Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.347
      1 /*	$NetBSD: tcp_input.c,v 1.347 2016/06/10 13:31:44 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.347 2016/06/10 13:31:44 ozaki-r Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_inet.h"
    155 #include "opt_ipsec.h"
    156 #include "opt_inet_csum.h"
    157 #include "opt_tcp_debug.h"
    158 #endif
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 #include <sys/lwp.h> /* for lwp0 */
    176 #include <sys/cprng.h>
    177 
    178 #include <net/if.h>
    179 #include <net/if_types.h>
    180 
    181 #include <netinet/in.h>
    182 #include <netinet/in_systm.h>
    183 #include <netinet/ip.h>
    184 #include <netinet/in_pcb.h>
    185 #include <netinet/in_var.h>
    186 #include <netinet/ip_var.h>
    187 #include <netinet/in_offload.h>
    188 
    189 #ifdef INET6
    190 #ifndef INET
    191 #include <netinet/in.h>
    192 #endif
    193 #include <netinet/ip6.h>
    194 #include <netinet6/ip6_var.h>
    195 #include <netinet6/in6_pcb.h>
    196 #include <netinet6/ip6_var.h>
    197 #include <netinet6/in6_var.h>
    198 #include <netinet/icmp6.h>
    199 #include <netinet6/nd6.h>
    200 #ifdef TCP_SIGNATURE
    201 #include <netinet6/scope6_var.h>
    202 #endif
    203 #endif
    204 
    205 #ifndef INET6
    206 /* always need ip6.h for IP6_EXTHDR_GET */
    207 #include <netinet/ip6.h>
    208 #endif
    209 
    210 #include <netinet/tcp.h>
    211 #include <netinet/tcp_fsm.h>
    212 #include <netinet/tcp_seq.h>
    213 #include <netinet/tcp_timer.h>
    214 #include <netinet/tcp_var.h>
    215 #include <netinet/tcp_private.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #ifdef INET6
    221 #include "faith.h"
    222 #if defined(NFAITH) && NFAITH > 0
    223 #include <net/if_faith.h>
    224 #endif
    225 #endif	/* INET6 */
    226 
    227 #ifdef IPSEC
    228 #include <netipsec/ipsec.h>
    229 #include <netipsec/ipsec_var.h>
    230 #include <netipsec/ipsec_private.h>
    231 #include <netipsec/key.h>
    232 #ifdef INET6
    233 #include <netipsec/ipsec6.h>
    234 #endif
    235 #endif	/* IPSEC*/
    236 
    237 #include <netinet/tcp_vtw.h>
    238 
    239 int	tcprexmtthresh = 3;
    240 int	tcp_log_refused;
    241 
    242 int	tcp_do_autorcvbuf = 1;
    243 int	tcp_autorcvbuf_inc = 16 * 1024;
    244 int	tcp_autorcvbuf_max = 256 * 1024;
    245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    246 
    247 static int tcp_rst_ppslim_count = 0;
    248 static struct timeval tcp_rst_ppslim_last;
    249 static int tcp_ackdrop_ppslim_count = 0;
    250 static struct timeval tcp_ackdrop_ppslim_last;
    251 
    252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    253 
    254 /* for modulo comparisons of timestamps */
    255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    257 
    258 /*
    259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    260  */
    261 #ifdef INET6
    262 static inline void
    263 nd6_hint(struct tcpcb *tp)
    264 {
    265 	struct rtentry *rt;
    266 
    267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    269 		nd6_nud_hint(rt);
    270 }
    271 #else
    272 static inline void
    273 nd6_hint(struct tcpcb *tp)
    274 {
    275 }
    276 #endif
    277 
    278 /*
    279  * Compute ACK transmission behavior.  Delay the ACK unless
    280  * we have already delayed an ACK (must send an ACK every two segments).
    281  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    282  * option is enabled.
    283  */
    284 static void
    285 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    286 {
    287 
    288 	if (tp->t_flags & TF_DELACK ||
    289 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    290 		tp->t_flags |= TF_ACKNOW;
    291 	else
    292 		TCP_SET_DELACK(tp);
    293 }
    294 
    295 static void
    296 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    297 {
    298 
    299 	/*
    300 	 * If we had a pending ICMP message that refers to data that have
    301 	 * just been acknowledged, disregard the recorded ICMP message.
    302 	 */
    303 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    304 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    305 		tp->t_flags &= ~TF_PMTUD_PEND;
    306 
    307 	/*
    308 	 * Keep track of the largest chunk of data
    309 	 * acknowledged since last PMTU update
    310 	 */
    311 	if (tp->t_pmtud_mss_acked < acked)
    312 		tp->t_pmtud_mss_acked = acked;
    313 }
    314 
    315 /*
    316  * Convert TCP protocol fields to host order for easier processing.
    317  */
    318 static void
    319 tcp_fields_to_host(struct tcphdr *th)
    320 {
    321 
    322 	NTOHL(th->th_seq);
    323 	NTOHL(th->th_ack);
    324 	NTOHS(th->th_win);
    325 	NTOHS(th->th_urp);
    326 }
    327 
    328 /*
    329  * ... and reverse the above.
    330  */
    331 static void
    332 tcp_fields_to_net(struct tcphdr *th)
    333 {
    334 
    335 	HTONL(th->th_seq);
    336 	HTONL(th->th_ack);
    337 	HTONS(th->th_win);
    338 	HTONS(th->th_urp);
    339 }
    340 
    341 #ifdef TCP_CSUM_COUNTERS
    342 #include <sys/device.h>
    343 
    344 #if defined(INET)
    345 extern struct evcnt tcp_hwcsum_ok;
    346 extern struct evcnt tcp_hwcsum_bad;
    347 extern struct evcnt tcp_hwcsum_data;
    348 extern struct evcnt tcp_swcsum;
    349 #endif /* defined(INET) */
    350 #if defined(INET6)
    351 extern struct evcnt tcp6_hwcsum_ok;
    352 extern struct evcnt tcp6_hwcsum_bad;
    353 extern struct evcnt tcp6_hwcsum_data;
    354 extern struct evcnt tcp6_swcsum;
    355 #endif /* defined(INET6) */
    356 
    357 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    358 
    359 #else
    360 
    361 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    362 
    363 #endif /* TCP_CSUM_COUNTERS */
    364 
    365 #ifdef TCP_REASS_COUNTERS
    366 #include <sys/device.h>
    367 
    368 extern struct evcnt tcp_reass_;
    369 extern struct evcnt tcp_reass_empty;
    370 extern struct evcnt tcp_reass_iteration[8];
    371 extern struct evcnt tcp_reass_prependfirst;
    372 extern struct evcnt tcp_reass_prepend;
    373 extern struct evcnt tcp_reass_insert;
    374 extern struct evcnt tcp_reass_inserttail;
    375 extern struct evcnt tcp_reass_append;
    376 extern struct evcnt tcp_reass_appendtail;
    377 extern struct evcnt tcp_reass_overlaptail;
    378 extern struct evcnt tcp_reass_overlapfront;
    379 extern struct evcnt tcp_reass_segdup;
    380 extern struct evcnt tcp_reass_fragdup;
    381 
    382 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    383 
    384 #else
    385 
    386 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    387 
    388 #endif /* TCP_REASS_COUNTERS */
    389 
    390 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    391     int *);
    392 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    393     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    394 
    395 #ifdef INET
    396 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    397 #endif
    398 #ifdef INET6
    399 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    400 #endif
    401 
    402 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    403 
    404 #if defined(MBUFTRACE)
    405 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    406 #endif /* defined(MBUFTRACE) */
    407 
    408 static struct pool tcpipqent_pool;
    409 
    410 void
    411 tcpipqent_init(void)
    412 {
    413 
    414 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    415 	    NULL, IPL_VM);
    416 }
    417 
    418 struct ipqent *
    419 tcpipqent_alloc(void)
    420 {
    421 	struct ipqent *ipqe;
    422 	int s;
    423 
    424 	s = splvm();
    425 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    426 	splx(s);
    427 
    428 	return ipqe;
    429 }
    430 
    431 void
    432 tcpipqent_free(struct ipqent *ipqe)
    433 {
    434 	int s;
    435 
    436 	s = splvm();
    437 	pool_put(&tcpipqent_pool, ipqe);
    438 	splx(s);
    439 }
    440 
    441 static int
    442 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    443 {
    444 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    445 	struct socket *so = NULL;
    446 	int pkt_flags;
    447 	tcp_seq pkt_seq;
    448 	unsigned pkt_len;
    449 	u_long rcvpartdupbyte = 0;
    450 	u_long rcvoobyte;
    451 #ifdef TCP_REASS_COUNTERS
    452 	u_int count = 0;
    453 #endif
    454 	uint64_t *tcps;
    455 
    456 	if (tp->t_inpcb)
    457 		so = tp->t_inpcb->inp_socket;
    458 #ifdef INET6
    459 	else if (tp->t_in6pcb)
    460 		so = tp->t_in6pcb->in6p_socket;
    461 #endif
    462 
    463 	TCP_REASS_LOCK_CHECK(tp);
    464 
    465 	/*
    466 	 * Call with th==0 after become established to
    467 	 * force pre-ESTABLISHED data up to user socket.
    468 	 */
    469 	if (th == 0)
    470 		goto present;
    471 
    472 	m_claimm(m, &tcp_reass_mowner);
    473 
    474 	rcvoobyte = *tlen;
    475 	/*
    476 	 * Copy these to local variables because the tcpiphdr
    477 	 * gets munged while we are collapsing mbufs.
    478 	 */
    479 	pkt_seq = th->th_seq;
    480 	pkt_len = *tlen;
    481 	pkt_flags = th->th_flags;
    482 
    483 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    484 
    485 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    486 		/*
    487 		 * When we miss a packet, the vast majority of time we get
    488 		 * packets that follow it in order.  So optimize for that.
    489 		 */
    490 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    491 			p->ipqe_len += pkt_len;
    492 			p->ipqe_flags |= pkt_flags;
    493 			m_cat(p->ipre_mlast, m);
    494 			TRAVERSE(p->ipre_mlast);
    495 			m = NULL;
    496 			tiqe = p;
    497 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    498 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    499 			goto skip_replacement;
    500 		}
    501 		/*
    502 		 * While we're here, if the pkt is completely beyond
    503 		 * anything we have, just insert it at the tail.
    504 		 */
    505 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    506 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    507 			goto insert_it;
    508 		}
    509 	}
    510 
    511 	q = TAILQ_FIRST(&tp->segq);
    512 
    513 	if (q != NULL) {
    514 		/*
    515 		 * If this segment immediately precedes the first out-of-order
    516 		 * block, simply slap the segment in front of it and (mostly)
    517 		 * skip the complicated logic.
    518 		 */
    519 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    520 			q->ipqe_seq = pkt_seq;
    521 			q->ipqe_len += pkt_len;
    522 			q->ipqe_flags |= pkt_flags;
    523 			m_cat(m, q->ipqe_m);
    524 			q->ipqe_m = m;
    525 			q->ipre_mlast = m; /* last mbuf may have changed */
    526 			TRAVERSE(q->ipre_mlast);
    527 			tiqe = q;
    528 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    529 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    530 			goto skip_replacement;
    531 		}
    532 	} else {
    533 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    534 	}
    535 
    536 	/*
    537 	 * Find a segment which begins after this one does.
    538 	 */
    539 	for (p = NULL; q != NULL; q = nq) {
    540 		nq = TAILQ_NEXT(q, ipqe_q);
    541 #ifdef TCP_REASS_COUNTERS
    542 		count++;
    543 #endif
    544 		/*
    545 		 * If the received segment is just right after this
    546 		 * fragment, merge the two together and then check
    547 		 * for further overlaps.
    548 		 */
    549 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    550 #ifdef TCPREASS_DEBUG
    551 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    552 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    553 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    554 #endif
    555 			pkt_len += q->ipqe_len;
    556 			pkt_flags |= q->ipqe_flags;
    557 			pkt_seq = q->ipqe_seq;
    558 			m_cat(q->ipre_mlast, m);
    559 			TRAVERSE(q->ipre_mlast);
    560 			m = q->ipqe_m;
    561 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    562 			goto free_ipqe;
    563 		}
    564 		/*
    565 		 * If the received segment is completely past this
    566 		 * fragment, we need to go the next fragment.
    567 		 */
    568 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    569 			p = q;
    570 			continue;
    571 		}
    572 		/*
    573 		 * If the fragment is past the received segment,
    574 		 * it (or any following) can't be concatenated.
    575 		 */
    576 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    577 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    578 			break;
    579 		}
    580 
    581 		/*
    582 		 * We've received all the data in this segment before.
    583 		 * mark it as a duplicate and return.
    584 		 */
    585 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    586 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    587 			tcps = TCP_STAT_GETREF();
    588 			tcps[TCP_STAT_RCVDUPPACK]++;
    589 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    590 			TCP_STAT_PUTREF();
    591 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    592 			m_freem(m);
    593 			if (tiqe != NULL) {
    594 				tcpipqent_free(tiqe);
    595 			}
    596 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    597 			goto out;
    598 		}
    599 		/*
    600 		 * Received segment completely overlaps this fragment
    601 		 * so we drop the fragment (this keeps the temporal
    602 		 * ordering of segments correct).
    603 		 */
    604 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    605 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    606 			rcvpartdupbyte += q->ipqe_len;
    607 			m_freem(q->ipqe_m);
    608 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    609 			goto free_ipqe;
    610 		}
    611 		/*
    612 		 * RX'ed segment extends past the end of the
    613 		 * fragment.  Drop the overlapping bytes.  Then
    614 		 * merge the fragment and segment then treat as
    615 		 * a longer received packet.
    616 		 */
    617 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    618 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    619 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    620 #ifdef TCPREASS_DEBUG
    621 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    622 			       tp, overlap,
    623 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    624 #endif
    625 			m_adj(m, overlap);
    626 			rcvpartdupbyte += overlap;
    627 			m_cat(q->ipre_mlast, m);
    628 			TRAVERSE(q->ipre_mlast);
    629 			m = q->ipqe_m;
    630 			pkt_seq = q->ipqe_seq;
    631 			pkt_len += q->ipqe_len - overlap;
    632 			rcvoobyte -= overlap;
    633 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    634 			goto free_ipqe;
    635 		}
    636 		/*
    637 		 * RX'ed segment extends past the front of the
    638 		 * fragment.  Drop the overlapping bytes on the
    639 		 * received packet.  The packet will then be
    640 		 * contatentated with this fragment a bit later.
    641 		 */
    642 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    643 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    644 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    645 #ifdef TCPREASS_DEBUG
    646 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    647 			       tp, overlap,
    648 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    649 #endif
    650 			m_adj(m, -overlap);
    651 			pkt_len -= overlap;
    652 			rcvpartdupbyte += overlap;
    653 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    654 			rcvoobyte -= overlap;
    655 		}
    656 		/*
    657 		 * If the received segment immediates precedes this
    658 		 * fragment then tack the fragment onto this segment
    659 		 * and reinsert the data.
    660 		 */
    661 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    662 #ifdef TCPREASS_DEBUG
    663 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    664 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    665 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    666 #endif
    667 			pkt_len += q->ipqe_len;
    668 			pkt_flags |= q->ipqe_flags;
    669 			m_cat(m, q->ipqe_m);
    670 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    671 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    672 			tp->t_segqlen--;
    673 			KASSERT(tp->t_segqlen >= 0);
    674 			KASSERT(tp->t_segqlen != 0 ||
    675 			    (TAILQ_EMPTY(&tp->segq) &&
    676 			    TAILQ_EMPTY(&tp->timeq)));
    677 			if (tiqe == NULL) {
    678 				tiqe = q;
    679 			} else {
    680 				tcpipqent_free(q);
    681 			}
    682 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    683 			break;
    684 		}
    685 		/*
    686 		 * If the fragment is before the segment, remember it.
    687 		 * When this loop is terminated, p will contain the
    688 		 * pointer to fragment that is right before the received
    689 		 * segment.
    690 		 */
    691 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    692 			p = q;
    693 
    694 		continue;
    695 
    696 		/*
    697 		 * This is a common operation.  It also will allow
    698 		 * to save doing a malloc/free in most instances.
    699 		 */
    700 	  free_ipqe:
    701 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    702 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    703 		tp->t_segqlen--;
    704 		KASSERT(tp->t_segqlen >= 0);
    705 		KASSERT(tp->t_segqlen != 0 ||
    706 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    707 		if (tiqe == NULL) {
    708 			tiqe = q;
    709 		} else {
    710 			tcpipqent_free(q);
    711 		}
    712 	}
    713 
    714 #ifdef TCP_REASS_COUNTERS
    715 	if (count > 7)
    716 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    717 	else if (count > 0)
    718 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    719 #endif
    720 
    721     insert_it:
    722 
    723 	/*
    724 	 * Allocate a new queue entry since the received segment did not
    725 	 * collapse onto any other out-of-order block; thus we are allocating
    726 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    727 	 * we would be reusing it.
    728 	 * XXX If we can't, just drop the packet.  XXX
    729 	 */
    730 	if (tiqe == NULL) {
    731 		tiqe = tcpipqent_alloc();
    732 		if (tiqe == NULL) {
    733 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    734 			m_freem(m);
    735 			goto out;
    736 		}
    737 	}
    738 
    739 	/*
    740 	 * Update the counters.
    741 	 */
    742 	tp->t_rcvoopack++;
    743 	tcps = TCP_STAT_GETREF();
    744 	tcps[TCP_STAT_RCVOOPACK]++;
    745 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    746 	if (rcvpartdupbyte) {
    747 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    748 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    749 	}
    750 	TCP_STAT_PUTREF();
    751 
    752 	/*
    753 	 * Insert the new fragment queue entry into both queues.
    754 	 */
    755 	tiqe->ipqe_m = m;
    756 	tiqe->ipre_mlast = m;
    757 	tiqe->ipqe_seq = pkt_seq;
    758 	tiqe->ipqe_len = pkt_len;
    759 	tiqe->ipqe_flags = pkt_flags;
    760 	if (p == NULL) {
    761 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    762 #ifdef TCPREASS_DEBUG
    763 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    764 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    765 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    766 #endif
    767 	} else {
    768 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    769 #ifdef TCPREASS_DEBUG
    770 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    771 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    772 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    773 #endif
    774 	}
    775 	tp->t_segqlen++;
    776 
    777 skip_replacement:
    778 
    779 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    780 
    781 present:
    782 	/*
    783 	 * Present data to user, advancing rcv_nxt through
    784 	 * completed sequence space.
    785 	 */
    786 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    787 		goto out;
    788 	q = TAILQ_FIRST(&tp->segq);
    789 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    790 		goto out;
    791 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    792 		goto out;
    793 
    794 	tp->rcv_nxt += q->ipqe_len;
    795 	pkt_flags = q->ipqe_flags & TH_FIN;
    796 	nd6_hint(tp);
    797 
    798 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    799 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    800 	tp->t_segqlen--;
    801 	KASSERT(tp->t_segqlen >= 0);
    802 	KASSERT(tp->t_segqlen != 0 ||
    803 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    804 	if (so->so_state & SS_CANTRCVMORE)
    805 		m_freem(q->ipqe_m);
    806 	else
    807 		sbappendstream(&so->so_rcv, q->ipqe_m);
    808 	tcpipqent_free(q);
    809 	TCP_REASS_UNLOCK(tp);
    810 	sorwakeup(so);
    811 	return (pkt_flags);
    812 out:
    813 	TCP_REASS_UNLOCK(tp);
    814 	return (0);
    815 }
    816 
    817 #ifdef INET6
    818 int
    819 tcp6_input(struct mbuf **mp, int *offp, int proto)
    820 {
    821 	struct mbuf *m = *mp;
    822 
    823 	/*
    824 	 * draft-itojun-ipv6-tcp-to-anycast
    825 	 * better place to put this in?
