Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.344
      1 /*	$NetBSD: tcp_input.c,v 1.344 2015/08/24 22:21:26 pooka Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.344 2015/08/24 22:21:26 pooka Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_inet.h"
    155 #include "opt_ipsec.h"
    156 #include "opt_inet_csum.h"
    157 #include "opt_tcp_debug.h"
    158 #endif
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 #include <sys/lwp.h> /* for lwp0 */
    176 #include <sys/cprng.h>
    177 
    178 #include <net/if.h>
    179 #include <net/if_types.h>
    180 
    181 #include <netinet/in.h>
    182 #include <netinet/in_systm.h>
    183 #include <netinet/ip.h>
    184 #include <netinet/in_pcb.h>
    185 #include <netinet/in_var.h>
    186 #include <netinet/ip_var.h>
    187 #include <netinet/in_offload.h>
    188 
    189 #ifdef INET6
    190 #ifndef INET
    191 #include <netinet/in.h>
    192 #endif
    193 #include <netinet/ip6.h>
    194 #include <netinet6/ip6_var.h>
    195 #include <netinet6/in6_pcb.h>
    196 #include <netinet6/ip6_var.h>
    197 #include <netinet6/in6_var.h>
    198 #include <netinet/icmp6.h>
    199 #include <netinet6/nd6.h>
    200 #ifdef TCP_SIGNATURE
    201 #include <netinet6/scope6_var.h>
    202 #endif
    203 #endif
    204 
    205 #ifndef INET6
    206 /* always need ip6.h for IP6_EXTHDR_GET */
    207 #include <netinet/ip6.h>
    208 #endif
    209 
    210 #include <netinet/tcp.h>
    211 #include <netinet/tcp_fsm.h>
    212 #include <netinet/tcp_seq.h>
    213 #include <netinet/tcp_timer.h>
    214 #include <netinet/tcp_var.h>
    215 #include <netinet/tcp_private.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #ifdef INET6
    221 #include "faith.h"
    222 #if defined(NFAITH) && NFAITH > 0
    223 #include <net/if_faith.h>
    224 #endif
    225 #endif	/* INET6 */
    226 
    227 #ifdef IPSEC
    228 #include <netipsec/ipsec.h>
    229 #include <netipsec/ipsec_var.h>
    230 #include <netipsec/ipsec_private.h>
    231 #include <netipsec/key.h>
    232 #ifdef INET6
    233 #include <netipsec/ipsec6.h>
    234 #endif
    235 #endif	/* IPSEC*/
    236 
    237 #include <netinet/tcp_vtw.h>
    238 
    239 int	tcprexmtthresh = 3;
    240 int	tcp_log_refused;
    241 
    242 int	tcp_do_autorcvbuf = 1;
    243 int	tcp_autorcvbuf_inc = 16 * 1024;
    244 int	tcp_autorcvbuf_max = 256 * 1024;
    245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    246 
    247 static int tcp_rst_ppslim_count = 0;
    248 static struct timeval tcp_rst_ppslim_last;
    249 static int tcp_ackdrop_ppslim_count = 0;
    250 static struct timeval tcp_ackdrop_ppslim_last;
    251 
    252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    253 
    254 /* for modulo comparisons of timestamps */
    255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    257 
    258 /*
    259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    260  */
    261 #ifdef INET6
    262 static inline void
    263 nd6_hint(struct tcpcb *tp)
    264 {
    265 	struct rtentry *rt;
    266 
    267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    269 		nd6_nud_hint(rt);
    270 }
    271 #else
    272 static inline void
    273 nd6_hint(struct tcpcb *tp)
    274 {
    275 }
    276 #endif
    277 
    278 /*
    279  * Compute ACK transmission behavior.  Delay the ACK unless
    280  * we have already delayed an ACK (must send an ACK every two segments).
    281  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    282  * option is enabled.
    283  */
    284 static void
    285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    286 {
    287 
    288 	if (tp->t_flags & TF_DELACK ||
    289 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    290 		tp->t_flags |= TF_ACKNOW;
    291 	else
    292 		TCP_SET_DELACK(tp);
    293 }
    294 
    295 static void
    296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    297 {
    298 
    299 	/*
    300 	 * If we had a pending ICMP message that refers to data that have
    301 	 * just been acknowledged, disregard the recorded ICMP message.
    302 	 */
    303 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    304 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    305 		tp->t_flags &= ~TF_PMTUD_PEND;
    306 
    307 	/*
    308 	 * Keep track of the largest chunk of data
    309 	 * acknowledged since last PMTU update
    310 	 */
    311 	if (tp->t_pmtud_mss_acked < acked)
    312 		tp->t_pmtud_mss_acked = acked;
    313 }
    314 
    315 /*
    316  * Convert TCP protocol fields to host order for easier processing.
    317  */
    318 static void
    319 tcp_fields_to_host(struct tcphdr *th)
    320 {
    321 
    322 	NTOHL(th->th_seq);
    323 	NTOHL(th->th_ack);
    324 	NTOHS(th->th_win);
    325 	NTOHS(th->th_urp);
    326 }
    327 
    328 /*
    329  * ... and reverse the above.
    330  */
    331 static void
    332 tcp_fields_to_net(struct tcphdr *th)
    333 {
    334 
    335 	HTONL(th->th_seq);
    336 	HTONL(th->th_ack);
    337 	HTONS(th->th_win);
    338 	HTONS(th->th_urp);
    339 }
    340 
    341 #ifdef TCP_CSUM_COUNTERS
    342 #include <sys/device.h>
    343 
    344 #if defined(INET)
    345 extern struct evcnt tcp_hwcsum_ok;
    346 extern struct evcnt tcp_hwcsum_bad;
    347 extern struct evcnt tcp_hwcsum_data;
    348 extern struct evcnt tcp_swcsum;
    349 #endif /* defined(INET) */
    350 #if defined(INET6)
    351 extern struct evcnt tcp6_hwcsum_ok;
    352 extern struct evcnt tcp6_hwcsum_bad;
    353 extern struct evcnt tcp6_hwcsum_data;
    354 extern struct evcnt tcp6_swcsum;
    355 #endif /* defined(INET6) */
    356 
    357 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    358 
    359 #else
    360 
    361 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    362 
    363 #endif /* TCP_CSUM_COUNTERS */
    364 
    365 #ifdef TCP_REASS_COUNTERS
    366 #include <sys/device.h>
    367 
    368 extern struct evcnt tcp_reass_;
    369 extern struct evcnt tcp_reass_empty;
    370 extern struct evcnt tcp_reass_iteration[8];
    371 extern struct evcnt tcp_reass_prependfirst;
    372 extern struct evcnt tcp_reass_prepend;
    373 extern struct evcnt tcp_reass_insert;
    374 extern struct evcnt tcp_reass_inserttail;
    375 extern struct evcnt tcp_reass_append;
    376 extern struct evcnt tcp_reass_appendtail;
    377 extern struct evcnt tcp_reass_overlaptail;
    378 extern struct evcnt tcp_reass_overlapfront;
    379 extern struct evcnt tcp_reass_segdup;
    380 extern struct evcnt tcp_reass_fragdup;
    381 
    382 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    383 
    384 #else
    385 
    386 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    387 
    388 #endif /* TCP_REASS_COUNTERS */
    389 
    390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    391     int *);
    392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    393     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    394 
    395 #ifdef INET
    396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    397 #endif
    398 #ifdef INET6
    399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    400 #endif
    401 
    402 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    403 
    404 #if defined(MBUFTRACE)
    405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    406 #endif /* defined(MBUFTRACE) */
    407 
    408 static struct pool tcpipqent_pool;
    409 
    410 void
    411 tcpipqent_init(void)
    412 {
    413 
    414 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    415 	    NULL, IPL_VM);
    416 }
    417 
    418 struct ipqent *
    419 tcpipqent_alloc(void)
    420 {
    421 	struct ipqent *ipqe;
    422 	int s;
    423 
    424 	s = splvm();
    425 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    426 	splx(s);
    427 
    428 	return ipqe;
    429 }
    430 
    431 void
    432 tcpipqent_free(struct ipqent *ipqe)
    433 {
    434 	int s;
    435 
    436 	s = splvm();
    437 	pool_put(&tcpipqent_pool, ipqe);
    438 	splx(s);
    439 }
    440 
    441 static int
    442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    443 {
    444 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    445 	struct socket *so = NULL;
    446 	int pkt_flags;
    447 	tcp_seq pkt_seq;
    448 	unsigned pkt_len;
    449 	u_long rcvpartdupbyte = 0;
    450 	u_long rcvoobyte;
    451 #ifdef TCP_REASS_COUNTERS
    452 	u_int count = 0;
    453 #endif
    454 	uint64_t *tcps;
    455 
    456 	if (tp->t_inpcb)
    457 		so = tp->t_inpcb->inp_socket;
    458 #ifdef INET6
    459 	else if (tp->t_in6pcb)
    460 		so = tp->t_in6pcb->in6p_socket;
    461 #endif
    462 
    463 	TCP_REASS_LOCK_CHECK(tp);
    464 
    465 	/*
    466 	 * Call with th==0 after become established to
    467 	 * force pre-ESTABLISHED data up to user socket.
    468 	 */
    469 	if (th == 0)
    470 		goto present;
    471 
    472 	m_claimm(m, &tcp_reass_mowner);
    473 
    474 	rcvoobyte = *tlen;
    475 	/*
    476 	 * Copy these to local variables because the tcpiphdr
    477 	 * gets munged while we are collapsing mbufs.
    478 	 */
    479 	pkt_seq = th->th_seq;
    480 	pkt_len = *tlen;
    481 	pkt_flags = th->th_flags;
    482 
    483 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    484 
    485 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    486 		/*
    487 		 * When we miss a packet, the vast majority of time we get
    488 		 * packets that follow it in order.  So optimize for that.
    489 		 */
    490 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    491 			p->ipqe_len += pkt_len;
    492 			p->ipqe_flags |= pkt_flags;
    493 			m_cat(p->ipre_mlast, m);
    494 			TRAVERSE(p->ipre_mlast);
    495 			m = NULL;
    496 			tiqe = p;
    497 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    498 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    499 			goto skip_replacement;
    500 		}
    501 		/*
    502 		 * While we're here, if the pkt is completely beyond
    503 		 * anything we have, just insert it at the tail.
    504 		 */
    505 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    506 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    507 			goto insert_it;
    508 		}
    509 	}
    510 
    511 	q = TAILQ_FIRST(&tp->segq);
    512 
    513 	if (q != NULL) {
    514 		/*
    515 		 * If this segment immediately precedes the first out-of-order
    516 		 * block, simply slap the segment in front of it and (mostly)
    517 		 * skip the complicated logic.
    518 		 */
    519 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    520 			q->ipqe_seq = pkt_seq;
    521 			q->ipqe_len += pkt_len;
    522 			q->ipqe_flags |= pkt_flags;
    523 			m_cat(m, q->ipqe_m);
    524 			q->ipqe_m = m;
    525 			q->ipre_mlast = m; /* last mbuf may have changed */
    526 			TRAVERSE(q->ipre_mlast);
    527 			tiqe = q;
    528 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    529 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    530 			goto skip_replacement;
    531 		}
    532 	} else {
    533 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    534 	}
    535 
    536 	/*
    537 	 * Find a segment which begins after this one does.
    538 	 */
    539 	for (p = NULL; q != NULL; q = nq) {
    540 		nq = TAILQ_NEXT(q, ipqe_q);
    541 #ifdef TCP_REASS_COUNTERS
    542 		count++;
    543 #endif
    544 		/*
    545 		 * If the received segment is just right after this
    546 		 * fragment, merge the two together and then check
    547 		 * for further overlaps.
    548 		 */
    549 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    550 #ifdef TCPREASS_DEBUG
    551 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    552 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    553 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    554 #endif
    555 			pkt_len += q->ipqe_len;
    556 			pkt_flags |= q->ipqe_flags;
    557 			pkt_seq = q->ipqe_seq;
    558 			m_cat(q->ipre_mlast, m);
    559 			TRAVERSE(q->ipre_mlast);
    560 			m = q->ipqe_m;
    561 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    562 			goto free_ipqe;
    563 		}
    564 		/*
    565 		 * If the received segment is completely past this
    566 		 * fragment, we need to go the next fragment.
    567 		 */
    568 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    569 			p = q;
    570 			continue;
    571 		}
    572 		/*
    573 		 * If the fragment is past the received segment,
    574 		 * it (or any following) can't be concatenated.
    575 		 */
    576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    578 			break;
    579 		}
    580 
    581 		/*
    582 		 * We've received all the data in this segment before.
    583 		 * mark it as a duplicate and return.
    584 		 */
    585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    587 			tcps = TCP_STAT_GETREF();
    588 			tcps[TCP_STAT_RCVDUPPACK]++;
    589 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    590 			TCP_STAT_PUTREF();
    591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    592 			m_freem(m);
    593 			if (tiqe != NULL) {
    594 				tcpipqent_free(tiqe);
    595 			}
    596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    597 			goto out;
    598 		}
    599 		/*
    600 		 * Received segment completely overlaps this fragment
    601 		 * so we drop the fragment (this keeps the temporal
    602 		 * ordering of segments correct).
    603 		 */
    604 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    605 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    606 			rcvpartdupbyte += q->ipqe_len;
    607 			m_freem(q->ipqe_m);
    608 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    609 			goto free_ipqe;
    610 		}
    611 		/*
    612 		 * RX'ed segment extends past the end of the
    613 		 * fragment.  Drop the overlapping bytes.  Then
    614 		 * merge the fragment and segment then treat as
    615 		 * a longer received packet.
    616 		 */
    617 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    618 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    619 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    620 #ifdef TCPREASS_DEBUG
    621 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    622 			       tp, overlap,
    623 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    624 #endif
    625 			m_adj(m, overlap);
    626 			rcvpartdupbyte += overlap;
    627 			m_cat(q->ipre_mlast, m);
    628 			TRAVERSE(q->ipre_mlast);
    629 			m = q->ipqe_m;
    630 			pkt_seq = q->ipqe_seq;
    631 			pkt_len += q->ipqe_len - overlap;
    632 			rcvoobyte -= overlap;
    633 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    634 			goto free_ipqe;
    635 		}
    636 		/*
    637 		 * RX'ed segment extends past the front of the
    638 		 * fragment.  Drop the overlapping bytes on the
    639 		 * received packet.  The packet will then be
    640 		 * contatentated with this fragment a bit later.
    641 		 */
    642 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    643 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    644 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    645 #ifdef TCPREASS_DEBUG
    646 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    647 			       tp, overlap,
    648 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    649 #endif
    650 			m_adj(m, -overlap);
    651 			pkt_len -= overlap;
    652 			rcvpartdupbyte += overlap;
    653 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    654 			rcvoobyte -= overlap;
    655 		}
    656 		/*
    657 		 * If the received segment immediates precedes this
    658 		 * fragment then tack the fragment onto this segment
    659 		 * and reinsert the data.
    660 		 */
    661 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    662 #ifdef TCPREASS_DEBUG
    663 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    664 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    665 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    666 #endif
    667 			pkt_len += q->ipqe_len;
    668 			pkt_flags |= q->ipqe_flags;
    669 			m_cat(m, q->ipqe_m);
    670 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    671 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    672 			tp->t_segqlen--;
    673 			KASSERT(tp->t_segqlen >= 0);
    674 			KASSERT(tp->t_segqlen != 0 ||
    675 			    (TAILQ_EMPTY(&tp->segq) &&
    676 			    TAILQ_EMPTY(&tp->timeq)));
    677 			if (tiqe == NULL) {
    678 				tiqe = q;
    679 			} else {
    680 				tcpipqent_free(q);
    681 			}
    682 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    683 			break;
    684 		}
    685 		/*
    686 		 * If the fragment is before the segment, remember it.
    687 		 * When this loop is terminated, p will contain the
    688 		 * pointer to fragment that is right before the received
    689 		 * segment.
    690 		 */
    691 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    692 			p = q;
    693 
    694 		continue;
    695 
    696 		/*
    697 		 * This is a common operation.  It also will allow
    698 		 * to save doing a malloc/free in most instances.
    699 		 */
    700 	  free_ipqe:
    701 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    702 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    703 		tp->t_segqlen--;
    704 		KASSERT(tp->t_segqlen >= 0);
    705 		KASSERT(tp->t_segqlen != 0 ||
    706 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    707 		if (tiqe == NULL) {
    708 			tiqe = q;
    709 		} else {
    710 			tcpipqent_free(q);
    711 		}
    712 	}
    713 
    714 #ifdef TCP_REASS_COUNTERS
    715 	if (count > 7)
    716 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    717 	else if (count > 0)
    718 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    719 #endif
    720 
    721     insert_it:
    722 
    723 	/*
    724 	 * Allocate a new queue entry since the received segment did not
    725 	 * collapse onto any other out-of-order block; thus we are allocating
    726 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    727 	 * we would be reusing it.
    728 	 * XXX If we can't, just drop the packet.  XXX
    729 	 */
    730 	if (tiqe == NULL) {
    731 		tiqe = tcpipqent_alloc();
    732 		if (tiqe == NULL) {
    733 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    734 			m_freem(m);
    735 			goto out;
    736 		}
    737 	}
    738 
    739 	/*
    740 	 * Update the counters.
    741 	 */
    742 	tp->t_rcvoopack++;
    743 	tcps = TCP_STAT_GETREF();
    744 	tcps[TCP_STAT_RCVOOPACK]++;
    745 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    746 	if (rcvpartdupbyte) {
    747 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    748 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    749 	}
    750 	TCP_STAT_PUTREF();
    751 
    752 	/*
    753 	 * Insert the new fragment queue entry into both queues.
    754 	 */
    755 	tiqe->ipqe_m = m;
    756 	tiqe->ipre_mlast = m;
    757 	tiqe->ipqe_seq = pkt_seq;
    758 	tiqe->ipqe_len = pkt_len;
    759 	tiqe->ipqe_flags = pkt_flags;
    760 	if (p == NULL) {
    761 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    762 #ifdef TCPREASS_DEBUG
    763 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    764 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    765 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    766 #endif
    767 	} else {
    768 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    769 #ifdef TCPREASS_DEBUG
    770 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    771 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    772 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    773 #endif
    774 	}
    775 	tp->t_segqlen++;
    776 
    777 skip_replacement:
    778 
    779 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    780 
    781 present:
    782 	/*
    783 	 * Present data to user, advancing rcv_nxt through
    784 	 * completed sequence space.
    785 	 */
    786 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    787 		goto out;
    788 	q = TAILQ_FIRST(&tp->segq);
    789 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    790 		goto out;
    791 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    792 		goto out;
    793 
    794 	tp->rcv_nxt += q->ipqe_len;
    795 	pkt_flags = q->ipqe_flags & TH_FIN;
    796 	nd6_hint(tp);
    797 
    798 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    799 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    800 	tp->t_segqlen--;
    801 	KASSERT(tp->t_segqlen >= 0);
    802 	KASSERT(tp->t_segqlen != 0 ||
    803 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    804 	if (so->so_state & SS_CANTRCVMORE)
    805 		m_freem(q->ipqe_m);
    806 	else
    807 		sbappendstream(&so->so_rcv, q->ipqe_m);
    808 	tcpipqent_free(q);
    809 	TCP_REASS_UNLOCK(tp);
    810 	sorwakeup(so);
    811 	return (pkt_flags);
    812 out:
    813 	TCP_REASS_UNLOCK(tp);
    814 	return (0);
    815 }
    816 
    817 #ifdef INET6
    818 int
    819 tcp6_input(struct mbuf **mp, int *offp, int proto)
    820 {
    821 	struct mbuf *m = *mp;
    822 
    823 	/*
    824 	 * draft-itojun-ipv6-tcp-to-anycast
    825 	 * better place to put this in?
