tcp_input.c revision 1.356 1 /* $NetBSD: tcp_input.c,v 1.356 2017/03/31 06:49:44 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.356 2017/03/31 06:49:44 ozaki-r Exp $");
152
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177
178 #include <net/if.h>
179 #include <net/if_types.h>
180
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif /* INET6 */
226
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/ipsec_private.h>
231 #include <netipsec/key.h>
232 #ifdef INET6
233 #include <netipsec/ipsec6.h>
234 #endif
235 #endif /* IPSEC*/
236
237 #include <netinet/tcp_vtw.h>
238
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
241
242 int tcp_do_autorcvbuf = 1;
243 int tcp_autorcvbuf_inc = 16 * 1024;
244 int tcp_autorcvbuf_max = 256 * 1024;
245 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251
252 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
253
254 /* for modulo comparisons of timestamps */
255 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
256 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
257
258 /*
259 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
260 */
261 #ifdef INET6
262 static inline void
263 nd6_hint(struct tcpcb *tp)
264 {
265 struct rtentry *rt = NULL;
266
267 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
268 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
269 nd6_nud_hint(rt);
270 rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
271 }
272 #else
273 static inline void
274 nd6_hint(struct tcpcb *tp)
275 {
276 }
277 #endif
278
279 /*
280 * Compute ACK transmission behavior. Delay the ACK unless
281 * we have already delayed an ACK (must send an ACK every two segments).
282 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
283 * option is enabled.
284 */
285 static void
286 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
287 {
288
289 if (tp->t_flags & TF_DELACK ||
290 (tcp_ack_on_push && th->th_flags & TH_PUSH))
291 tp->t_flags |= TF_ACKNOW;
292 else
293 TCP_SET_DELACK(tp);
294 }
295
296 static void
297 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
298 {
299
300 /*
301 * If we had a pending ICMP message that refers to data that have
302 * just been acknowledged, disregard the recorded ICMP message.
303 */
304 if ((tp->t_flags & TF_PMTUD_PEND) &&
305 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
306 tp->t_flags &= ~TF_PMTUD_PEND;
307
308 /*
309 * Keep track of the largest chunk of data
310 * acknowledged since last PMTU update
311 */
312 if (tp->t_pmtud_mss_acked < acked)
313 tp->t_pmtud_mss_acked = acked;
314 }
315
316 /*
317 * Convert TCP protocol fields to host order for easier processing.
318 */
319 static void
320 tcp_fields_to_host(struct tcphdr *th)
321 {
322
323 NTOHL(th->th_seq);
324 NTOHL(th->th_ack);
325 NTOHS(th->th_win);
326 NTOHS(th->th_urp);
327 }
328
329 /*
330 * ... and reverse the above.
331 */
332 static void
333 tcp_fields_to_net(struct tcphdr *th)
334 {
335
336 HTONL(th->th_seq);
337 HTONL(th->th_ack);
338 HTONS(th->th_win);
339 HTONS(th->th_urp);
340 }
341
342 #ifdef TCP_CSUM_COUNTERS
343 #include <sys/device.h>
344
345 #if defined(INET)
346 extern struct evcnt tcp_hwcsum_ok;
347 extern struct evcnt tcp_hwcsum_bad;
348 extern struct evcnt tcp_hwcsum_data;
349 extern struct evcnt tcp_swcsum;
350 #endif /* defined(INET) */
351 #if defined(INET6)
352 extern struct evcnt tcp6_hwcsum_ok;
353 extern struct evcnt tcp6_hwcsum_bad;
354 extern struct evcnt tcp6_hwcsum_data;
355 extern struct evcnt tcp6_swcsum;
356 #endif /* defined(INET6) */
357
358 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
359
360 #else
361
362 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
363
364 #endif /* TCP_CSUM_COUNTERS */
365
366 #ifdef TCP_REASS_COUNTERS
367 #include <sys/device.h>
368
369 extern struct evcnt tcp_reass_;
370 extern struct evcnt tcp_reass_empty;
371 extern struct evcnt tcp_reass_iteration[8];
372 extern struct evcnt tcp_reass_prependfirst;
373 extern struct evcnt tcp_reass_prepend;
374 extern struct evcnt tcp_reass_insert;
375 extern struct evcnt tcp_reass_inserttail;
376 extern struct evcnt tcp_reass_append;
377 extern struct evcnt tcp_reass_appendtail;
378 extern struct evcnt tcp_reass_overlaptail;
379 extern struct evcnt tcp_reass_overlapfront;
380 extern struct evcnt tcp_reass_segdup;
381 extern struct evcnt tcp_reass_fragdup;
382
383 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
384
385 #else
386
387 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
388
389 #endif /* TCP_REASS_COUNTERS */
390
391 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
392 int *);
393 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
394 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
395
396 #ifdef INET
397 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
398 #endif
399 #ifdef INET6
400 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
401 #endif
402
403 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
404
405 #if defined(MBUFTRACE)
406 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
407 #endif /* defined(MBUFTRACE) */
408
409 static struct pool tcpipqent_pool;
410
411 void
412 tcpipqent_init(void)
413 {
414
415 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
416 NULL, IPL_VM);
417 }
418
419 struct ipqent *
420 tcpipqent_alloc(void)
421 {
422 struct ipqent *ipqe;
423 int s;
424
425 s = splvm();
426 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
427 splx(s);
428
429 return ipqe;
430 }
431
432 void
433 tcpipqent_free(struct ipqent *ipqe)
434 {
435 int s;
436
437 s = splvm();
438 pool_put(&tcpipqent_pool, ipqe);
439 splx(s);
440 }
441
442 static int
443 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
444 {
445 struct ipqent *p, *q, *nq, *tiqe = NULL;
446 struct socket *so = NULL;
447 int pkt_flags;
448 tcp_seq pkt_seq;
449 unsigned pkt_len;
450 u_long rcvpartdupbyte = 0;
451 u_long rcvoobyte;
452 #ifdef TCP_REASS_COUNTERS
453 u_int count = 0;
454 #endif
455 uint64_t *tcps;
456
457 if (tp->t_inpcb)
458 so = tp->t_inpcb->inp_socket;
459 #ifdef INET6
460 else if (tp->t_in6pcb)
461 so = tp->t_in6pcb->in6p_socket;
462 #endif
463
464 TCP_REASS_LOCK_CHECK(tp);
465
466 /*
467 * Call with th==0 after become established to
468 * force pre-ESTABLISHED data up to user socket.
469 */
470 if (th == 0)
471 goto present;
472
473 m_claimm(m, &tcp_reass_mowner);
474
475 rcvoobyte = *tlen;
476 /*
477 * Copy these to local variables because the tcpiphdr
478 * gets munged while we are collapsing mbufs.
479 */
480 pkt_seq = th->th_seq;
481 pkt_len = *tlen;
482 pkt_flags = th->th_flags;
483
484 TCP_REASS_COUNTER_INCR(&tcp_reass_);
485
486 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
487 /*
488 * When we miss a packet, the vast majority of time we get
489 * packets that follow it in order. So optimize for that.
490 */
491 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
492 p->ipqe_len += pkt_len;
493 p->ipqe_flags |= pkt_flags;
494 m_cat(p->ipre_mlast, m);
495 TRAVERSE(p->ipre_mlast);
496 m = NULL;
497 tiqe = p;
498 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
499 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
500 goto skip_replacement;
501 }
502 /*
503 * While we're here, if the pkt is completely beyond
504 * anything we have, just insert it at the tail.
505 */
506 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
507 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
508 goto insert_it;
509 }
510 }
511
512 q = TAILQ_FIRST(&tp->segq);
513
514 if (q != NULL) {
515 /*
516 * If this segment immediately precedes the first out-of-order
517 * block, simply slap the segment in front of it and (mostly)
518 * skip the complicated logic.
519 */
520 if (pkt_seq + pkt_len == q->ipqe_seq) {
521 q->ipqe_seq = pkt_seq;
522 q->ipqe_len += pkt_len;
523 q->ipqe_flags |= pkt_flags;
524 m_cat(m, q->ipqe_m);
525 q->ipqe_m = m;
526 q->ipre_mlast = m; /* last mbuf may have changed */
527 TRAVERSE(q->ipre_mlast);
528 tiqe = q;
529 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
530 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
531 goto skip_replacement;
532 }
533 } else {
534 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
535 }
536
537 /*
538 * Find a segment which begins after this one does.
539 */
540 for (p = NULL; q != NULL; q = nq) {
541 nq = TAILQ_NEXT(q, ipqe_q);
542 #ifdef TCP_REASS_COUNTERS
543 count++;
544 #endif
545 /*
546 * If the received segment is just right after this
547 * fragment, merge the two together and then check
548 * for further overlaps.
549 */
550 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
551 #ifdef TCPREASS_DEBUG
552 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
553 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
554 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
555 #endif
556 pkt_len += q->ipqe_len;
557 pkt_flags |= q->ipqe_flags;
558 pkt_seq = q->ipqe_seq;
559 m_cat(q->ipre_mlast, m);
560 TRAVERSE(q->ipre_mlast);
561 m = q->ipqe_m;
562 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
563 goto free_ipqe;
564 }
565 /*
566 * If the received segment is completely past this
567 * fragment, we need to go the next fragment.
568 */
569 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
570 p = q;
571 continue;
572 }
573 /*
574 * If the fragment is past the received segment,
575 * it (or any following) can't be concatenated.
576 */
577 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
578 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
579 break;
580 }
581
582 /*
583 * We've received all the data in this segment before.
584 * mark it as a duplicate and return.
585 */
586 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
587 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
588 tcps = TCP_STAT_GETREF();
589 tcps[TCP_STAT_RCVDUPPACK]++;
590 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
591 TCP_STAT_PUTREF();
592 tcp_new_dsack(tp, pkt_seq, pkt_len);
593 m_freem(m);
594 if (tiqe != NULL) {
595 tcpipqent_free(tiqe);
596 }
597 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
598 goto out;
599 }
600 /*
601 * Received segment completely overlaps this fragment
602 * so we drop the fragment (this keeps the temporal
603 * ordering of segments correct).
604 */
605 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 rcvpartdupbyte += q->ipqe_len;
608 m_freem(q->ipqe_m);
609 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 goto free_ipqe;
611 }
612 /*
613 * RX'ed segment extends past the end of the
614 * fragment. Drop the overlapping bytes. Then
615 * merge the fragment and segment then treat as
616 * a longer received packet.
617 */
618 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
620 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 #ifdef TCPREASS_DEBUG
622 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
623 tp, overlap,
624 pkt_seq, pkt_seq + pkt_len, pkt_len);
625 #endif
626 m_adj(m, overlap);
627 rcvpartdupbyte += overlap;
628 m_cat(q->ipre_mlast, m);
629 TRAVERSE(q->ipre_mlast);
630 m = q->ipqe_m;
631 pkt_seq = q->ipqe_seq;
632 pkt_len += q->ipqe_len - overlap;
633 rcvoobyte -= overlap;
634 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
635 goto free_ipqe;
636 }
637 /*
638 * RX'ed segment extends past the front of the
639 * fragment. Drop the overlapping bytes on the
640 * received packet. The packet will then be
641 * contatentated with this fragment a bit later.
642 */
643 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
644 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
645 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
646 #ifdef TCPREASS_DEBUG
647 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
648 tp, overlap,
649 pkt_seq, pkt_seq + pkt_len, pkt_len);
650 #endif
651 m_adj(m, -overlap);
652 pkt_len -= overlap;
653 rcvpartdupbyte += overlap;
654 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
655 rcvoobyte -= overlap;
656 }
657 /*
658 * If the received segment immediates precedes this
659 * fragment then tack the fragment onto this segment
660 * and reinsert the data.
661 */
662 if (q->ipqe_seq == pkt_seq + pkt_len) {
663 #ifdef TCPREASS_DEBUG
664 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
665 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
666 pkt_seq, pkt_seq + pkt_len, pkt_len);
667 #endif
668 pkt_len += q->ipqe_len;
669 pkt_flags |= q->ipqe_flags;
670 m_cat(m, q->ipqe_m);
671 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
672 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
673 tp->t_segqlen--;
674 KASSERT(tp->t_segqlen >= 0);
675 KASSERT(tp->t_segqlen != 0 ||
676 (TAILQ_EMPTY(&tp->segq) &&
677 TAILQ_EMPTY(&tp->timeq)));
678 if (tiqe == NULL) {
679 tiqe = q;
680 } else {
681 tcpipqent_free(q);
682 }
683 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
684 break;
685 }
686 /*
687 * If the fragment is before the segment, remember it.
688 * When this loop is terminated, p will contain the
689 * pointer to fragment that is right before the received
690 * segment.
691 */
692 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
693 p = q;
694
695 continue;
696
697 /*
698 * This is a common operation. It also will allow
699 * to save doing a malloc/free in most instances.
700 */
701 free_ipqe:
702 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
703 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
704 tp->t_segqlen--;
705 KASSERT(tp->t_segqlen >= 0);
706 KASSERT(tp->t_segqlen != 0 ||
707 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
708 if (tiqe == NULL) {
709 tiqe = q;
710 } else {
711 tcpipqent_free(q);
712 }
713 }
714
715 #ifdef TCP_REASS_COUNTERS
716 if (count > 7)
717 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
718 else if (count > 0)
719 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
720 #endif
721
722 insert_it:
723
724 /*
725 * Allocate a new queue entry since the received segment did not
726 * collapse onto any other out-of-order block; thus we are allocating
727 * a new block. If it had collapsed, tiqe would not be NULL and
728 * we would be reusing it.
729 * XXX If we can't, just drop the packet. XXX
730 */
731 if (tiqe == NULL) {
732 tiqe = tcpipqent_alloc();
733 if (tiqe == NULL) {
734 TCP_STATINC(TCP_STAT_RCVMEMDROP);
735 m_freem(m);
736 goto out;
737 }
738 }
739
740 /*
741 * Update the counters.
742 */
743 tp->t_rcvoopack++;
744 tcps = TCP_STAT_GETREF();
745 tcps[TCP_STAT_RCVOOPACK]++;
746 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
747 if (rcvpartdupbyte) {
748 tcps[TCP_STAT_RCVPARTDUPPACK]++;
749 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
750 }
751 TCP_STAT_PUTREF();
752
753 /*
754 * Insert the new fragment queue entry into both queues.
755 */
756 tiqe->ipqe_m = m;
757 tiqe->ipre_mlast = m;
758 tiqe->ipqe_seq = pkt_seq;
759 tiqe->ipqe_len = pkt_len;
760 tiqe->ipqe_flags = pkt_flags;
761 if (p == NULL) {
762 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
763 #ifdef TCPREASS_DEBUG
764 if (tiqe->ipqe_seq != tp->rcv_nxt)
765 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
766 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
767 #endif
768 } else {
769 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
770 #ifdef TCPREASS_DEBUG
771 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
772 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
773 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
774 #endif
775 }
776 tp->t_segqlen++;
777
778 skip_replacement:
779
780 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
781
782 present:
783 /*
784 * Present data to user, advancing rcv_nxt through
785 * completed sequence space.
786 */
787 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
788 goto out;
789 q = TAILQ_FIRST(&tp->segq);
790 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
791 goto out;
792 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
793 goto out;
794
795 tp->rcv_nxt += q->ipqe_len;
796 pkt_flags = q->ipqe_flags & TH_FIN;
797 nd6_hint(tp);
798
799 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
800 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
801 tp->t_segqlen--;
802 KASSERT(tp->t_segqlen >= 0);
803 KASSERT(tp->t_segqlen != 0 ||
804 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
805 if (so->so_state & SS_CANTRCVMORE)
806 m_freem(q->ipqe_m);
807 else
808 sbappendstream(&so->so_rcv, q->ipqe_m);
809 tcpipqent_free(q);
810 TCP_REASS_UNLOCK(tp);
811 sorwakeup(so);
812 return (pkt_flags);
813 out:
814 TCP_REASS_UNLOCK(tp);
815 return (0);
816 }
817
818 #ifdef INET6
819 int
820 tcp6_input(struct mbuf **mp, int *offp, int proto)
821 {
822 struct mbuf *m = *mp;
823
824 /*
825 * draft-itojun-ipv6-tcp-to-anycast
826 * better place to put this in?
827 */
828 if (m->m_flags & M_ANYCAST6) {
829 struct ip6_hdr *ip6;
830 if (m->m_len < sizeof(struct ip6_hdr)) {
831 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
832 TCP_STATINC(TCP_STAT_RCVSHORT);
833 return IPPROTO_DONE;
834 }
835 }
836 ip6 = mtod(m, struct ip6_hdr *);
837 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
838 (char *)&ip6->ip6_dst - (char *)ip6);
839 return IPPROTO_DONE;
840 }
841
842 tcp_input(m, *offp, proto);
843 return IPPROTO_DONE;
844 }
845 #endif
846
847 #ifdef INET
848 static void
849 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
850 {
851 char src[INET_ADDRSTRLEN];
852 char dst[INET_ADDRSTRLEN];
853
854 if (ip) {
855 in_print(src, sizeof(src), &ip->ip_src);
856 in_print(dst, sizeof(dst), &ip->ip_dst);
857 }
858 else {
859 strlcpy(src, "(unknown)", sizeof(src));
860 strlcpy(dst, "(unknown)", sizeof(dst));
861 }
862 log(LOG_INFO,
863 "Connection attempt to TCP %s:%d from %s:%d\n",
864 dst, ntohs(th->th_dport),
865 src, ntohs(th->th_sport));
866 }
867 #endif
868
869 #ifdef INET6
870 static void
871 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
872 {
873 char src[INET6_ADDRSTRLEN];
874 char dst[INET6_ADDRSTRLEN];
875
876 if (ip6) {
877 in6_print(src, sizeof(src), &ip6->ip6_src);
878 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
879 }
880 else {
881 strlcpy(src, "(unknown v6)", sizeof(src));
882 strlcpy(dst, "(unknown v6)", sizeof(dst));
883 }
884 log(LOG_INFO,
885 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
886 dst, ntohs(th->th_dport),
887 src, ntohs(th->th_sport));
888 }
889 #endif
890
891 /*
892 * Checksum extended TCP header and data.
