Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.350
      1 /*	$NetBSD: tcp_input.c,v 1.350 2016/12/08 05:16:33 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.350 2016/12/08 05:16:33 ozaki-r Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_inet.h"
    155 #include "opt_ipsec.h"
    156 #include "opt_inet_csum.h"
    157 #include "opt_tcp_debug.h"
    158 #endif
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 #include <sys/lwp.h> /* for lwp0 */
    176 #include <sys/cprng.h>
    177 
    178 #include <net/if.h>
    179 #include <net/if_types.h>
    180 
    181 #include <netinet/in.h>
    182 #include <netinet/in_systm.h>
    183 #include <netinet/ip.h>
    184 #include <netinet/in_pcb.h>
    185 #include <netinet/in_var.h>
    186 #include <netinet/ip_var.h>
    187 #include <netinet/in_offload.h>
    188 
    189 #ifdef INET6
    190 #ifndef INET
    191 #include <netinet/in.h>
    192 #endif
    193 #include <netinet/ip6.h>
    194 #include <netinet6/ip6_var.h>
    195 #include <netinet6/in6_pcb.h>
    196 #include <netinet6/ip6_var.h>
    197 #include <netinet6/in6_var.h>
    198 #include <netinet/icmp6.h>
    199 #include <netinet6/nd6.h>
    200 #ifdef TCP_SIGNATURE
    201 #include <netinet6/scope6_var.h>
    202 #endif
    203 #endif
    204 
    205 #ifndef INET6
    206 /* always need ip6.h for IP6_EXTHDR_GET */
    207 #include <netinet/ip6.h>
    208 #endif
    209 
    210 #include <netinet/tcp.h>
    211 #include <netinet/tcp_fsm.h>
    212 #include <netinet/tcp_seq.h>
    213 #include <netinet/tcp_timer.h>
    214 #include <netinet/tcp_var.h>
    215 #include <netinet/tcp_private.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #ifdef INET6
    221 #include "faith.h"
    222 #if defined(NFAITH) && NFAITH > 0
    223 #include <net/if_faith.h>
    224 #endif
    225 #endif	/* INET6 */
    226 
    227 #ifdef IPSEC
    228 #include <netipsec/ipsec.h>
    229 #include <netipsec/ipsec_var.h>
    230 #include <netipsec/ipsec_private.h>
    231 #include <netipsec/key.h>
    232 #ifdef INET6
    233 #include <netipsec/ipsec6.h>
    234 #endif
    235 #endif	/* IPSEC*/
    236 
    237 #include <netinet/tcp_vtw.h>
    238 
    239 int	tcprexmtthresh = 3;
    240 int	tcp_log_refused;
    241 
    242 int	tcp_do_autorcvbuf = 1;
    243 int	tcp_autorcvbuf_inc = 16 * 1024;
    244 int	tcp_autorcvbuf_max = 256 * 1024;
    245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    246 
    247 static int tcp_rst_ppslim_count = 0;
    248 static struct timeval tcp_rst_ppslim_last;
    249 static int tcp_ackdrop_ppslim_count = 0;
    250 static struct timeval tcp_ackdrop_ppslim_last;
    251 
    252 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    253 
    254 /* for modulo comparisons of timestamps */
    255 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    256 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    257 
    258 /*
    259  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    260  */
    261 #ifdef INET6
    262 static inline void
    263 nd6_hint(struct tcpcb *tp)
    264 {
    265 	struct rtentry *rt = NULL;
    266 
    267 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    268 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    269 		nd6_nud_hint(rt);
    270 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
    271 }
    272 #else
    273 static inline void
    274 nd6_hint(struct tcpcb *tp)
    275 {
    276 }
    277 #endif
    278 
    279 /*
    280  * Compute ACK transmission behavior.  Delay the ACK unless
    281  * we have already delayed an ACK (must send an ACK every two segments).
    282  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    283  * option is enabled.
    284  */
    285 static void
    286 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    287 {
    288 
    289 	if (tp->t_flags & TF_DELACK ||
    290 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    291 		tp->t_flags |= TF_ACKNOW;
    292 	else
    293 		TCP_SET_DELACK(tp);
    294 }
    295 
    296 static void
    297 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    298 {
    299 
    300 	/*
    301 	 * If we had a pending ICMP message that refers to data that have
    302 	 * just been acknowledged, disregard the recorded ICMP message.
    303 	 */
    304 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    305 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    306 		tp->t_flags &= ~TF_PMTUD_PEND;
    307 
    308 	/*
    309 	 * Keep track of the largest chunk of data
    310 	 * acknowledged since last PMTU update
    311 	 */
    312 	if (tp->t_pmtud_mss_acked < acked)
    313 		tp->t_pmtud_mss_acked = acked;
    314 }
    315 
    316 /*
    317  * Convert TCP protocol fields to host order for easier processing.
    318  */
    319 static void
    320 tcp_fields_to_host(struct tcphdr *th)
    321 {
    322 
    323 	NTOHL(th->th_seq);
    324 	NTOHL(th->th_ack);
    325 	NTOHS(th->th_win);
    326 	NTOHS(th->th_urp);
    327 }
    328 
    329 /*
    330  * ... and reverse the above.
    331  */
    332 static void
    333 tcp_fields_to_net(struct tcphdr *th)
    334 {
    335 
    336 	HTONL(th->th_seq);
    337 	HTONL(th->th_ack);
    338 	HTONS(th->th_win);
    339 	HTONS(th->th_urp);
    340 }
    341 
    342 #ifdef TCP_CSUM_COUNTERS
    343 #include <sys/device.h>
    344 
    345 #if defined(INET)
    346 extern struct evcnt tcp_hwcsum_ok;
    347 extern struct evcnt tcp_hwcsum_bad;
    348 extern struct evcnt tcp_hwcsum_data;
    349 extern struct evcnt tcp_swcsum;
    350 #endif /* defined(INET) */
    351 #if defined(INET6)
    352 extern struct evcnt tcp6_hwcsum_ok;
    353 extern struct evcnt tcp6_hwcsum_bad;
    354 extern struct evcnt tcp6_hwcsum_data;
    355 extern struct evcnt tcp6_swcsum;
    356 #endif /* defined(INET6) */
    357 
    358 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    359 
    360 #else
    361 
    362 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    363 
    364 #endif /* TCP_CSUM_COUNTERS */
    365 
    366 #ifdef TCP_REASS_COUNTERS
    367 #include <sys/device.h>
    368 
    369 extern struct evcnt tcp_reass_;
    370 extern struct evcnt tcp_reass_empty;
    371 extern struct evcnt tcp_reass_iteration[8];
    372 extern struct evcnt tcp_reass_prependfirst;
    373 extern struct evcnt tcp_reass_prepend;
    374 extern struct evcnt tcp_reass_insert;
    375 extern struct evcnt tcp_reass_inserttail;
    376 extern struct evcnt tcp_reass_append;
    377 extern struct evcnt tcp_reass_appendtail;
    378 extern struct evcnt tcp_reass_overlaptail;
    379 extern struct evcnt tcp_reass_overlapfront;
    380 extern struct evcnt tcp_reass_segdup;
    381 extern struct evcnt tcp_reass_fragdup;
    382 
    383 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    384 
    385 #else
    386 
    387 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    388 
    389 #endif /* TCP_REASS_COUNTERS */
    390 
    391 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    392     int *);
    393 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    394     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    395 
    396 #ifdef INET
    397 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    398 #endif
    399 #ifdef INET6
    400 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    401 #endif
    402 
    403 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    404 
    405 #if defined(MBUFTRACE)
    406 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    407 #endif /* defined(MBUFTRACE) */
    408 
    409 static struct pool tcpipqent_pool;
    410 
    411 void
    412 tcpipqent_init(void)
    413 {
    414 
    415 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    416 	    NULL, IPL_VM);
    417 }
    418 
    419 struct ipqent *
    420 tcpipqent_alloc(void)
    421 {
    422 	struct ipqent *ipqe;
    423 	int s;
    424 
    425 	s = splvm();
    426 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    427 	splx(s);
    428 
    429 	return ipqe;
    430 }
    431 
    432 void
    433 tcpipqent_free(struct ipqent *ipqe)
    434 {
    435 	int s;
    436 
    437 	s = splvm();
    438 	pool_put(&tcpipqent_pool, ipqe);
    439 	splx(s);
    440 }
    441 
    442 static int
    443 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    444 {
    445 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    446 	struct socket *so = NULL;
    447 	int pkt_flags;
    448 	tcp_seq pkt_seq;
    449 	unsigned pkt_len;
    450 	u_long rcvpartdupbyte = 0;
    451 	u_long rcvoobyte;
    452 #ifdef TCP_REASS_COUNTERS
    453 	u_int count = 0;
    454 #endif
    455 	uint64_t *tcps;
    456 
    457 	if (tp->t_inpcb)
    458 		so = tp->t_inpcb->inp_socket;
    459 #ifdef INET6
    460 	else if (tp->t_in6pcb)
    461 		so = tp->t_in6pcb->in6p_socket;
    462 #endif
    463 
    464 	TCP_REASS_LOCK_CHECK(tp);
    465 
    466 	/*
    467 	 * Call with th==0 after become established to
    468 	 * force pre-ESTABLISHED data up to user socket.
    469 	 */
    470 	if (th == 0)
    471 		goto present;
    472 
    473 	m_claimm(m, &tcp_reass_mowner);
    474 
    475 	rcvoobyte = *tlen;
    476 	/*
    477 	 * Copy these to local variables because the tcpiphdr
    478 	 * gets munged while we are collapsing mbufs.
    479 	 */
    480 	pkt_seq = th->th_seq;
    481 	pkt_len = *tlen;
    482 	pkt_flags = th->th_flags;
    483 
    484 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    485 
    486 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    487 		/*
    488 		 * When we miss a packet, the vast majority of time we get
    489 		 * packets that follow it in order.  So optimize for that.
    490 		 */
    491 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    492 			p->ipqe_len += pkt_len;
    493 			p->ipqe_flags |= pkt_flags;
    494 			m_cat(p->ipre_mlast, m);
    495 			TRAVERSE(p->ipre_mlast);
    496 			m = NULL;
    497 			tiqe = p;
    498 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    499 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    500 			goto skip_replacement;
    501 		}
    502 		/*
    503 		 * While we're here, if the pkt is completely beyond
    504 		 * anything we have, just insert it at the tail.
    505 		 */
    506 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    507 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    508 			goto insert_it;
    509 		}
    510 	}
    511 
    512 	q = TAILQ_FIRST(&tp->segq);
    513 
    514 	if (q != NULL) {
    515 		/*
    516 		 * If this segment immediately precedes the first out-of-order
    517 		 * block, simply slap the segment in front of it and (mostly)
    518 		 * skip the complicated logic.
    519 		 */
    520 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    521 			q->ipqe_seq = pkt_seq;
    522 			q->ipqe_len += pkt_len;
    523 			q->ipqe_flags |= pkt_flags;
    524 			m_cat(m, q->ipqe_m);
    525 			q->ipqe_m = m;
    526 			q->ipre_mlast = m; /* last mbuf may have changed */
    527 			TRAVERSE(q->ipre_mlast);
    528 			tiqe = q;
    529 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    530 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    531 			goto skip_replacement;
    532 		}
    533 	} else {
    534 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    535 	}
    536 
    537 	/*
    538 	 * Find a segment which begins after this one does.
    539 	 */
    540 	for (p = NULL; q != NULL; q = nq) {
    541 		nq = TAILQ_NEXT(q, ipqe_q);
    542 #ifdef TCP_REASS_COUNTERS
    543 		count++;
    544 #endif
    545 		/*
    546 		 * If the received segment is just right after this
    547 		 * fragment, merge the two together and then check
    548 		 * for further overlaps.
    549 		 */
    550 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    551 #ifdef TCPREASS_DEBUG
    552 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    553 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    554 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    555 #endif
    556 			pkt_len += q->ipqe_len;
    557 			pkt_flags |= q->ipqe_flags;
    558 			pkt_seq = q->ipqe_seq;
    559 			m_cat(q->ipre_mlast, m);
    560 			TRAVERSE(q->ipre_mlast);
    561 			m = q->ipqe_m;
    562 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    563 			goto free_ipqe;
    564 		}
    565 		/*
    566 		 * If the received segment is completely past this
    567 		 * fragment, we need to go the next fragment.
    568 		 */
    569 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    570 			p = q;
    571 			continue;
    572 		}
    573 		/*
    574 		 * If the fragment is past the received segment,
    575 		 * it (or any following) can't be concatenated.
    576 		 */
    577 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    578 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    579 			break;
    580 		}
    581 
    582 		/*
    583 		 * We've received all the data in this segment before.
    584 		 * mark it as a duplicate and return.
    585 		 */
    586 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    587 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    588 			tcps = TCP_STAT_GETREF();
    589 			tcps[TCP_STAT_RCVDUPPACK]++;
    590 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    591 			TCP_STAT_PUTREF();
    592 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    593 			m_freem(m);
    594 			if (tiqe != NULL) {
    595 				tcpipqent_free(tiqe);
    596 			}
    597 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    598 			goto out;
    599 		}
    600 		/*
    601 		 * Received segment completely overlaps this fragment
    602 		 * so we drop the fragment (this keeps the temporal
    603 		 * ordering of segments correct).
    604 		 */
    605 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    606 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    607 			rcvpartdupbyte += q->ipqe_len;
    608 			m_freem(q->ipqe_m);
    609 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    610 			goto free_ipqe;
    611 		}
    612 		/*
    613 		 * RX'ed segment extends past the end of the
    614 		 * fragment.  Drop the overlapping bytes.  Then
    615 		 * merge the fragment and segment then treat as
    616 		 * a longer received packet.
    617 		 */
    618 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    619 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    620 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    621 #ifdef TCPREASS_DEBUG
    622 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    623 			       tp, overlap,
    624 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    625 #endif
    626 			m_adj(m, overlap);
    627 			rcvpartdupbyte += overlap;
    628 			m_cat(q->ipre_mlast, m);
    629 			TRAVERSE(q->ipre_mlast);
    630 			m = q->ipqe_m;
    631 			pkt_seq = q->ipqe_seq;
    632 			pkt_len += q->ipqe_len - overlap;
    633 			rcvoobyte -= overlap;
    634 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    635 			goto free_ipqe;
    636 		}
    637 		/*
    638 		 * RX'ed segment extends past the front of the
    639 		 * fragment.  Drop the overlapping bytes on the
    640 		 * received packet.  The packet will then be
    641 		 * contatentated with this fragment a bit later.
    642 		 */
    643 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    644 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    645 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    646 #ifdef TCPREASS_DEBUG
    647 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    648 			       tp, overlap,
    649 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    650 #endif
    651 			m_adj(m, -overlap);
    652 			pkt_len -= overlap;
    653 			rcvpartdupbyte += overlap;
    654 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    655 			rcvoobyte -= overlap;
    656 		}
    657 		/*
    658 		 * If the received segment immediates precedes this
    659 		 * fragment then tack the fragment onto this segment
    660 		 * and reinsert the data.
    661 		 */
    662 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    663 #ifdef TCPREASS_DEBUG
    664 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    665 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    666 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    667 #endif
    668 			pkt_len += q->ipqe_len;
    669 			pkt_flags |= q->ipqe_flags;
    670 			m_cat(m, q->ipqe_m);
    671 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    672 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    673 			tp->t_segqlen--;
    674 			KASSERT(tp->t_segqlen >= 0);
    675 			KASSERT(tp->t_segqlen != 0 ||
    676 			    (TAILQ_EMPTY(&tp->segq) &&
    677 			    TAILQ_EMPTY(&tp->timeq)));
    678 			if (tiqe == NULL) {
    679 				tiqe = q;
    680 			} else {
    681 				tcpipqent_free(q);
    682 			}
    683 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    684 			break;
    685 		}
    686 		/*
    687 		 * If the fragment is before the segment, remember it.
    688 		 * When this loop is terminated, p will contain the
    689 		 * pointer to fragment that is right before the received
    690 		 * segment.
    691 		 */
    692 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    693 			p = q;
    694 
    695 		continue;
    696 
    697 		/*
    698 		 * This is a common operation.  It also will allow
    699 		 * to save doing a malloc/free in most instances.
    700 		 */
    701 	  free_ipqe:
    702 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    703 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    704 		tp->t_segqlen--;
    705 		KASSERT(tp->t_segqlen >= 0);
    706 		KASSERT(tp->t_segqlen != 0 ||
    707 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    708 		if (tiqe == NULL) {
    709 			tiqe = q;
    710 		} else {
    711 			tcpipqent_free(q);
    712 		}
    713 	}
    714 
    715 #ifdef TCP_REASS_COUNTERS
    716 	if (count > 7)
    717 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    718 	else if (count > 0)
    719 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    720 #endif
    721 
    722     insert_it:
    723 
    724 	/*
    725 	 * Allocate a new queue entry since the received segment did not
    726 	 * collapse onto any other out-of-order block; thus we are allocating
    727 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    728 	 * we would be reusing it.
    729 	 * XXX If we can't, just drop the packet.  XXX
    730 	 */
    731 	if (tiqe == NULL) {
    732 		tiqe = tcpipqent_alloc();
    733 		if (tiqe == NULL) {
    734 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    735 			m_freem(m);
    736 			goto out;
    737 		}
    738 	}
    739 
    740 	/*
    741 	 * Update the counters.
    742 	 */
    743 	tp->t_rcvoopack++;
    744 	tcps = TCP_STAT_GETREF();
    745 	tcps[TCP_STAT_RCVOOPACK]++;
    746 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    747 	if (rcvpartdupbyte) {
    748 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    749 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    750 	}
    751 	TCP_STAT_PUTREF();
    752 
    753 	/*
    754 	 * Insert the new fragment queue entry into both queues.
    755 	 */
    756 	tiqe->ipqe_m = m;
    757 	tiqe->ipre_mlast = m;
    758 	tiqe->ipqe_seq = pkt_seq;
    759 	tiqe->ipqe_len = pkt_len;
    760 	tiqe->ipqe_flags = pkt_flags;
    761 	if (p == NULL) {
    762 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    763 #ifdef TCPREASS_DEBUG
    764 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    765 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    766 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    767 #endif
    768 	} else {
    769 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    770 #ifdef TCPREASS_DEBUG
    771 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    772 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    773 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    774 #endif
    775 	}
    776 	tp->t_segqlen++;
    777 
    778 skip_replacement:
    779 
    780 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    781 
    782 present:
    783 	/*
    784 	 * Present data to user, advancing rcv_nxt through
    785 	 * completed sequence space.
    786 	 */
    787 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    788 		goto out;
    789 	q = TAILQ_FIRST(&tp->segq);
    790 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    791 		goto out;
    792 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    793 		goto out;
    794 
    795 	tp->rcv_nxt += q->ipqe_len;
    796 	pkt_flags = q->ipqe_flags & TH_FIN;
    797 	nd6_hint(tp);
    798 
    799 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    800 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    801 	tp->t_segqlen--;
    802 	KASSERT(tp->t_segqlen >= 0);
    803 	KASSERT(tp->t_segqlen != 0 ||
    804 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    805 	if (so->so_state & SS_CANTRCVMORE)
    806 		m_freem(q->ipqe_m);
    807 	else
    808 		sbappendstream(&so->so_rcv, q->ipqe_m);
    809 	tcpipqent_free(q);
    810 	TCP_REASS_UNLOCK(tp);
    811 	sorwakeup(so);
    812 	return (pkt_flags);
    813 out:
    814 	TCP_REASS_UNLOCK(tp);
    815 	return (0);
    816 }
    817 
    818 #ifdef INET6
    819 int
    820 tcp6_input(struct mbuf **mp, int *offp, int proto)
    821 {
    822 	struct mbuf *m = *mp;
    823 
    824 	/*
    825 	 * draft-itojun-ipv6-tcp-to-anycast
    826 	 * better place to put this in?
