_WAIT &&
813 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
814 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
815 tp->rcv_nxt);
816 tp = tcp_close(tp);
817 /*
818 * We have already advanced the mbuf
819 * pointers past the IP+TCP headers and
820 * options. Restore those pointers before
821 * attempting to use the TCP header again.
822 */
823 m->m_data -= hdroptlen;
824 m->m_len += hdroptlen;
825 goto findpcb;
826 }
827 /*
828 * If window is closed can only take segments at
829 * window edge, and have to drop data and PUSH from
830 * incoming segments. Continue processing, but
831 * remember to ack. Otherwise, drop segment
832 * and ack.
833 */
834 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
835 tp->t_flags |= TF_ACKNOW;
836 tcpstat.tcps_rcvwinprobe++;
837 } else
838 goto dropafterack;
839 } else
840 tcpstat.tcps_rcvbyteafterwin += todrop;
841 m_adj(m, -todrop);
842 ti->ti_len -= todrop;
843 tiflags &= ~(TH_PUSH|TH_FIN);
844 }
845
846 /*
847 * If last ACK falls within this segment's sequence numbers,
848 * record its timestamp.
849 */
850 if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
851 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
852 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
853 tp->ts_recent_age = tcp_now;
854 tp->ts_recent = opti.ts_val;
855 }
856
857 /*
858 * If the RST bit is set examine the state:
859 * SYN_RECEIVED STATE:
860 * If passive open, return to LISTEN state.
861 * If active open, inform user that connection was refused.
862 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
863 * Inform user that connection was reset, and close tcb.
864 * CLOSING, LAST_ACK, TIME_WAIT STATES
865 * Close the tcb.
866 */
867 if (tiflags&TH_RST) switch (tp->t_state) {
868
869 case TCPS_SYN_RECEIVED:
870 so->so_error = ECONNREFUSED;
871 goto close;
872
873 case TCPS_ESTABLISHED:
874 case TCPS_FIN_WAIT_1:
875 case TCPS_FIN_WAIT_2:
876 case TCPS_CLOSE_WAIT:
877 so->so_error = ECONNRESET;
878 close:
879 tp->t_state = TCPS_CLOSED;
880 tcpstat.tcps_drops++;
881 tp = tcp_close(tp);
882 goto drop;
883
884 case TCPS_CLOSING:
885 case TCPS_LAST_ACK:
886 case TCPS_TIME_WAIT:
887 tp = tcp_close(tp);
888 goto drop;
889 }
890
891 /*
892 * If a SYN is in the window, then this is an
893 * error and we send an RST and drop the connection.
894 */
895 if (tiflags & TH_SYN) {
896 tp = tcp_drop(tp, ECONNRESET);
897 goto dropwithreset;
898 }
899
900 /*
901 * If the ACK bit is off we drop the segment and return.
902 */
903 if ((tiflags & TH_ACK) == 0)
904 goto drop;
905
906 /*
907 * Ack processing.
908 */
909 switch (tp->t_state) {
910
911 /*
912 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
913 * ESTABLISHED state and continue processing, otherwise
914 * send an RST.
915 */
916 case TCPS_SYN_RECEIVED:
917 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
918 SEQ_GT(ti->ti_ack, tp->snd_max))
919 goto dropwithreset;
920 tcpstat.tcps_connects++;
921 soisconnected(so);
922 tcp_established(tp);
923 /* Do window scaling? */
924 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
925 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
926 tp->snd_scale = tp->requested_s_scale;
927 tp->rcv_scale = tp->request_r_scale;
928 }
929 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
930 tp->snd_wl1 = ti->ti_seq - 1;
931 /* fall into ... */
932
933 /*
934 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
935 * ACKs. If the ack is in the range
936 * tp->snd_una < ti->ti_ack <= tp->snd_max
937 * then advance tp->snd_una to ti->ti_ack and drop
938 * data from the retransmission queue. If this ACK reflects
939 * more up to date window information we update our window information.
940 */
941 case TCPS_ESTABLISHED:
942 case TCPS_FIN_WAIT_1:
943 case TCPS_FIN_WAIT_2:
944 case TCPS_CLOSE_WAIT:
945 case TCPS_CLOSING:
946 case TCPS_LAST_ACK:
947 case TCPS_TIME_WAIT:
948
949 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
950 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
951 tcpstat.tcps_rcvdupack++;
952 /*
953 * If we have outstanding data (other than
954 * a window probe), this is a completely
955 * duplicate ack (ie, window info didn't
956 * change), the ack is the biggest we've
957 * seen and we've seen exactly our rexmt
958 * threshhold of them, assume a packet
959 * has been dropped and retransmit it.
960 * Kludge snd_nxt & the congestion
961 * window so we send only this one
962 * packet.
963 *
964 * We know we're losing at the current
965 * window size so do congestion avoidance
966 * (set ssthresh to half the current window
967 * and pull our congestion window back to
968 * the new ssthresh).
969 *
970 * Dup acks mean that packets have left the
971 * network (they're now cached at the receiver)
972 * so bump cwnd by the amount in the receiver
973 * to keep a constant cwnd packets in the
974 * network.