    826 	 */
    827 	if (m->m_flags & M_ANYCAST6) {
    828 		struct ip6_hdr *ip6;
    829 		if (m->m_len < sizeof(struct ip6_hdr)) {
    830 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    831 				TCP_STATINC(TCP_STAT_RCVSHORT);
    832 				return IPPROTO_DONE;
    833 			}
    834 		}
    835 		ip6 = mtod(m, struct ip6_hdr *);
    836 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    837 		    (char *)&ip6->ip6_dst - (char *)ip6);
    838 		return IPPROTO_DONE;
    839 	}
    840 
    841 	tcp_input(m, *offp, proto);
    842 	return IPPROTO_DONE;
    843 }
    844 #endif
    845 
    846 #ifdef INET
    847 static void
    848 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    849 {
    850 	char src[INET_ADDRSTRLEN];
    851 	char dst[INET_ADDRSTRLEN];
    852 
    853 	if (ip) {
    854 		in_print(src, sizeof(src), &ip->ip_src);
    855 		in_print(dst, sizeof(dst), &ip->ip_dst);
    856 	}
    857 	else {
    858 		strlcpy(src, "(unknown)", sizeof(src));
    859 		strlcpy(dst, "(unknown)", sizeof(dst));
    860 	}
    861 	log(LOG_INFO,
    862 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    863 	    dst, ntohs(th->th_dport),
    864 	    src, ntohs(th->th_sport));
    865 }
    866 #endif
    867 
    868 #ifdef INET6
    869 static void
    870 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    871 {
    872 	char src[INET6_ADDRSTRLEN];
    873 	char dst[INET6_ADDRSTRLEN];
    874 
    875 	if (ip6) {
    876 		in6_print(src, sizeof(src), &ip6->ip6_src);
    877 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    878 	}
    879 	else {
    880 		strlcpy(src, "(unknown v6)", sizeof(src));
    881 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    882 	}
    883 	log(LOG_INFO,
    884 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    885 	    dst, ntohs(th->th_dport),
    886 	    src, ntohs(th->th_sport));
    887 }
    888 #endif
    889 
    890 /*
    891  * Checksum extended TCP header and data.
    892  */
    893 int
    894 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    895     int toff, int off, int tlen)
    896 {
    897 
    898 	/*
    899 	 * XXX it's better to record and check if this mbuf is
    900 	 * already checked.
    901 	 */
    902 
    903 	switch (af) {
    904 #ifdef INET
    905 	case AF_INET:
    906 		switch (m->m_pkthdr.csum_flags &
    907 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    908 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    909 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    910 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    911 			goto badcsum;
    912 
    913 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    914 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    915 
    916 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    917 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    918 				const struct ip *ip =
    919 				    mtod(m, const struct ip *);
    920 
    921 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    922 				    ip->ip_dst.s_addr,
    923 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    924 			}
    925 			if ((hw_csum ^ 0xffff) != 0)
    926 				goto badcsum;
    927 			break;
    928 		}
    929 
    930 		case M_CSUM_TCPv4:
    931 			/* Checksum was okay. */
    932 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    933 			break;
    934 
    935 		default:
    936 			/*
    937 			 * Must compute it ourselves.  Maybe skip checksum
    938 			 * on loopback interfaces.
    939 			 */
    940 			if (__predict_true(!(m->m_pkthdr.rcvif->if_flags &
    941 					     IFF_LOOPBACK) ||
    942 					   tcp_do_loopback_cksum)) {
    943 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    944 				if (in4_cksum(m, IPPROTO_TCP, toff,
    945 					      tlen + off) != 0)
    946 					goto badcsum;
    947 			}
    948 			break;
    949 		}
    950 		break;
    951 #endif /* INET4 */
    952 
    953 #ifdef INET6
    954 	case AF_INET6:
    955 		switch (m->m_pkthdr.csum_flags &
    956 			((m->m_pkthdr.rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    957 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    958 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    959 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    960 			goto badcsum;
    961 
    962 #if 0 /* notyet */
    963 		case M_CSUM_TCPv6|M_CSUM_DATA:
    964 #endif
    965 
    966 		case M_CSUM_TCPv6:
    967 			/* Checksum was okay. */
    968 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    969 			break;
    970 
    971 		default:
    972 			/*
    973 			 * Must compute it ourselves.  Maybe skip checksum
    974 			 * on loopback interfaces.
    975 			 */
    976 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    977 			    tcp_do_loopback_cksum)) {
    978 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    979 				if (in6_cksum(m, IPPROTO_TCP, toff,
    980 				    tlen + off) != 0)
    981 					goto badcsum;
    982 			}
    983 		}
    984 		break;
    985 #endif /* INET6 */
    986 	}
    987 
    988 	return 0;
    989 
    990 badcsum:
    991 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    992 	return -1;
    993 }
    994 
    995 /* When a packet arrives addressed to a vestigial tcpbp, we
    996  * nevertheless have to respond to it per the spec.
    997  */
    998 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
    999 			  struct mbuf *m, int tlen, int multicast)
   1000 {
   1001 	int		tiflags;
   1002 	int		todrop;
   1003 	uint32_t	t_flags = 0;
   1004 	uint64_t	*tcps;
   1005 
   1006 	tiflags = th->th_flags;
   1007 	todrop  = vp->rcv_nxt - th->th_seq;
   1008 
   1009 	if (todrop > 0) {
   1010 		if (tiflags & TH_SYN) {
   1011 			tiflags &= ~TH_SYN;
   1012 			++th->th_seq;
   1013 			if (th->th_urp > 1)
   1014 				--th->th_urp;
   1015 			else {
   1016 				tiflags &= ~TH_URG;
   1017 				th->th_urp = 0;
   1018 			}
   1019 			--todrop;
   1020 		}
   1021 		if (todrop > tlen ||
   1022 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1023 			/*
   1024 			 * Any valid FIN or RST must be to the left of the
   1025 			 * window.  At this point the FIN or RST must be a
   1026 			 * duplicate or out of sequence; drop it.
   1027 			 */
   1028 			if (tiflags & TH_RST)
   1029 				goto drop;
   1030 			tiflags &= ~(TH_FIN|TH_RST);
   1031 			/*
   1032 			 * Send an ACK to resynchronize and drop any data.
   1033 			 * But keep on processing for RST or ACK.
   1034 			 */
   1035 			t_flags |= TF_ACKNOW;
   1036 			todrop = tlen;
   1037 			tcps = TCP_STAT_GETREF();
   1038 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1039 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1040 			TCP_STAT_PUTREF();
   1041 		} else if ((tiflags & TH_RST)
   1042 			   && th->th_seq != vp->rcv_nxt) {
   1043 			/*
   1044 			 * Test for reset before adjusting the sequence
   1045 			 * number for overlapping data.
   1046 			 */
   1047 			goto dropafterack_ratelim;
   1048 		} else {
   1049 			tcps = TCP_STAT_GETREF();
   1050 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1051 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1052 			TCP_STAT_PUTREF();
   1053 		}
   1054 
   1055 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1056 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1057 
   1058 		th->th_seq += todrop;
   1059 		tlen -= todrop;
   1060 
   1061 		if (th->th_urp > todrop)
   1062 			th->th_urp -= todrop;
   1063 		else {
   1064 			tiflags &= ~TH_URG;
   1065 			th->th_urp = 0;
   1066 		}
   1067 	}
   1068 
   1069 	/*
   1070 	 * If new data are received on a connection after the
   1071 	 * user processes are gone, then RST the other end.
   1072 	 */
   1073 	if (tlen) {
   1074 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1075 		goto dropwithreset;
   1076 	}
   1077 
   1078 	/*
   1079 	 * If segment ends after window, drop trailing data
   1080 	 * (and PUSH and FIN); if nothing left, just ACK.
   1081 	 */
   1082 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
   1083 
   1084 	if (todrop > 0) {
   1085 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1086 		if (todrop >= tlen) {
   1087 			/*
   1088 			 * The segment actually starts after the window.
   1089 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1090 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1091 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1092 			 */
   1093 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1094 			/*
   1095 			 * If a new connection request is received
   1096 			 * while in TIME_WAIT, drop the old connection
   1097 			 * and start over if the sequence numbers
   1098 			 * are above the previous ones.
   1099 			 */
   1100 			if ((tiflags & TH_SYN)
   1101 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1102 				/* We only support this in the !NOFDREF case, which
   1103 				 * is to say: not here.
   1104 				 */
   1105 				goto dropwithreset;
   1106 			}
   1107 			/*
   1108 			 * If window is closed can only take segments at
   1109 			 * window edge, and have to drop data and PUSH from
   1110 			 * incoming segments.  Continue processing, but
   1111 			 * remember to ack.  Otherwise, drop segment
   1112 			 * and (if not RST) ack.
   1113 			 */
   1114 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1115 				t_flags |= TF_ACKNOW;
   1116 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1117 			} else
   1118 				goto dropafterack;
   1119 		} else
   1120 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1121 		m_adj(m, -todrop);
   1122 		tlen -= todrop;
   1123 		tiflags &= ~(TH_PUSH|TH_FIN);
   1124 	}
   1125 
   1126 	if (tiflags & TH_RST) {
   1127 		if (th->th_seq != vp->rcv_nxt)
   1128 			goto dropafterack_ratelim;
   1129 
   1130 		vtw_del(vp->ctl, vp->vtw);
   1131 		goto drop;
   1132 	}
   1133 
   1134 	/*
   1135 	 * If the ACK bit is off we drop the segment and return.
   1136 	 */
   1137 	if ((tiflags & TH_ACK) == 0) {
   1138 		if (t_flags & TF_ACKNOW)
   1139 			goto dropafterack;
   1140 		else
   1141 			goto drop;
   1142 	}
   1143 
   1144 	/*
   1145 	 * In TIME_WAIT state the only thing that should arrive
   1146 	 * is a retransmission of the remote FIN.  Acknowledge
   1147 	 * it and restart the finack timer.
   1148 	 */
   1149 	vtw_restart(vp);
   1150 	goto dropafterack;
   1151 
   1152 dropafterack:
   1153 	/*
   1154 	 * Generate an ACK dropping incoming segment if it occupies
   1155 	 * sequence space, where the ACK reflects our state.
   1156 	 */
   1157 	if (tiflags & TH_RST)
   1158 		goto drop;
   1159 	goto dropafterack2;
   1160 
   1161 dropafterack_ratelim:
   1162 	/*
   1163 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1164 	 */
   1165 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1166 			 tcp_ackdrop_ppslim) == 0) {
   1167 		/* XXX stat */
   1168 		goto drop;
   1169 	}
   1170 	/* ...fall into dropafterack2... */
   1171 
   1172 dropafterack2:
   1173 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
   1174 			  TH_ACK);
   1175 	return;
   1176 
   1177 dropwithreset:
   1178 	/*
   1179 	 * Generate a RST, dropping incoming segment.
   1180 	 * Make ACK acceptable to originator of segment.
   1181 	 */
   1182 	if (tiflags & TH_RST)
   1183 		goto drop;
   1184 
   1185 	if (tiflags & TH_ACK)
   1186 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1187 	else {
   1188 		if (tiflags & TH_SYN)
   1189 			++tlen;
   1190 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1191 				  TH_RST|TH_ACK);
   1192 	}
   1193 	return;
   1194 drop:
   1195 	m_freem(m);
   1196 }
   1197 
   1198 /*
   1199  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1200  */
   1201 void
   1202 tcp_input(struct mbuf *m, ...)
   1203 {
   1204 	struct tcphdr *th;
   1205 	struct ip *ip;
   1206 	struct inpcb *inp;
   1207 #ifdef INET6
   1208 	struct ip6_hdr *ip6;
   1209 	struct in6pcb *in6p;
   1210 #endif
   1211 	u_int8_t *optp = NULL;
   1212 	int optlen = 0;
   1213 	int len, tlen, toff, hdroptlen = 0;
   1214 	struct tcpcb *tp = 0;
   1215 	int tiflags;
   1216 	struct socket *so = NULL;
   1217 	int todrop, acked, ourfinisacked, needoutput = 0;
   1218 	bool dupseg;
   1219 #ifdef TCP_DEBUG
   1220 	short ostate = 0;
   1221 #endif
   1222 	u_long tiwin;
   1223 	struct tcp_opt_info opti;
   1224 	int off, iphlen;
   1225 	va_list ap;
   1226 	int af;		/* af on the wire */
   1227 	struct mbuf *tcp_saveti = NULL;
   1228 	uint32_t ts_rtt;
   1229 	uint8_t iptos;
   1230 	uint64_t *tcps;
   1231 	vestigial_inpcb_t vestige;
   1232 
   1233 	vestige.valid = 0;
   1234 
   1235 	MCLAIM(m, &tcp_rx_mowner);
   1236 	va_start(ap, m);
   1237 	toff = va_arg(ap, int);
   1238 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1239 	va_end(ap);
   1240 
   1241 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1242 
   1243 	memset(&opti, 0, sizeof(opti));
   1244 	opti.ts_present = 0;
   1245 	opti.maxseg = 0;
   1246 
   1247 	/*
   1248 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1249 	 *
   1250 	 * TCP is, by definition, unicast, so we reject all
   1251 	 * multicast outright.
   1252 	 *
   1253 	 * Note, there are additional src/dst address checks in
   1254 	 * the AF-specific code below.
   1255 	 */
   1256 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1257 		/* XXX stat */
   1258 		goto drop;
   1259 	}
   1260 #ifdef INET6
   1261 	if (m->m_flags & M_ANYCAST6) {
   1262 		/* XXX stat */
   1263 		goto drop;
   1264 	}
   1265 #endif
   1266 
   1267 	/*
   1268 	 * Get IP and TCP header.
   1269 	 * Note: IP leaves IP header in first mbuf.
   1270 	 */
   1271 	ip = mtod(m, struct ip *);
   1272 	switch (ip->ip_v) {
   1273 #ifdef INET
   1274 	case 4:
   1275 #ifdef INET6
   1276 		ip6 = NULL;
   1277 #endif
   1278 		af = AF_INET;
   1279 		iphlen = sizeof(struct ip);
   1280 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1281 			sizeof(struct tcphdr));
   1282 		if (th == NULL) {
   1283 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1284 			return;
   1285 		}
   1286 		/* We do the checksum after PCB lookup... */
   1287 		len = ntohs(ip->ip_len);
   1288 		tlen = len - toff;
   1289 		iptos = ip->ip_tos;
   1290 		break;
   1291 #endif
   1292 #ifdef INET6
   1293 	case 6:
   1294 		ip = NULL;
   1295 		iphlen = sizeof(struct ip6_hdr);
   1296 		af = AF_INET6;
   1297 		ip6 = mtod(m, struct ip6_hdr *);
   1298 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1299 			sizeof(struct tcphdr));
   1300 		if (th == NULL) {
   1301 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1302 			return;
   1303 		}
   1304 
   1305 		/* Be proactive about malicious use of IPv4 mapped address */
   1306 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1307 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1308 			/* XXX stat */
   1309 			goto drop;
   1310 		}
   1311 
   1312 		/*
   1313 		 * Be proactive about unspecified IPv6 address in source.
   1314 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1315 		 * unspecified IPv6 address can be used to confuse us.
   1316 		 *
   1317 		 * Note that packets with unspecified IPv6 destination is
   1318 		 * already dropped in ip6_input.
   1319 		 */
   1320 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1321 			/* XXX stat */
   1322 			goto drop;
   1323 		}
   1324 
   1325 		/*
   1326 		 * Make sure destination address is not multicast.
   1327 		 * Source address checked in ip6_input().
   1328 		 */
   1329 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1330 			/* XXX stat */
   1331 			goto drop;
   1332 		}
   1333 
   1334 		/* We do the checksum after PCB lookup... */
   1335 		len = m->m_pkthdr.len;
   1336 		tlen = len - toff;
   1337 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1338 		break;
   1339 #endif
   1340 	default:
   1341 		m_freem(m);
   1342 		return;
   1343 	}
   1344 
   1345 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1346 
   1347 	/*
   1348 	 * Check that TCP offset makes sense,
   1349 	 * pull out TCP options and adjust length.		XXX
   1350 	 */
   1351 	off = th->th_off << 2;
   1352 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1353 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1354 		goto drop;
   1355 	}
   1356 	tlen -= off;
   1357 
   1358 	/*
   1359 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1360 	 * length throughout the function.  Other functions can use
   1361 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1362 	 * rja
   1363 	 */
   1364 
   1365 	if (off > sizeof (struct tcphdr)) {
   1366 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1367 		if (th == NULL) {
   1368 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1369 			return;
   1370 		}
   1371 		/*
   1372 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1373 		 * (as they're before toff) and we don't need to update those.
   1374 		 */
   1375 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1376 		optlen = off - sizeof (struct tcphdr);
   1377 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1378 		/*
   1379 		 * Do quick retrieval of timestamp options ("options
   1380 		 * prediction?").  If timestamp is the only option and it's
   1381 		 * formatted as recommended in RFC 1323 appendix A, we
   1382 		 * quickly get the values now and not bother calling
   1383 		 * tcp_dooptions(), etc.
   1384 		 */
   1385 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1386 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1387 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1388 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1389 		     (th->th_flags & TH_SYN) == 0) {
   1390 			opti.ts_present = 1;
   1391 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1392 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1393 			optp = NULL;	/* we've parsed the options */
   1394 		}
   1395 	}
   1396 	tiflags = th->th_flags;
   1397 
   1398 	/*
   1399 	 * Checksum extended TCP header and data
   1400 	 */
   1401 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1402 		goto badcsum;
   1403 
   1404 	/*
   1405 	 * Locate pcb for segment.