    827 	 */
    828 	if (m->m_flags & M_ANYCAST6) {
    829 		struct ip6_hdr *ip6;
    830 		if (m->m_len < sizeof(struct ip6_hdr)) {
    831 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    832 				TCP_STATINC(TCP_STAT_RCVSHORT);
    833 				return IPPROTO_DONE;
    834 			}
    835 		}
    836 		ip6 = mtod(m, struct ip6_hdr *);
    837 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    838 		    (char *)&ip6->ip6_dst - (char *)ip6);
    839 		return IPPROTO_DONE;
    840 	}
    841 
    842 	tcp_input(m, *offp, proto);
    843 	return IPPROTO_DONE;
    844 }
    845 #endif
    846 
    847 #ifdef INET
    848 static void
    849 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    850 {
    851 	char src[INET_ADDRSTRLEN];
    852 	char dst[INET_ADDRSTRLEN];
    853 
    854 	if (ip) {
    855 		in_print(src, sizeof(src), &ip->ip_src);
    856 		in_print(dst, sizeof(dst), &ip->ip_dst);
    857 	}
    858 	else {
    859 		strlcpy(src, "(unknown)", sizeof(src));
    860 		strlcpy(dst, "(unknown)", sizeof(dst));
    861 	}
    862 	log(LOG_INFO,
    863 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    864 	    dst, ntohs(th->th_dport),
    865 	    src, ntohs(th->th_sport));
    866 }
    867 #endif
    868 
    869 #ifdef INET6
    870 static void
    871 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    872 {
    873 	char src[INET6_ADDRSTRLEN];
    874 	char dst[INET6_ADDRSTRLEN];
    875 
    876 	if (ip6) {
    877 		in6_print(src, sizeof(src), &ip6->ip6_src);
    878 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    879 	}
    880 	else {
    881 		strlcpy(src, "(unknown v6)", sizeof(src));
    882 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    883 	}
    884 	log(LOG_INFO,
    885 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    886 	    dst, ntohs(th->th_dport),
    887 	    src, ntohs(th->th_sport));
    888 }
    889 #endif
    890 
    891 /*
    892  * Checksum extended TCP header and data.
    893  */
    894 int
    895 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    896     int toff, int off, int tlen)
    897 {
    898 	struct ifnet *rcvif;
    899 	int s;
    900 
    901 	/*
    902 	 * XXX it's better to record and check if this mbuf is
    903 	 * already checked.
    904 	 */
    905 
    906 	rcvif = m_get_rcvif(m, &s);
    907 
    908 	switch (af) {
    909 #ifdef INET
    910 	case AF_INET:
    911 		switch (m->m_pkthdr.csum_flags &
    912 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    913 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    914 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    915 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    916 			goto badcsum;
    917 
    918 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    919 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    920 
    921 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    922 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    923 				const struct ip *ip =
    924 				    mtod(m, const struct ip *);
    925 
    926 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    927 				    ip->ip_dst.s_addr,
    928 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    929 			}
    930 			if ((hw_csum ^ 0xffff) != 0)
    931 				goto badcsum;
    932 			break;
    933 		}
    934 
    935 		case M_CSUM_TCPv4:
    936 			/* Checksum was okay. */
    937 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    938 			break;
    939 
    940 		default:
    941 			/*
    942 			 * Must compute it ourselves.  Maybe skip checksum
    943 			 * on loopback interfaces.
    944 			 */
    945 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    946 					   tcp_do_loopback_cksum)) {
    947 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    948 				if (in4_cksum(m, IPPROTO_TCP, toff,
    949 					      tlen + off) != 0)
    950 					goto badcsum;
    951 			}
    952 			break;
    953 		}
    954 		break;
    955 #endif /* INET4 */
    956 
    957 #ifdef INET6
    958 	case AF_INET6:
    959 		switch (m->m_pkthdr.csum_flags &
    960 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    961 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    962 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    963 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    964 			goto badcsum;
    965 
    966 #if 0 /* notyet */
    967 		case M_CSUM_TCPv6|M_CSUM_DATA:
    968 #endif
    969 
    970 		case M_CSUM_TCPv6:
    971 			/* Checksum was okay. */
    972 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    973 			break;
    974 
    975 		default:
    976 			/*
    977 			 * Must compute it ourselves.  Maybe skip checksum
    978 			 * on loopback interfaces.
    979 			 */
    980 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    981 			    tcp_do_loopback_cksum)) {
    982 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    983 				if (in6_cksum(m, IPPROTO_TCP, toff,
    984 				    tlen + off) != 0)
    985 					goto badcsum;
    986 			}
    987 		}
    988 		break;
    989 #endif /* INET6 */
    990 	}
    991 	m_put_rcvif(rcvif, &s);
    992 
    993 	return 0;
    994 
    995 badcsum:
    996 	m_put_rcvif(rcvif, &s);
    997 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    998 	return -1;
    999 }
   1000 
   1001 /* When a packet arrives addressed to a vestigial tcpbp, we
   1002  * nevertheless have to respond to it per the spec.
   1003  */
   1004 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
   1005 			  struct mbuf *m, int tlen, int multicast)
   1006 {
   1007 	int		tiflags;
   1008 	int		todrop;
   1009 	uint32_t	t_flags = 0;
   1010 	uint64_t	*tcps;
   1011 
   1012 	tiflags = th->th_flags;
   1013 	todrop  = vp->rcv_nxt - th->th_seq;
   1014 
   1015 	if (todrop > 0) {
   1016 		if (tiflags & TH_SYN) {
   1017 			tiflags &= ~TH_SYN;
   1018 			++th->th_seq;
   1019 			if (th->th_urp > 1)
   1020 				--th->th_urp;
   1021 			else {
   1022 				tiflags &= ~TH_URG;
   1023 				th->th_urp = 0;
   1024 			}
   1025 			--todrop;
   1026 		}
   1027 		if (todrop > tlen ||
   1028 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1029 			/*
   1030 			 * Any valid FIN or RST must be to the left of the
   1031 			 * window.  At this point the FIN or RST must be a
   1032 			 * duplicate or out of sequence; drop it.
   1033 			 */
   1034 			if (tiflags & TH_RST)
   1035 				goto drop;
   1036 			tiflags &= ~(TH_FIN|TH_RST);
   1037 			/*
   1038 			 * Send an ACK to resynchronize and drop any data.
   1039 			 * But keep on processing for RST or ACK.
   1040 			 */
   1041 			t_flags |= TF_ACKNOW;
   1042 			todrop = tlen;
   1043 			tcps = TCP_STAT_GETREF();
   1044 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1045 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1046 			TCP_STAT_PUTREF();
   1047 		} else if ((tiflags & TH_RST)
   1048 			   && th->th_seq != vp->rcv_nxt) {
   1049 			/*
   1050 			 * Test for reset before adjusting the sequence
   1051 			 * number for overlapping data.
   1052 			 */
   1053 			goto dropafterack_ratelim;
   1054 		} else {
   1055 			tcps = TCP_STAT_GETREF();
   1056 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1057 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1058 			TCP_STAT_PUTREF();
   1059 		}
   1060 
   1061 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1062 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1063 
   1064 		th->th_seq += todrop;
   1065 		tlen -= todrop;
   1066 
   1067 		if (th->th_urp > todrop)
   1068 			th->th_urp -= todrop;
   1069 		else {
   1070 			tiflags &= ~TH_URG;
   1071 			th->th_urp = 0;
   1072 		}
   1073 	}
   1074 
   1075 	/*
   1076 	 * If new data are received on a connection after the
   1077 	 * user processes are gone, then RST the other end.
   1078 	 */
   1079 	if (tlen) {
   1080 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1081 		goto dropwithreset;
   1082 	}
   1083 
   1084 	/*
   1085 	 * If segment ends after window, drop trailing data
   1086 	 * (and PUSH and FIN); if nothing left, just ACK.
   1087 	 */
   1088 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
   1089 
   1090 	if (todrop > 0) {
   1091 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1092 		if (todrop >= tlen) {
   1093 			/*
   1094 			 * The segment actually starts after the window.
   1095 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1096 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1097 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1098 			 */
   1099 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1100 			/*
   1101 			 * If a new connection request is received
   1102 			 * while in TIME_WAIT, drop the old connection
   1103 			 * and start over if the sequence numbers
   1104 			 * are above the previous ones.
   1105 			 */
   1106 			if ((tiflags & TH_SYN)
   1107 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1108 				/* We only support this in the !NOFDREF case, which
   1109 				 * is to say: not here.
   1110 				 */
   1111 				goto dropwithreset;
   1112 			}
   1113 			/*
   1114 			 * If window is closed can only take segments at
   1115 			 * window edge, and have to drop data and PUSH from
   1116 			 * incoming segments.  Continue processing, but
   1117 			 * remember to ack.  Otherwise, drop segment
   1118 			 * and (if not RST) ack.
   1119 			 */
   1120 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1121 				t_flags |= TF_ACKNOW;
   1122 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1123 			} else
   1124 				goto dropafterack;
   1125 		} else
   1126 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1127 		m_adj(m, -todrop);
   1128 		tlen -= todrop;
   1129 		tiflags &= ~(TH_PUSH|TH_FIN);
   1130 	}
   1131 
   1132 	if (tiflags & TH_RST) {
   1133 		if (th->th_seq != vp->rcv_nxt)
   1134 			goto dropafterack_ratelim;
   1135 
   1136 		vtw_del(vp->ctl, vp->vtw);
   1137 		goto drop;
   1138 	}
   1139 
   1140 	/*
   1141 	 * If the ACK bit is off we drop the segment and return.
   1142 	 */
   1143 	if ((tiflags & TH_ACK) == 0) {
   1144 		if (t_flags & TF_ACKNOW)
   1145 			goto dropafterack;
   1146 		else
   1147 			goto drop;
   1148 	}
   1149 
   1150 	/*
   1151 	 * In TIME_WAIT state the only thing that should arrive
   1152 	 * is a retransmission of the remote FIN.  Acknowledge
   1153 	 * it and restart the finack timer.
   1154 	 */
   1155 	vtw_restart(vp);
   1156 	goto dropafterack;
   1157 
   1158 dropafterack:
   1159 	/*
   1160 	 * Generate an ACK dropping incoming segment if it occupies
   1161 	 * sequence space, where the ACK reflects our state.
   1162 	 */
   1163 	if (tiflags & TH_RST)
   1164 		goto drop;
   1165 	goto dropafterack2;
   1166 
   1167 dropafterack_ratelim:
   1168 	/*
   1169 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1170 	 */
   1171 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1172 			 tcp_ackdrop_ppslim) == 0) {
   1173 		/* XXX stat */
   1174 		goto drop;
   1175 	}
   1176 	/* ...fall into dropafterack2... */
   1177 
   1178 dropafterack2:
   1179 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
   1180 			  TH_ACK);
   1181 	return;
   1182 
   1183 dropwithreset:
   1184 	/*
   1185 	 * Generate a RST, dropping incoming segment.
   1186 	 * Make ACK acceptable to originator of segment.
   1187 	 */
   1188 	if (tiflags & TH_RST)
   1189 		goto drop;
   1190 
   1191 	if (tiflags & TH_ACK)
   1192 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1193 	else {
   1194 		if (tiflags & TH_SYN)
   1195 			++tlen;
   1196 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1197 				  TH_RST|TH_ACK);
   1198 	}
   1199 	return;
   1200 drop:
   1201 	m_freem(m);
   1202 }
   1203 
   1204 /*
   1205  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1206  */
   1207 void
   1208 tcp_input(struct mbuf *m, ...)
   1209 {
   1210 	struct tcphdr *th;
   1211 	struct ip *ip;
   1212 	struct inpcb *inp;
   1213 #ifdef INET6
   1214 	struct ip6_hdr *ip6;
   1215 	struct in6pcb *in6p;
   1216 #endif
   1217 	u_int8_t *optp = NULL;
   1218 	int optlen = 0;
   1219 	int len, tlen, toff, hdroptlen = 0;
   1220 	struct tcpcb *tp = 0;
   1221 	int tiflags;
   1222 	struct socket *so = NULL;
   1223 	int todrop, acked, ourfinisacked, needoutput = 0;
   1224 	bool dupseg;
   1225 #ifdef TCP_DEBUG
   1226 	short ostate = 0;
   1227 #endif
   1228 	u_long tiwin;
   1229 	struct tcp_opt_info opti;
   1230 	int off, iphlen;
   1231 	va_list ap;
   1232 	int af;		/* af on the wire */
   1233 	struct mbuf *tcp_saveti = NULL;
   1234 	uint32_t ts_rtt;
   1235 	uint8_t iptos;
   1236 	uint64_t *tcps;
   1237 	vestigial_inpcb_t vestige;
   1238 
   1239 	vestige.valid = 0;
   1240 
   1241 	MCLAIM(m, &tcp_rx_mowner);
   1242 	va_start(ap, m);
   1243 	toff = va_arg(ap, int);
   1244 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1245 	va_end(ap);
   1246 
   1247 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1248 
   1249 	memset(&opti, 0, sizeof(opti));
   1250 	opti.ts_present = 0;
   1251 	opti.maxseg = 0;
   1252 
   1253 	/*
   1254 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1255 	 *
   1256 	 * TCP is, by definition, unicast, so we reject all
   1257 	 * multicast outright.
   1258 	 *
   1259 	 * Note, there are additional src/dst address checks in
   1260 	 * the AF-specific code below.
   1261 	 */
   1262 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1263 		/* XXX stat */
   1264 		goto drop;
   1265 	}
   1266 #ifdef INET6
   1267 	if (m->m_flags & M_ANYCAST6) {
   1268 		/* XXX stat */
   1269 		goto drop;
   1270 	}
   1271 #endif
   1272 
   1273 	/*
   1274 	 * Get IP and TCP header.
   1275 	 * Note: IP leaves IP header in first mbuf.
   1276 	 */
   1277 	ip = mtod(m, struct ip *);
   1278 	switch (ip->ip_v) {
   1279 #ifdef INET
   1280 	case 4:
   1281 #ifdef INET6
   1282 		ip6 = NULL;
   1283 #endif
   1284 		af = AF_INET;
   1285 		iphlen = sizeof(struct ip);
   1286 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1287 			sizeof(struct tcphdr));
   1288 		if (th == NULL) {
   1289 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1290 			return;
   1291 		}
   1292 		/* We do the checksum after PCB lookup... */
   1293 		len = ntohs(ip->ip_len);
   1294 		tlen = len - toff;
   1295 		iptos = ip->ip_tos;
   1296 		break;
   1297 #endif
   1298 #ifdef INET6
   1299 	case 6:
   1300 		ip = NULL;
   1301 		iphlen = sizeof(struct ip6_hdr);
   1302 		af = AF_INET6;
   1303 		ip6 = mtod(m, struct ip6_hdr *);
   1304 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1305 			sizeof(struct tcphdr));
   1306 		if (th == NULL) {
   1307 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1308 			return;
   1309 		}
   1310 
   1311 		/* Be proactive about malicious use of IPv4 mapped address */
   1312 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1313 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1314 			/* XXX stat */
   1315 			goto drop;
   1316 		}
   1317 
   1318 		/*
   1319 		 * Be proactive about unspecified IPv6 address in source.
   1320 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1321 		 * unspecified IPv6 address can be used to confuse us.
   1322 		 *
   1323 		 * Note that packets with unspecified IPv6 destination is
   1324 		 * already dropped in ip6_input.
   1325 		 */
   1326 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1327 			/* XXX stat */
   1328 			goto drop;
   1329 		}
   1330 
   1331 		/*
   1332 		 * Make sure destination address is not multicast.
   1333 		 * Source address checked in ip6_input().
   1334 		 */
   1335 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1336 			/* XXX stat */
   1337 			goto drop;
   1338 		}
   1339 
   1340 		/* We do the checksum after PCB lookup... */
   1341 		len = m->m_pkthdr.len;
   1342 		tlen = len - toff;
   1343 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1344 		break;
   1345 #endif
   1346 	default:
   1347 		m_freem(m);
   1348 		return;
   1349 	}
   1350 	/*
   1351          * Enforce alignment requirements that are violated in
   1352 	 * some cases, see kern/50766 for details.
   1353 	 */
   1354 	if (TCP_HDR_ALIGNED_P(th) == 0) {
   1355 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
   1356 		if (m == NULL) {
   1357 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1358 			return;
   1359 		}
   1360 		ip = mtod(m, struct ip *);
   1361 #ifdef INET6
   1362 		ip6 = mtod(m, struct ip6_hdr *);
   1363 #endif
   1364 		th = (struct tcphdr *)(mtod(m, char *) + toff);
   1365 	}
   1366 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1367 
   1368 	/*
   1369 	 * Check that TCP offset makes sense,
   1370 	 * pull out TCP options and adjust length.		XXX
   1371 	 */
   1372 	off = th->th_off << 2;
   1373 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1374 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1375 		goto drop;
   1376 	}
   1377 	tlen -= off;
   1378 
   1379 	/*
   1380 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1381 	 * length throughout the function.  Other functions can use
   1382 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1383 	 * rja
   1384 	 */
   1385 
   1386 	if (off > sizeof (struct tcphdr)) {
   1387 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1388 		if (th == NULL) {
   1389 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1390 			return;
   1391 		}
   1392 		/*
   1393 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1394 		 * (as they're before toff) and we don't need to update those.
   1395 		 */
   1396 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1397 		optlen = off - sizeof (struct tcphdr);
   1398 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1399 		/*
   1400 		 * Do quick retrieval of timestamp options ("options
   1401 		 * prediction?").  If timestamp is the only option and it's
   1402 		 * formatted as recommended in RFC 1323 appendix A, we
   1403 		 * quickly get the values now and not bother calling
   1404 		 * tcp_dooptions(), etc.
   1405 		 */
   1406 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1407 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1408 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1409 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1410 		     (th->th_flags & TH_SYN) == 0) {
   1411 			opti.ts_present = 1;
   1412 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1413 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1414 			optp = NULL;	/* we've parsed the options */
   1415 		}
   1416 	}
   1417 	tiflags = th->th_flags;
   1418 
   1419 	/*
   1420 	 * Checksum extended TCP header and data
   1421 	 */
   1422 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1423 		goto badcsum;
   1424 
   1425 	/*
   1426 	 * Locate pcb for segment.