893 */
894 int
895 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
896 int toff, int off, int tlen)
897 {
898 struct ifnet *rcvif;
899 int s;
900
901 /*
902 * XXX it's better to record and check if this mbuf is
903 * already checked.
904 */
905
906 rcvif = m_get_rcvif(m, &s);
907 if (__predict_false(rcvif == NULL))
908 goto badcsum; /* XXX */
909
910 switch (af) {
911 #ifdef INET
912 case AF_INET:
913 switch (m->m_pkthdr.csum_flags &
914 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
915 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
916 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
917 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
918 goto badcsum;
919
920 case M_CSUM_TCPv4|M_CSUM_DATA: {
921 u_int32_t hw_csum = m->m_pkthdr.csum_data;
922
923 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
924 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
925 const struct ip *ip =
926 mtod(m, const struct ip *);
927
928 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
929 ip->ip_dst.s_addr,
930 htons(hw_csum + tlen + off + IPPROTO_TCP));
931 }
932 if ((hw_csum ^ 0xffff) != 0)
933 goto badcsum;
934 break;
935 }
936
937 case M_CSUM_TCPv4:
938 /* Checksum was okay. */
939 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
940 break;
941
942 default:
943 /*
944 * Must compute it ourselves. Maybe skip checksum
945 * on loopback interfaces.
946 */
947 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
948 tcp_do_loopback_cksum)) {
949 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
950 if (in4_cksum(m, IPPROTO_TCP, toff,
951 tlen + off) != 0)
952 goto badcsum;
953 }
954 break;
955 }
956 break;
957 #endif /* INET4 */
958
959 #ifdef INET6
960 case AF_INET6:
961 switch (m->m_pkthdr.csum_flags &
962 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
963 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
964 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
965 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
966 goto badcsum;
967
968 #if 0 /* notyet */
969 case M_CSUM_TCPv6|M_CSUM_DATA:
970 #endif
971
972 case M_CSUM_TCPv6:
973 /* Checksum was okay. */
974 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
975 break;
976
977 default:
978 /*
979 * Must compute it ourselves. Maybe skip checksum
980 * on loopback interfaces.
981 */
982 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
983 tcp_do_loopback_cksum)) {
984 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
985 if (in6_cksum(m, IPPROTO_TCP, toff,
986 tlen + off) != 0)
987 goto badcsum;
988 }
989 }
990 break;
991 #endif /* INET6 */
992 }
993 m_put_rcvif(rcvif, &s);
994
995 return 0;
996
997 badcsum:
998 m_put_rcvif(rcvif, &s);
999 TCP_STATINC(TCP_STAT_RCVBADSUM);
1000 return -1;
1001 }
1002
1003 /* When a packet arrives addressed to a vestigial tcpbp, we
1004 * nevertheless have to respond to it per the spec.
1005 */
1006 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1007 struct mbuf *m, int tlen, int multicast)
1008 {
1009 int tiflags;
1010 int todrop;
1011 uint32_t t_flags = 0;
1012 uint64_t *tcps;
1013
1014 tiflags = th->th_flags;
1015 todrop = vp->rcv_nxt - th->th_seq;
1016
1017 if (todrop > 0) {
1018 if (tiflags & TH_SYN) {
1019 tiflags &= ~TH_SYN;
1020 ++th->th_seq;
1021 if (th->th_urp > 1)
1022 --th->th_urp;
1023 else {
1024 tiflags &= ~TH_URG;
1025 th->th_urp = 0;
1026 }
1027 --todrop;
1028 }
1029 if (todrop > tlen ||
1030 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1031 /*
1032 * Any valid FIN or RST must be to the left of the
1033 * window. At this point the FIN or RST must be a
1034 * duplicate or out of sequence; drop it.
1035 */
1036 if (tiflags & TH_RST)
1037 goto drop;
1038 tiflags &= ~(TH_FIN|TH_RST);
1039 /*
1040 * Send an ACK to resynchronize and drop any data.
1041 * But keep on processing for RST or ACK.
1042 */
1043 t_flags |= TF_ACKNOW;
1044 todrop = tlen;
1045 tcps = TCP_STAT_GETREF();
1046 tcps[TCP_STAT_RCVDUPPACK] += 1;
1047 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1048 TCP_STAT_PUTREF();
1049 } else if ((tiflags & TH_RST)
1050 && th->th_seq != vp->rcv_nxt) {
1051 /*
1052 * Test for reset before adjusting the sequence
1053 * number for overlapping data.
1054 */
1055 goto dropafterack_ratelim;
1056 } else {
1057 tcps = TCP_STAT_GETREF();
1058 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1059 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1060 TCP_STAT_PUTREF();
1061 }
1062
1063 // tcp_new_dsack(tp, th->th_seq, todrop);
1064 // hdroptlen += todrop; /*drop from head afterwards*/
1065
1066 th->th_seq += todrop;
1067 tlen -= todrop;
1068
1069 if (th->th_urp > todrop)
1070 th->th_urp -= todrop;
1071 else {
1072 tiflags &= ~TH_URG;
1073 th->th_urp = 0;
1074 }
1075 }
1076
1077 /*
1078 * If new data are received on a connection after the
1079 * user processes are gone, then RST the other end.
1080 */
1081 if (tlen) {
1082 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1083 goto dropwithreset;
1084 }
1085
1086 /*
1087 * If segment ends after window, drop trailing data
1088 * (and PUSH and FIN); if nothing left, just ACK.
1089 */
1090 todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1091
1092 if (todrop > 0) {
1093 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1094 if (todrop >= tlen) {
1095 /*
1096 * The segment actually starts after the window.
1097 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1098 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1099 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1100 */
1101 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1102 /*
1103 * If a new connection request is received
1104 * while in TIME_WAIT, drop the old connection
1105 * and start over if the sequence numbers
1106 * are above the previous ones.
1107 */
1108 if ((tiflags & TH_SYN)
1109 && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1110 /* We only support this in the !NOFDREF case, which
1111 * is to say: not here.
1112 */
1113 goto dropwithreset;
1114 }
1115 /*
1116 * If window is closed can only take segments at
1117 * window edge, and have to drop data and PUSH from
1118 * incoming segments. Continue processing, but
1119 * remember to ack. Otherwise, drop segment
1120 * and (if not RST) ack.
1121 */
1122 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1123 t_flags |= TF_ACKNOW;
1124 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1125 } else
1126 goto dropafterack;
1127 } else
1128 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1129 m_adj(m, -todrop);
1130 tlen -= todrop;
1131 tiflags &= ~(TH_PUSH|TH_FIN);
1132 }
1133
1134 if (tiflags & TH_RST) {
1135 if (th->th_seq != vp->rcv_nxt)
1136 goto dropafterack_ratelim;
1137
1138 vtw_del(vp->ctl, vp->vtw);
1139 goto drop;
1140 }
1141
1142 /*
1143 * If the ACK bit is off we drop the segment and return.
1144 */
1145 if ((tiflags & TH_ACK) == 0) {
1146 if (t_flags & TF_ACKNOW)
1147 goto dropafterack;
1148 else
1149 goto drop;
1150 }
1151
1152 /*
1153 * In TIME_WAIT state the only thing that should arrive
1154 * is a retransmission of the remote FIN. Acknowledge
1155 * it and restart the finack timer.
1156 */
1157 vtw_restart(vp);
1158 goto dropafterack;
1159
1160 dropafterack:
1161 /*
1162 * Generate an ACK dropping incoming segment if it occupies
1163 * sequence space, where the ACK reflects our state.
1164 */
1165 if (tiflags & TH_RST)
1166 goto drop;
1167 goto dropafterack2;
1168
1169 dropafterack_ratelim:
1170 /*
1171 * We may want to rate-limit ACKs against SYN/RST attack.
1172 */
1173 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1174 tcp_ackdrop_ppslim) == 0) {
1175 /* XXX stat */
1176 goto drop;
1177 }
1178 /* ...fall into dropafterack2... */
1179
1180 dropafterack2:
1181 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1182 TH_ACK);
1183 return;
1184
1185 dropwithreset:
1186 /*
1187 * Generate a RST, dropping incoming segment.
1188 * Make ACK acceptable to originator of segment.
1189 */
1190 if (tiflags & TH_RST)
1191 goto drop;
1192
1193 if (tiflags & TH_ACK)
1194 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1195 else {
1196 if (tiflags & TH_SYN)
1197 ++tlen;
1198 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1199 TH_RST|TH_ACK);
1200 }
1201 return;
1202 drop:
1203 m_freem(m);
1204 }
1205
1206 /*
1207 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1208 */
1209 void
1210 tcp_input(struct mbuf *m, ...)
1211 {
1212 struct tcphdr *th;
1213 struct ip *ip;
1214 struct inpcb *inp;
1215 #ifdef INET6
1216 struct ip6_hdr *ip6;
1217 struct in6pcb *in6p;
1218 #endif
1219 u_int8_t *optp = NULL;
1220 int optlen = 0;
1221 int len, tlen, toff, hdroptlen = 0;
1222 struct tcpcb *tp = 0;
1223 int tiflags;
1224 struct socket *so = NULL;
1225 int todrop, acked, ourfinisacked, needoutput = 0;
1226 bool dupseg;
1227 #ifdef TCP_DEBUG
1228 short ostate = 0;
1229 #endif
1230 u_long tiwin;
1231 struct tcp_opt_info opti;
1232 int off, iphlen;
1233 va_list ap;
1234 int af; /* af on the wire */
1235 struct mbuf *tcp_saveti = NULL;
1236 uint32_t ts_rtt;
1237 uint8_t iptos;
1238 uint64_t *tcps;
1239 vestigial_inpcb_t vestige;
1240
1241 vestige.valid = 0;
1242
1243 MCLAIM(m, &tcp_rx_mowner);
1244 va_start(ap, m);
1245 toff = va_arg(ap, int);
1246 (void)va_arg(ap, int); /* ignore value, advance ap */
1247 va_end(ap);
1248
1249 TCP_STATINC(TCP_STAT_RCVTOTAL);
1250
1251 memset(&opti, 0, sizeof(opti));
1252 opti.ts_present = 0;
1253 opti.maxseg = 0;
1254
1255 /*
1256 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1257 *
1258 * TCP is, by definition, unicast, so we reject all
1259 * multicast outright.
1260 *
1261 * Note, there are additional src/dst address checks in
1262 * the AF-specific code below.
1263 */
1264 if (m->m_flags & (M_BCAST|M_MCAST)) {
1265 /* XXX stat */
1266 goto drop;
1267 }
1268 #ifdef INET6
1269 if (m->m_flags & M_ANYCAST6) {
1270 /* XXX stat */
1271 goto drop;
1272 }
1273 #endif
1274
1275 /*
1276 * Get IP and TCP header.
1277 * Note: IP leaves IP header in first mbuf.
1278 */
1279 ip = mtod(m, struct ip *);
1280 switch (ip->ip_v) {
1281 #ifdef INET
1282 case 4:
1283 #ifdef INET6
1284 ip6 = NULL;
1285 #endif
1286 af = AF_INET;
1287 iphlen = sizeof(struct ip);
1288 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1289 sizeof(struct tcphdr));
1290 if (th == NULL) {
1291 TCP_STATINC(TCP_STAT_RCVSHORT);
1292 return;
1293 }
1294 /* We do the checksum after PCB lookup... */
1295 len = ntohs(ip->ip_len);
1296 tlen = len - toff;
1297 iptos = ip->ip_tos;
1298 break;
1299 #endif
1300 #ifdef INET6
1301 case 6:
1302 ip = NULL;
1303 iphlen = sizeof(struct ip6_hdr);
1304 af = AF_INET6;
1305 ip6 = mtod(m, struct ip6_hdr *);
1306 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1307 sizeof(struct tcphdr));
1308 if (th == NULL) {
1309 TCP_STATINC(TCP_STAT_RCVSHORT);
1310 return;
1311 }
1312
1313 /* Be proactive about malicious use of IPv4 mapped address */
1314 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1315 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1316 /* XXX stat */
1317 goto drop;
1318 }
1319
1320 /*
1321 * Be proactive about unspecified IPv6 address in source.
1322 * As we use all-zero to indicate unbounded/unconnected pcb,
1323 * unspecified IPv6 address can be used to confuse us.
1324 *
1325 * Note that packets with unspecified IPv6 destination is
1326 * already dropped in ip6_input.
1327 */
1328 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1329 /* XXX stat */
1330 goto drop;
1331 }
1332
1333 /*
1334 * Make sure destination address is not multicast.
1335 * Source address checked in ip6_input().
1336 */
1337 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1338 /* XXX stat */
1339 goto drop;
1340 }
1341
1342 /* We do the checksum after PCB lookup... */
1343 len = m->m_pkthdr.len;
1344 tlen = len - toff;
1345 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1346 break;
1347 #endif
1348 default:
1349 m_freem(m);
1350 return;
1351 }
1352 /*
1353 * Enforce alignment requirements that are violated in
1354 * some cases, see kern/50766 for details.
1355 */
1356 if (TCP_HDR_ALIGNED_P(th) == 0) {
1357 m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1358 if (m == NULL) {
1359 TCP_STATINC(TCP_STAT_RCVSHORT);
1360 return;
1361 }
1362 ip = mtod(m, struct ip *);
1363 #ifdef INET6
1364 ip6 = mtod(m, struct ip6_hdr *);
1365 #endif
1366 th = (struct tcphdr *)(mtod(m, char *) + toff);
1367 }
1368 KASSERT(TCP_HDR_ALIGNED_P(th));
1369
1370 /*
1371 * Check that TCP offset makes sense,
1372 * pull out TCP options and adjust length. XXX
1373 */
1374 off = th->th_off << 2;
1375 if (off < sizeof (struct tcphdr) || off > tlen) {
1376 TCP_STATINC(TCP_STAT_RCVBADOFF);
1377 goto drop;
1378 }
1379 tlen -= off;
1380
1381 /*
1382 * tcp_input() has been modified to use tlen to mean the TCP data
1383 * length throughout the function. Other functions can use
1384 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1385 * rja
1386 */
1387
1388 if (off > sizeof (struct tcphdr)) {
1389 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1390 if (th == NULL) {
1391 TCP_STATINC(TCP_STAT_RCVSHORT);
1392 return;
1393 }
1394 /*
1395 * NOTE: ip/ip6 will not be affected by m_pulldown()
1396 * (as they're before toff) and we don't need to update those.
1397 */
1398 KASSERT(TCP_HDR_ALIGNED_P(th));
1399 optlen = off - sizeof (struct tcphdr);
1400 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1401 /*
1402 * Do quick retrieval of timestamp options ("options
1403 * prediction?"). If timestamp is the only option and it's
1404 * formatted as recommended in RFC 1323 appendix A, we
1405 * quickly get the values now and not bother calling
1406 * tcp_dooptions(), etc.
1407 */
1408 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1409 (optlen > TCPOLEN_TSTAMP_APPA &&
1410 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1411 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1412 (th->th_flags & TH_SYN) == 0) {
1413 opti.ts_present = 1;
1414 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1415 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1416 optp = NULL; /* we've parsed the options */
1417 }
1418 }
1419 tiflags = th->th_flags;
1420
1421 /*
1422 * Checksum extended TCP header and data
1423 */
1424 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1425 goto badcsum;
1426
1427 /*
1428 * Locate pcb for segment.
1429 */
1430 findpcb:
1431 inp = NULL;
1432 #ifdef INET6
1433 in6p = NULL;
1434 #endif
1435 switch (af) {
1436 #ifdef INET
1437 case AF_INET:
1438 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1439 ip->ip_dst, th->th_dport,
1440 &vestige);
1441 if (inp == 0 && !vestige.valid) {
1442 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1443 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1444 }
1445 #ifdef INET6
1446 if (inp == 0 && !vestige.valid) {
1447 struct in6_addr s, d;
1448
1449 /* mapped addr case */
1450 in6_in_2_v4mapin6(&ip->ip_src, &s);
1451 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1452 in6p = in6_pcblookup_connect(&tcbtable, &s,
1453 th->th_sport, &d, th->th_dport,
1454 0, &vestige);
1455 if (in6p == 0 && !vestige.valid) {
1456 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1457 in6p = in6_pcblookup_bind(&tcbtable, &d,
1458 th->th_dport, 0);
1459 }
1460 }
1461 #endif
1462 #ifndef INET6
1463 if (inp == 0 && !vestige.valid)
1464 #else
1465 if (inp == 0 && in6p == 0 && !vestige.valid)
1466 #endif
1467 {
1468 TCP_STATINC(TCP_STAT_NOPORT);
1469 if (tcp_log_refused &&
1470 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1471 tcp4_log_refused(ip, th);
1472 }
1473 tcp_fields_to_host(th);
1474 goto dropwithreset_ratelim;
1475 }
1476 #if defined(IPSEC)
1477 if (ipsec_used) {
1478 if (inp &&
1479 (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1480 && ipsec4_in_reject(m, inp)) {
1481 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1482 goto drop;
1483 }
1484 #ifdef INET6
1485 else if (in6p &&
1486 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1487 && ipsec6_in_reject_so(m, in6p->in6p_socket)) {
1488 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1489 goto drop;
1490 }
1491 #endif
1492 }
1493 #endif /*IPSEC*/
1494 break;
1495 #endif /*INET*/
1496 #ifdef INET6
1497 case AF_INET6:
1498 {
1499 int faith;
1500
1501 #if defined(NFAITH) && NFAITH > 0
1502 faith = faithprefix(&ip6->ip6_dst);
1503 #else
1504 faith = 0;
1505 #endif
1506 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1507 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1508 if (!in6p && !vestige.valid) {
1509 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1510 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1511 th->th_dport, faith);
1512 }
1513 if (!in6p && !vestige.valid) {
1514 TCP_STATINC(TCP_STAT_NOPORT);
1515 if (tcp_log_refused &&
1516 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1517 tcp6_log_refused(ip6, th);
1518 }
1519 tcp_fields_to_host(th);
1520 goto dropwithreset_ratelim;
1521 }
1522 #if defined(IPSEC)
1523 if (ipsec_used && in6p
1524 && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1525 && ipsec6_in_reject(m, in6p)) {
1526 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1527 goto drop;
1528 }
1529 #endif /*IPSEC*/
1530 break;
1531 }
1532 #endif
1533 }
1534
1535 /*
1536 * If the state is CLOSED (i.e., TCB does not exist) then
1537 * all data in the incoming segment is discarded.
