tcp_input.c revision 1.36 1 /* $NetBSD: tcp_input.c,v 1.36 1997/11/21 06:41:54 thorpej Exp $ */
2
3 /*
4 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. All advertising materials mentioning features or use of this software
16 * must display the following acknowledgement:
17 * This product includes software developed by the University of
18 * California, Berkeley and its contributors.
19 * 4. Neither the name of the University nor the names of its contributors
20 * may be used to endorse or promote products derived from this software
21 * without specific prior written permission.
22 *
23 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
24 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
25 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
26 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
27 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
28 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
29 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
30 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
32 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
33 * SUCH DAMAGE.
34 *
35 * @(#)tcp_input.c 8.5 (Berkeley) 4/10/94
36 */
37
38 /*
39 * TODO list for SYN cache stuff:
40 *
41 * (a) The definition of "struct syn_cache" says:
42 *
43 * This structure should not exceeed 32 bytes.
44 *
45 * but it's 40 bytes on the Alpha. Can reduce memory use one
46 * of two ways:
47 *
48 * (1) Use a dynamically-sized hash table, and handle
49 * collisions by rehashing. Then sc_next is unnecessary.
50 *
51 * (2) Allocate syn_cache structures in pages (or some other
52 * large chunk). This would probably be desirable for
53 * maintaining locality of reference anyway.
54 *
55 * If you do this, you can change sc_next to a page/index
56 * value, and make it a 32-bit (or maybe even 16-bit)
57 * integer, thus partly obviating the need for the previous
58 * hack.
59 *
60 * It's also worth noting this this is necessary for IPv6, as well,
61 * where we use 32 bytes just for the IP addresses, so eliminating
62 * wastage is going to become more important. (BTW, has anyone
63 * integreated these changes with one fo the IPv6 status that are
64 * available?)
65 *
66 * (b) Find room for a "state" field, which is needed to keep a
67 * compressed state for TIME_WAIT TCBs. It's been noted already
68 * that this is fairly important for very high-volume web and
69 * mail servers, which use a large number of short-lived
70 * connections.
71 */
72
73 #ifndef TUBA_INCLUDE
74 #include <sys/param.h>
75 #include <sys/systm.h>
76 #include <sys/malloc.h>
77 #include <sys/mbuf.h>
78 #include <sys/protosw.h>
79 #include <sys/socket.h>
80 #include <sys/socketvar.h>
81 #include <sys/errno.h>
82
83 #include <net/if.h>
84 #include <net/route.h>
85
86 #include <netinet/in.h>
87 #include <netinet/in_systm.h>
88 #include <netinet/ip.h>
89 #include <netinet/in_pcb.h>
90 #include <netinet/ip_var.h>
91 #include <netinet/tcp.h>
92 #include <netinet/tcp_fsm.h>
93 #include <netinet/tcp_seq.h>
94 #include <netinet/tcp_timer.h>
95 #include <netinet/tcp_var.h>
96 #include <netinet/tcpip.h>
97 #include <netinet/tcp_debug.h>
98
99 #include <machine/stdarg.h>
100
101 int tcprexmtthresh = 3;
102 struct tcpiphdr tcp_saveti;
103
104 extern u_long sb_max;
105
106 #endif /* TUBA_INCLUDE */
107 #define TCP_PAWS_IDLE (24 * 24 * 60 * 60 * PR_SLOWHZ)
108
109 /* for modulo comparisons of timestamps */
110 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
111 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
112
113 /*
114 * Insert segment ti into reassembly queue of tcp with
115 * control block tp. Return TH_FIN if reassembly now includes
116 * a segment with FIN. The macro form does the common case inline
117 * (segment is the next to be received on an established connection,
118 * and the queue is empty), avoiding linkage into and removal
119 * from the queue and repetition of various conversions.
120 * Set DELACK for segments received in order, but ack immediately
121 * when segments are out of order (so fast retransmit can work).
122 */
123 #define TCP_REASS(tp, ti, m, so, flags) { \
124 if ((ti)->ti_seq == (tp)->rcv_nxt && \
125 (tp)->segq.lh_first == NULL && \
126 (tp)->t_state == TCPS_ESTABLISHED) { \
127 if ((ti)->ti_flags & TH_PUSH) \
128 tp->t_flags |= TF_ACKNOW; \
129 else \
130 tp->t_flags |= TF_DELACK; \
131 (tp)->rcv_nxt += (ti)->ti_len; \
132 flags = (ti)->ti_flags & TH_FIN; \
133 tcpstat.tcps_rcvpack++;\
134 tcpstat.tcps_rcvbyte += (ti)->ti_len;\
135 sbappend(&(so)->so_rcv, (m)); \
136 sorwakeup(so); \
137 } else { \
138 (flags) = tcp_reass((tp), (ti), (m)); \
139 tp->t_flags |= TF_ACKNOW; \
140 } \
141 }
142 #ifndef TUBA_INCLUDE
143
144 int
145 tcp_reass(tp, ti, m)
146 register struct tcpcb *tp;
147 register struct tcpiphdr *ti;
148 struct mbuf *m;
149 {
150 register struct ipqent *p, *q, *nq, *tiqe;
151 struct socket *so = tp->t_inpcb->inp_socket;
152 int flags;
153
154 /*
155 * Call with ti==0 after become established to
156 * force pre-ESTABLISHED data up to user socket.