   1406 	 */
   1407 findpcb:
   1408 	inp = NULL;
   1409 #ifdef INET6
   1410 	in6p = NULL;
   1411 #endif
   1412 	switch (af) {
   1413 #ifdef INET
   1414 	case AF_INET:
   1415 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1416 					   ip->ip_dst, th->th_dport,
   1417 					   &vestige);
   1418 		if (inp == 0 && !vestige.valid) {
   1419 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1420 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1421 		}
   1422 #ifdef INET6
   1423 		if (inp == 0 && !vestige.valid) {
   1424 			struct in6_addr s, d;
   1425 
   1426 			/* mapped addr case */
   1427 			memset(&s, 0, sizeof(s));
   1428 			s.s6_addr16[5] = htons(0xffff);
   1429 			bcopy(&ip->ip_src, &s.s6_addr32[3], sizeof(ip->ip_src));
   1430 			memset(&d, 0, sizeof(d));
   1431 			d.s6_addr16[5] = htons(0xffff);
   1432 			bcopy(&ip->ip_dst, &d.s6_addr32[3], sizeof(ip->ip_dst));
   1433 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1434 						     th->th_sport, &d, th->th_dport,
   1435 						     0, &vestige);
   1436 			if (in6p == 0 && !vestige.valid) {
   1437 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1438 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1439 				    th->th_dport, 0);
   1440 			}
   1441 		}
   1442 #endif
   1443 #ifndef INET6
   1444 		if (inp == 0 && !vestige.valid)
   1445 #else
   1446 		if (inp == 0 && in6p == 0 && !vestige.valid)
   1447 #endif
   1448 		{
   1449 			TCP_STATINC(TCP_STAT_NOPORT);
   1450 			if (tcp_log_refused &&
   1451 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1452 				tcp4_log_refused(ip, th);
   1453 			}
   1454 			tcp_fields_to_host(th);
   1455 			goto dropwithreset_ratelim;
   1456 		}
   1457 #if defined(IPSEC)
   1458 		if (ipsec_used) {
   1459 			if (inp &&
   1460 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
   1461 			    && ipsec4_in_reject(m, inp)) {
   1462 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1463 				goto drop;
   1464 			}
   1465 #ifdef INET6
   1466 			else if (in6p &&
   1467 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1468 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1469 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1470 				goto drop;
   1471 			}
   1472 #endif
   1473 		}
   1474 #endif /*IPSEC*/
   1475 		break;
   1476 #endif /*INET*/
   1477 #ifdef INET6
   1478 	case AF_INET6:
   1479 	    {
   1480 		int faith;
   1481 
   1482 #if defined(NFAITH) && NFAITH > 0
   1483 		faith = faithprefix(&ip6->ip6_dst);
   1484 #else
   1485 		faith = 0;
   1486 #endif
   1487 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1488 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1489 		if (!in6p && !vestige.valid) {
   1490 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1491 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1492 				th->th_dport, faith);
   1493 		}
   1494 		if (!in6p && !vestige.valid) {
   1495 			TCP_STATINC(TCP_STAT_NOPORT);
   1496 			if (tcp_log_refused &&
   1497 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1498 				tcp6_log_refused(ip6, th);
   1499 			}
   1500 			tcp_fields_to_host(th);
   1501 			goto dropwithreset_ratelim;
   1502 		}
   1503 #if defined(IPSEC)
   1504 		if (ipsec_used && in6p
   1505 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1506 		    && ipsec6_in_reject(m, in6p)) {
   1507 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1508 			goto drop;
   1509 		}
   1510 #endif /*IPSEC*/
   1511 		break;
   1512 	    }
   1513 #endif
   1514 	}
   1515 
   1516 	/*
   1517 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1518 	 * all data in the incoming segment is discarded.
   1519 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1520 	 * but should either do a listen or a connect soon.
   1521 	 */
   1522 	tp = NULL;
   1523 	so = NULL;
   1524 	if (inp) {
   1525 		/* Check the minimum TTL for socket. */
   1526 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1527 			goto drop;
   1528 
   1529 		tp = intotcpcb(inp);
   1530 		so = inp->inp_socket;
   1531 	}
   1532 #ifdef INET6
   1533 	else if (in6p) {
   1534 		tp = in6totcpcb(in6p);
   1535 		so = in6p->in6p_socket;
   1536 	}
   1537 #endif
   1538 	else if (vestige.valid) {
   1539 		int mc = 0;
   1540 
   1541 		/* We do not support the resurrection of vtw tcpcps.
   1542 		 */
   1543 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1544 			goto badcsum;
   1545 
   1546 		switch (af) {
   1547 #ifdef INET6
   1548 		case AF_INET6:
   1549 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
   1550 			break;
   1551 #endif
   1552 
   1553 		case AF_INET:
   1554 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
   1555 			      || in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif));
   1556 			break;
   1557 		}
   1558 
   1559 		tcp_fields_to_host(th);
   1560 		tcp_vtw_input(th, &vestige, m, tlen, mc);
   1561 		m = 0;
   1562 		goto drop;
   1563 	}
   1564 
   1565 	if (tp == 0) {
   1566 		tcp_fields_to_host(th);
   1567 		goto dropwithreset_ratelim;
   1568 	}
   1569 	if (tp->t_state == TCPS_CLOSED)
   1570 		goto drop;
   1571 
   1572 	KASSERT(so->so_lock == softnet_lock);
   1573 	KASSERT(solocked(so));
   1574 
   1575 	tcp_fields_to_host(th);
   1576 
   1577 	/* Unscale the window into a 32-bit value. */
   1578 	if ((tiflags & TH_SYN) == 0)
   1579 		tiwin = th->th_win << tp->snd_scale;
   1580 	else
   1581 		tiwin = th->th_win;
   1582 
   1583 #ifdef INET6
   1584 	/* save packet options if user wanted */
   1585 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1586 		if (in6p->in6p_options) {
   1587 			m_freem(in6p->in6p_options);
   1588 			in6p->in6p_options = 0;
   1589 		}
   1590 		KASSERT(ip6 != NULL);
   1591 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1592 	}
   1593 #endif
   1594 
   1595 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1596 		union syn_cache_sa src;
   1597 		union syn_cache_sa dst;
   1598 
   1599 		memset(&src, 0, sizeof(src));
   1600 		memset(&dst, 0, sizeof(dst));
   1601 		switch (af) {
   1602 #ifdef INET
   1603 		case AF_INET:
   1604 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1605 			src.sin.sin_family = AF_INET;
   1606 			src.sin.sin_addr = ip->ip_src;
   1607 			src.sin.sin_port = th->th_sport;
   1608 
   1609 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1610 			dst.sin.sin_family = AF_INET;
   1611 			dst.sin.sin_addr = ip->ip_dst;
   1612 			dst.sin.sin_port = th->th_dport;
   1613 			break;
   1614 #endif
   1615 #ifdef INET6
   1616 		case AF_INET6:
   1617 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1618 			src.sin6.sin6_family = AF_INET6;
   1619 			src.sin6.sin6_addr = ip6->ip6_src;
   1620 			src.sin6.sin6_port = th->th_sport;
   1621 
   1622 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1623 			dst.sin6.sin6_family = AF_INET6;
   1624 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1625 			dst.sin6.sin6_port = th->th_dport;
   1626 			break;
   1627 #endif /* INET6 */
   1628 		default:
   1629 			goto badsyn;	/*sanity*/
   1630 		}
   1631 
   1632 		if (so->so_options & SO_DEBUG) {
   1633 #ifdef TCP_DEBUG
   1634 			ostate = tp->t_state;
   1635 #endif
   1636 
   1637 			tcp_saveti = NULL;
   1638 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1639 				goto nosave;
   1640 
   1641 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1642 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1643 				if (!tcp_saveti)
   1644 					goto nosave;
   1645 			} else {
   1646 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1647 				if (!tcp_saveti)
   1648 					goto nosave;
   1649 				MCLAIM(m, &tcp_mowner);
   1650 				tcp_saveti->m_len = iphlen;
   1651 				m_copydata(m, 0, iphlen,
   1652 				    mtod(tcp_saveti, void *));
   1653 			}
   1654 
   1655 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1656 				m_freem(tcp_saveti);
   1657 				tcp_saveti = NULL;
   1658 			} else {
   1659 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1660 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1661 				    sizeof(struct tcphdr));
   1662 			}
   1663 	nosave:;
   1664 		}
   1665 		if (so->so_options & SO_ACCEPTCONN) {
   1666 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1667 				if (tiflags & TH_RST) {
   1668 					syn_cache_reset(&src.sa, &dst.sa, th);
   1669 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1670 				    (TH_ACK|TH_SYN)) {
   1671 					/*
   1672 					 * Received a SYN,ACK.  This should
   1673 					 * never happen while we are in
   1674 					 * LISTEN.  Send an RST.
   1675 					 */
   1676 					goto badsyn;
   1677 				} else if (tiflags & TH_ACK) {
   1678 					so = syn_cache_get(&src.sa, &dst.sa,
   1679 						th, toff, tlen, so, m);
   1680 					if (so == NULL) {
   1681 						/*
   1682 						 * We don't have a SYN for
   1683 						 * this ACK; send an RST.
   1684 						 */
   1685 						goto badsyn;
   1686 					} else if (so ==
   1687 					    (struct socket *)(-1)) {
   1688 						/*
   1689 						 * We were unable to create
   1690 						 * the connection.  If the
   1691 						 * 3-way handshake was
   1692 						 * completed, and RST has
   1693 						 * been sent to the peer.
   1694 						 * Since the mbuf might be
   1695 						 * in use for the reply,
   1696 						 * do not free it.
   1697 						 */
   1698 						m = NULL;
   1699 					} else {
   1700 						/*
   1701 						 * We have created a
   1702 						 * full-blown connection.
   1703 						 */
   1704 						tp = NULL;
   1705 						inp = NULL;
   1706 #ifdef INET6
   1707 						in6p = NULL;
   1708 #endif
   1709 						switch (so->so_proto->pr_domain->dom_family) {
   1710 #ifdef INET
   1711 						case AF_INET:
   1712 							inp = sotoinpcb(so);
   1713 							tp = intotcpcb(inp);
   1714 							break;
   1715 #endif
   1716 #ifdef INET6
   1717 						case AF_INET6:
   1718 							in6p = sotoin6pcb(so);
   1719 							tp = in6totcpcb(in6p);
   1720 							break;
   1721 #endif
   1722 						}
   1723 						if (tp == NULL)
   1724 							goto badsyn;	/*XXX*/
   1725 						tiwin <<= tp->snd_scale;
   1726 						goto after_listen;
   1727 					}
   1728 				} else {
   1729 					/*
   1730 					 * None of RST, SYN or ACK was set.
   1731 					 * This is an invalid packet for a
   1732 					 * TCB in LISTEN state.  Send a RST.
   1733 					 */
   1734 					goto badsyn;
   1735 				}
   1736 			} else {
   1737 				/*
   1738 				 * Received a SYN.
   1739 				 *
   1740 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1741 				 */
   1742 				if (m->m_flags & (M_BCAST|M_MCAST))
   1743 					goto drop;
   1744 
   1745 				switch (af) {
   1746 #ifdef INET6
   1747 				case AF_INET6:
   1748 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1749 						goto drop;
   1750 					break;
   1751 #endif /* INET6 */
   1752 				case AF_INET:
   1753 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1754 					    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   1755 						goto drop;
   1756 				break;
   1757 				}
   1758 
   1759 #ifdef INET6
   1760 				/*
   1761 				 * If deprecated address is forbidden, we do
   1762 				 * not accept SYN to deprecated interface
   1763 				 * address to prevent any new inbound
   1764 				 * connection from getting established.
   1765 				 * When we do not accept SYN, we send a TCP
   1766 				 * RST, with deprecated source address (instead
   1767 				 * of dropping it).  We compromise it as it is
   1768 				 * much better for peer to send a RST, and
   1769 				 * RST will be the final packet for the
   1770 				 * exchange.
   1771 				 *
   1772 				 * If we do not forbid deprecated addresses, we
   1773 				 * accept the SYN packet.  RFC2462 does not
   1774 				 * suggest dropping SYN in this case.
   1775 				 * If we decipher RFC2462 5.5.4, it says like
   1776 				 * this:
   1777 				 * 1. use of deprecated addr with existing
   1778 				 *    communication is okay - "SHOULD continue
   1779 				 *    to be used"
   1780 				 * 2. use of it with new communication:
   1781 				 *   (2a) "SHOULD NOT be used if alternate
   1782 				 *        address with sufficient scope is
   1783 				 *        available"
   1784 				 *   (2b) nothing mentioned otherwise.
   1785 				 * Here we fall into (2b) case as we have no
   1786 				 * choice in our source address selection - we
   1787 				 * must obey the peer.
   1788 				 *
   1789 				 * The wording in RFC2462 is confusing, and
   1790 				 * there are multiple description text for
   1791 				 * deprecated address handling - worse, they
   1792 				 * are not exactly the same.  I believe 5.5.4
   1793 				 * is the best one, so we follow 5.5.4.
   1794 				 */
   1795 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1796 					struct in6_ifaddr *ia6;
   1797 					if ((ia6 = in6ifa_ifpwithaddr(m->m_pkthdr.rcvif,
   1798 					    &ip6->ip6_dst)) &&
   1799 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1800 						tp = NULL;
   1801 						goto dropwithreset;
   1802 					}
   1803 				}
   1804 #endif
   1805 
   1806 #if defined(IPSEC)
   1807 				if (ipsec_used) {
   1808 					switch (af) {
   1809 #ifdef INET
   1810 					case AF_INET:
   1811 						if (!ipsec4_in_reject_so(m, so))
   1812 							break;
   1813 						IPSEC_STATINC(
   1814 						    IPSEC_STAT_IN_POLVIO);
   1815 						tp = NULL;
   1816 						goto dropwithreset;
   1817 #endif
   1818 #ifdef INET6
   1819 					case AF_INET6:
   1820 						if (!ipsec6_in_reject_so(m, so))
   1821 							break;
   1822 						IPSEC6_STATINC(
   1823 						    IPSEC_STAT_IN_POLVIO);
   1824 						tp = NULL;
   1825 						goto dropwithreset;
   1826 #endif /*INET6*/
   1827 					}
   1828 				}
   1829 #endif /*IPSEC*/
   1830 
   1831 				/*
   1832 				 * LISTEN socket received a SYN
   1833 				 * from itself?  This can't possibly
   1834 				 * be valid; drop the packet.
   1835 				 */
   1836 				if (th->th_sport == th->th_dport) {
   1837 					int i;
   1838 
   1839 					switch (af) {
   1840 #ifdef INET
   1841 					case AF_INET:
   1842 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1843 						break;
   1844 #endif
   1845 #ifdef INET6
   1846 					case AF_INET6:
   1847 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1848 						break;
   1849 #endif
   1850 					default:
   1851 						i = 1;
   1852 					}
   1853 					if (i) {
   1854 						TCP_STATINC(TCP_STAT_BADSYN);
   1855 						goto drop;
   1856 					}
   1857 				}
   1858 
   1859 				/*
   1860 				 * SYN looks ok; create compressed TCP
   1861 				 * state for it.
   1862 				 */
   1863 				if (so->so_qlen <= so->so_qlimit &&
   1864 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1865 						so, m, optp, optlen, &opti))
   1866 					m = NULL;
   1867 			}
   1868 			goto drop;
   1869 		}
   1870 	}
   1871 
   1872 after_listen:
   1873 #ifdef DIAGNOSTIC
   1874 	/*
   1875 	 * Should not happen now that all embryonic connections
   1876 	 * are handled with compressed state.
   1877 	 */
   1878 	if (tp->t_state == TCPS_LISTEN)
   1879 		panic("tcp_input: TCPS_LISTEN");
   1880 #endif
   1881 
   1882 	/*
   1883 	 * Segment received on connection.
   1884 	 * Reset idle time and keep-alive timer.
   1885 	 */
   1886 	tp->t_rcvtime = tcp_now;
   1887 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1888 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1889 
   1890 	/*
   1891 	 * Process options.
   1892 	 */
   1893 #ifdef TCP_SIGNATURE
   1894 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1895 #else
   1896 	if (optp)
   1897 #endif
   1898 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1899 			goto drop;
   1900 
   1901 	if (TCP_SACK_ENABLED(tp)) {
   1902 		tcp_del_sackholes(tp, th);
   1903 	}
   1904 
   1905 	if (TCP_ECN_ALLOWED(tp)) {
   1906 		if (tiflags & TH_CWR) {
   1907 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1908 		}
   1909 		switch (iptos & IPTOS_ECN_MASK) {
   1910 		case IPTOS_ECN_CE:
   1911 			tp->t_flags |= TF_ECN_SND_ECE;
   1912 			TCP_STATINC(TCP_STAT_ECN_CE);
   1913 			break;
   1914 		case IPTOS_ECN_ECT0:
   1915 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1916 			break;
   1917 		case IPTOS_ECN_ECT1:
   1918 			/* XXX: ignore for now -- rpaulo */
   1919 			break;
   1920 		}
   1921 		/*
   1922 		 * Congestion experienced.
   1923 		 * Ignore if we are already trying to recover.
   1924 		 */
   1925 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1926 			tp->t_congctl->cong_exp(tp);
   1927 	}
   1928 
   1929 	if (opti.ts_present && opti.ts_ecr) {
   1930 		/*
   1931 		 * Calculate the RTT from the returned time stamp and the
   1932 		 * connection's time base.  If the time stamp is later than
   1933 		 * the current time, or is extremely old, fall back to non-1323
   1934 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1935 		 * at the same time.
   1936 		 *
   1937 		 * Note that ts_rtt is in units of slow ticks (500
   1938 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1939 		 * observed values will have large quantization noise.
   1940 		 * Our smoothed RTT is then the fraction of observed
   1941 		 * samples that are 1 tick instead of 0 (times 500
   1942 		 * ms).
   1943 		 *
   1944 		 * ts_rtt is increased by 1 to denote a valid sample,
   1945 		 * with 0 indicating an invalid measurement.  This
   1946 		 * extra 1 must be removed when ts_rtt is used, or
   1947 		 * else an an erroneous extra 500 ms will result.
   1948 		 */
   1949 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1950 		if (ts_rtt > TCP_PAWS_IDLE)
   1951 			ts_rtt = 0;
   1952 	} else {
   1953 		ts_rtt = 0;
   1954 	}
   1955 
   1956 	/*
   1957 	 * Header prediction: check for the two common cases
   1958 	 * of a uni-directional data xfer.  If the packet has
   1959 	 * no control flags, is in-sequence, the window didn't
   1960 	 * change and we're not retransmitting, it's a
   1961 	 * candidate.  If the length is zero and the ack moved
   1962 	 * forward, we're the sender side of the xfer.  Just
   1963 	 * free the data acked & wake any higher level process
   1964 	 * that was blocked waiting for space.  If the length
   1965 	 * is non-zero and the ack didn't move, we're the
   1966 	 * receiver side.  If we're getting packets in-order
   1967 	 * (the reassembly queue is empty), add the data to
   1968 	 * the socket buffer and note that we need a delayed ack.
   1969 	 */
   1970 	if (tp->t_state == TCPS_ESTABLISHED &&
   1971 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1972 	        == TH_ACK &&
   1973 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1974 	    th->th_seq == tp->rcv_nxt &&
   1975 	    tiwin && tiwin == tp->snd_wnd &&
   1976 	    tp->snd_nxt == tp->snd_max) {
   1977 
   1978 		/*
   1979 		 * If last ACK falls within this segment's sequence numbers,
   1980 		 * record the timestamp.
   1981 		 * NOTE that the test is modified according to the latest
   1982 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1983 		 *
   1984 		 * note that we already know
   1985 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1986 		 */
   1987 		if (opti.ts_present &&
   1988 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1989 			tp->ts_recent_age = tcp_now;
   1990 			tp->ts_recent = opti.ts_val;
   1991 		}
   1992 
   1993 		if (tlen == 0) {
   1994 			/* Ack prediction. */
   1995 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1996 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1997 			    tp->snd_cwnd >= tp->snd_wnd &&
   1998 			    tp->t_partialacks < 0) {
   1999 				/*
   2000 				 * this is a pure ack for outstanding data.