    826 	 */
    827 	if (m->m_flags & M_ANYCAST6) {
    828 		struct ip6_hdr *ip6;
    829 		if (m->m_len < sizeof(struct ip6_hdr)) {
    830 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    831 				TCP_STATINC(TCP_STAT_RCVSHORT);
    832 				return IPPROTO_DONE;
    833 			}
    834 		}
    835 		ip6 = mtod(m, struct ip6_hdr *);
    836 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    837 		    (char *)&ip6->ip6_dst - (char *)ip6);
    838 		return IPPROTO_DONE;
    839 	}
    840 
    841 	tcp_input(m, *offp, proto);
    842 	return IPPROTO_DONE;
    843 }
    844 #endif
    845 
    846 #ifdef INET
    847 static void
    848 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    849 {
    850 	char src[INET_ADDRSTRLEN];
    851 	char dst[INET_ADDRSTRLEN];
    852 
    853 	if (ip) {
    854 		in_print(src, sizeof(src), &ip->ip_src);
    855 		in_print(dst, sizeof(dst), &ip->ip_dst);
    856 	}
    857 	else {
    858 		strlcpy(src, "(unknown)", sizeof(src));
    859 		strlcpy(dst, "(unknown)", sizeof(dst));
    860 	}
    861 	log(LOG_INFO,
    862 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    863 	    dst, ntohs(th->th_dport),
    864 	    src, ntohs(th->th_sport));
    865 }
    866 #endif
    867 
    868 #ifdef INET6
    869 static void
    870 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    871 {
    872 	char src[INET6_ADDRSTRLEN];
    873 	char dst[INET6_ADDRSTRLEN];
    874 
    875 	if (ip6) {
    876 		in6_print(src, sizeof(src), &ip6->ip6_src);
    877 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    878 	}
    879 	else {
    880 		strlcpy(src, "(unknown v6)", sizeof(src));
    881 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    882 	}
    883 	log(LOG_INFO,
    884 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    885 	    dst, ntohs(th->th_dport),
    886 	    src, ntohs(th->th_sport));
    887 }
    888 #endif
    889 
    890 /*
    891  * Checksum extended TCP header and data.
    892  */
    893 int
    894 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    895     int toff, int off, int tlen)
    896 {
    897 	struct ifnet *rcvif;
    898 	int s;
    899 
    900 	/*
    901 	 * XXX it's better to record and check if this mbuf is
    902 	 * already checked.
    903 	 */
    904 
    905 	rcvif = m_get_rcvif(m, &s);
    906 
    907 	switch (af) {
    908 #ifdef INET
    909 	case AF_INET:
    910 		switch (m->m_pkthdr.csum_flags &
    911 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    912 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    913 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    914 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    915 			goto badcsum;
    916 
    917 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    918 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    919 
    920 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    921 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    922 				const struct ip *ip =
    923 				    mtod(m, const struct ip *);
    924 
    925 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    926 				    ip->ip_dst.s_addr,
    927 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    928 			}
    929 			if ((hw_csum ^ 0xffff) != 0)
    930 				goto badcsum;
    931 			break;
    932 		}
    933 
    934 		case M_CSUM_TCPv4:
    935 			/* Checksum was okay. */
    936 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    937 			break;
    938 
    939 		default:
    940 			/*
    941 			 * Must compute it ourselves.  Maybe skip checksum
    942 			 * on loopback interfaces.
    943 			 */
    944 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    945 					   tcp_do_loopback_cksum)) {
    946 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    947 				if (in4_cksum(m, IPPROTO_TCP, toff,
    948 					      tlen + off) != 0)
    949 					goto badcsum;
    950 			}
    951 			break;
    952 		}
    953 		break;
    954 #endif /* INET4 */
    955 
    956 #ifdef INET6
    957 	case AF_INET6:
    958 		switch (m->m_pkthdr.csum_flags &
    959 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    960 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    961 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    962 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    963 			goto badcsum;
    964 
    965 #if 0 /* notyet */
    966 		case M_CSUM_TCPv6|M_CSUM_DATA:
    967 #endif
    968 
    969 		case M_CSUM_TCPv6:
    970 			/* Checksum was okay. */
    971 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    972 			break;
    973 
    974 		default:
    975 			/*
    976 			 * Must compute it ourselves.  Maybe skip checksum
    977 			 * on loopback interfaces.
    978 			 */
    979 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    980 			    tcp_do_loopback_cksum)) {
    981 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    982 				if (in6_cksum(m, IPPROTO_TCP, toff,
    983 				    tlen + off) != 0)
    984 					goto badcsum;
    985 			}
    986 		}
    987 		break;
    988 #endif /* INET6 */
    989 	}
    990 	m_put_rcvif(rcvif, &s);
    991 
    992 	return 0;
    993 
    994 badcsum:
    995 	m_put_rcvif(rcvif, &s);
    996 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    997 	return -1;
    998 }
    999 
   1000 /* When a packet arrives addressed to a vestigial tcpbp, we
   1001  * nevertheless have to respond to it per the spec.
   1002  */
   1003 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
   1004 			  struct mbuf *m, int tlen, int multicast)
   1005 {
   1006 	int		tiflags;
   1007 	int		todrop;
   1008 	uint32_t	t_flags = 0;
   1009 	uint64_t	*tcps;
   1010 
   1011 	tiflags = th->th_flags;
   1012 	todrop  = vp->rcv_nxt - th->th_seq;
   1013 
   1014 	if (todrop > 0) {
   1015 		if (tiflags & TH_SYN) {
   1016 			tiflags &= ~TH_SYN;
   1017 			++th->th_seq;
   1018 			if (th->th_urp > 1)
   1019 				--th->th_urp;
   1020 			else {
   1021 				tiflags &= ~TH_URG;
   1022 				th->th_urp = 0;
   1023 			}
   1024 			--todrop;
   1025 		}
   1026 		if (todrop > tlen ||
   1027 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1028 			/*
   1029 			 * Any valid FIN or RST must be to the left of the
   1030 			 * window.  At this point the FIN or RST must be a
   1031 			 * duplicate or out of sequence; drop it.
   1032 			 */
   1033 			if (tiflags & TH_RST)
   1034 				goto drop;
   1035 			tiflags &= ~(TH_FIN|TH_RST);
   1036 			/*
   1037 			 * Send an ACK to resynchronize and drop any data.
   1038 			 * But keep on processing for RST or ACK.
   1039 			 */
   1040 			t_flags |= TF_ACKNOW;
   1041 			todrop = tlen;
   1042 			tcps = TCP_STAT_GETREF();
   1043 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1044 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1045 			TCP_STAT_PUTREF();
   1046 		} else if ((tiflags & TH_RST)
   1047 			   && th->th_seq != vp->rcv_nxt) {
   1048 			/*
   1049 			 * Test for reset before adjusting the sequence
   1050 			 * number for overlapping data.
   1051 			 */
   1052 			goto dropafterack_ratelim;
   1053 		} else {
   1054 			tcps = TCP_STAT_GETREF();
   1055 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1056 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1057 			TCP_STAT_PUTREF();
   1058 		}
   1059 
   1060 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1061 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1062 
   1063 		th->th_seq += todrop;
   1064 		tlen -= todrop;
   1065 
   1066 		if (th->th_urp > todrop)
   1067 			th->th_urp -= todrop;
   1068 		else {
   1069 			tiflags &= ~TH_URG;
   1070 			th->th_urp = 0;
   1071 		}
   1072 	}
   1073 
   1074 	/*
   1075 	 * If new data are received on a connection after the
   1076 	 * user processes are gone, then RST the other end.
   1077 	 */
   1078 	if (tlen) {
   1079 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1080 		goto dropwithreset;
   1081 	}
   1082 
   1083 	/*
   1084 	 * If segment ends after window, drop trailing data
   1085 	 * (and PUSH and FIN); if nothing left, just ACK.
   1086 	 */
   1087 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
   1088 
   1089 	if (todrop > 0) {
   1090 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1091 		if (todrop >= tlen) {
   1092 			/*
   1093 			 * The segment actually starts after the window.
   1094 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1095 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1096 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1097 			 */
   1098 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1099 			/*
   1100 			 * If a new connection request is received
   1101 			 * while in TIME_WAIT, drop the old connection
   1102 			 * and start over if the sequence numbers
   1103 			 * are above the previous ones.
   1104 			 */
   1105 			if ((tiflags & TH_SYN)
   1106 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1107 				/* We only support this in the !NOFDREF case, which
   1108 				 * is to say: not here.
   1109 				 */
   1110 				goto dropwithreset;
   1111 			}
   1112 			/*
   1113 			 * If window is closed can only take segments at
   1114 			 * window edge, and have to drop data and PUSH from
   1115 			 * incoming segments.  Continue processing, but
   1116 			 * remember to ack.  Otherwise, drop segment
   1117 			 * and (if not RST) ack.
   1118 			 */
   1119 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1120 				t_flags |= TF_ACKNOW;
   1121 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1122 			} else
   1123 				goto dropafterack;
   1124 		} else
   1125 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1126 		m_adj(m, -todrop);
   1127 		tlen -= todrop;
   1128 		tiflags &= ~(TH_PUSH|TH_FIN);
   1129 	}
   1130 
   1131 	if (tiflags & TH_RST) {
   1132 		if (th->th_seq != vp->rcv_nxt)
   1133 			goto dropafterack_ratelim;
   1134 
   1135 		vtw_del(vp->ctl, vp->vtw);
   1136 		goto drop;
   1137 	}
   1138 
   1139 	/*
   1140 	 * If the ACK bit is off we drop the segment and return.
   1141 	 */
   1142 	if ((tiflags & TH_ACK) == 0) {
   1143 		if (t_flags & TF_ACKNOW)
   1144 			goto dropafterack;
   1145 		else
   1146 			goto drop;
   1147 	}
   1148 
   1149 	/*
   1150 	 * In TIME_WAIT state the only thing that should arrive
   1151 	 * is a retransmission of the remote FIN.  Acknowledge
   1152 	 * it and restart the finack timer.
   1153 	 */
   1154 	vtw_restart(vp);
   1155 	goto dropafterack;
   1156 
   1157 dropafterack:
   1158 	/*
   1159 	 * Generate an ACK dropping incoming segment if it occupies
   1160 	 * sequence space, where the ACK reflects our state.
   1161 	 */
   1162 	if (tiflags & TH_RST)
   1163 		goto drop;
   1164 	goto dropafterack2;
   1165 
   1166 dropafterack_ratelim:
   1167 	/*
   1168 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1169 	 */
   1170 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1171 			 tcp_ackdrop_ppslim) == 0) {
   1172 		/* XXX stat */
   1173 		goto drop;
   1174 	}
   1175 	/* ...fall into dropafterack2... */
   1176 
   1177 dropafterack2:
   1178 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
   1179 			  TH_ACK);
   1180 	return;
   1181 
   1182 dropwithreset:
   1183 	/*
   1184 	 * Generate a RST, dropping incoming segment.
   1185 	 * Make ACK acceptable to originator of segment.
   1186 	 */
   1187 	if (tiflags & TH_RST)
   1188 		goto drop;
   1189 
   1190 	if (tiflags & TH_ACK)
   1191 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1192 	else {
   1193 		if (tiflags & TH_SYN)
   1194 			++tlen;
   1195 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1196 				  TH_RST|TH_ACK);
   1197 	}
   1198 	return;
   1199 drop:
   1200 	m_freem(m);
   1201 }
   1202 
   1203 /*
   1204  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1205  */
   1206 void
   1207 tcp_input(struct mbuf *m, ...)
   1208 {
   1209 	struct tcphdr *th;
   1210 	struct ip *ip;
   1211 	struct inpcb *inp;
   1212 #ifdef INET6
   1213 	struct ip6_hdr *ip6;
   1214 	struct in6pcb *in6p;
   1215 #endif
   1216 	u_int8_t *optp = NULL;
   1217 	int optlen = 0;
   1218 	int len, tlen, toff, hdroptlen = 0;
   1219 	struct tcpcb *tp = 0;
   1220 	int tiflags;
   1221 	struct socket *so = NULL;
   1222 	int todrop, acked, ourfinisacked, needoutput = 0;
   1223 	bool dupseg;
   1224 #ifdef TCP_DEBUG
   1225 	short ostate = 0;
   1226 #endif
   1227 	u_long tiwin;
   1228 	struct tcp_opt_info opti;
   1229 	int off, iphlen;
   1230 	va_list ap;
   1231 	int af;		/* af on the wire */
   1232 	struct mbuf *tcp_saveti = NULL;
   1233 	uint32_t ts_rtt;
   1234 	uint8_t iptos;
   1235 	uint64_t *tcps;
   1236 	vestigial_inpcb_t vestige;
   1237 
   1238 	vestige.valid = 0;
   1239 
   1240 	MCLAIM(m, &tcp_rx_mowner);
   1241 	va_start(ap, m);
   1242 	toff = va_arg(ap, int);
   1243 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1244 	va_end(ap);
   1245 
   1246 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1247 
   1248 	memset(&opti, 0, sizeof(opti));
   1249 	opti.ts_present = 0;
   1250 	opti.maxseg = 0;
   1251 
   1252 	/*
   1253 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1254 	 *
   1255 	 * TCP is, by definition, unicast, so we reject all
   1256 	 * multicast outright.
   1257 	 *
   1258 	 * Note, there are additional src/dst address checks in
   1259 	 * the AF-specific code below.
   1260 	 */
   1261 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1262 		/* XXX stat */
   1263 		goto drop;
   1264 	}
   1265 #ifdef INET6
   1266 	if (m->m_flags & M_ANYCAST6) {
   1267 		/* XXX stat */
   1268 		goto drop;
   1269 	}
   1270 #endif
   1271 
   1272 	/*
   1273 	 * Get IP and TCP header.
   1274 	 * Note: IP leaves IP header in first mbuf.
   1275 	 */
   1276 	ip = mtod(m, struct ip *);
   1277 	switch (ip->ip_v) {
   1278 #ifdef INET
   1279 	case 4:
   1280 #ifdef INET6
   1281 		ip6 = NULL;
   1282 #endif
   1283 		af = AF_INET;
   1284 		iphlen = sizeof(struct ip);
   1285 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1286 			sizeof(struct tcphdr));
   1287 		if (th == NULL) {
   1288 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1289 			return;
   1290 		}
   1291 		/* We do the checksum after PCB lookup... */
   1292 		len = ntohs(ip->ip_len);
   1293 		tlen = len - toff;
   1294 		iptos = ip->ip_tos;
   1295 		break;
   1296 #endif
   1297 #ifdef INET6
   1298 	case 6:
   1299 		ip = NULL;
   1300 		iphlen = sizeof(struct ip6_hdr);
   1301 		af = AF_INET6;
   1302 		ip6 = mtod(m, struct ip6_hdr *);
   1303 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1304 			sizeof(struct tcphdr));
   1305 		if (th == NULL) {
   1306 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1307 			return;
   1308 		}
   1309 
   1310 		/* Be proactive about malicious use of IPv4 mapped address */
   1311 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1312 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1313 			/* XXX stat */
   1314 			goto drop;
   1315 		}
   1316 
   1317 		/*
   1318 		 * Be proactive about unspecified IPv6 address in source.
   1319 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1320 		 * unspecified IPv6 address can be used to confuse us.
   1321 		 *
   1322 		 * Note that packets with unspecified IPv6 destination is
   1323 		 * already dropped in ip6_input.
   1324 		 */
   1325 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1326 			/* XXX stat */
   1327 			goto drop;
   1328 		}
   1329 
   1330 		/*
   1331 		 * Make sure destination address is not multicast.
   1332 		 * Source address checked in ip6_input().
   1333 		 */
   1334 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1335 			/* XXX stat */
   1336 			goto drop;
   1337 		}
   1338 
   1339 		/* We do the checksum after PCB lookup... */
   1340 		len = m->m_pkthdr.len;
   1341 		tlen = len - toff;
   1342 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1343 		break;
   1344 #endif
   1345 	default:
   1346 		m_freem(m);
   1347 		return;
   1348 	}
   1349 
   1350 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1351 
   1352 	/*
   1353 	 * Check that TCP offset makes sense,
   1354 	 * pull out TCP options and adjust length.		XXX
   1355 	 */
   1356 	off = th->th_off << 2;
   1357 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1358 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1359 		goto drop;
   1360 	}
   1361 	tlen -= off;
   1362 
   1363 	/*
   1364 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1365 	 * length throughout the function.  Other functions can use
   1366 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1367 	 * rja
   1368 	 */
   1369 
   1370 	if (off > sizeof (struct tcphdr)) {
   1371 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1372 		if (th == NULL) {
   1373 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1374 			return;
   1375 		}
   1376 		/*
   1377 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1378 		 * (as they're before toff) and we don't need to update those.
   1379 		 */
   1380 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1381 		optlen = off - sizeof (struct tcphdr);
   1382 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1383 		/*
   1384 		 * Do quick retrieval of timestamp options ("options
   1385 		 * prediction?").  If timestamp is the only option and it's
   1386 		 * formatted as recommended in RFC 1323 appendix A, we
   1387 		 * quickly get the values now and not bother calling
   1388 		 * tcp_dooptions(), etc.
   1389 		 */
   1390 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1391 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1392 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1393 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1394 		     (th->th_flags & TH_SYN) == 0) {
   1395 			opti.ts_present = 1;
   1396 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1397 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1398 			optp = NULL;	/* we've parsed the options */
   1399 		}
   1400 	}
   1401 	tiflags = th->th_flags;
   1402 
   1403 	/*
   1404 	 * Checksum extended TCP header and data
   1405 	 */
   1406 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1407 		goto badcsum;
   1408 
   1409 	/*
   1410 	 * Locate pcb for segment.