1538 * If the TCB exists but is in CLOSED state, it is embryonic,
1539 * but should either do a listen or a connect soon.
1540 */
1541 tp = NULL;
1542 so = NULL;
1543 if (inp) {
1544 /* Check the minimum TTL for socket. */
1545 if (ip->ip_ttl < inp->inp_ip_minttl)
1546 goto drop;
1547
1548 tp = intotcpcb(inp);
1549 so = inp->inp_socket;
1550 }
1551 #ifdef INET6
1552 else if (in6p) {
1553 tp = in6totcpcb(in6p);
1554 so = in6p->in6p_socket;
1555 }
1556 #endif
1557 else if (vestige.valid) {
1558 int mc = 0;
1559
1560 /* We do not support the resurrection of vtw tcpcps.
1561 */
1562 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1563 goto badcsum;
1564
1565 switch (af) {
1566 #ifdef INET6
1567 case AF_INET6:
1568 mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1569 break;
1570 #endif
1571
1572 case AF_INET:
1573 mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1574 || in_broadcast(ip->ip_dst,
1575 m_get_rcvif_NOMPSAFE(m)));
1576 break;
1577 }
1578
1579 tcp_fields_to_host(th);
1580 tcp_vtw_input(th, &vestige, m, tlen, mc);
1581 m = 0;
1582 goto drop;
1583 }
1584
1585 if (tp == 0) {
1586 tcp_fields_to_host(th);
1587 goto dropwithreset_ratelim;
1588 }
1589 if (tp->t_state == TCPS_CLOSED)
1590 goto drop;
1591
1592 KASSERT(so->so_lock == softnet_lock);
1593 KASSERT(solocked(so));
1594
1595 tcp_fields_to_host(th);
1596
1597 /* Unscale the window into a 32-bit value. */
1598 if ((tiflags & TH_SYN) == 0)
1599 tiwin = th->th_win << tp->snd_scale;
1600 else
1601 tiwin = th->th_win;
1602
1603 #ifdef INET6
1604 /* save packet options if user wanted */
1605 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1606 if (in6p->in6p_options) {
1607 m_freem(in6p->in6p_options);
1608 in6p->in6p_options = 0;
1609 }
1610 KASSERT(ip6 != NULL);
1611 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1612 }
1613 #endif
1614
1615 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1616 union syn_cache_sa src;
1617 union syn_cache_sa dst;
1618
1619 memset(&src, 0, sizeof(src));
1620 memset(&dst, 0, sizeof(dst));
1621 switch (af) {
1622 #ifdef INET
1623 case AF_INET:
1624 src.sin.sin_len = sizeof(struct sockaddr_in);
1625 src.sin.sin_family = AF_INET;
1626 src.sin.sin_addr = ip->ip_src;
1627 src.sin.sin_port = th->th_sport;
1628
1629 dst.sin.sin_len = sizeof(struct sockaddr_in);
1630 dst.sin.sin_family = AF_INET;
1631 dst.sin.sin_addr = ip->ip_dst;
1632 dst.sin.sin_port = th->th_dport;
1633 break;
1634 #endif
1635 #ifdef INET6
1636 case AF_INET6:
1637 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1638 src.sin6.sin6_family = AF_INET6;
1639 src.sin6.sin6_addr = ip6->ip6_src;
1640 src.sin6.sin6_port = th->th_sport;
1641
1642 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1643 dst.sin6.sin6_family = AF_INET6;
1644 dst.sin6.sin6_addr = ip6->ip6_dst;
1645 dst.sin6.sin6_port = th->th_dport;
1646 break;
1647 #endif /* INET6 */
1648 default:
1649 goto badsyn; /*sanity*/
1650 }
1651
1652 if (so->so_options & SO_DEBUG) {
1653 #ifdef TCP_DEBUG
1654 ostate = tp->t_state;
1655 #endif
1656
1657 tcp_saveti = NULL;
1658 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1659 goto nosave;
1660
1661 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1662 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1663 if (!tcp_saveti)
1664 goto nosave;
1665 } else {
1666 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1667 if (!tcp_saveti)
1668 goto nosave;
1669 MCLAIM(m, &tcp_mowner);
1670 tcp_saveti->m_len = iphlen;
1671 m_copydata(m, 0, iphlen,
1672 mtod(tcp_saveti, void *));
1673 }
1674
1675 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1676 m_freem(tcp_saveti);
1677 tcp_saveti = NULL;
1678 } else {
1679 tcp_saveti->m_len += sizeof(struct tcphdr);
1680 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1681 sizeof(struct tcphdr));
1682 }
1683 nosave:;
1684 }
1685 if (so->so_options & SO_ACCEPTCONN) {
1686 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1687 if (tiflags & TH_RST) {
1688 syn_cache_reset(&src.sa, &dst.sa, th);
1689 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1690 (TH_ACK|TH_SYN)) {
1691 /*
1692 * Received a SYN,ACK. This should
1693 * never happen while we are in
1694 * LISTEN. Send an RST.
1695 */
1696 goto badsyn;
1697 } else if (tiflags & TH_ACK) {
1698 so = syn_cache_get(&src.sa, &dst.sa,
1699 th, toff, tlen, so, m);
1700 if (so == NULL) {
1701 /*
1702 * We don't have a SYN for
1703 * this ACK; send an RST.
1704 */
1705 goto badsyn;
1706 } else if (so ==
1707 (struct socket *)(-1)) {
1708 /*
1709 * We were unable to create
1710 * the connection. If the
1711 * 3-way handshake was
1712 * completed, and RST has
1713 * been sent to the peer.
1714 * Since the mbuf might be
1715 * in use for the reply,
1716 * do not free it.
1717 */
1718 m = NULL;
1719 } else {
1720 /*
1721 * We have created a
1722 * full-blown connection.
1723 */
1724 tp = NULL;
1725 inp = NULL;
1726 #ifdef INET6
1727 in6p = NULL;
1728 #endif
1729 switch (so->so_proto->pr_domain->dom_family) {
1730 #ifdef INET
1731 case AF_INET:
1732 inp = sotoinpcb(so);
1733 tp = intotcpcb(inp);
1734 break;
1735 #endif
1736 #ifdef INET6
1737 case AF_INET6:
1738 in6p = sotoin6pcb(so);
1739 tp = in6totcpcb(in6p);
1740 break;
1741 #endif
1742 }
1743 if (tp == NULL)
1744 goto badsyn; /*XXX*/
1745 tiwin <<= tp->snd_scale;
1746 goto after_listen;
1747 }
1748 } else {
1749 /*
1750 * None of RST, SYN or ACK was set.
1751 * This is an invalid packet for a
1752 * TCB in LISTEN state. Send a RST.
1753 */
1754 goto badsyn;
1755 }
1756 } else {
1757 /*
1758 * Received a SYN.
1759 *
1760 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1761 */
1762 if (m->m_flags & (M_BCAST|M_MCAST))
1763 goto drop;
1764
1765 switch (af) {
1766 #ifdef INET6
1767 case AF_INET6:
1768 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1769 goto drop;
1770 break;
1771 #endif /* INET6 */
1772 case AF_INET:
1773 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1774 in_broadcast(ip->ip_dst,
1775 m_get_rcvif_NOMPSAFE(m)))
1776 goto drop;
1777 break;
1778 }
1779
1780 #ifdef INET6
1781 /*
1782 * If deprecated address is forbidden, we do
1783 * not accept SYN to deprecated interface
1784 * address to prevent any new inbound
1785 * connection from getting established.
1786 * When we do not accept SYN, we send a TCP
1787 * RST, with deprecated source address (instead
1788 * of dropping it). We compromise it as it is
1789 * much better for peer to send a RST, and
1790 * RST will be the final packet for the
1791 * exchange.
1792 *
1793 * If we do not forbid deprecated addresses, we
1794 * accept the SYN packet. RFC2462 does not
1795 * suggest dropping SYN in this case.
1796 * If we decipher RFC2462 5.5.4, it says like
1797 * this:
1798 * 1. use of deprecated addr with existing
1799 * communication is okay - "SHOULD continue
1800 * to be used"
1801 * 2. use of it with new communication:
1802 * (2a) "SHOULD NOT be used if alternate
1803 * address with sufficient scope is
1804 * available"
1805 * (2b) nothing mentioned otherwise.
1806 * Here we fall into (2b) case as we have no
1807 * choice in our source address selection - we
1808 * must obey the peer.
1809 *
1810 * The wording in RFC2462 is confusing, and
1811 * there are multiple description text for
1812 * deprecated address handling - worse, they
1813 * are not exactly the same. I believe 5.5.4
1814 * is the best one, so we follow 5.5.4.
1815 */
1816 if (af == AF_INET6 && !ip6_use_deprecated) {
1817 struct in6_ifaddr *ia6;
1818 int s;
1819 struct ifnet *rcvif = m_get_rcvif(m, &s);
1820 if (rcvif == NULL)
1821 goto dropwithreset; /* XXX */
1822 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1823 &ip6->ip6_dst)) &&
1824 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1825 tp = NULL;
1826 m_put_rcvif(rcvif, &s);
1827 goto dropwithreset;
1828 }
1829 m_put_rcvif(rcvif, &s);
1830 }
1831 #endif
1832
1833 #if defined(IPSEC)
1834 if (ipsec_used) {
1835 switch (af) {
1836 #ifdef INET
1837 case AF_INET:
1838 if (!ipsec4_in_reject_so(m, so))
1839 break;
1840 IPSEC_STATINC(
1841 IPSEC_STAT_IN_POLVIO);
1842 tp = NULL;
1843 goto dropwithreset;
1844 #endif
1845 #ifdef INET6
1846 case AF_INET6:
1847 if (!ipsec6_in_reject_so(m, so))
1848 break;
1849 IPSEC6_STATINC(
1850 IPSEC_STAT_IN_POLVIO);
1851 tp = NULL;
1852 goto dropwithreset;
1853 #endif /*INET6*/
1854 }
1855 }
1856 #endif /*IPSEC*/
1857
1858 /*
1859 * LISTEN socket received a SYN
1860 * from itself? This can't possibly
1861 * be valid; drop the packet.
1862 */
1863 if (th->th_sport == th->th_dport) {
1864 int i;
1865
1866 switch (af) {
1867 #ifdef INET
1868 case AF_INET:
1869 i = in_hosteq(ip->ip_src, ip->ip_dst);
1870 break;
1871 #endif
1872 #ifdef INET6
1873 case AF_INET6:
1874 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1875 break;
1876 #endif
1877 default:
1878 i = 1;
1879 }
1880 if (i) {
1881 TCP_STATINC(TCP_STAT_BADSYN);
1882 goto drop;
1883 }
1884 }
1885
1886 /*
1887 * SYN looks ok; create compressed TCP
1888 * state for it.
1889 */
1890 if (so->so_qlen <= so->so_qlimit &&
1891 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1892 so, m, optp, optlen, &opti))
1893 m = NULL;
1894 }
1895 goto drop;
1896 }
1897 }
1898
1899 after_listen:
1900 #ifdef DIAGNOSTIC
1901 /*
1902 * Should not happen now that all embryonic connections
1903 * are handled with compressed state.
1904 */
1905 if (tp->t_state == TCPS_LISTEN)
1906 panic("tcp_input: TCPS_LISTEN");
1907 #endif
1908
1909 /*
1910 * Segment received on connection.
1911 * Reset idle time and keep-alive timer.
1912 */
1913 tp->t_rcvtime = tcp_now;
1914 if (TCPS_HAVEESTABLISHED(tp->t_state))
1915 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1916
1917 /*
1918 * Process options.
1919 */
1920 #ifdef TCP_SIGNATURE
1921 if (optp || (tp->t_flags & TF_SIGNATURE))
1922 #else
1923 if (optp)
1924 #endif
1925 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1926 goto drop;
1927
1928 if (TCP_SACK_ENABLED(tp)) {
1929 tcp_del_sackholes(tp, th);
1930 }
1931
1932 if (TCP_ECN_ALLOWED(tp)) {
1933 if (tiflags & TH_CWR) {
1934 tp->t_flags &= ~TF_ECN_SND_ECE;
1935 }
1936 switch (iptos & IPTOS_ECN_MASK) {
1937 case IPTOS_ECN_CE:
1938 tp->t_flags |= TF_ECN_SND_ECE;
1939 TCP_STATINC(TCP_STAT_ECN_CE);
1940 break;
1941 case IPTOS_ECN_ECT0:
1942 TCP_STATINC(TCP_STAT_ECN_ECT);
1943 break;
1944 case IPTOS_ECN_ECT1:
1945 /* XXX: ignore for now -- rpaulo */
1946 break;
1947 }
1948 /*
1949 * Congestion experienced.
1950 * Ignore if we are already trying to recover.
1951 */
1952 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1953 tp->t_congctl->cong_exp(tp);
1954 }
1955
1956 if (opti.ts_present && opti.ts_ecr) {
1957 /*
1958 * Calculate the RTT from the returned time stamp and the
1959 * connection's time base. If the time stamp is later than
1960 * the current time, or is extremely old, fall back to non-1323
1961 * RTT calculation. Since ts_rtt is unsigned, we can test both
1962 * at the same time.
1963 *
1964 * Note that ts_rtt is in units of slow ticks (500
1965 * ms). Since most earthbound RTTs are < 500 ms,
1966 * observed values will have large quantization noise.
1967 * Our smoothed RTT is then the fraction of observed
1968 * samples that are 1 tick instead of 0 (times 500
1969 * ms).
1970 *
1971 * ts_rtt is increased by 1 to denote a valid sample,
1972 * with 0 indicating an invalid measurement. This
1973 * extra 1 must be removed when ts_rtt is used, or
1974 * else an an erroneous extra 500 ms will result.
1975 */
1976 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1977 if (ts_rtt > TCP_PAWS_IDLE)
1978 ts_rtt = 0;
1979 } else {
1980 ts_rtt = 0;
1981 }
1982
1983 /*
1984 * Header prediction: check for the two common cases
1985 * of a uni-directional data xfer. If the packet has
1986 * no control flags, is in-sequence, the window didn't
1987 * change and we're not retransmitting, it's a
1988 * candidate. If the length is zero and the ack moved
1989 * forward, we're the sender side of the xfer. Just
1990 * free the data acked & wake any higher level process
1991 * that was blocked waiting for space. If the length
1992 * is non-zero and the ack didn't move, we're the
1993 * receiver side. If we're getting packets in-order
1994 * (the reassembly queue is empty), add the data to
1995 * the socket buffer and note that we need a delayed ack.
1996 */
1997 if (tp->t_state == TCPS_ESTABLISHED &&
1998 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1999 == TH_ACK &&
2000 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
2001 th->th_seq == tp->rcv_nxt &&
2002 tiwin && tiwin == tp->snd_wnd &&
2003 tp->snd_nxt == tp->snd_max) {
2004
2005 /*
2006 * If last ACK falls within this segment's sequence numbers,
2007 * record the timestamp.
2008 * NOTE that the test is modified according to the latest
2009 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2010 *
2011 * note that we already know
2012 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
2013 */
2014 if (opti.ts_present &&
2015 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2016 tp->ts_recent_age = tcp_now;
2017 tp->ts_recent = opti.ts_val;
2018 }
2019
2020 if (tlen == 0) {
2021 /* Ack prediction. */
2022 if (SEQ_GT(th->th_ack, tp->snd_una) &&
2023 SEQ_LEQ(th->th_ack, tp->snd_max) &&
2024 tp->snd_cwnd >= tp->snd_wnd &&
2025 tp->t_partialacks < 0) {
2026 /*
2027 * this is a pure ack for outstanding data.
2028 */
2029 if (ts_rtt)
2030 tcp_xmit_timer(tp, ts_rtt - 1);
2031 else if (tp->t_rtttime &&
2032 SEQ_GT(th->th_ack, tp->t_rtseq))
2033 tcp_xmit_timer(tp,
2034 tcp_now - tp->t_rtttime);
2035 acked = th->th_ack - tp->snd_una;
2036 tcps = TCP_STAT_GETREF();
2037 tcps[TCP_STAT_PREDACK]++;
2038 tcps[TCP_STAT_RCVACKPACK]++;
2039 tcps[TCP_STAT_RCVACKBYTE] += acked;
2040 TCP_STAT_PUTREF();
2041 nd6_hint(tp);
2042
2043 if (acked > (tp->t_lastoff - tp->t_inoff))
2044 tp->t_lastm = NULL;
2045 sbdrop(&so->so_snd, acked);
2046 tp->t_lastoff -= acked;
2047
2048 icmp_check(tp, th, acked);
2049
2050 tp->snd_una = th->th_ack;
2051 tp->snd_fack = tp->snd_una;
2052 if (SEQ_LT(tp->snd_high, tp->snd_una))
2053 tp->snd_high = tp->snd_una;
2054 m_freem(m);
2055
2056 /*
2057 * If all outstanding data are acked, stop
2058 * retransmit timer, otherwise restart timer
2059 * using current (possibly backed-off) value.
2060 * If process is waiting for space,
2061 * wakeup/selnotify/signal. If data
2062 * are ready to send, let tcp_output
2063 * decide between more output or persist.