   2001 				 */
   2002 				if (ts_rtt)
   2003 					tcp_xmit_timer(tp, ts_rtt - 1);
   2004 				else if (tp->t_rtttime &&
   2005 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   2006 					tcp_xmit_timer(tp,
   2007 					  tcp_now - tp->t_rtttime);
   2008 				acked = th->th_ack - tp->snd_una;
   2009 				tcps = TCP_STAT_GETREF();
   2010 				tcps[TCP_STAT_PREDACK]++;
   2011 				tcps[TCP_STAT_RCVACKPACK]++;
   2012 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   2013 				TCP_STAT_PUTREF();
   2014 				nd6_hint(tp);
   2015 
   2016 				if (acked > (tp->t_lastoff - tp->t_inoff))
   2017 					tp->t_lastm = NULL;
   2018 				sbdrop(&so->so_snd, acked);
   2019 				tp->t_lastoff -= acked;
   2020 
   2021 				icmp_check(tp, th, acked);
   2022 
   2023 				tp->snd_una = th->th_ack;
   2024 				tp->snd_fack = tp->snd_una;
   2025 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   2026 					tp->snd_high = tp->snd_una;
   2027 				m_freem(m);
   2028 
   2029 				/*
   2030 				 * If all outstanding data are acked, stop
   2031 				 * retransmit timer, otherwise restart timer
   2032 				 * using current (possibly backed-off) value.
   2033 				 * If process is waiting for space,
   2034 				 * wakeup/selnotify/signal.  If data
   2035 				 * are ready to send, let tcp_output
   2036 				 * decide between more output or persist.
   2037 				 */
   2038 				if (tp->snd_una == tp->snd_max)
   2039 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2040 				else if (TCP_TIMER_ISARMED(tp,
   2041 				    TCPT_PERSIST) == 0)
   2042 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   2043 					    tp->t_rxtcur);
   2044 
   2045 				sowwakeup(so);
   2046 				if (so->so_snd.sb_cc) {
   2047 					KERNEL_LOCK(1, NULL);
   2048 					(void) tcp_output(tp);
   2049 					KERNEL_UNLOCK_ONE(NULL);
   2050 				}
   2051 				if (tcp_saveti)
   2052 					m_freem(tcp_saveti);
   2053 				return;
   2054 			}
   2055 		} else if (th->th_ack == tp->snd_una &&
   2056 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2057 		    tlen <= sbspace(&so->so_rcv)) {
   2058 			int newsize = 0;	/* automatic sockbuf scaling */
   2059 
   2060 			/*
   2061 			 * this is a pure, in-sequence data packet
   2062 			 * with nothing on the reassembly queue and
   2063 			 * we have enough buffer space to take it.
   2064 			 */
   2065 			tp->rcv_nxt += tlen;
   2066 			tcps = TCP_STAT_GETREF();
   2067 			tcps[TCP_STAT_PREDDAT]++;
   2068 			tcps[TCP_STAT_RCVPACK]++;
   2069 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2070 			TCP_STAT_PUTREF();
   2071 			nd6_hint(tp);
   2072 
   2073 		/*
   2074 		 * Automatic sizing enables the performance of large buffers
   2075 		 * and most of the efficiency of small ones by only allocating
   2076 		 * space when it is needed.
   2077 		 *
   2078 		 * On the receive side the socket buffer memory is only rarely
   2079 		 * used to any significant extent.  This allows us to be much
   2080 		 * more aggressive in scaling the receive socket buffer.  For
   2081 		 * the case that the buffer space is actually used to a large
   2082 		 * extent and we run out of kernel memory we can simply drop
   2083 		 * the new segments; TCP on the sender will just retransmit it
   2084 		 * later.  Setting the buffer size too big may only consume too
   2085 		 * much kernel memory if the application doesn't read() from
   2086 		 * the socket or packet loss or reordering makes use of the
   2087 		 * reassembly queue.
   2088 		 *
   2089 		 * The criteria to step up the receive buffer one notch are:
   2090 		 *  1. the number of bytes received during the time it takes
   2091 		 *     one timestamp to be reflected back to us (the RTT);
   2092 		 *  2. received bytes per RTT is within seven eighth of the
   2093 		 *     current socket buffer size;
   2094 		 *  3. receive buffer size has not hit maximal automatic size;
   2095 		 *
   2096 		 * This algorithm does one step per RTT at most and only if
   2097 		 * we receive a bulk stream w/o packet losses or reorderings.
   2098 		 * Shrinking the buffer during idle times is not necessary as
   2099 		 * it doesn't consume any memory when idle.
   2100 		 *
   2101 		 * TODO: Only step up if the application is actually serving
   2102 		 * the buffer to better manage the socket buffer resources.
   2103 		 */
   2104 			if (tcp_do_autorcvbuf &&
   2105 			    opti.ts_ecr &&
   2106 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2107 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2108 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2109 					if (tp->rfbuf_cnt >
   2110 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2111 					    so->so_rcv.sb_hiwat <
   2112 					    tcp_autorcvbuf_max) {
   2113 						newsize =
   2114 						    min(so->so_rcv.sb_hiwat +
   2115 						    tcp_autorcvbuf_inc,
   2116 						    tcp_autorcvbuf_max);
   2117 					}
   2118 					/* Start over with next RTT. */
   2119 					tp->rfbuf_ts = 0;
   2120 					tp->rfbuf_cnt = 0;
   2121 				} else
   2122 					tp->rfbuf_cnt += tlen;	/* add up */
   2123 			}
   2124 
   2125 			/*
   2126 			 * Drop TCP, IP headers and TCP options then add data
   2127 			 * to socket buffer.
   2128 			 */
   2129 			if (so->so_state & SS_CANTRCVMORE)
   2130 				m_freem(m);
   2131 			else {
   2132 				/*
   2133 				 * Set new socket buffer size.
   2134 				 * Give up when limit is reached.
   2135 				 */
   2136 				if (newsize)
   2137 					if (!sbreserve(&so->so_rcv,
   2138 					    newsize, so))
   2139 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2140 				m_adj(m, toff + off);
   2141 				sbappendstream(&so->so_rcv, m);
   2142 			}
   2143 			sorwakeup(so);
   2144 			tcp_setup_ack(tp, th);
   2145 			if (tp->t_flags & TF_ACKNOW) {
   2146 				KERNEL_LOCK(1, NULL);
   2147 				(void) tcp_output(tp);
   2148 				KERNEL_UNLOCK_ONE(NULL);
   2149 			}
   2150 			if (tcp_saveti)
   2151 				m_freem(tcp_saveti);
   2152 			return;
   2153 		}
   2154 	}
   2155 
   2156 	/*
   2157 	 * Compute mbuf offset to TCP data segment.
   2158 	 */
   2159 	hdroptlen = toff + off;
   2160 
   2161 	/*
   2162 	 * Calculate amount of space in receive window,
   2163 	 * and then do TCP input processing.
   2164 	 * Receive window is amount of space in rcv queue,
   2165 	 * but not less than advertised window.
   2166 	 */
   2167 	{ int win;
   2168 
   2169 	win = sbspace(&so->so_rcv);
   2170 	if (win < 0)
   2171 		win = 0;
   2172 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2173 	}
   2174 
   2175 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2176 	tp->rfbuf_ts = 0;
   2177 	tp->rfbuf_cnt = 0;
   2178 
   2179 	switch (tp->t_state) {
   2180 	/*
   2181 	 * If the state is SYN_SENT:
   2182 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2183 	 *	if seg contains a RST, then drop the connection.
   2184 	 *	if seg does not contain SYN, then drop it.
   2185 	 * Otherwise this is an acceptable SYN segment
   2186 	 *	initialize tp->rcv_nxt and tp->irs
   2187 	 *	if seg contains ack then advance tp->snd_una
   2188 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2189 	 *	    is ECN capable.
   2190 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2191 	 *	arrange for segment to be acked (eventually)
   2192 	 *	continue processing rest of data/controls, beginning with URG
   2193 	 */
   2194 	case TCPS_SYN_SENT:
   2195 		if ((tiflags & TH_ACK) &&
   2196 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2197 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2198 			goto dropwithreset;
   2199 		if (tiflags & TH_RST) {
   2200 			if (tiflags & TH_ACK)
   2201 				tp = tcp_drop(tp, ECONNREFUSED);
   2202 			goto drop;
   2203 		}
   2204 		if ((tiflags & TH_SYN) == 0)
   2205 			goto drop;
   2206 		if (tiflags & TH_ACK) {
   2207 			tp->snd_una = th->th_ack;
   2208 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2209 				tp->snd_nxt = tp->snd_una;
   2210 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2211 				tp->snd_high = tp->snd_una;
   2212 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2213 
   2214 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2215 				tp->t_flags |= TF_ECN_PERMIT;
   2216 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2217 			}
   2218 
   2219 		}
   2220 		tp->irs = th->th_seq;
   2221 		tcp_rcvseqinit(tp);
   2222 		tp->t_flags |= TF_ACKNOW;
   2223 		tcp_mss_from_peer(tp, opti.maxseg);
   2224 
   2225 		/*
   2226 		 * Initialize the initial congestion window.  If we
   2227 		 * had to retransmit the SYN, we must initialize cwnd
   2228 		 * to 1 segment (i.e. the Loss Window).
   2229 		 */
   2230 		if (tp->t_flags & TF_SYN_REXMT)
   2231 			tp->snd_cwnd = tp->t_peermss;
   2232 		else {
   2233 			int ss = tcp_init_win;
   2234 #ifdef INET
   2235 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2236 				ss = tcp_init_win_local;
   2237 #endif
   2238 #ifdef INET6
   2239 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2240 				ss = tcp_init_win_local;
   2241 #endif
   2242 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2243 		}
   2244 
   2245 		tcp_rmx_rtt(tp);
   2246 		if (tiflags & TH_ACK) {
   2247 			TCP_STATINC(TCP_STAT_CONNECTS);
   2248 			/*
   2249 			 * move tcp_established before soisconnected
   2250 			 * because upcall handler can drive tcp_output
   2251 			 * functionality.
   2252 			 * XXX we might call soisconnected at the end of
   2253 			 * all processing
   2254 			 */
   2255 			tcp_established(tp);
   2256 			soisconnected(so);
   2257 			/* Do window scaling on this connection? */
   2258 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2259 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2260 				tp->snd_scale = tp->requested_s_scale;
   2261 				tp->rcv_scale = tp->request_r_scale;
   2262 			}
   2263 			TCP_REASS_LOCK(tp);
   2264 			(void) tcp_reass(tp, NULL, NULL, &tlen);
   2265 			/*
   2266 			 * if we didn't have to retransmit the SYN,
   2267 			 * use its rtt as our initial srtt & rtt var.
   2268 			 */
   2269 			if (tp->t_rtttime)
   2270 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2271 		} else
   2272 			tp->t_state = TCPS_SYN_RECEIVED;
   2273 
   2274 		/*
   2275 		 * Advance th->th_seq to correspond to first data byte.
   2276 		 * If data, trim to stay within window,
   2277 		 * dropping FIN if necessary.
   2278 		 */
   2279 		th->th_seq++;
   2280 		if (tlen > tp->rcv_wnd) {
   2281 			todrop = tlen - tp->rcv_wnd;
   2282 			m_adj(m, -todrop);
   2283 			tlen = tp->rcv_wnd;
   2284 			tiflags &= ~TH_FIN;
   2285 			tcps = TCP_STAT_GETREF();
   2286 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2287 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2288 			TCP_STAT_PUTREF();
   2289 		}
   2290 		tp->snd_wl1 = th->th_seq - 1;
   2291 		tp->rcv_up = th->th_seq;
   2292 		goto step6;
   2293 
   2294 	/*
   2295 	 * If the state is SYN_RECEIVED:
   2296 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2297 	 *	and generate an RST.  See page 36, rfc793
   2298 	 */
   2299 	case TCPS_SYN_RECEIVED:
   2300 		if ((tiflags & TH_ACK) &&
   2301 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2302 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2303 			goto dropwithreset;
   2304 		break;
   2305 	}
   2306 
   2307 	/*
   2308 	 * States other than LISTEN or SYN_SENT.
   2309 	 * First check timestamp, if present.
   2310 	 * Then check that at least some bytes of segment are within
   2311 	 * receive window.  If segment begins before rcv_nxt,
   2312 	 * drop leading data (and SYN); if nothing left, just ack.
   2313 	 *
   2314 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2315 	 * and it's less than ts_recent, drop it.
   2316 	 */
   2317 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2318 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2319 
   2320 		/* Check to see if ts_recent is over 24 days old.  */
   2321 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2322 			/*
   2323 			 * Invalidate ts_recent.  If this segment updates
   2324 			 * ts_recent, the age will be reset later and ts_recent
   2325 			 * will get a valid value.  If it does not, setting
   2326 			 * ts_recent to zero will at least satisfy the
   2327 			 * requirement that zero be placed in the timestamp
   2328 			 * echo reply when ts_recent isn't valid.  The
   2329 			 * age isn't reset until we get a valid ts_recent
   2330 			 * because we don't want out-of-order segments to be
   2331 			 * dropped when ts_recent is old.
   2332 			 */
   2333 			tp->ts_recent = 0;
   2334 		} else {
   2335 			tcps = TCP_STAT_GETREF();
   2336 			tcps[TCP_STAT_RCVDUPPACK]++;
   2337 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2338 			tcps[TCP_STAT_PAWSDROP]++;
   2339 			TCP_STAT_PUTREF();
   2340 			tcp_new_dsack(tp, th->th_seq, tlen);
   2341 			goto dropafterack;
   2342 		}
   2343 	}
   2344 
   2345 	todrop = tp->rcv_nxt - th->th_seq;
   2346 	dupseg = false;
   2347 	if (todrop > 0) {
   2348 		if (tiflags & TH_SYN) {
   2349 			tiflags &= ~TH_SYN;
   2350 			th->th_seq++;
   2351 			if (th->th_urp > 1)
   2352 				th->th_urp--;
   2353 			else {
   2354 				tiflags &= ~TH_URG;
   2355 				th->th_urp = 0;
   2356 			}
   2357 			todrop--;
   2358 		}
   2359 		if (todrop > tlen ||
   2360 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2361 			/*
   2362 			 * Any valid FIN or RST must be to the left of the
   2363 			 * window.  At this point the FIN or RST must be a
   2364 			 * duplicate or out of sequence; drop it.
   2365 			 */
   2366 			if (tiflags & TH_RST)
   2367 				goto drop;
   2368 			tiflags &= ~(TH_FIN|TH_RST);
   2369 			/*
   2370 			 * Send an ACK to resynchronize and drop any data.
   2371 			 * But keep on processing for RST or ACK.
   2372 			 */
   2373 			tp->t_flags |= TF_ACKNOW;
   2374 			todrop = tlen;
   2375 			dupseg = true;
   2376 			tcps = TCP_STAT_GETREF();
   2377 			tcps[TCP_STAT_RCVDUPPACK]++;
   2378 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2379 			TCP_STAT_PUTREF();
   2380 		} else if ((tiflags & TH_RST) &&
   2381 			   th->th_seq != tp->rcv_nxt) {
   2382 			/*
   2383 			 * Test for reset before adjusting the sequence
   2384 			 * number for overlapping data.
   2385 			 */
   2386 			goto dropafterack_ratelim;
   2387 		} else {
   2388 			tcps = TCP_STAT_GETREF();
   2389 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2390 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2391 			TCP_STAT_PUTREF();
   2392 		}
   2393 		tcp_new_dsack(tp, th->th_seq, todrop);
   2394 		hdroptlen += todrop;	/*drop from head afterwards*/
   2395 		th->th_seq += todrop;
   2396 		tlen -= todrop;
   2397 		if (th->th_urp > todrop)
   2398 			th->th_urp -= todrop;
   2399 		else {
   2400 			tiflags &= ~TH_URG;
   2401 			th->th_urp = 0;
   2402 		}
   2403 	}
   2404 
   2405 	/*
   2406 	 * If new data are received on a connection after the
   2407 	 * user processes are gone, then RST the other end.
   2408 	 */
   2409 	if ((so->so_state & SS_NOFDREF) &&
   2410 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2411 		tp = tcp_close(tp);
   2412 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2413 		goto dropwithreset;
   2414 	}
   2415 
   2416 	/*
   2417 	 * If segment ends after window, drop trailing data
   2418 	 * (and PUSH and FIN); if nothing left, just ACK.
   2419 	 */
   2420 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2421 	if (todrop > 0) {
   2422 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2423 		if (todrop >= tlen) {
   2424 			/*
   2425 			 * The segment actually starts after the window.
   2426 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2427 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2428 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2429 			 */
   2430 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2431 			/*
   2432 			 * If a new connection request is received
   2433 			 * while in TIME_WAIT, drop the old connection
   2434 			 * and start over if the sequence numbers
   2435 			 * are above the previous ones.
   2436 			 *
   2437 			 * NOTE: We will checksum the packet again, and
   2438 			 * so we need to put the header fields back into
   2439 			 * network order!
   2440 			 * XXX This kind of sucks, but we don't expect
   2441 			 * XXX this to happen very often, so maybe it
   2442 			 * XXX doesn't matter so much.
   2443 			 */
   2444 			if (tiflags & TH_SYN &&
   2445 			    tp->t_state == TCPS_TIME_WAIT &&
   2446 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2447 				tp = tcp_close(tp);
   2448 				tcp_fields_to_net(th);
   2449 				goto findpcb;
   2450 			}
   2451 			/*
   2452 			 * If window is closed can only take segments at
   2453 			 * window edge, and have to drop data and PUSH from
   2454 			 * incoming segments.  Continue processing, but
   2455 			 * remember to ack.  Otherwise, drop segment
   2456 			 * and (if not RST) ack.
   2457 			 */
   2458 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2459 				tp->t_flags |= TF_ACKNOW;
   2460 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2461 			} else
   2462 				goto dropafterack;
   2463 		} else
   2464 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2465 		m_adj(m, -todrop);
   2466 		tlen -= todrop;
   2467 		tiflags &= ~(TH_PUSH|TH_FIN);
   2468 	}
   2469 
   2470 	/*
   2471 	 * If last ACK falls within this segment's sequence numbers,
   2472 	 *  record the timestamp.
   2473 	 * NOTE:
   2474 	 * 1) That the test incorporates suggestions from the latest
   2475 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2476 	 * 2) That updating only on newer timestamps interferes with
   2477 	 *    our earlier PAWS tests, so this check should be solely
   2478 	 *    predicated on the sequence space of this segment.
   2479 	 * 3) That we modify the segment boundary check to be
   2480 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2481 	 *    instead of RFC1323's
   2482 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2483 	 *    This modified check allows us to overcome RFC1323's
   2484 	 *    limitations as described in Stevens TCP/IP Illustrated
   2485 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2486 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2487 	 */
   2488 	if (opti.ts_present &&
   2489 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2490 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2491 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2492 		tp->ts_recent_age = tcp_now;
   2493 		tp->ts_recent = opti.ts_val;
   2494 	}
   2495 
   2496 	/*
   2497 	 * If the RST bit is set examine the state:
   2498 	 *    SYN_RECEIVED STATE:
   2499 	 *	If passive open, return to LISTEN state.
   2500 	 *	If active open, inform user that connection was refused.
   2501 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2502 	 *	Inform user that connection was reset, and close tcb.
   2503 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2504 	 *	Close the tcb.