157 */
158 if (ti == 0)
159 goto present;
160
161 /*
162 * Allocate a new queue entry, before we throw away any data.
163 * If we can't, just drop the packet. XXX
164 */
165 MALLOC(tiqe, struct ipqent *, sizeof (struct ipqent), M_IPQ, M_NOWAIT);
166 if (tiqe == NULL) {
167 tcpstat.tcps_rcvmemdrop++;
168 m_freem(m);
169 return (0);
170 }
171
172 /*
173 * Find a segment which begins after this one does.
174 */
175 for (p = NULL, q = tp->segq.lh_first; q != NULL;
176 p = q, q = q->ipqe_q.le_next)
177 if (SEQ_GT(q->ipqe_tcp->ti_seq, ti->ti_seq))
178 break;
179
180 /*
181 * If there is a preceding segment, it may provide some of
182 * our data already. If so, drop the data from the incoming
183 * segment. If it provides all of our data, drop us.
184 */
185 if (p != NULL) {
186 register struct tcpiphdr *phdr = p->ipqe_tcp;
187 register int i;
188
189 /* conversion to int (in i) handles seq wraparound */
190 i = phdr->ti_seq + phdr->ti_len - ti->ti_seq;
191 if (i > 0) {
192 if (i >= ti->ti_len) {
193 tcpstat.tcps_rcvduppack++;
194 tcpstat.tcps_rcvdupbyte += ti->ti_len;
195 m_freem(m);
196 FREE(tiqe, M_IPQ);
197 return (0);
198 }
199 m_adj(m, i);
200 ti->ti_len -= i;
201 ti->ti_seq += i;
202 }
203 }
204 tcpstat.tcps_rcvoopack++;
205 tcpstat.tcps_rcvoobyte += ti->ti_len;
206
207 /*
208 * While we overlap succeeding segments trim them or,
209 * if they are completely covered, dequeue them.
210 */
211 for (; q != NULL; q = nq) {
212 register struct tcpiphdr *qhdr = q->ipqe_tcp;
213 register int i = (ti->ti_seq + ti->ti_len) - qhdr->ti_seq;
214
215 if (i <= 0)
216 break;
217 if (i < qhdr->ti_len) {
218 qhdr->ti_seq += i;
219 qhdr->ti_len -= i;
220 m_adj(q->ipqe_m, i);
221 break;
222 }
223 nq = q->ipqe_q.le_next;
224 m_freem(q->ipqe_m);
225 LIST_REMOVE(q, ipqe_q);
226 FREE(q, M_IPQ);
227 }
228
229 /* Insert the new fragment queue entry into place. */
230 tiqe->ipqe_m = m;
231 tiqe->ipqe_tcp = ti;
232 if (p == NULL) {
233 LIST_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
234 } else {
235 LIST_INSERT_AFTER(p, tiqe, ipqe_q);
236 }
237
238 present:
239 /*
240 * Present data to user, advancing rcv_nxt through
241 * completed sequence space.
242 */
243 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
244 return (0);
245 q = tp->segq.lh_first;
246 if (q == NULL || q->ipqe_tcp->ti_seq != tp->rcv_nxt)
247 return (0);
248 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_tcp->ti_len)
249 return (0);
250 do {
251 tp->rcv_nxt += q->ipqe_tcp->ti_len;
252 flags = q->ipqe_tcp->ti_flags & TH_FIN;
253
254 nq = q->ipqe_q.le_next;
255 LIST_REMOVE(q, ipqe_q);
256 if (so->so_state & SS_CANTRCVMORE)
257 m_freem(q->ipqe_m);
258 else
259 sbappend(&so->so_rcv, q->ipqe_m);
260 FREE(q, M_IPQ);
261 q = nq;
262 } while (q != NULL && q->ipqe_tcp->ti_seq == tp->rcv_nxt);
263 sorwakeup(so);
264 return (flags);
265 }
266
267 /*
268 * TCP input routine, follows pages 65-76 of the
269 * protocol specification dated September, 1981 very closely.