975 */
976 if (tp->t_timer[TCPT_REXMT] == 0 ||
977 ti->ti_ack != tp->snd_una)
978 tp->t_dupacks = 0;
979 else if (++tp->t_dupacks == tcprexmtthresh) {
980 tcp_seq onxt = tp->snd_nxt;
981 u_int win =
982 min(tp->snd_wnd, tp->snd_cwnd) /
983 2 / tp->t_segsz;
984
985 if (win < 2)
986 win = 2;
987 tp->snd_ssthresh = win * tp->t_segsz;
988 tp->t_timer[TCPT_REXMT] = 0;
989 tp->t_rtt = 0;
990 tp->snd_nxt = ti->ti_ack;
991 tp->snd_cwnd = tp->t_segsz;
992 (void) tcp_output(tp);
993 tp->snd_cwnd = tp->snd_ssthresh +
994 tp->t_segsz * tp->t_dupacks;
995 if (SEQ_GT(onxt, tp->snd_nxt))
996 tp->snd_nxt = onxt;
997 goto drop;
998 } else if (tp->t_dupacks > tcprexmtthresh) {
999 tp->snd_cwnd += tp->t_segsz;
1000 (void) tcp_output(tp);
1001 goto drop;
1002 }
1003 } else
1004 tp->t_dupacks = 0;
1005 break;
1006 }
1007 /*
1008 * If the congestion window was inflated to account
1009 * for the other side's cached packets, retract it.
1010 */
1011 if (tp->t_dupacks >= tcprexmtthresh &&
1012 tp->snd_cwnd > tp->snd_ssthresh)
1013 tp->snd_cwnd = tp->snd_ssthresh;
1014 tp->t_dupacks = 0;
1015 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1016 tcpstat.tcps_rcvacktoomuch++;
1017 goto dropafterack;
1018 }
1019 acked = ti->ti_ack - tp->snd_una;
1020 tcpstat.tcps_rcvackpack++;
1021 tcpstat.tcps_rcvackbyte += acked;
1022
1023 /*
1024 * If we have a timestamp reply, update smoothed
1025 * round trip time. If no timestamp is present but
1026 * transmit timer is running and timed sequence
1027 * number was acked, update smoothed round trip time.
1028 * Since we now have an rtt measurement, cancel the
1029 * timer backoff (cf., Phil Karn's retransmit alg.).
1030 * Recompute the initial retransmit timer.
1031 */
1032 if (opti.ts_present)
1033 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1034 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1035 tcp_xmit_timer(tp,tp->t_rtt);
1036
1037 /*
1038 * If all outstanding data is acked, stop retransmit
1039 * timer and remember to restart (more output or persist).
1040 * If there is more data to be acked, restart retransmit
1041 * timer, using current (possibly backed-off) value.
1042 */
1043 if (ti->ti_ack == tp->snd_max) {
1044 tp->t_timer[TCPT_REXMT] = 0;
1045 needoutput = 1;
1046 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1047 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1048 /*
1049 * When new data is acked, open the congestion window.
1050 * If the window gives us less than ssthresh packets
1051 * in flight, open exponentially (segsz per packet).
1052 * Otherwise open linearly: segsz per window
1053 * (segsz^2 / cwnd per packet), plus a constant
1054 * fraction of a packet (segsz/8) to help larger windows
1055 * open quickly enough.
1056 */
1057 {
1058 register u_int cw = tp->snd_cwnd;
1059 register u_int incr = tp->t_segsz;
1060
1061 if (cw > tp->snd_ssthresh)
1062 incr = incr * incr / cw;
1063 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1064 }
1065 if (acked > so->so_snd.sb_cc) {
1066 tp->snd_wnd -= so->so_snd.sb_cc;
1067 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1068 ourfinisacked = 1;
1069 } else {
1070 sbdrop(&so->so_snd, acked);
1071 tp->snd_wnd -= acked;
1072 ourfinisacked = 0;
1073 }
1074 if (sb_notify(&so->so_snd))
1075 sowwakeup(so);
1076 tp->snd_una = ti->ti_ack;
1077 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1078 tp->snd_nxt = tp->snd_una;
1079
1080 switch (tp->t_state) {
1081
1082 /*
1083 * In FIN_WAIT_1 STATE in addition to the processing
1084 * for the ESTABLISHED state if our FIN is now acknowledged
1085 * then enter FIN_WAIT_2.
1086 */
1087 case TCPS_FIN_WAIT_1:
1088 if (ourfinisacked) {
1089 /*
1090 * If we can't receive any more
1091 * data, then closing user can proceed.
1092 * Starting the timer is contrary to the
1093 * specification, but if we don't get a FIN
1094 * we'll hang forever.
1095 */
1096 if (so->so_state & SS_CANTRCVMORE) {
1097 soisdisconnected(so);
1098 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1099 }
1100 tp->t_state = TCPS_FIN_WAIT_2;
1101 }
1102 break;
1103
1104 /*
1105 * In CLOSING STATE in addition to the processing for
1106 * the ESTABLISHED state if the ACK acknowledges our FIN
1107 * then enter the TIME-WAIT state, otherwise ignore
1108 * the segment.
1109 */
1110 case TCPS_CLOSING:
1111 if (ourfinisacked) {
1112 tp->t_state = TCPS_TIME_WAIT;
1113 tcp_canceltimers(tp);
1114 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1115 soisdisconnected(so);
1116 }
1117 break;
1118
1119 /*
1120 * In LAST_ACK, we may still be waiting for data to drain
1121 * and/or to be acked, as well as for the ack of our FIN.
1122 * If our FIN is now acknowledged, delete the TCB,
1123 * enter the closed state and return.
1124 */
1125 case TCPS_LAST_ACK:
1126 if (ourfinisacked) {
1127 tp = tcp_close(tp);
1128 goto drop;
1129 }
1130 break;
1131
1132 /*
1133 * In TIME_WAIT state the only thing that should arrive
1134 * is a retransmission of the remote FIN. Acknowledge
1135 * it and restart the finack timer.
1136 */
1137 case TCPS_TIME_WAIT:
1138 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1139 goto dropafterack;
1140 }
1141 }
1142
1143 step6:
1144 /*
1145 * Update window information.