   2505 	 */
   2506 	if (tiflags & TH_RST) {
   2507 		if (th->th_seq != tp->rcv_nxt)
   2508 			goto dropafterack_ratelim;
   2509 
   2510 		switch (tp->t_state) {
   2511 		case TCPS_SYN_RECEIVED:
   2512 			so->so_error = ECONNREFUSED;
   2513 			goto close;
   2514 
   2515 		case TCPS_ESTABLISHED:
   2516 		case TCPS_FIN_WAIT_1:
   2517 		case TCPS_FIN_WAIT_2:
   2518 		case TCPS_CLOSE_WAIT:
   2519 			so->so_error = ECONNRESET;
   2520 		close:
   2521 			tp->t_state = TCPS_CLOSED;
   2522 			TCP_STATINC(TCP_STAT_DROPS);
   2523 			tp = tcp_close(tp);
   2524 			goto drop;
   2525 
   2526 		case TCPS_CLOSING:
   2527 		case TCPS_LAST_ACK:
   2528 		case TCPS_TIME_WAIT:
   2529 			tp = tcp_close(tp);
   2530 			goto drop;
   2531 		}
   2532 	}
   2533 
   2534 	/*
   2535 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2536 	 * we must be in a synchronized state.  RFC791 states (under RST
   2537 	 * generation) that any unacceptable segment (an out-of-order SYN
   2538 	 * qualifies) received in a synchronized state must elicit only an
   2539 	 * empty acknowledgment segment ... and the connection remains in
   2540 	 * the same state.
   2541 	 */
   2542 	if (tiflags & TH_SYN) {
   2543 		if (tp->rcv_nxt == th->th_seq) {
   2544 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2545 			    TH_ACK);
   2546 			if (tcp_saveti)
   2547 				m_freem(tcp_saveti);
   2548 			return;
   2549 		}
   2550 
   2551 		goto dropafterack_ratelim;
   2552 	}
   2553 
   2554 	/*
   2555 	 * If the ACK bit is off we drop the segment and return.
   2556 	 */
   2557 	if ((tiflags & TH_ACK) == 0) {
   2558 		if (tp->t_flags & TF_ACKNOW)
   2559 			goto dropafterack;
   2560 		else
   2561 			goto drop;
   2562 	}
   2563 
   2564 	/*
   2565 	 * Ack processing.
   2566 	 */
   2567 	switch (tp->t_state) {
   2568 
   2569 	/*
   2570 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2571 	 * ESTABLISHED state and continue processing, otherwise
   2572 	 * send an RST.
   2573 	 */
   2574 	case TCPS_SYN_RECEIVED:
   2575 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2576 		    SEQ_GT(th->th_ack, tp->snd_max))
   2577 			goto dropwithreset;
   2578 		TCP_STATINC(TCP_STAT_CONNECTS);
   2579 		soisconnected(so);
   2580 		tcp_established(tp);
   2581 		/* Do window scaling? */
   2582 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2583 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2584 			tp->snd_scale = tp->requested_s_scale;
   2585 			tp->rcv_scale = tp->request_r_scale;
   2586 		}
   2587 		TCP_REASS_LOCK(tp);
   2588 		(void) tcp_reass(tp, NULL, NULL, &tlen);
   2589 		tp->snd_wl1 = th->th_seq - 1;
   2590 		/* fall into ... */
   2591 
   2592 	/*
   2593 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2594 	 * ACKs.  If the ack is in the range
   2595 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2596 	 * then advance tp->snd_una to th->th_ack and drop
   2597 	 * data from the retransmission queue.  If this ACK reflects
   2598 	 * more up to date window information we update our window information.
   2599 	 */
   2600 	case TCPS_ESTABLISHED:
   2601 	case TCPS_FIN_WAIT_1:
   2602 	case TCPS_FIN_WAIT_2:
   2603 	case TCPS_CLOSE_WAIT:
   2604 	case TCPS_CLOSING:
   2605 	case TCPS_LAST_ACK:
   2606 	case TCPS_TIME_WAIT:
   2607 
   2608 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2609 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2610 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2611 				/*
   2612 				 * If we have outstanding data (other than
   2613 				 * a window probe), this is a completely
   2614 				 * duplicate ack (ie, window info didn't
   2615 				 * change), the ack is the biggest we've
   2616 				 * seen and we've seen exactly our rexmt
   2617 				 * threshhold of them, assume a packet
   2618 				 * has been dropped and retransmit it.
   2619 				 * Kludge snd_nxt & the congestion
   2620 				 * window so we send only this one
   2621 				 * packet.
   2622 				 */
   2623 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2624 				    th->th_ack != tp->snd_una)
   2625 					tp->t_dupacks = 0;
   2626 				else if (tp->t_partialacks < 0 &&
   2627 					 (++tp->t_dupacks == tcprexmtthresh ||
   2628 					 TCP_FACK_FASTRECOV(tp))) {
   2629 					/*
   2630 					 * Do the fast retransmit, and adjust
   2631 					 * congestion control paramenters.
   2632 					 */
   2633 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2634 						/* False fast retransmit */
   2635 						break;
   2636 					} else
   2637 						goto drop;
   2638 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2639 					tp->snd_cwnd += tp->t_segsz;
   2640 					KERNEL_LOCK(1, NULL);
   2641 					(void) tcp_output(tp);
   2642 					KERNEL_UNLOCK_ONE(NULL);
   2643 					goto drop;
   2644 				}
   2645 			} else {
   2646 				/*
   2647 				 * If the ack appears to be very old, only
   2648 				 * allow data that is in-sequence.  This
   2649 				 * makes it somewhat more difficult to insert
   2650 				 * forged data by guessing sequence numbers.
   2651 				 * Sent an ack to try to update the send
   2652 				 * sequence number on the other side.
   2653 				 */
   2654 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2655 				    SEQ_LT(th->th_ack,
   2656 				    tp->snd_una - tp->max_sndwnd))
   2657 					goto dropafterack;
   2658 			}
   2659 			break;
   2660 		}
   2661 		/*
   2662 		 * If the congestion window was inflated to account
   2663 		 * for the other side's cached packets, retract it.
   2664 		 */
   2665 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2666 
   2667 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2668 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2669 			goto dropafterack;
   2670 		}
   2671 		acked = th->th_ack - tp->snd_una;
   2672 		tcps = TCP_STAT_GETREF();
   2673 		tcps[TCP_STAT_RCVACKPACK]++;
   2674 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2675 		TCP_STAT_PUTREF();
   2676 
   2677 		/*
   2678 		 * If we have a timestamp reply, update smoothed
   2679 		 * round trip time.  If no timestamp is present but
   2680 		 * transmit timer is running and timed sequence
   2681 		 * number was acked, update smoothed round trip time.
   2682 		 * Since we now have an rtt measurement, cancel the
   2683 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2684 		 * Recompute the initial retransmit timer.
   2685 		 */
   2686 		if (ts_rtt)
   2687 			tcp_xmit_timer(tp, ts_rtt - 1);
   2688 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2689 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2690 
   2691 		/*
   2692 		 * If all outstanding data is acked, stop retransmit
   2693 		 * timer and remember to restart (more output or persist).
   2694 		 * If there is more data to be acked, restart retransmit
   2695 		 * timer, using current (possibly backed-off) value.
   2696 		 */
   2697 		if (th->th_ack == tp->snd_max) {
   2698 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2699 			needoutput = 1;
   2700 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2701 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2702 
   2703 		/*
   2704 		 * New data has been acked, adjust the congestion window.
   2705 		 */
   2706 		tp->t_congctl->newack(tp, th);
   2707 
   2708 		nd6_hint(tp);
   2709 		if (acked > so->so_snd.sb_cc) {
   2710 			tp->snd_wnd -= so->so_snd.sb_cc;
   2711 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2712 			ourfinisacked = 1;
   2713 		} else {
   2714 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2715 				tp->t_lastm = NULL;
   2716 			sbdrop(&so->so_snd, acked);
   2717 			tp->t_lastoff -= acked;
   2718 			if (tp->snd_wnd > acked)
   2719 				tp->snd_wnd -= acked;
   2720 			else
   2721 				tp->snd_wnd = 0;
   2722 			ourfinisacked = 0;
   2723 		}
   2724 		sowwakeup(so);
   2725 
   2726 		icmp_check(tp, th, acked);
   2727 
   2728 		tp->snd_una = th->th_ack;
   2729 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2730 			tp->snd_fack = tp->snd_una;
   2731 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2732 			tp->snd_nxt = tp->snd_una;
   2733 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2734 			tp->snd_high = tp->snd_una;
   2735 
   2736 		switch (tp->t_state) {
   2737 
   2738 		/*
   2739 		 * In FIN_WAIT_1 STATE in addition to the processing
   2740 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2741 		 * then enter FIN_WAIT_2.
   2742 		 */
   2743 		case TCPS_FIN_WAIT_1:
   2744 			if (ourfinisacked) {
   2745 				/*
   2746 				 * If we can't receive any more
   2747 				 * data, then closing user can proceed.
   2748 				 * Starting the timer is contrary to the
   2749 				 * specification, but if we don't get a FIN
   2750 				 * we'll hang forever.
   2751 				 */
   2752 				if (so->so_state & SS_CANTRCVMORE) {
   2753 					soisdisconnected(so);
   2754 					if (tp->t_maxidle > 0)
   2755 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2756 						    tp->t_maxidle);
   2757 				}
   2758 				tp->t_state = TCPS_FIN_WAIT_2;
   2759 			}
   2760 			break;
   2761 
   2762 	 	/*
   2763 		 * In CLOSING STATE in addition to the processing for
   2764 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2765 		 * then enter the TIME-WAIT state, otherwise ignore
   2766 		 * the segment.
   2767 		 */
   2768 		case TCPS_CLOSING:
   2769 			if (ourfinisacked) {
   2770 				tp->t_state = TCPS_TIME_WAIT;
   2771 				tcp_canceltimers(tp);
   2772 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2773 				soisdisconnected(so);
   2774 			}
   2775 			break;
   2776 
   2777 		/*
   2778 		 * In LAST_ACK, we may still be waiting for data to drain
   2779 		 * and/or to be acked, as well as for the ack of our FIN.
   2780 		 * If our FIN is now acknowledged, delete the TCB,
   2781 		 * enter the closed state and return.
   2782 		 */
   2783 		case TCPS_LAST_ACK:
   2784 			if (ourfinisacked) {
   2785 				tp = tcp_close(tp);
   2786 				goto drop;
   2787 			}
   2788 			break;
   2789 
   2790 		/*
   2791 		 * In TIME_WAIT state the only thing that should arrive
   2792 		 * is a retransmission of the remote FIN.  Acknowledge
   2793 		 * it and restart the finack timer.
   2794 		 */
   2795 		case TCPS_TIME_WAIT:
   2796 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2797 			goto dropafterack;
   2798 		}
   2799 	}
   2800 
   2801 step6:
   2802 	/*
   2803 	 * Update window information.
   2804 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2805 	 */
   2806 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2807 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2808 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2809 		/* keep track of pure window updates */
   2810 		if (tlen == 0 &&
   2811 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2812 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2813 		tp->snd_wnd = tiwin;
   2814 		tp->snd_wl1 = th->th_seq;
   2815 		tp->snd_wl2 = th->th_ack;
   2816 		if (tp->snd_wnd > tp->max_sndwnd)
   2817 			tp->max_sndwnd = tp->snd_wnd;
   2818 		needoutput = 1;
   2819 	}
   2820 
   2821 	/*
   2822 	 * Process segments with URG.
   2823 	 */
   2824 	if ((tiflags & TH_URG) && th->th_urp &&
   2825 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2826 		/*
   2827 		 * This is a kludge, but if we receive and accept
   2828 		 * random urgent pointers, we'll crash in
   2829 		 * soreceive.  It's hard to imagine someone
   2830 		 * actually wanting to send this much urgent data.
   2831 		 */
   2832 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2833 			th->th_urp = 0;			/* XXX */
   2834 			tiflags &= ~TH_URG;		/* XXX */
   2835 			goto dodata;			/* XXX */
   2836 		}
   2837 		/*
   2838 		 * If this segment advances the known urgent pointer,
   2839 		 * then mark the data stream.  This should not happen
   2840 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2841 		 * a FIN has been received from the remote side.
   2842 		 * In these states we ignore the URG.
   2843 		 *
   2844 		 * According to RFC961 (Assigned Protocols),
   2845 		 * the urgent pointer points to the last octet
   2846 		 * of urgent data.  We continue, however,
   2847 		 * to consider it to indicate the first octet
   2848 		 * of data past the urgent section as the original
   2849 		 * spec states (in one of two places).
   2850 		 */
   2851 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2852 			tp->rcv_up = th->th_seq + th->th_urp;
   2853 			so->so_oobmark = so->so_rcv.sb_cc +
   2854 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2855 			if (so->so_oobmark == 0)
   2856 				so->so_state |= SS_RCVATMARK;
   2857 			sohasoutofband(so);
   2858 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2859 		}
   2860 		/*
   2861 		 * Remove out of band data so doesn't get presented to user.
   2862 		 * This can happen independent of advancing the URG pointer,
   2863 		 * but if two URG's are pending at once, some out-of-band
   2864 		 * data may creep in... ick.
   2865 		 */
   2866 		if (th->th_urp <= (u_int16_t) tlen
   2867 #ifdef SO_OOBINLINE
   2868 		     && (so->so_options & SO_OOBINLINE) == 0
   2869 #endif
   2870 		     )
   2871 			tcp_pulloutofband(so, th, m, hdroptlen);
   2872 	} else
   2873 		/*
   2874 		 * If no out of band data is expected,
   2875 		 * pull receive urgent pointer along
   2876 		 * with the receive window.
   2877 		 */
   2878 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2879 			tp->rcv_up = tp->rcv_nxt;
   2880 dodata:							/* XXX */
   2881 
   2882 	/*
   2883 	 * Process the segment text, merging it into the TCP sequencing queue,
   2884 	 * and arranging for acknowledgement of receipt if necessary.
   2885 	 * This process logically involves adjusting tp->rcv_wnd as data
   2886 	 * is presented to the user (this happens in tcp_usrreq.c,
   2887 	 * tcp_rcvd()).  If a FIN has already been received on this
   2888 	 * connection then we just ignore the text.
   2889 	 */
   2890 	if ((tlen || (tiflags & TH_FIN)) &&
   2891 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2892 		/*
   2893 		 * Insert segment ti into reassembly queue of tcp with
   2894 		 * control block tp.  Return TH_FIN if reassembly now includes
   2895 		 * a segment with FIN.  The macro form does the common case
   2896 		 * inline (segment is the next to be received on an
   2897 		 * established connection, and the queue is empty),
   2898 		 * avoiding linkage into and removal from the queue and
   2899 		 * repetition of various conversions.
   2900 		 * Set DELACK for segments received in order, but ack
   2901 		 * immediately when segments are out of order
   2902 		 * (so fast retransmit can work).
   2903 		 */
   2904 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2905 		TCP_REASS_LOCK(tp);
   2906 		if (th->th_seq == tp->rcv_nxt &&
   2907 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2908 		    tp->t_state == TCPS_ESTABLISHED) {
   2909 			tcp_setup_ack(tp, th);
   2910 			tp->rcv_nxt += tlen;
   2911 			tiflags = th->th_flags & TH_FIN;
   2912 			tcps = TCP_STAT_GETREF();
   2913 			tcps[TCP_STAT_RCVPACK]++;
   2914 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2915 			TCP_STAT_PUTREF();
   2916 			nd6_hint(tp);
   2917 			if (so->so_state & SS_CANTRCVMORE)
   2918 				m_freem(m);
   2919 			else {
   2920 				m_adj(m, hdroptlen);
   2921 				sbappendstream(&(so)->so_rcv, m);
   2922 			}
   2923 			TCP_REASS_UNLOCK(tp);
   2924 			sorwakeup(so);
   2925 		} else {
   2926 			m_adj(m, hdroptlen);
   2927 			tiflags = tcp_reass(tp, th, m, &tlen);
   2928 			tp->t_flags |= TF_ACKNOW;
   2929 		}
   2930 
   2931 		/*
   2932 		 * Note the amount of data that peer has sent into
   2933 		 * our window, in order to estimate the sender's
   2934 		 * buffer size.
   2935 		 */
   2936 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2937 	} else {
   2938 		m_freem(m);
   2939 		m = NULL;
   2940 		tiflags &= ~TH_FIN;
   2941 	}
   2942 
   2943 	/*
   2944 	 * If FIN is received ACK the FIN and let the user know
   2945 	 * that the connection is closing.  Ignore a FIN received before
   2946 	 * the connection is fully established.
   2947 	 */
   2948 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2949 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2950 			socantrcvmore(so);
   2951 			tp->t_flags |= TF_ACKNOW;
   2952 			tp->rcv_nxt++;
   2953 		}
   2954 		switch (tp->t_state) {
   2955 
   2956 	 	/*
   2957 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2958 		 */
   2959 		case TCPS_ESTABLISHED:
   2960 			tp->t_state = TCPS_CLOSE_WAIT;
   2961 			break;
   2962 
   2963 	 	/*
   2964 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2965 		 * enter the CLOSING state.
   2966 		 */
   2967 		case TCPS_FIN_WAIT_1:
   2968 			tp->t_state = TCPS_CLOSING;
   2969 			break;
   2970 
   2971 	 	/*
   2972 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2973 		 * starting the time-wait timer, turning off the other
   2974 		 * standard timers.
   2975 		 */
   2976 		case TCPS_FIN_WAIT_2:
   2977 			tp->t_state = TCPS_TIME_WAIT;
   2978 			tcp_canceltimers(tp);
   2979 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2980 			soisdisconnected(so);
   2981 			break;
   2982 
   2983 		/*
   2984 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2985 		 */
   2986 		case TCPS_TIME_WAIT:
   2987 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2988 			break;
   2989 		}
   2990 	}
   2991 #ifdef TCP_DEBUG
   2992 	if (so->so_options & SO_DEBUG)
   2993 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2994 #endif
   2995 
   2996 	/*
   2997 	 * Return any desired output.
   2998 	 */
   2999 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   3000 		KERNEL_LOCK(1, NULL);
   3001 		(void) tcp_output(tp);
   3002 		KERNEL_UNLOCK_ONE(NULL);
   3003 	}
   3004 	if (tcp_saveti)
   3005 		m_freem(tcp_saveti);
   3006 
   3007 	if (tp->t_state == TCPS_TIME_WAIT
   3008 	    && (so->so_state & SS_NOFDREF)
   3009 	    && (tp->t_inpcb || af != AF_INET)
   3010 	    && (tp->t_in6pcb || af != AF_INET6)
   3011 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   3012 	    && TAILQ_EMPTY(&tp->segq)
   3013 	    && vtw_add(af, tp)) {
   3014 		;
   3015 	}
   3016 	return;
   3017 
   3018 badsyn:
   3019 	/*
   3020 	 * Received a bad SYN.  Increment counters and dropwithreset.
   3021 	 */
   3022 	TCP_STATINC(TCP_STAT_BADSYN);
   3023 	tp = NULL;
   3024 	goto dropwithreset;
   3025 
   3026 dropafterack:
   3027 	/*
   3028 	 * Generate an ACK dropping incoming segment if it occupies
   3029 	 * sequence space, where the ACK reflects our state.
   3030 	 */
   3031 	if (tiflags & TH_RST)
   3032 		goto drop;
   3033 	goto dropafterack2;
   3034 
   3035 dropafterack_ratelim:
   3036 	/*
   3037 	 * We may want to rate-limit ACKs against SYN/RST attack.