   1411 	 */
   1412 findpcb:
   1413 	inp = NULL;
   1414 #ifdef INET6
   1415 	in6p = NULL;
   1416 #endif
   1417 	switch (af) {
   1418 #ifdef INET
   1419 	case AF_INET:
   1420 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1421 					   ip->ip_dst, th->th_dport,
   1422 					   &vestige);
   1423 		if (inp == 0 && !vestige.valid) {
   1424 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1425 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1426 		}
   1427 #ifdef INET6
   1428 		if (inp == 0 && !vestige.valid) {
   1429 			struct in6_addr s, d;
   1430 
   1431 			/* mapped addr case */
   1432 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1433 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1434 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1435 						     th->th_sport, &d, th->th_dport,
   1436 						     0, &vestige);
   1437 			if (in6p == 0 && !vestige.valid) {
   1438 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1439 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1440 				    th->th_dport, 0);
   1441 			}
   1442 		}
   1443 #endif
   1444 #ifndef INET6
   1445 		if (inp == 0 && !vestige.valid)
   1446 #else
   1447 		if (inp == 0 && in6p == 0 && !vestige.valid)
   1448 #endif
   1449 		{
   1450 			TCP_STATINC(TCP_STAT_NOPORT);
   1451 			if (tcp_log_refused &&
   1452 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1453 				tcp4_log_refused(ip, th);
   1454 			}
   1455 			tcp_fields_to_host(th);
   1456 			goto dropwithreset_ratelim;
   1457 		}
   1458 #if defined(IPSEC)
   1459 		if (ipsec_used) {
   1460 			if (inp &&
   1461 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
   1462 			    && ipsec4_in_reject(m, inp)) {
   1463 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1464 				goto drop;
   1465 			}
   1466 #ifdef INET6
   1467 			else if (in6p &&
   1468 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1469 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1470 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1471 				goto drop;
   1472 			}
   1473 #endif
   1474 		}
   1475 #endif /*IPSEC*/
   1476 		break;
   1477 #endif /*INET*/
   1478 #ifdef INET6
   1479 	case AF_INET6:
   1480 	    {
   1481 		int faith;
   1482 
   1483 #if defined(NFAITH) && NFAITH > 0
   1484 		faith = faithprefix(&ip6->ip6_dst);
   1485 #else
   1486 		faith = 0;
   1487 #endif
   1488 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1489 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1490 		if (!in6p && !vestige.valid) {
   1491 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1492 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1493 				th->th_dport, faith);
   1494 		}
   1495 		if (!in6p && !vestige.valid) {
   1496 			TCP_STATINC(TCP_STAT_NOPORT);
   1497 			if (tcp_log_refused &&
   1498 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1499 				tcp6_log_refused(ip6, th);
   1500 			}
   1501 			tcp_fields_to_host(th);
   1502 			goto dropwithreset_ratelim;
   1503 		}
   1504 #if defined(IPSEC)
   1505 		if (ipsec_used && in6p
   1506 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1507 		    && ipsec6_in_reject(m, in6p)) {
   1508 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1509 			goto drop;
   1510 		}
   1511 #endif /*IPSEC*/
   1512 		break;
   1513 	    }
   1514 #endif
   1515 	}
   1516 
   1517 	/*
   1518 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1519 	 * all data in the incoming segment is discarded.
   1520 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1521 	 * but should either do a listen or a connect soon.
   1522 	 */
   1523 	tp = NULL;
   1524 	so = NULL;
   1525 	if (inp) {
   1526 		/* Check the minimum TTL for socket. */
   1527 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1528 			goto drop;
   1529 
   1530 		tp = intotcpcb(inp);
   1531 		so = inp->inp_socket;
   1532 	}
   1533 #ifdef INET6
   1534 	else if (in6p) {
   1535 		tp = in6totcpcb(in6p);
   1536 		so = in6p->in6p_socket;
   1537 	}
   1538 #endif
   1539 	else if (vestige.valid) {
   1540 		int mc = 0;
   1541 
   1542 		/* We do not support the resurrection of vtw tcpcps.
   1543 		 */
   1544 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1545 			goto badcsum;
   1546 
   1547 		switch (af) {
   1548 #ifdef INET6
   1549 		case AF_INET6:
   1550 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
   1551 			break;
   1552 #endif
   1553 
   1554 		case AF_INET:
   1555 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
   1556 			      || in_broadcast(ip->ip_dst,
   1557 			                      m_get_rcvif_NOMPSAFE(m)));
   1558 			break;
   1559 		}
   1560 
   1561 		tcp_fields_to_host(th);
   1562 		tcp_vtw_input(th, &vestige, m, tlen, mc);
   1563 		m = 0;
   1564 		goto drop;
   1565 	}
   1566 
   1567 	if (tp == 0) {
   1568 		tcp_fields_to_host(th);
   1569 		goto dropwithreset_ratelim;
   1570 	}
   1571 	if (tp->t_state == TCPS_CLOSED)
   1572 		goto drop;
   1573 
   1574 	KASSERT(so->so_lock == softnet_lock);
   1575 	KASSERT(solocked(so));
   1576 
   1577 	tcp_fields_to_host(th);
   1578 
   1579 	/* Unscale the window into a 32-bit value. */
   1580 	if ((tiflags & TH_SYN) == 0)
   1581 		tiwin = th->th_win << tp->snd_scale;
   1582 	else
   1583 		tiwin = th->th_win;
   1584 
   1585 #ifdef INET6
   1586 	/* save packet options if user wanted */
   1587 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1588 		if (in6p->in6p_options) {
   1589 			m_freem(in6p->in6p_options);
   1590 			in6p->in6p_options = 0;
   1591 		}
   1592 		KASSERT(ip6 != NULL);
   1593 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1594 	}
   1595 #endif
   1596 
   1597 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1598 		union syn_cache_sa src;
   1599 		union syn_cache_sa dst;
   1600 
   1601 		memset(&src, 0, sizeof(src));
   1602 		memset(&dst, 0, sizeof(dst));
   1603 		switch (af) {
   1604 #ifdef INET
   1605 		case AF_INET:
   1606 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1607 			src.sin.sin_family = AF_INET;
   1608 			src.sin.sin_addr = ip->ip_src;
   1609 			src.sin.sin_port = th->th_sport;
   1610 
   1611 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1612 			dst.sin.sin_family = AF_INET;
   1613 			dst.sin.sin_addr = ip->ip_dst;
   1614 			dst.sin.sin_port = th->th_dport;
   1615 			break;
   1616 #endif
   1617 #ifdef INET6
   1618 		case AF_INET6:
   1619 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1620 			src.sin6.sin6_family = AF_INET6;
   1621 			src.sin6.sin6_addr = ip6->ip6_src;
   1622 			src.sin6.sin6_port = th->th_sport;
   1623 
   1624 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1625 			dst.sin6.sin6_family = AF_INET6;
   1626 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1627 			dst.sin6.sin6_port = th->th_dport;
   1628 			break;
   1629 #endif /* INET6 */
   1630 		default:
   1631 			goto badsyn;	/*sanity*/
   1632 		}
   1633 
   1634 		if (so->so_options & SO_DEBUG) {
   1635 #ifdef TCP_DEBUG
   1636 			ostate = tp->t_state;
   1637 #endif
   1638 
   1639 			tcp_saveti = NULL;
   1640 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1641 				goto nosave;
   1642 
   1643 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1644 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1645 				if (!tcp_saveti)
   1646 					goto nosave;
   1647 			} else {
   1648 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1649 				if (!tcp_saveti)
   1650 					goto nosave;
   1651 				MCLAIM(m, &tcp_mowner);
   1652 				tcp_saveti->m_len = iphlen;
   1653 				m_copydata(m, 0, iphlen,
   1654 				    mtod(tcp_saveti, void *));
   1655 			}
   1656 
   1657 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1658 				m_freem(tcp_saveti);
   1659 				tcp_saveti = NULL;
   1660 			} else {
   1661 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1662 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1663 				    sizeof(struct tcphdr));
   1664 			}
   1665 	nosave:;
   1666 		}
   1667 		if (so->so_options & SO_ACCEPTCONN) {
   1668 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1669 				if (tiflags & TH_RST) {
   1670 					syn_cache_reset(&src.sa, &dst.sa, th);
   1671 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1672 				    (TH_ACK|TH_SYN)) {
   1673 					/*
   1674 					 * Received a SYN,ACK.  This should
   1675 					 * never happen while we are in
   1676 					 * LISTEN.  Send an RST.
   1677 					 */
   1678 					goto badsyn;
   1679 				} else if (tiflags & TH_ACK) {
   1680 					so = syn_cache_get(&src.sa, &dst.sa,
   1681 						th, toff, tlen, so, m);
   1682 					if (so == NULL) {
   1683 						/*
   1684 						 * We don't have a SYN for
   1685 						 * this ACK; send an RST.
   1686 						 */
   1687 						goto badsyn;
   1688 					} else if (so ==
   1689 					    (struct socket *)(-1)) {
   1690 						/*
   1691 						 * We were unable to create
   1692 						 * the connection.  If the
   1693 						 * 3-way handshake was
   1694 						 * completed, and RST has
   1695 						 * been sent to the peer.
   1696 						 * Since the mbuf might be
   1697 						 * in use for the reply,
   1698 						 * do not free it.
   1699 						 */
   1700 						m = NULL;
   1701 					} else {
   1702 						/*
   1703 						 * We have created a
   1704 						 * full-blown connection.
   1705 						 */
   1706 						tp = NULL;
   1707 						inp = NULL;
   1708 #ifdef INET6
   1709 						in6p = NULL;
   1710 #endif
   1711 						switch (so->so_proto->pr_domain->dom_family) {
   1712 #ifdef INET
   1713 						case AF_INET:
   1714 							inp = sotoinpcb(so);
   1715 							tp = intotcpcb(inp);
   1716 							break;
   1717 #endif
   1718 #ifdef INET6
   1719 						case AF_INET6:
   1720 							in6p = sotoin6pcb(so);
   1721 							tp = in6totcpcb(in6p);
   1722 							break;
   1723 #endif
   1724 						}
   1725 						if (tp == NULL)
   1726 							goto badsyn;	/*XXX*/
   1727 						tiwin <<= tp->snd_scale;
   1728 						goto after_listen;
   1729 					}
   1730 				} else {
   1731 					/*
   1732 					 * None of RST, SYN or ACK was set.
   1733 					 * This is an invalid packet for a
   1734 					 * TCB in LISTEN state.  Send a RST.
   1735 					 */
   1736 					goto badsyn;
   1737 				}
   1738 			} else {
   1739 				/*
   1740 				 * Received a SYN.
   1741 				 *
   1742 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1743 				 */
   1744 				if (m->m_flags & (M_BCAST|M_MCAST))
   1745 					goto drop;
   1746 
   1747 				switch (af) {
   1748 #ifdef INET6
   1749 				case AF_INET6:
   1750 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1751 						goto drop;
   1752 					break;
   1753 #endif /* INET6 */
   1754 				case AF_INET:
   1755 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1756 					    in_broadcast(ip->ip_dst,
   1757 					                 m_get_rcvif_NOMPSAFE(m)))
   1758 						goto drop;
   1759 				break;
   1760 				}
   1761 
   1762 #ifdef INET6
   1763 				/*
   1764 				 * If deprecated address is forbidden, we do
   1765 				 * not accept SYN to deprecated interface
   1766 				 * address to prevent any new inbound
   1767 				 * connection from getting established.
   1768 				 * When we do not accept SYN, we send a TCP
   1769 				 * RST, with deprecated source address (instead
   1770 				 * of dropping it).  We compromise it as it is
   1771 				 * much better for peer to send a RST, and
   1772 				 * RST will be the final packet for the
   1773 				 * exchange.
   1774 				 *
   1775 				 * If we do not forbid deprecated addresses, we
   1776 				 * accept the SYN packet.  RFC2462 does not
   1777 				 * suggest dropping SYN in this case.
   1778 				 * If we decipher RFC2462 5.5.4, it says like
   1779 				 * this:
   1780 				 * 1. use of deprecated addr with existing
   1781 				 *    communication is okay - "SHOULD continue
   1782 				 *    to be used"
   1783 				 * 2. use of it with new communication:
   1784 				 *   (2a) "SHOULD NOT be used if alternate
   1785 				 *        address with sufficient scope is
   1786 				 *        available"
   1787 				 *   (2b) nothing mentioned otherwise.
   1788 				 * Here we fall into (2b) case as we have no
   1789 				 * choice in our source address selection - we
   1790 				 * must obey the peer.
   1791 				 *
   1792 				 * The wording in RFC2462 is confusing, and
   1793 				 * there are multiple description text for
   1794 				 * deprecated address handling - worse, they
   1795 				 * are not exactly the same.  I believe 5.5.4
   1796 				 * is the best one, so we follow 5.5.4.
   1797 				 */
   1798 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1799 					struct in6_ifaddr *ia6;
   1800 					int s;
   1801 					struct ifnet *rcvif = m_get_rcvif(m, &s);
   1802 					if (rcvif == NULL)
   1803 						goto dropwithreset; /* XXX */
   1804 					if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1805 					    &ip6->ip6_dst)) &&
   1806 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1807 						tp = NULL;
   1808 						m_put_rcvif(rcvif, &s);
   1809 						goto dropwithreset;
   1810 					}
   1811 					m_put_rcvif(rcvif, &s);
   1812 				}
   1813 #endif
   1814 
   1815 #if defined(IPSEC)
   1816 				if (ipsec_used) {
   1817 					switch (af) {
   1818 #ifdef INET
   1819 					case AF_INET:
   1820 						if (!ipsec4_in_reject_so(m, so))
   1821 							break;
   1822 						IPSEC_STATINC(
   1823 						    IPSEC_STAT_IN_POLVIO);
   1824 						tp = NULL;
   1825 						goto dropwithreset;
   1826 #endif
   1827 #ifdef INET6
   1828 					case AF_INET6:
   1829 						if (!ipsec6_in_reject_so(m, so))
   1830 							break;
   1831 						IPSEC6_STATINC(
   1832 						    IPSEC_STAT_IN_POLVIO);
   1833 						tp = NULL;
   1834 						goto dropwithreset;
   1835 #endif /*INET6*/
   1836 					}
   1837 				}
   1838 #endif /*IPSEC*/
   1839 
   1840 				/*
   1841 				 * LISTEN socket received a SYN
   1842 				 * from itself?  This can't possibly
   1843 				 * be valid; drop the packet.
   1844 				 */
   1845 				if (th->th_sport == th->th_dport) {
   1846 					int i;
   1847 
   1848 					switch (af) {
   1849 #ifdef INET
   1850 					case AF_INET:
   1851 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1852 						break;
   1853 #endif
   1854 #ifdef INET6
   1855 					case AF_INET6:
   1856 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1857 						break;
   1858 #endif
   1859 					default:
   1860 						i = 1;
   1861 					}
   1862 					if (i) {
   1863 						TCP_STATINC(TCP_STAT_BADSYN);
   1864 						goto drop;
   1865 					}
   1866 				}
   1867 
   1868 				/*
   1869 				 * SYN looks ok; create compressed TCP
   1870 				 * state for it.
   1871 				 */
   1872 				if (so->so_qlen <= so->so_qlimit &&
   1873 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1874 						so, m, optp, optlen, &opti))
   1875 					m = NULL;
   1876 			}
   1877 			goto drop;
   1878 		}
   1879 	}
   1880 
   1881 after_listen:
   1882 #ifdef DIAGNOSTIC
   1883 	/*
   1884 	 * Should not happen now that all embryonic connections
   1885 	 * are handled with compressed state.
   1886 	 */
   1887 	if (tp->t_state == TCPS_LISTEN)
   1888 		panic("tcp_input: TCPS_LISTEN");
   1889 #endif
   1890 
   1891 	/*
   1892 	 * Segment received on connection.
   1893 	 * Reset idle time and keep-alive timer.
   1894 	 */
   1895 	tp->t_rcvtime = tcp_now;
   1896 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1897 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1898 
   1899 	/*
   1900 	 * Process options.
   1901 	 */
   1902 #ifdef TCP_SIGNATURE
   1903 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1904 #else
   1905 	if (optp)
   1906 #endif
   1907 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1908 			goto drop;
   1909 
   1910 	if (TCP_SACK_ENABLED(tp)) {
   1911 		tcp_del_sackholes(tp, th);
   1912 	}
   1913 
   1914 	if (TCP_ECN_ALLOWED(tp)) {
   1915 		if (tiflags & TH_CWR) {
   1916 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1917 		}
   1918 		switch (iptos & IPTOS_ECN_MASK) {
   1919 		case IPTOS_ECN_CE:
   1920 			tp->t_flags |= TF_ECN_SND_ECE;
   1921 			TCP_STATINC(TCP_STAT_ECN_CE);
   1922 			break;
   1923 		case IPTOS_ECN_ECT0:
   1924 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1925 			break;
   1926 		case IPTOS_ECN_ECT1:
   1927 			/* XXX: ignore for now -- rpaulo */
   1928 			break;
   1929 		}
   1930 		/*
   1931 		 * Congestion experienced.
   1932 		 * Ignore if we are already trying to recover.
   1933 		 */
   1934 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1935 			tp->t_congctl->cong_exp(tp);
   1936 	}
   1937 
   1938 	if (opti.ts_present && opti.ts_ecr) {
   1939 		/*
   1940 		 * Calculate the RTT from the returned time stamp and the
   1941 		 * connection's time base.  If the time stamp is later than
   1942 		 * the current time, or is extremely old, fall back to non-1323
   1943 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1944 		 * at the same time.
   1945 		 *
   1946 		 * Note that ts_rtt is in units of slow ticks (500
   1947 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1948 		 * observed values will have large quantization noise.
   1949 		 * Our smoothed RTT is then the fraction of observed
   1950 		 * samples that are 1 tick instead of 0 (times 500
   1951 		 * ms).
   1952 		 *
   1953 		 * ts_rtt is increased by 1 to denote a valid sample,
   1954 		 * with 0 indicating an invalid measurement.  This
   1955 		 * extra 1 must be removed when ts_rtt is used, or
   1956 		 * else an an erroneous extra 500 ms will result.
   1957 		 */
   1958 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1959 		if (ts_rtt > TCP_PAWS_IDLE)
   1960 			ts_rtt = 0;
   1961 	} else {
   1962 		ts_rtt = 0;
   1963 	}
   1964 
   1965 	/*
   1966 	 * Header prediction: check for the two common cases
   1967 	 * of a uni-directional data xfer.  If the packet has
   1968 	 * no control flags, is in-sequence, the window didn't
   1969 	 * change and we're not retransmitting, it's a
   1970 	 * candidate.  If the length is zero and the ack moved
   1971 	 * forward, we're the sender side of the xfer.  Just
   1972 	 * free the data acked & wake any higher level process
   1973 	 * that was blocked waiting for space.  If the length
   1974 	 * is non-zero and the ack didn't move, we're the
   1975 	 * receiver side.  If we're getting packets in-order
   1976 	 * (the reassembly queue is empty), add the data to
   1977 	 * the socket buffer and note that we need a delayed ack.
   1978 	 */
   1979 	if (tp->t_state == TCPS_ESTABLISHED &&
   1980 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1981 	        == TH_ACK &&
   1982 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1983 	    th->th_seq == tp->rcv_nxt &&
   1984 	    tiwin && tiwin == tp->snd_wnd &&
   1985 	    tp->snd_nxt == tp->snd_max) {
   1986 
   1987 		/*
   1988 		 * If last ACK falls within this segment's sequence numbers,
   1989 		 * record the timestamp.
   1990 		 * NOTE that the test is modified according to the latest
   1991 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1992 		 *
   1993 		 * note that we already know
   1994 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1995 		 */
   1996 		if (opti.ts_present &&
   1997 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1998 			tp->ts_recent_age = tcp_now;
   1999 			tp->ts_recent = opti.ts_val;
   2000 		}
   2001 
   2002 		if (tlen == 0) {
   2003 			/* Ack prediction. */
   2004 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   2005 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   2006 			    tp->snd_cwnd >= tp->snd_wnd &&
   2007 			    tp->t_partialacks < 0) {
   2008 				/*
   2009 				 * this is a pure ack for outstanding data.