2064 */
2065 if (tp->snd_una == tp->snd_max)
2066 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2067 else if (TCP_TIMER_ISARMED(tp,
2068 TCPT_PERSIST) == 0)
2069 TCP_TIMER_ARM(tp, TCPT_REXMT,
2070 tp->t_rxtcur);
2071
2072 sowwakeup(so);
2073 if (so->so_snd.sb_cc) {
2074 KERNEL_LOCK(1, NULL);
2075 (void) tcp_output(tp);
2076 KERNEL_UNLOCK_ONE(NULL);
2077 }
2078 if (tcp_saveti)
2079 m_freem(tcp_saveti);
2080 return;
2081 }
2082 } else if (th->th_ack == tp->snd_una &&
2083 TAILQ_FIRST(&tp->segq) == NULL &&
2084 tlen <= sbspace(&so->so_rcv)) {
2085 int newsize = 0; /* automatic sockbuf scaling */
2086
2087 /*
2088 * this is a pure, in-sequence data packet
2089 * with nothing on the reassembly queue and
2090 * we have enough buffer space to take it.
2091 */
2092 tp->rcv_nxt += tlen;
2093 tcps = TCP_STAT_GETREF();
2094 tcps[TCP_STAT_PREDDAT]++;
2095 tcps[TCP_STAT_RCVPACK]++;
2096 tcps[TCP_STAT_RCVBYTE] += tlen;
2097 TCP_STAT_PUTREF();
2098 nd6_hint(tp);
2099
2100 /*
2101 * Automatic sizing enables the performance of large buffers
2102 * and most of the efficiency of small ones by only allocating
2103 * space when it is needed.
2104 *
2105 * On the receive side the socket buffer memory is only rarely
2106 * used to any significant extent. This allows us to be much
2107 * more aggressive in scaling the receive socket buffer. For
2108 * the case that the buffer space is actually used to a large
2109 * extent and we run out of kernel memory we can simply drop
2110 * the new segments; TCP on the sender will just retransmit it
2111 * later. Setting the buffer size too big may only consume too
2112 * much kernel memory if the application doesn't read() from
2113 * the socket or packet loss or reordering makes use of the
2114 * reassembly queue.
2115 *
2116 * The criteria to step up the receive buffer one notch are:
2117 * 1. the number of bytes received during the time it takes
2118 * one timestamp to be reflected back to us (the RTT);
2119 * 2. received bytes per RTT is within seven eighth of the
2120 * current socket buffer size;
2121 * 3. receive buffer size has not hit maximal automatic size;
2122 *
2123 * This algorithm does one step per RTT at most and only if
2124 * we receive a bulk stream w/o packet losses or reorderings.
2125 * Shrinking the buffer during idle times is not necessary as
2126 * it doesn't consume any memory when idle.
2127 *
2128 * TODO: Only step up if the application is actually serving
2129 * the buffer to better manage the socket buffer resources.
2130 */
2131 if (tcp_do_autorcvbuf &&
2132 opti.ts_ecr &&
2133 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2134 if (opti.ts_ecr > tp->rfbuf_ts &&
2135 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2136 if (tp->rfbuf_cnt >
2137 (so->so_rcv.sb_hiwat / 8 * 7) &&
2138 so->so_rcv.sb_hiwat <
2139 tcp_autorcvbuf_max) {
2140 newsize =
2141 min(so->so_rcv.sb_hiwat +
2142 tcp_autorcvbuf_inc,
2143 tcp_autorcvbuf_max);
2144 }
2145 /* Start over with next RTT. */
2146 tp->rfbuf_ts = 0;
2147 tp->rfbuf_cnt = 0;
2148 } else
2149 tp->rfbuf_cnt += tlen; /* add up */
2150 }
2151
2152 /*
2153 * Drop TCP, IP headers and TCP options then add data
2154 * to socket buffer.
2155 */
2156 if (so->so_state & SS_CANTRCVMORE)
2157 m_freem(m);
2158 else {
2159 /*
2160 * Set new socket buffer size.
2161 * Give up when limit is reached.
2162 */
2163 if (newsize)
2164 if (!sbreserve(&so->so_rcv,
2165 newsize, so))
2166 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2167 m_adj(m, toff + off);
2168 sbappendstream(&so->so_rcv, m);
2169 }
2170 sorwakeup(so);
2171 tcp_setup_ack(tp, th);
2172 if (tp->t_flags & TF_ACKNOW) {
2173 KERNEL_LOCK(1, NULL);
2174 (void) tcp_output(tp);
2175 KERNEL_UNLOCK_ONE(NULL);
2176 }
2177 if (tcp_saveti)
2178 m_freem(tcp_saveti);
2179 return;
2180 }
2181 }
2182
2183 /*
2184 * Compute mbuf offset to TCP data segment.
2185 */
2186 hdroptlen = toff + off;
2187
2188 /*
2189 * Calculate amount of space in receive window,
2190 * and then do TCP input processing.
2191 * Receive window is amount of space in rcv queue,
2192 * but not less than advertised window.
2193 */
2194 { int win;
2195
2196 win = sbspace(&so->so_rcv);
2197 if (win < 0)
2198 win = 0;
2199 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2200 }
2201
2202 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2203 tp->rfbuf_ts = 0;
2204 tp->rfbuf_cnt = 0;
2205
2206 switch (tp->t_state) {
2207 /*
2208 * If the state is SYN_SENT:
2209 * if seg contains an ACK, but not for our SYN, drop the input.
2210 * if seg contains a RST, then drop the connection.
2211 * if seg does not contain SYN, then drop it.
2212 * Otherwise this is an acceptable SYN segment
2213 * initialize tp->rcv_nxt and tp->irs
2214 * if seg contains ack then advance tp->snd_una
2215 * if seg contains a ECE and ECN support is enabled, the stream
2216 * is ECN capable.
2217 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2218 * arrange for segment to be acked (eventually)
2219 * continue processing rest of data/controls, beginning with URG
2220 */
2221 case TCPS_SYN_SENT:
2222 if ((tiflags & TH_ACK) &&
2223 (SEQ_LEQ(th->th_ack, tp->iss) ||
2224 SEQ_GT(th->th_ack, tp->snd_max)))
2225 goto dropwithreset;
2226 if (tiflags & TH_RST) {
2227 if (tiflags & TH_ACK)
2228 tp = tcp_drop(tp, ECONNREFUSED);
2229 goto drop;
2230 }
2231 if ((tiflags & TH_SYN) == 0)
2232 goto drop;
2233 if (tiflags & TH_ACK) {
2234 tp->snd_una = th->th_ack;
2235 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2236 tp->snd_nxt = tp->snd_una;
2237 if (SEQ_LT(tp->snd_high, tp->snd_una))
2238 tp->snd_high = tp->snd_una;
2239 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2240
2241 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2242 tp->t_flags |= TF_ECN_PERMIT;
2243 TCP_STATINC(TCP_STAT_ECN_SHS);
2244 }
2245
2246 }
2247 tp->irs = th->th_seq;
2248 tcp_rcvseqinit(tp);
2249 tp->t_flags |= TF_ACKNOW;
2250 tcp_mss_from_peer(tp, opti.maxseg);
2251
2252 /*
2253 * Initialize the initial congestion window. If we
2254 * had to retransmit the SYN, we must initialize cwnd
2255 * to 1 segment (i.e. the Loss Window).
2256 */
2257 if (tp->t_flags & TF_SYN_REXMT)
2258 tp->snd_cwnd = tp->t_peermss;
2259 else {
2260 int ss = tcp_init_win;
2261 #ifdef INET
2262 if (inp != NULL && in_localaddr(inp->inp_faddr))
2263 ss = tcp_init_win_local;
2264 #endif
2265 #ifdef INET6
2266 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2267 ss = tcp_init_win_local;
2268 #endif
2269 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2270 }
2271
2272 tcp_rmx_rtt(tp);
2273 if (tiflags & TH_ACK) {
2274 TCP_STATINC(TCP_STAT_CONNECTS);
2275 /*
2276 * move tcp_established before soisconnected
2277 * because upcall handler can drive tcp_output
2278 * functionality.
2279 * XXX we might call soisconnected at the end of
2280 * all processing
2281 */
2282 tcp_established(tp);
2283 soisconnected(so);
2284 /* Do window scaling on this connection? */
2285 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2286 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2287 tp->snd_scale = tp->requested_s_scale;
2288 tp->rcv_scale = tp->request_r_scale;
2289 }
2290 TCP_REASS_LOCK(tp);
2291 (void) tcp_reass(tp, NULL, NULL, &tlen);
2292 /*
2293 * if we didn't have to retransmit the SYN,
2294 * use its rtt as our initial srtt & rtt var.
2295 */
2296 if (tp->t_rtttime)
2297 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2298 } else
2299 tp->t_state = TCPS_SYN_RECEIVED;
2300
2301 /*
2302 * Advance th->th_seq to correspond to first data byte.
2303 * If data, trim to stay within window,
2304 * dropping FIN if necessary.
2305 */
2306 th->th_seq++;
2307 if (tlen > tp->rcv_wnd) {
2308 todrop = tlen - tp->rcv_wnd;
2309 m_adj(m, -todrop);
2310 tlen = tp->rcv_wnd;
2311 tiflags &= ~TH_FIN;
2312 tcps = TCP_STAT_GETREF();
2313 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2314 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2315 TCP_STAT_PUTREF();
2316 }
2317 tp->snd_wl1 = th->th_seq - 1;
2318 tp->rcv_up = th->th_seq;
2319 goto step6;
2320
2321 /*
2322 * If the state is SYN_RECEIVED:
2323 * If seg contains an ACK, but not for our SYN, drop the input
2324 * and generate an RST. See page 36, rfc793
2325 */
2326 case TCPS_SYN_RECEIVED:
2327 if ((tiflags & TH_ACK) &&
2328 (SEQ_LEQ(th->th_ack, tp->iss) ||
2329 SEQ_GT(th->th_ack, tp->snd_max)))
2330 goto dropwithreset;
2331 break;
2332 }
2333
2334 /*
2335 * States other than LISTEN or SYN_SENT.
2336 * First check timestamp, if present.
2337 * Then check that at least some bytes of segment are within
2338 * receive window. If segment begins before rcv_nxt,
2339 * drop leading data (and SYN); if nothing left, just ack.
2340 *
2341 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2342 * and it's less than ts_recent, drop it.
2343 */
2344 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2345 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2346
2347 /* Check to see if ts_recent is over 24 days old. */
2348 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2349 /*
2350 * Invalidate ts_recent. If this segment updates
2351 * ts_recent, the age will be reset later and ts_recent
2352 * will get a valid value. If it does not, setting
2353 * ts_recent to zero will at least satisfy the
2354 * requirement that zero be placed in the timestamp
2355 * echo reply when ts_recent isn't valid. The
2356 * age isn't reset until we get a valid ts_recent
2357 * because we don't want out-of-order segments to be
2358 * dropped when ts_recent is old.
2359 */
2360 tp->ts_recent = 0;
2361 } else {
2362 tcps = TCP_STAT_GETREF();
2363 tcps[TCP_STAT_RCVDUPPACK]++;
2364 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2365 tcps[TCP_STAT_PAWSDROP]++;
2366 TCP_STAT_PUTREF();
2367 tcp_new_dsack(tp, th->th_seq, tlen);
2368 goto dropafterack;
2369 }
2370 }
2371
2372 todrop = tp->rcv_nxt - th->th_seq;
2373 dupseg = false;
2374 if (todrop > 0) {
2375 if (tiflags & TH_SYN) {
2376 tiflags &= ~TH_SYN;
2377 th->th_seq++;
2378 if (th->th_urp > 1)
2379 th->th_urp--;
2380 else {
2381 tiflags &= ~TH_URG;
2382 th->th_urp = 0;
2383 }
2384 todrop--;
2385 }
2386 if (todrop > tlen ||
2387 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2388 /*
2389 * Any valid FIN or RST must be to the left of the
2390 * window. At this point the FIN or RST must be a
2391 * duplicate or out of sequence; drop it.
2392 */
2393 if (tiflags & TH_RST)
2394 goto drop;
2395 tiflags &= ~(TH_FIN|TH_RST);
2396 /*
2397 * Send an ACK to resynchronize and drop any data.
2398 * But keep on processing for RST or ACK.
2399 */
2400 tp->t_flags |= TF_ACKNOW;
2401 todrop = tlen;
2402 dupseg = true;
2403 tcps = TCP_STAT_GETREF();
2404 tcps[TCP_STAT_RCVDUPPACK]++;
2405 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2406 TCP_STAT_PUTREF();
2407 } else if ((tiflags & TH_RST) &&
2408 th->th_seq != tp->rcv_nxt) {
2409 /*
2410 * Test for reset before adjusting the sequence
2411 * number for overlapping data.
2412 */
2413 goto dropafterack_ratelim;
2414 } else {
2415 tcps = TCP_STAT_GETREF();
2416 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2417 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2418 TCP_STAT_PUTREF();
2419 }
2420 tcp_new_dsack(tp, th->th_seq, todrop);
2421 hdroptlen += todrop; /*drop from head afterwards*/
2422 th->th_seq += todrop;
2423 tlen -= todrop;
2424 if (th->th_urp > todrop)
2425 th->th_urp -= todrop;
2426 else {
2427 tiflags &= ~TH_URG;
2428 th->th_urp = 0;
2429 }
2430 }
2431
2432 /*
2433 * If new data are received on a connection after the
2434 * user processes are gone, then RST the other end.
2435 */
2436 if ((so->so_state & SS_NOFDREF) &&
2437 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2438 tp = tcp_close(tp);
2439 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2440 goto dropwithreset;
2441 }
2442
2443 /*
2444 * If segment ends after window, drop trailing data
2445 * (and PUSH and FIN); if nothing left, just ACK.
2446 */
2447 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2448 if (todrop > 0) {
2449 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2450 if (todrop >= tlen) {
2451 /*
2452 * The segment actually starts after the window.
2453 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2454 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2455 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2456 */
2457 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2458 /*
2459 * If a new connection request is received
2460 * while in TIME_WAIT, drop the old connection
2461 * and start over if the sequence numbers
2462 * are above the previous ones.
2463 *
2464 * NOTE: We will checksum the packet again, and
2465 * so we need to put the header fields back into
2466 * network order!
2467 * XXX This kind of sucks, but we don't expect
2468 * XXX this to happen very often, so maybe it
2469 * XXX doesn't matter so much.
2470 */
2471 if (tiflags & TH_SYN &&
2472 tp->t_state == TCPS_TIME_WAIT &&
2473 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2474 tp = tcp_close(tp);
2475 tcp_fields_to_net(th);
2476 goto findpcb;
2477 }
2478 /*
2479 * If window is closed can only take segments at
2480 * window edge, and have to drop data and PUSH from
2481 * incoming segments. Continue processing, but
2482 * remember to ack. Otherwise, drop segment
2483 * and (if not RST) ack.
2484 */
2485 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2486 tp->t_flags |= TF_ACKNOW;
2487 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2488 } else
2489 goto dropafterack;
2490 } else
2491 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2492 m_adj(m, -todrop);
2493 tlen -= todrop;
2494 tiflags &= ~(TH_PUSH|TH_FIN);
2495 }
2496
2497 /*
2498 * If last ACK falls within this segment's sequence numbers,
2499 * record the timestamp.
2500 * NOTE:
2501 * 1) That the test incorporates suggestions from the latest
2502 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2503 * 2) That updating only on newer timestamps interferes with
2504 * our earlier PAWS tests, so this check should be solely
2505 * predicated on the sequence space of this segment.
2506 * 3) That we modify the segment boundary check to be
2507 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2508 * instead of RFC1323's
2509 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2510 * This modified check allows us to overcome RFC1323's
2511 * limitations as described in Stevens TCP/IP Illustrated
2512 * Vol. 2 p.869. In such cases, we can still calculate the
2513 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2514 */
2515 if (opti.ts_present &&
2516 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2517 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2518 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2519 tp->ts_recent_age = tcp_now;
2520 tp->ts_recent = opti.ts_val;
2521 }
2522
2523 /*
2524 * If the RST bit is set examine the state:
2525 * SYN_RECEIVED STATE:
2526 * If passive open, return to LISTEN state.
2527 * If active open, inform user that connection was refused.
2528 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2529 * Inform user that connection was reset, and close tcb.
2530 * CLOSING, LAST_ACK, TIME_WAIT STATES
2531 * Close the tcb.
2532 */
2533 if (tiflags & TH_RST) {
2534 if (th->th_seq != tp->rcv_nxt)
2535 goto dropafterack_ratelim;
2536
2537 switch (tp->t_state) {
2538 case TCPS_SYN_RECEIVED:
2539 so->so_error = ECONNREFUSED;
2540 goto close;
2541
2542 case TCPS_ESTABLISHED:
2543 case TCPS_FIN_WAIT_1:
2544 case TCPS_FIN_WAIT_2:
2545 case TCPS_CLOSE_WAIT:
2546 so->so_error = ECONNRESET;
2547 close:
2548 tp->t_state = TCPS_CLOSED;
2549 TCP_STATINC(TCP_STAT_DROPS);
2550 tp = tcp_close(tp);
2551 goto drop;
2552
2553 case TCPS_CLOSING:
2554 case TCPS_LAST_ACK:
2555 case TCPS_TIME_WAIT:
2556 tp = tcp_close(tp);
2557 goto drop;
2558 }
2559 }
2560
2561 /*
2562 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2563 * we must be in a synchronized state. RFC791 states (under RST
2564 * generation) that any unacceptable segment (an out-of-order SYN
2565 * qualifies) received in a synchronized state must elicit only an
2566 * empty acknowledgment segment ... and the connection remains in
2567 * the same state.
2568 */
2569 if (tiflags & TH_SYN) {
2570 if (tp->rcv_nxt == th->th_seq) {
2571 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2572 TH_ACK);
2573 if (tcp_saveti)
2574 m_freem(tcp_saveti);
2575 return;
2576 }
2577
2578 goto dropafterack_ratelim;
2579 }
2580
2581 /*
2582 * If the ACK bit is off we drop the segment and return.