   1427 	 */
   1428 findpcb:
   1429 	inp = NULL;
   1430 #ifdef INET6
   1431 	in6p = NULL;
   1432 #endif
   1433 	switch (af) {
   1434 #ifdef INET
   1435 	case AF_INET:
   1436 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1437 					   ip->ip_dst, th->th_dport,
   1438 					   &vestige);
   1439 		if (inp == 0 && !vestige.valid) {
   1440 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1441 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1442 		}
   1443 #ifdef INET6
   1444 		if (inp == 0 && !vestige.valid) {
   1445 			struct in6_addr s, d;
   1446 
   1447 			/* mapped addr case */
   1448 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1449 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1450 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1451 						     th->th_sport, &d, th->th_dport,
   1452 						     0, &vestige);
   1453 			if (in6p == 0 && !vestige.valid) {
   1454 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1455 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1456 				    th->th_dport, 0);
   1457 			}
   1458 		}
   1459 #endif
   1460 #ifndef INET6
   1461 		if (inp == 0 && !vestige.valid)
   1462 #else
   1463 		if (inp == 0 && in6p == 0 && !vestige.valid)
   1464 #endif
   1465 		{
   1466 			TCP_STATINC(TCP_STAT_NOPORT);
   1467 			if (tcp_log_refused &&
   1468 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1469 				tcp4_log_refused(ip, th);
   1470 			}
   1471 			tcp_fields_to_host(th);
   1472 			goto dropwithreset_ratelim;
   1473 		}
   1474 #if defined(IPSEC)
   1475 		if (ipsec_used) {
   1476 			if (inp &&
   1477 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
   1478 			    && ipsec4_in_reject(m, inp)) {
   1479 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1480 				goto drop;
   1481 			}
   1482 #ifdef INET6
   1483 			else if (in6p &&
   1484 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1485 			    && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
   1486 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1487 				goto drop;
   1488 			}
   1489 #endif
   1490 		}
   1491 #endif /*IPSEC*/
   1492 		break;
   1493 #endif /*INET*/
   1494 #ifdef INET6
   1495 	case AF_INET6:
   1496 	    {
   1497 		int faith;
   1498 
   1499 #if defined(NFAITH) && NFAITH > 0
   1500 		faith = faithprefix(&ip6->ip6_dst);
   1501 #else
   1502 		faith = 0;
   1503 #endif
   1504 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1505 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1506 		if (!in6p && !vestige.valid) {
   1507 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1508 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1509 				th->th_dport, faith);
   1510 		}
   1511 		if (!in6p && !vestige.valid) {
   1512 			TCP_STATINC(TCP_STAT_NOPORT);
   1513 			if (tcp_log_refused &&
   1514 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1515 				tcp6_log_refused(ip6, th);
   1516 			}
   1517 			tcp_fields_to_host(th);
   1518 			goto dropwithreset_ratelim;
   1519 		}
   1520 #if defined(IPSEC)
   1521 		if (ipsec_used && in6p
   1522 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1523 		    && ipsec6_in_reject(m, in6p)) {
   1524 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1525 			goto drop;
   1526 		}
   1527 #endif /*IPSEC*/
   1528 		break;
   1529 	    }
   1530 #endif
   1531 	}
   1532 
   1533 	/*
   1534 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1535 	 * all data in the incoming segment is discarded.
   1536 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1537 	 * but should either do a listen or a connect soon.
   1538 	 */
   1539 	tp = NULL;
   1540 	so = NULL;
   1541 	if (inp) {
   1542 		/* Check the minimum TTL for socket. */
   1543 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1544 			goto drop;
   1545 
   1546 		tp = intotcpcb(inp);
   1547 		so = inp->inp_socket;
   1548 	}
   1549 #ifdef INET6
   1550 	else if (in6p) {
   1551 		tp = in6totcpcb(in6p);
   1552 		so = in6p->in6p_socket;
   1553 	}
   1554 #endif
   1555 	else if (vestige.valid) {
   1556 		int mc = 0;
   1557 
   1558 		/* We do not support the resurrection of vtw tcpcps.
   1559 		 */
   1560 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1561 			goto badcsum;
   1562 
   1563 		switch (af) {
   1564 #ifdef INET6
   1565 		case AF_INET6:
   1566 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
   1567 			break;
   1568 #endif
   1569 
   1570 		case AF_INET:
   1571 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
   1572 			      || in_broadcast(ip->ip_dst,
   1573 			                      m_get_rcvif_NOMPSAFE(m)));
   1574 			break;
   1575 		}
   1576 
   1577 		tcp_fields_to_host(th);
   1578 		tcp_vtw_input(th, &vestige, m, tlen, mc);
   1579 		m = 0;
   1580 		goto drop;
   1581 	}
   1582 
   1583 	if (tp == 0) {
   1584 		tcp_fields_to_host(th);
   1585 		goto dropwithreset_ratelim;
   1586 	}
   1587 	if (tp->t_state == TCPS_CLOSED)
   1588 		goto drop;
   1589 
   1590 	KASSERT(so->so_lock == softnet_lock);
   1591 	KASSERT(solocked(so));
   1592 
   1593 	tcp_fields_to_host(th);
   1594 
   1595 	/* Unscale the window into a 32-bit value. */
   1596 	if ((tiflags & TH_SYN) == 0)
   1597 		tiwin = th->th_win << tp->snd_scale;
   1598 	else
   1599 		tiwin = th->th_win;
   1600 
   1601 #ifdef INET6
   1602 	/* save packet options if user wanted */
   1603 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1604 		if (in6p->in6p_options) {
   1605 			m_freem(in6p->in6p_options);
   1606 			in6p->in6p_options = 0;
   1607 		}
   1608 		KASSERT(ip6 != NULL);
   1609 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1610 	}
   1611 #endif
   1612 
   1613 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1614 		union syn_cache_sa src;
   1615 		union syn_cache_sa dst;
   1616 
   1617 		memset(&src, 0, sizeof(src));
   1618 		memset(&dst, 0, sizeof(dst));
   1619 		switch (af) {
   1620 #ifdef INET
   1621 		case AF_INET:
   1622 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1623 			src.sin.sin_family = AF_INET;
   1624 			src.sin.sin_addr = ip->ip_src;
   1625 			src.sin.sin_port = th->th_sport;
   1626 
   1627 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1628 			dst.sin.sin_family = AF_INET;
   1629 			dst.sin.sin_addr = ip->ip_dst;
   1630 			dst.sin.sin_port = th->th_dport;
   1631 			break;
   1632 #endif
   1633 #ifdef INET6
   1634 		case AF_INET6:
   1635 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1636 			src.sin6.sin6_family = AF_INET6;
   1637 			src.sin6.sin6_addr = ip6->ip6_src;
   1638 			src.sin6.sin6_port = th->th_sport;
   1639 
   1640 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1641 			dst.sin6.sin6_family = AF_INET6;
   1642 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1643 			dst.sin6.sin6_port = th->th_dport;
   1644 			break;
   1645 #endif /* INET6 */
   1646 		default:
   1647 			goto badsyn;	/*sanity*/
   1648 		}
   1649 
   1650 		if (so->so_options & SO_DEBUG) {
   1651 #ifdef TCP_DEBUG
   1652 			ostate = tp->t_state;
   1653 #endif
   1654 
   1655 			tcp_saveti = NULL;
   1656 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1657 				goto nosave;
   1658 
   1659 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1660 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1661 				if (!tcp_saveti)
   1662 					goto nosave;
   1663 			} else {
   1664 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1665 				if (!tcp_saveti)
   1666 					goto nosave;
   1667 				MCLAIM(m, &tcp_mowner);
   1668 				tcp_saveti->m_len = iphlen;
   1669 				m_copydata(m, 0, iphlen,
   1670 				    mtod(tcp_saveti, void *));
   1671 			}
   1672 
   1673 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1674 				m_freem(tcp_saveti);
   1675 				tcp_saveti = NULL;
   1676 			} else {
   1677 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1678 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1679 				    sizeof(struct tcphdr));
   1680 			}
   1681 	nosave:;
   1682 		}
   1683 		if (so->so_options & SO_ACCEPTCONN) {
   1684 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1685 				if (tiflags & TH_RST) {
   1686 					syn_cache_reset(&src.sa, &dst.sa, th);
   1687 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1688 				    (TH_ACK|TH_SYN)) {
   1689 					/*
   1690 					 * Received a SYN,ACK.  This should
   1691 					 * never happen while we are in
   1692 					 * LISTEN.  Send an RST.
   1693 					 */
   1694 					goto badsyn;
   1695 				} else if (tiflags & TH_ACK) {
   1696 					so = syn_cache_get(&src.sa, &dst.sa,
   1697 						th, toff, tlen, so, m);
   1698 					if (so == NULL) {
   1699 						/*
   1700 						 * We don't have a SYN for
   1701 						 * this ACK; send an RST.
   1702 						 */
   1703 						goto badsyn;
   1704 					} else if (so ==
   1705 					    (struct socket *)(-1)) {
   1706 						/*
   1707 						 * We were unable to create
   1708 						 * the connection.  If the
   1709 						 * 3-way handshake was
   1710 						 * completed, and RST has
   1711 						 * been sent to the peer.
   1712 						 * Since the mbuf might be
   1713 						 * in use for the reply,
   1714 						 * do not free it.
   1715 						 */
   1716 						m = NULL;
   1717 					} else {
   1718 						/*
   1719 						 * We have created a
   1720 						 * full-blown connection.
   1721 						 */
   1722 						tp = NULL;
   1723 						inp = NULL;
   1724 #ifdef INET6
   1725 						in6p = NULL;
   1726 #endif
   1727 						switch (so->so_proto->pr_domain->dom_family) {
   1728 #ifdef INET
   1729 						case AF_INET:
   1730 							inp = sotoinpcb(so);
   1731 							tp = intotcpcb(inp);
   1732 							break;
   1733 #endif
   1734 #ifdef INET6
   1735 						case AF_INET6:
   1736 							in6p = sotoin6pcb(so);
   1737 							tp = in6totcpcb(in6p);
   1738 							break;
   1739 #endif
   1740 						}
   1741 						if (tp == NULL)
   1742 							goto badsyn;	/*XXX*/
   1743 						tiwin <<= tp->snd_scale;
   1744 						goto after_listen;
   1745 					}
   1746 				} else {
   1747 					/*
   1748 					 * None of RST, SYN or ACK was set.
   1749 					 * This is an invalid packet for a
   1750 					 * TCB in LISTEN state.  Send a RST.
   1751 					 */
   1752 					goto badsyn;
   1753 				}
   1754 			} else {
   1755 				/*
   1756 				 * Received a SYN.
   1757 				 *
   1758 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1759 				 */
   1760 				if (m->m_flags & (M_BCAST|M_MCAST))
   1761 					goto drop;
   1762 
   1763 				switch (af) {
   1764 #ifdef INET6
   1765 				case AF_INET6:
   1766 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1767 						goto drop;
   1768 					break;
   1769 #endif /* INET6 */
   1770 				case AF_INET:
   1771 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1772 					    in_broadcast(ip->ip_dst,
   1773 					                 m_get_rcvif_NOMPSAFE(m)))
   1774 						goto drop;
   1775 				break;
   1776 				}
   1777 
   1778 #ifdef INET6
   1779 				/*
   1780 				 * If deprecated address is forbidden, we do
   1781 				 * not accept SYN to deprecated interface
   1782 				 * address to prevent any new inbound
   1783 				 * connection from getting established.
   1784 				 * When we do not accept SYN, we send a TCP
   1785 				 * RST, with deprecated source address (instead
   1786 				 * of dropping it).  We compromise it as it is
   1787 				 * much better for peer to send a RST, and
   1788 				 * RST will be the final packet for the
   1789 				 * exchange.
   1790 				 *
   1791 				 * If we do not forbid deprecated addresses, we
   1792 				 * accept the SYN packet.  RFC2462 does not
   1793 				 * suggest dropping SYN in this case.
   1794 				 * If we decipher RFC2462 5.5.4, it says like
   1795 				 * this:
   1796 				 * 1. use of deprecated addr with existing
   1797 				 *    communication is okay - "SHOULD continue
   1798 				 *    to be used"
   1799 				 * 2. use of it with new communication:
   1800 				 *   (2a) "SHOULD NOT be used if alternate
   1801 				 *        address with sufficient scope is
   1802 				 *        available"
   1803 				 *   (2b) nothing mentioned otherwise.
   1804 				 * Here we fall into (2b) case as we have no
   1805 				 * choice in our source address selection - we
   1806 				 * must obey the peer.
   1807 				 *
   1808 				 * The wording in RFC2462 is confusing, and
   1809 				 * there are multiple description text for
   1810 				 * deprecated address handling - worse, they
   1811 				 * are not exactly the same.  I believe 5.5.4
   1812 				 * is the best one, so we follow 5.5.4.
   1813 				 */
   1814 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1815 					struct in6_ifaddr *ia6;
   1816 					int s;
   1817 					struct ifnet *rcvif = m_get_rcvif(m, &s);
   1818 					if (rcvif == NULL)
   1819 						goto dropwithreset; /* XXX */
   1820 					if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1821 					    &ip6->ip6_dst)) &&
   1822 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1823 						tp = NULL;
   1824 						m_put_rcvif(rcvif, &s);
   1825 						goto dropwithreset;
   1826 					}
   1827 					m_put_rcvif(rcvif, &s);
   1828 				}
   1829 #endif
   1830 
   1831 #if defined(IPSEC)
   1832 				if (ipsec_used) {
   1833 					switch (af) {
   1834 #ifdef INET
   1835 					case AF_INET:
   1836 						if (!ipsec4_in_reject_so(m, so))
   1837 							break;
   1838 						IPSEC_STATINC(
   1839 						    IPSEC_STAT_IN_POLVIO);
   1840 						tp = NULL;
   1841 						goto dropwithreset;
   1842 #endif
   1843 #ifdef INET6
   1844 					case AF_INET6:
   1845 						if (!ipsec6_in_reject_so(m, so))
   1846 							break;
   1847 						IPSEC6_STATINC(
   1848 						    IPSEC_STAT_IN_POLVIO);
   1849 						tp = NULL;
   1850 						goto dropwithreset;
   1851 #endif /*INET6*/
   1852 					}
   1853 				}
   1854 #endif /*IPSEC*/
   1855 
   1856 				/*
   1857 				 * LISTEN socket received a SYN
   1858 				 * from itself?  This can't possibly
   1859 				 * be valid; drop the packet.
   1860 				 */
   1861 				if (th->th_sport == th->th_dport) {
   1862 					int i;
   1863 
   1864 					switch (af) {
   1865 #ifdef INET
   1866 					case AF_INET:
   1867 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1868 						break;
   1869 #endif
   1870 #ifdef INET6
   1871 					case AF_INET6:
   1872 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1873 						break;
   1874 #endif
   1875 					default:
   1876 						i = 1;
   1877 					}
   1878 					if (i) {
   1879 						TCP_STATINC(TCP_STAT_BADSYN);
   1880 						goto drop;
   1881 					}
   1882 				}
   1883 
   1884 				/*
   1885 				 * SYN looks ok; create compressed TCP
   1886 				 * state for it.
   1887 				 */
   1888 				if (so->so_qlen <= so->so_qlimit &&
   1889 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1890 						so, m, optp, optlen, &opti))
   1891 					m = NULL;
   1892 			}
   1893 			goto drop;
   1894 		}
   1895 	}
   1896 
   1897 after_listen:
   1898 #ifdef DIAGNOSTIC
   1899 	/*
   1900 	 * Should not happen now that all embryonic connections
   1901 	 * are handled with compressed state.
   1902 	 */
   1903 	if (tp->t_state == TCPS_LISTEN)
   1904 		panic("tcp_input: TCPS_LISTEN");
   1905 #endif
   1906 
   1907 	/*
   1908 	 * Segment received on connection.
   1909 	 * Reset idle time and keep-alive timer.
   1910 	 */
   1911 	tp->t_rcvtime = tcp_now;
   1912 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1913 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1914 
   1915 	/*
   1916 	 * Process options.
   1917 	 */
   1918 #ifdef TCP_SIGNATURE
   1919 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1920 #else
   1921 	if (optp)
   1922 #endif
   1923 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1924 			goto drop;
   1925 
   1926 	if (TCP_SACK_ENABLED(tp)) {
   1927 		tcp_del_sackholes(tp, th);
   1928 	}
   1929 
   1930 	if (TCP_ECN_ALLOWED(tp)) {
   1931 		if (tiflags & TH_CWR) {
   1932 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1933 		}
   1934 		switch (iptos & IPTOS_ECN_MASK) {
   1935 		case IPTOS_ECN_CE:
   1936 			tp->t_flags |= TF_ECN_SND_ECE;
   1937 			TCP_STATINC(TCP_STAT_ECN_CE);
   1938 			break;
   1939 		case IPTOS_ECN_ECT0:
   1940 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1941 			break;
   1942 		case IPTOS_ECN_ECT1:
   1943 			/* XXX: ignore for now -- rpaulo */
   1944 			break;
   1945 		}
   1946 		/*
   1947 		 * Congestion experienced.
   1948 		 * Ignore if we are already trying to recover.
   1949 		 */
   1950 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1951 			tp->t_congctl->cong_exp(tp);
   1952 	}
   1953 
   1954 	if (opti.ts_present && opti.ts_ecr) {
   1955 		/*
   1956 		 * Calculate the RTT from the returned time stamp and the
   1957 		 * connection's time base.  If the time stamp is later than
   1958 		 * the current time, or is extremely old, fall back to non-1323
   1959 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1960 		 * at the same time.
   1961 		 *
   1962 		 * Note that ts_rtt is in units of slow ticks (500
   1963 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1964 		 * observed values will have large quantization noise.
   1965 		 * Our smoothed RTT is then the fraction of observed
   1966 		 * samples that are 1 tick instead of 0 (times 500
   1967 		 * ms).
   1968 		 *
   1969 		 * ts_rtt is increased by 1 to denote a valid sample,
   1970 		 * with 0 indicating an invalid measurement.  This
   1971 		 * extra 1 must be removed when ts_rtt is used, or
   1972 		 * else an an erroneous extra 500 ms will result.
   1973 		 */
   1974 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1975 		if (ts_rtt > TCP_PAWS_IDLE)
   1976 			ts_rtt = 0;
   1977 	} else {
   1978 		ts_rtt = 0;
   1979 	}
   1980 
   1981 	/*
   1982 	 * Header prediction: check for the two common cases
   1983 	 * of a uni-directional data xfer.  If the packet has
   1984 	 * no control flags, is in-sequence, the window didn't
   1985 	 * change and we're not retransmitting, it's a
   1986 	 * candidate.  If the length is zero and the ack moved
   1987 	 * forward, we're the sender side of the xfer.  Just
   1988 	 * free the data acked & wake any higher level process
   1989 	 * that was blocked waiting for space.  If the length
   1990 	 * is non-zero and the ack didn't move, we're the
   1991 	 * receiver side.  If we're getting packets in-order
   1992 	 * (the reassembly queue is empty), add the data to
   1993 	 * the socket buffer and note that we need a delayed ack.
   1994 	 */
   1995 	if (tp->t_state == TCPS_ESTABLISHED &&
   1996 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1997 	        == TH_ACK &&
   1998 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1999 	    th->th_seq == tp->rcv_nxt &&
   2000 	    tiwin && tiwin == tp->snd_wnd &&
   2001 	    tp->snd_nxt == tp->snd_max) {
   2002 
   2003 		/*
   2004 		 * If last ACK falls within this segment's sequence numbers,
   2005 		 * record the timestamp.
   2006 		 * NOTE that the test is modified according to the latest
   2007 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2008 		 *
   2009 		 * note that we already know
   2010 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   2011 		 */
   2012 		if (opti.ts_present &&
   2013 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   2014 			tp->ts_recent_age = tcp_now;
   2015 			tp->ts_recent = opti.ts_val;
   2016 		}
   2017 
   2018 		if (tlen == 0) {
   2019 			/* Ack prediction. */
   2020 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   2021 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   2022 			    tp->snd_cwnd >= tp->snd_wnd &&
   2023 			    tp->t_partialacks < 0) {
   2024 				/*
   2025 				 * this is a pure ack for outstanding data.