   3038 	 */
   3039 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   3040 	    tcp_ackdrop_ppslim) == 0) {
   3041 		/* XXX stat */
   3042 		goto drop;
   3043 	}
   3044 	/* ...fall into dropafterack2... */
   3045 
   3046 dropafterack2:
   3047 	m_freem(m);
   3048 	tp->t_flags |= TF_ACKNOW;
   3049 	KERNEL_LOCK(1, NULL);
   3050 	(void) tcp_output(tp);
   3051 	KERNEL_UNLOCK_ONE(NULL);
   3052 	if (tcp_saveti)
   3053 		m_freem(tcp_saveti);
   3054 	return;
   3055 
   3056 dropwithreset_ratelim:
   3057 	/*
   3058 	 * We may want to rate-limit RSTs in certain situations,
   3059 	 * particularly if we are sending an RST in response to
   3060 	 * an attempt to connect to or otherwise communicate with
   3061 	 * a port for which we have no socket.
   3062 	 */
   3063 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   3064 	    tcp_rst_ppslim) == 0) {
   3065 		/* XXX stat */
   3066 		goto drop;
   3067 	}
   3068 	/* ...fall into dropwithreset... */
   3069 
   3070 dropwithreset:
   3071 	/*
   3072 	 * Generate a RST, dropping incoming segment.
   3073 	 * Make ACK acceptable to originator of segment.
   3074 	 */
   3075 	if (tiflags & TH_RST)
   3076 		goto drop;
   3077 
   3078 	switch (af) {
   3079 #ifdef INET6
   3080 	case AF_INET6:
   3081 		/* For following calls to tcp_respond */
   3082 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   3083 			goto drop;
   3084 		break;
   3085 #endif /* INET6 */
   3086 	case AF_INET:
   3087 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   3088 		    in_broadcast(ip->ip_dst, m->m_pkthdr.rcvif))
   3089 			goto drop;
   3090 	}
   3091 
   3092 	if (tiflags & TH_ACK)
   3093 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3094 	else {
   3095 		if (tiflags & TH_SYN)
   3096 			tlen++;
   3097 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3098 		    TH_RST|TH_ACK);
   3099 	}
   3100 	if (tcp_saveti)
   3101 		m_freem(tcp_saveti);
   3102 	return;
   3103 
   3104 badcsum:
   3105 drop:
   3106 	/*
   3107 	 * Drop space held by incoming segment and return.
   3108 	 */
   3109 	if (tp) {
   3110 		if (tp->t_inpcb)
   3111 			so = tp->t_inpcb->inp_socket;
   3112 #ifdef INET6
   3113 		else if (tp->t_in6pcb)
   3114 			so = tp->t_in6pcb->in6p_socket;
   3115 #endif
   3116 		else
   3117 			so = NULL;
   3118 #ifdef TCP_DEBUG
   3119 		if (so && (so->so_options & SO_DEBUG) != 0)
   3120 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3121 #endif
   3122 	}
   3123 	if (tcp_saveti)
   3124 		m_freem(tcp_saveti);
   3125 	m_freem(m);
   3126 	return;
   3127 }
   3128 
   3129 #ifdef TCP_SIGNATURE
   3130 int
   3131 tcp_signature_apply(void *fstate, void *data, u_int len)
   3132 {
   3133 
   3134 	MD5Update(fstate, (u_char *)data, len);
   3135 	return (0);
   3136 }
   3137 
   3138 struct secasvar *
   3139 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   3140 {
   3141 	struct ip *ip;
   3142 	struct ip6_hdr *ip6;
   3143 
   3144 	ip = mtod(m, struct ip *);
   3145 	switch (ip->ip_v) {
   3146 	case 4:
   3147 		ip = mtod(m, struct ip *);
   3148 		ip6 = NULL;
   3149 		break;
   3150 	case 6:
   3151 		ip = NULL;
   3152 		ip6 = mtod(m, struct ip6_hdr *);
   3153 		break;
   3154 	default:
   3155 		return (NULL);
   3156 	}
   3157 
   3158 #ifdef IPSEC
   3159 	if (ipsec_used) {
   3160 		union sockaddr_union dst;
   3161 		/* Extract the destination from the IP header in the mbuf. */
   3162 		memset(&dst, 0, sizeof(union sockaddr_union));
   3163 		if (ip != NULL) {
   3164 			dst.sa.sa_len = sizeof(struct sockaddr_in);
   3165 			dst.sa.sa_family = AF_INET;
   3166 			dst.sin.sin_addr = ip->ip_dst;
   3167 		} else {
   3168 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3169 			dst.sa.sa_family = AF_INET6;
   3170 			dst.sin6.sin6_addr = ip6->ip6_dst;
   3171 		}
   3172 
   3173 		/*
   3174 		 * Look up an SADB entry which matches the address of the peer.
   3175 		 */
   3176 		return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3177 	}
   3178 	return NULL;
   3179 #else
   3180 	if (ip)
   3181 		return key_allocsa(AF_INET, (void *)&ip->ip_src,
   3182 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   3183 		    htonl(TCP_SIG_SPI), 0, 0);
   3184 	else
   3185 		return key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   3186 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   3187 		    htonl(TCP_SIG_SPI), 0, 0);
   3188 #endif
   3189 }
   3190 
   3191 int
   3192 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3193     struct secasvar *sav, char *sig)
   3194 {
   3195 	MD5_CTX ctx;
   3196 	struct ip *ip;
   3197 	struct ipovly *ipovly;
   3198 #ifdef INET6
   3199 	struct ip6_hdr *ip6;
   3200 	struct ip6_hdr_pseudo ip6pseudo;
   3201 #endif /* INET6 */
   3202 	struct ippseudo ippseudo;
   3203 	struct tcphdr th0;
   3204 	int l, tcphdrlen;
   3205 
   3206 	if (sav == NULL)
   3207 		return (-1);
   3208 
   3209 	tcphdrlen = th->th_off * 4;
   3210 
   3211 	switch (mtod(m, struct ip *)->ip_v) {
   3212 	case 4:
   3213 		MD5Init(&ctx);
   3214 		ip = mtod(m, struct ip *);
   3215 		memset(&ippseudo, 0, sizeof(ippseudo));
   3216 		ipovly = (struct ipovly *)ip;
   3217 		ippseudo.ippseudo_src = ipovly->ih_src;
   3218 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3219 		ippseudo.ippseudo_pad = 0;
   3220 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3221 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3222 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3223 		break;
   3224 #if INET6
   3225 	case 6:
   3226 		MD5Init(&ctx);
   3227 		ip6 = mtod(m, struct ip6_hdr *);
   3228 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3229 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3230 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3231 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3232 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3233 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3234 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3235 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3236 		break;
   3237 #endif /* INET6 */
   3238 	default:
   3239 		return (-1);
   3240 	}
   3241 
   3242 	th0 = *th;
   3243 	th0.th_sum = 0;
   3244 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3245 
   3246 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3247 	if (l > 0)
   3248 		m_apply(m, thoff + tcphdrlen,
   3249 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3250 		    tcp_signature_apply, &ctx);
   3251 
   3252 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3253 	MD5Final(sig, &ctx);
   3254 
   3255 	return (0);
   3256 }
   3257 #endif
   3258 
   3259 /*
   3260  * tcp_dooptions: parse and process tcp options.
   3261  *
   3262  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3263  * otherwise returns 0.
   3264  */
   3265 
   3266 static int
   3267 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3268     struct tcphdr *th,
   3269     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3270 {
   3271 	u_int16_t mss;
   3272 	int opt, optlen = 0;
   3273 #ifdef TCP_SIGNATURE
   3274 	void *sigp = NULL;
   3275 	char sigbuf[TCP_SIGLEN];
   3276 	struct secasvar *sav = NULL;
   3277 #endif
   3278 
   3279 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3280 		opt = cp[0];
   3281 		if (opt == TCPOPT_EOL)
   3282 			break;
   3283 		if (opt == TCPOPT_NOP)
   3284 			optlen = 1;
   3285 		else {
   3286 			if (cnt < 2)
   3287 				break;
   3288 			optlen = cp[1];
   3289 			if (optlen < 2 || optlen > cnt)
   3290 				break;
   3291 		}
   3292 		switch (opt) {
   3293 
   3294 		default:
   3295 			continue;
   3296 
   3297 		case TCPOPT_MAXSEG:
   3298 			if (optlen != TCPOLEN_MAXSEG)
   3299 				continue;
   3300 			if (!(th->th_flags & TH_SYN))
   3301 				continue;
   3302 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3303 				continue;
   3304 			bcopy(cp + 2, &mss, sizeof(mss));
   3305 			oi->maxseg = ntohs(mss);
   3306 			break;
   3307 
   3308 		case TCPOPT_WINDOW:
   3309 			if (optlen != TCPOLEN_WINDOW)
   3310 				continue;
   3311 			if (!(th->th_flags & TH_SYN))
   3312 				continue;
   3313 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3314 				continue;
   3315 			tp->t_flags |= TF_RCVD_SCALE;
   3316 			tp->requested_s_scale = cp[2];
   3317 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3318 				char buf[INET6_ADDRSTRLEN];
   3319 				struct ip *ip = mtod(m, struct ip *);
   3320 #ifdef INET6
   3321 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3322 #endif
   3323 				if (ip)
   3324 					in_print(buf, sizeof(buf),
   3325 					    &ip->ip_src);
   3326 #ifdef INET6
   3327 				else if (ip6)
   3328 					in6_print(buf, sizeof(buf),
   3329 					    &ip6->ip6_src);
   3330 #endif
   3331 				else
   3332 					strlcpy(buf, "(unknown)", sizeof(buf));
   3333 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3334 				    "assuming %d\n",
   3335 				    tp->requested_s_scale, buf,
   3336 				    TCP_MAX_WINSHIFT);
   3337 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3338 			}
   3339 			break;
   3340 
   3341 		case TCPOPT_TIMESTAMP:
   3342 			if (optlen != TCPOLEN_TIMESTAMP)
   3343 				continue;
   3344 			oi->ts_present = 1;
   3345 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3346 			NTOHL(oi->ts_val);
   3347 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3348 			NTOHL(oi->ts_ecr);
   3349 
   3350 			if (!(th->th_flags & TH_SYN))
   3351 				continue;
   3352 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3353 				continue;
   3354 			/*
   3355 			 * A timestamp received in a SYN makes
   3356 			 * it ok to send timestamp requests and replies.
   3357 			 */
   3358 			tp->t_flags |= TF_RCVD_TSTMP;
   3359 			tp->ts_recent = oi->ts_val;
   3360 			tp->ts_recent_age = tcp_now;
   3361                         break;
   3362 
   3363 		case TCPOPT_SACK_PERMITTED:
   3364 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3365 				continue;
   3366 			if (!(th->th_flags & TH_SYN))
   3367 				continue;
   3368 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3369 				continue;
   3370 			if (tcp_do_sack) {
   3371 				tp->t_flags |= TF_SACK_PERMIT;
   3372 				tp->t_flags |= TF_WILL_SACK;
   3373 			}
   3374 			break;
   3375 
   3376 		case TCPOPT_SACK:
   3377 			tcp_sack_option(tp, th, cp, optlen);
   3378 			break;
   3379 #ifdef TCP_SIGNATURE
   3380 		case TCPOPT_SIGNATURE:
   3381 			if (optlen != TCPOLEN_SIGNATURE)
   3382 				continue;
   3383 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3384 				return (-1);
   3385 
   3386 			sigp = sigbuf;
   3387 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3388 			tp->t_flags |= TF_SIGNATURE;
   3389 			break;
   3390 #endif
   3391 		}
   3392 	}
   3393 
   3394 #ifndef TCP_SIGNATURE
   3395 	return 0;
   3396 #else
   3397 	if (tp->t_flags & TF_SIGNATURE) {
   3398 
   3399 		sav = tcp_signature_getsav(m, th);
   3400 
   3401 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3402 			return (-1);
   3403 	}
   3404 
   3405 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3406 		goto out;
   3407 
   3408 	if (sigp) {
   3409 		char sig[TCP_SIGLEN];
   3410 
   3411 		tcp_fields_to_net(th);
   3412 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3413 			tcp_fields_to_host(th);
   3414 			goto out;
   3415 		}
   3416 		tcp_fields_to_host(th);
   3417 
   3418 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3419 			TCP_STATINC(TCP_STAT_BADSIG);
   3420 			goto out;
   3421 		} else
   3422 			TCP_STATINC(TCP_STAT_GOODSIG);
   3423 
   3424 		key_sa_recordxfer(sav, m);
   3425 		KEY_FREESAV(&sav);
   3426 	}
   3427 	return 0;
   3428 out:
   3429 	if (sav != NULL)
   3430 		KEY_FREESAV(&sav);
   3431 	return -1;
   3432 #endif
   3433 }
   3434 
   3435 /*
   3436  * Pull out of band byte out of a segment so
   3437  * it doesn't appear in the user's data queue.
   3438  * It is still reflected in the segment length for
   3439  * sequencing purposes.
   3440  */
   3441 void
   3442 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3443     struct mbuf *m, int off)
   3444 {
   3445 	int cnt = off + th->th_urp - 1;
   3446 
   3447 	while (cnt >= 0) {
   3448 		if (m->m_len > cnt) {
   3449 			char *cp = mtod(m, char *) + cnt;
   3450 			struct tcpcb *tp = sototcpcb(so);
   3451 
   3452 			tp->t_iobc = *cp;
   3453 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3454 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3455 			m->m_len--;
   3456 			return;
   3457 		}
   3458 		cnt -= m->m_len;
   3459 		m = m->m_next;
   3460 		if (m == 0)
   3461 			break;
   3462 	}
   3463 	panic("tcp_pulloutofband");
   3464 }
   3465 
   3466 /*
   3467  * Collect new round-trip time estimate
   3468  * and update averages and current timeout.
   3469  *
   3470  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3471  * difference of two timestamps.
   3472  */
   3473 void
   3474 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3475 {
   3476 	int32_t delta;
   3477 
   3478 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3479 	if (tp->t_srtt != 0) {
   3480 		/*
   3481 		 * Compute the amount to add to srtt for smoothing,
   3482 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3483 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3484 		 * shift left 5 bits, subtract srtt to get the
   3485 		 * diference, and then shift right by TCP_RTT_SHIFT
   3486 		 * (3) to obtain 1/8 of the difference.
   3487 		 */
   3488 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3489 		/*
   3490 		 * This can never happen, because delta's lowest
   3491 		 * possible value is 1/8 of t_srtt.  But if it does,
   3492 		 * set srtt to some reasonable value, here chosen
   3493 		 * as 1/8 tick.
   3494 		 */
   3495 		if ((tp->t_srtt += delta) <= 0)
   3496 			tp->t_srtt = 1 << 2;
   3497 		/*
   3498 		 * RFC2988 requires that rttvar be updated first.
   3499 		 * This code is compliant because "delta" is the old
   3500 		 * srtt minus the new observation (scaled).
   3501 		 *
   3502 		 * RFC2988 says:
   3503 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3504 		 *
   3505 		 * delta is in units of 1/32 ticks, and has then been
   3506 		 * divided by 8.  This is equivalent to being in 1/16s
   3507 		 * units and divided by 4.  Subtract from it 1/4 of
   3508 		 * the existing rttvar to form the (signed) amount to
   3509 		 * adjust.
   3510 		 */
   3511 		if (delta < 0)
   3512 			delta = -delta;
   3513 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3514 		/*
   3515 		 * As with srtt, this should never happen.  There is
   3516 		 * no support in RFC2988 for this operation.  But 1/4s
   3517 		 * as rttvar when faced with something arguably wrong
   3518 		 * is ok.
   3519 		 */
   3520 		if ((tp->t_rttvar += delta) <= 0)
   3521 			tp->t_rttvar = 1 << 2;
   3522 
   3523 		/*
   3524 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3525 		 * Problem is: it doesn't work.  Disabled by defaulting
   3526 		 * tcp_rttlocal to 0; see corresponding code in
   3527 		 * tcp_subr that selects local vs remote in a different way.
   3528 		 *
   3529 		 * The static branch prediction hint here should be removed
   3530 		 * when the rtt estimator is fixed and the rtt_enable code
   3531 		 * is turned back on.
   3532 		 */
   3533 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3534 		    && tp->t_srtt > tcp_msl_remote_threshold
   3535 		    && tp->t_msl  < tcp_msl_remote) {
   3536 			tp->t_msl = tcp_msl_remote;
   3537 		}
   3538 	} else {
   3539 		/*
   3540 		 * This is the first measurement.  Per RFC2988, 2.2,
   3541 		 * set rtt=R and srtt=R/2.
   3542 		 * For srtt, storage representation is 1/32 ticks,
   3543 		 * so shift left by 5.
   3544 		 * For rttvar, storage representation is 1/16 ticks,
   3545 		 * So shift left by 4, but then right by 1 to halve.
   3546 		 */
   3547 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3548 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3549 	}
   3550 	tp->t_rtttime = 0;
   3551 	tp->t_rxtshift = 0;
   3552 
   3553 	/*
   3554 	 * the retransmit should happen at rtt + 4 * rttvar.
   3555 	 * Because of the way we do the smoothing, srtt and rttvar
   3556 	 * will each average +1/2 tick of bias.  When we compute
   3557 	 * the retransmit timer, we want 1/2 tick of rounding and
   3558 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3559 	 * firing of the timer.  The bias will give us exactly the
   3560 	 * 1.5 tick we need.  But, because the bias is
   3561 	 * statistical, we have to test that we don't drop below
   3562 	 * the minimum feasible timer (which is 2 ticks).
   3563 	 */
   3564 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3565 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3566 
   3567 	/*
   3568 	 * We received an ack for a packet that wasn't retransmitted;
   3569 	 * it is probably safe to discard any error indications we've
   3570 	 * received recently.  This isn't quite right, but close enough
   3571 	 * for now (a route might have failed after we sent a segment,
   3572 	 * and the return path might not be symmetrical).
   3573 	 */
   3574 	tp->t_softerror = 0;
   3575 }
   3576 
   3577 
   3578 /*
   3579  * TCP compressed state engine.  Currently used to hold compressed
   3580  * state for SYN_RECEIVED.
   3581  */
   3582 
   3583 u_long	syn_cache_count;
   3584 u_int32_t syn_hash1, syn_hash2;
   3585 
   3586 #define SYN_HASH(sa, sp, dp) \
   3587 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3588 				     ((u_int32_t)(sp)))^syn_hash2)))
   3589 #ifndef INET6
   3590 #define	SYN_HASHALL(hash, src, dst) \
   3591 do {									\
   3592 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3593 		((const struct sockaddr_in *)(src))->sin_port,		\
   3594 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3595 } while (/*CONSTCOND*/ 0)
   3596 #else
   3597 #define SYN_HASH6(sa, sp, dp) \
   3598 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3599 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3600 	 & 0x7fffffff)
   3601 
   3602 #define SYN_HASHALL(hash, src, dst) \
   3603 do {									\
   3604 	switch ((src)->sa_family) {					\
   3605 	case AF_INET:							\
   3606 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3607 			((const struct sockaddr_in *)(src))->sin_port,	\
   3608 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3609 		break;							\
   3610 	case AF_INET6:							\
   3611 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3612 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3613 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3614 		break;							\
   3615 	default:							\
   3616 		hash = 0;						\
   3617 	}								\
   3618 } while (/*CONSTCOND*/0)
   3619 #endif /* INET6 */
   3620 
   3621 static struct pool syn_cache_pool;
   3622 
   3623 /*
   3624  * We don't estimate RTT with SYNs, so each packet starts with the default
   3625  * RTT and each timer step has a fixed timeout value.