1146 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1147 */
1148 if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1149 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1150 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1151 /* keep track of pure window updates */
1152 if (ti->ti_len == 0 &&
1153 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1154 tcpstat.tcps_rcvwinupd++;
1155 tp->snd_wnd = tiwin;
1156 tp->snd_wl1 = ti->ti_seq;
1157 tp->snd_wl2 = ti->ti_ack;
1158 if (tp->snd_wnd > tp->max_sndwnd)
1159 tp->max_sndwnd = tp->snd_wnd;
1160 needoutput = 1;
1161 }
1162
1163 /*
1164 * Process segments with URG.
1165 */
1166 if ((tiflags & TH_URG) && ti->ti_urp &&
1167 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1168 /*
1169 * This is a kludge, but if we receive and accept
1170 * random urgent pointers, we'll crash in
1171 * soreceive. It's hard to imagine someone
1172 * actually wanting to send this much urgent data.
1173 */
1174 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1175 ti->ti_urp = 0; /* XXX */
1176 tiflags &= ~TH_URG; /* XXX */
1177 goto dodata; /* XXX */
1178 }
1179 /*
1180 * If this segment advances the known urgent pointer,
1181 * then mark the data stream. This should not happen
1182 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1183 * a FIN has been received from the remote side.
1184 * In these states we ignore the URG.
1185 *
1186 * According to RFC961 (Assigned Protocols),
1187 * the urgent pointer points to the last octet
1188 * of urgent data. We continue, however,
1189 * to consider it to indicate the first octet
1190 * of data past the urgent section as the original
1191 * spec states (in one of two places).
1192 */
1193 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1194 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1195 so->so_oobmark = so->so_rcv.sb_cc +
1196 (tp->rcv_up - tp->rcv_nxt) - 1;
1197 if (so->so_oobmark == 0)
1198 so->so_state |= SS_RCVATMARK;
1199 sohasoutofband(so);
1200 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1201 }
1202 /*
1203 * Remove out of band data so doesn't get presented to user.
1204 * This can happen independent of advancing the URG pointer,
1205 * but if two URG's are pending at once, some out-of-band
1206 * data may creep in... ick.
1207 */
1208 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1209 #ifdef SO_OOBINLINE
1210 && (so->so_options & SO_OOBINLINE) == 0
1211 #endif
1212 )
1213 tcp_pulloutofband(so, ti, m);
1214 } else
1215 /*
1216 * If no out of band data is expected,
1217 * pull receive urgent pointer along
1218 * with the receive window.
1219 */
1220 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1221 tp->rcv_up = tp->rcv_nxt;
1222 dodata: /* XXX */
1223
1224 /*
1225 * Process the segment text, merging it into the TCP sequencing queue,
1226 * and arranging for acknowledgment of receipt if necessary.
1227 * This process logically involves adjusting tp->rcv_wnd as data
1228 * is presented to the user (this happens in tcp_usrreq.c,
1229 * case PRU_RCVD). If a FIN has already been received on this
1230 * connection then we just ignore the text.
1231 */
1232 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1233 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1234 TCP_REASS(tp, ti, m, so, tiflags);
1235 /*
1236 * Note the amount of data that peer has sent into
1237 * our window, in order to estimate the sender's
1238 * buffer size.
1239 */
1240 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1241 } else {
1242 m_freem(m);
1243 tiflags &= ~TH_FIN;
1244 }
1245
1246 /*
1247 * If FIN is received ACK the FIN and let the user know
1248 * that the connection is closing. Ignore a FIN received before
1249 * the connection is fully established.
1250 */
1251 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1252 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1253 socantrcvmore(so);
1254 tp->t_flags |= TF_ACKNOW;
1255 tp->rcv_nxt++;
1256 }
1257 switch (tp->t_state) {
1258
1259 /*
1260 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1261 */
1262 case TCPS_ESTABLISHED:
1263 tp->t_state = TCPS_CLOSE_WAIT;
1264 break;
1265
1266 /*
1267 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1268 * enter the CLOSING state.
1269 */
1270 case TCPS_FIN_WAIT_1:
1271 tp->t_state = TCPS_CLOSING;
1272 break;
1273
1274 /*
1275 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1276 * starting the time-wait timer, turning off the other
1277 * standard timers.
1278 */
1279 case TCPS_FIN_WAIT_2:
1280 tp->t_state = TCPS_TIME_WAIT;
1281 tcp_canceltimers(tp);
1282 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1283 soisdisconnected(so);
1284 break;
1285
1286 /*
1287 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1288 */
1289 case TCPS_TIME_WAIT:
1290 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1291 break;
1292 }
1293 }
1294 if (so->so_options & SO_DEBUG)
1295 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1296
1297 /*
1298 * Return any desired output.
1299 */
1300 if (needoutput || (tp->t_flags & TF_ACKNOW))
1301 (void) tcp_output(tp);
1302 return;
1303
1304 dropafterack:
1305 /*
1306 * Generate an ACK dropping incoming segment if it occupies
1307 * sequence space, where the ACK reflects our state.
1308 */
1309 if (tiflags & TH_RST)
1310 goto drop;
1311 m_freem(m);
1312 tp->t_flags |= TF_ACKNOW;
1313 (void) tcp_output(tp);
1314 return;
1315
1316 dropwithreset:
1317 /*
1318 * Generate a RST, dropping incoming segment.
1319 * Make ACK acceptable to originator of segment.
1320 * Don't bother to respond if destination was broadcast/multicast.