   2010 				 */
   2011 				if (ts_rtt)
   2012 					tcp_xmit_timer(tp, ts_rtt - 1);
   2013 				else if (tp->t_rtttime &&
   2014 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   2015 					tcp_xmit_timer(tp,
   2016 					  tcp_now - tp->t_rtttime);
   2017 				acked = th->th_ack - tp->snd_una;
   2018 				tcps = TCP_STAT_GETREF();
   2019 				tcps[TCP_STAT_PREDACK]++;
   2020 				tcps[TCP_STAT_RCVACKPACK]++;
   2021 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   2022 				TCP_STAT_PUTREF();
   2023 				nd6_hint(tp);
   2024 
   2025 				if (acked > (tp->t_lastoff - tp->t_inoff))
   2026 					tp->t_lastm = NULL;
   2027 				sbdrop(&so->so_snd, acked);
   2028 				tp->t_lastoff -= acked;
   2029 
   2030 				icmp_check(tp, th, acked);
   2031 
   2032 				tp->snd_una = th->th_ack;
   2033 				tp->snd_fack = tp->snd_una;
   2034 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   2035 					tp->snd_high = tp->snd_una;
   2036 				m_freem(m);
   2037 
   2038 				/*
   2039 				 * If all outstanding data are acked, stop
   2040 				 * retransmit timer, otherwise restart timer
   2041 				 * using current (possibly backed-off) value.
   2042 				 * If process is waiting for space,
   2043 				 * wakeup/selnotify/signal.  If data
   2044 				 * are ready to send, let tcp_output
   2045 				 * decide between more output or persist.
   2046 				 */
   2047 				if (tp->snd_una == tp->snd_max)
   2048 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2049 				else if (TCP_TIMER_ISARMED(tp,
   2050 				    TCPT_PERSIST) == 0)
   2051 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   2052 					    tp->t_rxtcur);
   2053 
   2054 				sowwakeup(so);
   2055 				if (so->so_snd.sb_cc) {
   2056 					KERNEL_LOCK(1, NULL);
   2057 					(void) tcp_output(tp);
   2058 					KERNEL_UNLOCK_ONE(NULL);
   2059 				}
   2060 				if (tcp_saveti)
   2061 					m_freem(tcp_saveti);
   2062 				return;
   2063 			}
   2064 		} else if (th->th_ack == tp->snd_una &&
   2065 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2066 		    tlen <= sbspace(&so->so_rcv)) {
   2067 			int newsize = 0;	/* automatic sockbuf scaling */
   2068 
   2069 			/*
   2070 			 * this is a pure, in-sequence data packet
   2071 			 * with nothing on the reassembly queue and
   2072 			 * we have enough buffer space to take it.
   2073 			 */
   2074 			tp->rcv_nxt += tlen;
   2075 			tcps = TCP_STAT_GETREF();
   2076 			tcps[TCP_STAT_PREDDAT]++;
   2077 			tcps[TCP_STAT_RCVPACK]++;
   2078 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2079 			TCP_STAT_PUTREF();
   2080 			nd6_hint(tp);
   2081 
   2082 		/*
   2083 		 * Automatic sizing enables the performance of large buffers
   2084 		 * and most of the efficiency of small ones by only allocating
   2085 		 * space when it is needed.
   2086 		 *
   2087 		 * On the receive side the socket buffer memory is only rarely
   2088 		 * used to any significant extent.  This allows us to be much
   2089 		 * more aggressive in scaling the receive socket buffer.  For
   2090 		 * the case that the buffer space is actually used to a large
   2091 		 * extent and we run out of kernel memory we can simply drop
   2092 		 * the new segments; TCP on the sender will just retransmit it
   2093 		 * later.  Setting the buffer size too big may only consume too
   2094 		 * much kernel memory if the application doesn't read() from
   2095 		 * the socket or packet loss or reordering makes use of the
   2096 		 * reassembly queue.
   2097 		 *
   2098 		 * The criteria to step up the receive buffer one notch are:
   2099 		 *  1. the number of bytes received during the time it takes
   2100 		 *     one timestamp to be reflected back to us (the RTT);
   2101 		 *  2. received bytes per RTT is within seven eighth of the
   2102 		 *     current socket buffer size;
   2103 		 *  3. receive buffer size has not hit maximal automatic size;
   2104 		 *
   2105 		 * This algorithm does one step per RTT at most and only if
   2106 		 * we receive a bulk stream w/o packet losses or reorderings.
   2107 		 * Shrinking the buffer during idle times is not necessary as
   2108 		 * it doesn't consume any memory when idle.
   2109 		 *
   2110 		 * TODO: Only step up if the application is actually serving
   2111 		 * the buffer to better manage the socket buffer resources.
   2112 		 */
   2113 			if (tcp_do_autorcvbuf &&
   2114 			    opti.ts_ecr &&
   2115 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2116 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2117 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2118 					if (tp->rfbuf_cnt >
   2119 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2120 					    so->so_rcv.sb_hiwat <
   2121 					    tcp_autorcvbuf_max) {
   2122 						newsize =
   2123 						    min(so->so_rcv.sb_hiwat +
   2124 						    tcp_autorcvbuf_inc,
   2125 						    tcp_autorcvbuf_max);
   2126 					}
   2127 					/* Start over with next RTT. */
   2128 					tp->rfbuf_ts = 0;
   2129 					tp->rfbuf_cnt = 0;
   2130 				} else
   2131 					tp->rfbuf_cnt += tlen;	/* add up */
   2132 			}
   2133 
   2134 			/*
   2135 			 * Drop TCP, IP headers and TCP options then add data
   2136 			 * to socket buffer.
   2137 			 */
   2138 			if (so->so_state & SS_CANTRCVMORE)
   2139 				m_freem(m);
   2140 			else {
   2141 				/*
   2142 				 * Set new socket buffer size.
   2143 				 * Give up when limit is reached.
   2144 				 */
   2145 				if (newsize)
   2146 					if (!sbreserve(&so->so_rcv,
   2147 					    newsize, so))
   2148 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2149 				m_adj(m, toff + off);
   2150 				sbappendstream(&so->so_rcv, m);
   2151 			}
   2152 			sorwakeup(so);
   2153 			tcp_setup_ack(tp, th);
   2154 			if (tp->t_flags & TF_ACKNOW) {
   2155 				KERNEL_LOCK(1, NULL);
   2156 				(void) tcp_output(tp);
   2157 				KERNEL_UNLOCK_ONE(NULL);
   2158 			}
   2159 			if (tcp_saveti)
   2160 				m_freem(tcp_saveti);
   2161 			return;
   2162 		}
   2163 	}
   2164 
   2165 	/*
   2166 	 * Compute mbuf offset to TCP data segment.
   2167 	 */
   2168 	hdroptlen = toff + off;
   2169 
   2170 	/*
   2171 	 * Calculate amount of space in receive window,
   2172 	 * and then do TCP input processing.
   2173 	 * Receive window is amount of space in rcv queue,
   2174 	 * but not less than advertised window.
   2175 	 */
   2176 	{ int win;
   2177 
   2178 	win = sbspace(&so->so_rcv);
   2179 	if (win < 0)
   2180 		win = 0;
   2181 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2182 	}
   2183 
   2184 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2185 	tp->rfbuf_ts = 0;
   2186 	tp->rfbuf_cnt = 0;
   2187 
   2188 	switch (tp->t_state) {
   2189 	/*
   2190 	 * If the state is SYN_SENT:
   2191 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2192 	 *	if seg contains a RST, then drop the connection.
   2193 	 *	if seg does not contain SYN, then drop it.
   2194 	 * Otherwise this is an acceptable SYN segment
   2195 	 *	initialize tp->rcv_nxt and tp->irs
   2196 	 *	if seg contains ack then advance tp->snd_una
   2197 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2198 	 *	    is ECN capable.
   2199 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2200 	 *	arrange for segment to be acked (eventually)
   2201 	 *	continue processing rest of data/controls, beginning with URG
   2202 	 */
   2203 	case TCPS_SYN_SENT:
   2204 		if ((tiflags & TH_ACK) &&
   2205 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2206 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2207 			goto dropwithreset;
   2208 		if (tiflags & TH_RST) {
   2209 			if (tiflags & TH_ACK)
   2210 				tp = tcp_drop(tp, ECONNREFUSED);
   2211 			goto drop;
   2212 		}
   2213 		if ((tiflags & TH_SYN) == 0)
   2214 			goto drop;
   2215 		if (tiflags & TH_ACK) {
   2216 			tp->snd_una = th->th_ack;
   2217 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2218 				tp->snd_nxt = tp->snd_una;
   2219 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2220 				tp->snd_high = tp->snd_una;
   2221 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2222 
   2223 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2224 				tp->t_flags |= TF_ECN_PERMIT;
   2225 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2226 			}
   2227 
   2228 		}
   2229 		tp->irs = th->th_seq;
   2230 		tcp_rcvseqinit(tp);
   2231 		tp->t_flags |= TF_ACKNOW;
   2232 		tcp_mss_from_peer(tp, opti.maxseg);
   2233 
   2234 		/*
   2235 		 * Initialize the initial congestion window.  If we
   2236 		 * had to retransmit the SYN, we must initialize cwnd
   2237 		 * to 1 segment (i.e. the Loss Window).
   2238 		 */
   2239 		if (tp->t_flags & TF_SYN_REXMT)
   2240 			tp->snd_cwnd = tp->t_peermss;
   2241 		else {
   2242 			int ss = tcp_init_win;
   2243 #ifdef INET
   2244 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2245 				ss = tcp_init_win_local;
   2246 #endif
   2247 #ifdef INET6
   2248 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2249 				ss = tcp_init_win_local;
   2250 #endif
   2251 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2252 		}
   2253 
   2254 		tcp_rmx_rtt(tp);
   2255 		if (tiflags & TH_ACK) {
   2256 			TCP_STATINC(TCP_STAT_CONNECTS);
   2257 			/*
   2258 			 * move tcp_established before soisconnected
   2259 			 * because upcall handler can drive tcp_output
   2260 			 * functionality.
   2261 			 * XXX we might call soisconnected at the end of
   2262 			 * all processing
   2263 			 */
   2264 			tcp_established(tp);
   2265 			soisconnected(so);
   2266 			/* Do window scaling on this connection? */
   2267 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2268 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2269 				tp->snd_scale = tp->requested_s_scale;
   2270 				tp->rcv_scale = tp->request_r_scale;
   2271 			}
   2272 			TCP_REASS_LOCK(tp);
   2273 			(void) tcp_reass(tp, NULL, NULL, &tlen);
   2274 			/*
   2275 			 * if we didn't have to retransmit the SYN,
   2276 			 * use its rtt as our initial srtt & rtt var.
   2277 			 */
   2278 			if (tp->t_rtttime)
   2279 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2280 		} else
   2281 			tp->t_state = TCPS_SYN_RECEIVED;
   2282 
   2283 		/*
   2284 		 * Advance th->th_seq to correspond to first data byte.
   2285 		 * If data, trim to stay within window,
   2286 		 * dropping FIN if necessary.
   2287 		 */
   2288 		th->th_seq++;
   2289 		if (tlen > tp->rcv_wnd) {
   2290 			todrop = tlen - tp->rcv_wnd;
   2291 			m_adj(m, -todrop);
   2292 			tlen = tp->rcv_wnd;
   2293 			tiflags &= ~TH_FIN;
   2294 			tcps = TCP_STAT_GETREF();
   2295 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2296 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2297 			TCP_STAT_PUTREF();
   2298 		}
   2299 		tp->snd_wl1 = th->th_seq - 1;
   2300 		tp->rcv_up = th->th_seq;
   2301 		goto step6;
   2302 
   2303 	/*
   2304 	 * If the state is SYN_RECEIVED:
   2305 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2306 	 *	and generate an RST.  See page 36, rfc793
   2307 	 */
   2308 	case TCPS_SYN_RECEIVED:
   2309 		if ((tiflags & TH_ACK) &&
   2310 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2311 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2312 			goto dropwithreset;
   2313 		break;
   2314 	}
   2315 
   2316 	/*
   2317 	 * States other than LISTEN or SYN_SENT.
   2318 	 * First check timestamp, if present.
   2319 	 * Then check that at least some bytes of segment are within
   2320 	 * receive window.  If segment begins before rcv_nxt,
   2321 	 * drop leading data (and SYN); if nothing left, just ack.
   2322 	 *
   2323 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2324 	 * and it's less than ts_recent, drop it.
   2325 	 */
   2326 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2327 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2328 
   2329 		/* Check to see if ts_recent is over 24 days old.  */
   2330 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2331 			/*
   2332 			 * Invalidate ts_recent.  If this segment updates
   2333 			 * ts_recent, the age will be reset later and ts_recent
   2334 			 * will get a valid value.  If it does not, setting
   2335 			 * ts_recent to zero will at least satisfy the
   2336 			 * requirement that zero be placed in the timestamp
   2337 			 * echo reply when ts_recent isn't valid.  The
   2338 			 * age isn't reset until we get a valid ts_recent
   2339 			 * because we don't want out-of-order segments to be
   2340 			 * dropped when ts_recent is old.
   2341 			 */
   2342 			tp->ts_recent = 0;
   2343 		} else {
   2344 			tcps = TCP_STAT_GETREF();
   2345 			tcps[TCP_STAT_RCVDUPPACK]++;
   2346 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2347 			tcps[TCP_STAT_PAWSDROP]++;
   2348 			TCP_STAT_PUTREF();
   2349 			tcp_new_dsack(tp, th->th_seq, tlen);
   2350 			goto dropafterack;
   2351 		}
   2352 	}
   2353 
   2354 	todrop = tp->rcv_nxt - th->th_seq;
   2355 	dupseg = false;
   2356 	if (todrop > 0) {
   2357 		if (tiflags & TH_SYN) {
   2358 			tiflags &= ~TH_SYN;
   2359 			th->th_seq++;
   2360 			if (th->th_urp > 1)
   2361 				th->th_urp--;
   2362 			else {
   2363 				tiflags &= ~TH_URG;
   2364 				th->th_urp = 0;
   2365 			}
   2366 			todrop--;
   2367 		}
   2368 		if (todrop > tlen ||
   2369 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2370 			/*
   2371 			 * Any valid FIN or RST must be to the left of the
   2372 			 * window.  At this point the FIN or RST must be a
   2373 			 * duplicate or out of sequence; drop it.
   2374 			 */
   2375 			if (tiflags & TH_RST)
   2376 				goto drop;
   2377 			tiflags &= ~(TH_FIN|TH_RST);
   2378 			/*
   2379 			 * Send an ACK to resynchronize and drop any data.
   2380 			 * But keep on processing for RST or ACK.
   2381 			 */
   2382 			tp->t_flags |= TF_ACKNOW;
   2383 			todrop = tlen;
   2384 			dupseg = true;
   2385 			tcps = TCP_STAT_GETREF();
   2386 			tcps[TCP_STAT_RCVDUPPACK]++;
   2387 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2388 			TCP_STAT_PUTREF();
   2389 		} else if ((tiflags & TH_RST) &&
   2390 			   th->th_seq != tp->rcv_nxt) {
   2391 			/*
   2392 			 * Test for reset before adjusting the sequence
   2393 			 * number for overlapping data.
   2394 			 */
   2395 			goto dropafterack_ratelim;
   2396 		} else {
   2397 			tcps = TCP_STAT_GETREF();
   2398 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2399 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2400 			TCP_STAT_PUTREF();
   2401 		}
   2402 		tcp_new_dsack(tp, th->th_seq, todrop);
   2403 		hdroptlen += todrop;	/*drop from head afterwards*/
   2404 		th->th_seq += todrop;
   2405 		tlen -= todrop;
   2406 		if (th->th_urp > todrop)
   2407 			th->th_urp -= todrop;
   2408 		else {
   2409 			tiflags &= ~TH_URG;
   2410 			th->th_urp = 0;
   2411 		}
   2412 	}
   2413 
   2414 	/*
   2415 	 * If new data are received on a connection after the
   2416 	 * user processes are gone, then RST the other end.
   2417 	 */
   2418 	if ((so->so_state & SS_NOFDREF) &&
   2419 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2420 		tp = tcp_close(tp);
   2421 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2422 		goto dropwithreset;
   2423 	}
   2424 
   2425 	/*
   2426 	 * If segment ends after window, drop trailing data
   2427 	 * (and PUSH and FIN); if nothing left, just ACK.
   2428 	 */
   2429 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2430 	if (todrop > 0) {
   2431 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2432 		if (todrop >= tlen) {
   2433 			/*
   2434 			 * The segment actually starts after the window.
   2435 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2436 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2437 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2438 			 */
   2439 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2440 			/*
   2441 			 * If a new connection request is received
   2442 			 * while in TIME_WAIT, drop the old connection
   2443 			 * and start over if the sequence numbers
   2444 			 * are above the previous ones.
   2445 			 *
   2446 			 * NOTE: We will checksum the packet again, and
   2447 			 * so we need to put the header fields back into
   2448 			 * network order!
   2449 			 * XXX This kind of sucks, but we don't expect
   2450 			 * XXX this to happen very often, so maybe it
   2451 			 * XXX doesn't matter so much.
   2452 			 */
   2453 			if (tiflags & TH_SYN &&
   2454 			    tp->t_state == TCPS_TIME_WAIT &&
   2455 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2456 				tp = tcp_close(tp);
   2457 				tcp_fields_to_net(th);
   2458 				goto findpcb;
   2459 			}
   2460 			/*
   2461 			 * If window is closed can only take segments at
   2462 			 * window edge, and have to drop data and PUSH from
   2463 			 * incoming segments.  Continue processing, but
   2464 			 * remember to ack.  Otherwise, drop segment
   2465 			 * and (if not RST) ack.
   2466 			 */
   2467 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2468 				tp->t_flags |= TF_ACKNOW;
   2469 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2470 			} else
   2471 				goto dropafterack;
   2472 		} else
   2473 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2474 		m_adj(m, -todrop);
   2475 		tlen -= todrop;
   2476 		tiflags &= ~(TH_PUSH|TH_FIN);
   2477 	}
   2478 
   2479 	/*
   2480 	 * If last ACK falls within this segment's sequence numbers,
   2481 	 *  record the timestamp.
   2482 	 * NOTE:
   2483 	 * 1) That the test incorporates suggestions from the latest
   2484 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2485 	 * 2) That updating only on newer timestamps interferes with
   2486 	 *    our earlier PAWS tests, so this check should be solely
   2487 	 *    predicated on the sequence space of this segment.
   2488 	 * 3) That we modify the segment boundary check to be
   2489 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2490 	 *    instead of RFC1323's
   2491 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2492 	 *    This modified check allows us to overcome RFC1323's
   2493 	 *    limitations as described in Stevens TCP/IP Illustrated
   2494 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2495 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2496 	 */
   2497 	if (opti.ts_present &&
   2498 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2499 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2500 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2501 		tp->ts_recent_age = tcp_now;
   2502 		tp->ts_recent = opti.ts_val;
   2503 	}
   2504 
   2505 	/*
   2506 	 * If the RST bit is set examine the state:
   2507 	 *    SYN_RECEIVED STATE:
   2508 	 *	If passive open, return to LISTEN state.
   2509 	 *	If active open, inform user that connection was refused.
   2510 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2511 	 *	Inform user that connection was reset, and close tcb.
   2512 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2513 	 *	Close the tcb.