   3626  */
   3627 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3628 do {									\
   3629 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3630 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3631 	    TCPTV_REXMTMAX);						\
   3632 	callout_reset(&(sc)->sc_timer,					\
   3633 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3634 } while (/*CONSTCOND*/0)
   3635 
   3636 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3637 
   3638 static inline void
   3639 syn_cache_rm(struct syn_cache *sc)
   3640 {
   3641 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3642 	    sc, sc_bucketq);
   3643 	sc->sc_tp = NULL;
   3644 	LIST_REMOVE(sc, sc_tpq);
   3645 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3646 	callout_stop(&sc->sc_timer);
   3647 	syn_cache_count--;
   3648 }
   3649 
   3650 static inline void
   3651 syn_cache_put(struct syn_cache *sc)
   3652 {
   3653 	if (sc->sc_ipopts)
   3654 		(void) m_free(sc->sc_ipopts);
   3655 	rtcache_free(&sc->sc_route);
   3656 	sc->sc_flags |= SCF_DEAD;
   3657 	if (!callout_invoking(&sc->sc_timer))
   3658 		callout_schedule(&(sc)->sc_timer, 1);
   3659 }
   3660 
   3661 void
   3662 syn_cache_init(void)
   3663 {
   3664 	int i;
   3665 
   3666 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3667 	    "synpl", NULL, IPL_SOFTNET);
   3668 
   3669 	/* Initialize the hash buckets. */
   3670 	for (i = 0; i < tcp_syn_cache_size; i++)
   3671 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3672 }
   3673 
   3674 void
   3675 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3676 {
   3677 	struct syn_cache_head *scp;
   3678 	struct syn_cache *sc2;
   3679 	int s;
   3680 
   3681 	/*
   3682 	 * If there are no entries in the hash table, reinitialize
   3683 	 * the hash secrets.
   3684 	 */
   3685 	if (syn_cache_count == 0) {
   3686 		syn_hash1 = cprng_fast32();
   3687 		syn_hash2 = cprng_fast32();
   3688 	}
   3689 
   3690 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3691 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3692 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3693 
   3694 	/*
   3695 	 * Make sure that we don't overflow the per-bucket
   3696 	 * limit or the total cache size limit.
   3697 	 */
   3698 	s = splsoftnet();
   3699 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3700 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3701 		/*
   3702 		 * The bucket is full.  Toss the oldest element in the
   3703 		 * bucket.  This will be the first entry in the bucket.
   3704 		 */
   3705 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3706 #ifdef DIAGNOSTIC
   3707 		/*
   3708 		 * This should never happen; we should always find an
   3709 		 * entry in our bucket.
   3710 		 */
   3711 		if (sc2 == NULL)
   3712 			panic("syn_cache_insert: bucketoverflow: impossible");
   3713 #endif
   3714 		syn_cache_rm(sc2);
   3715 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3716 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3717 		struct syn_cache_head *scp2, *sce;
   3718 
   3719 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3720 		/*
   3721 		 * The cache is full.  Toss the oldest entry in the
   3722 		 * first non-empty bucket we can find.
   3723 		 *
   3724 		 * XXX We would really like to toss the oldest
   3725 		 * entry in the cache, but we hope that this
   3726 		 * condition doesn't happen very often.
   3727 		 */
   3728 		scp2 = scp;
   3729 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3730 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3731 			for (++scp2; scp2 != scp; scp2++) {
   3732 				if (scp2 >= sce)
   3733 					scp2 = &tcp_syn_cache[0];
   3734 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3735 					break;
   3736 			}
   3737 #ifdef DIAGNOSTIC
   3738 			/*
   3739 			 * This should never happen; we should always find a
   3740 			 * non-empty bucket.
   3741 			 */
   3742 			if (scp2 == scp)
   3743 				panic("syn_cache_insert: cacheoverflow: "
   3744 				    "impossible");
   3745 #endif
   3746 		}
   3747 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3748 		syn_cache_rm(sc2);
   3749 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3750 	}
   3751 
   3752 	/*
   3753 	 * Initialize the entry's timer.
   3754 	 */
   3755 	sc->sc_rxttot = 0;
   3756 	sc->sc_rxtshift = 0;
   3757 	SYN_CACHE_TIMER_ARM(sc);
   3758 
   3759 	/* Link it from tcpcb entry */
   3760 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3761 
   3762 	/* Put it into the bucket. */
   3763 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3764 	scp->sch_length++;
   3765 	syn_cache_count++;
   3766 
   3767 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3768 	splx(s);
   3769 }
   3770 
   3771 /*
   3772  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3773  * If we have retransmitted an entry the maximum number of times, expire
   3774  * that entry.
   3775  */
   3776 void
   3777 syn_cache_timer(void *arg)
   3778 {
   3779 	struct syn_cache *sc = arg;
   3780 
   3781 	mutex_enter(softnet_lock);
   3782 	KERNEL_LOCK(1, NULL);
   3783 	callout_ack(&sc->sc_timer);
   3784 
   3785 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3786 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3787 		callout_destroy(&sc->sc_timer);
   3788 		pool_put(&syn_cache_pool, sc);
   3789 		KERNEL_UNLOCK_ONE(NULL);
   3790 		mutex_exit(softnet_lock);
   3791 		return;
   3792 	}
   3793 
   3794 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3795 		/* Drop it -- too many retransmissions. */
   3796 		goto dropit;
   3797 	}
   3798 
   3799 	/*
   3800 	 * Compute the total amount of time this entry has
   3801 	 * been on a queue.  If this entry has been on longer
   3802 	 * than the keep alive timer would allow, expire it.
   3803 	 */
   3804 	sc->sc_rxttot += sc->sc_rxtcur;
   3805 	if (sc->sc_rxttot >= tcp_keepinit)
   3806 		goto dropit;
   3807 
   3808 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3809 	(void) syn_cache_respond(sc, NULL);
   3810 
   3811 	/* Advance the timer back-off. */
   3812 	sc->sc_rxtshift++;
   3813 	SYN_CACHE_TIMER_ARM(sc);
   3814 
   3815 	KERNEL_UNLOCK_ONE(NULL);
   3816 	mutex_exit(softnet_lock);
   3817 	return;
   3818 
   3819  dropit:
   3820 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3821 	syn_cache_rm(sc);
   3822 	if (sc->sc_ipopts)
   3823 		(void) m_free(sc->sc_ipopts);
   3824 	rtcache_free(&sc->sc_route);
   3825 	callout_destroy(&sc->sc_timer);
   3826 	pool_put(&syn_cache_pool, sc);
   3827 	KERNEL_UNLOCK_ONE(NULL);
   3828 	mutex_exit(softnet_lock);
   3829 }
   3830 
   3831 /*
   3832  * Remove syn cache created by the specified tcb entry,
   3833  * because this does not make sense to keep them
   3834  * (if there's no tcb entry, syn cache entry will never be used)
   3835  */
   3836 void
   3837 syn_cache_cleanup(struct tcpcb *tp)
   3838 {
   3839 	struct syn_cache *sc, *nsc;
   3840 	int s;
   3841 
   3842 	s = splsoftnet();
   3843 
   3844 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3845 		nsc = LIST_NEXT(sc, sc_tpq);
   3846 
   3847 #ifdef DIAGNOSTIC
   3848 		if (sc->sc_tp != tp)
   3849 			panic("invalid sc_tp in syn_cache_cleanup");
   3850 #endif
   3851 		syn_cache_rm(sc);
   3852 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3853 	}
   3854 	/* just for safety */
   3855 	LIST_INIT(&tp->t_sc);
   3856 
   3857 	splx(s);
   3858 }
   3859 
   3860 /*
   3861  * Find an entry in the syn cache.
   3862  */
   3863 struct syn_cache *
   3864 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3865     struct syn_cache_head **headp)
   3866 {
   3867 	struct syn_cache *sc;
   3868 	struct syn_cache_head *scp;
   3869 	u_int32_t hash;
   3870 	int s;
   3871 
   3872 	SYN_HASHALL(hash, src, dst);
   3873 
   3874 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3875 	*headp = scp;
   3876 	s = splsoftnet();
   3877 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3878 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3879 		if (sc->sc_hash != hash)
   3880 			continue;
   3881 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3882 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3883 			splx(s);
   3884 			return (sc);
   3885 		}
   3886 	}
   3887 	splx(s);
   3888 	return (NULL);
   3889 }
   3890 
   3891 /*
   3892  * This function gets called when we receive an ACK for a
   3893  * socket in the LISTEN state.  We look up the connection
   3894  * in the syn cache, and if its there, we pull it out of
   3895  * the cache and turn it into a full-blown connection in
   3896  * the SYN-RECEIVED state.
   3897  *
   3898  * The return values may not be immediately obvious, and their effects
   3899  * can be subtle, so here they are:
   3900  *
   3901  *	NULL	SYN was not found in cache; caller should drop the
   3902  *		packet and send an RST.
   3903  *
   3904  *	-1	We were unable to create the new connection, and are
   3905  *		aborting it.  An ACK,RST is being sent to the peer
   3906  *		(unless we got screwey sequence numbners; see below),
   3907  *		because the 3-way handshake has been completed.  Caller
   3908  *		should not free the mbuf, since we may be using it.  If
   3909  *		we are not, we will free it.
   3910  *
   3911  *	Otherwise, the return value is a pointer to the new socket
   3912  *	associated with the connection.
   3913  */
   3914 struct socket *
   3915 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3916     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3917     struct socket *so, struct mbuf *m)
   3918 {
   3919 	struct syn_cache *sc;
   3920 	struct syn_cache_head *scp;
   3921 	struct inpcb *inp = NULL;
   3922 #ifdef INET6
   3923 	struct in6pcb *in6p = NULL;
   3924 #endif
   3925 	struct tcpcb *tp = 0;
   3926 	int s;
   3927 	struct socket *oso;
   3928 
   3929 	s = splsoftnet();
   3930 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3931 		splx(s);
   3932 		return (NULL);
   3933 	}
   3934 
   3935 	/*
   3936 	 * Verify the sequence and ack numbers.  Try getting the correct
   3937 	 * response again.
   3938 	 */
   3939 	if ((th->th_ack != sc->sc_iss + 1) ||
   3940 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3941 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3942 		(void) syn_cache_respond(sc, m);
   3943 		splx(s);
   3944 		return ((struct socket *)(-1));
   3945 	}
   3946 
   3947 	/* Remove this cache entry */
   3948 	syn_cache_rm(sc);
   3949 	splx(s);
   3950 
   3951 	/*
   3952 	 * Ok, create the full blown connection, and set things up
   3953 	 * as they would have been set up if we had created the
   3954 	 * connection when the SYN arrived.  If we can't create
   3955 	 * the connection, abort it.
   3956 	 */
   3957 	/*
   3958 	 * inp still has the OLD in_pcb stuff, set the
   3959 	 * v6-related flags on the new guy, too.   This is
   3960 	 * done particularly for the case where an AF_INET6
   3961 	 * socket is bound only to a port, and a v4 connection
   3962 	 * comes in on that port.
   3963 	 * we also copy the flowinfo from the original pcb
   3964 	 * to the new one.
   3965 	 */
   3966 	oso = so;
   3967 	so = sonewconn(so, true);
   3968 	if (so == NULL)
   3969 		goto resetandabort;
   3970 
   3971 	switch (so->so_proto->pr_domain->dom_family) {
   3972 #ifdef INET
   3973 	case AF_INET:
   3974 		inp = sotoinpcb(so);
   3975 		break;
   3976 #endif
   3977 #ifdef INET6
   3978 	case AF_INET6:
   3979 		in6p = sotoin6pcb(so);
   3980 		break;
   3981 #endif
   3982 	}
   3983 	switch (src->sa_family) {
   3984 #ifdef INET
   3985 	case AF_INET:
   3986 		if (inp) {
   3987 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3988 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3989 			inp->inp_options = ip_srcroute();
   3990 			in_pcbstate(inp, INP_BOUND);
   3991 			if (inp->inp_options == NULL) {
   3992 				inp->inp_options = sc->sc_ipopts;
   3993 				sc->sc_ipopts = NULL;
   3994 			}
   3995 		}
   3996 #ifdef INET6
   3997 		else if (in6p) {
   3998 			/* IPv4 packet to AF_INET6 socket */
   3999 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   4000 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   4001 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   4002 				&in6p->in6p_laddr.s6_addr32[3],
   4003 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   4004 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   4005 			in6totcpcb(in6p)->t_family = AF_INET;
   4006 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   4007 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   4008 			else
   4009 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   4010 			in6_pcbstate(in6p, IN6P_BOUND);
   4011 		}
   4012 #endif
   4013 		break;
   4014 #endif
   4015 #ifdef INET6
   4016 	case AF_INET6:
   4017 		if (in6p) {
   4018 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   4019 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   4020 			in6_pcbstate(in6p, IN6P_BOUND);
   4021 		}
   4022 		break;
   4023 #endif
   4024 	}
   4025 #ifdef INET6
   4026 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   4027 		struct in6pcb *oin6p = sotoin6pcb(oso);
   4028 		/* inherit socket options from the listening socket */
   4029 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   4030 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   4031 			m_freem(in6p->in6p_options);
   4032 			in6p->in6p_options = 0;
   4033 		}
   4034 		ip6_savecontrol(in6p, &in6p->in6p_options,
   4035 			mtod(m, struct ip6_hdr *), m);
   4036 	}
   4037 #endif
   4038 
   4039 #if defined(IPSEC)
   4040 	if (ipsec_used) {
   4041 		/*
   4042 		 * we make a copy of policy, instead of sharing the policy, for
   4043 		 * better behavior in terms of SA lookup and dead SA removal.
   4044 		 */
   4045 		if (inp) {
   4046 			/* copy old policy into new socket's */
   4047 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
   4048 			    inp->inp_sp))
   4049 				printf("tcp_input: could not copy policy\n");
   4050 		}
   4051 #ifdef INET6
   4052 		else if (in6p) {
   4053 			/* copy old policy into new socket's */
   4054 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   4055 			    in6p->in6p_sp))
   4056 				printf("tcp_input: could not copy policy\n");
   4057 		}
   4058 #endif
   4059 	}
   4060 #endif
   4061 
   4062 	/*
   4063 	 * Give the new socket our cached route reference.
   4064 	 */
   4065 	if (inp) {
   4066 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   4067 		rtcache_free(&sc->sc_route);
   4068 	}
   4069 #ifdef INET6
   4070 	else {
   4071 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   4072 		rtcache_free(&sc->sc_route);
   4073 	}
   4074 #endif
   4075 
   4076 	if (inp) {
   4077 		struct sockaddr_in sin;
   4078 		memcpy(&sin, src, src->sa_len);
   4079 		if (in_pcbconnect(inp, &sin, &lwp0)) {
   4080 			goto resetandabort;
   4081 		}
   4082 	}
   4083 #ifdef INET6
   4084 	else if (in6p) {
   4085 		struct sockaddr_in6 sin6;
   4086 		memcpy(&sin6, src, src->sa_len);
   4087 		if (src->sa_family == AF_INET) {
   4088 			/* IPv4 packet to AF_INET6 socket */
   4089 			memset(&sin6, 0, sizeof(sin6));
   4090 			sin6.sin6_family = AF_INET6;
   4091 			sin6.sin6_len = sizeof(sin6);
   4092 			sin6.sin6_port = ((struct sockaddr_in *)src)->sin_port;
   4093 			sin6.sin6_addr.s6_addr16[5] = htons(0xffff);
   4094 			bcopy(&((struct sockaddr_in *)src)->sin_addr,
   4095 				&sin6.sin6_addr.s6_addr32[3],
   4096 				sizeof(sin6.sin6_addr.s6_addr32[3]));
   4097 		}
   4098 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
   4099 			goto resetandabort;
   4100 		}
   4101 	}
   4102 #endif
   4103 	else {
   4104 		goto resetandabort;
   4105 	}
   4106 
   4107 	if (inp)
   4108 		tp = intotcpcb(inp);
   4109 #ifdef INET6
   4110 	else if (in6p)
   4111 		tp = in6totcpcb(in6p);
   4112 #endif
   4113 	else
   4114 		tp = NULL;
   4115 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   4116 	if (sc->sc_request_r_scale != 15) {
   4117 		tp->requested_s_scale = sc->sc_requested_s_scale;
   4118 		tp->request_r_scale = sc->sc_request_r_scale;
   4119 		tp->snd_scale = sc->sc_requested_s_scale;
   4120 		tp->rcv_scale = sc->sc_request_r_scale;
   4121 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   4122 	}
   4123 	if (sc->sc_flags & SCF_TIMESTAMP)
   4124 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   4125 	tp->ts_timebase = sc->sc_timebase;
   4126 
   4127 	tp->t_template = tcp_template(tp);
   4128 	if (tp->t_template == 0) {
   4129 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   4130 		so = NULL;
   4131 		m_freem(m);
   4132 		goto abort;
   4133 	}
   4134 
   4135 	tp->iss = sc->sc_iss;
   4136 	tp->irs = sc->sc_irs;
   4137 	tcp_sendseqinit(tp);
   4138 	tcp_rcvseqinit(tp);
   4139 	tp->t_state = TCPS_SYN_RECEIVED;
   4140 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4141 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4142 
   4143 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4144 		tp->t_flags |= TF_WILL_SACK;
   4145 
   4146 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4147 		tp->t_flags |= TF_ECN_PERMIT;
   4148 
   4149 #ifdef TCP_SIGNATURE
   4150 	if (sc->sc_flags & SCF_SIGNATURE)
   4151 		tp->t_flags |= TF_SIGNATURE;
   4152 #endif
   4153 
   4154 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4155 	tp->t_ourmss = sc->sc_ourmaxseg;
   4156 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4157 
   4158 	/*
   4159 	 * Initialize the initial congestion window.  If we
   4160 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4161 	 * to 1 segment (i.e. the Loss Window).
   4162 	 */
   4163 	if (sc->sc_rxtshift)
   4164 		tp->snd_cwnd = tp->t_peermss;
   4165 	else {
   4166 		int ss = tcp_init_win;
   4167 #ifdef INET
   4168 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4169 			ss = tcp_init_win_local;
   4170 #endif
   4171 #ifdef INET6
   4172 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4173 			ss = tcp_init_win_local;
   4174 #endif
   4175 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4176 	}
   4177 
   4178 	tcp_rmx_rtt(tp);
   4179 	tp->snd_wl1 = sc->sc_irs;
   4180 	tp->rcv_up = sc->sc_irs + 1;
   4181 
   4182 	/*
   4183 	 * This is what whould have happened in tcp_output() when
   4184 	 * the SYN,ACK was sent.
   4185 	 */
   4186 	tp->snd_up = tp->snd_una;
   4187 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4188 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4189 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4190 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4191 	tp->last_ack_sent = tp->rcv_nxt;
   4192 	tp->t_partialacks = -1;
   4193 	tp->t_dupacks = 0;
   4194 
   4195 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4196 	s = splsoftnet();
   4197 	syn_cache_put(sc);
   4198 	splx(s);
   4199 	return (so);
   4200 
   4201 resetandabort:
   4202 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4203 abort:
   4204 	if (so != NULL) {
   4205 		(void) soqremque(so, 1);
   4206 		(void) soabort(so);
   4207 		mutex_enter(softnet_lock);
   4208 	}
   4209 	s = splsoftnet();
   4210 	syn_cache_put(sc);
   4211 	splx(s);
   4212 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4213 	return ((struct socket *)(-1));
   4214 }
   4215 
   4216 /*
   4217  * This function is called when we get a RST for a
   4218  * non-existent connection, so that we can see if the
   4219  * connection is in the syn cache.  If it is, zap it.