1321 */
1322 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1323 IN_MULTICAST(ti->ti_dst.s_addr))
1324 goto drop;
1325 if (tiflags & TH_ACK)
1326 (void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1327 else {
1328 if (tiflags & TH_SYN)
1329 ti->ti_len++;
1330 (void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1331 TH_RST|TH_ACK);
1332 }
1333 return;
1334
1335 drop:
1336 /*
1337 * Drop space held by incoming segment and return.
1338 */
1339 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1340 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1341 m_freem(m);
1342 return;
1343 #ifndef TUBA_INCLUDE
1344 }
1345
1346 void
1347 tcp_dooptions(tp, cp, cnt, ti, oi)
1348 struct tcpcb *tp;
1349 u_char *cp;
1350 int cnt;
1351 struct tcpiphdr *ti;
1352 struct tcp_opt_info *oi;
1353 {
1354 u_int16_t mss;
1355 int opt, optlen;
1356
1357 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1358 opt = cp[0];
1359 if (opt == TCPOPT_EOL)
1360 break;
1361 if (opt == TCPOPT_NOP)
1362 optlen = 1;
1363 else {
1364 optlen = cp[1];
1365 if (optlen <= 0)
1366 break;
1367 }
1368 switch (opt) {
1369
1370 default:
1371 continue;
1372
1373 case TCPOPT_MAXSEG:
1374 if (optlen != TCPOLEN_MAXSEG)
1375 continue;
1376 if (!(ti->ti_flags & TH_SYN))
1377 continue;
1378 bcopy(cp + 2, &mss, sizeof(mss));
1379 oi->maxseg = ntohs(mss);
1380 break;
1381
1382 case TCPOPT_WINDOW:
1383 if (optlen != TCPOLEN_WINDOW)
1384 continue;
1385 if (!(ti->ti_flags & TH_SYN))
1386 continue;
1387 tp->t_flags |= TF_RCVD_SCALE;
1388 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1389 break;
1390
1391 case TCPOPT_TIMESTAMP:
1392 if (optlen != TCPOLEN_TIMESTAMP)
1393 continue;
1394 oi->ts_present = 1;
1395 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1396 NTOHL(oi->ts_val);
1397 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1398 NTOHL(oi->ts_ecr);
1399
1400 /*
1401 * A timestamp received in a SYN makes
1402 * it ok to send timestamp requests and replies.
1403 */
1404 if (ti->ti_flags & TH_SYN) {
1405 tp->t_flags |= TF_RCVD_TSTMP;
1406 tp->ts_recent = oi->ts_val;
1407 tp->ts_recent_age = tcp_now;
1408 }
1409 break;
1410 }
1411 }
1412 }
1413
1414 /*
1415 * Pull out of band byte out of a segment so
1416 * it doesn't appear in the user's data queue.
1417 * It is still reflected in the segment length for
1418 * sequencing purposes.
1419 */
1420 void
1421 tcp_pulloutofband(so, ti, m)
1422 struct socket *so;
1423 struct tcpiphdr *ti;
1424 register struct mbuf *m;
1425 {
1426 int cnt = ti->ti_urp - 1;
1427
1428 while (cnt >= 0) {
1429 if (m->m_len > cnt) {
1430 char *cp = mtod(m, caddr_t) + cnt;
1431 struct tcpcb *tp = sototcpcb(so);
1432
1433 tp->t_iobc = *cp;
1434 tp->t_oobflags |= TCPOOB_HAVEDATA;
1435 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1436 m->m_len--;
1437 return;
1438 }
1439 cnt -= m->m_len;
1440 m = m->m_next;
1441 if (m == 0)
1442 break;
1443 }
1444 panic("tcp_pulloutofband");
1445 }
1446
1447 /*
1448 * Collect new round-trip time estimate
1449 * and update averages and current timeout.
1450 */
1451 void
1452 tcp_xmit_timer(tp, rtt)
1453 register struct tcpcb *tp;
1454 short rtt;
1455 {
1456 register short delta;
1457
1458 tcpstat.tcps_rttupdated++;
1459 --rtt;
1460 if (tp->t_srtt != 0) {
1461 /*
1462 * srtt is stored as fixed point with 3 bits after the
1463 * binary point (i.e., scaled by 8). The following magic
1464 * is equivalent to the smoothing algorithm in rfc793 with
1465 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1466 * point). Adjust rtt to origin 0.
1467 */
1468 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1469 if ((tp->t_srtt += delta) <= 0)
1470 tp->t_srtt = 1 << 2;
1471 /*
1472 * We accumulate a smoothed rtt variance (actually, a
1473 * smoothed mean difference), then set the retransmit
1474 * timer to smoothed rtt + 4 times the smoothed variance.
1475 * rttvar is stored as fixed point with 2 bits after the
1476 * binary point (scaled by 4). The following is
1477 * equivalent to rfc793 smoothing with an alpha of .75
1478 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1479 * rfc793's wired-in beta.
1480 */
1481 if (delta < 0)
1482 delta = -delta;
1483 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1484 if ((tp->t_rttvar += delta) <= 0)
1485 tp->t_rttvar = 1 << 2;
1486 } else {
1487 /*
1488 * No rtt measurement yet - use the unsmoothed rtt.
1489 * Set the variance to half the rtt (so our first
1490 * retransmit happens at 3*rtt).
1491 */
1492 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1493 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1494 }
1495 tp->t_rtt = 0;
1496 tp->t_rxtshift = 0;
1497
1498 /*
1499 * the retransmit should happen at rtt + 4 * rttvar.