270 */
271 void
272 #if __STDC__
273 tcp_input(struct mbuf *m, ...)
274 #else
275 tcp_input(m, va_alist)
276 register struct mbuf *m;
277 #endif
278 {
279 register struct tcpiphdr *ti;
280 register struct inpcb *inp;
281 caddr_t optp = NULL;
282 int optlen = 0;
283 int len, tlen, off, hdroptlen;
284 register struct tcpcb *tp = 0;
285 register int tiflags;
286 struct socket *so = NULL;
287 int todrop, acked, ourfinisacked, needoutput = 0;
288 short ostate = 0;
289 int iss = 0;
290 u_long tiwin;
291 struct tcp_opt_info opti;
292 int iphlen;
293 va_list ap;
294
295 va_start(ap, m);
296 iphlen = va_arg(ap, int);
297 va_end(ap);
298
299 tcpstat.tcps_rcvtotal++;
300
301 opti.ts_present = 0;
302 opti.maxseg = 0;
303
304 /*
305 * Get IP and TCP header together in first mbuf.
306 * Note: IP leaves IP header in first mbuf.
307 */
308 ti = mtod(m, struct tcpiphdr *);
309 if (iphlen > sizeof (struct ip))
310 ip_stripoptions(m, (struct mbuf *)0);
311 if (m->m_len < sizeof (struct tcpiphdr)) {
312 if ((m = m_pullup(m, sizeof (struct tcpiphdr))) == 0) {
313 tcpstat.tcps_rcvshort++;
314 return;
315 }
316 ti = mtod(m, struct tcpiphdr *);
317 }
318
319 /*
320 * Checksum extended TCP header and data.
321 */
322 tlen = ((struct ip *)ti)->ip_len;
323 len = sizeof (struct ip) + tlen;
324 bzero(ti->ti_x1, sizeof ti->ti_x1);
325 ti->ti_len = (u_int16_t)tlen;
326 HTONS(ti->ti_len);
327 if ((ti->ti_sum = in_cksum(m, len)) != 0) {
328 tcpstat.tcps_rcvbadsum++;
329 goto drop;
330 }
331 #endif /* TUBA_INCLUDE */
332
333 /*
334 * Check that TCP offset makes sense,
335 * pull out TCP options and adjust length. XXX
336 */
337 off = ti->ti_off << 2;
338 if (off < sizeof (struct tcphdr) || off > tlen) {
339 tcpstat.tcps_rcvbadoff++;
340 goto drop;
341 }
342 tlen -= off;
343 ti->ti_len = tlen;
344 if (off > sizeof (struct tcphdr)) {
345 if (m->m_len < sizeof(struct ip) + off) {
346 if ((m = m_pullup(m, sizeof (struct ip) + off)) == 0) {
347 tcpstat.tcps_rcvshort++;
348 return;
349 }
350 ti = mtod(m, struct tcpiphdr *);
351 }
352 optlen = off - sizeof (struct tcphdr);
353 optp = mtod(m, caddr_t) + sizeof (struct tcpiphdr);
354 /*
355 * Do quick retrieval of timestamp options ("options
356 * prediction?"). If timestamp is the only option and it's
357 * formatted as recommended in RFC 1323 appendix A, we
358 * quickly get the values now and not bother calling
359 * tcp_dooptions(), etc.
360 */
361 if ((optlen == TCPOLEN_TSTAMP_APPA ||
362 (optlen > TCPOLEN_TSTAMP_APPA &&
363 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
364 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
365 (ti->ti_flags & TH_SYN) == 0) {
366 opti.ts_present = 1;
367 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
368 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
369 optp = NULL; /* we've parsed the options */
370 }
371 }
372 tiflags = ti->ti_flags;
373
374 /*
375 * Convert TCP protocol specific fields to host format.
376 */
377 NTOHL(ti->ti_seq);
378 NTOHL(ti->ti_ack);
379 NTOHS(ti->ti_win);
380 NTOHS(ti->ti_urp);
381
382 /*
383 * Locate pcb for segment.
384 */
385 findpcb:
386 inp = in_pcblookup_connect(&tcbtable, ti->ti_src, ti->ti_sport,
387 ti->ti_dst, ti->ti_dport);
388 if (inp == 0) {
389 ++tcpstat.tcps_pcbhashmiss;
390 inp = in_pcblookup_bind(&tcbtable, ti->ti_dst, ti->ti_dport);
391 if (inp == 0) {
392 ++tcpstat.tcps_noport;
393 goto dropwithreset;
394 }
395 }
396
397 /*
398 * If the state is CLOSED (i.e., TCB does not exist) then
399 * all data in the incoming segment is discarded.