   4220  */
   4221 
   4222 void
   4223 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4224 {
   4225 	struct syn_cache *sc;
   4226 	struct syn_cache_head *scp;
   4227 	int s = splsoftnet();
   4228 
   4229 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4230 		splx(s);
   4231 		return;
   4232 	}
   4233 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4234 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4235 		splx(s);
   4236 		return;
   4237 	}
   4238 	syn_cache_rm(sc);
   4239 	TCP_STATINC(TCP_STAT_SC_RESET);
   4240 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4241 	splx(s);
   4242 }
   4243 
   4244 void
   4245 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4246     struct tcphdr *th)
   4247 {
   4248 	struct syn_cache *sc;
   4249 	struct syn_cache_head *scp;
   4250 	int s;
   4251 
   4252 	s = splsoftnet();
   4253 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4254 		splx(s);
   4255 		return;
   4256 	}
   4257 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4258 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4259 		splx(s);
   4260 		return;
   4261 	}
   4262 
   4263 	/*
   4264 	 * If we've retransmitted 3 times and this is our second error,
   4265 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4266 	 * This prevents us from incorrectly nuking an entry during a
   4267 	 * spurious network outage.
   4268 	 *
   4269 	 * See tcp_notify().
   4270 	 */
   4271 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4272 		sc->sc_flags |= SCF_UNREACH;
   4273 		splx(s);
   4274 		return;
   4275 	}
   4276 
   4277 	syn_cache_rm(sc);
   4278 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4279 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4280 	splx(s);
   4281 }
   4282 
   4283 /*
   4284  * Given a LISTEN socket and an inbound SYN request, add
   4285  * this to the syn cache, and send back a segment:
   4286  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4287  * to the source.
   4288  *
   4289  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4290  * Doing so would require that we hold onto the data and deliver it
   4291  * to the application.  However, if we are the target of a SYN-flood
   4292  * DoS attack, an attacker could send data which would eventually
   4293  * consume all available buffer space if it were ACKed.  By not ACKing
   4294  * the data, we avoid this DoS scenario.
   4295  */
   4296 
   4297 int
   4298 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4299     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4300     int optlen, struct tcp_opt_info *oi)
   4301 {
   4302 	struct tcpcb tb, *tp;
   4303 	long win;
   4304 	struct syn_cache *sc;
   4305 	struct syn_cache_head *scp;
   4306 	struct mbuf *ipopts;
   4307 	struct tcp_opt_info opti;
   4308 	int s;
   4309 
   4310 	tp = sototcpcb(so);
   4311 
   4312 	memset(&opti, 0, sizeof(opti));
   4313 
   4314 	/*
   4315 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4316 	 *
   4317 	 * Note this check is performed in tcp_input() very early on.
   4318 	 */
   4319 
   4320 	/*
   4321 	 * Initialize some local state.
   4322 	 */
   4323 	win = sbspace(&so->so_rcv);
   4324 	if (win > TCP_MAXWIN)
   4325 		win = TCP_MAXWIN;
   4326 
   4327 	switch (src->sa_family) {
   4328 #ifdef INET
   4329 	case AF_INET:
   4330 		/*
   4331 		 * Remember the IP options, if any.
   4332 		 */
   4333 		ipopts = ip_srcroute();
   4334 		break;
   4335 #endif
   4336 	default:
   4337 		ipopts = NULL;
   4338 	}
   4339 
   4340 #ifdef TCP_SIGNATURE
   4341 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4342 #else
   4343 	if (optp)
   4344 #endif
   4345 	{
   4346 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4347 #ifdef TCP_SIGNATURE
   4348 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4349 #endif
   4350 		tb.t_state = TCPS_LISTEN;
   4351 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4352 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4353 			return (0);
   4354 	} else
   4355 		tb.t_flags = 0;
   4356 
   4357 	/*
   4358 	 * See if we already have an entry for this connection.
   4359 	 * If we do, resend the SYN,ACK.  We do not count this
   4360 	 * as a retransmission (XXX though maybe we should).
   4361 	 */
   4362 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4363 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4364 		if (ipopts) {
   4365 			/*
   4366 			 * If we were remembering a previous source route,
   4367 			 * forget it and use the new one we've been given.
   4368 			 */
   4369 			if (sc->sc_ipopts)
   4370 				(void) m_free(sc->sc_ipopts);
   4371 			sc->sc_ipopts = ipopts;
   4372 		}
   4373 		sc->sc_timestamp = tb.ts_recent;
   4374 		if (syn_cache_respond(sc, m) == 0) {
   4375 			uint64_t *tcps = TCP_STAT_GETREF();
   4376 			tcps[TCP_STAT_SNDACKS]++;
   4377 			tcps[TCP_STAT_SNDTOTAL]++;
   4378 			TCP_STAT_PUTREF();
   4379 		}
   4380 		return (1);
   4381 	}
   4382 
   4383 	s = splsoftnet();
   4384 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4385 	splx(s);
   4386 	if (sc == NULL) {
   4387 		if (ipopts)
   4388 			(void) m_free(ipopts);
   4389 		return (0);
   4390 	}
   4391 
   4392 	/*
   4393 	 * Fill in the cache, and put the necessary IP and TCP
   4394 	 * options into the reply.
   4395 	 */
   4396 	memset(sc, 0, sizeof(struct syn_cache));
   4397 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4398 	bcopy(src, &sc->sc_src, src->sa_len);
   4399 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4400 	sc->sc_flags = 0;
   4401 	sc->sc_ipopts = ipopts;
   4402 	sc->sc_irs = th->th_seq;
   4403 	switch (src->sa_family) {
   4404 #ifdef INET
   4405 	case AF_INET:
   4406 	    {
   4407 		struct sockaddr_in *srcin = (void *) src;
   4408 		struct sockaddr_in *dstin = (void *) dst;
   4409 
   4410 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4411 		    &srcin->sin_addr, dstin->sin_port,
   4412 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4413 		break;
   4414 	    }
   4415 #endif /* INET */
   4416 #ifdef INET6
   4417 	case AF_INET6:
   4418 	    {
   4419 		struct sockaddr_in6 *srcin6 = (void *) src;
   4420 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4421 
   4422 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4423 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4424 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4425 		break;
   4426 	    }
   4427 #endif /* INET6 */
   4428 	}
   4429 	sc->sc_peermaxseg = oi->maxseg;
   4430 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4431 						m->m_pkthdr.rcvif : NULL,
   4432 						sc->sc_src.sa.sa_family);
   4433 	sc->sc_win = win;
   4434 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4435 	sc->sc_timestamp = tb.ts_recent;
   4436 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4437 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4438 		sc->sc_flags |= SCF_TIMESTAMP;
   4439 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4440 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4441 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4442 		sc->sc_request_r_scale = 0;
   4443 		/*
   4444 		 * Pick the smallest possible scaling factor that
   4445 		 * will still allow us to scale up to sb_max.
   4446 		 *
   4447 		 * We do this because there are broken firewalls that
   4448 		 * will corrupt the window scale option, leading to
   4449 		 * the other endpoint believing that our advertised
   4450 		 * window is unscaled.  At scale factors larger than
   4451 		 * 5 the unscaled window will drop below 1500 bytes,
   4452 		 * leading to serious problems when traversing these
   4453 		 * broken firewalls.
   4454 		 *
   4455 		 * With the default sbmax of 256K, a scale factor
   4456 		 * of 3 will be chosen by this algorithm.  Those who
   4457 		 * choose a larger sbmax should watch out
   4458 		 * for the compatiblity problems mentioned above.
   4459 		 *
   4460 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4461 		 * or <SYN,ACK>) segment itself is never scaled.
   4462 		 */
   4463 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4464 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4465 			sc->sc_request_r_scale++;
   4466 	} else {
   4467 		sc->sc_requested_s_scale = 15;
   4468 		sc->sc_request_r_scale = 15;
   4469 	}
   4470 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4471 		sc->sc_flags |= SCF_SACK_PERMIT;
   4472 
   4473 	/*
   4474 	 * ECN setup packet recieved.
   4475 	 */
   4476 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4477 		sc->sc_flags |= SCF_ECN_PERMIT;
   4478 
   4479 #ifdef TCP_SIGNATURE
   4480 	if (tb.t_flags & TF_SIGNATURE)
   4481 		sc->sc_flags |= SCF_SIGNATURE;
   4482 #endif
   4483 	sc->sc_tp = tp;
   4484 	if (syn_cache_respond(sc, m) == 0) {
   4485 		uint64_t *tcps = TCP_STAT_GETREF();
   4486 		tcps[TCP_STAT_SNDACKS]++;
   4487 		tcps[TCP_STAT_SNDTOTAL]++;
   4488 		TCP_STAT_PUTREF();
   4489 		syn_cache_insert(sc, tp);
   4490 	} else {
   4491 		s = splsoftnet();
   4492 		/*
   4493 		 * syn_cache_put() will try to schedule the timer, so
   4494 		 * we need to initialize it
   4495 		 */
   4496 		SYN_CACHE_TIMER_ARM(sc);
   4497 		syn_cache_put(sc);
   4498 		splx(s);
   4499 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4500 	}
   4501 	return (1);
   4502 }
   4503 
   4504 /*
   4505  * syn_cache_respond: (re)send SYN+ACK.
   4506  *
   4507  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
   4508  */
   4509 
   4510 int
   4511 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4512 {
   4513 #ifdef INET6
   4514 	struct rtentry *rt;
   4515 #endif
   4516 	struct route *ro;
   4517 	u_int8_t *optp;
   4518 	int optlen, error;
   4519 	u_int16_t tlen;
   4520 	struct ip *ip = NULL;
   4521 #ifdef INET6
   4522 	struct ip6_hdr *ip6 = NULL;
   4523 #endif
   4524 	struct tcpcb *tp = NULL;
   4525 	struct tcphdr *th;
   4526 	u_int hlen;
   4527 	struct socket *so;
   4528 
   4529 	ro = &sc->sc_route;
   4530 	switch (sc->sc_src.sa.sa_family) {
   4531 	case AF_INET:
   4532 		hlen = sizeof(struct ip);
   4533 		break;
   4534 #ifdef INET6
   4535 	case AF_INET6:
   4536 		hlen = sizeof(struct ip6_hdr);
   4537 		break;
   4538 #endif
   4539 	default:
   4540 		if (m)
   4541 			m_freem(m);
   4542 		return (EAFNOSUPPORT);
   4543 	}
   4544 
   4545 	/* Compute the size of the TCP options. */
   4546 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4547 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4548 #ifdef TCP_SIGNATURE
   4549 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4550 #endif
   4551 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4552 
   4553 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4554 
   4555 	/*
   4556 	 * Create the IP+TCP header from scratch.
   4557 	 */
   4558 	if (m)
   4559 		m_freem(m);
   4560 #ifdef DIAGNOSTIC
   4561 	if (max_linkhdr + tlen > MCLBYTES)
   4562 		return (ENOBUFS);
   4563 #endif
   4564 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4565 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4566 		MCLGET(m, M_DONTWAIT);
   4567 		if ((m->m_flags & M_EXT) == 0) {
   4568 			m_freem(m);
   4569 			m = NULL;
   4570 		}
   4571 	}
   4572 	if (m == NULL)
   4573 		return (ENOBUFS);
   4574 	MCLAIM(m, &tcp_tx_mowner);
   4575 
   4576 	/* Fixup the mbuf. */
   4577 	m->m_data += max_linkhdr;
   4578 	m->m_len = m->m_pkthdr.len = tlen;
   4579 	if (sc->sc_tp) {
   4580 		tp = sc->sc_tp;
   4581 		if (tp->t_inpcb)
   4582 			so = tp->t_inpcb->inp_socket;
   4583 #ifdef INET6
   4584 		else if (tp->t_in6pcb)
   4585 			so = tp->t_in6pcb->in6p_socket;
   4586 #endif
   4587 		else
   4588 			so = NULL;
   4589 	} else
   4590 		so = NULL;
   4591 	m->m_pkthdr.rcvif = NULL;
   4592 	memset(mtod(m, u_char *), 0, tlen);
   4593 
   4594 	switch (sc->sc_src.sa.sa_family) {
   4595 	case AF_INET:
   4596 		ip = mtod(m, struct ip *);
   4597 		ip->ip_v = 4;
   4598 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4599 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4600 		ip->ip_p = IPPROTO_TCP;
   4601 		th = (struct tcphdr *)(ip + 1);
   4602 		th->th_dport = sc->sc_src.sin.sin_port;
   4603 		th->th_sport = sc->sc_dst.sin.sin_port;
   4604 		break;
   4605 #ifdef INET6
   4606 	case AF_INET6:
   4607 		ip6 = mtod(m, struct ip6_hdr *);
   4608 		ip6->ip6_vfc = IPV6_VERSION;
   4609 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4610 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4611 		ip6->ip6_nxt = IPPROTO_TCP;
   4612 		/* ip6_plen will be updated in ip6_output() */
   4613 		th = (struct tcphdr *)(ip6 + 1);
   4614 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4615 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4616 		break;
   4617 #endif
   4618 	default:
   4619 		th = NULL;
   4620 	}
   4621 
   4622 	th->th_seq = htonl(sc->sc_iss);
   4623 	th->th_ack = htonl(sc->sc_irs + 1);
   4624 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4625 	th->th_flags = TH_SYN|TH_ACK;
   4626 	th->th_win = htons(sc->sc_win);
   4627 	/* th_sum already 0 */
   4628 	/* th_urp already 0 */
   4629 
   4630 	/* Tack on the TCP options. */
   4631 	optp = (u_int8_t *)(th + 1);
   4632 	*optp++ = TCPOPT_MAXSEG;
   4633 	*optp++ = 4;
   4634 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4635 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4636 
   4637 	if (sc->sc_request_r_scale != 15) {
   4638 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4639 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4640 		    sc->sc_request_r_scale);
   4641 		optp += 4;
   4642 	}
   4643 
   4644 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4645 		u_int32_t *lp = (u_int32_t *)(optp);
   4646 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4647 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4648 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4649 		*lp   = htonl(sc->sc_timestamp);
   4650 		optp += TCPOLEN_TSTAMP_APPA;
   4651 	}
   4652 
   4653 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4654 		u_int8_t *p = optp;
   4655 
   4656 		/* Let the peer know that we will SACK. */
   4657 		p[0] = TCPOPT_SACK_PERMITTED;
   4658 		p[1] = 2;
   4659 		p[2] = TCPOPT_NOP;
   4660 		p[3] = TCPOPT_NOP;
   4661 		optp += 4;
   4662 	}
   4663 
   4664 	/*
   4665 	 * Send ECN SYN-ACK setup packet.
   4666 	 * Routes can be asymetric, so, even if we receive a packet
   4667 	 * with ECE and CWR set, we must not assume no one will block
   4668 	 * the ECE packet we are about to send.
   4669 	 */
   4670 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4671 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4672 		th->th_flags |= TH_ECE;
   4673 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4674 
   4675 		/*
   4676 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4677 		 *
   4678 		 * "[...] a TCP node MAY respond to an ECN-setup
   4679 		 * SYN packet by setting ECT in the responding
   4680 		 * ECN-setup SYN/ACK packet, indicating to routers
   4681 		 * that the SYN/ACK packet is ECN-Capable.
   4682 		 * This allows a congested router along the path
   4683 		 * to mark the packet instead of dropping the
   4684 		 * packet as an indication of congestion."
   4685 		 *
   4686 		 * "[...] There can be a great benefit in setting
   4687 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4688 		 * Congestion is  most likely to occur in
   4689 		 * the server-to-client direction.  As a result,
   4690 		 * setting an ECN-capable codepoint in SYN/ACK
   4691 		 * packets can reduce the occurence of three-second
   4692 		 * retransmit timeouts resulting from the drop
   4693 		 * of SYN/ACK packets."
   4694 		 *
   4695 		 * Page 4 and 6, January 2006.
   4696 		 */
   4697 
   4698 		switch (sc->sc_src.sa.sa_family) {
   4699 #ifdef INET
   4700 		case AF_INET:
   4701 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4702 			break;
   4703 #endif
   4704 #ifdef INET6
   4705 		case AF_INET6:
   4706 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4707 			break;
   4708 #endif
   4709 		}
   4710 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4711 	}
   4712 
   4713 #ifdef TCP_SIGNATURE
   4714 	if (sc->sc_flags & SCF_SIGNATURE) {
   4715 		struct secasvar *sav;
   4716 		u_int8_t *sigp;
   4717 
   4718 		sav = tcp_signature_getsav(m, th);
   4719 
   4720 		if (sav == NULL) {
   4721 			if (m)
   4722 				m_freem(m);
   4723 			return (EPERM);
   4724 		}
   4725 
   4726 		*optp++ = TCPOPT_SIGNATURE;
   4727 		*optp++ = TCPOLEN_SIGNATURE;
   4728 		sigp = optp;
   4729 		memset(optp, 0, TCP_SIGLEN);
   4730 		optp += TCP_SIGLEN;
   4731 		*optp++ = TCPOPT_NOP;
   4732 		*optp++ = TCPOPT_EOL;
   4733 
   4734 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4735 
   4736 		key_sa_recordxfer(sav, m);
   4737 		KEY_FREESAV(&sav);
   4738 	}
   4739 #endif
   4740 
   4741 	/* Compute the packet's checksum. */
   4742 	switch (sc->sc_src.sa.sa_family) {
   4743 	case AF_INET:
   4744 		ip->ip_len = htons(tlen - hlen);
   4745 		th->th_sum = 0;
   4746 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4747 		break;
   4748 #ifdef INET6
   4749 	case AF_INET6:
   4750 		ip6->ip6_plen = htons(tlen - hlen);
   4751 		th->th_sum = 0;
   4752 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4753 		break;
   4754 #endif
   4755 	}
   4756 
   4757 	/*
   4758 	 * Fill in some straggling IP bits.  Note the stack expects
   4759 	 * ip_len to be in host order, for convenience.
   4760 	 */
   4761 	switch (sc->sc_src.sa.sa_family) {
   4762 #ifdef INET
   4763 	case AF_INET:
   4764 		ip->ip_len = htons(tlen);
   4765 		ip->ip_ttl = ip_defttl;
   4766 		/* XXX tos? */
   4767 		break;
   4768 #endif
   4769 #ifdef INET6
   4770 	case AF_INET6:
   4771 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4772 		ip6->ip6_vfc |= IPV6_VERSION;
   4773 		ip6->ip6_plen = htons(tlen - hlen);
   4774 		/* ip6_hlim will be initialized afterwards */
   4775 		/* XXX flowlabel? */
   4776 		break;
   4777 #endif
   4778 	}
   4779 
   4780 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4781 	tp = sc->sc_tp;
   4782 
   4783 	switch (sc->sc_src.sa.sa_family) {
   4784 #ifdef INET
   4785 	case AF_INET:
   4786 		error = ip_output(m, sc->sc_ipopts, ro,
   4787 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4788 		    NULL, so);
   4789 		break;
   4790 #endif
   4791 #ifdef INET6
   4792 	case AF_INET6:
   4793 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4794 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
   4795 
   4796 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4797 		break;
   4798 #endif
   4799 	default:
   4800 		error = EAFNOSUPPORT;
   4801 		break;
   4802 	}
   4803 	return (error);
   4804 }
   4805