2583 */
2584 if ((tiflags & TH_ACK) == 0) {
2585 if (tp->t_flags & TF_ACKNOW)
2586 goto dropafterack;
2587 else
2588 goto drop;
2589 }
2590
2591 /*
2592 * Ack processing.
2593 */
2594 switch (tp->t_state) {
2595
2596 /*
2597 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2598 * ESTABLISHED state and continue processing, otherwise
2599 * send an RST.
2600 */
2601 case TCPS_SYN_RECEIVED:
2602 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2603 SEQ_GT(th->th_ack, tp->snd_max))
2604 goto dropwithreset;
2605 TCP_STATINC(TCP_STAT_CONNECTS);
2606 soisconnected(so);
2607 tcp_established(tp);
2608 /* Do window scaling? */
2609 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2610 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2611 tp->snd_scale = tp->requested_s_scale;
2612 tp->rcv_scale = tp->request_r_scale;
2613 }
2614 TCP_REASS_LOCK(tp);
2615 (void) tcp_reass(tp, NULL, NULL, &tlen);
2616 tp->snd_wl1 = th->th_seq - 1;
2617 /* fall into ... */
2618
2619 /*
2620 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2621 * ACKs. If the ack is in the range
2622 * tp->snd_una < th->th_ack <= tp->snd_max
2623 * then advance tp->snd_una to th->th_ack and drop
2624 * data from the retransmission queue. If this ACK reflects
2625 * more up to date window information we update our window information.
2626 */
2627 case TCPS_ESTABLISHED:
2628 case TCPS_FIN_WAIT_1:
2629 case TCPS_FIN_WAIT_2:
2630 case TCPS_CLOSE_WAIT:
2631 case TCPS_CLOSING:
2632 case TCPS_LAST_ACK:
2633 case TCPS_TIME_WAIT:
2634
2635 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2636 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2637 TCP_STATINC(TCP_STAT_RCVDUPACK);
2638 /*
2639 * If we have outstanding data (other than
2640 * a window probe), this is a completely
2641 * duplicate ack (ie, window info didn't
2642 * change), the ack is the biggest we've
2643 * seen and we've seen exactly our rexmt
2644 * threshhold of them, assume a packet
2645 * has been dropped and retransmit it.
2646 * Kludge snd_nxt & the congestion
2647 * window so we send only this one
2648 * packet.
2649 */
2650 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2651 th->th_ack != tp->snd_una)
2652 tp->t_dupacks = 0;
2653 else if (tp->t_partialacks < 0 &&
2654 (++tp->t_dupacks == tcprexmtthresh ||
2655 TCP_FACK_FASTRECOV(tp))) {
2656 /*
2657 * Do the fast retransmit, and adjust
2658 * congestion control paramenters.
2659 */
2660 if (tp->t_congctl->fast_retransmit(tp, th)) {
2661 /* False fast retransmit */
2662 break;
2663 } else
2664 goto drop;
2665 } else if (tp->t_dupacks > tcprexmtthresh) {
2666 tp->snd_cwnd += tp->t_segsz;
2667 KERNEL_LOCK(1, NULL);
2668 (void) tcp_output(tp);
2669 KERNEL_UNLOCK_ONE(NULL);
2670 goto drop;
2671 }
2672 } else {
2673 /*
2674 * If the ack appears to be very old, only
2675 * allow data that is in-sequence. This
2676 * makes it somewhat more difficult to insert
2677 * forged data by guessing sequence numbers.
2678 * Sent an ack to try to update the send
2679 * sequence number on the other side.
2680 */
2681 if (tlen && th->th_seq != tp->rcv_nxt &&
2682 SEQ_LT(th->th_ack,
2683 tp->snd_una - tp->max_sndwnd))
2684 goto dropafterack;
2685 }
2686 break;
2687 }
2688 /*
2689 * If the congestion window was inflated to account
2690 * for the other side's cached packets, retract it.
2691 */
2692 tp->t_congctl->fast_retransmit_newack(tp, th);
2693
2694 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2695 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2696 goto dropafterack;
2697 }
2698 acked = th->th_ack - tp->snd_una;
2699 tcps = TCP_STAT_GETREF();
2700 tcps[TCP_STAT_RCVACKPACK]++;
2701 tcps[TCP_STAT_RCVACKBYTE] += acked;
2702 TCP_STAT_PUTREF();
2703
2704 /*
2705 * If we have a timestamp reply, update smoothed
2706 * round trip time. If no timestamp is present but
2707 * transmit timer is running and timed sequence
2708 * number was acked, update smoothed round trip time.
2709 * Since we now have an rtt measurement, cancel the
2710 * timer backoff (cf., Phil Karn's retransmit alg.).
2711 * Recompute the initial retransmit timer.
2712 */
2713 if (ts_rtt)
2714 tcp_xmit_timer(tp, ts_rtt - 1);
2715 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2716 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2717
2718 /*
2719 * If all outstanding data is acked, stop retransmit
2720 * timer and remember to restart (more output or persist).
2721 * If there is more data to be acked, restart retransmit
2722 * timer, using current (possibly backed-off) value.
2723 */
2724 if (th->th_ack == tp->snd_max) {
2725 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2726 needoutput = 1;
2727 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2728 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2729
2730 /*
2731 * New data has been acked, adjust the congestion window.
2732 */
2733 tp->t_congctl->newack(tp, th);
2734
2735 nd6_hint(tp);
2736 if (acked > so->so_snd.sb_cc) {
2737 tp->snd_wnd -= so->so_snd.sb_cc;
2738 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2739 ourfinisacked = 1;
2740 } else {
2741 if (acked > (tp->t_lastoff - tp->t_inoff))
2742 tp->t_lastm = NULL;
2743 sbdrop(&so->so_snd, acked);
2744 tp->t_lastoff -= acked;
2745 if (tp->snd_wnd > acked)
2746 tp->snd_wnd -= acked;
2747 else
2748 tp->snd_wnd = 0;
2749 ourfinisacked = 0;
2750 }
2751 sowwakeup(so);
2752
2753 icmp_check(tp, th, acked);
2754
2755 tp->snd_una = th->th_ack;
2756 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2757 tp->snd_fack = tp->snd_una;
2758 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2759 tp->snd_nxt = tp->snd_una;
2760 if (SEQ_LT(tp->snd_high, tp->snd_una))
2761 tp->snd_high = tp->snd_una;
2762
2763 switch (tp->t_state) {
2764
2765 /*
2766 * In FIN_WAIT_1 STATE in addition to the processing
2767 * for the ESTABLISHED state if our FIN is now acknowledged
2768 * then enter FIN_WAIT_2.
2769 */
2770 case TCPS_FIN_WAIT_1:
2771 if (ourfinisacked) {
2772 /*
2773 * If we can't receive any more
2774 * data, then closing user can proceed.
2775 * Starting the timer is contrary to the
2776 * specification, but if we don't get a FIN
2777 * we'll hang forever.
2778 */
2779 if (so->so_state & SS_CANTRCVMORE) {
2780 soisdisconnected(so);
2781 if (tp->t_maxidle > 0)
2782 TCP_TIMER_ARM(tp, TCPT_2MSL,
2783 tp->t_maxidle);
2784 }
2785 tp->t_state = TCPS_FIN_WAIT_2;
2786 }
2787 break;
2788
2789 /*
2790 * In CLOSING STATE in addition to the processing for
2791 * the ESTABLISHED state if the ACK acknowledges our FIN
2792 * then enter the TIME-WAIT state, otherwise ignore
2793 * the segment.
2794 */
2795 case TCPS_CLOSING:
2796 if (ourfinisacked) {
2797 tp->t_state = TCPS_TIME_WAIT;
2798 tcp_canceltimers(tp);
2799 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2800 soisdisconnected(so);
2801 }
2802 break;
2803
2804 /*
2805 * In LAST_ACK, we may still be waiting for data to drain
2806 * and/or to be acked, as well as for the ack of our FIN.
2807 * If our FIN is now acknowledged, delete the TCB,
2808 * enter the closed state and return.
2809 */
2810 case TCPS_LAST_ACK:
2811 if (ourfinisacked) {
2812 tp = tcp_close(tp);
2813 goto drop;
2814 }
2815 break;
2816
2817 /*
2818 * In TIME_WAIT state the only thing that should arrive
2819 * is a retransmission of the remote FIN. Acknowledge
2820 * it and restart the finack timer.
2821 */
2822 case TCPS_TIME_WAIT:
2823 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2824 goto dropafterack;
2825 }
2826 }
2827
2828 step6:
2829 /*
2830 * Update window information.
2831 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2832 */
2833 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2834 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2835 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2836 /* keep track of pure window updates */
2837 if (tlen == 0 &&
2838 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2839 TCP_STATINC(TCP_STAT_RCVWINUPD);
2840 tp->snd_wnd = tiwin;
2841 tp->snd_wl1 = th->th_seq;
2842 tp->snd_wl2 = th->th_ack;
2843 if (tp->snd_wnd > tp->max_sndwnd)
2844 tp->max_sndwnd = tp->snd_wnd;
2845 needoutput = 1;
2846 }
2847
2848 /*
2849 * Process segments with URG.
2850 */
2851 if ((tiflags & TH_URG) && th->th_urp &&
2852 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2853 /*
2854 * This is a kludge, but if we receive and accept
2855 * random urgent pointers, we'll crash in
2856 * soreceive. It's hard to imagine someone
2857 * actually wanting to send this much urgent data.
2858 */
2859 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2860 th->th_urp = 0; /* XXX */
2861 tiflags &= ~TH_URG; /* XXX */
2862 goto dodata; /* XXX */
2863 }
2864 /*
2865 * If this segment advances the known urgent pointer,
2866 * then mark the data stream. This should not happen
2867 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2868 * a FIN has been received from the remote side.
2869 * In these states we ignore the URG.
2870 *
2871 * According to RFC961 (Assigned Protocols),
2872 * the urgent pointer points to the last octet
2873 * of urgent data. We continue, however,
2874 * to consider it to indicate the first octet
2875 * of data past the urgent section as the original
2876 * spec states (in one of two places).
2877 */
2878 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2879 tp->rcv_up = th->th_seq + th->th_urp;
2880 so->so_oobmark = so->so_rcv.sb_cc +
2881 (tp->rcv_up - tp->rcv_nxt) - 1;
2882 if (so->so_oobmark == 0)
2883 so->so_state |= SS_RCVATMARK;
2884 sohasoutofband(so);
2885 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2886 }
2887 /*
2888 * Remove out of band data so doesn't get presented to user.
2889 * This can happen independent of advancing the URG pointer,
2890 * but if two URG's are pending at once, some out-of-band
2891 * data may creep in... ick.
2892 */
2893 if (th->th_urp <= (u_int16_t) tlen
2894 #ifdef SO_OOBINLINE
2895 && (so->so_options & SO_OOBINLINE) == 0
2896 #endif
2897 )
2898 tcp_pulloutofband(so, th, m, hdroptlen);
2899 } else
2900 /*
2901 * If no out of band data is expected,
2902 * pull receive urgent pointer along
2903 * with the receive window.
2904 */
2905 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2906 tp->rcv_up = tp->rcv_nxt;
2907 dodata: /* XXX */
2908
2909 /*
2910 * Process the segment text, merging it into the TCP sequencing queue,
2911 * and arranging for acknowledgement of receipt if necessary.
2912 * This process logically involves adjusting tp->rcv_wnd as data
2913 * is presented to the user (this happens in tcp_usrreq.c,
2914 * tcp_rcvd()). If a FIN has already been received on this
2915 * connection then we just ignore the text.
2916 */
2917 if ((tlen || (tiflags & TH_FIN)) &&
2918 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2919 /*
2920 * Insert segment ti into reassembly queue of tcp with
2921 * control block tp. Return TH_FIN if reassembly now includes
2922 * a segment with FIN. The macro form does the common case
2923 * inline (segment is the next to be received on an
2924 * established connection, and the queue is empty),
2925 * avoiding linkage into and removal from the queue and
2926 * repetition of various conversions.
2927 * Set DELACK for segments received in order, but ack
2928 * immediately when segments are out of order
2929 * (so fast retransmit can work).
2930 */
2931 /* NOTE: this was TCP_REASS() macro, but used only once */
2932 TCP_REASS_LOCK(tp);
2933 if (th->th_seq == tp->rcv_nxt &&
2934 TAILQ_FIRST(&tp->segq) == NULL &&
2935 tp->t_state == TCPS_ESTABLISHED) {
2936 tcp_setup_ack(tp, th);
2937 tp->rcv_nxt += tlen;
2938 tiflags = th->th_flags & TH_FIN;
2939 tcps = TCP_STAT_GETREF();
2940 tcps[TCP_STAT_RCVPACK]++;
2941 tcps[TCP_STAT_RCVBYTE] += tlen;
2942 TCP_STAT_PUTREF();
2943 nd6_hint(tp);
2944 if (so->so_state & SS_CANTRCVMORE)
2945 m_freem(m);
2946 else {
2947 m_adj(m, hdroptlen);
2948 sbappendstream(&(so)->so_rcv, m);
2949 }
2950 TCP_REASS_UNLOCK(tp);
2951 sorwakeup(so);
2952 } else {
2953 m_adj(m, hdroptlen);
2954 tiflags = tcp_reass(tp, th, m, &tlen);
2955 tp->t_flags |= TF_ACKNOW;
2956 }
2957
2958 /*
2959 * Note the amount of data that peer has sent into
2960 * our window, in order to estimate the sender's
2961 * buffer size.
2962 */
2963 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2964 } else {
2965 m_freem(m);
2966 m = NULL;
2967 tiflags &= ~TH_FIN;
2968 }
2969
2970 /*
2971 * If FIN is received ACK the FIN and let the user know
2972 * that the connection is closing. Ignore a FIN received before
2973 * the connection is fully established.
2974 */
2975 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2976 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2977 socantrcvmore(so);
2978 tp->t_flags |= TF_ACKNOW;
2979 tp->rcv_nxt++;
2980 }
2981 switch (tp->t_state) {
2982
2983 /*
2984 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2985 */
2986 case TCPS_ESTABLISHED:
2987 tp->t_state = TCPS_CLOSE_WAIT;
2988 break;
2989
2990 /*
2991 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2992 * enter the CLOSING state.
2993 */
2994 case TCPS_FIN_WAIT_1:
2995 tp->t_state = TCPS_CLOSING;
2996 break;
2997
2998 /*
2999 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3000 * starting the time-wait timer, turning off the other
3001 * standard timers.
3002 */
3003 case TCPS_FIN_WAIT_2:
3004 tp->t_state = TCPS_TIME_WAIT;
3005 tcp_canceltimers(tp);
3006 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3007 soisdisconnected(so);
3008 break;
3009
3010 /*
3011 * In TIME_WAIT state restart the 2 MSL time_wait timer.
3012 */
3013 case TCPS_TIME_WAIT:
3014 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3015 break;
3016 }
3017 }
3018 #ifdef TCP_DEBUG
3019 if (so->so_options & SO_DEBUG)
3020 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
3021 #endif
3022
3023 /*
3024 * Return any desired output.
3025 */
3026 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3027 KERNEL_LOCK(1, NULL);
3028 (void) tcp_output(tp);
3029 KERNEL_UNLOCK_ONE(NULL);
3030 }
3031 if (tcp_saveti)
3032 m_freem(tcp_saveti);
3033
3034 if (tp->t_state == TCPS_TIME_WAIT
3035 && (so->so_state & SS_NOFDREF)
3036 && (tp->t_inpcb || af != AF_INET)
3037 && (tp->t_in6pcb || af != AF_INET6)
3038 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3039 && TAILQ_EMPTY(&tp->segq)
3040 && vtw_add(af, tp)) {
3041 ;
3042 }
3043 return;
3044
3045 badsyn:
3046 /*
3047 * Received a bad SYN. Increment counters and dropwithreset.
3048 */
3049 TCP_STATINC(TCP_STAT_BADSYN);
3050 tp = NULL;
3051 goto dropwithreset;
3052
3053 dropafterack:
3054 /*
3055 * Generate an ACK dropping incoming segment if it occupies
3056 * sequence space, where the ACK reflects our state.
3057 */
3058 if (tiflags & TH_RST)
3059 goto drop;
3060 goto dropafterack2;
3061
3062 dropafterack_ratelim:
3063 /*
3064 * We may want to rate-limit ACKs against SYN/RST attack.
3065 */
3066 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3067 tcp_ackdrop_ppslim) == 0) {
3068 /* XXX stat */
3069 goto drop;
3070 }
3071 /* ...fall into dropafterack2... */
3072
3073 dropafterack2:
3074 m_freem(m);
3075 tp->t_flags |= TF_ACKNOW;
3076 KERNEL_LOCK(1, NULL);
3077 (void) tcp_output(tp);
3078 KERNEL_UNLOCK_ONE(NULL);
3079 if (tcp_saveti)
3080 m_freem(tcp_saveti);
3081 return;
3082
3083 dropwithreset_ratelim:
3084 /*
3085 * We may want to rate-limit RSTs in certain situations,
3086 * particularly if we are sending an RST in response to
3087 * an attempt to connect to or otherwise communicate with
3088 * a port for which we have no socket.
3089 */
3090 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3091 tcp_rst_ppslim) == 0) {
3092 /* XXX stat */
3093 goto drop;
3094 }
3095 /* ...fall into dropwithreset... */
3096
3097 dropwithreset:
3098 /*
3099 * Generate a RST, dropping incoming segment.
3100 * Make ACK acceptable to originator of segment.
3101 */
3102 if (tiflags & TH_RST)
3103 goto drop;
3104
3105 switch (af) {
3106 #ifdef INET6
3107 case AF_INET6:
3108 /* For following calls to tcp_respond */
3109 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3110 goto drop;
3111 break;
3112 #endif /* INET6 */
3113 case AF_INET:
3114 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3115 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
3116 goto drop;
3117 }
3118
3119 if (tiflags & TH_ACK)
3120 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3121 else {
3122 if (tiflags & TH_SYN)
3123 tlen++;
3124 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3125 TH_RST|TH_ACK);
3126 }
3127 if (tcp_saveti)
3128 m_freem(tcp_saveti);
3129 return;
3130
3131 badcsum:
3132 drop:
3133 /*
3134 * Drop space held by incoming segment and return.