   2026 				 */
   2027 				if (ts_rtt)
   2028 					tcp_xmit_timer(tp, ts_rtt - 1);
   2029 				else if (tp->t_rtttime &&
   2030 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   2031 					tcp_xmit_timer(tp,
   2032 					  tcp_now - tp->t_rtttime);
   2033 				acked = th->th_ack - tp->snd_una;
   2034 				tcps = TCP_STAT_GETREF();
   2035 				tcps[TCP_STAT_PREDACK]++;
   2036 				tcps[TCP_STAT_RCVACKPACK]++;
   2037 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   2038 				TCP_STAT_PUTREF();
   2039 				nd6_hint(tp);
   2040 
   2041 				if (acked > (tp->t_lastoff - tp->t_inoff))
   2042 					tp->t_lastm = NULL;
   2043 				sbdrop(&so->so_snd, acked);
   2044 				tp->t_lastoff -= acked;
   2045 
   2046 				icmp_check(tp, th, acked);
   2047 
   2048 				tp->snd_una = th->th_ack;
   2049 				tp->snd_fack = tp->snd_una;
   2050 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   2051 					tp->snd_high = tp->snd_una;
   2052 				m_freem(m);
   2053 
   2054 				/*
   2055 				 * If all outstanding data are acked, stop
   2056 				 * retransmit timer, otherwise restart timer
   2057 				 * using current (possibly backed-off) value.
   2058 				 * If process is waiting for space,
   2059 				 * wakeup/selnotify/signal.  If data
   2060 				 * are ready to send, let tcp_output
   2061 				 * decide between more output or persist.
   2062 				 */
   2063 				if (tp->snd_una == tp->snd_max)
   2064 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2065 				else if (TCP_TIMER_ISARMED(tp,
   2066 				    TCPT_PERSIST) == 0)
   2067 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   2068 					    tp->t_rxtcur);
   2069 
   2070 				sowwakeup(so);
   2071 				if (so->so_snd.sb_cc) {
   2072 					KERNEL_LOCK(1, NULL);
   2073 					(void) tcp_output(tp);
   2074 					KERNEL_UNLOCK_ONE(NULL);
   2075 				}
   2076 				if (tcp_saveti)
   2077 					m_freem(tcp_saveti);
   2078 				return;
   2079 			}
   2080 		} else if (th->th_ack == tp->snd_una &&
   2081 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2082 		    tlen <= sbspace(&so->so_rcv)) {
   2083 			int newsize = 0;	/* automatic sockbuf scaling */
   2084 
   2085 			/*
   2086 			 * this is a pure, in-sequence data packet
   2087 			 * with nothing on the reassembly queue and
   2088 			 * we have enough buffer space to take it.
   2089 			 */
   2090 			tp->rcv_nxt += tlen;
   2091 			tcps = TCP_STAT_GETREF();
   2092 			tcps[TCP_STAT_PREDDAT]++;
   2093 			tcps[TCP_STAT_RCVPACK]++;
   2094 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2095 			TCP_STAT_PUTREF();
   2096 			nd6_hint(tp);
   2097 
   2098 		/*
   2099 		 * Automatic sizing enables the performance of large buffers
   2100 		 * and most of the efficiency of small ones by only allocating
   2101 		 * space when it is needed.
   2102 		 *
   2103 		 * On the receive side the socket buffer memory is only rarely
   2104 		 * used to any significant extent.  This allows us to be much
   2105 		 * more aggressive in scaling the receive socket buffer.  For
   2106 		 * the case that the buffer space is actually used to a large
   2107 		 * extent and we run out of kernel memory we can simply drop
   2108 		 * the new segments; TCP on the sender will just retransmit it
   2109 		 * later.  Setting the buffer size too big may only consume too
   2110 		 * much kernel memory if the application doesn't read() from
   2111 		 * the socket or packet loss or reordering makes use of the
   2112 		 * reassembly queue.
   2113 		 *
   2114 		 * The criteria to step up the receive buffer one notch are:
   2115 		 *  1. the number of bytes received during the time it takes
   2116 		 *     one timestamp to be reflected back to us (the RTT);
   2117 		 *  2. received bytes per RTT is within seven eighth of the
   2118 		 *     current socket buffer size;
   2119 		 *  3. receive buffer size has not hit maximal automatic size;
   2120 		 *
   2121 		 * This algorithm does one step per RTT at most and only if
   2122 		 * we receive a bulk stream w/o packet losses or reorderings.
   2123 		 * Shrinking the buffer during idle times is not necessary as
   2124 		 * it doesn't consume any memory when idle.
   2125 		 *
   2126 		 * TODO: Only step up if the application is actually serving
   2127 		 * the buffer to better manage the socket buffer resources.
   2128 		 */
   2129 			if (tcp_do_autorcvbuf &&
   2130 			    opti.ts_ecr &&
   2131 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2132 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2133 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2134 					if (tp->rfbuf_cnt >
   2135 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2136 					    so->so_rcv.sb_hiwat <
   2137 					    tcp_autorcvbuf_max) {
   2138 						newsize =
   2139 						    min(so->so_rcv.sb_hiwat +
   2140 						    tcp_autorcvbuf_inc,
   2141 						    tcp_autorcvbuf_max);
   2142 					}
   2143 					/* Start over with next RTT. */
   2144 					tp->rfbuf_ts = 0;
   2145 					tp->rfbuf_cnt = 0;
   2146 				} else
   2147 					tp->rfbuf_cnt += tlen;	/* add up */
   2148 			}
   2149 
   2150 			/*
   2151 			 * Drop TCP, IP headers and TCP options then add data
   2152 			 * to socket buffer.
   2153 			 */
   2154 			if (so->so_state & SS_CANTRCVMORE)
   2155 				m_freem(m);
   2156 			else {
   2157 				/*
   2158 				 * Set new socket buffer size.
   2159 				 * Give up when limit is reached.
   2160 				 */
   2161 				if (newsize)
   2162 					if (!sbreserve(&so->so_rcv,
   2163 					    newsize, so))
   2164 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2165 				m_adj(m, toff + off);
   2166 				sbappendstream(&so->so_rcv, m);
   2167 			}
   2168 			sorwakeup(so);
   2169 			tcp_setup_ack(tp, th);
   2170 			if (tp->t_flags & TF_ACKNOW) {
   2171 				KERNEL_LOCK(1, NULL);
   2172 				(void) tcp_output(tp);
   2173 				KERNEL_UNLOCK_ONE(NULL);
   2174 			}
   2175 			if (tcp_saveti)
   2176 				m_freem(tcp_saveti);
   2177 			return;
   2178 		}
   2179 	}
   2180 
   2181 	/*
   2182 	 * Compute mbuf offset to TCP data segment.
   2183 	 */
   2184 	hdroptlen = toff + off;
   2185 
   2186 	/*
   2187 	 * Calculate amount of space in receive window,
   2188 	 * and then do TCP input processing.
   2189 	 * Receive window is amount of space in rcv queue,
   2190 	 * but not less than advertised window.
   2191 	 */
   2192 	{ int win;
   2193 
   2194 	win = sbspace(&so->so_rcv);
   2195 	if (win < 0)
   2196 		win = 0;
   2197 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2198 	}
   2199 
   2200 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2201 	tp->rfbuf_ts = 0;
   2202 	tp->rfbuf_cnt = 0;
   2203 
   2204 	switch (tp->t_state) {
   2205 	/*
   2206 	 * If the state is SYN_SENT:
   2207 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2208 	 *	if seg contains a RST, then drop the connection.
   2209 	 *	if seg does not contain SYN, then drop it.
   2210 	 * Otherwise this is an acceptable SYN segment
   2211 	 *	initialize tp->rcv_nxt and tp->irs
   2212 	 *	if seg contains ack then advance tp->snd_una
   2213 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2214 	 *	    is ECN capable.
   2215 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2216 	 *	arrange for segment to be acked (eventually)
   2217 	 *	continue processing rest of data/controls, beginning with URG
   2218 	 */
   2219 	case TCPS_SYN_SENT:
   2220 		if ((tiflags & TH_ACK) &&
   2221 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2222 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2223 			goto dropwithreset;
   2224 		if (tiflags & TH_RST) {
   2225 			if (tiflags & TH_ACK)
   2226 				tp = tcp_drop(tp, ECONNREFUSED);
   2227 			goto drop;
   2228 		}
   2229 		if ((tiflags & TH_SYN) == 0)
   2230 			goto drop;
   2231 		if (tiflags & TH_ACK) {
   2232 			tp->snd_una = th->th_ack;
   2233 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2234 				tp->snd_nxt = tp->snd_una;
   2235 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2236 				tp->snd_high = tp->snd_una;
   2237 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2238 
   2239 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2240 				tp->t_flags |= TF_ECN_PERMIT;
   2241 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2242 			}
   2243 
   2244 		}
   2245 		tp->irs = th->th_seq;
   2246 		tcp_rcvseqinit(tp);
   2247 		tp->t_flags |= TF_ACKNOW;
   2248 		tcp_mss_from_peer(tp, opti.maxseg);
   2249 
   2250 		/*
   2251 		 * Initialize the initial congestion window.  If we
   2252 		 * had to retransmit the SYN, we must initialize cwnd
   2253 		 * to 1 segment (i.e. the Loss Window).
   2254 		 */
   2255 		if (tp->t_flags & TF_SYN_REXMT)
   2256 			tp->snd_cwnd = tp->t_peermss;
   2257 		else {
   2258 			int ss = tcp_init_win;
   2259 #ifdef INET
   2260 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2261 				ss = tcp_init_win_local;
   2262 #endif
   2263 #ifdef INET6
   2264 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2265 				ss = tcp_init_win_local;
   2266 #endif
   2267 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2268 		}
   2269 
   2270 		tcp_rmx_rtt(tp);
   2271 		if (tiflags & TH_ACK) {
   2272 			TCP_STATINC(TCP_STAT_CONNECTS);
   2273 			/*
   2274 			 * move tcp_established before soisconnected
   2275 			 * because upcall handler can drive tcp_output
   2276 			 * functionality.
   2277 			 * XXX we might call soisconnected at the end of
   2278 			 * all processing
   2279 			 */
   2280 			tcp_established(tp);
   2281 			soisconnected(so);
   2282 			/* Do window scaling on this connection? */
   2283 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2284 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2285 				tp->snd_scale = tp->requested_s_scale;
   2286 				tp->rcv_scale = tp->request_r_scale;
   2287 			}
   2288 			TCP_REASS_LOCK(tp);
   2289 			(void) tcp_reass(tp, NULL, NULL, &tlen);
   2290 			/*
   2291 			 * if we didn't have to retransmit the SYN,
   2292 			 * use its rtt as our initial srtt & rtt var.
   2293 			 */
   2294 			if (tp->t_rtttime)
   2295 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2296 		} else
   2297 			tp->t_state = TCPS_SYN_RECEIVED;
   2298 
   2299 		/*
   2300 		 * Advance th->th_seq to correspond to first data byte.
   2301 		 * If data, trim to stay within window,
   2302 		 * dropping FIN if necessary.
   2303 		 */
   2304 		th->th_seq++;
   2305 		if (tlen > tp->rcv_wnd) {
   2306 			todrop = tlen - tp->rcv_wnd;
   2307 			m_adj(m, -todrop);
   2308 			tlen = tp->rcv_wnd;
   2309 			tiflags &= ~TH_FIN;
   2310 			tcps = TCP_STAT_GETREF();
   2311 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2312 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2313 			TCP_STAT_PUTREF();
   2314 		}
   2315 		tp->snd_wl1 = th->th_seq - 1;
   2316 		tp->rcv_up = th->th_seq;
   2317 		goto step6;
   2318 
   2319 	/*
   2320 	 * If the state is SYN_RECEIVED:
   2321 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2322 	 *	and generate an RST.  See page 36, rfc793
   2323 	 */
   2324 	case TCPS_SYN_RECEIVED:
   2325 		if ((tiflags & TH_ACK) &&
   2326 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2327 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2328 			goto dropwithreset;
   2329 		break;
   2330 	}
   2331 
   2332 	/*
   2333 	 * States other than LISTEN or SYN_SENT.
   2334 	 * First check timestamp, if present.
   2335 	 * Then check that at least some bytes of segment are within
   2336 	 * receive window.  If segment begins before rcv_nxt,
   2337 	 * drop leading data (and SYN); if nothing left, just ack.
   2338 	 *
   2339 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2340 	 * and it's less than ts_recent, drop it.
   2341 	 */
   2342 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2343 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2344 
   2345 		/* Check to see if ts_recent is over 24 days old.  */
   2346 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2347 			/*
   2348 			 * Invalidate ts_recent.  If this segment updates
   2349 			 * ts_recent, the age will be reset later and ts_recent
   2350 			 * will get a valid value.  If it does not, setting
   2351 			 * ts_recent to zero will at least satisfy the
   2352 			 * requirement that zero be placed in the timestamp
   2353 			 * echo reply when ts_recent isn't valid.  The
   2354 			 * age isn't reset until we get a valid ts_recent
   2355 			 * because we don't want out-of-order segments to be
   2356 			 * dropped when ts_recent is old.
   2357 			 */
   2358 			tp->ts_recent = 0;
   2359 		} else {
   2360 			tcps = TCP_STAT_GETREF();
   2361 			tcps[TCP_STAT_RCVDUPPACK]++;
   2362 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2363 			tcps[TCP_STAT_PAWSDROP]++;
   2364 			TCP_STAT_PUTREF();
   2365 			tcp_new_dsack(tp, th->th_seq, tlen);
   2366 			goto dropafterack;
   2367 		}
   2368 	}
   2369 
   2370 	todrop = tp->rcv_nxt - th->th_seq;
   2371 	dupseg = false;
   2372 	if (todrop > 0) {
   2373 		if (tiflags & TH_SYN) {
   2374 			tiflags &= ~TH_SYN;
   2375 			th->th_seq++;
   2376 			if (th->th_urp > 1)
   2377 				th->th_urp--;
   2378 			else {
   2379 				tiflags &= ~TH_URG;
   2380 				th->th_urp = 0;
   2381 			}
   2382 			todrop--;
   2383 		}
   2384 		if (todrop > tlen ||
   2385 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2386 			/*
   2387 			 * Any valid FIN or RST must be to the left of the
   2388 			 * window.  At this point the FIN or RST must be a
   2389 			 * duplicate or out of sequence; drop it.
   2390 			 */
   2391 			if (tiflags & TH_RST)
   2392 				goto drop;
   2393 			tiflags &= ~(TH_FIN|TH_RST);
   2394 			/*
   2395 			 * Send an ACK to resynchronize and drop any data.
   2396 			 * But keep on processing for RST or ACK.
   2397 			 */
   2398 			tp->t_flags |= TF_ACKNOW;
   2399 			todrop = tlen;
   2400 			dupseg = true;
   2401 			tcps = TCP_STAT_GETREF();
   2402 			tcps[TCP_STAT_RCVDUPPACK]++;
   2403 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2404 			TCP_STAT_PUTREF();
   2405 		} else if ((tiflags & TH_RST) &&
   2406 			   th->th_seq != tp->rcv_nxt) {
   2407 			/*
   2408 			 * Test for reset before adjusting the sequence
   2409 			 * number for overlapping data.
   2410 			 */
   2411 			goto dropafterack_ratelim;
   2412 		} else {
   2413 			tcps = TCP_STAT_GETREF();
   2414 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2415 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2416 			TCP_STAT_PUTREF();
   2417 		}
   2418 		tcp_new_dsack(tp, th->th_seq, todrop);
   2419 		hdroptlen += todrop;	/*drop from head afterwards*/
   2420 		th->th_seq += todrop;
   2421 		tlen -= todrop;
   2422 		if (th->th_urp > todrop)
   2423 			th->th_urp -= todrop;
   2424 		else {
   2425 			tiflags &= ~TH_URG;
   2426 			th->th_urp = 0;
   2427 		}
   2428 	}
   2429 
   2430 	/*
   2431 	 * If new data are received on a connection after the
   2432 	 * user processes are gone, then RST the other end.
   2433 	 */
   2434 	if ((so->so_state & SS_NOFDREF) &&
   2435 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2436 		tp = tcp_close(tp);
   2437 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2438 		goto dropwithreset;
   2439 	}
   2440 
   2441 	/*
   2442 	 * If segment ends after window, drop trailing data
   2443 	 * (and PUSH and FIN); if nothing left, just ACK.
   2444 	 */
   2445 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2446 	if (todrop > 0) {
   2447 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2448 		if (todrop >= tlen) {
   2449 			/*
   2450 			 * The segment actually starts after the window.
   2451 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2452 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2453 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2454 			 */
   2455 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2456 			/*
   2457 			 * If a new connection request is received
   2458 			 * while in TIME_WAIT, drop the old connection
   2459 			 * and start over if the sequence numbers
   2460 			 * are above the previous ones.
   2461 			 *
   2462 			 * NOTE: We will checksum the packet again, and
   2463 			 * so we need to put the header fields back into
   2464 			 * network order!
   2465 			 * XXX This kind of sucks, but we don't expect
   2466 			 * XXX this to happen very often, so maybe it
   2467 			 * XXX doesn't matter so much.
   2468 			 */
   2469 			if (tiflags & TH_SYN &&
   2470 			    tp->t_state == TCPS_TIME_WAIT &&
   2471 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2472 				tp = tcp_close(tp);
   2473 				tcp_fields_to_net(th);
   2474 				goto findpcb;
   2475 			}
   2476 			/*
   2477 			 * If window is closed can only take segments at
   2478 			 * window edge, and have to drop data and PUSH from
   2479 			 * incoming segments.  Continue processing, but
   2480 			 * remember to ack.  Otherwise, drop segment
   2481 			 * and (if not RST) ack.
   2482 			 */
   2483 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2484 				tp->t_flags |= TF_ACKNOW;
   2485 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2486 			} else
   2487 				goto dropafterack;
   2488 		} else
   2489 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2490 		m_adj(m, -todrop);
   2491 		tlen -= todrop;
   2492 		tiflags &= ~(TH_PUSH|TH_FIN);
   2493 	}
   2494 
   2495 	/*
   2496 	 * If last ACK falls within this segment's sequence numbers,
   2497 	 *  record the timestamp.
   2498 	 * NOTE:
   2499 	 * 1) That the test incorporates suggestions from the latest
   2500 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2501 	 * 2) That updating only on newer timestamps interferes with
   2502 	 *    our earlier PAWS tests, so this check should be solely
   2503 	 *    predicated on the sequence space of this segment.
   2504 	 * 3) That we modify the segment boundary check to be
   2505 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2506 	 *    instead of RFC1323's
   2507 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2508 	 *    This modified check allows us to overcome RFC1323's
   2509 	 *    limitations as described in Stevens TCP/IP Illustrated
   2510 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2511 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2512 	 */
   2513 	if (opti.ts_present &&
   2514 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2515 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2516 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2517 		tp->ts_recent_age = tcp_now;
   2518 		tp->ts_recent = opti.ts_val;
   2519 	}
   2520 
   2521 	/*
   2522 	 * If the RST bit is set examine the state:
   2523 	 *    SYN_RECEIVED STATE:
   2524 	 *	If passive open, return to LISTEN state.
   2525 	 *	If active open, inform user that connection was refused.
   2526 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2527 	 *	Inform user that connection was reset, and close tcb.
   2528 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2529 	 *	Close the tcb.