   2514 	 */
   2515 	if (tiflags & TH_RST) {
   2516 		if (th->th_seq != tp->rcv_nxt)
   2517 			goto dropafterack_ratelim;
   2518 
   2519 		switch (tp->t_state) {
   2520 		case TCPS_SYN_RECEIVED:
   2521 			so->so_error = ECONNREFUSED;
   2522 			goto close;
   2523 
   2524 		case TCPS_ESTABLISHED:
   2525 		case TCPS_FIN_WAIT_1:
   2526 		case TCPS_FIN_WAIT_2:
   2527 		case TCPS_CLOSE_WAIT:
   2528 			so->so_error = ECONNRESET;
   2529 		close:
   2530 			tp->t_state = TCPS_CLOSED;
   2531 			TCP_STATINC(TCP_STAT_DROPS);
   2532 			tp = tcp_close(tp);
   2533 			goto drop;
   2534 
   2535 		case TCPS_CLOSING:
   2536 		case TCPS_LAST_ACK:
   2537 		case TCPS_TIME_WAIT:
   2538 			tp = tcp_close(tp);
   2539 			goto drop;
   2540 		}
   2541 	}
   2542 
   2543 	/*
   2544 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2545 	 * we must be in a synchronized state.  RFC791 states (under RST
   2546 	 * generation) that any unacceptable segment (an out-of-order SYN
   2547 	 * qualifies) received in a synchronized state must elicit only an
   2548 	 * empty acknowledgment segment ... and the connection remains in
   2549 	 * the same state.
   2550 	 */
   2551 	if (tiflags & TH_SYN) {
   2552 		if (tp->rcv_nxt == th->th_seq) {
   2553 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2554 			    TH_ACK);
   2555 			if (tcp_saveti)
   2556 				m_freem(tcp_saveti);
   2557 			return;
   2558 		}
   2559 
   2560 		goto dropafterack_ratelim;
   2561 	}
   2562 
   2563 	/*
   2564 	 * If the ACK bit is off we drop the segment and return.
   2565 	 */
   2566 	if ((tiflags & TH_ACK) == 0) {
   2567 		if (tp->t_flags & TF_ACKNOW)
   2568 			goto dropafterack;
   2569 		else
   2570 			goto drop;
   2571 	}
   2572 
   2573 	/*
   2574 	 * Ack processing.
   2575 	 */
   2576 	switch (tp->t_state) {
   2577 
   2578 	/*
   2579 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2580 	 * ESTABLISHED state and continue processing, otherwise
   2581 	 * send an RST.
   2582 	 */
   2583 	case TCPS_SYN_RECEIVED:
   2584 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2585 		    SEQ_GT(th->th_ack, tp->snd_max))
   2586 			goto dropwithreset;
   2587 		TCP_STATINC(TCP_STAT_CONNECTS);
   2588 		soisconnected(so);
   2589 		tcp_established(tp);
   2590 		/* Do window scaling? */
   2591 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2592 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2593 			tp->snd_scale = tp->requested_s_scale;
   2594 			tp->rcv_scale = tp->request_r_scale;
   2595 		}
   2596 		TCP_REASS_LOCK(tp);
   2597 		(void) tcp_reass(tp, NULL, NULL, &tlen);
   2598 		tp->snd_wl1 = th->th_seq - 1;
   2599 		/* fall into ... */
   2600 
   2601 	/*
   2602 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2603 	 * ACKs.  If the ack is in the range
   2604 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2605 	 * then advance tp->snd_una to th->th_ack and drop
   2606 	 * data from the retransmission queue.  If this ACK reflects
   2607 	 * more up to date window information we update our window information.
   2608 	 */
   2609 	case TCPS_ESTABLISHED:
   2610 	case TCPS_FIN_WAIT_1:
   2611 	case TCPS_FIN_WAIT_2:
   2612 	case TCPS_CLOSE_WAIT:
   2613 	case TCPS_CLOSING:
   2614 	case TCPS_LAST_ACK:
   2615 	case TCPS_TIME_WAIT:
   2616 
   2617 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2618 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2619 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2620 				/*
   2621 				 * If we have outstanding data (other than
   2622 				 * a window probe), this is a completely
   2623 				 * duplicate ack (ie, window info didn't
   2624 				 * change), the ack is the biggest we've
   2625 				 * seen and we've seen exactly our rexmt
   2626 				 * threshhold of them, assume a packet
   2627 				 * has been dropped and retransmit it.
   2628 				 * Kludge snd_nxt & the congestion
   2629 				 * window so we send only this one
   2630 				 * packet.
   2631 				 */
   2632 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2633 				    th->th_ack != tp->snd_una)
   2634 					tp->t_dupacks = 0;
   2635 				else if (tp->t_partialacks < 0 &&
   2636 					 (++tp->t_dupacks == tcprexmtthresh ||
   2637 					 TCP_FACK_FASTRECOV(tp))) {
   2638 					/*
   2639 					 * Do the fast retransmit, and adjust
   2640 					 * congestion control paramenters.
   2641 					 */
   2642 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2643 						/* False fast retransmit */
   2644 						break;
   2645 					} else
   2646 						goto drop;
   2647 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2648 					tp->snd_cwnd += tp->t_segsz;
   2649 					KERNEL_LOCK(1, NULL);
   2650 					(void) tcp_output(tp);
   2651 					KERNEL_UNLOCK_ONE(NULL);
   2652 					goto drop;
   2653 				}
   2654 			} else {
   2655 				/*
   2656 				 * If the ack appears to be very old, only
   2657 				 * allow data that is in-sequence.  This
   2658 				 * makes it somewhat more difficult to insert
   2659 				 * forged data by guessing sequence numbers.
   2660 				 * Sent an ack to try to update the send
   2661 				 * sequence number on the other side.
   2662 				 */
   2663 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2664 				    SEQ_LT(th->th_ack,
   2665 				    tp->snd_una - tp->max_sndwnd))
   2666 					goto dropafterack;
   2667 			}
   2668 			break;
   2669 		}
   2670 		/*
   2671 		 * If the congestion window was inflated to account
   2672 		 * for the other side's cached packets, retract it.
   2673 		 */
   2674 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2675 
   2676 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2677 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2678 			goto dropafterack;
   2679 		}
   2680 		acked = th->th_ack - tp->snd_una;
   2681 		tcps = TCP_STAT_GETREF();
   2682 		tcps[TCP_STAT_RCVACKPACK]++;
   2683 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2684 		TCP_STAT_PUTREF();
   2685 
   2686 		/*
   2687 		 * If we have a timestamp reply, update smoothed
   2688 		 * round trip time.  If no timestamp is present but
   2689 		 * transmit timer is running and timed sequence
   2690 		 * number was acked, update smoothed round trip time.
   2691 		 * Since we now have an rtt measurement, cancel the
   2692 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2693 		 * Recompute the initial retransmit timer.
   2694 		 */
   2695 		if (ts_rtt)
   2696 			tcp_xmit_timer(tp, ts_rtt - 1);
   2697 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2698 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2699 
   2700 		/*
   2701 		 * If all outstanding data is acked, stop retransmit
   2702 		 * timer and remember to restart (more output or persist).
   2703 		 * If there is more data to be acked, restart retransmit
   2704 		 * timer, using current (possibly backed-off) value.
   2705 		 */
   2706 		if (th->th_ack == tp->snd_max) {
   2707 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2708 			needoutput = 1;
   2709 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2710 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2711 
   2712 		/*
   2713 		 * New data has been acked, adjust the congestion window.
   2714 		 */
   2715 		tp->t_congctl->newack(tp, th);
   2716 
   2717 		nd6_hint(tp);
   2718 		if (acked > so->so_snd.sb_cc) {
   2719 			tp->snd_wnd -= so->so_snd.sb_cc;
   2720 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2721 			ourfinisacked = 1;
   2722 		} else {
   2723 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2724 				tp->t_lastm = NULL;
   2725 			sbdrop(&so->so_snd, acked);
   2726 			tp->t_lastoff -= acked;
   2727 			if (tp->snd_wnd > acked)
   2728 				tp->snd_wnd -= acked;
   2729 			else
   2730 				tp->snd_wnd = 0;
   2731 			ourfinisacked = 0;
   2732 		}
   2733 		sowwakeup(so);
   2734 
   2735 		icmp_check(tp, th, acked);
   2736 
   2737 		tp->snd_una = th->th_ack;
   2738 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2739 			tp->snd_fack = tp->snd_una;
   2740 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2741 			tp->snd_nxt = tp->snd_una;
   2742 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2743 			tp->snd_high = tp->snd_una;
   2744 
   2745 		switch (tp->t_state) {
   2746 
   2747 		/*
   2748 		 * In FIN_WAIT_1 STATE in addition to the processing
   2749 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2750 		 * then enter FIN_WAIT_2.
   2751 		 */
   2752 		case TCPS_FIN_WAIT_1:
   2753 			if (ourfinisacked) {
   2754 				/*
   2755 				 * If we can't receive any more
   2756 				 * data, then closing user can proceed.
   2757 				 * Starting the timer is contrary to the
   2758 				 * specification, but if we don't get a FIN
   2759 				 * we'll hang forever.
   2760 				 */
   2761 				if (so->so_state & SS_CANTRCVMORE) {
   2762 					soisdisconnected(so);
   2763 					if (tp->t_maxidle > 0)
   2764 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2765 						    tp->t_maxidle);
   2766 				}
   2767 				tp->t_state = TCPS_FIN_WAIT_2;
   2768 			}
   2769 			break;
   2770 
   2771 	 	/*
   2772 		 * In CLOSING STATE in addition to the processing for
   2773 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2774 		 * then enter the TIME-WAIT state, otherwise ignore
   2775 		 * the segment.
   2776 		 */
   2777 		case TCPS_CLOSING:
   2778 			if (ourfinisacked) {
   2779 				tp->t_state = TCPS_TIME_WAIT;
   2780 				tcp_canceltimers(tp);
   2781 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2782 				soisdisconnected(so);
   2783 			}
   2784 			break;
   2785 
   2786 		/*
   2787 		 * In LAST_ACK, we may still be waiting for data to drain
   2788 		 * and/or to be acked, as well as for the ack of our FIN.
   2789 		 * If our FIN is now acknowledged, delete the TCB,
   2790 		 * enter the closed state and return.
   2791 		 */
   2792 		case TCPS_LAST_ACK:
   2793 			if (ourfinisacked) {
   2794 				tp = tcp_close(tp);
   2795 				goto drop;
   2796 			}
   2797 			break;
   2798 
   2799 		/*
   2800 		 * In TIME_WAIT state the only thing that should arrive
   2801 		 * is a retransmission of the remote FIN.  Acknowledge
   2802 		 * it and restart the finack timer.
   2803 		 */
   2804 		case TCPS_TIME_WAIT:
   2805 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2806 			goto dropafterack;
   2807 		}
   2808 	}
   2809 
   2810 step6:
   2811 	/*
   2812 	 * Update window information.
   2813 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2814 	 */
   2815 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2816 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2817 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2818 		/* keep track of pure window updates */
   2819 		if (tlen == 0 &&
   2820 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2821 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2822 		tp->snd_wnd = tiwin;
   2823 		tp->snd_wl1 = th->th_seq;
   2824 		tp->snd_wl2 = th->th_ack;
   2825 		if (tp->snd_wnd > tp->max_sndwnd)
   2826 			tp->max_sndwnd = tp->snd_wnd;
   2827 		needoutput = 1;
   2828 	}
   2829 
   2830 	/*
   2831 	 * Process segments with URG.
   2832 	 */
   2833 	if ((tiflags & TH_URG) && th->th_urp &&
   2834 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2835 		/*
   2836 		 * This is a kludge, but if we receive and accept
   2837 		 * random urgent pointers, we'll crash in
   2838 		 * soreceive.  It's hard to imagine someone
   2839 		 * actually wanting to send this much urgent data.
   2840 		 */
   2841 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2842 			th->th_urp = 0;			/* XXX */
   2843 			tiflags &= ~TH_URG;		/* XXX */
   2844 			goto dodata;			/* XXX */
   2845 		}
   2846 		/*
   2847 		 * If this segment advances the known urgent pointer,
   2848 		 * then mark the data stream.  This should not happen
   2849 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2850 		 * a FIN has been received from the remote side.
   2851 		 * In these states we ignore the URG.
   2852 		 *
   2853 		 * According to RFC961 (Assigned Protocols),
   2854 		 * the urgent pointer points to the last octet
   2855 		 * of urgent data.  We continue, however,
   2856 		 * to consider it to indicate the first octet
   2857 		 * of data past the urgent section as the original
   2858 		 * spec states (in one of two places).
   2859 		 */
   2860 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2861 			tp->rcv_up = th->th_seq + th->th_urp;
   2862 			so->so_oobmark = so->so_rcv.sb_cc +
   2863 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2864 			if (so->so_oobmark == 0)
   2865 				so->so_state |= SS_RCVATMARK;
   2866 			sohasoutofband(so);
   2867 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2868 		}
   2869 		/*
   2870 		 * Remove out of band data so doesn't get presented to user.
   2871 		 * This can happen independent of advancing the URG pointer,
   2872 		 * but if two URG's are pending at once, some out-of-band
   2873 		 * data may creep in... ick.
   2874 		 */
   2875 		if (th->th_urp <= (u_int16_t) tlen
   2876 #ifdef SO_OOBINLINE
   2877 		     && (so->so_options & SO_OOBINLINE) == 0
   2878 #endif
   2879 		     )
   2880 			tcp_pulloutofband(so, th, m, hdroptlen);
   2881 	} else
   2882 		/*
   2883 		 * If no out of band data is expected,
   2884 		 * pull receive urgent pointer along
   2885 		 * with the receive window.
   2886 		 */
   2887 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2888 			tp->rcv_up = tp->rcv_nxt;
   2889 dodata:							/* XXX */
   2890 
   2891 	/*
   2892 	 * Process the segment text, merging it into the TCP sequencing queue,
   2893 	 * and arranging for acknowledgement of receipt if necessary.
   2894 	 * This process logically involves adjusting tp->rcv_wnd as data
   2895 	 * is presented to the user (this happens in tcp_usrreq.c,
   2896 	 * tcp_rcvd()).  If a FIN has already been received on this
   2897 	 * connection then we just ignore the text.
   2898 	 */
   2899 	if ((tlen || (tiflags & TH_FIN)) &&
   2900 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2901 		/*
   2902 		 * Insert segment ti into reassembly queue of tcp with
   2903 		 * control block tp.  Return TH_FIN if reassembly now includes
   2904 		 * a segment with FIN.  The macro form does the common case
   2905 		 * inline (segment is the next to be received on an
   2906 		 * established connection, and the queue is empty),
   2907 		 * avoiding linkage into and removal from the queue and
   2908 		 * repetition of various conversions.
   2909 		 * Set DELACK for segments received in order, but ack
   2910 		 * immediately when segments are out of order
   2911 		 * (so fast retransmit can work).
   2912 		 */
   2913 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2914 		TCP_REASS_LOCK(tp);
   2915 		if (th->th_seq == tp->rcv_nxt &&
   2916 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2917 		    tp->t_state == TCPS_ESTABLISHED) {
   2918 			tcp_setup_ack(tp, th);
   2919 			tp->rcv_nxt += tlen;
   2920 			tiflags = th->th_flags & TH_FIN;
   2921 			tcps = TCP_STAT_GETREF();
   2922 			tcps[TCP_STAT_RCVPACK]++;
   2923 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2924 			TCP_STAT_PUTREF();
   2925 			nd6_hint(tp);
   2926 			if (so->so_state & SS_CANTRCVMORE)
   2927 				m_freem(m);
   2928 			else {
   2929 				m_adj(m, hdroptlen);
   2930 				sbappendstream(&(so)->so_rcv, m);
   2931 			}
   2932 			TCP_REASS_UNLOCK(tp);
   2933 			sorwakeup(so);
   2934 		} else {
   2935 			m_adj(m, hdroptlen);
   2936 			tiflags = tcp_reass(tp, th, m, &tlen);
   2937 			tp->t_flags |= TF_ACKNOW;
   2938 		}
   2939 
   2940 		/*
   2941 		 * Note the amount of data that peer has sent into
   2942 		 * our window, in order to estimate the sender's
   2943 		 * buffer size.
   2944 		 */
   2945 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2946 	} else {
   2947 		m_freem(m);
   2948 		m = NULL;
   2949 		tiflags &= ~TH_FIN;
   2950 	}
   2951 
   2952 	/*
   2953 	 * If FIN is received ACK the FIN and let the user know
   2954 	 * that the connection is closing.  Ignore a FIN received before
   2955 	 * the connection is fully established.
   2956 	 */
   2957 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2958 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2959 			socantrcvmore(so);
   2960 			tp->t_flags |= TF_ACKNOW;
   2961 			tp->rcv_nxt++;
   2962 		}
   2963 		switch (tp->t_state) {
   2964 
   2965 	 	/*
   2966 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2967 		 */
   2968 		case TCPS_ESTABLISHED:
   2969 			tp->t_state = TCPS_CLOSE_WAIT;
   2970 			break;
   2971 
   2972 	 	/*
   2973 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2974 		 * enter the CLOSING state.
   2975 		 */
   2976 		case TCPS_FIN_WAIT_1:
   2977 			tp->t_state = TCPS_CLOSING;
   2978 			break;
   2979 
   2980 	 	/*
   2981 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2982 		 * starting the time-wait timer, turning off the other
   2983 		 * standard timers.
   2984 		 */
   2985 		case TCPS_FIN_WAIT_2:
   2986 			tp->t_state = TCPS_TIME_WAIT;
   2987 			tcp_canceltimers(tp);
   2988 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2989 			soisdisconnected(so);
   2990 			break;
   2991 
   2992 		/*
   2993 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2994 		 */
   2995 		case TCPS_TIME_WAIT:
   2996 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2997 			break;
   2998 		}
   2999 	}
   3000 #ifdef TCP_DEBUG
   3001 	if (so->so_options & SO_DEBUG)
   3002 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   3003 #endif
   3004 
   3005 	/*
   3006 	 * Return any desired output.
   3007 	 */
   3008 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   3009 		KERNEL_LOCK(1, NULL);
   3010 		(void) tcp_output(tp);
   3011 		KERNEL_UNLOCK_ONE(NULL);
   3012 	}
   3013 	if (tcp_saveti)
   3014 		m_freem(tcp_saveti);
   3015 
   3016 	if (tp->t_state == TCPS_TIME_WAIT
   3017 	    && (so->so_state & SS_NOFDREF)
   3018 	    && (tp->t_inpcb || af != AF_INET)
   3019 	    && (tp->t_in6pcb || af != AF_INET6)
   3020 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   3021 	    && TAILQ_EMPTY(&tp->segq)
   3022 	    && vtw_add(af, tp)) {
   3023 		;
   3024 	}
   3025 	return;
   3026 
   3027 badsyn:
   3028 	/*
   3029 	 * Received a bad SYN.  Increment counters and dropwithreset.
   3030 	 */
   3031 	TCP_STATINC(TCP_STAT_BADSYN);
   3032 	tp = NULL;
   3033 	goto dropwithreset;
   3034 
   3035 dropafterack:
   3036 	/*
   3037 	 * Generate an ACK dropping incoming segment if it occupies
   3038 	 * sequence space, where the ACK reflects our state.
   3039 	 */
   3040 	if (tiflags & TH_RST)
   3041 		goto drop;
   3042 	goto dropafterack2;
   3043 
   3044 dropafterack_ratelim:
   3045 	/*
   3046 	 * We may want to rate-limit ACKs against SYN/RST attack.