1500 * Because of the way we do the smoothing, srtt and rttvar
1501 * will each average +1/2 tick of bias. When we compute
1502 * the retransmit timer, we want 1/2 tick of rounding and
1503 * 1 extra tick because of +-1/2 tick uncertainty in the
1504 * firing of the timer. The bias will give us exactly the
1505 * 1.5 tick we need. But, because the bias is
1506 * statistical, we have to test that we don't drop below
1507 * the minimum feasible timer (which is 2 ticks).
1508 */
1509 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1510 rtt + 2, TCPTV_REXMTMAX);
1511
1512 /*
1513 * We received an ack for a packet that wasn't retransmitted;
1514 * it is probably safe to discard any error indications we've
1515 * received recently. This isn't quite right, but close enough
1516 * for now (a route might have failed after we sent a segment,
1517 * and the return path might not be symmetrical).
1518 */
1519 tp->t_softerror = 0;
1520 }
1521
1522 /*
1523 * TCP compressed state engine. Currently used to hold compressed
1524 * state for SYN_RECEIVED.
1525 */
1526
1527 u_long syn_cache_count;
1528 u_int32_t syn_hash1, syn_hash2;
1529
1530 #define SYN_HASH(sa, sp, dp) \
1531 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1532 ((u_int32_t)(sp)))^syn_hash2)) \
1533 & 0x7fffffff)
1534
1535 #define eptosp(ep, e, s) ((struct s *)((char *)(ep) - \
1536 ((char *)(&((struct s *)0)->e) - (char *)0)))
1537
1538 #define SYN_CACHE_RM(sc, p, scp) { \
1539 *(p) = (sc)->sc_next; \
1540 if ((sc)->sc_next) \
1541 (sc)->sc_next->sc_timer += (sc)->sc_timer; \
1542 else { \
1543 (scp)->sch_timer_sum -= (sc)->sc_timer; \
1544 if ((scp)->sch_timer_sum <= 0) \
1545 (scp)->sch_timer_sum = -1; \
1546 /* If need be, fix up the last pointer */ \
1547 if ((scp)->sch_first) \
1548 (scp)->sch_last = eptosp(p, sc_next, syn_cache); \
1549 } \
1550 (scp)->sch_length--; \
1551 syn_cache_count--; \
1552 }
1553
1554 void
1555 syn_cache_insert(sc, prevp, headp)
1556 struct syn_cache *sc;
1557 struct syn_cache ***prevp;
1558 struct syn_cache_head **headp;
1559 {
1560 struct syn_cache_head *scp, *scp2, *sce;
1561 struct syn_cache *sc2;
1562 static u_int timeo_val;
1563 int s;
1564
1565 /* Initialize the hash secrets when adding the first entry */
1566 if (syn_cache_count == 0) {
1567 struct timeval tv;
1568 microtime(&tv);
1569 syn_hash1 = random() ^ (u_long)≻
1570 syn_hash2 = random() ^ tv.tv_usec;
1571 }
1572
1573 sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1574 sc->sc_next = NULL;
1575 scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1576 *headp = scp;
1577
1578 /*
1579 * Make sure that we don't overflow the per-bucket
1580 * limit or the total cache size limit.
1581 */
1582 s = splsoftnet();
1583 if (scp->sch_length >= tcp_syn_bucket_limit) {
1584 tcpstat.tcps_sc_bucketoverflow++;
1585 sc2 = scp->sch_first;
1586 scp->sch_first = sc2->sc_next;
1587 FREE(sc2, M_PCB);
1588 } else if (syn_cache_count >= tcp_syn_cache_limit) {
1589 tcpstat.tcps_sc_overflowed++;
1590 /*
1591 * The cache is full. Toss the first (i.e, oldest)
1592 * element in this bucket.
1593 */
1594 scp2 = scp;
1595 if (scp2->sch_first == NULL) {
1596 sce = &tcp_syn_cache[tcp_syn_cache_size];
1597 for (++scp2; scp2 != scp; scp2++) {
1598 if (scp2 >= sce)
1599 scp2 = &tcp_syn_cache[0];
1600 if (scp2->sch_first)
1601 break;
1602 }
1603 }
1604 sc2 = scp2->sch_first;
1605 if (sc2 == NULL) {
1606 FREE(sc, M_PCB);
1607 return;
1608 }
1609 if ((scp2->sch_first = sc2->sc_next) == NULL)
1610 scp2->sch_last = NULL;
1611 else
1612 sc2->sc_next->sc_timer += sc2->sc_timer;
1613 FREE(sc2, M_PCB);
1614 } else {
1615 scp->sch_length++;
1616 syn_cache_count++;
1617 }
1618 tcpstat.tcps_sc_added++;
1619
1620 /*
1621 * Put it into the bucket.
1622 */
1623 if (scp->sch_first == NULL)
1624 *prevp = &scp->sch_first;
1625 else {
1626 *prevp = &scp->sch_last->sc_next;
1627 tcpstat.tcps_sc_collisions++;
1628 }
1629 **prevp = sc;
1630 scp->sch_last = sc;
1631
1632 /*
1633 * If the timeout value has changed
1634 * 1) force it to fit in a u_char
1635 * 2) Run the timer routine to truncate all
1636 * existing entries to the new timeout value.
1637 */
1638 if (timeo_val != tcp_syn_cache_timeo) {
1639 tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX);
1640 if (timeo_val > tcp_syn_cache_timeo)
1641 syn_cache_timer(timeo_val - tcp_syn_cache_timeo);
1642 timeo_val = tcp_syn_cache_timeo;
1643 }
1644 if (scp->sch_timer_sum > 0)
1645 sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum;
1646 else if (scp->sch_timer_sum == 0) {
1647 /* When the bucket timer is 0, it is not in the cache queue. */
1648 scp->sch_headq = tcp_syn_cache_first;
1649 tcp_syn_cache_first = scp;
1650 sc->sc_timer = tcp_syn_cache_timeo;
1651 }
1652 scp->sch_timer_sum = tcp_syn_cache_timeo;
1653 splx(s);
1654 }
1655
1656 /*
1657 * Walk down the cache list, decrementing the timer of
1658 * the first element on each entry. If the timer goes
1659 * to zero, remove it and all successive entries with
1660 * a zero timer.