   2530 	 */
   2531 	if (tiflags & TH_RST) {
   2532 		if (th->th_seq != tp->rcv_nxt)
   2533 			goto dropafterack_ratelim;
   2534 
   2535 		switch (tp->t_state) {
   2536 		case TCPS_SYN_RECEIVED:
   2537 			so->so_error = ECONNREFUSED;
   2538 			goto close;
   2539 
   2540 		case TCPS_ESTABLISHED:
   2541 		case TCPS_FIN_WAIT_1:
   2542 		case TCPS_FIN_WAIT_2:
   2543 		case TCPS_CLOSE_WAIT:
   2544 			so->so_error = ECONNRESET;
   2545 		close:
   2546 			tp->t_state = TCPS_CLOSED;
   2547 			TCP_STATINC(TCP_STAT_DROPS);
   2548 			tp = tcp_close(tp);
   2549 			goto drop;
   2550 
   2551 		case TCPS_CLOSING:
   2552 		case TCPS_LAST_ACK:
   2553 		case TCPS_TIME_WAIT:
   2554 			tp = tcp_close(tp);
   2555 			goto drop;
   2556 		}
   2557 	}
   2558 
   2559 	/*
   2560 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2561 	 * we must be in a synchronized state.  RFC791 states (under RST
   2562 	 * generation) that any unacceptable segment (an out-of-order SYN
   2563 	 * qualifies) received in a synchronized state must elicit only an
   2564 	 * empty acknowledgment segment ... and the connection remains in
   2565 	 * the same state.
   2566 	 */
   2567 	if (tiflags & TH_SYN) {
   2568 		if (tp->rcv_nxt == th->th_seq) {
   2569 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2570 			    TH_ACK);
   2571 			if (tcp_saveti)
   2572 				m_freem(tcp_saveti);
   2573 			return;
   2574 		}
   2575 
   2576 		goto dropafterack_ratelim;
   2577 	}
   2578 
   2579 	/*
   2580 	 * If the ACK bit is off we drop the segment and return.
   2581 	 */
   2582 	if ((tiflags & TH_ACK) == 0) {
   2583 		if (tp->t_flags & TF_ACKNOW)
   2584 			goto dropafterack;
   2585 		else
   2586 			goto drop;
   2587 	}
   2588 
   2589 	/*
   2590 	 * Ack processing.
   2591 	 */
   2592 	switch (tp->t_state) {
   2593 
   2594 	/*
   2595 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2596 	 * ESTABLISHED state and continue processing, otherwise
   2597 	 * send an RST.
   2598 	 */
   2599 	case TCPS_SYN_RECEIVED:
   2600 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2601 		    SEQ_GT(th->th_ack, tp->snd_max))
   2602 			goto dropwithreset;
   2603 		TCP_STATINC(TCP_STAT_CONNECTS);
   2604 		soisconnected(so);
   2605 		tcp_established(tp);
   2606 		/* Do window scaling? */
   2607 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2608 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2609 			tp->snd_scale = tp->requested_s_scale;
   2610 			tp->rcv_scale = tp->request_r_scale;
   2611 		}
   2612 		TCP_REASS_LOCK(tp);
   2613 		(void) tcp_reass(tp, NULL, NULL, &tlen);
   2614 		tp->snd_wl1 = th->th_seq - 1;
   2615 		/* fall into ... */
   2616 
   2617 	/*
   2618 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2619 	 * ACKs.  If the ack is in the range
   2620 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2621 	 * then advance tp->snd_una to th->th_ack and drop
   2622 	 * data from the retransmission queue.  If this ACK reflects
   2623 	 * more up to date window information we update our window information.
   2624 	 */
   2625 	case TCPS_ESTABLISHED:
   2626 	case TCPS_FIN_WAIT_1:
   2627 	case TCPS_FIN_WAIT_2:
   2628 	case TCPS_CLOSE_WAIT:
   2629 	case TCPS_CLOSING:
   2630 	case TCPS_LAST_ACK:
   2631 	case TCPS_TIME_WAIT:
   2632 
   2633 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2634 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2635 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2636 				/*
   2637 				 * If we have outstanding data (other than
   2638 				 * a window probe), this is a completely
   2639 				 * duplicate ack (ie, window info didn't
   2640 				 * change), the ack is the biggest we've
   2641 				 * seen and we've seen exactly our rexmt
   2642 				 * threshhold of them, assume a packet
   2643 				 * has been dropped and retransmit it.
   2644 				 * Kludge snd_nxt & the congestion
   2645 				 * window so we send only this one
   2646 				 * packet.
   2647 				 */
   2648 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2649 				    th->th_ack != tp->snd_una)
   2650 					tp->t_dupacks = 0;
   2651 				else if (tp->t_partialacks < 0 &&
   2652 					 (++tp->t_dupacks == tcprexmtthresh ||
   2653 					 TCP_FACK_FASTRECOV(tp))) {
   2654 					/*
   2655 					 * Do the fast retransmit, and adjust
   2656 					 * congestion control paramenters.
   2657 					 */
   2658 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2659 						/* False fast retransmit */
   2660 						break;
   2661 					} else
   2662 						goto drop;
   2663 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2664 					tp->snd_cwnd += tp->t_segsz;
   2665 					KERNEL_LOCK(1, NULL);
   2666 					(void) tcp_output(tp);
   2667 					KERNEL_UNLOCK_ONE(NULL);
   2668 					goto drop;
   2669 				}
   2670 			} else {
   2671 				/*
   2672 				 * If the ack appears to be very old, only
   2673 				 * allow data that is in-sequence.  This
   2674 				 * makes it somewhat more difficult to insert
   2675 				 * forged data by guessing sequence numbers.
   2676 				 * Sent an ack to try to update the send
   2677 				 * sequence number on the other side.
   2678 				 */
   2679 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2680 				    SEQ_LT(th->th_ack,
   2681 				    tp->snd_una - tp->max_sndwnd))
   2682 					goto dropafterack;
   2683 			}
   2684 			break;
   2685 		}
   2686 		/*
   2687 		 * If the congestion window was inflated to account
   2688 		 * for the other side's cached packets, retract it.
   2689 		 */
   2690 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2691 
   2692 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2693 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2694 			goto dropafterack;
   2695 		}
   2696 		acked = th->th_ack - tp->snd_una;
   2697 		tcps = TCP_STAT_GETREF();
   2698 		tcps[TCP_STAT_RCVACKPACK]++;
   2699 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2700 		TCP_STAT_PUTREF();
   2701 
   2702 		/*
   2703 		 * If we have a timestamp reply, update smoothed
   2704 		 * round trip time.  If no timestamp is present but
   2705 		 * transmit timer is running and timed sequence
   2706 		 * number was acked, update smoothed round trip time.
   2707 		 * Since we now have an rtt measurement, cancel the
   2708 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2709 		 * Recompute the initial retransmit timer.
   2710 		 */
   2711 		if (ts_rtt)
   2712 			tcp_xmit_timer(tp, ts_rtt - 1);
   2713 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2714 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2715 
   2716 		/*
   2717 		 * If all outstanding data is acked, stop retransmit
   2718 		 * timer and remember to restart (more output or persist).
   2719 		 * If there is more data to be acked, restart retransmit
   2720 		 * timer, using current (possibly backed-off) value.
   2721 		 */
   2722 		if (th->th_ack == tp->snd_max) {
   2723 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2724 			needoutput = 1;
   2725 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2726 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2727 
   2728 		/*
   2729 		 * New data has been acked, adjust the congestion window.
   2730 		 */
   2731 		tp->t_congctl->newack(tp, th);
   2732 
   2733 		nd6_hint(tp);
   2734 		if (acked > so->so_snd.sb_cc) {
   2735 			tp->snd_wnd -= so->so_snd.sb_cc;
   2736 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2737 			ourfinisacked = 1;
   2738 		} else {
   2739 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2740 				tp->t_lastm = NULL;
   2741 			sbdrop(&so->so_snd, acked);
   2742 			tp->t_lastoff -= acked;
   2743 			if (tp->snd_wnd > acked)
   2744 				tp->snd_wnd -= acked;
   2745 			else
   2746 				tp->snd_wnd = 0;
   2747 			ourfinisacked = 0;
   2748 		}
   2749 		sowwakeup(so);
   2750 
   2751 		icmp_check(tp, th, acked);
   2752 
   2753 		tp->snd_una = th->th_ack;
   2754 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2755 			tp->snd_fack = tp->snd_una;
   2756 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2757 			tp->snd_nxt = tp->snd_una;
   2758 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2759 			tp->snd_high = tp->snd_una;
   2760 
   2761 		switch (tp->t_state) {
   2762 
   2763 		/*
   2764 		 * In FIN_WAIT_1 STATE in addition to the processing
   2765 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2766 		 * then enter FIN_WAIT_2.
   2767 		 */
   2768 		case TCPS_FIN_WAIT_1:
   2769 			if (ourfinisacked) {
   2770 				/*
   2771 				 * If we can't receive any more
   2772 				 * data, then closing user can proceed.
   2773 				 * Starting the timer is contrary to the
   2774 				 * specification, but if we don't get a FIN
   2775 				 * we'll hang forever.
   2776 				 */
   2777 				if (so->so_state & SS_CANTRCVMORE) {
   2778 					soisdisconnected(so);
   2779 					if (tp->t_maxidle > 0)
   2780 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2781 						    tp->t_maxidle);
   2782 				}
   2783 				tp->t_state = TCPS_FIN_WAIT_2;
   2784 			}
   2785 			break;
   2786 
   2787 	 	/*
   2788 		 * In CLOSING STATE in addition to the processing for
   2789 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2790 		 * then enter the TIME-WAIT state, otherwise ignore
   2791 		 * the segment.
   2792 		 */
   2793 		case TCPS_CLOSING:
   2794 			if (ourfinisacked) {
   2795 				tp->t_state = TCPS_TIME_WAIT;
   2796 				tcp_canceltimers(tp);
   2797 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2798 				soisdisconnected(so);
   2799 			}
   2800 			break;
   2801 
   2802 		/*
   2803 		 * In LAST_ACK, we may still be waiting for data to drain
   2804 		 * and/or to be acked, as well as for the ack of our FIN.
   2805 		 * If our FIN is now acknowledged, delete the TCB,
   2806 		 * enter the closed state and return.
   2807 		 */
   2808 		case TCPS_LAST_ACK:
   2809 			if (ourfinisacked) {
   2810 				tp = tcp_close(tp);
   2811 				goto drop;
   2812 			}
   2813 			break;
   2814 
   2815 		/*
   2816 		 * In TIME_WAIT state the only thing that should arrive
   2817 		 * is a retransmission of the remote FIN.  Acknowledge
   2818 		 * it and restart the finack timer.
   2819 		 */
   2820 		case TCPS_TIME_WAIT:
   2821 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2822 			goto dropafterack;
   2823 		}
   2824 	}
   2825 
   2826 step6:
   2827 	/*
   2828 	 * Update window information.
   2829 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2830 	 */
   2831 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2832 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2833 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2834 		/* keep track of pure window updates */
   2835 		if (tlen == 0 &&
   2836 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2837 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2838 		tp->snd_wnd = tiwin;
   2839 		tp->snd_wl1 = th->th_seq;
   2840 		tp->snd_wl2 = th->th_ack;
   2841 		if (tp->snd_wnd > tp->max_sndwnd)
   2842 			tp->max_sndwnd = tp->snd_wnd;
   2843 		needoutput = 1;
   2844 	}
   2845 
   2846 	/*
   2847 	 * Process segments with URG.
   2848 	 */
   2849 	if ((tiflags & TH_URG) && th->th_urp &&
   2850 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2851 		/*
   2852 		 * This is a kludge, but if we receive and accept
   2853 		 * random urgent pointers, we'll crash in
   2854 		 * soreceive.  It's hard to imagine someone
   2855 		 * actually wanting to send this much urgent data.
   2856 		 */
   2857 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2858 			th->th_urp = 0;			/* XXX */
   2859 			tiflags &= ~TH_URG;		/* XXX */
   2860 			goto dodata;			/* XXX */
   2861 		}
   2862 		/*
   2863 		 * If this segment advances the known urgent pointer,
   2864 		 * then mark the data stream.  This should not happen
   2865 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2866 		 * a FIN has been received from the remote side.
   2867 		 * In these states we ignore the URG.
   2868 		 *
   2869 		 * According to RFC961 (Assigned Protocols),
   2870 		 * the urgent pointer points to the last octet
   2871 		 * of urgent data.  We continue, however,
   2872 		 * to consider it to indicate the first octet
   2873 		 * of data past the urgent section as the original
   2874 		 * spec states (in one of two places).
   2875 		 */
   2876 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2877 			tp->rcv_up = th->th_seq + th->th_urp;
   2878 			so->so_oobmark = so->so_rcv.sb_cc +
   2879 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2880 			if (so->so_oobmark == 0)
   2881 				so->so_state |= SS_RCVATMARK;
   2882 			sohasoutofband(so);
   2883 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2884 		}
   2885 		/*
   2886 		 * Remove out of band data so doesn't get presented to user.
   2887 		 * This can happen independent of advancing the URG pointer,
   2888 		 * but if two URG's are pending at once, some out-of-band
   2889 		 * data may creep in... ick.
   2890 		 */
   2891 		if (th->th_urp <= (u_int16_t) tlen
   2892 #ifdef SO_OOBINLINE
   2893 		     && (so->so_options & SO_OOBINLINE) == 0
   2894 #endif
   2895 		     )
   2896 			tcp_pulloutofband(so, th, m, hdroptlen);
   2897 	} else
   2898 		/*
   2899 		 * If no out of band data is expected,
   2900 		 * pull receive urgent pointer along
   2901 		 * with the receive window.
   2902 		 */
   2903 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2904 			tp->rcv_up = tp->rcv_nxt;
   2905 dodata:							/* XXX */
   2906 
   2907 	/*
   2908 	 * Process the segment text, merging it into the TCP sequencing queue,
   2909 	 * and arranging for acknowledgement of receipt if necessary.
   2910 	 * This process logically involves adjusting tp->rcv_wnd as data
   2911 	 * is presented to the user (this happens in tcp_usrreq.c,
   2912 	 * tcp_rcvd()).  If a FIN has already been received on this
   2913 	 * connection then we just ignore the text.
   2914 	 */
   2915 	if ((tlen || (tiflags & TH_FIN)) &&
   2916 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2917 		/*
   2918 		 * Insert segment ti into reassembly queue of tcp with
   2919 		 * control block tp.  Return TH_FIN if reassembly now includes
   2920 		 * a segment with FIN.  The macro form does the common case
   2921 		 * inline (segment is the next to be received on an
   2922 		 * established connection, and the queue is empty),
   2923 		 * avoiding linkage into and removal from the queue and
   2924 		 * repetition of various conversions.
   2925 		 * Set DELACK for segments received in order, but ack
   2926 		 * immediately when segments are out of order
   2927 		 * (so fast retransmit can work).
   2928 		 */
   2929 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2930 		TCP_REASS_LOCK(tp);
   2931 		if (th->th_seq == tp->rcv_nxt &&
   2932 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2933 		    tp->t_state == TCPS_ESTABLISHED) {
   2934 			tcp_setup_ack(tp, th);
   2935 			tp->rcv_nxt += tlen;
   2936 			tiflags = th->th_flags & TH_FIN;
   2937 			tcps = TCP_STAT_GETREF();
   2938 			tcps[TCP_STAT_RCVPACK]++;
   2939 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2940 			TCP_STAT_PUTREF();
   2941 			nd6_hint(tp);
   2942 			if (so->so_state & SS_CANTRCVMORE)
   2943 				m_freem(m);
   2944 			else {
   2945 				m_adj(m, hdroptlen);
   2946 				sbappendstream(&(so)->so_rcv, m);
   2947 			}
   2948 			TCP_REASS_UNLOCK(tp);
   2949 			sorwakeup(so);
   2950 		} else {
   2951 			m_adj(m, hdroptlen);
   2952 			tiflags = tcp_reass(tp, th, m, &tlen);
   2953 			tp->t_flags |= TF_ACKNOW;
   2954 		}
   2955 
   2956 		/*
   2957 		 * Note the amount of data that peer has sent into
   2958 		 * our window, in order to estimate the sender's
   2959 		 * buffer size.
   2960 		 */
   2961 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2962 	} else {
   2963 		m_freem(m);
   2964 		m = NULL;
   2965 		tiflags &= ~TH_FIN;
   2966 	}
   2967 
   2968 	/*
   2969 	 * If FIN is received ACK the FIN and let the user know
   2970 	 * that the connection is closing.  Ignore a FIN received before
   2971 	 * the connection is fully established.
   2972 	 */
   2973 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2974 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2975 			socantrcvmore(so);
   2976 			tp->t_flags |= TF_ACKNOW;
   2977 			tp->rcv_nxt++;
   2978 		}
   2979 		switch (tp->t_state) {
   2980 
   2981 	 	/*
   2982 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2983 		 */
   2984 		case TCPS_ESTABLISHED:
   2985 			tp->t_state = TCPS_CLOSE_WAIT;
   2986 			break;
   2987 
   2988 	 	/*
   2989 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2990 		 * enter the CLOSING state.
   2991 		 */
   2992 		case TCPS_FIN_WAIT_1:
   2993 			tp->t_state = TCPS_CLOSING;
   2994 			break;
   2995 
   2996 	 	/*
   2997 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2998 		 * starting the time-wait timer, turning off the other
   2999 		 * standard timers.
   3000 		 */
   3001 		case TCPS_FIN_WAIT_2:
   3002 			tp->t_state = TCPS_TIME_WAIT;
   3003 			tcp_canceltimers(tp);
   3004 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   3005 			soisdisconnected(so);
   3006 			break;
   3007 
   3008 		/*
   3009 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   3010 		 */
   3011 		case TCPS_TIME_WAIT:
   3012 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   3013 			break;
   3014 		}
   3015 	}
   3016 #ifdef TCP_DEBUG
   3017 	if (so->so_options & SO_DEBUG)
   3018 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   3019 #endif
   3020 
   3021 	/*
   3022 	 * Return any desired output.
   3023 	 */
   3024 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   3025 		KERNEL_LOCK(1, NULL);
   3026 		(void) tcp_output(tp);
   3027 		KERNEL_UNLOCK_ONE(NULL);
   3028 	}
   3029 	if (tcp_saveti)
   3030 		m_freem(tcp_saveti);
   3031 
   3032 	if (tp->t_state == TCPS_TIME_WAIT
   3033 	    && (so->so_state & SS_NOFDREF)
   3034 	    && (tp->t_inpcb || af != AF_INET)
   3035 	    && (tp->t_in6pcb || af != AF_INET6)
   3036 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   3037 	    && TAILQ_EMPTY(&tp->segq)
   3038 	    && vtw_add(af, tp)) {
   3039 		;
   3040 	}
   3041 	return;
   3042 
   3043 badsyn:
   3044 	/*
   3045 	 * Received a bad SYN.  Increment counters and dropwithreset.
   3046 	 */
   3047 	TCP_STATINC(TCP_STAT_BADSYN);
   3048 	tp = NULL;
   3049 	goto dropwithreset;
   3050 
   3051 dropafterack:
   3052 	/*
   3053 	 * Generate an ACK dropping incoming segment if it occupies
   3054 	 * sequence space, where the ACK reflects our state.
   3055 	 */
   3056 	if (tiflags & TH_RST)
   3057 		goto drop;
   3058 	goto dropafterack2;
   3059 
   3060 dropafterack_ratelim:
   3061 	/*
   3062 	 * We may want to rate-limit ACKs against SYN/RST attack.