   3047 	 */
   3048 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   3049 	    tcp_ackdrop_ppslim) == 0) {
   3050 		/* XXX stat */
   3051 		goto drop;
   3052 	}
   3053 	/* ...fall into dropafterack2... */
   3054 
   3055 dropafterack2:
   3056 	m_freem(m);
   3057 	tp->t_flags |= TF_ACKNOW;
   3058 	KERNEL_LOCK(1, NULL);
   3059 	(void) tcp_output(tp);
   3060 	KERNEL_UNLOCK_ONE(NULL);
   3061 	if (tcp_saveti)
   3062 		m_freem(tcp_saveti);
   3063 	return;
   3064 
   3065 dropwithreset_ratelim:
   3066 	/*
   3067 	 * We may want to rate-limit RSTs in certain situations,
   3068 	 * particularly if we are sending an RST in response to
   3069 	 * an attempt to connect to or otherwise communicate with
   3070 	 * a port for which we have no socket.
   3071 	 */
   3072 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   3073 	    tcp_rst_ppslim) == 0) {
   3074 		/* XXX stat */
   3075 		goto drop;
   3076 	}
   3077 	/* ...fall into dropwithreset... */
   3078 
   3079 dropwithreset:
   3080 	/*
   3081 	 * Generate a RST, dropping incoming segment.
   3082 	 * Make ACK acceptable to originator of segment.
   3083 	 */
   3084 	if (tiflags & TH_RST)
   3085 		goto drop;
   3086 
   3087 	switch (af) {
   3088 #ifdef INET6
   3089 	case AF_INET6:
   3090 		/* For following calls to tcp_respond */
   3091 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   3092 			goto drop;
   3093 		break;
   3094 #endif /* INET6 */
   3095 	case AF_INET:
   3096 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   3097 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   3098 			goto drop;
   3099 	}
   3100 
   3101 	if (tiflags & TH_ACK)
   3102 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3103 	else {
   3104 		if (tiflags & TH_SYN)
   3105 			tlen++;
   3106 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3107 		    TH_RST|TH_ACK);
   3108 	}
   3109 	if (tcp_saveti)
   3110 		m_freem(tcp_saveti);
   3111 	return;
   3112 
   3113 badcsum:
   3114 drop:
   3115 	/*
   3116 	 * Drop space held by incoming segment and return.
   3117 	 */
   3118 	if (tp) {
   3119 		if (tp->t_inpcb)
   3120 			so = tp->t_inpcb->inp_socket;
   3121 #ifdef INET6
   3122 		else if (tp->t_in6pcb)
   3123 			so = tp->t_in6pcb->in6p_socket;
   3124 #endif
   3125 		else
   3126 			so = NULL;
   3127 #ifdef TCP_DEBUG
   3128 		if (so && (so->so_options & SO_DEBUG) != 0)
   3129 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3130 #endif
   3131 	}
   3132 	if (tcp_saveti)
   3133 		m_freem(tcp_saveti);
   3134 	m_freem(m);
   3135 	return;
   3136 }
   3137 
   3138 #ifdef TCP_SIGNATURE
   3139 int
   3140 tcp_signature_apply(void *fstate, void *data, u_int len)
   3141 {
   3142 
   3143 	MD5Update(fstate, (u_char *)data, len);
   3144 	return (0);
   3145 }
   3146 
   3147 struct secasvar *
   3148 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   3149 {
   3150 	struct ip *ip;
   3151 	struct ip6_hdr *ip6;
   3152 
   3153 	ip = mtod(m, struct ip *);
   3154 	switch (ip->ip_v) {
   3155 	case 4:
   3156 		ip = mtod(m, struct ip *);
   3157 		ip6 = NULL;
   3158 		break;
   3159 	case 6:
   3160 		ip = NULL;
   3161 		ip6 = mtod(m, struct ip6_hdr *);
   3162 		break;
   3163 	default:
   3164 		return (NULL);
   3165 	}
   3166 
   3167 #ifdef IPSEC
   3168 	if (ipsec_used) {
   3169 		union sockaddr_union dst;
   3170 		/* Extract the destination from the IP header in the mbuf. */
   3171 		memset(&dst, 0, sizeof(union sockaddr_union));
   3172 		if (ip != NULL) {
   3173 			dst.sa.sa_len = sizeof(struct sockaddr_in);
   3174 			dst.sa.sa_family = AF_INET;
   3175 			dst.sin.sin_addr = ip->ip_dst;
   3176 		} else {
   3177 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3178 			dst.sa.sa_family = AF_INET6;
   3179 			dst.sin6.sin6_addr = ip6->ip6_dst;
   3180 		}
   3181 
   3182 		/*
   3183 		 * Look up an SADB entry which matches the address of the peer.
   3184 		 */
   3185 		return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3186 	}
   3187 	return NULL;
   3188 #else
   3189 	if (ip)
   3190 		return key_allocsa(AF_INET, (void *)&ip->ip_src,
   3191 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   3192 		    htonl(TCP_SIG_SPI), 0, 0);
   3193 	else
   3194 		return key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   3195 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   3196 		    htonl(TCP_SIG_SPI), 0, 0);
   3197 #endif
   3198 }
   3199 
   3200 int
   3201 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3202     struct secasvar *sav, char *sig)
   3203 {
   3204 	MD5_CTX ctx;
   3205 	struct ip *ip;
   3206 	struct ipovly *ipovly;
   3207 #ifdef INET6
   3208 	struct ip6_hdr *ip6;
   3209 	struct ip6_hdr_pseudo ip6pseudo;
   3210 #endif /* INET6 */
   3211 	struct ippseudo ippseudo;
   3212 	struct tcphdr th0;
   3213 	int l, tcphdrlen;
   3214 
   3215 	if (sav == NULL)
   3216 		return (-1);
   3217 
   3218 	tcphdrlen = th->th_off * 4;
   3219 
   3220 	switch (mtod(m, struct ip *)->ip_v) {
   3221 	case 4:
   3222 		MD5Init(&ctx);
   3223 		ip = mtod(m, struct ip *);
   3224 		memset(&ippseudo, 0, sizeof(ippseudo));
   3225 		ipovly = (struct ipovly *)ip;
   3226 		ippseudo.ippseudo_src = ipovly->ih_src;
   3227 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3228 		ippseudo.ippseudo_pad = 0;
   3229 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3230 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3231 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3232 		break;
   3233 #if INET6
   3234 	case 6:
   3235 		MD5Init(&ctx);
   3236 		ip6 = mtod(m, struct ip6_hdr *);
   3237 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3238 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3239 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3240 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3241 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3242 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3243 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3244 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3245 		break;
   3246 #endif /* INET6 */
   3247 	default:
   3248 		return (-1);
   3249 	}
   3250 
   3251 	th0 = *th;
   3252 	th0.th_sum = 0;
   3253 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3254 
   3255 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3256 	if (l > 0)
   3257 		m_apply(m, thoff + tcphdrlen,
   3258 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3259 		    tcp_signature_apply, &ctx);
   3260 
   3261 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3262 	MD5Final(sig, &ctx);
   3263 
   3264 	return (0);
   3265 }
   3266 #endif
   3267 
   3268 /*
   3269  * tcp_dooptions: parse and process tcp options.
   3270  *
   3271  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3272  * otherwise returns 0.
   3273  */
   3274 
   3275 static int
   3276 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3277     struct tcphdr *th,
   3278     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3279 {
   3280 	u_int16_t mss;
   3281 	int opt, optlen = 0;
   3282 #ifdef TCP_SIGNATURE
   3283 	void *sigp = NULL;
   3284 	char sigbuf[TCP_SIGLEN];
   3285 	struct secasvar *sav = NULL;
   3286 #endif
   3287 
   3288 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3289 		opt = cp[0];
   3290 		if (opt == TCPOPT_EOL)
   3291 			break;
   3292 		if (opt == TCPOPT_NOP)
   3293 			optlen = 1;
   3294 		else {
   3295 			if (cnt < 2)
   3296 				break;
   3297 			optlen = cp[1];
   3298 			if (optlen < 2 || optlen > cnt)
   3299 				break;
   3300 		}
   3301 		switch (opt) {
   3302 
   3303 		default:
   3304 			continue;
   3305 
   3306 		case TCPOPT_MAXSEG:
   3307 			if (optlen != TCPOLEN_MAXSEG)
   3308 				continue;
   3309 			if (!(th->th_flags & TH_SYN))
   3310 				continue;
   3311 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3312 				continue;
   3313 			bcopy(cp + 2, &mss, sizeof(mss));
   3314 			oi->maxseg = ntohs(mss);
   3315 			break;
   3316 
   3317 		case TCPOPT_WINDOW:
   3318 			if (optlen != TCPOLEN_WINDOW)
   3319 				continue;
   3320 			if (!(th->th_flags & TH_SYN))
   3321 				continue;
   3322 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3323 				continue;
   3324 			tp->t_flags |= TF_RCVD_SCALE;
   3325 			tp->requested_s_scale = cp[2];
   3326 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3327 				char buf[INET6_ADDRSTRLEN];
   3328 				struct ip *ip = mtod(m, struct ip *);
   3329 #ifdef INET6
   3330 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3331 #endif
   3332 				if (ip)
   3333 					in_print(buf, sizeof(buf),
   3334 					    &ip->ip_src);
   3335 #ifdef INET6
   3336 				else if (ip6)
   3337 					in6_print(buf, sizeof(buf),
   3338 					    &ip6->ip6_src);
   3339 #endif
   3340 				else
   3341 					strlcpy(buf, "(unknown)", sizeof(buf));
   3342 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3343 				    "assuming %d\n",
   3344 				    tp->requested_s_scale, buf,
   3345 				    TCP_MAX_WINSHIFT);
   3346 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3347 			}
   3348 			break;
   3349 
   3350 		case TCPOPT_TIMESTAMP:
   3351 			if (optlen != TCPOLEN_TIMESTAMP)
   3352 				continue;
   3353 			oi->ts_present = 1;
   3354 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3355 			NTOHL(oi->ts_val);
   3356 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3357 			NTOHL(oi->ts_ecr);
   3358 
   3359 			if (!(th->th_flags & TH_SYN))
   3360 				continue;
   3361 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3362 				continue;
   3363 			/*
   3364 			 * A timestamp received in a SYN makes
   3365 			 * it ok to send timestamp requests and replies.
   3366 			 */
   3367 			tp->t_flags |= TF_RCVD_TSTMP;
   3368 			tp->ts_recent = oi->ts_val;
   3369 			tp->ts_recent_age = tcp_now;
   3370                         break;
   3371 
   3372 		case TCPOPT_SACK_PERMITTED:
   3373 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3374 				continue;
   3375 			if (!(th->th_flags & TH_SYN))
   3376 				continue;
   3377 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3378 				continue;
   3379 			if (tcp_do_sack) {
   3380 				tp->t_flags |= TF_SACK_PERMIT;
   3381 				tp->t_flags |= TF_WILL_SACK;
   3382 			}
   3383 			break;
   3384 
   3385 		case TCPOPT_SACK:
   3386 			tcp_sack_option(tp, th, cp, optlen);
   3387 			break;
   3388 #ifdef TCP_SIGNATURE
   3389 		case TCPOPT_SIGNATURE:
   3390 			if (optlen != TCPOLEN_SIGNATURE)
   3391 				continue;
   3392 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3393 				return (-1);
   3394 
   3395 			sigp = sigbuf;
   3396 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3397 			tp->t_flags |= TF_SIGNATURE;
   3398 			break;
   3399 #endif
   3400 		}
   3401 	}
   3402 
   3403 #ifndef TCP_SIGNATURE
   3404 	return 0;
   3405 #else
   3406 	if (tp->t_flags & TF_SIGNATURE) {
   3407 
   3408 		sav = tcp_signature_getsav(m, th);
   3409 
   3410 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3411 			return (-1);
   3412 	}
   3413 
   3414 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3415 		goto out;
   3416 
   3417 	if (sigp) {
   3418 		char sig[TCP_SIGLEN];
   3419 
   3420 		tcp_fields_to_net(th);
   3421 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3422 			tcp_fields_to_host(th);
   3423 			goto out;
   3424 		}
   3425 		tcp_fields_to_host(th);
   3426 
   3427 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3428 			TCP_STATINC(TCP_STAT_BADSIG);
   3429 			goto out;
   3430 		} else
   3431 			TCP_STATINC(TCP_STAT_GOODSIG);
   3432 
   3433 		key_sa_recordxfer(sav, m);
   3434 		KEY_FREESAV(&sav);
   3435 	}
   3436 	return 0;
   3437 out:
   3438 	if (sav != NULL)
   3439 		KEY_FREESAV(&sav);
   3440 	return -1;
   3441 #endif
   3442 }
   3443 
   3444 /*
   3445  * Pull out of band byte out of a segment so
   3446  * it doesn't appear in the user's data queue.
   3447  * It is still reflected in the segment length for
   3448  * sequencing purposes.
   3449  */
   3450 void
   3451 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3452     struct mbuf *m, int off)
   3453 {
   3454 	int cnt = off + th->th_urp - 1;
   3455 
   3456 	while (cnt >= 0) {
   3457 		if (m->m_len > cnt) {
   3458 			char *cp = mtod(m, char *) + cnt;
   3459 			struct tcpcb *tp = sototcpcb(so);
   3460 
   3461 			tp->t_iobc = *cp;
   3462 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3463 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3464 			m->m_len--;
   3465 			return;
   3466 		}
   3467 		cnt -= m->m_len;
   3468 		m = m->m_next;
   3469 		if (m == 0)
   3470 			break;
   3471 	}
   3472 	panic("tcp_pulloutofband");
   3473 }
   3474 
   3475 /*
   3476  * Collect new round-trip time estimate
   3477  * and update averages and current timeout.
   3478  *
   3479  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3480  * difference of two timestamps.
   3481  */
   3482 void
   3483 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3484 {
   3485 	int32_t delta;
   3486 
   3487 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3488 	if (tp->t_srtt != 0) {
   3489 		/*
   3490 		 * Compute the amount to add to srtt for smoothing,
   3491 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3492 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3493 		 * shift left 5 bits, subtract srtt to get the
   3494 		 * diference, and then shift right by TCP_RTT_SHIFT
   3495 		 * (3) to obtain 1/8 of the difference.
   3496 		 */
   3497 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3498 		/*
   3499 		 * This can never happen, because delta's lowest
   3500 		 * possible value is 1/8 of t_srtt.  But if it does,
   3501 		 * set srtt to some reasonable value, here chosen
   3502 		 * as 1/8 tick.
   3503 		 */
   3504 		if ((tp->t_srtt += delta) <= 0)
   3505 			tp->t_srtt = 1 << 2;
   3506 		/*
   3507 		 * RFC2988 requires that rttvar be updated first.
   3508 		 * This code is compliant because "delta" is the old
   3509 		 * srtt minus the new observation (scaled).
   3510 		 *
   3511 		 * RFC2988 says:
   3512 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3513 		 *
   3514 		 * delta is in units of 1/32 ticks, and has then been
   3515 		 * divided by 8.  This is equivalent to being in 1/16s
   3516 		 * units and divided by 4.  Subtract from it 1/4 of
   3517 		 * the existing rttvar to form the (signed) amount to
   3518 		 * adjust.
   3519 		 */
   3520 		if (delta < 0)
   3521 			delta = -delta;
   3522 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3523 		/*
   3524 		 * As with srtt, this should never happen.  There is
   3525 		 * no support in RFC2988 for this operation.  But 1/4s
   3526 		 * as rttvar when faced with something arguably wrong
   3527 		 * is ok.
   3528 		 */
   3529 		if ((tp->t_rttvar += delta) <= 0)
   3530 			tp->t_rttvar = 1 << 2;
   3531 
   3532 		/*
   3533 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3534 		 * Problem is: it doesn't work.  Disabled by defaulting
   3535 		 * tcp_rttlocal to 0; see corresponding code in
   3536 		 * tcp_subr that selects local vs remote in a different way.
   3537 		 *
   3538 		 * The static branch prediction hint here should be removed
   3539 		 * when the rtt estimator is fixed and the rtt_enable code
   3540 		 * is turned back on.
   3541 		 */
   3542 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3543 		    && tp->t_srtt > tcp_msl_remote_threshold
   3544 		    && tp->t_msl  < tcp_msl_remote) {
   3545 			tp->t_msl = tcp_msl_remote;
   3546 		}
   3547 	} else {
   3548 		/*
   3549 		 * This is the first measurement.  Per RFC2988, 2.2,
   3550 		 * set rtt=R and srtt=R/2.
   3551 		 * For srtt, storage representation is 1/32 ticks,
   3552 		 * so shift left by 5.
   3553 		 * For rttvar, storage representation is 1/16 ticks,
   3554 		 * So shift left by 4, but then right by 1 to halve.
   3555 		 */
   3556 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3557 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3558 	}
   3559 	tp->t_rtttime = 0;
   3560 	tp->t_rxtshift = 0;
   3561 
   3562 	/*
   3563 	 * the retransmit should happen at rtt + 4 * rttvar.
   3564 	 * Because of the way we do the smoothing, srtt and rttvar
   3565 	 * will each average +1/2 tick of bias.  When we compute
   3566 	 * the retransmit timer, we want 1/2 tick of rounding and
   3567 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3568 	 * firing of the timer.  The bias will give us exactly the
   3569 	 * 1.5 tick we need.  But, because the bias is
   3570 	 * statistical, we have to test that we don't drop below
   3571 	 * the minimum feasible timer (which is 2 ticks).
   3572 	 */
   3573 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3574 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3575 
   3576 	/*
   3577 	 * We received an ack for a packet that wasn't retransmitted;
   3578 	 * it is probably safe to discard any error indications we've
   3579 	 * received recently.  This isn't quite right, but close enough
   3580 	 * for now (a route might have failed after we sent a segment,
   3581 	 * and the return path might not be symmetrical).
   3582 	 */
   3583 	tp->t_softerror = 0;
   3584 }
   3585 
   3586 
   3587 /*
   3588  * TCP compressed state engine.  Currently used to hold compressed
   3589  * state for SYN_RECEIVED.
   3590  */
   3591 
   3592 u_long	syn_cache_count;
   3593 u_int32_t syn_hash1, syn_hash2;
   3594 
   3595 #define SYN_HASH(sa, sp, dp) \
   3596 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3597 				     ((u_int32_t)(sp)))^syn_hash2)))
   3598 #ifndef INET6
   3599 #define	SYN_HASHALL(hash, src, dst) \
   3600 do {									\
   3601 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3602 		((const struct sockaddr_in *)(src))->sin_port,		\
   3603 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3604 } while (/*CONSTCOND*/ 0)
   3605 #else
   3606 #define SYN_HASH6(sa, sp, dp) \
   3607 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3608 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3609 	 & 0x7fffffff)
   3610 
   3611 #define SYN_HASHALL(hash, src, dst) \
   3612 do {									\
   3613 	switch ((src)->sa_family) {					\
   3614 	case AF_INET:							\
   3615 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3616 			((const struct sockaddr_in *)(src))->sin_port,	\
   3617 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3618 		break;							\
   3619 	case AF_INET6:							\
   3620 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3621 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3622 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3623 		break;							\
   3624 	default:							\
   3625 		hash = 0;						\
   3626 	}								\
   3627 } while (/*CONSTCOND*/0)
   3628 #endif /* INET6 */
   3629 
   3630 static struct pool syn_cache_pool;
   3631 
   3632 /*
   3633  * We don't estimate RTT with SYNs, so each packet starts with the default
   3634  * RTT and each timer step has a fixed timeout value.