1661 */
1662 void
1663 syn_cache_timer(interval)
1664 int interval;
1665 {
1666 struct syn_cache_head *scp, **pscp;
1667 struct syn_cache *sc, *scn;
1668 int n, s;
1669
1670 pscp = &tcp_syn_cache_first;
1671 scp = tcp_syn_cache_first;
1672 s = splsoftnet();
1673 while (scp) {
1674 /*
1675 * Remove any empty hash buckets
1676 * from the cache queue.
1677 */
1678 if ((sc = scp->sch_first) == NULL) {
1679 *pscp = scp->sch_headq;
1680 scp->sch_headq = NULL;
1681 scp->sch_timer_sum = 0;
1682 scp->sch_first = scp->sch_last = NULL;
1683 scp->sch_length = 0;
1684 scp = *pscp;
1685 continue;
1686 }
1687
1688 scp->sch_timer_sum -= interval;
1689 if (scp->sch_timer_sum <= 0)
1690 scp->sch_timer_sum = -1;
1691 n = interval;
1692 while (sc->sc_timer <= n) {
1693 n -= sc->sc_timer;
1694 scn = sc->sc_next;
1695 tcpstat.tcps_sc_timed_out++;
1696 syn_cache_count--;
1697 FREE(sc, M_PCB);
1698 scp->sch_length--;
1699 if ((sc = scn) == NULL)
1700 break;
1701 }
1702 if ((scp->sch_first = sc) != NULL) {
1703 sc->sc_timer -= n;
1704 pscp = &scp->sch_headq;
1705 scp = scp->sch_headq;
1706 }
1707 }
1708 splx(s);
1709 }
1710
1711 /*
1712 * Find an entry in the syn cache.
1713 */
1714 struct syn_cache *
1715 syn_cache_lookup(ti, prevp, headp)
1716 struct tcpiphdr *ti;
1717 struct syn_cache ***prevp;
1718 struct syn_cache_head **headp;
1719 {
1720 struct syn_cache *sc, **prev;
1721 struct syn_cache_head *head;
1722 u_int32_t hash;
1723 int s;
1724
1725 hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
1726
1727 head = &tcp_syn_cache[hash % tcp_syn_cache_size];
1728 *headp = head;
1729 prev = &head->sch_first;
1730 s = splsoftnet();
1731 for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) {
1732 if (sc->sc_hash != hash)
1733 continue;
1734 if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
1735 sc->sc_sport == ti->ti_sport &&
1736 sc->sc_dport == ti->ti_dport &&
1737 sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
1738 *prevp = prev;
1739 splx(s);
1740 return (sc);
1741 }
1742 }
1743 splx(s);
1744 return (NULL);
1745 }
1746
1747 /*
1748 * This function gets called when we receive an ACK for a
1749 * socket in the LISTEN state. We look up the connection
1750 * in the syn cache, and if its there, we pull it out of
1751 * the cache and turn it into a full-blown connection in
1752 * the SYN-RECEIVED state.
1753 *
1754 * The return values may not be immediately obvious, and their effects
1755 * can be subtle, so here they are:
1756 *
1757 * NULL SYN was not found in cache; caller should drop the
1758 * packet and send an RST.
1759 *
1760 * -1 We were unable to create the new connection, and are
1761 * aborting it. An ACK,RST is being sent to the peer
1762 * (unless we got screwey sequence numbners; see below),
1763 * because the 3-way handshake has been completed. Caller
1764 * should not free the mbuf, since we may be using it. If
1765 * we are not, we will free it.
1766 *
1767 * Otherwise, the return value is a pointer to the new socket
1768 * associated with the connection.
1769 */
1770 struct socket *
1771 syn_cache_get(so, m)
1772 struct socket *so;
1773 struct mbuf *m;
1774 {
1775 struct syn_cache *sc, **sc_prev;
1776 struct syn_cache_head *head;
1777 register struct inpcb *inp;
1778 register struct tcpcb *tp = 0;
1779 register struct tcpiphdr *ti;
1780 struct sockaddr_in *sin;
1781 struct mbuf *am;
1782 long win;
1783 int s;
1784
1785 ti = mtod(m, struct tcpiphdr *);
1786 s = splsoftnet();
1787 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1788 splx(s);
1789 return (NULL);
1790 }
1791
1792 win = sbspace(&so->so_rcv);
1793 if (win > TCP_MAXWIN)
1794 win = TCP_MAXWIN;
1795
1796 /*
1797 * Verify the sequence and ack numbers.
1798 */
1799 if ((ti->ti_ack != sc->sc_iss + 1) ||
1800 SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
1801 SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
1802 (void) syn_cache_respond(sc, m, ti, win, 0);
1803 splx(s);
1804 return ((struct socket *)(-1));
1805 }
1806
1807 /* Remove this cache entry */
1808 SYN_CACHE_RM(sc, sc_prev, head);
1809 splx(s);
1810
1811 /*
1812 * Ok, create the full blown connection, and set things up
1813 * as they would have been set up if we had created the
1814 * connection when the SYN arrived. If we can't create
1815 * the connection, abort it.