3135 */
3136 if (tp) {
3137 if (tp->t_inpcb)
3138 so = tp->t_inpcb->inp_socket;
3139 #ifdef INET6
3140 else if (tp->t_in6pcb)
3141 so = tp->t_in6pcb->in6p_socket;
3142 #endif
3143 else
3144 so = NULL;
3145 #ifdef TCP_DEBUG
3146 if (so && (so->so_options & SO_DEBUG) != 0)
3147 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3148 #endif
3149 }
3150 if (tcp_saveti)
3151 m_freem(tcp_saveti);
3152 m_freem(m);
3153 return;
3154 }
3155
3156 #ifdef TCP_SIGNATURE
3157 int
3158 tcp_signature_apply(void *fstate, void *data, u_int len)
3159 {
3160
3161 MD5Update(fstate, (u_char *)data, len);
3162 return (0);
3163 }
3164
3165 struct secasvar *
3166 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3167 {
3168 struct ip *ip;
3169 struct ip6_hdr *ip6;
3170
3171 ip = mtod(m, struct ip *);
3172 switch (ip->ip_v) {
3173 case 4:
3174 ip = mtod(m, struct ip *);
3175 ip6 = NULL;
3176 break;
3177 case 6:
3178 ip = NULL;
3179 ip6 = mtod(m, struct ip6_hdr *);
3180 break;
3181 default:
3182 return (NULL);
3183 }
3184
3185 #ifdef IPSEC
3186 union sockaddr_union dst;
3187
3188 /* Extract the destination from the IP header in the mbuf. */
3189 memset(&dst, 0, sizeof(union sockaddr_union));
3190 if (ip != NULL) {
3191 dst.sa.sa_len = sizeof(struct sockaddr_in);
3192 dst.sa.sa_family = AF_INET;
3193 dst.sin.sin_addr = ip->ip_dst;
3194 } else {
3195 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3196 dst.sa.sa_family = AF_INET6;
3197 dst.sin6.sin6_addr = ip6->ip6_dst;
3198 }
3199
3200 /*
3201 * Look up an SADB entry which matches the address of the peer.
3202 */
3203 return KEY_ALLOCSA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3204 #else
3205 return NULL;
3206 #endif
3207 }
3208
3209 int
3210 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3211 struct secasvar *sav, char *sig)
3212 {
3213 MD5_CTX ctx;
3214 struct ip *ip;
3215 struct ipovly *ipovly;
3216 #ifdef INET6
3217 struct ip6_hdr *ip6;
3218 struct ip6_hdr_pseudo ip6pseudo;
3219 #endif /* INET6 */
3220 struct ippseudo ippseudo;
3221 struct tcphdr th0;
3222 int l, tcphdrlen;
3223
3224 if (sav == NULL)
3225 return (-1);
3226
3227 tcphdrlen = th->th_off * 4;
3228
3229 switch (mtod(m, struct ip *)->ip_v) {
3230 case 4:
3231 MD5Init(&ctx);
3232 ip = mtod(m, struct ip *);
3233 memset(&ippseudo, 0, sizeof(ippseudo));
3234 ipovly = (struct ipovly *)ip;
3235 ippseudo.ippseudo_src = ipovly->ih_src;
3236 ippseudo.ippseudo_dst = ipovly->ih_dst;
3237 ippseudo.ippseudo_pad = 0;
3238 ippseudo.ippseudo_p = IPPROTO_TCP;
3239 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3240 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3241 break;
3242 #if INET6
3243 case 6:
3244 MD5Init(&ctx);
3245 ip6 = mtod(m, struct ip6_hdr *);
3246 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3247 ip6pseudo.ip6ph_src = ip6->ip6_src;
3248 in6_clearscope(&ip6pseudo.ip6ph_src);
3249 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3250 in6_clearscope(&ip6pseudo.ip6ph_dst);
3251 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3252 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3253 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3254 break;
3255 #endif /* INET6 */
3256 default:
3257 return (-1);
3258 }
3259
3260 th0 = *th;
3261 th0.th_sum = 0;
3262 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3263
3264 l = m->m_pkthdr.len - thoff - tcphdrlen;
3265 if (l > 0)
3266 m_apply(m, thoff + tcphdrlen,
3267 m->m_pkthdr.len - thoff - tcphdrlen,
3268 tcp_signature_apply, &ctx);
3269
3270 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3271 MD5Final(sig, &ctx);
3272
3273 return (0);
3274 }
3275 #endif
3276
3277 /*
3278 * tcp_dooptions: parse and process tcp options.
3279 *
3280 * returns -1 if this segment should be dropped. (eg. wrong signature)
3281 * otherwise returns 0.
3282 */
3283
3284 static int
3285 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3286 struct tcphdr *th,
3287 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3288 {
3289 u_int16_t mss;
3290 int opt, optlen = 0;
3291 #ifdef TCP_SIGNATURE
3292 void *sigp = NULL;
3293 char sigbuf[TCP_SIGLEN];
3294 struct secasvar *sav = NULL;
3295 #endif
3296
3297 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3298 opt = cp[0];
3299 if (opt == TCPOPT_EOL)
3300 break;
3301 if (opt == TCPOPT_NOP)
3302 optlen = 1;
3303 else {
3304 if (cnt < 2)
3305 break;
3306 optlen = cp[1];
3307 if (optlen < 2 || optlen > cnt)
3308 break;
3309 }
3310 switch (opt) {
3311
3312 default:
3313 continue;
3314
3315 case TCPOPT_MAXSEG:
3316 if (optlen != TCPOLEN_MAXSEG)
3317 continue;
3318 if (!(th->th_flags & TH_SYN))
3319 continue;
3320 if (TCPS_HAVERCVDSYN(tp->t_state))
3321 continue;
3322 bcopy(cp + 2, &mss, sizeof(mss));
3323 oi->maxseg = ntohs(mss);
3324 break;
3325
3326 case TCPOPT_WINDOW:
3327 if (optlen != TCPOLEN_WINDOW)
3328 continue;
3329 if (!(th->th_flags & TH_SYN))
3330 continue;
3331 if (TCPS_HAVERCVDSYN(tp->t_state))
3332 continue;
3333 tp->t_flags |= TF_RCVD_SCALE;
3334 tp->requested_s_scale = cp[2];
3335 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3336 char buf[INET6_ADDRSTRLEN];
3337 struct ip *ip = mtod(m, struct ip *);
3338 #ifdef INET6
3339 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3340 #endif
3341 if (ip)
3342 in_print(buf, sizeof(buf),
3343 &ip->ip_src);
3344 #ifdef INET6
3345 else if (ip6)
3346 in6_print(buf, sizeof(buf),
3347 &ip6->ip6_src);
3348 #endif
3349 else
3350 strlcpy(buf, "(unknown)", sizeof(buf));
3351 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3352 "assuming %d\n",
3353 tp->requested_s_scale, buf,
3354 TCP_MAX_WINSHIFT);
3355 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3356 }
3357 break;
3358
3359 case TCPOPT_TIMESTAMP:
3360 if (optlen != TCPOLEN_TIMESTAMP)
3361 continue;
3362 oi->ts_present = 1;
3363 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3364 NTOHL(oi->ts_val);
3365 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3366 NTOHL(oi->ts_ecr);
3367
3368 if (!(th->th_flags & TH_SYN))
3369 continue;
3370 if (TCPS_HAVERCVDSYN(tp->t_state))
3371 continue;
3372 /*
3373 * A timestamp received in a SYN makes
3374 * it ok to send timestamp requests and replies.
3375 */
3376 tp->t_flags |= TF_RCVD_TSTMP;
3377 tp->ts_recent = oi->ts_val;
3378 tp->ts_recent_age = tcp_now;
3379 break;
3380
3381 case TCPOPT_SACK_PERMITTED:
3382 if (optlen != TCPOLEN_SACK_PERMITTED)
3383 continue;
3384 if (!(th->th_flags & TH_SYN))
3385 continue;
3386 if (TCPS_HAVERCVDSYN(tp->t_state))
3387 continue;
3388 if (tcp_do_sack) {
3389 tp->t_flags |= TF_SACK_PERMIT;
3390 tp->t_flags |= TF_WILL_SACK;
3391 }
3392 break;
3393
3394 case TCPOPT_SACK:
3395 tcp_sack_option(tp, th, cp, optlen);
3396 break;
3397 #ifdef TCP_SIGNATURE
3398 case TCPOPT_SIGNATURE:
3399 if (optlen != TCPOLEN_SIGNATURE)
3400 continue;
3401 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3402 return (-1);
3403
3404 sigp = sigbuf;
3405 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3406 tp->t_flags |= TF_SIGNATURE;
3407 break;
3408 #endif
3409 }
3410 }
3411
3412 #ifndef TCP_SIGNATURE
3413 return 0;
3414 #else
3415 if (tp->t_flags & TF_SIGNATURE) {
3416
3417 sav = tcp_signature_getsav(m, th);
3418
3419 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3420 return (-1);
3421 }
3422
3423 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3424 goto out;
3425
3426 if (sigp) {
3427 char sig[TCP_SIGLEN];
3428
3429 tcp_fields_to_net(th);
3430 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3431 tcp_fields_to_host(th);
3432 goto out;
3433 }
3434 tcp_fields_to_host(th);
3435
3436 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3437 TCP_STATINC(TCP_STAT_BADSIG);
3438 goto out;
3439 } else
3440 TCP_STATINC(TCP_STAT_GOODSIG);
3441
3442 key_sa_recordxfer(sav, m);
3443 KEY_FREESAV(&sav);
3444 }
3445 return 0;
3446 out:
3447 if (sav != NULL)
3448 KEY_FREESAV(&sav);
3449 return -1;
3450 #endif
3451 }
3452
3453 /*
3454 * Pull out of band byte out of a segment so
3455 * it doesn't appear in the user's data queue.
3456 * It is still reflected in the segment length for
3457 * sequencing purposes.
3458 */
3459 void
3460 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3461 struct mbuf *m, int off)
3462 {
3463 int cnt = off + th->th_urp - 1;
3464
3465 while (cnt >= 0) {
3466 if (m->m_len > cnt) {
3467 char *cp = mtod(m, char *) + cnt;
3468 struct tcpcb *tp = sototcpcb(so);
3469
3470 tp->t_iobc = *cp;
3471 tp->t_oobflags |= TCPOOB_HAVEDATA;
3472 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3473 m->m_len--;
3474 return;
3475 }
3476 cnt -= m->m_len;
3477 m = m->m_next;
3478 if (m == 0)
3479 break;
3480 }
3481 panic("tcp_pulloutofband");
3482 }
3483
3484 /*
3485 * Collect new round-trip time estimate
3486 * and update averages and current timeout.
3487 *
3488 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3489 * difference of two timestamps.
3490 */
3491 void
3492 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3493 {
3494 int32_t delta;
3495
3496 TCP_STATINC(TCP_STAT_RTTUPDATED);
3497 if (tp->t_srtt != 0) {
3498 /*
3499 * Compute the amount to add to srtt for smoothing,
3500 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3501 * srtt is stored in 1/32 slow ticks, we conceptually
3502 * shift left 5 bits, subtract srtt to get the
3503 * diference, and then shift right by TCP_RTT_SHIFT
3504 * (3) to obtain 1/8 of the difference.
3505 */
3506 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3507 /*
3508 * This can never happen, because delta's lowest
3509 * possible value is 1/8 of t_srtt. But if it does,
3510 * set srtt to some reasonable value, here chosen
3511 * as 1/8 tick.
3512 */
3513 if ((tp->t_srtt += delta) <= 0)
3514 tp->t_srtt = 1 << 2;
3515 /*
3516 * RFC2988 requires that rttvar be updated first.
3517 * This code is compliant because "delta" is the old
3518 * srtt minus the new observation (scaled).
3519 *
3520 * RFC2988 says:
3521 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3522 *
3523 * delta is in units of 1/32 ticks, and has then been
3524 * divided by 8. This is equivalent to being in 1/16s
3525 * units and divided by 4. Subtract from it 1/4 of
3526 * the existing rttvar to form the (signed) amount to
3527 * adjust.
3528 */
3529 if (delta < 0)
3530 delta = -delta;
3531 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3532 /*
3533 * As with srtt, this should never happen. There is
3534 * no support in RFC2988 for this operation. But 1/4s
3535 * as rttvar when faced with something arguably wrong
3536 * is ok.
3537 */
3538 if ((tp->t_rttvar += delta) <= 0)
3539 tp->t_rttvar = 1 << 2;
3540
3541 /*
3542 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3543 * Problem is: it doesn't work. Disabled by defaulting
3544 * tcp_rttlocal to 0; see corresponding code in
3545 * tcp_subr that selects local vs remote in a different way.
3546 *
3547 * The static branch prediction hint here should be removed
3548 * when the rtt estimator is fixed and the rtt_enable code
3549 * is turned back on.
3550 */
3551 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3552 && tp->t_srtt > tcp_msl_remote_threshold
3553 && tp->t_msl < tcp_msl_remote) {
3554 tp->t_msl = tcp_msl_remote;
3555 }
3556 } else {
3557 /*
3558 * This is the first measurement. Per RFC2988, 2.2,
3559 * set rtt=R and srtt=R/2.
3560 * For srtt, storage representation is 1/32 ticks,
3561 * so shift left by 5.
3562 * For rttvar, storage representation is 1/16 ticks,
3563 * So shift left by 4, but then right by 1 to halve.
3564 */
3565 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3566 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3567 }
3568 tp->t_rtttime = 0;
3569 tp->t_rxtshift = 0;
3570
3571 /*
3572 * the retransmit should happen at rtt + 4 * rttvar.
3573 * Because of the way we do the smoothing, srtt and rttvar
3574 * will each average +1/2 tick of bias. When we compute
3575 * the retransmit timer, we want 1/2 tick of rounding and
3576 * 1 extra tick because of +-1/2 tick uncertainty in the
3577 * firing of the timer. The bias will give us exactly the
3578 * 1.5 tick we need. But, because the bias is
3579 * statistical, we have to test that we don't drop below
3580 * the minimum feasible timer (which is 2 ticks).
3581 */
3582 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3583 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3584
3585 /*
3586 * We received an ack for a packet that wasn't retransmitted;
3587 * it is probably safe to discard any error indications we've
3588 * received recently. This isn't quite right, but close enough
3589 * for now (a route might have failed after we sent a segment,
3590 * and the return path might not be symmetrical).
3591 */
3592 tp->t_softerror = 0;
3593 }
3594
3595
3596 /*
3597 * TCP compressed state engine. Currently used to hold compressed
3598 * state for SYN_RECEIVED.
3599 */
3600
3601 u_long syn_cache_count;
3602 u_int32_t syn_hash1, syn_hash2;
3603
3604 #define SYN_HASH(sa, sp, dp) \
3605 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3606 ((u_int32_t)(sp)))^syn_hash2)))
3607 #ifndef INET6
3608 #define SYN_HASHALL(hash, src, dst) \
3609 do { \
3610 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3611 ((const struct sockaddr_in *)(src))->sin_port, \
3612 ((const struct sockaddr_in *)(dst))->sin_port); \
3613 } while (/*CONSTCOND*/ 0)
3614 #else
3615 #define SYN_HASH6(sa, sp, dp) \
3616 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3617 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3618 & 0x7fffffff)
3619
3620 #define SYN_HASHALL(hash, src, dst) \
3621 do { \
3622 switch ((src)->sa_family) { \
3623 case AF_INET: \
3624 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3625 ((const struct sockaddr_in *)(src))->sin_port, \
3626 ((const struct sockaddr_in *)(dst))->sin_port); \
3627 break; \
3628 case AF_INET6: \
3629 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3630 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3631 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3632 break; \
3633 default: \
3634 hash = 0; \
3635 } \
3636 } while (/*CONSTCOND*/0)
3637 #endif /* INET6 */
3638
3639 static struct pool syn_cache_pool;
3640
3641 /*
3642 * We don't estimate RTT with SYNs, so each packet starts with the default
3643 * RTT and each timer step has a fixed timeout value.
3644 */
3645 #define SYN_CACHE_TIMER_ARM(sc) \
3646 do { \
3647 TCPT_RANGESET((sc)->sc_rxtcur, \
3648 TCPTV_SRTTDFLT * tcp_backoff[(sc)->sc_rxtshift], TCPTV_MIN, \
3649 TCPTV_REXMTMAX); \
3650 callout_reset(&(sc)->sc_timer, \
3651 (sc)->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, (sc)); \
3652 } while (/*CONSTCOND*/0)
3653
3654 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3655
3656 static inline void
3657 syn_cache_rm(struct syn_cache *sc)
3658 {
3659 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3660 sc, sc_bucketq);
3661 sc->sc_tp = NULL;
3662 LIST_REMOVE(sc, sc_tpq);
3663 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3664 callout_stop(&sc->sc_timer);
3665 syn_cache_count--;
3666 }
3667
3668 static inline void
3669 syn_cache_put(struct syn_cache *sc)
3670 {
3671 if (sc->sc_ipopts)
3672 (void) m_free(sc->sc_ipopts);
3673 rtcache_free(&sc->sc_route);
3674 sc->sc_flags |= SCF_DEAD;
3675 if (!callout_invoking(&sc->sc_timer))
3676 callout_schedule(&(sc)->sc_timer, 1);
3677 }
3678
3679 void
3680 syn_cache_init(void)
3681 {
3682 int i;
3683
3684 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3685 "synpl", NULL, IPL_SOFTNET);
3686
3687 /* Initialize the hash buckets. */
3688 for (i = 0; i < tcp_syn_cache_size; i++)
3689 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3690 }
3691
3692 void
3693 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3694 {
3695 struct syn_cache_head *scp;
3696 struct syn_cache *sc2;
3697 int s;
3698
3699 /*
3700 * If there are no entries in the hash table, reinitialize
3701 * the hash secrets.