   3635  */
   3636 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3637 do {									\
   3638 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3639 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3640 	    TCPTV_REXMTMAX);						\
   3641 	callout_reset(&(sc)->sc_timer,					\
   3642 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3643 } while (/*CONSTCOND*/0)
   3644 
   3645 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3646 
   3647 static inline void
   3648 syn_cache_rm(struct syn_cache *sc)
   3649 {
   3650 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3651 	    sc, sc_bucketq);
   3652 	sc->sc_tp = NULL;
   3653 	LIST_REMOVE(sc, sc_tpq);
   3654 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3655 	callout_stop(&sc->sc_timer);
   3656 	syn_cache_count--;
   3657 }
   3658 
   3659 static inline void
   3660 syn_cache_put(struct syn_cache *sc)
   3661 {
   3662 	if (sc->sc_ipopts)
   3663 		(void) m_free(sc->sc_ipopts);
   3664 	rtcache_free(&sc->sc_route);
   3665 	sc->sc_flags |= SCF_DEAD;
   3666 	if (!callout_invoking(&sc->sc_timer))
   3667 		callout_schedule(&(sc)->sc_timer, 1);
   3668 }
   3669 
   3670 void
   3671 syn_cache_init(void)
   3672 {
   3673 	int i;
   3674 
   3675 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3676 	    "synpl", NULL, IPL_SOFTNET);
   3677 
   3678 	/* Initialize the hash buckets. */
   3679 	for (i = 0; i < tcp_syn_cache_size; i++)
   3680 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3681 }
   3682 
   3683 void
   3684 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3685 {
   3686 	struct syn_cache_head *scp;
   3687 	struct syn_cache *sc2;
   3688 	int s;
   3689 
   3690 	/*
   3691 	 * If there are no entries in the hash table, reinitialize
   3692 	 * the hash secrets.
   3693 	 */
   3694 	if (syn_cache_count == 0) {
   3695 		syn_hash1 = cprng_fast32();
   3696 		syn_hash2 = cprng_fast32();
   3697 	}
   3698 
   3699 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3700 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3701 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3702 
   3703 	/*
   3704 	 * Make sure that we don't overflow the per-bucket
   3705 	 * limit or the total cache size limit.
   3706 	 */
   3707 	s = splsoftnet();
   3708 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3709 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3710 		/*
   3711 		 * The bucket is full.  Toss the oldest element in the
   3712 		 * bucket.  This will be the first entry in the bucket.
   3713 		 */
   3714 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3715 #ifdef DIAGNOSTIC
   3716 		/*
   3717 		 * This should never happen; we should always find an
   3718 		 * entry in our bucket.
   3719 		 */
   3720 		if (sc2 == NULL)
   3721 			panic("syn_cache_insert: bucketoverflow: impossible");
   3722 #endif
   3723 		syn_cache_rm(sc2);
   3724 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3725 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3726 		struct syn_cache_head *scp2, *sce;
   3727 
   3728 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3729 		/*
   3730 		 * The cache is full.  Toss the oldest entry in the
   3731 		 * first non-empty bucket we can find.
   3732 		 *
   3733 		 * XXX We would really like to toss the oldest
   3734 		 * entry in the cache, but we hope that this
   3735 		 * condition doesn't happen very often.
   3736 		 */
   3737 		scp2 = scp;
   3738 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3739 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3740 			for (++scp2; scp2 != scp; scp2++) {
   3741 				if (scp2 >= sce)
   3742 					scp2 = &tcp_syn_cache[0];
   3743 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3744 					break;
   3745 			}
   3746 #ifdef DIAGNOSTIC
   3747 			/*
   3748 			 * This should never happen; we should always find a
   3749 			 * non-empty bucket.
   3750 			 */
   3751 			if (scp2 == scp)
   3752 				panic("syn_cache_insert: cacheoverflow: "
   3753 				    "impossible");
   3754 #endif
   3755 		}
   3756 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3757 		syn_cache_rm(sc2);
   3758 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3759 	}
   3760 
   3761 	/*
   3762 	 * Initialize the entry's timer.
   3763 	 */
   3764 	sc->sc_rxttot = 0;
   3765 	sc->sc_rxtshift = 0;
   3766 	SYN_CACHE_TIMER_ARM(sc);
   3767 
   3768 	/* Link it from tcpcb entry */
   3769 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3770 
   3771 	/* Put it into the bucket. */
   3772 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3773 	scp->sch_length++;
   3774 	syn_cache_count++;
   3775 
   3776 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3777 	splx(s);
   3778 }
   3779 
   3780 /*
   3781  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3782  * If we have retransmitted an entry the maximum number of times, expire
   3783  * that entry.
   3784  */
   3785 void
   3786 syn_cache_timer(void *arg)
   3787 {
   3788 	struct syn_cache *sc = arg;
   3789 
   3790 	mutex_enter(softnet_lock);
   3791 	KERNEL_LOCK(1, NULL);
   3792 	callout_ack(&sc->sc_timer);
   3793 
   3794 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3795 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3796 		callout_destroy(&sc->sc_timer);
   3797 		pool_put(&syn_cache_pool, sc);
   3798 		KERNEL_UNLOCK_ONE(NULL);
   3799 		mutex_exit(softnet_lock);
   3800 		return;
   3801 	}
   3802 
   3803 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3804 		/* Drop it -- too many retransmissions. */
   3805 		goto dropit;
   3806 	}
   3807 
   3808 	/*
   3809 	 * Compute the total amount of time this entry has
   3810 	 * been on a queue.  If this entry has been on longer
   3811 	 * than the keep alive timer would allow, expire it.
   3812 	 */
   3813 	sc->sc_rxttot += sc->sc_rxtcur;
   3814 	if (sc->sc_rxttot >= tcp_keepinit)
   3815 		goto dropit;
   3816 
   3817 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3818 	(void) syn_cache_respond(sc, NULL);
   3819 
   3820 	/* Advance the timer back-off. */
   3821 	sc->sc_rxtshift++;
   3822 	SYN_CACHE_TIMER_ARM(sc);
   3823 
   3824 	KERNEL_UNLOCK_ONE(NULL);
   3825 	mutex_exit(softnet_lock);
   3826 	return;
   3827 
   3828  dropit:
   3829 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3830 	syn_cache_rm(sc);
   3831 	if (sc->sc_ipopts)
   3832 		(void) m_free(sc->sc_ipopts);
   3833 	rtcache_free(&sc->sc_route);
   3834 	callout_destroy(&sc->sc_timer);
   3835 	pool_put(&syn_cache_pool, sc);
   3836 	KERNEL_UNLOCK_ONE(NULL);
   3837 	mutex_exit(softnet_lock);
   3838 }
   3839 
   3840 /*
   3841  * Remove syn cache created by the specified tcb entry,
   3842  * because this does not make sense to keep them
   3843  * (if there's no tcb entry, syn cache entry will never be used)
   3844  */
   3845 void
   3846 syn_cache_cleanup(struct tcpcb *tp)
   3847 {
   3848 	struct syn_cache *sc, *nsc;
   3849 	int s;
   3850 
   3851 	s = splsoftnet();
   3852 
   3853 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3854 		nsc = LIST_NEXT(sc, sc_tpq);
   3855 
   3856 #ifdef DIAGNOSTIC
   3857 		if (sc->sc_tp != tp)
   3858 			panic("invalid sc_tp in syn_cache_cleanup");
   3859 #endif
   3860 		syn_cache_rm(sc);
   3861 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3862 	}
   3863 	/* just for safety */
   3864 	LIST_INIT(&tp->t_sc);
   3865 
   3866 	splx(s);
   3867 }
   3868 
   3869 /*
   3870  * Find an entry in the syn cache.
   3871  */
   3872 struct syn_cache *
   3873 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3874     struct syn_cache_head **headp)
   3875 {
   3876 	struct syn_cache *sc;
   3877 	struct syn_cache_head *scp;
   3878 	u_int32_t hash;
   3879 	int s;
   3880 
   3881 	SYN_HASHALL(hash, src, dst);
   3882 
   3883 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3884 	*headp = scp;
   3885 	s = splsoftnet();
   3886 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3887 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3888 		if (sc->sc_hash != hash)
   3889 			continue;
   3890 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3891 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3892 			splx(s);
   3893 			return (sc);
   3894 		}
   3895 	}
   3896 	splx(s);
   3897 	return (NULL);
   3898 }
   3899 
   3900 /*
   3901  * This function gets called when we receive an ACK for a
   3902  * socket in the LISTEN state.  We look up the connection
   3903  * in the syn cache, and if its there, we pull it out of
   3904  * the cache and turn it into a full-blown connection in
   3905  * the SYN-RECEIVED state.
   3906  *
   3907  * The return values may not be immediately obvious, and their effects
   3908  * can be subtle, so here they are:
   3909  *
   3910  *	NULL	SYN was not found in cache; caller should drop the
   3911  *		packet and send an RST.
   3912  *
   3913  *	-1	We were unable to create the new connection, and are
   3914  *		aborting it.  An ACK,RST is being sent to the peer
   3915  *		(unless we got screwey sequence numbners; see below),
   3916  *		because the 3-way handshake has been completed.  Caller
   3917  *		should not free the mbuf, since we may be using it.  If
   3918  *		we are not, we will free it.
   3919  *
   3920  *	Otherwise, the return value is a pointer to the new socket
   3921  *	associated with the connection.
   3922  */
   3923 struct socket *
   3924 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3925     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3926     struct socket *so, struct mbuf *m)
   3927 {
   3928 	struct syn_cache *sc;
   3929 	struct syn_cache_head *scp;
   3930 	struct inpcb *inp = NULL;
   3931 #ifdef INET6
   3932 	struct in6pcb *in6p = NULL;
   3933 #endif
   3934 	struct tcpcb *tp = 0;
   3935 	int s;
   3936 	struct socket *oso;
   3937 
   3938 	s = splsoftnet();
   3939 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3940 		splx(s);
   3941 		return (NULL);
   3942 	}
   3943 
   3944 	/*
   3945 	 * Verify the sequence and ack numbers.  Try getting the correct
   3946 	 * response again.
   3947 	 */
   3948 	if ((th->th_ack != sc->sc_iss + 1) ||
   3949 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3950 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3951 		(void) syn_cache_respond(sc, m);
   3952 		splx(s);
   3953 		return ((struct socket *)(-1));
   3954 	}
   3955 
   3956 	/* Remove this cache entry */
   3957 	syn_cache_rm(sc);
   3958 	splx(s);
   3959 
   3960 	/*
   3961 	 * Ok, create the full blown connection, and set things up
   3962 	 * as they would have been set up if we had created the
   3963 	 * connection when the SYN arrived.  If we can't create
   3964 	 * the connection, abort it.
   3965 	 */
   3966 	/*
   3967 	 * inp still has the OLD in_pcb stuff, set the
   3968 	 * v6-related flags on the new guy, too.   This is
   3969 	 * done particularly for the case where an AF_INET6
   3970 	 * socket is bound only to a port, and a v4 connection
   3971 	 * comes in on that port.
   3972 	 * we also copy the flowinfo from the original pcb
   3973 	 * to the new one.
   3974 	 */
   3975 	oso = so;
   3976 	so = sonewconn(so, true);
   3977 	if (so == NULL)
   3978 		goto resetandabort;
   3979 
   3980 	switch (so->so_proto->pr_domain->dom_family) {
   3981 #ifdef INET
   3982 	case AF_INET:
   3983 		inp = sotoinpcb(so);
   3984 		break;
   3985 #endif
   3986 #ifdef INET6
   3987 	case AF_INET6:
   3988 		in6p = sotoin6pcb(so);
   3989 		break;
   3990 #endif
   3991 	}
   3992 	switch (src->sa_family) {
   3993 #ifdef INET
   3994 	case AF_INET:
   3995 		if (inp) {
   3996 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3997 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3998 			inp->inp_options = ip_srcroute();
   3999 			in_pcbstate(inp, INP_BOUND);
   4000 			if (inp->inp_options == NULL) {
   4001 				inp->inp_options = sc->sc_ipopts;
   4002 				sc->sc_ipopts = NULL;
   4003 			}
   4004 		}
   4005 #ifdef INET6
   4006 		else if (in6p) {
   4007 			/* IPv4 packet to AF_INET6 socket */
   4008 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   4009 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   4010 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   4011 				&in6p->in6p_laddr.s6_addr32[3],
   4012 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   4013 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   4014 			in6totcpcb(in6p)->t_family = AF_INET;
   4015 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   4016 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   4017 			else
   4018 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   4019 			in6_pcbstate(in6p, IN6P_BOUND);
   4020 		}
   4021 #endif
   4022 		break;
   4023 #endif
   4024 #ifdef INET6
   4025 	case AF_INET6:
   4026 		if (in6p) {
   4027 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   4028 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   4029 			in6_pcbstate(in6p, IN6P_BOUND);
   4030 		}
   4031 		break;
   4032 #endif
   4033 	}
   4034 #ifdef INET6
   4035 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   4036 		struct in6pcb *oin6p = sotoin6pcb(oso);
   4037 		/* inherit socket options from the listening socket */
   4038 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   4039 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   4040 			m_freem(in6p->in6p_options);
   4041 			in6p->in6p_options = 0;
   4042 		}
   4043 		ip6_savecontrol(in6p, &in6p->in6p_options,
   4044 			mtod(m, struct ip6_hdr *), m);
   4045 	}
   4046 #endif
   4047 
   4048 #if defined(IPSEC)
   4049 	if (ipsec_used) {
   4050 		/*
   4051 		 * we make a copy of policy, instead of sharing the policy, for
   4052 		 * better behavior in terms of SA lookup and dead SA removal.
   4053 		 */
   4054 		if (inp) {
   4055 			/* copy old policy into new socket's */
   4056 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
   4057 			    inp->inp_sp))
   4058 				printf("tcp_input: could not copy policy\n");
   4059 		}
   4060 #ifdef INET6
   4061 		else if (in6p) {
   4062 			/* copy old policy into new socket's */
   4063 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   4064 			    in6p->in6p_sp))
   4065 				printf("tcp_input: could not copy policy\n");
   4066 		}
   4067 #endif
   4068 	}
   4069 #endif
   4070 
   4071 	/*
   4072 	 * Give the new socket our cached route reference.
   4073 	 */
   4074 	if (inp) {
   4075 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   4076 		rtcache_free(&sc->sc_route);
   4077 	}
   4078 #ifdef INET6
   4079 	else {
   4080 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   4081 		rtcache_free(&sc->sc_route);
   4082 	}
   4083 #endif
   4084 
   4085 	if (inp) {
   4086 		struct sockaddr_in sin;
   4087 		memcpy(&sin, src, src->sa_len);
   4088 		if (in_pcbconnect(inp, &sin, &lwp0)) {
   4089 			goto resetandabort;
   4090 		}
   4091 	}
   4092 #ifdef INET6
   4093 	else if (in6p) {
   4094 		struct sockaddr_in6 sin6;
   4095 		memcpy(&sin6, src, src->sa_len);
   4096 		if (src->sa_family == AF_INET) {
   4097 			/* IPv4 packet to AF_INET6 socket */
   4098 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
   4099 		}
   4100 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
   4101 			goto resetandabort;
   4102 		}
   4103 	}
   4104 #endif
   4105 	else {
   4106 		goto resetandabort;
   4107 	}
   4108 
   4109 	if (inp)
   4110 		tp = intotcpcb(inp);
   4111 #ifdef INET6
   4112 	else if (in6p)
   4113 		tp = in6totcpcb(in6p);
   4114 #endif
   4115 	else
   4116 		tp = NULL;
   4117 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   4118 	if (sc->sc_request_r_scale != 15) {
   4119 		tp->requested_s_scale = sc->sc_requested_s_scale;
   4120 		tp->request_r_scale = sc->sc_request_r_scale;
   4121 		tp->snd_scale = sc->sc_requested_s_scale;
   4122 		tp->rcv_scale = sc->sc_request_r_scale;
   4123 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   4124 	}
   4125 	if (sc->sc_flags & SCF_TIMESTAMP)
   4126 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   4127 	tp->ts_timebase = sc->sc_timebase;
   4128 
   4129 	tp->t_template = tcp_template(tp);
   4130 	if (tp->t_template == 0) {
   4131 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   4132 		so = NULL;
   4133 		m_freem(m);
   4134 		goto abort;
   4135 	}
   4136 
   4137 	tp->iss = sc->sc_iss;
   4138 	tp->irs = sc->sc_irs;
   4139 	tcp_sendseqinit(tp);
   4140 	tcp_rcvseqinit(tp);
   4141 	tp->t_state = TCPS_SYN_RECEIVED;
   4142 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4143 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4144 
   4145 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4146 		tp->t_flags |= TF_WILL_SACK;
   4147 
   4148 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4149 		tp->t_flags |= TF_ECN_PERMIT;
   4150 
   4151 #ifdef TCP_SIGNATURE
   4152 	if (sc->sc_flags & SCF_SIGNATURE)
   4153 		tp->t_flags |= TF_SIGNATURE;
   4154 #endif
   4155 
   4156 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4157 	tp->t_ourmss = sc->sc_ourmaxseg;
   4158 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4159 
   4160 	/*
   4161 	 * Initialize the initial congestion window.  If we
   4162 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4163 	 * to 1 segment (i.e. the Loss Window).
   4164 	 */
   4165 	if (sc->sc_rxtshift)
   4166 		tp->snd_cwnd = tp->t_peermss;
   4167 	else {
   4168 		int ss = tcp_init_win;
   4169 #ifdef INET
   4170 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4171 			ss = tcp_init_win_local;
   4172 #endif
   4173 #ifdef INET6
   4174 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4175 			ss = tcp_init_win_local;
   4176 #endif
   4177 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4178 	}
   4179 
   4180 	tcp_rmx_rtt(tp);
   4181 	tp->snd_wl1 = sc->sc_irs;
   4182 	tp->rcv_up = sc->sc_irs + 1;
   4183 
   4184 	/*
   4185 	 * This is what whould have happened in tcp_output() when
   4186 	 * the SYN,ACK was sent.
   4187 	 */
   4188 	tp->snd_up = tp->snd_una;
   4189 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4190 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4191 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4192 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4193 	tp->last_ack_sent = tp->rcv_nxt;
   4194 	tp->t_partialacks = -1;
   4195 	tp->t_dupacks = 0;
   4196 
   4197 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4198 	s = splsoftnet();
   4199 	syn_cache_put(sc);
   4200 	splx(s);
   4201 	return (so);
   4202 
   4203 resetandabort:
   4204 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4205 abort:
   4206 	if (so != NULL) {
   4207 		(void) soqremque(so, 1);
   4208 		(void) soabort(so);
   4209 		mutex_enter(softnet_lock);
   4210 	}
   4211 	s = splsoftnet();
   4212 	syn_cache_put(sc);
   4213 	splx(s);
   4214 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4215 	return ((struct socket *)(-1));
   4216 }
   4217 
   4218 /*
   4219  * This function is called when we get a RST for a
   4220  * non-existent connection, so that we can see if the
   4221  * connection is in the syn cache.  If it is, zap it.