   3063 	 */
   3064 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   3065 	    tcp_ackdrop_ppslim) == 0) {
   3066 		/* XXX stat */
   3067 		goto drop;
   3068 	}
   3069 	/* ...fall into dropafterack2... */
   3070 
   3071 dropafterack2:
   3072 	m_freem(m);
   3073 	tp->t_flags |= TF_ACKNOW;
   3074 	KERNEL_LOCK(1, NULL);
   3075 	(void) tcp_output(tp);
   3076 	KERNEL_UNLOCK_ONE(NULL);
   3077 	if (tcp_saveti)
   3078 		m_freem(tcp_saveti);
   3079 	return;
   3080 
   3081 dropwithreset_ratelim:
   3082 	/*
   3083 	 * We may want to rate-limit RSTs in certain situations,
   3084 	 * particularly if we are sending an RST in response to
   3085 	 * an attempt to connect to or otherwise communicate with
   3086 	 * a port for which we have no socket.
   3087 	 */
   3088 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   3089 	    tcp_rst_ppslim) == 0) {
   3090 		/* XXX stat */
   3091 		goto drop;
   3092 	}
   3093 	/* ...fall into dropwithreset... */
   3094 
   3095 dropwithreset:
   3096 	/*
   3097 	 * Generate a RST, dropping incoming segment.
   3098 	 * Make ACK acceptable to originator of segment.
   3099 	 */
   3100 	if (tiflags & TH_RST)
   3101 		goto drop;
   3102 
   3103 	switch (af) {
   3104 #ifdef INET6
   3105 	case AF_INET6:
   3106 		/* For following calls to tcp_respond */
   3107 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   3108 			goto drop;
   3109 		break;
   3110 #endif /* INET6 */
   3111 	case AF_INET:
   3112 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   3113 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   3114 			goto drop;
   3115 	}
   3116 
   3117 	if (tiflags & TH_ACK)
   3118 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3119 	else {
   3120 		if (tiflags & TH_SYN)
   3121 			tlen++;
   3122 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3123 		    TH_RST|TH_ACK);
   3124 	}
   3125 	if (tcp_saveti)
   3126 		m_freem(tcp_saveti);
   3127 	return;
   3128 
   3129 badcsum:
   3130 drop:
   3131 	/*
   3132 	 * Drop space held by incoming segment and return.
   3133 	 */
   3134 	if (tp) {
   3135 		if (tp->t_inpcb)
   3136 			so = tp->t_inpcb->inp_socket;
   3137 #ifdef INET6
   3138 		else if (tp->t_in6pcb)
   3139 			so = tp->t_in6pcb->in6p_socket;
   3140 #endif
   3141 		else
   3142 			so = NULL;
   3143 #ifdef TCP_DEBUG
   3144 		if (so && (so->so_options & SO_DEBUG) != 0)
   3145 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3146 #endif
   3147 	}
   3148 	if (tcp_saveti)
   3149 		m_freem(tcp_saveti);
   3150 	m_freem(m);
   3151 	return;
   3152 }
   3153 
   3154 #ifdef TCP_SIGNATURE
   3155 int
   3156 tcp_signature_apply(void *fstate, void *data, u_int len)
   3157 {
   3158 
   3159 	MD5Update(fstate, (u_char *)data, len);
   3160 	return (0);
   3161 }
   3162 
   3163 struct secasvar *
   3164 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   3165 {
   3166 	struct ip *ip;
   3167 	struct ip6_hdr *ip6;
   3168 
   3169 	ip = mtod(m, struct ip *);
   3170 	switch (ip->ip_v) {
   3171 	case 4:
   3172 		ip = mtod(m, struct ip *);
   3173 		ip6 = NULL;
   3174 		break;
   3175 	case 6:
   3176 		ip = NULL;
   3177 		ip6 = mtod(m, struct ip6_hdr *);
   3178 		break;
   3179 	default:
   3180 		return (NULL);
   3181 	}
   3182 
   3183 #ifdef IPSEC
   3184 	if (ipsec_used) {
   3185 		union sockaddr_union dst;
   3186 		/* Extract the destination from the IP header in the mbuf. */
   3187 		memset(&dst, 0, sizeof(union sockaddr_union));
   3188 		if (ip != NULL) {
   3189 			dst.sa.sa_len = sizeof(struct sockaddr_in);
   3190 			dst.sa.sa_family = AF_INET;
   3191 			dst.sin.sin_addr = ip->ip_dst;
   3192 		} else {
   3193 			dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3194 			dst.sa.sa_family = AF_INET6;
   3195 			dst.sin6.sin6_addr = ip6->ip6_dst;
   3196 		}
   3197 
   3198 		/*
   3199 		 * Look up an SADB entry which matches the address of the peer.
   3200 		 */
   3201 		return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3202 	}
   3203 	return NULL;
   3204 #else
   3205 	if (ip)
   3206 		return key_allocsa(AF_INET, (void *)&ip->ip_src,
   3207 		    (void *)&ip->ip_dst, IPPROTO_TCP,
   3208 		    htonl(TCP_SIG_SPI), 0, 0);
   3209 	else
   3210 		return key_allocsa(AF_INET6, (void *)&ip6->ip6_src,
   3211 		    (void *)&ip6->ip6_dst, IPPROTO_TCP,
   3212 		    htonl(TCP_SIG_SPI), 0, 0);
   3213 #endif
   3214 }
   3215 
   3216 int
   3217 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3218     struct secasvar *sav, char *sig)
   3219 {
   3220 	MD5_CTX ctx;
   3221 	struct ip *ip;
   3222 	struct ipovly *ipovly;
   3223 #ifdef INET6
   3224 	struct ip6_hdr *ip6;
   3225 	struct ip6_hdr_pseudo ip6pseudo;
   3226 #endif /* INET6 */
   3227 	struct ippseudo ippseudo;
   3228 	struct tcphdr th0;
   3229 	int l, tcphdrlen;
   3230 
   3231 	if (sav == NULL)
   3232 		return (-1);
   3233 
   3234 	tcphdrlen = th->th_off * 4;
   3235 
   3236 	switch (mtod(m, struct ip *)->ip_v) {
   3237 	case 4:
   3238 		MD5Init(&ctx);
   3239 		ip = mtod(m, struct ip *);
   3240 		memset(&ippseudo, 0, sizeof(ippseudo));
   3241 		ipovly = (struct ipovly *)ip;
   3242 		ippseudo.ippseudo_src = ipovly->ih_src;
   3243 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3244 		ippseudo.ippseudo_pad = 0;
   3245 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3246 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3247 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3248 		break;
   3249 #if INET6
   3250 	case 6:
   3251 		MD5Init(&ctx);
   3252 		ip6 = mtod(m, struct ip6_hdr *);
   3253 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3254 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3255 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3256 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3257 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3258 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3259 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3260 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3261 		break;
   3262 #endif /* INET6 */
   3263 	default:
   3264 		return (-1);
   3265 	}
   3266 
   3267 	th0 = *th;
   3268 	th0.th_sum = 0;
   3269 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3270 
   3271 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3272 	if (l > 0)
   3273 		m_apply(m, thoff + tcphdrlen,
   3274 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3275 		    tcp_signature_apply, &ctx);
   3276 
   3277 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3278 	MD5Final(sig, &ctx);
   3279 
   3280 	return (0);
   3281 }
   3282 #endif
   3283 
   3284 /*
   3285  * tcp_dooptions: parse and process tcp options.
   3286  *
   3287  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3288  * otherwise returns 0.
   3289  */
   3290 
   3291 static int
   3292 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3293     struct tcphdr *th,
   3294     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3295 {
   3296 	u_int16_t mss;
   3297 	int opt, optlen = 0;
   3298 #ifdef TCP_SIGNATURE
   3299 	void *sigp = NULL;
   3300 	char sigbuf[TCP_SIGLEN];
   3301 	struct secasvar *sav = NULL;
   3302 #endif
   3303 
   3304 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3305 		opt = cp[0];
   3306 		if (opt == TCPOPT_EOL)
   3307 			break;
   3308 		if (opt == TCPOPT_NOP)
   3309 			optlen = 1;
   3310 		else {
   3311 			if (cnt < 2)
   3312 				break;
   3313 			optlen = cp[1];
   3314 			if (optlen < 2 || optlen > cnt)
   3315 				break;
   3316 		}
   3317 		switch (opt) {
   3318 
   3319 		default:
   3320 			continue;
   3321 
   3322 		case TCPOPT_MAXSEG:
   3323 			if (optlen != TCPOLEN_MAXSEG)
   3324 				continue;
   3325 			if (!(th->th_flags & TH_SYN))
   3326 				continue;
   3327 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3328 				continue;
   3329 			bcopy(cp + 2, &mss, sizeof(mss));
   3330 			oi->maxseg = ntohs(mss);
   3331 			break;
   3332 
   3333 		case TCPOPT_WINDOW:
   3334 			if (optlen != TCPOLEN_WINDOW)
   3335 				continue;
   3336 			if (!(th->th_flags & TH_SYN))
   3337 				continue;
   3338 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3339 				continue;
   3340 			tp->t_flags |= TF_RCVD_SCALE;
   3341 			tp->requested_s_scale = cp[2];
   3342 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3343 				char buf[INET6_ADDRSTRLEN];
   3344 				struct ip *ip = mtod(m, struct ip *);
   3345 #ifdef INET6
   3346 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3347 #endif
   3348 				if (ip)
   3349 					in_print(buf, sizeof(buf),
   3350 					    &ip->ip_src);
   3351 #ifdef INET6
   3352 				else if (ip6)
   3353 					in6_print(buf, sizeof(buf),
   3354 					    &ip6->ip6_src);
   3355 #endif
   3356 				else
   3357 					strlcpy(buf, "(unknown)", sizeof(buf));
   3358 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3359 				    "assuming %d\n",
   3360 				    tp->requested_s_scale, buf,
   3361 				    TCP_MAX_WINSHIFT);
   3362 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3363 			}
   3364 			break;
   3365 
   3366 		case TCPOPT_TIMESTAMP:
   3367 			if (optlen != TCPOLEN_TIMESTAMP)
   3368 				continue;
   3369 			oi->ts_present = 1;
   3370 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3371 			NTOHL(oi->ts_val);
   3372 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3373 			NTOHL(oi->ts_ecr);
   3374 
   3375 			if (!(th->th_flags & TH_SYN))
   3376 				continue;
   3377 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3378 				continue;
   3379 			/*
   3380 			 * A timestamp received in a SYN makes
   3381 			 * it ok to send timestamp requests and replies.
   3382 			 */
   3383 			tp->t_flags |= TF_RCVD_TSTMP;
   3384 			tp->ts_recent = oi->ts_val;
   3385 			tp->ts_recent_age = tcp_now;
   3386                         break;
   3387 
   3388 		case TCPOPT_SACK_PERMITTED:
   3389 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3390 				continue;
   3391 			if (!(th->th_flags & TH_SYN))
   3392 				continue;
   3393 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3394 				continue;
   3395 			if (tcp_do_sack) {
   3396 				tp->t_flags |= TF_SACK_PERMIT;
   3397 				tp->t_flags |= TF_WILL_SACK;
   3398 			}
   3399 			break;
   3400 
   3401 		case TCPOPT_SACK:
   3402 			tcp_sack_option(tp, th, cp, optlen);
   3403 			break;
   3404 #ifdef TCP_SIGNATURE
   3405 		case TCPOPT_SIGNATURE:
   3406 			if (optlen != TCPOLEN_SIGNATURE)
   3407 				continue;
   3408 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3409 				return (-1);
   3410 
   3411 			sigp = sigbuf;
   3412 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3413 			tp->t_flags |= TF_SIGNATURE;
   3414 			break;
   3415 #endif
   3416 		}
   3417 	}
   3418 
   3419 #ifndef TCP_SIGNATURE
   3420 	return 0;
   3421 #else
   3422 	if (tp->t_flags & TF_SIGNATURE) {
   3423 
   3424 		sav = tcp_signature_getsav(m, th);
   3425 
   3426 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3427 			return (-1);
   3428 	}
   3429 
   3430 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3431 		goto out;
   3432 
   3433 	if (sigp) {
   3434 		char sig[TCP_SIGLEN];
   3435 
   3436 		tcp_fields_to_net(th);
   3437 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3438 			tcp_fields_to_host(th);
   3439 			goto out;
   3440 		}
   3441 		tcp_fields_to_host(th);
   3442 
   3443 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3444 			TCP_STATINC(TCP_STAT_BADSIG);
   3445 			goto out;
   3446 		} else
   3447 			TCP_STATINC(TCP_STAT_GOODSIG);
   3448 
   3449 		key_sa_recordxfer(sav, m);
   3450 		KEY_FREESAV(&sav);
   3451 	}
   3452 	return 0;
   3453 out:
   3454 	if (sav != NULL)
   3455 		KEY_FREESAV(&sav);
   3456 	return -1;
   3457 #endif
   3458 }
   3459 
   3460 /*
   3461  * Pull out of band byte out of a segment so
   3462  * it doesn't appear in the user's data queue.
   3463  * It is still reflected in the segment length for
   3464  * sequencing purposes.
   3465  */
   3466 void
   3467 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3468     struct mbuf *m, int off)
   3469 {
   3470 	int cnt = off + th->th_urp - 1;
   3471 
   3472 	while (cnt >= 0) {
   3473 		if (m->m_len > cnt) {
   3474 			char *cp = mtod(m, char *) + cnt;
   3475 			struct tcpcb *tp = sototcpcb(so);
   3476 
   3477 			tp->t_iobc = *cp;
   3478 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3479 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3480 			m->m_len--;
   3481 			return;
   3482 		}
   3483 		cnt -= m->m_len;
   3484 		m = m->m_next;
   3485 		if (m == 0)
   3486 			break;
   3487 	}
   3488 	panic("tcp_pulloutofband");
   3489 }
   3490 
   3491 /*
   3492  * Collect new round-trip time estimate
   3493  * and update averages and current timeout.
   3494  *
   3495  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3496  * difference of two timestamps.
   3497  */
   3498 void
   3499 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3500 {
   3501 	int32_t delta;
   3502 
   3503 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3504 	if (tp->t_srtt != 0) {
   3505 		/*
   3506 		 * Compute the amount to add to srtt for smoothing,
   3507 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3508 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3509 		 * shift left 5 bits, subtract srtt to get the
   3510 		 * diference, and then shift right by TCP_RTT_SHIFT
   3511 		 * (3) to obtain 1/8 of the difference.
   3512 		 */
   3513 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3514 		/*
   3515 		 * This can never happen, because delta's lowest
   3516 		 * possible value is 1/8 of t_srtt.  But if it does,
   3517 		 * set srtt to some reasonable value, here chosen
   3518 		 * as 1/8 tick.
   3519 		 */
   3520 		if ((tp->t_srtt += delta) <= 0)
   3521 			tp->t_srtt = 1 << 2;
   3522 		/*
   3523 		 * RFC2988 requires that rttvar be updated first.
   3524 		 * This code is compliant because "delta" is the old
   3525 		 * srtt minus the new observation (scaled).
   3526 		 *
   3527 		 * RFC2988 says:
   3528 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3529 		 *
   3530 		 * delta is in units of 1/32 ticks, and has then been
   3531 		 * divided by 8.  This is equivalent to being in 1/16s
   3532 		 * units and divided by 4.  Subtract from it 1/4 of
   3533 		 * the existing rttvar to form the (signed) amount to
   3534 		 * adjust.
   3535 		 */
   3536 		if (delta < 0)
   3537 			delta = -delta;
   3538 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3539 		/*
   3540 		 * As with srtt, this should never happen.  There is
   3541 		 * no support in RFC2988 for this operation.  But 1/4s
   3542 		 * as rttvar when faced with something arguably wrong
   3543 		 * is ok.
   3544 		 */
   3545 		if ((tp->t_rttvar += delta) <= 0)
   3546 			tp->t_rttvar = 1 << 2;
   3547 
   3548 		/*
   3549 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3550 		 * Problem is: it doesn't work.  Disabled by defaulting
   3551 		 * tcp_rttlocal to 0; see corresponding code in
   3552 		 * tcp_subr that selects local vs remote in a different way.
   3553 		 *
   3554 		 * The static branch prediction hint here should be removed
   3555 		 * when the rtt estimator is fixed and the rtt_enable code
   3556 		 * is turned back on.
   3557 		 */
   3558 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3559 		    && tp->t_srtt > tcp_msl_remote_threshold
   3560 		    && tp->t_msl  < tcp_msl_remote) {
   3561 			tp->t_msl = tcp_msl_remote;
   3562 		}
   3563 	} else {
   3564 		/*
   3565 		 * This is the first measurement.  Per RFC2988, 2.2,
   3566 		 * set rtt=R and srtt=R/2.
   3567 		 * For srtt, storage representation is 1/32 ticks,
   3568 		 * so shift left by 5.
   3569 		 * For rttvar, storage representation is 1/16 ticks,
   3570 		 * So shift left by 4, but then right by 1 to halve.
   3571 		 */
   3572 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3573 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3574 	}
   3575 	tp->t_rtttime = 0;
   3576 	tp->t_rxtshift = 0;
   3577 
   3578 	/*
   3579 	 * the retransmit should happen at rtt + 4 * rttvar.
   3580 	 * Because of the way we do the smoothing, srtt and rttvar
   3581 	 * will each average +1/2 tick of bias.  When we compute
   3582 	 * the retransmit timer, we want 1/2 tick of rounding and
   3583 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3584 	 * firing of the timer.  The bias will give us exactly the
   3585 	 * 1.5 tick we need.  But, because the bias is
   3586 	 * statistical, we have to test that we don't drop below
   3587 	 * the minimum feasible timer (which is 2 ticks).
   3588 	 */
   3589 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3590 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3591 
   3592 	/*
   3593 	 * We received an ack for a packet that wasn't retransmitted;
   3594 	 * it is probably safe to discard any error indications we've
   3595 	 * received recently.  This isn't quite right, but close enough
   3596 	 * for now (a route might have failed after we sent a segment,
   3597 	 * and the return path might not be symmetrical).
   3598 	 */
   3599 	tp->t_softerror = 0;
   3600 }
   3601 
   3602 
   3603 /*
   3604  * TCP compressed state engine.  Currently used to hold compressed
   3605  * state for SYN_RECEIVED.
   3606  */
   3607 
   3608 u_long	syn_cache_count;
   3609 u_int32_t syn_hash1, syn_hash2;
   3610 
   3611 #define SYN_HASH(sa, sp, dp) \
   3612 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3613 				     ((u_int32_t)(sp)))^syn_hash2)))
   3614 #ifndef INET6
   3615 #define	SYN_HASHALL(hash, src, dst) \
   3616 do {									\
   3617 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3618 		((const struct sockaddr_in *)(src))->sin_port,		\
   3619 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3620 } while (/*CONSTCOND*/ 0)
   3621 #else
   3622 #define SYN_HASH6(sa, sp, dp) \
   3623 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3624 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3625 	 & 0x7fffffff)
   3626 
   3627 #define SYN_HASHALL(hash, src, dst) \
   3628 do {									\
   3629 	switch ((src)->sa_family) {					\
   3630 	case AF_INET:							\
   3631 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3632 			((const struct sockaddr_in *)(src))->sin_port,	\
   3633 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3634 		break;							\
   3635 	case AF_INET6:							\
   3636 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3637 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3638 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3639 		break;							\
   3640 	default:							\
   3641 		hash = 0;						\
   3642 	}								\
   3643 } while (/*CONSTCOND*/0)
   3644 #endif /* INET6 */
   3645 
   3646 static struct pool syn_cache_pool;
   3647 
   3648 /*
   3649  * We don't estimate RTT with SYNs, so each packet starts with the default
   3650  * RTT and each timer step has a fixed timeout value.