1816 */
1817 so = sonewconn(so, SS_ISCONNECTED);
1818 if (so == NULL)
1819 goto resetandabort;
1820
1821 inp = sotoinpcb(so);
1822 inp->inp_laddr = sc->sc_dst;
1823 inp->inp_lport = sc->sc_dport;
1824 in_pcbstate(inp, INP_BOUND);
1825 #if BSD>=43
1826 inp->inp_options = ip_srcroute();
1827 #endif
1828
1829 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
1830 if (am == NULL) {
1831 m_freem(m);
1832 goto resetandabort;
1833 }
1834 am->m_len = sizeof(struct sockaddr_in);
1835 sin = mtod(am, struct sockaddr_in *);
1836 sin->sin_family = AF_INET;
1837 sin->sin_len = sizeof(*sin);
1838 sin->sin_addr = sc->sc_src;
1839 sin->sin_port = sc->sc_sport;
1840 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1841 if (in_pcbconnect(inp, am)) {
1842 (void) m_free(am);
1843 m_freem(m);
1844 goto resetandabort;
1845 }
1846 (void) m_free(am);
1847
1848 tp = intotcpcb(inp);
1849 if (sc->sc_request_r_scale != 15) {
1850 tp->requested_s_scale = sc->sc_requested_s_scale;
1851 tp->request_r_scale = sc->sc_request_r_scale;
1852 tp->snd_scale = sc->sc_requested_s_scale;
1853 tp->rcv_scale = sc->sc_request_r_scale;
1854 tp->t_flags |= TF_RCVD_SCALE;
1855 }
1856 if (sc->sc_tstmp)
1857 tp->t_flags |= TF_RCVD_TSTMP;
1858
1859 tp->t_template = tcp_template(tp);
1860 if (tp->t_template == 0) {
1861 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
1862 so = NULL;
1863 m_freem(m);
1864 goto abort;
1865 }
1866
1867 tp->iss = sc->sc_iss;
1868 tp->irs = sc->sc_irs;
1869 tcp_sendseqinit(tp);
1870 tcp_rcvseqinit(tp);
1871 tp->t_state = TCPS_SYN_RECEIVED;
1872 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
1873 tcpstat.tcps_accepts++;
1874
1875 /* Initialize tp->t_ourmss before we deal with the peer's! */
1876 tp->t_ourmss = sc->sc_ourmaxseg;
1877 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
1878 tcp_rmx_rtt(tp);
1879 tp->snd_wl1 = sc->sc_irs;
1880 tp->rcv_up = sc->sc_irs + 1;
1881
1882 /*
1883 * This is what whould have happened in tcp_ouput() when
1884 * the SYN,ACK was sent.
1885 */
1886 tp->snd_up = tp->snd_una;
1887 tp->snd_max = tp->snd_nxt = tp->iss+1;
1888 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1889 if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
1890 tp->rcv_adv = tp->rcv_nxt + win;
1891 tp->last_ack_sent = tp->rcv_nxt;
1892
1893 tcpstat.tcps_sc_completed++;
1894 FREE(sc, M_PCB);
1895 return (so);
1896
1897 resetandabort:
1898 (void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
1899 (tcp_seq)0, TH_RST|TH_ACK);
1900 abort:
1901 if (so != NULL)
1902 (void) soabort(so);
1903 FREE(sc, M_PCB);
1904 tcpstat.tcps_sc_aborted++;
1905 return ((struct socket *)(-1));
1906 }
1907
1908 /*
1909 * This function is called when we get a RST for a
1910 * non-existant connection, so that we can see if the
1911 * connection is in the syn cache. If it is, zap it.
1912 */
1913
1914 void
1915 syn_cache_reset(ti)
1916 register struct tcpiphdr *ti;
1917 {
1918 struct syn_cache *sc, **sc_prev;
1919 struct syn_cache_head *head;
1920 int s = splsoftnet();
1921
1922 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1923 splx(s);
1924 return;
1925 }
1926 if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
1927 SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
1928 splx(s);
1929 return;
1930 }
1931 SYN_CACHE_RM(sc, sc_prev, head);
1932 splx(s);
1933 tcpstat.tcps_sc_reset++;
1934 FREE(sc, M_PCB);
1935 }
1936
1937 void
1938 syn_cache_unreach(ip, th)
1939 struct ip *ip;
1940 struct tcphdr *th;
1941 {
1942 struct syn_cache *sc, **sc_prev;
1943 struct syn_cache_head *head;
1944 struct tcpiphdr ti2;
1945 int s;
1946
1947 ti2.ti_src.s_addr = ip->ip_dst.s_addr;
1948 ti2.ti_dst.s_addr = ip->ip_src.s_addr;
1949 ti2.ti_sport = th->th_dport;
1950 ti2.ti_dport = th->th_sport;
1951
1952 s = splsoftnet();
1953 if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) {
1954 splx(s);
1955 return;
1956 }
1957 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
1958 if (ntohl (th->th_seq) != sc->sc_iss) {
1959 splx(s);
1960 return;
1961 }
1962 SYN_CACHE_RM(sc, sc_prev, head);
1963 splx(s);
1964 tcpstat.tcps_sc_unreach++;
1965 FREE(sc, M_PCB);
1966 }
1967
1968 /*
1969 * Given a LISTEN socket and an inbound SYN request, add
1970 * this to the syn cache, and send back a segment:
1971 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1972 * to the source.
1973 *
1974 * XXX We don't properly handle SYN-with-data!