   4222  */
   4223 
   4224 void
   4225 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4226 {
   4227 	struct syn_cache *sc;
   4228 	struct syn_cache_head *scp;
   4229 	int s = splsoftnet();
   4230 
   4231 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4232 		splx(s);
   4233 		return;
   4234 	}
   4235 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4236 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4237 		splx(s);
   4238 		return;
   4239 	}
   4240 	syn_cache_rm(sc);
   4241 	TCP_STATINC(TCP_STAT_SC_RESET);
   4242 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4243 	splx(s);
   4244 }
   4245 
   4246 void
   4247 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4248     struct tcphdr *th)
   4249 {
   4250 	struct syn_cache *sc;
   4251 	struct syn_cache_head *scp;
   4252 	int s;
   4253 
   4254 	s = splsoftnet();
   4255 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4256 		splx(s);
   4257 		return;
   4258 	}
   4259 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4260 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4261 		splx(s);
   4262 		return;
   4263 	}
   4264 
   4265 	/*
   4266 	 * If we've retransmitted 3 times and this is our second error,
   4267 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4268 	 * This prevents us from incorrectly nuking an entry during a
   4269 	 * spurious network outage.
   4270 	 *
   4271 	 * See tcp_notify().
   4272 	 */
   4273 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4274 		sc->sc_flags |= SCF_UNREACH;
   4275 		splx(s);
   4276 		return;
   4277 	}
   4278 
   4279 	syn_cache_rm(sc);
   4280 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4281 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4282 	splx(s);
   4283 }
   4284 
   4285 /*
   4286  * Given a LISTEN socket and an inbound SYN request, add
   4287  * this to the syn cache, and send back a segment:
   4288  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4289  * to the source.
   4290  *
   4291  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4292  * Doing so would require that we hold onto the data and deliver it
   4293  * to the application.  However, if we are the target of a SYN-flood
   4294  * DoS attack, an attacker could send data which would eventually
   4295  * consume all available buffer space if it were ACKed.  By not ACKing
   4296  * the data, we avoid this DoS scenario.
   4297  */
   4298 
   4299 int
   4300 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4301     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4302     int optlen, struct tcp_opt_info *oi)
   4303 {
   4304 	struct tcpcb tb, *tp;
   4305 	long win;
   4306 	struct syn_cache *sc;
   4307 	struct syn_cache_head *scp;
   4308 	struct mbuf *ipopts;
   4309 	struct tcp_opt_info opti;
   4310 	int s;
   4311 
   4312 	tp = sototcpcb(so);
   4313 
   4314 	memset(&opti, 0, sizeof(opti));
   4315 
   4316 	/*
   4317 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4318 	 *
   4319 	 * Note this check is performed in tcp_input() very early on.
   4320 	 */
   4321 
   4322 	/*
   4323 	 * Initialize some local state.
   4324 	 */
   4325 	win = sbspace(&so->so_rcv);
   4326 	if (win > TCP_MAXWIN)
   4327 		win = TCP_MAXWIN;
   4328 
   4329 	switch (src->sa_family) {
   4330 #ifdef INET
   4331 	case AF_INET:
   4332 		/*
   4333 		 * Remember the IP options, if any.
   4334 		 */
   4335 		ipopts = ip_srcroute();
   4336 		break;
   4337 #endif
   4338 	default:
   4339 		ipopts = NULL;
   4340 	}
   4341 
   4342 #ifdef TCP_SIGNATURE
   4343 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4344 #else
   4345 	if (optp)
   4346 #endif
   4347 	{
   4348 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4349 #ifdef TCP_SIGNATURE
   4350 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4351 #endif
   4352 		tb.t_state = TCPS_LISTEN;
   4353 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4354 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4355 			return (0);
   4356 	} else
   4357 		tb.t_flags = 0;
   4358 
   4359 	/*
   4360 	 * See if we already have an entry for this connection.
   4361 	 * If we do, resend the SYN,ACK.  We do not count this
   4362 	 * as a retransmission (XXX though maybe we should).
   4363 	 */
   4364 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4365 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4366 		if (ipopts) {
   4367 			/*
   4368 			 * If we were remembering a previous source route,
   4369 			 * forget it and use the new one we've been given.
   4370 			 */
   4371 			if (sc->sc_ipopts)
   4372 				(void) m_free(sc->sc_ipopts);
   4373 			sc->sc_ipopts = ipopts;
   4374 		}
   4375 		sc->sc_timestamp = tb.ts_recent;
   4376 		if (syn_cache_respond(sc, m) == 0) {
   4377 			uint64_t *tcps = TCP_STAT_GETREF();
   4378 			tcps[TCP_STAT_SNDACKS]++;
   4379 			tcps[TCP_STAT_SNDTOTAL]++;
   4380 			TCP_STAT_PUTREF();
   4381 		}
   4382 		return (1);
   4383 	}
   4384 
   4385 	s = splsoftnet();
   4386 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4387 	splx(s);
   4388 	if (sc == NULL) {
   4389 		if (ipopts)
   4390 			(void) m_free(ipopts);
   4391 		return (0);
   4392 	}
   4393 
   4394 	/*
   4395 	 * Fill in the cache, and put the necessary IP and TCP
   4396 	 * options into the reply.
   4397 	 */
   4398 	memset(sc, 0, sizeof(struct syn_cache));
   4399 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4400 	bcopy(src, &sc->sc_src, src->sa_len);
   4401 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4402 	sc->sc_flags = 0;
   4403 	sc->sc_ipopts = ipopts;
   4404 	sc->sc_irs = th->th_seq;
   4405 	switch (src->sa_family) {
   4406 #ifdef INET
   4407 	case AF_INET:
   4408 	    {
   4409 		struct sockaddr_in *srcin = (void *) src;
   4410 		struct sockaddr_in *dstin = (void *) dst;
   4411 
   4412 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4413 		    &srcin->sin_addr, dstin->sin_port,
   4414 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4415 		break;
   4416 	    }
   4417 #endif /* INET */
   4418 #ifdef INET6
   4419 	case AF_INET6:
   4420 	    {
   4421 		struct sockaddr_in6 *srcin6 = (void *) src;
   4422 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4423 
   4424 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4425 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4426 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4427 		break;
   4428 	    }
   4429 #endif /* INET6 */
   4430 	}
   4431 	sc->sc_peermaxseg = oi->maxseg;
   4432 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4433 						m_get_rcvif_NOMPSAFE(m) : NULL,
   4434 						sc->sc_src.sa.sa_family);
   4435 	sc->sc_win = win;
   4436 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4437 	sc->sc_timestamp = tb.ts_recent;
   4438 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4439 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4440 		sc->sc_flags |= SCF_TIMESTAMP;
   4441 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4442 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4443 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4444 		sc->sc_request_r_scale = 0;
   4445 		/*
   4446 		 * Pick the smallest possible scaling factor that
   4447 		 * will still allow us to scale up to sb_max.
   4448 		 *
   4449 		 * We do this because there are broken firewalls that
   4450 		 * will corrupt the window scale option, leading to
   4451 		 * the other endpoint believing that our advertised
   4452 		 * window is unscaled.  At scale factors larger than
   4453 		 * 5 the unscaled window will drop below 1500 bytes,
   4454 		 * leading to serious problems when traversing these
   4455 		 * broken firewalls.
   4456 		 *
   4457 		 * With the default sbmax of 256K, a scale factor
   4458 		 * of 3 will be chosen by this algorithm.  Those who
   4459 		 * choose a larger sbmax should watch out
   4460 		 * for the compatiblity problems mentioned above.
   4461 		 *
   4462 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4463 		 * or <SYN,ACK>) segment itself is never scaled.
   4464 		 */
   4465 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4466 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4467 			sc->sc_request_r_scale++;
   4468 	} else {
   4469 		sc->sc_requested_s_scale = 15;
   4470 		sc->sc_request_r_scale = 15;
   4471 	}
   4472 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4473 		sc->sc_flags |= SCF_SACK_PERMIT;
   4474 
   4475 	/*
   4476 	 * ECN setup packet recieved.
   4477 	 */
   4478 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4479 		sc->sc_flags |= SCF_ECN_PERMIT;
   4480 
   4481 #ifdef TCP_SIGNATURE
   4482 	if (tb.t_flags & TF_SIGNATURE)
   4483 		sc->sc_flags |= SCF_SIGNATURE;
   4484 #endif
   4485 	sc->sc_tp = tp;
   4486 	if (syn_cache_respond(sc, m) == 0) {
   4487 		uint64_t *tcps = TCP_STAT_GETREF();
   4488 		tcps[TCP_STAT_SNDACKS]++;
   4489 		tcps[TCP_STAT_SNDTOTAL]++;
   4490 		TCP_STAT_PUTREF();
   4491 		syn_cache_insert(sc, tp);
   4492 	} else {
   4493 		s = splsoftnet();
   4494 		/*
   4495 		 * syn_cache_put() will try to schedule the timer, so
   4496 		 * we need to initialize it
   4497 		 */
   4498 		SYN_CACHE_TIMER_ARM(sc);
   4499 		syn_cache_put(sc);
   4500 		splx(s);
   4501 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4502 	}
   4503 	return (1);
   4504 }
   4505 
   4506 /*
   4507  * syn_cache_respond: (re)send SYN+ACK.
   4508  *
   4509  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
   4510  */
   4511 
   4512 int
   4513 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4514 {
   4515 #ifdef INET6
   4516 	struct rtentry *rt;
   4517 #endif
   4518 	struct route *ro;
   4519 	u_int8_t *optp;
   4520 	int optlen, error;
   4521 	u_int16_t tlen;
   4522 	struct ip *ip = NULL;
   4523 #ifdef INET6
   4524 	struct ip6_hdr *ip6 = NULL;
   4525 #endif
   4526 	struct tcpcb *tp = NULL;
   4527 	struct tcphdr *th;
   4528 	u_int hlen;
   4529 	struct socket *so;
   4530 
   4531 	ro = &sc->sc_route;
   4532 	switch (sc->sc_src.sa.sa_family) {
   4533 	case AF_INET:
   4534 		hlen = sizeof(struct ip);
   4535 		break;
   4536 #ifdef INET6
   4537 	case AF_INET6:
   4538 		hlen = sizeof(struct ip6_hdr);
   4539 		break;
   4540 #endif
   4541 	default:
   4542 		if (m)
   4543 			m_freem(m);
   4544 		return (EAFNOSUPPORT);
   4545 	}
   4546 
   4547 	/* Compute the size of the TCP options. */
   4548 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4549 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4550 #ifdef TCP_SIGNATURE
   4551 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4552 #endif
   4553 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4554 
   4555 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4556 
   4557 	/*
   4558 	 * Create the IP+TCP header from scratch.
   4559 	 */
   4560 	if (m)
   4561 		m_freem(m);
   4562 #ifdef DIAGNOSTIC
   4563 	if (max_linkhdr + tlen > MCLBYTES)
   4564 		return (ENOBUFS);
   4565 #endif
   4566 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4567 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4568 		MCLGET(m, M_DONTWAIT);
   4569 		if ((m->m_flags & M_EXT) == 0) {
   4570 			m_freem(m);
   4571 			m = NULL;
   4572 		}
   4573 	}
   4574 	if (m == NULL)
   4575 		return (ENOBUFS);
   4576 	MCLAIM(m, &tcp_tx_mowner);
   4577 
   4578 	/* Fixup the mbuf. */
   4579 	m->m_data += max_linkhdr;
   4580 	m->m_len = m->m_pkthdr.len = tlen;
   4581 	if (sc->sc_tp) {
   4582 		tp = sc->sc_tp;
   4583 		if (tp->t_inpcb)
   4584 			so = tp->t_inpcb->inp_socket;
   4585 #ifdef INET6
   4586 		else if (tp->t_in6pcb)
   4587 			so = tp->t_in6pcb->in6p_socket;
   4588 #endif
   4589 		else
   4590 			so = NULL;
   4591 	} else
   4592 		so = NULL;
   4593 	m_reset_rcvif(m);
   4594 	memset(mtod(m, u_char *), 0, tlen);
   4595 
   4596 	switch (sc->sc_src.sa.sa_family) {
   4597 	case AF_INET:
   4598 		ip = mtod(m, struct ip *);
   4599 		ip->ip_v = 4;
   4600 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4601 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4602 		ip->ip_p = IPPROTO_TCP;
   4603 		th = (struct tcphdr *)(ip + 1);
   4604 		th->th_dport = sc->sc_src.sin.sin_port;
   4605 		th->th_sport = sc->sc_dst.sin.sin_port;
   4606 		break;
   4607 #ifdef INET6
   4608 	case AF_INET6:
   4609 		ip6 = mtod(m, struct ip6_hdr *);
   4610 		ip6->ip6_vfc = IPV6_VERSION;
   4611 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4612 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4613 		ip6->ip6_nxt = IPPROTO_TCP;
   4614 		/* ip6_plen will be updated in ip6_output() */
   4615 		th = (struct tcphdr *)(ip6 + 1);
   4616 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4617 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4618 		break;
   4619 #endif
   4620 	default:
   4621 		th = NULL;
   4622 	}
   4623 
   4624 	th->th_seq = htonl(sc->sc_iss);
   4625 	th->th_ack = htonl(sc->sc_irs + 1);
   4626 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4627 	th->th_flags = TH_SYN|TH_ACK;
   4628 	th->th_win = htons(sc->sc_win);
   4629 	/* th_sum already 0 */
   4630 	/* th_urp already 0 */
   4631 
   4632 	/* Tack on the TCP options. */
   4633 	optp = (u_int8_t *)(th + 1);
   4634 	*optp++ = TCPOPT_MAXSEG;
   4635 	*optp++ = 4;
   4636 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4637 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4638 
   4639 	if (sc->sc_request_r_scale != 15) {
   4640 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4641 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4642 		    sc->sc_request_r_scale);
   4643 		optp += 4;
   4644 	}
   4645 
   4646 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4647 		u_int32_t *lp = (u_int32_t *)(optp);
   4648 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4649 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4650 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4651 		*lp   = htonl(sc->sc_timestamp);
   4652 		optp += TCPOLEN_TSTAMP_APPA;
   4653 	}
   4654 
   4655 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4656 		u_int8_t *p = optp;
   4657 
   4658 		/* Let the peer know that we will SACK. */
   4659 		p[0] = TCPOPT_SACK_PERMITTED;
   4660 		p[1] = 2;
   4661 		p[2] = TCPOPT_NOP;
   4662 		p[3] = TCPOPT_NOP;
   4663 		optp += 4;
   4664 	}
   4665 
   4666 	/*
   4667 	 * Send ECN SYN-ACK setup packet.
   4668 	 * Routes can be asymetric, so, even if we receive a packet
   4669 	 * with ECE and CWR set, we must not assume no one will block
   4670 	 * the ECE packet we are about to send.
   4671 	 */
   4672 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4673 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4674 		th->th_flags |= TH_ECE;
   4675 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4676 
   4677 		/*
   4678 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4679 		 *
   4680 		 * "[...] a TCP node MAY respond to an ECN-setup
   4681 		 * SYN packet by setting ECT in the responding
   4682 		 * ECN-setup SYN/ACK packet, indicating to routers
   4683 		 * that the SYN/ACK packet is ECN-Capable.
   4684 		 * This allows a congested router along the path
   4685 		 * to mark the packet instead of dropping the
   4686 		 * packet as an indication of congestion."
   4687 		 *
   4688 		 * "[...] There can be a great benefit in setting
   4689 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4690 		 * Congestion is  most likely to occur in
   4691 		 * the server-to-client direction.  As a result,
   4692 		 * setting an ECN-capable codepoint in SYN/ACK
   4693 		 * packets can reduce the occurence of three-second
   4694 		 * retransmit timeouts resulting from the drop
   4695 		 * of SYN/ACK packets."
   4696 		 *
   4697 		 * Page 4 and 6, January 2006.
   4698 		 */
   4699 
   4700 		switch (sc->sc_src.sa.sa_family) {
   4701 #ifdef INET
   4702 		case AF_INET:
   4703 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4704 			break;
   4705 #endif
   4706 #ifdef INET6
   4707 		case AF_INET6:
   4708 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4709 			break;
   4710 #endif
   4711 		}
   4712 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4713 	}
   4714 
   4715 #ifdef TCP_SIGNATURE
   4716 	if (sc->sc_flags & SCF_SIGNATURE) {
   4717 		struct secasvar *sav;
   4718 		u_int8_t *sigp;
   4719 
   4720 		sav = tcp_signature_getsav(m, th);
   4721 
   4722 		if (sav == NULL) {
   4723 			if (m)
   4724 				m_freem(m);
   4725 			return (EPERM);
   4726 		}
   4727 
   4728 		*optp++ = TCPOPT_SIGNATURE;
   4729 		*optp++ = TCPOLEN_SIGNATURE;
   4730 		sigp = optp;
   4731 		memset(optp, 0, TCP_SIGLEN);
   4732 		optp += TCP_SIGLEN;
   4733 		*optp++ = TCPOPT_NOP;
   4734 		*optp++ = TCPOPT_EOL;
   4735 
   4736 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4737 
   4738 		key_sa_recordxfer(sav, m);
   4739 		KEY_FREESAV(&sav);
   4740 	}
   4741 #endif
   4742 
   4743 	/* Compute the packet's checksum. */
   4744 	switch (sc->sc_src.sa.sa_family) {
   4745 	case AF_INET:
   4746 		ip->ip_len = htons(tlen - hlen);
   4747 		th->th_sum = 0;
   4748 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4749 		break;
   4750 #ifdef INET6
   4751 	case AF_INET6:
   4752 		ip6->ip6_plen = htons(tlen - hlen);
   4753 		th->th_sum = 0;
   4754 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4755 		break;
   4756 #endif
   4757 	}
   4758 
   4759 	/*
   4760 	 * Fill in some straggling IP bits.  Note the stack expects
   4761 	 * ip_len to be in host order, for convenience.
   4762 	 */
   4763 	switch (sc->sc_src.sa.sa_family) {
   4764 #ifdef INET
   4765 	case AF_INET:
   4766 		ip->ip_len = htons(tlen);
   4767 		ip->ip_ttl = ip_defttl;
   4768 		/* XXX tos? */
   4769 		break;
   4770 #endif
   4771 #ifdef INET6
   4772 	case AF_INET6:
   4773 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4774 		ip6->ip6_vfc |= IPV6_VERSION;
   4775 		ip6->ip6_plen = htons(tlen - hlen);
   4776 		/* ip6_hlim will be initialized afterwards */
   4777 		/* XXX flowlabel? */
   4778 		break;
   4779 #endif
   4780 	}
   4781 
   4782 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4783 	tp = sc->sc_tp;
   4784 
   4785 	switch (sc->sc_src.sa.sa_family) {
   4786 #ifdef INET
   4787 	case AF_INET:
   4788 		error = ip_output(m, sc->sc_ipopts, ro,
   4789 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4790 		    NULL, so);
   4791 		break;
   4792 #endif
   4793 #ifdef INET6
   4794 	case AF_INET6:
   4795 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4796 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
   4797 
   4798 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4799 		break;
   4800 #endif
   4801 	default:
   4802 		error = EAFNOSUPPORT;
   4803 		break;
   4804 	}
   4805 	return (error);
   4806 }
   4807