   3651  */
   3652 #define	SYN_CACHE_TIMER_ARM(sc)						\
   3653 do {									\
   3654 	TCPT_RANGESET((sc)->sc_rxtcur,					\
   3655 	    TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN,	\
   3656 	    TCPTV_REXMTMAX);						\
   3657 	callout_reset(&(sc)->sc_timer,					\
   3658 	    (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc));	\
   3659 } while (/*CONSTCOND*/0)
   3660 
   3661 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3662 
   3663 static inline void
   3664 syn_cache_rm(struct syn_cache *sc)
   3665 {
   3666 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3667 	    sc, sc_bucketq);
   3668 	sc->sc_tp = NULL;
   3669 	LIST_REMOVE(sc, sc_tpq);
   3670 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3671 	callout_stop(&sc->sc_timer);
   3672 	syn_cache_count--;
   3673 }
   3674 
   3675 static inline void
   3676 syn_cache_put(struct syn_cache *sc)
   3677 {
   3678 	if (sc->sc_ipopts)
   3679 		(void) m_free(sc->sc_ipopts);
   3680 	rtcache_free(&sc->sc_route);
   3681 	sc->sc_flags |= SCF_DEAD;
   3682 	if (!callout_invoking(&sc->sc_timer))
   3683 		callout_schedule(&(sc)->sc_timer, 1);
   3684 }
   3685 
   3686 void
   3687 syn_cache_init(void)
   3688 {
   3689 	int i;
   3690 
   3691 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3692 	    "synpl", NULL, IPL_SOFTNET);
   3693 
   3694 	/* Initialize the hash buckets. */
   3695 	for (i = 0; i < tcp_syn_cache_size; i++)
   3696 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3697 }
   3698 
   3699 void
   3700 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3701 {
   3702 	struct syn_cache_head *scp;
   3703 	struct syn_cache *sc2;
   3704 	int s;
   3705 
   3706 	/*
   3707 	 * If there are no entries in the hash table, reinitialize
   3708 	 * the hash secrets.
   3709 	 */
   3710 	if (syn_cache_count == 0) {
   3711 		syn_hash1 = cprng_fast32();
   3712 		syn_hash2 = cprng_fast32();
   3713 	}
   3714 
   3715 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3716 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3717 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3718 
   3719 	/*
   3720 	 * Make sure that we don't overflow the per-bucket
   3721 	 * limit or the total cache size limit.
   3722 	 */
   3723 	s = splsoftnet();
   3724 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3725 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3726 		/*
   3727 		 * The bucket is full.  Toss the oldest element in the
   3728 		 * bucket.  This will be the first entry in the bucket.
   3729 		 */
   3730 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3731 #ifdef DIAGNOSTIC
   3732 		/*
   3733 		 * This should never happen; we should always find an
   3734 		 * entry in our bucket.
   3735 		 */
   3736 		if (sc2 == NULL)
   3737 			panic("syn_cache_insert: bucketoverflow: impossible");
   3738 #endif
   3739 		syn_cache_rm(sc2);
   3740 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3741 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3742 		struct syn_cache_head *scp2, *sce;
   3743 
   3744 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3745 		/*
   3746 		 * The cache is full.  Toss the oldest entry in the
   3747 		 * first non-empty bucket we can find.
   3748 		 *
   3749 		 * XXX We would really like to toss the oldest
   3750 		 * entry in the cache, but we hope that this
   3751 		 * condition doesn't happen very often.
   3752 		 */
   3753 		scp2 = scp;
   3754 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3755 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3756 			for (++scp2; scp2 != scp; scp2++) {
   3757 				if (scp2 >= sce)
   3758 					scp2 = &tcp_syn_cache[0];
   3759 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3760 					break;
   3761 			}
   3762 #ifdef DIAGNOSTIC
   3763 			/*
   3764 			 * This should never happen; we should always find a
   3765 			 * non-empty bucket.
   3766 			 */
   3767 			if (scp2 == scp)
   3768 				panic("syn_cache_insert: cacheoverflow: "
   3769 				    "impossible");
   3770 #endif
   3771 		}
   3772 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3773 		syn_cache_rm(sc2);
   3774 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3775 	}
   3776 
   3777 	/*
   3778 	 * Initialize the entry's timer.
   3779 	 */
   3780 	sc->sc_rxttot = 0;
   3781 	sc->sc_rxtshift = 0;
   3782 	SYN_CACHE_TIMER_ARM(sc);
   3783 
   3784 	/* Link it from tcpcb entry */
   3785 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3786 
   3787 	/* Put it into the bucket. */
   3788 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3789 	scp->sch_length++;
   3790 	syn_cache_count++;
   3791 
   3792 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3793 	splx(s);
   3794 }
   3795 
   3796 /*
   3797  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3798  * If we have retransmitted an entry the maximum number of times, expire
   3799  * that entry.
   3800  */
   3801 void
   3802 syn_cache_timer(void *arg)
   3803 {
   3804 	struct syn_cache *sc = arg;
   3805 
   3806 	mutex_enter(softnet_lock);
   3807 	KERNEL_LOCK(1, NULL);
   3808 	callout_ack(&sc->sc_timer);
   3809 
   3810 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3811 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3812 		callout_destroy(&sc->sc_timer);
   3813 		pool_put(&syn_cache_pool, sc);
   3814 		KERNEL_UNLOCK_ONE(NULL);
   3815 		mutex_exit(softnet_lock);
   3816 		return;
   3817 	}
   3818 
   3819 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3820 		/* Drop it -- too many retransmissions. */
   3821 		goto dropit;
   3822 	}
   3823 
   3824 	/*
   3825 	 * Compute the total amount of time this entry has
   3826 	 * been on a queue.  If this entry has been on longer
   3827 	 * than the keep alive timer would allow, expire it.
   3828 	 */
   3829 	sc->sc_rxttot += sc->sc_rxtcur;
   3830 	if (sc->sc_rxttot >= tcp_keepinit)
   3831 		goto dropit;
   3832 
   3833 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3834 	(void) syn_cache_respond(sc, NULL);
   3835 
   3836 	/* Advance the timer back-off. */
   3837 	sc->sc_rxtshift++;
   3838 	SYN_CACHE_TIMER_ARM(sc);
   3839 
   3840 	KERNEL_UNLOCK_ONE(NULL);
   3841 	mutex_exit(softnet_lock);
   3842 	return;
   3843 
   3844  dropit:
   3845 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3846 	syn_cache_rm(sc);
   3847 	if (sc->sc_ipopts)
   3848 		(void) m_free(sc->sc_ipopts);
   3849 	rtcache_free(&sc->sc_route);
   3850 	callout_destroy(&sc->sc_timer);
   3851 	pool_put(&syn_cache_pool, sc);
   3852 	KERNEL_UNLOCK_ONE(NULL);
   3853 	mutex_exit(softnet_lock);
   3854 }
   3855 
   3856 /*
   3857  * Remove syn cache created by the specified tcb entry,
   3858  * because this does not make sense to keep them
   3859  * (if there's no tcb entry, syn cache entry will never be used)
   3860  */
   3861 void
   3862 syn_cache_cleanup(struct tcpcb *tp)
   3863 {
   3864 	struct syn_cache *sc, *nsc;
   3865 	int s;
   3866 
   3867 	s = splsoftnet();
   3868 
   3869 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3870 		nsc = LIST_NEXT(sc, sc_tpq);
   3871 
   3872 #ifdef DIAGNOSTIC
   3873 		if (sc->sc_tp != tp)
   3874 			panic("invalid sc_tp in syn_cache_cleanup");
   3875 #endif
   3876 		syn_cache_rm(sc);
   3877 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3878 	}
   3879 	/* just for safety */
   3880 	LIST_INIT(&tp->t_sc);
   3881 
   3882 	splx(s);
   3883 }
   3884 
   3885 /*
   3886  * Find an entry in the syn cache.
   3887  */
   3888 struct syn_cache *
   3889 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3890     struct syn_cache_head **headp)
   3891 {
   3892 	struct syn_cache *sc;
   3893 	struct syn_cache_head *scp;
   3894 	u_int32_t hash;
   3895 	int s;
   3896 
   3897 	SYN_HASHALL(hash, src, dst);
   3898 
   3899 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3900 	*headp = scp;
   3901 	s = splsoftnet();
   3902 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3903 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3904 		if (sc->sc_hash != hash)
   3905 			continue;
   3906 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3907 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3908 			splx(s);
   3909 			return (sc);
   3910 		}
   3911 	}
   3912 	splx(s);
   3913 	return (NULL);
   3914 }
   3915 
   3916 /*
   3917  * This function gets called when we receive an ACK for a
   3918  * socket in the LISTEN state.  We look up the connection
   3919  * in the syn cache, and if its there, we pull it out of
   3920  * the cache and turn it into a full-blown connection in
   3921  * the SYN-RECEIVED state.
   3922  *
   3923  * The return values may not be immediately obvious, and their effects
   3924  * can be subtle, so here they are:
   3925  *
   3926  *	NULL	SYN was not found in cache; caller should drop the
   3927  *		packet and send an RST.
   3928  *
   3929  *	-1	We were unable to create the new connection, and are
   3930  *		aborting it.  An ACK,RST is being sent to the peer
   3931  *		(unless we got screwey sequence numbners; see below),
   3932  *		because the 3-way handshake has been completed.  Caller
   3933  *		should not free the mbuf, since we may be using it.  If
   3934  *		we are not, we will free it.
   3935  *
   3936  *	Otherwise, the return value is a pointer to the new socket
   3937  *	associated with the connection.
   3938  */
   3939 struct socket *
   3940 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3941     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3942     struct socket *so, struct mbuf *m)
   3943 {
   3944 	struct syn_cache *sc;
   3945 	struct syn_cache_head *scp;
   3946 	struct inpcb *inp = NULL;
   3947 #ifdef INET6
   3948 	struct in6pcb *in6p = NULL;
   3949 #endif
   3950 	struct tcpcb *tp = 0;
   3951 	int s;
   3952 	struct socket *oso;
   3953 
   3954 	s = splsoftnet();
   3955 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3956 		splx(s);
   3957 		return (NULL);
   3958 	}
   3959 
   3960 	/*
   3961 	 * Verify the sequence and ack numbers.  Try getting the correct
   3962 	 * response again.
   3963 	 */
   3964 	if ((th->th_ack != sc->sc_iss + 1) ||
   3965 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3966 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3967 		(void) syn_cache_respond(sc, m);
   3968 		splx(s);
   3969 		return ((struct socket *)(-1));
   3970 	}
   3971 
   3972 	/* Remove this cache entry */
   3973 	syn_cache_rm(sc);
   3974 	splx(s);
   3975 
   3976 	/*
   3977 	 * Ok, create the full blown connection, and set things up
   3978 	 * as they would have been set up if we had created the
   3979 	 * connection when the SYN arrived.  If we can't create
   3980 	 * the connection, abort it.
   3981 	 */
   3982 	/*
   3983 	 * inp still has the OLD in_pcb stuff, set the
   3984 	 * v6-related flags on the new guy, too.   This is
   3985 	 * done particularly for the case where an AF_INET6
   3986 	 * socket is bound only to a port, and a v4 connection
   3987 	 * comes in on that port.
   3988 	 * we also copy the flowinfo from the original pcb
   3989 	 * to the new one.
   3990 	 */
   3991 	oso = so;
   3992 	so = sonewconn(so, true);
   3993 	if (so == NULL)
   3994 		goto resetandabort;
   3995 
   3996 	switch (so->so_proto->pr_domain->dom_family) {
   3997 #ifdef INET
   3998 	case AF_INET:
   3999 		inp = sotoinpcb(so);
   4000 		break;
   4001 #endif
   4002 #ifdef INET6
   4003 	case AF_INET6:
   4004 		in6p = sotoin6pcb(so);
   4005 		break;
   4006 #endif
   4007 	}
   4008 	switch (src->sa_family) {
   4009 #ifdef INET
   4010 	case AF_INET:
   4011 		if (inp) {
   4012 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   4013 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   4014 			inp->inp_options = ip_srcroute();
   4015 			in_pcbstate(inp, INP_BOUND);
   4016 			if (inp->inp_options == NULL) {
   4017 				inp->inp_options = sc->sc_ipopts;
   4018 				sc->sc_ipopts = NULL;
   4019 			}
   4020 		}
   4021 #ifdef INET6
   4022 		else if (in6p) {
   4023 			/* IPv4 packet to AF_INET6 socket */
   4024 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   4025 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   4026 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   4027 				&in6p->in6p_laddr.s6_addr32[3],
   4028 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   4029 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   4030 			in6totcpcb(in6p)->t_family = AF_INET;
   4031 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   4032 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   4033 			else
   4034 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   4035 			in6_pcbstate(in6p, IN6P_BOUND);
   4036 		}
   4037 #endif
   4038 		break;
   4039 #endif
   4040 #ifdef INET6
   4041 	case AF_INET6:
   4042 		if (in6p) {
   4043 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   4044 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   4045 			in6_pcbstate(in6p, IN6P_BOUND);
   4046 		}
   4047 		break;
   4048 #endif
   4049 	}
   4050 #ifdef INET6
   4051 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   4052 		struct in6pcb *oin6p = sotoin6pcb(oso);
   4053 		/* inherit socket options from the listening socket */
   4054 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   4055 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   4056 			m_freem(in6p->in6p_options);
   4057 			in6p->in6p_options = 0;
   4058 		}
   4059 		ip6_savecontrol(in6p, &in6p->in6p_options,
   4060 			mtod(m, struct ip6_hdr *), m);
   4061 	}
   4062 #endif
   4063 
   4064 #if defined(IPSEC)
   4065 	if (ipsec_used) {
   4066 		/*
   4067 		 * we make a copy of policy, instead of sharing the policy, for
   4068 		 * better behavior in terms of SA lookup and dead SA removal.
   4069 		 */
   4070 		if (inp) {
   4071 			/* copy old policy into new socket's */
   4072 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
   4073 			    inp->inp_sp))
   4074 				printf("tcp_input: could not copy policy\n");
   4075 		}
   4076 #ifdef INET6
   4077 		else if (in6p) {
   4078 			/* copy old policy into new socket's */
   4079 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   4080 			    in6p->in6p_sp))
   4081 				printf("tcp_input: could not copy policy\n");
   4082 		}
   4083 #endif
   4084 	}
   4085 #endif
   4086 
   4087 	/*
   4088 	 * Give the new socket our cached route reference.
   4089 	 */
   4090 	if (inp) {
   4091 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   4092 		rtcache_free(&sc->sc_route);
   4093 	}
   4094 #ifdef INET6
   4095 	else {
   4096 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   4097 		rtcache_free(&sc->sc_route);
   4098 	}
   4099 #endif
   4100 
   4101 	if (inp) {
   4102 		struct sockaddr_in sin;
   4103 		memcpy(&sin, src, src->sa_len);
   4104 		if (in_pcbconnect(inp, &sin, &lwp0)) {
   4105 			goto resetandabort;
   4106 		}
   4107 	}
   4108 #ifdef INET6
   4109 	else if (in6p) {
   4110 		struct sockaddr_in6 sin6;
   4111 		memcpy(&sin6, src, src->sa_len);
   4112 		if (src->sa_family == AF_INET) {
   4113 			/* IPv4 packet to AF_INET6 socket */
   4114 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
   4115 		}
   4116 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
   4117 			goto resetandabort;
   4118 		}
   4119 	}
   4120 #endif
   4121 	else {
   4122 		goto resetandabort;
   4123 	}
   4124 
   4125 	if (inp)
   4126 		tp = intotcpcb(inp);
   4127 #ifdef INET6
   4128 	else if (in6p)
   4129 		tp = in6totcpcb(in6p);
   4130 #endif
   4131 	else
   4132 		tp = NULL;
   4133 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   4134 	if (sc->sc_request_r_scale != 15) {
   4135 		tp->requested_s_scale = sc->sc_requested_s_scale;
   4136 		tp->request_r_scale = sc->sc_request_r_scale;
   4137 		tp->snd_scale = sc->sc_requested_s_scale;
   4138 		tp->rcv_scale = sc->sc_request_r_scale;
   4139 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   4140 	}
   4141 	if (sc->sc_flags & SCF_TIMESTAMP)
   4142 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   4143 	tp->ts_timebase = sc->sc_timebase;
   4144 
   4145 	tp->t_template = tcp_template(tp);
   4146 	if (tp->t_template == 0) {
   4147 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   4148 		so = NULL;
   4149 		m_freem(m);
   4150 		goto abort;
   4151 	}
   4152 
   4153 	tp->iss = sc->sc_iss;
   4154 	tp->irs = sc->sc_irs;
   4155 	tcp_sendseqinit(tp);
   4156 	tcp_rcvseqinit(tp);
   4157 	tp->t_state = TCPS_SYN_RECEIVED;
   4158 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4159 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4160 
   4161 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4162 		tp->t_flags |= TF_WILL_SACK;
   4163 
   4164 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4165 		tp->t_flags |= TF_ECN_PERMIT;
   4166 
   4167 #ifdef TCP_SIGNATURE
   4168 	if (sc->sc_flags & SCF_SIGNATURE)
   4169 		tp->t_flags |= TF_SIGNATURE;
   4170 #endif
   4171 
   4172 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4173 	tp->t_ourmss = sc->sc_ourmaxseg;
   4174 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4175 
   4176 	/*
   4177 	 * Initialize the initial congestion window.  If we
   4178 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4179 	 * to 1 segment (i.e. the Loss Window).
   4180 	 */
   4181 	if (sc->sc_rxtshift)
   4182 		tp->snd_cwnd = tp->t_peermss;
   4183 	else {
   4184 		int ss = tcp_init_win;
   4185 #ifdef INET
   4186 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4187 			ss = tcp_init_win_local;
   4188 #endif
   4189 #ifdef INET6
   4190 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4191 			ss = tcp_init_win_local;
   4192 #endif
   4193 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4194 	}
   4195 
   4196 	tcp_rmx_rtt(tp);
   4197 	tp->snd_wl1 = sc->sc_irs;
   4198 	tp->rcv_up = sc->sc_irs + 1;
   4199 
   4200 	/*
   4201 	 * This is what whould have happened in tcp_output() when
   4202 	 * the SYN,ACK was sent.
   4203 	 */
   4204 	tp->snd_up = tp->snd_una;
   4205 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4206 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4207 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4208 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4209 	tp->last_ack_sent = tp->rcv_nxt;
   4210 	tp->t_partialacks = -1;
   4211 	tp->t_dupacks = 0;
   4212 
   4213 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4214 	s = splsoftnet();
   4215 	syn_cache_put(sc);
   4216 	splx(s);
   4217 	return (so);
   4218 
   4219 resetandabort:
   4220 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4221 abort:
   4222 	if (so != NULL) {
   4223 		(void) soqremque(so, 1);
   4224 		(void) soabort(so);
   4225 		mutex_enter(softnet_lock);
   4226 	}
   4227 	s = splsoftnet();
   4228 	syn_cache_put(sc);
   4229 	splx(s);
   4230 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4231 	return ((struct socket *)(-1));
   4232 }
   4233 
   4234 /*
   4235  * This function is called when we get a RST for a
   4236  * non-existent connection, so that we can see if the
   4237  * connection is in the syn cache.  If it is, zap it.