1975 */
1976
1977 int
1978 syn_cache_add(so, m, optp, optlen, oi)
1979 struct socket *so;
1980 struct mbuf *m;
1981 u_char *optp;
1982 int optlen;
1983 struct tcp_opt_info *oi;
1984 {
1985 register struct tcpiphdr *ti;
1986 struct tcpcb tb, *tp;
1987 long win;
1988 struct syn_cache *sc, **sc_prev;
1989 struct syn_cache_head *scp;
1990 extern int tcp_do_rfc1323;
1991
1992 tp = sototcpcb(so);
1993 ti = mtod(m, struct tcpiphdr *);
1994
1995 /*
1996 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1997 * in_broadcast() should never return true on a received
1998 * packet with M_BCAST not set.
1999 */
2000 if (m->m_flags & (M_BCAST|M_MCAST) ||
2001 IN_MULTICAST(ti->ti_src.s_addr) ||
2002 IN_MULTICAST(ti->ti_dst.s_addr))
2003 return (0);
2004
2005 /*
2006 * Initialize some local state.
2007 */
2008 win = sbspace(&so->so_rcv);
2009 if (win > TCP_MAXWIN)
2010 win = TCP_MAXWIN;
2011
2012 if (optp) {
2013 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2014 tcp_dooptions(&tb, optp, optlen, ti, oi);
2015 } else
2016 tb.t_flags = 0;
2017
2018 /*
2019 * See if we already have an entry for this connection.
2020 */
2021 if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) {
2022 tcpstat.tcps_sc_dupesyn++;
2023 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2024 tcpstat.tcps_sndacks++;
2025 tcpstat.tcps_sndtotal++;
2026 }
2027 return (1);
2028 }
2029
2030 MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT);
2031 if (sc == NULL)
2032 return (0);
2033 /*
2034 * Fill in the cache, and put the necessary TCP
2035 * options into the reply.
2036 */
2037 sc->sc_src.s_addr = ti->ti_src.s_addr;
2038 sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2039 sc->sc_sport = ti->ti_sport;
2040 sc->sc_dport = ti->ti_dport;
2041 sc->sc_irs = ti->ti_seq;
2042 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2043 sc->sc_peermaxseg = oi->maxseg;
2044 sc->sc_ourmaxseg = tcp_mss_to_advertise(tp);
2045 sc->sc_tstmp = (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP)) ? 1 : 0;
2046 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2047 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2048 sc->sc_requested_s_scale = tb.requested_s_scale;
2049 sc->sc_request_r_scale = 0;
2050 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2051 TCP_MAXWIN << sc->sc_request_r_scale <
2052 so->so_rcv.sb_hiwat)
2053 sc->sc_request_r_scale++;
2054 } else {
2055 sc->sc_requested_s_scale = 15;
2056 sc->sc_request_r_scale = 15;
2057 }
2058 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2059 syn_cache_insert(sc, &sc_prev, &scp);
2060 tcpstat.tcps_sndacks++;
2061 tcpstat.tcps_sndtotal++;
2062 } else {
2063 FREE(sc, M_PCB);
2064 tcpstat.tcps_sc_dropped++;
2065 }
2066 return (1);
2067 }
2068
2069 int
2070 syn_cache_respond(sc, m, ti, win, ts)
2071 struct syn_cache *sc;
2072 struct mbuf *m;
2073 register struct tcpiphdr *ti;
2074 long win;
2075 u_long ts;
2076 {
2077 u_int8_t *optp;
2078 int optlen;
2079
2080 /*
2081 * Tack on the TCP options. If there isn't enough trailing
2082 * space for them, move up the fixed header to make space.
2083 */
2084 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2085 (sc->sc_tstmp ? TCPOLEN_TSTAMP_APPA : 0);
2086 if (optlen > M_TRAILINGSPACE(m)) {
2087 if (M_LEADINGSPACE(m) >= optlen) {
2088 m->m_data -= optlen;
2089 m->m_len += optlen;
2090 } else {
2091 struct mbuf *m0 = m;
2092 if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
2093 m_freem(m0);
2094 return (ENOBUFS);
2095 }
2096 MH_ALIGN(m, sizeof(*ti) + optlen);
2097 m->m_next = m0; /* this gets freed below */
2098 }
2099 ovbcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
2100 ti = mtod(m, struct tcpiphdr *);
2101 }
2102
2103 optp = (u_int8_t *)(ti + 1);
2104 optp[0] = TCPOPT_MAXSEG;
2105 optp[1] = 4;
2106 optp[2] = (sc->sc_ourmaxseg >> 8) & 0xff;
2107 optp[3] = sc->sc_ourmaxseg & 0xff;
2108 optlen = 4;
2109
2110 if (sc->sc_request_r_scale != 15) {
2111 *((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
2112 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2113 sc->sc_request_r_scale);
2114 optlen += 4;
2115 }
2116
2117 if (sc->sc_tstmp) {
2118 u_int32_t *lp = (u_int32_t *)(optp + optlen);
2119 /* Form timestamp option as shown in appendix A of RFC 1323. */
2120 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
2121 *lp++ = htonl(tcp_now);
2122 *lp = htonl(ts);
2123 optlen += TCPOLEN_TSTAMP_APPA;
2124 }
2125
2126 /*
2127 * Toss any trailing mbufs. No need to worry about
2128 * m_len and m_pkthdr.len, since tcp_respond() will
2129 * unconditionally set them.
2130 */
2131 if (m->m_next) {
2132 m_freem(m->m_next);
2133 m->m_next = NULL;
2134 }
2135
2136 /*
2137 * Fill in the fields that tcp_respond() will not touch, and
2138 * then send the response.
2139 */
2140 ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2141 ti->ti_win = htons(win);
2142 return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
2143 TH_SYN|TH_ACK));
2144 }
2145 #endif /* TUBA_INCLUDE */
2146