3702 */
3703 if (syn_cache_count == 0) {
3704 syn_hash1 = cprng_fast32();
3705 syn_hash2 = cprng_fast32();
3706 }
3707
3708 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3709 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3710 scp = &tcp_syn_cache[sc->sc_bucketidx];
3711
3712 /*
3713 * Make sure that we don't overflow the per-bucket
3714 * limit or the total cache size limit.
3715 */
3716 s = splsoftnet();
3717 if (scp->sch_length >= tcp_syn_bucket_limit) {
3718 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3719 /*
3720 * The bucket is full. Toss the oldest element in the
3721 * bucket. This will be the first entry in the bucket.
3722 */
3723 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3724 #ifdef DIAGNOSTIC
3725 /*
3726 * This should never happen; we should always find an
3727 * entry in our bucket.
3728 */
3729 if (sc2 == NULL)
3730 panic("syn_cache_insert: bucketoverflow: impossible");
3731 #endif
3732 syn_cache_rm(sc2);
3733 syn_cache_put(sc2); /* calls pool_put but see spl above */
3734 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3735 struct syn_cache_head *scp2, *sce;
3736
3737 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3738 /*
3739 * The cache is full. Toss the oldest entry in the
3740 * first non-empty bucket we can find.
3741 *
3742 * XXX We would really like to toss the oldest
3743 * entry in the cache, but we hope that this
3744 * condition doesn't happen very often.
3745 */
3746 scp2 = scp;
3747 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3748 sce = &tcp_syn_cache[tcp_syn_cache_size];
3749 for (++scp2; scp2 != scp; scp2++) {
3750 if (scp2 >= sce)
3751 scp2 = &tcp_syn_cache[0];
3752 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3753 break;
3754 }
3755 #ifdef DIAGNOSTIC
3756 /*
3757 * This should never happen; we should always find a
3758 * non-empty bucket.
3759 */
3760 if (scp2 == scp)
3761 panic("syn_cache_insert: cacheoverflow: "
3762 "impossible");
3763 #endif
3764 }
3765 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3766 syn_cache_rm(sc2);
3767 syn_cache_put(sc2); /* calls pool_put but see spl above */
3768 }
3769
3770 /*
3771 * Initialize the entry's timer.
3772 */
3773 sc->sc_rxttot = 0;
3774 sc->sc_rxtshift = 0;
3775 SYN_CACHE_TIMER_ARM(sc);
3776
3777 /* Link it from tcpcb entry */
3778 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3779
3780 /* Put it into the bucket. */
3781 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3782 scp->sch_length++;
3783 syn_cache_count++;
3784
3785 TCP_STATINC(TCP_STAT_SC_ADDED);
3786 splx(s);
3787 }
3788
3789 /*
3790 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3791 * If we have retransmitted an entry the maximum number of times, expire
3792 * that entry.
3793 */
3794 void
3795 syn_cache_timer(void *arg)
3796 {
3797 struct syn_cache *sc = arg;
3798
3799 mutex_enter(softnet_lock);
3800 KERNEL_LOCK(1, NULL);
3801 callout_ack(&sc->sc_timer);
3802
3803 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3804 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3805 callout_destroy(&sc->sc_timer);
3806 pool_put(&syn_cache_pool, sc);
3807 KERNEL_UNLOCK_ONE(NULL);
3808 mutex_exit(softnet_lock);
3809 return;
3810 }
3811
3812 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3813 /* Drop it -- too many retransmissions. */
3814 goto dropit;
3815 }
3816
3817 /*
3818 * Compute the total amount of time this entry has
3819 * been on a queue. If this entry has been on longer
3820 * than the keep alive timer would allow, expire it.
3821 */
3822 sc->sc_rxttot += sc->sc_rxtcur;
3823 if (sc->sc_rxttot >= tcp_keepinit)
3824 goto dropit;
3825
3826 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3827 (void) syn_cache_respond(sc, NULL);
3828
3829 /* Advance the timer back-off. */
3830 sc->sc_rxtshift++;
3831 SYN_CACHE_TIMER_ARM(sc);
3832
3833 KERNEL_UNLOCK_ONE(NULL);
3834 mutex_exit(softnet_lock);
3835 return;
3836
3837 dropit:
3838 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3839 syn_cache_rm(sc);
3840 if (sc->sc_ipopts)
3841 (void) m_free(sc->sc_ipopts);
3842 rtcache_free(&sc->sc_route);
3843 callout_destroy(&sc->sc_timer);
3844 pool_put(&syn_cache_pool, sc);
3845 KERNEL_UNLOCK_ONE(NULL);
3846 mutex_exit(softnet_lock);
3847 }
3848
3849 /*
3850 * Remove syn cache created by the specified tcb entry,
3851 * because this does not make sense to keep them
3852 * (if there's no tcb entry, syn cache entry will never be used)
3853 */
3854 void
3855 syn_cache_cleanup(struct tcpcb *tp)
3856 {
3857 struct syn_cache *sc, *nsc;
3858 int s;
3859
3860 s = splsoftnet();
3861
3862 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3863 nsc = LIST_NEXT(sc, sc_tpq);
3864
3865 #ifdef DIAGNOSTIC
3866 if (sc->sc_tp != tp)
3867 panic("invalid sc_tp in syn_cache_cleanup");
3868 #endif
3869 syn_cache_rm(sc);
3870 syn_cache_put(sc); /* calls pool_put but see spl above */
3871 }
3872 /* just for safety */
3873 LIST_INIT(&tp->t_sc);
3874
3875 splx(s);
3876 }
3877
3878 /*
3879 * Find an entry in the syn cache.
3880 */
3881 struct syn_cache *
3882 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3883 struct syn_cache_head **headp)
3884 {
3885 struct syn_cache *sc;
3886 struct syn_cache_head *scp;
3887 u_int32_t hash;
3888 int s;
3889
3890 SYN_HASHALL(hash, src, dst);
3891
3892 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3893 *headp = scp;
3894 s = splsoftnet();
3895 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3896 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3897 if (sc->sc_hash != hash)
3898 continue;
3899 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3900 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3901 splx(s);
3902 return (sc);
3903 }
3904 }
3905 splx(s);
3906 return (NULL);
3907 }
3908
3909 /*
3910 * This function gets called when we receive an ACK for a
3911 * socket in the LISTEN state. We look up the connection
3912 * in the syn cache, and if its there, we pull it out of
3913 * the cache and turn it into a full-blown connection in
3914 * the SYN-RECEIVED state.
3915 *
3916 * The return values may not be immediately obvious, and their effects
3917 * can be subtle, so here they are:
3918 *
3919 * NULL SYN was not found in cache; caller should drop the
3920 * packet and send an RST.
3921 *
3922 * -1 We were unable to create the new connection, and are
3923 * aborting it. An ACK,RST is being sent to the peer
3924 * (unless we got screwey sequence numbners; see below),
3925 * because the 3-way handshake has been completed. Caller
3926 * should not free the mbuf, since we may be using it. If
3927 * we are not, we will free it.
3928 *
3929 * Otherwise, the return value is a pointer to the new socket
3930 * associated with the connection.
3931 */
3932 struct socket *
3933 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3934 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3935 struct socket *so, struct mbuf *m)
3936 {
3937 struct syn_cache *sc;
3938 struct syn_cache_head *scp;
3939 struct inpcb *inp = NULL;
3940 #ifdef INET6
3941 struct in6pcb *in6p = NULL;
3942 #endif
3943 struct tcpcb *tp = 0;
3944 int s;
3945 struct socket *oso;
3946
3947 s = splsoftnet();
3948 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3949 splx(s);
3950 return (NULL);
3951 }
3952
3953 /*
3954 * Verify the sequence and ack numbers. Try getting the correct
3955 * response again.
3956 */
3957 if ((th->th_ack != sc->sc_iss + 1) ||
3958 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3959 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3960 (void) syn_cache_respond(sc, m);
3961 splx(s);
3962 return ((struct socket *)(-1));
3963 }
3964
3965 /* Remove this cache entry */
3966 syn_cache_rm(sc);
3967 splx(s);
3968
3969 /*
3970 * Ok, create the full blown connection, and set things up
3971 * as they would have been set up if we had created the
3972 * connection when the SYN arrived. If we can't create
3973 * the connection, abort it.
3974 */
3975 /*
3976 * inp still has the OLD in_pcb stuff, set the
3977 * v6-related flags on the new guy, too. This is
3978 * done particularly for the case where an AF_INET6
3979 * socket is bound only to a port, and a v4 connection
3980 * comes in on that port.
3981 * we also copy the flowinfo from the original pcb
3982 * to the new one.
3983 */
3984 oso = so;
3985 so = sonewconn(so, true);
3986 if (so == NULL)
3987 goto resetandabort;
3988
3989 switch (so->so_proto->pr_domain->dom_family) {
3990 #ifdef INET
3991 case AF_INET:
3992 inp = sotoinpcb(so);
3993 break;
3994 #endif
3995 #ifdef INET6
3996 case AF_INET6:
3997 in6p = sotoin6pcb(so);
3998 break;
3999 #endif
4000 }
4001 switch (src->sa_family) {
4002 #ifdef INET
4003 case AF_INET:
4004 if (inp) {
4005 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
4006 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
4007 inp->inp_options = ip_srcroute(m);
4008 in_pcbstate(inp, INP_BOUND);
4009 if (inp->inp_options == NULL) {
4010 inp->inp_options = sc->sc_ipopts;
4011 sc->sc_ipopts = NULL;
4012 }
4013 }
4014 #ifdef INET6
4015 else if (in6p) {
4016 /* IPv4 packet to AF_INET6 socket */
4017 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4018 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4019 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4020 &in6p->in6p_laddr.s6_addr32[3],
4021 sizeof(((struct sockaddr_in *)dst)->sin_addr));
4022 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4023 in6totcpcb(in6p)->t_family = AF_INET;
4024 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4025 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4026 else
4027 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4028 in6_pcbstate(in6p, IN6P_BOUND);
4029 }
4030 #endif
4031 break;
4032 #endif
4033 #ifdef INET6
4034 case AF_INET6:
4035 if (in6p) {
4036 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4037 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4038 in6_pcbstate(in6p, IN6P_BOUND);
4039 }
4040 break;
4041 #endif
4042 }
4043 #ifdef INET6
4044 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4045 struct in6pcb *oin6p = sotoin6pcb(oso);
4046 /* inherit socket options from the listening socket */
4047 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4048 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4049 m_freem(in6p->in6p_options);
4050 in6p->in6p_options = 0;
4051 }
4052 ip6_savecontrol(in6p, &in6p->in6p_options,
4053 mtod(m, struct ip6_hdr *), m);
4054 }
4055 #endif
4056
4057 #if defined(IPSEC)
4058 if (ipsec_used) {
4059 /*
4060 * we make a copy of policy, instead of sharing the policy, for
4061 * better behavior in terms of SA lookup and dead SA removal.
4062 */
4063 if (inp) {
4064 /* copy old policy into new socket's */
4065 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4066 inp->inp_sp))
4067 printf("tcp_input: could not copy policy\n");
4068 }
4069 #ifdef INET6
4070 else if (in6p) {
4071 /* copy old policy into new socket's */
4072 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4073 in6p->in6p_sp))
4074 printf("tcp_input: could not copy policy\n");
4075 }
4076 #endif
4077 }
4078 #endif
4079
4080 /*
4081 * Give the new socket our cached route reference.
4082 */
4083 if (inp) {
4084 rtcache_copy(&inp->inp_route, &sc->sc_route);
4085 rtcache_free(&sc->sc_route);
4086 }
4087 #ifdef INET6
4088 else {
4089 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4090 rtcache_free(&sc->sc_route);
4091 }
4092 #endif
4093
4094 if (inp) {
4095 struct sockaddr_in sin;
4096 memcpy(&sin, src, src->sa_len);
4097 if (in_pcbconnect(inp, &sin, &lwp0)) {
4098 goto resetandabort;
4099 }
4100 }
4101 #ifdef INET6
4102 else if (in6p) {
4103 struct sockaddr_in6 sin6;
4104 memcpy(&sin6, src, src->sa_len);
4105 if (src->sa_family == AF_INET) {
4106 /* IPv4 packet to AF_INET6 socket */
4107 in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
4108 }
4109 if (in6_pcbconnect(in6p, &sin6, NULL)) {
4110 goto resetandabort;
4111 }
4112 }
4113 #endif
4114 else {
4115 goto resetandabort;
4116 }
4117
4118 if (inp)
4119 tp = intotcpcb(inp);
4120 #ifdef INET6
4121 else if (in6p)
4122 tp = in6totcpcb(in6p);
4123 #endif
4124 else
4125 tp = NULL;
4126 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4127 if (sc->sc_request_r_scale != 15) {
4128 tp->requested_s_scale = sc->sc_requested_s_scale;
4129 tp->request_r_scale = sc->sc_request_r_scale;
4130 tp->snd_scale = sc->sc_requested_s_scale;
4131 tp->rcv_scale = sc->sc_request_r_scale;
4132 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4133 }
4134 if (sc->sc_flags & SCF_TIMESTAMP)
4135 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4136 tp->ts_timebase = sc->sc_timebase;
4137
4138 tp->t_template = tcp_template(tp);
4139 if (tp->t_template == 0) {
4140 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
4141 so = NULL;
4142 m_freem(m);
4143 goto abort;
4144 }
4145
4146 tp->iss = sc->sc_iss;
4147 tp->irs = sc->sc_irs;
4148 tcp_sendseqinit(tp);
4149 tcp_rcvseqinit(tp);
4150 tp->t_state = TCPS_SYN_RECEIVED;
4151 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4152 TCP_STATINC(TCP_STAT_ACCEPTS);
4153
4154 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4155 tp->t_flags |= TF_WILL_SACK;
4156
4157 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4158 tp->t_flags |= TF_ECN_PERMIT;
4159
4160 #ifdef TCP_SIGNATURE
4161 if (sc->sc_flags & SCF_SIGNATURE)
4162 tp->t_flags |= TF_SIGNATURE;
4163 #endif
4164
4165 /* Initialize tp->t_ourmss before we deal with the peer's! */
4166 tp->t_ourmss = sc->sc_ourmaxseg;
4167 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4168
4169 /*
4170 * Initialize the initial congestion window. If we
4171 * had to retransmit the SYN,ACK, we must initialize cwnd
4172 * to 1 segment (i.e. the Loss Window).
4173 */
4174 if (sc->sc_rxtshift)
4175 tp->snd_cwnd = tp->t_peermss;
4176 else {
4177 int ss = tcp_init_win;
4178 #ifdef INET
4179 if (inp != NULL && in_localaddr(inp->inp_faddr))
4180 ss = tcp_init_win_local;
4181 #endif
4182 #ifdef INET6
4183 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4184 ss = tcp_init_win_local;
4185 #endif
4186 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4187 }
4188
4189 tcp_rmx_rtt(tp);
4190 tp->snd_wl1 = sc->sc_irs;
4191 tp->rcv_up = sc->sc_irs + 1;
4192
4193 /*
4194 * This is what whould have happened in tcp_output() when
4195 * the SYN,ACK was sent.
4196 */
4197 tp->snd_up = tp->snd_una;
4198 tp->snd_max = tp->snd_nxt = tp->iss+1;
4199 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4200 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4201 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4202 tp->last_ack_sent = tp->rcv_nxt;
4203 tp->t_partialacks = -1;
4204 tp->t_dupacks = 0;
4205
4206 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4207 s = splsoftnet();
4208 syn_cache_put(sc);
4209 splx(s);
4210 return (so);
4211
4212 resetandabort:
4213 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4214 abort:
4215 if (so != NULL) {
4216 (void) soqremque(so, 1);
4217 (void) soabort(so);
4218 mutex_enter(softnet_lock);
4219 }
4220 s = splsoftnet();
4221 syn_cache_put(sc);
4222 splx(s);
4223 TCP_STATINC(TCP_STAT_SC_ABORTED);
4224 return ((struct socket *)(-1));
4225 }
4226
4227 /*
4228 * This function is called when we get a RST for a
4229 * non-existent connection, so that we can see if the
4230 * connection is in the syn cache. If it is, zap it.
4231 */
4232
4233 void
4234 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4235 {
4236 struct syn_cache *sc;
4237 struct syn_cache_head *scp;
4238 int s = splsoftnet();
4239
4240 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4241 splx(s);
4242 return;
4243 }
4244 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4245 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4246 splx(s);
4247 return;
4248 }
4249 syn_cache_rm(sc);
4250 TCP_STATINC(TCP_STAT_SC_RESET);
4251 syn_cache_put(sc); /* calls pool_put but see spl above */
4252 splx(s);
4253 }
4254
4255 void
4256 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4257 struct tcphdr *th)
4258 {
4259 struct syn_cache *sc;
4260 struct syn_cache_head *scp;
4261 int s;
4262
4263 s = splsoftnet();
4264 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4265 splx(s);
4266 return;
4267 }
4268 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4269 if (ntohl (th->th_seq) != sc->sc_iss) {
4270 splx(s);
4271 return;
4272 }
4273
4274 /*
4275 * If we've retransmitted 3 times and this is our second error,
4276 * we remove the entry. Otherwise, we allow it to continue on.
4277 * This prevents us from incorrectly nuking an entry during a
4278 * spurious network outage.
4279 *
4280 * See tcp_notify().
4281 */
4282 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4283 sc->sc_flags |= SCF_UNREACH;
4284 splx(s);
4285 return;
4286 }
4287
4288 syn_cache_rm(sc);
4289 TCP_STATINC(TCP_STAT_SC_UNREACH);
4290 syn_cache_put(sc); /* calls pool_put but see spl above */
4291 splx(s);
4292 }
4293
4294 /*
4295 * Given a LISTEN socket and an inbound SYN request, add
4296 * this to the syn cache, and send back a segment:
4297 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4298 * to the source.