   4238  */
   4239 
   4240 void
   4241 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4242 {
   4243 	struct syn_cache *sc;
   4244 	struct syn_cache_head *scp;
   4245 	int s = splsoftnet();
   4246 
   4247 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4248 		splx(s);
   4249 		return;
   4250 	}
   4251 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4252 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4253 		splx(s);
   4254 		return;
   4255 	}
   4256 	syn_cache_rm(sc);
   4257 	TCP_STATINC(TCP_STAT_SC_RESET);
   4258 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4259 	splx(s);
   4260 }
   4261 
   4262 void
   4263 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4264     struct tcphdr *th)
   4265 {
   4266 	struct syn_cache *sc;
   4267 	struct syn_cache_head *scp;
   4268 	int s;
   4269 
   4270 	s = splsoftnet();
   4271 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4272 		splx(s);
   4273 		return;
   4274 	}
   4275 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4276 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4277 		splx(s);
   4278 		return;
   4279 	}
   4280 
   4281 	/*
   4282 	 * If we've retransmitted 3 times and this is our second error,
   4283 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4284 	 * This prevents us from incorrectly nuking an entry during a
   4285 	 * spurious network outage.
   4286 	 *
   4287 	 * See tcp_notify().
   4288 	 */
   4289 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4290 		sc->sc_flags |= SCF_UNREACH;
   4291 		splx(s);
   4292 		return;
   4293 	}
   4294 
   4295 	syn_cache_rm(sc);
   4296 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4297 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4298 	splx(s);
   4299 }
   4300 
   4301 /*
   4302  * Given a LISTEN socket and an inbound SYN request, add
   4303  * this to the syn cache, and send back a segment:
   4304  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4305  * to the source.
   4306  *
   4307  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4308  * Doing so would require that we hold onto the data and deliver it
   4309  * to the application.  However, if we are the target of a SYN-flood
   4310  * DoS attack, an attacker could send data which would eventually
   4311  * consume all available buffer space if it were ACKed.  By not ACKing
   4312  * the data, we avoid this DoS scenario.
   4313  */
   4314 
   4315 int
   4316 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4317     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4318     int optlen, struct tcp_opt_info *oi)
   4319 {
   4320 	struct tcpcb tb, *tp;
   4321 	long win;
   4322 	struct syn_cache *sc;
   4323 	struct syn_cache_head *scp;
   4324 	struct mbuf *ipopts;
   4325 	struct tcp_opt_info opti;
   4326 	int s;
   4327 
   4328 	tp = sototcpcb(so);
   4329 
   4330 	memset(&opti, 0, sizeof(opti));
   4331 
   4332 	/*
   4333 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4334 	 *
   4335 	 * Note this check is performed in tcp_input() very early on.
   4336 	 */
   4337 
   4338 	/*
   4339 	 * Initialize some local state.
   4340 	 */
   4341 	win = sbspace(&so->so_rcv);
   4342 	if (win > TCP_MAXWIN)
   4343 		win = TCP_MAXWIN;
   4344 
   4345 	switch (src->sa_family) {
   4346 #ifdef INET
   4347 	case AF_INET:
   4348 		/*
   4349 		 * Remember the IP options, if any.
   4350 		 */
   4351 		ipopts = ip_srcroute();
   4352 		break;
   4353 #endif
   4354 	default:
   4355 		ipopts = NULL;
   4356 	}
   4357 
   4358 #ifdef TCP_SIGNATURE
   4359 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4360 #else
   4361 	if (optp)
   4362 #endif
   4363 	{
   4364 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4365 #ifdef TCP_SIGNATURE
   4366 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4367 #endif
   4368 		tb.t_state = TCPS_LISTEN;
   4369 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4370 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4371 			return (0);
   4372 	} else
   4373 		tb.t_flags = 0;
   4374 
   4375 	/*
   4376 	 * See if we already have an entry for this connection.
   4377 	 * If we do, resend the SYN,ACK.  We do not count this
   4378 	 * as a retransmission (XXX though maybe we should).
   4379 	 */
   4380 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4381 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4382 		if (ipopts) {
   4383 			/*
   4384 			 * If we were remembering a previous source route,
   4385 			 * forget it and use the new one we've been given.
   4386 			 */
   4387 			if (sc->sc_ipopts)
   4388 				(void) m_free(sc->sc_ipopts);
   4389 			sc->sc_ipopts = ipopts;
   4390 		}
   4391 		sc->sc_timestamp = tb.ts_recent;
   4392 		if (syn_cache_respond(sc, m) == 0) {
   4393 			uint64_t *tcps = TCP_STAT_GETREF();
   4394 			tcps[TCP_STAT_SNDACKS]++;
   4395 			tcps[TCP_STAT_SNDTOTAL]++;
   4396 			TCP_STAT_PUTREF();
   4397 		}
   4398 		return (1);
   4399 	}
   4400 
   4401 	s = splsoftnet();
   4402 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4403 	splx(s);
   4404 	if (sc == NULL) {
   4405 		if (ipopts)
   4406 			(void) m_free(ipopts);
   4407 		return (0);
   4408 	}
   4409 
   4410 	/*
   4411 	 * Fill in the cache, and put the necessary IP and TCP
   4412 	 * options into the reply.
   4413 	 */
   4414 	memset(sc, 0, sizeof(struct syn_cache));
   4415 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4416 	bcopy(src, &sc->sc_src, src->sa_len);
   4417 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4418 	sc->sc_flags = 0;
   4419 	sc->sc_ipopts = ipopts;
   4420 	sc->sc_irs = th->th_seq;
   4421 	switch (src->sa_family) {
   4422 #ifdef INET
   4423 	case AF_INET:
   4424 	    {
   4425 		struct sockaddr_in *srcin = (void *) src;
   4426 		struct sockaddr_in *dstin = (void *) dst;
   4427 
   4428 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4429 		    &srcin->sin_addr, dstin->sin_port,
   4430 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4431 		break;
   4432 	    }
   4433 #endif /* INET */
   4434 #ifdef INET6
   4435 	case AF_INET6:
   4436 	    {
   4437 		struct sockaddr_in6 *srcin6 = (void *) src;
   4438 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4439 
   4440 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4441 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4442 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4443 		break;
   4444 	    }
   4445 #endif /* INET6 */
   4446 	}
   4447 	sc->sc_peermaxseg = oi->maxseg;
   4448 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4449 						m_get_rcvif_NOMPSAFE(m) : NULL,
   4450 						sc->sc_src.sa.sa_family);
   4451 	sc->sc_win = win;
   4452 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4453 	sc->sc_timestamp = tb.ts_recent;
   4454 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4455 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4456 		sc->sc_flags |= SCF_TIMESTAMP;
   4457 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4458 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4459 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4460 		sc->sc_request_r_scale = 0;
   4461 		/*
   4462 		 * Pick the smallest possible scaling factor that
   4463 		 * will still allow us to scale up to sb_max.
   4464 		 *
   4465 		 * We do this because there are broken firewalls that
   4466 		 * will corrupt the window scale option, leading to
   4467 		 * the other endpoint believing that our advertised
   4468 		 * window is unscaled.  At scale factors larger than
   4469 		 * 5 the unscaled window will drop below 1500 bytes,
   4470 		 * leading to serious problems when traversing these
   4471 		 * broken firewalls.
   4472 		 *
   4473 		 * With the default sbmax of 256K, a scale factor
   4474 		 * of 3 will be chosen by this algorithm.  Those who
   4475 		 * choose a larger sbmax should watch out
   4476 		 * for the compatiblity problems mentioned above.
   4477 		 *
   4478 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4479 		 * or <SYN,ACK>) segment itself is never scaled.
   4480 		 */
   4481 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4482 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4483 			sc->sc_request_r_scale++;
   4484 	} else {
   4485 		sc->sc_requested_s_scale = 15;
   4486 		sc->sc_request_r_scale = 15;
   4487 	}
   4488 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4489 		sc->sc_flags |= SCF_SACK_PERMIT;
   4490 
   4491 	/*
   4492 	 * ECN setup packet recieved.
   4493 	 */
   4494 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4495 		sc->sc_flags |= SCF_ECN_PERMIT;
   4496 
   4497 #ifdef TCP_SIGNATURE
   4498 	if (tb.t_flags & TF_SIGNATURE)
   4499 		sc->sc_flags |= SCF_SIGNATURE;
   4500 #endif
   4501 	sc->sc_tp = tp;
   4502 	if (syn_cache_respond(sc, m) == 0) {
   4503 		uint64_t *tcps = TCP_STAT_GETREF();
   4504 		tcps[TCP_STAT_SNDACKS]++;
   4505 		tcps[TCP_STAT_SNDTOTAL]++;
   4506 		TCP_STAT_PUTREF();
   4507 		syn_cache_insert(sc, tp);
   4508 	} else {
   4509 		s = splsoftnet();
   4510 		/*
   4511 		 * syn_cache_put() will try to schedule the timer, so
   4512 		 * we need to initialize it
   4513 		 */
   4514 		SYN_CACHE_TIMER_ARM(sc);
   4515 		syn_cache_put(sc);
   4516 		splx(s);
   4517 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4518 	}
   4519 	return (1);
   4520 }
   4521 
   4522 /*
   4523  * syn_cache_respond: (re)send SYN+ACK.
   4524  *
   4525  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
   4526  */
   4527 
   4528 int
   4529 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4530 {
   4531 #ifdef INET6
   4532 	struct rtentry *rt = NULL;
   4533 #endif
   4534 	struct route *ro;
   4535 	u_int8_t *optp;
   4536 	int optlen, error;
   4537 	u_int16_t tlen;
   4538 	struct ip *ip = NULL;
   4539 #ifdef INET6
   4540 	struct ip6_hdr *ip6 = NULL;
   4541 #endif
   4542 	struct tcpcb *tp = NULL;
   4543 	struct tcphdr *th;
   4544 	u_int hlen;
   4545 	struct socket *so;
   4546 
   4547 	ro = &sc->sc_route;
   4548 	switch (sc->sc_src.sa.sa_family) {
   4549 	case AF_INET:
   4550 		hlen = sizeof(struct ip);
   4551 		break;
   4552 #ifdef INET6
   4553 	case AF_INET6:
   4554 		hlen = sizeof(struct ip6_hdr);
   4555 		break;
   4556 #endif
   4557 	default:
   4558 		if (m)
   4559 			m_freem(m);
   4560 		return (EAFNOSUPPORT);
   4561 	}
   4562 
   4563 	/* Compute the size of the TCP options. */
   4564 	optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
   4565 	    ((sc->sc_flags & SCF_SACK_PERMIT) ? (TCPOLEN_SACK_PERMITTED + 2) : 0) +
   4566 #ifdef TCP_SIGNATURE
   4567 	    ((sc->sc_flags & SCF_SIGNATURE) ? (TCPOLEN_SIGNATURE + 2) : 0) +
   4568 #endif
   4569 	    ((sc->sc_flags & SCF_TIMESTAMP) ? TCPOLEN_TSTAMP_APPA : 0);
   4570 
   4571 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4572 
   4573 	/*
   4574 	 * Create the IP+TCP header from scratch.
   4575 	 */
   4576 	if (m)
   4577 		m_freem(m);
   4578 #ifdef DIAGNOSTIC
   4579 	if (max_linkhdr + tlen > MCLBYTES)
   4580 		return (ENOBUFS);
   4581 #endif
   4582 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4583 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4584 		MCLGET(m, M_DONTWAIT);
   4585 		if ((m->m_flags & M_EXT) == 0) {
   4586 			m_freem(m);
   4587 			m = NULL;
   4588 		}
   4589 	}
   4590 	if (m == NULL)
   4591 		return (ENOBUFS);
   4592 	MCLAIM(m, &tcp_tx_mowner);
   4593 
   4594 	/* Fixup the mbuf. */
   4595 	m->m_data += max_linkhdr;
   4596 	m->m_len = m->m_pkthdr.len = tlen;
   4597 	if (sc->sc_tp) {
   4598 		tp = sc->sc_tp;
   4599 		if (tp->t_inpcb)
   4600 			so = tp->t_inpcb->inp_socket;
   4601 #ifdef INET6
   4602 		else if (tp->t_in6pcb)
   4603 			so = tp->t_in6pcb->in6p_socket;
   4604 #endif
   4605 		else
   4606 			so = NULL;
   4607 	} else
   4608 		so = NULL;
   4609 	m_reset_rcvif(m);
   4610 	memset(mtod(m, u_char *), 0, tlen);
   4611 
   4612 	switch (sc->sc_src.sa.sa_family) {
   4613 	case AF_INET:
   4614 		ip = mtod(m, struct ip *);
   4615 		ip->ip_v = 4;
   4616 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4617 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4618 		ip->ip_p = IPPROTO_TCP;
   4619 		th = (struct tcphdr *)(ip + 1);
   4620 		th->th_dport = sc->sc_src.sin.sin_port;
   4621 		th->th_sport = sc->sc_dst.sin.sin_port;
   4622 		break;
   4623 #ifdef INET6
   4624 	case AF_INET6:
   4625 		ip6 = mtod(m, struct ip6_hdr *);
   4626 		ip6->ip6_vfc = IPV6_VERSION;
   4627 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4628 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4629 		ip6->ip6_nxt = IPPROTO_TCP;
   4630 		/* ip6_plen will be updated in ip6_output() */
   4631 		th = (struct tcphdr *)(ip6 + 1);
   4632 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4633 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4634 		break;
   4635 #endif
   4636 	default:
   4637 		th = NULL;
   4638 	}
   4639 
   4640 	th->th_seq = htonl(sc->sc_iss);
   4641 	th->th_ack = htonl(sc->sc_irs + 1);
   4642 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4643 	th->th_flags = TH_SYN|TH_ACK;
   4644 	th->th_win = htons(sc->sc_win);
   4645 	/* th_sum already 0 */
   4646 	/* th_urp already 0 */
   4647 
   4648 	/* Tack on the TCP options. */
   4649 	optp = (u_int8_t *)(th + 1);
   4650 	*optp++ = TCPOPT_MAXSEG;
   4651 	*optp++ = 4;
   4652 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4653 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4654 
   4655 	if (sc->sc_request_r_scale != 15) {
   4656 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4657 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4658 		    sc->sc_request_r_scale);
   4659 		optp += 4;
   4660 	}
   4661 
   4662 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4663 		u_int32_t *lp = (u_int32_t *)(optp);
   4664 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4665 		*lp++ = htonl(TCPOPT_TSTAMP_HDR);
   4666 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4667 		*lp   = htonl(sc->sc_timestamp);
   4668 		optp += TCPOLEN_TSTAMP_APPA;
   4669 	}
   4670 
   4671 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4672 		u_int8_t *p = optp;
   4673 
   4674 		/* Let the peer know that we will SACK. */
   4675 		p[0] = TCPOPT_SACK_PERMITTED;
   4676 		p[1] = 2;
   4677 		p[2] = TCPOPT_NOP;
   4678 		p[3] = TCPOPT_NOP;
   4679 		optp += 4;
   4680 	}
   4681 
   4682 	/*
   4683 	 * Send ECN SYN-ACK setup packet.
   4684 	 * Routes can be asymetric, so, even if we receive a packet
   4685 	 * with ECE and CWR set, we must not assume no one will block
   4686 	 * the ECE packet we are about to send.
   4687 	 */
   4688 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4689 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4690 		th->th_flags |= TH_ECE;
   4691 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4692 
   4693 		/*
   4694 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4695 		 *
   4696 		 * "[...] a TCP node MAY respond to an ECN-setup
   4697 		 * SYN packet by setting ECT in the responding
   4698 		 * ECN-setup SYN/ACK packet, indicating to routers
   4699 		 * that the SYN/ACK packet is ECN-Capable.
   4700 		 * This allows a congested router along the path
   4701 		 * to mark the packet instead of dropping the
   4702 		 * packet as an indication of congestion."
   4703 		 *
   4704 		 * "[...] There can be a great benefit in setting
   4705 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4706 		 * Congestion is  most likely to occur in
   4707 		 * the server-to-client direction.  As a result,
   4708 		 * setting an ECN-capable codepoint in SYN/ACK
   4709 		 * packets can reduce the occurence of three-second
   4710 		 * retransmit timeouts resulting from the drop
   4711 		 * of SYN/ACK packets."
   4712 		 *
   4713 		 * Page 4 and 6, January 2006.
   4714 		 */
   4715 
   4716 		switch (sc->sc_src.sa.sa_family) {
   4717 #ifdef INET
   4718 		case AF_INET:
   4719 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4720 			break;
   4721 #endif
   4722 #ifdef INET6
   4723 		case AF_INET6:
   4724 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4725 			break;
   4726 #endif
   4727 		}
   4728 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4729 	}
   4730 
   4731 #ifdef TCP_SIGNATURE
   4732 	if (sc->sc_flags & SCF_SIGNATURE) {
   4733 		struct secasvar *sav;
   4734 		u_int8_t *sigp;
   4735 
   4736 		sav = tcp_signature_getsav(m, th);
   4737 
   4738 		if (sav == NULL) {
   4739 			if (m)
   4740 				m_freem(m);
   4741 			return (EPERM);
   4742 		}
   4743 
   4744 		*optp++ = TCPOPT_SIGNATURE;
   4745 		*optp++ = TCPOLEN_SIGNATURE;
   4746 		sigp = optp;
   4747 		memset(optp, 0, TCP_SIGLEN);
   4748 		optp += TCP_SIGLEN;
   4749 		*optp++ = TCPOPT_NOP;
   4750 		*optp++ = TCPOPT_EOL;
   4751 
   4752 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4753 
   4754 		key_sa_recordxfer(sav, m);
   4755 		KEY_FREESAV(&sav);
   4756 	}
   4757 #endif
   4758 
   4759 	/* Compute the packet's checksum. */
   4760 	switch (sc->sc_src.sa.sa_family) {
   4761 	case AF_INET:
   4762 		ip->ip_len = htons(tlen - hlen);
   4763 		th->th_sum = 0;
   4764 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4765 		break;
   4766 #ifdef INET6
   4767 	case AF_INET6:
   4768 		ip6->ip6_plen = htons(tlen - hlen);
   4769 		th->th_sum = 0;
   4770 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4771 		break;
   4772 #endif
   4773 	}
   4774 
   4775 	/*
   4776 	 * Fill in some straggling IP bits.  Note the stack expects
   4777 	 * ip_len to be in host order, for convenience.
   4778 	 */
   4779 	switch (sc->sc_src.sa.sa_family) {
   4780 #ifdef INET
   4781 	case AF_INET:
   4782 		ip->ip_len = htons(tlen);
   4783 		ip->ip_ttl = ip_defttl;
   4784 		/* XXX tos? */
   4785 		break;
   4786 #endif
   4787 #ifdef INET6
   4788 	case AF_INET6:
   4789 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4790 		ip6->ip6_vfc |= IPV6_VERSION;
   4791 		ip6->ip6_plen = htons(tlen - hlen);
   4792 		/* ip6_hlim will be initialized afterwards */
   4793 		/* XXX flowlabel? */
   4794 		break;
   4795 #endif
   4796 	}
   4797 
   4798 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4799 	tp = sc->sc_tp;
   4800 
   4801 	switch (sc->sc_src.sa.sa_family) {
   4802 #ifdef INET
   4803 	case AF_INET:
   4804 		error = ip_output(m, sc->sc_ipopts, ro,
   4805 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4806 		    NULL, so);
   4807 		break;
   4808 #endif
   4809 #ifdef INET6
   4810 	case AF_INET6:
   4811 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4812 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
   4813 		rtcache_unref(rt, ro);
   4814 
   4815 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL, so, NULL);
   4816 		break;
   4817 #endif
   4818 	default:
   4819 		error = EAFNOSUPPORT;
   4820 		break;
   4821 	}
   4822 	return (error);
   4823 }
   4824