4299 *
4300 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4301 * Doing so would require that we hold onto the data and deliver it
4302 * to the application. However, if we are the target of a SYN-flood
4303 * DoS attack, an attacker could send data which would eventually
4304 * consume all available buffer space if it were ACKed. By not ACKing
4305 * the data, we avoid this DoS scenario.
4306 */
4307
4308 int
4309 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4310 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4311 int optlen, struct tcp_opt_info *oi)
4312 {
4313 struct tcpcb tb, *tp;
4314 long win;
4315 struct syn_cache *sc;
4316 struct syn_cache_head *scp;
4317 struct mbuf *ipopts;
4318 struct tcp_opt_info opti;
4319 int s;
4320
4321 tp = sototcpcb(so);
4322
4323 memset(&opti, 0, sizeof(opti));
4324
4325 /*
4326 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4327 *
4328 * Note this check is performed in tcp_input() very early on.
4329 */
4330
4331 /*
4332 * Initialize some local state.
4333 */
4334 win = sbspace(&so->so_rcv);
4335 if (win > TCP_MAXWIN)
4336 win = TCP_MAXWIN;
4337
4338 switch (src->sa_family) {
4339 #ifdef INET
4340 case AF_INET:
4341 /*
4342 * Remember the IP options, if any.
4343 */
4344 ipopts = ip_srcroute(m);
4345 break;
4346 #endif
4347 default:
4348 ipopts = NULL;
4349 }
4350
4351 #ifdef TCP_SIGNATURE
4352 if (optp || (tp->t_flags & TF_SIGNATURE))
4353 #else
4354 if (optp)
4355 #endif
4356 {
4357 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4358 #ifdef TCP_SIGNATURE
4359 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4360 #endif
4361 tb.t_state = TCPS_LISTEN;
4362 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4363 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4364 return (0);
4365 } else
4366 tb.t_flags = 0;
4367
4368 /*
4369 * See if we already have an entry for this connection.
4370 * If we do, resend the SYN,ACK. We do not count this
4371 * as a retransmission (XXX though maybe we should).
4372 */
4373 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4374 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4375 if (ipopts) {
4376 /*
4377 * If we were remembering a previous source route,
4378 * forget it and use the new one we've been given.
4379 */
4380 if (sc->sc_ipopts)
4381 (void) m_free(sc->sc_ipopts);
4382 sc->sc_ipopts = ipopts;
4383 }
4384 sc->sc_timestamp = tb.ts_recent;
4385 if (syn_cache_respond(sc, m) == 0) {
4386 uint64_t *tcps = TCP_STAT_GETREF();
4387 tcps[TCP_STAT_SNDACKS]++;
4388 tcps[TCP_STAT_SNDTOTAL]++;
4389 TCP_STAT_PUTREF();
4390 }
4391 return (1);
4392 }
4393
4394 s = splsoftnet();
4395 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4396 splx(s);
4397 if (sc == NULL) {
4398 if (ipopts)
4399 (void) m_free(ipopts);
4400 return (0);
4401 }
4402
4403 /*
4404 * Fill in the cache, and put the necessary IP and TCP
4405 * options into the reply.
4406 */
4407 memset(sc, 0, sizeof(struct syn_cache));
4408 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4409 bcopy(src, &sc->sc_src, src->sa_len);
4410 bcopy(dst, &sc->sc_dst, dst->sa_len);
4411 sc->sc_flags = 0;
4412 sc->sc_ipopts = ipopts;
4413 sc->sc_irs = th->th_seq;
4414 switch (src->sa_family) {
4415 #ifdef INET
4416 case AF_INET:
4417 {
4418 struct sockaddr_in *srcin = (void *) src;
4419 struct sockaddr_in *dstin = (void *) dst;
4420
4421 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4422 &srcin->sin_addr, dstin->sin_port,
4423 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4424 break;
4425 }
4426 #endif /* INET */
4427 #ifdef INET6
4428 case AF_INET6:
4429 {
4430 struct sockaddr_in6 *srcin6 = (void *) src;
4431 struct sockaddr_in6 *dstin6 = (void *) dst;
4432
4433 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4434 &srcin6->sin6_addr, dstin6->sin6_port,
4435 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4436 break;
4437 }
4438 #endif /* INET6 */
4439 }
4440 sc->sc_peermaxseg = oi->maxseg;
4441 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4442 m_get_rcvif_NOMPSAFE(m) : NULL,
4443 sc->sc_src.sa.sa_family);
4444 sc->sc_win = win;
4445 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4446 sc->sc_timestamp = tb.ts_recent;
4447 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4448 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4449 sc->sc_flags |= SCF_TIMESTAMP;
4450 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4451 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4452 sc->sc_requested_s_scale = tb.requested_s_scale;
4453 sc->sc_request_r_scale = 0;
4454 /*
4455 * Pick the smallest possible scaling factor that
4456 * will still allow us to scale up to sb_max.
4457 *
4458 * We do this because there are broken firewalls that
4459 * will corrupt the window scale option, leading to
4460 * the other endpoint believing that our advertised
4461 * window is unscaled. At scale factors larger than
4462 * 5 the unscaled window will drop below 1500 bytes,
4463 * leading to serious problems when traversing these
4464 * broken firewalls.
4465 *
4466 * With the default sbmax of 256K, a scale factor
4467 * of 3 will be chosen by this algorithm. Those who
4468 * choose a larger sbmax should watch out
4469 * for the compatiblity problems mentioned above.
4470 *
4471 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4472 * or <SYN,ACK>) segment itself is never scaled.
4473 */
4474 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4475 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4476 sc->sc_request_r_scale++;
4477 } else {
4478 sc->sc_requested_s_scale = 15;
4479 sc->sc_request_r_scale = 15;
4480 }
4481 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4482 sc->sc_flags |= SCF_SACK_PERMIT;
4483
4484 /*
4485 * ECN setup packet recieved.
4486 */
4487 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4488 sc->sc_flags |= SCF_ECN_PERMIT;
4489
4490 #ifdef TCP_SIGNATURE
4491 if (tb.t_flags & TF_SIGNATURE)
4492 sc->sc_flags |= SCF_SIGNATURE;
4493 #endif
4494 sc->sc_tp = tp;
4495 if (syn_cache_respond(sc, m) == 0) {
4496 uint64_t *tcps = TCP_STAT_GETREF();
4497 tcps[TCP_STAT_SNDACKS]++;
4498 tcps[TCP_STAT_SNDTOTAL]++;
4499 TCP_STAT_PUTREF();
4500 syn_cache_insert(sc, tp);
4501 } else {
4502 s = splsoftnet();
4503 /*
4504 * syn_cache_put() will try to schedule the timer, so
4505 * we need to initialize it
4506 */
4507 SYN_CACHE_TIMER_ARM(sc);
4508 syn_cache_put(sc);
4509 splx(s);
4510 TCP_STATINC(TCP_STAT_SC_DROPPED);
4511 }
4512 return (1);
4513 }
4514
4515 /*
4516 * syn_cache_respond: (re)send SYN+ACK.
4517 *
4518 * returns 0 on success. otherwise returns an errno, typically ENOBUFS.
4519 */
4520
4521 int
4522 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4523 {
4524 #ifdef INET6
4525 struct rtentry *rt = NULL;
4526 #endif
4527 struct route *ro;
4528 u_int8_t *optp;
4529 int optlen, error;
4530 u_int16_t tlen;
4531 struct ip *ip = NULL;
4532 #ifdef INET6
4533 struct ip6_hdr *ip6 = NULL;
4534 #endif
4535 struct tcpcb *tp = NULL;
4536 struct tcphdr *th;
4537 u_int hlen;
4538 #ifdef TCP_SIGNATURE
4539 struct secasvar *sav = NULL;
4540 u_int8_t *sigp = NULL;
4541 #endif
4542
4543 ro = &sc->sc_route;
4544 switch (sc->sc_src.sa.sa_family) {
4545 case AF_INET:
4546 hlen = sizeof(struct ip);
4547 break;
4548 #ifdef INET6
4549 case AF_INET6:
4550 hlen = sizeof(struct ip6_hdr);
4551 break;
4552 #endif
4553 default:
4554 if (m)
4555 m_freem(m);
4556 return (EAFNOSUPPORT);
4557 }
4558
4559 /* worst case scanario, since we don't know the option size yet */
4560 tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4561
4562 /*
4563 * Create the IP+TCP header from scratch.
4564 */
4565 if (m)
4566 m_freem(m);
4567 #ifdef DIAGNOSTIC
4568 if (max_linkhdr + tlen > MCLBYTES)
4569 return ENOBUFS;
4570 #endif
4571
4572 MGETHDR(m, M_DONTWAIT, MT_DATA);
4573 if (m && (max_linkhdr + tlen) > MHLEN) {
4574 MCLGET(m, M_DONTWAIT);
4575 if ((m->m_flags & M_EXT) == 0) {
4576 m_freem(m);
4577 m = NULL;
4578 }
4579 }
4580 if (m == NULL)
4581 return ENOBUFS;
4582 MCLAIM(m, &tcp_tx_mowner);
4583
4584 /* Fixup the mbuf. */
4585 m->m_data += max_linkhdr;
4586 if (sc->sc_tp)
4587 tp = sc->sc_tp;
4588 m_reset_rcvif(m);
4589 memset(mtod(m, u_char *), 0, tlen);
4590
4591 switch (sc->sc_src.sa.sa_family) {
4592 case AF_INET:
4593 ip = mtod(m, struct ip *);
4594 ip->ip_v = 4;
4595 ip->ip_dst = sc->sc_src.sin.sin_addr;
4596 ip->ip_src = sc->sc_dst.sin.sin_addr;
4597 ip->ip_p = IPPROTO_TCP;
4598 th = (struct tcphdr *)(ip + 1);
4599 th->th_dport = sc->sc_src.sin.sin_port;
4600 th->th_sport = sc->sc_dst.sin.sin_port;
4601 break;
4602 #ifdef INET6
4603 case AF_INET6:
4604 ip6 = mtod(m, struct ip6_hdr *);
4605 ip6->ip6_vfc = IPV6_VERSION;
4606 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4607 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4608 ip6->ip6_nxt = IPPROTO_TCP;
4609 /* ip6_plen will be updated in ip6_output() */
4610 th = (struct tcphdr *)(ip6 + 1);
4611 th->th_dport = sc->sc_src.sin6.sin6_port;
4612 th->th_sport = sc->sc_dst.sin6.sin6_port;
4613 break;
4614 #endif
4615 default:
4616 return ENOBUFS;
4617 }
4618
4619 th->th_seq = htonl(sc->sc_iss);
4620 th->th_ack = htonl(sc->sc_irs + 1);
4621 th->th_flags = TH_SYN|TH_ACK;
4622 th->th_win = htons(sc->sc_win);
4623 /* th_x2, th_sum, th_urp already 0 from memset */
4624
4625 /* Tack on the TCP options. */
4626 optp = (u_int8_t *)(th + 1);
4627 optlen = 0;
4628 *optp++ = TCPOPT_MAXSEG;
4629 *optp++ = TCPOLEN_MAXSEG;
4630 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4631 *optp++ = sc->sc_ourmaxseg & 0xff;
4632 optlen += TCPOLEN_MAXSEG;
4633
4634 if (sc->sc_request_r_scale != 15) {
4635 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4636 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4637 sc->sc_request_r_scale);
4638 optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4639 optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4640 }
4641
4642 if (sc->sc_flags & SCF_SACK_PERMIT) {
4643 /* Let the peer know that we will SACK. */
4644 *optp++ = TCPOPT_SACK_PERMITTED;
4645 *optp++ = TCPOLEN_SACK_PERMITTED;
4646 optlen += TCPOLEN_SACK_PERMITTED;
4647 }
4648
4649 if (sc->sc_flags & SCF_TIMESTAMP) {
4650 while (optlen % 4 != 2) {
4651 optlen += TCPOLEN_NOP;
4652 *optp++ = TCPOPT_NOP;
4653 }
4654 *optp++ = TCPOPT_TIMESTAMP;
4655 *optp++ = TCPOLEN_TIMESTAMP;
4656 u_int32_t *lp = (u_int32_t *)(optp);
4657 /* Form timestamp option as shown in appendix A of RFC 1323. */
4658 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4659 *lp = htonl(sc->sc_timestamp);
4660 optp += TCPOLEN_TIMESTAMP - 2;
4661 optlen += TCPOLEN_TIMESTAMP;
4662 }
4663
4664 #ifdef TCP_SIGNATURE
4665 if (sc->sc_flags & SCF_SIGNATURE) {
4666
4667 sav = tcp_signature_getsav(m, th);
4668
4669 if (sav == NULL) {
4670 if (m)
4671 m_freem(m);
4672 return (EPERM);
4673 }
4674
4675 *optp++ = TCPOPT_SIGNATURE;
4676 *optp++ = TCPOLEN_SIGNATURE;
4677 sigp = optp;
4678 memset(optp, 0, TCP_SIGLEN);
4679 optp += TCP_SIGLEN;
4680 optlen += TCPOLEN_SIGNATURE;
4681
4682 }
4683 #endif
4684 /* Terminate and pad TCP options to a 4 byte boundary. */
4685 if (optlen % 4) {
4686 optlen += TCPOLEN_EOL;
4687 *optp++ = TCPOPT_EOL;
4688 }
4689 /*
4690 * According to RFC 793 (STD0007):
4691 * "The content of the header beyond the End-of-Option option
4692 * must be header padding (i.e., zero)."
4693 * and later: "The padding is composed of zeros."
4694 */
4695 while (optlen % 4) {
4696 optlen += TCPOLEN_PAD;
4697 *optp++ = TCPOPT_PAD;
4698 }
4699
4700 /* compute the actual values now that we've added the options */
4701 tlen = hlen + sizeof(struct tcphdr) + optlen;
4702 m->m_len = m->m_pkthdr.len = tlen;
4703 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4704
4705 #ifdef TCP_SIGNATURE
4706 if (sav) {
4707 (void)tcp_signature(m, th, hlen, sav, sigp);
4708 key_sa_recordxfer(sav, m);
4709 KEY_FREESAV(&sav);
4710 }
4711 #endif
4712
4713 /*
4714 * Send ECN SYN-ACK setup packet.
4715 * Routes can be asymetric, so, even if we receive a packet
4716 * with ECE and CWR set, we must not assume no one will block
4717 * the ECE packet we are about to send.
4718 */
4719 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4720 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4721 th->th_flags |= TH_ECE;
4722 TCP_STATINC(TCP_STAT_ECN_SHS);
4723
4724 /*
4725 * draft-ietf-tcpm-ecnsyn-00.txt
4726 *
4727 * "[...] a TCP node MAY respond to an ECN-setup
4728 * SYN packet by setting ECT in the responding
4729 * ECN-setup SYN/ACK packet, indicating to routers
4730 * that the SYN/ACK packet is ECN-Capable.
4731 * This allows a congested router along the path
4732 * to mark the packet instead of dropping the
4733 * packet as an indication of congestion."
4734 *
4735 * "[...] There can be a great benefit in setting
4736 * an ECN-capable codepoint in SYN/ACK packets [...]
4737 * Congestion is most likely to occur in
4738 * the server-to-client direction. As a result,
4739 * setting an ECN-capable codepoint in SYN/ACK
4740 * packets can reduce the occurence of three-second
4741 * retransmit timeouts resulting from the drop
4742 * of SYN/ACK packets."
4743 *
4744 * Page 4 and 6, January 2006.
4745 */
4746
4747 switch (sc->sc_src.sa.sa_family) {
4748 #ifdef INET
4749 case AF_INET:
4750 ip->ip_tos |= IPTOS_ECN_ECT0;
4751 break;
4752 #endif
4753 #ifdef INET6
4754 case AF_INET6:
4755 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4756 break;
4757 #endif
4758 }
4759 TCP_STATINC(TCP_STAT_ECN_ECT);
4760 }
4761
4762
4763 /* Compute the packet's checksum. */
4764 switch (sc->sc_src.sa.sa_family) {
4765 case AF_INET:
4766 ip->ip_len = htons(tlen - hlen);
4767 th->th_sum = 0;
4768 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4769 break;
4770 #ifdef INET6
4771 case AF_INET6:
4772 ip6->ip6_plen = htons(tlen - hlen);
4773 th->th_sum = 0;
4774 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4775 break;
4776 #endif
4777 }
4778
4779 /*
4780 * Fill in some straggling IP bits. Note the stack expects
4781 * ip_len to be in host order, for convenience.
4782 */
4783 switch (sc->sc_src.sa.sa_family) {
4784 #ifdef INET
4785 case AF_INET:
4786 ip->ip_len = htons(tlen);
4787 ip->ip_ttl = ip_defttl;
4788 /* XXX tos? */
4789 break;
4790 #endif
4791 #ifdef INET6
4792 case AF_INET6:
4793 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4794 ip6->ip6_vfc |= IPV6_VERSION;
4795 ip6->ip6_plen = htons(tlen - hlen);
4796 /* ip6_hlim will be initialized afterwards */
4797 /* XXX flowlabel? */
4798 break;
4799 #endif
4800 }
4801
4802 /* XXX use IPsec policy on listening socket, on SYN ACK */
4803 tp = sc->sc_tp;
4804
4805 switch (sc->sc_src.sa.sa_family) {
4806 #ifdef INET
4807 case AF_INET:
4808 error = ip_output(m, sc->sc_ipopts, ro,
4809 (ip_mtudisc ? IP_MTUDISC : 0),
4810 NULL, tp ? tp->t_inpcb : NULL);
4811 break;
4812 #endif
4813 #ifdef INET6
4814 case AF_INET6:
4815 ip6->ip6_hlim = in6_selecthlim(NULL,
4816 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4817 rtcache_unref(rt, ro);
4818
4819 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4820 tp ? tp->t_in6pcb : NULL, NULL);
4821 break;
4822 #endif
4823 default:
4824 error = EAFNOSUPPORT;
4825 break;
4826 }
4827 return (error);
4828 }
4829