400 * If the TCB exists but is in CLOSED state, it is embryonic,
401 * but should either do a listen or a connect soon.
402 */
403 tp = intotcpcb(inp);
404 if (tp == 0)
405 goto dropwithreset;
406 if (tp->t_state == TCPS_CLOSED)
407 goto drop;
408
409 /* Unscale the window into a 32-bit value. */
410 if ((tiflags & TH_SYN) == 0)
411 tiwin = ti->ti_win << tp->snd_scale;
412 else
413 tiwin = ti->ti_win;
414
415 so = inp->inp_socket;
416 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
417 if (so->so_options & SO_DEBUG) {
418 ostate = tp->t_state;
419 tcp_saveti = *ti;
420 }
421 if (so->so_options & SO_ACCEPTCONN) {
422 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
423 if (tiflags & TH_RST) {
424 syn_cache_reset(ti);
425 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
426 (TH_ACK|TH_SYN)) {
427 /*
428 * Received a SYN,ACK. This should
429 * never happen while we are in
430 * LISTEN. Send an RST.
431 */
432 goto badsyn;
433 } else if (tiflags & TH_ACK) {
434 so = syn_cache_get(so, m);
435 if (so == NULL) {
436 /*
437 * We don't have a SYN for
438 * this ACK; send an RST.
439 */
440 goto badsyn;
441 } else if (so ==
442 (struct socket *)(-1)) {
443 /*
444 * We were unable to create
445 * the connection. If the
446 * 3-way handshake was
447 * completeed, and RST has
448 * been sent to the peer.
449 * Since the mbuf might be
450 * in use for the reply,
451 * do not free it.
452 */
453 m = NULL;
454 } else {
455 /*
456 * We have created a
457 * full-blown connection.
458 */
459 inp = sotoinpcb(so);
460 tp = intotcpcb(inp);
461 tiwin <<= tp->snd_scale;
462 goto after_listen;
463 }
464 }
465 } else {
466 /*
467 * Received a SYN.
468 */
469 if (in_hosteq(ti->ti_src, ti->ti_dst) &&
470 ti->ti_sport == ti->ti_dport) {
471 /*
472 * LISTEN socket received a SYN
473 * from itself? This can't possibly
474 * be valid; drop the packet.
475 */
476 tcpstat.tcps_badsyn++;
477 goto drop;
478 }
479 /*
480 * SYN looks ok; create compressed TCP
481 * state for it.
482 */
483 if (so->so_qlen <= so->so_qlimit &&
484 syn_cache_add(so, m, optp, optlen, &opti))
485 m = NULL;
486 }
487 goto drop;
488 }
489 }
490
491 after_listen:
492 #ifdef DIAGNOSTIC
493 /*
494 * Should not happen now that all embryonic connections
495 * are handled with compressed state.
496 */
497 if (tp->t_state == TCPS_LISTEN)
498 panic("tcp_input: TCPS_LISTEN");
499 #endif
500
501 /*
502 * Segment received on connection.
503 * Reset idle time and keep-alive timer.
504 */
505 tp->t_idle = 0;
506 if (TCPS_HAVEESTABLISHED(tp->t_state))
507 tp->t_timer[TCPT_KEEP] = tcp_keepidle;
508
509 /*
510 * Process options.
511 */
512 if (optp)
513 tcp_dooptions(tp, optp, optlen, ti, &opti);
514
515 /*
516 * Header prediction: check for the two common cases
517 * of a uni-directional data xfer. If the packet has
518 * no control flags, is in-sequence, the window didn't
519 * change and we're not retransmitting, it's a
520 * candidate. If the length is zero and the ack moved
521 * forward, we're the sender side of the xfer. Just
522 * free the data acked & wake any higher level process
523 * that was blocked waiting for space. If the length
524 * is non-zero and the ack didn't move, we're the
525 * receiver side. If we're getting packets in-order
526 * (the reassembly queue is empty), add the data to
527 * the socket buffer and note that we need a delayed ack.
528 */
529 if (tp->t_state == TCPS_ESTABLISHED &&
530 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ACK)) == TH_ACK &&
531 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
532 ti->ti_seq == tp->rcv_nxt &&
533 tiwin && tiwin == tp->snd_wnd &&
534 tp->snd_nxt == tp->snd_max) {
535
536 /*
537 * If last ACK falls within this segment's sequence numbers,
538 * record the timestamp.
539 */
540 if (opti.ts_present &&
541 SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
542 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len)) {
543 tp->ts_recent_age = tcp_now;
544 tp->ts_recent = opti.ts_val;
545 }
546
547 if (ti->ti_len == 0) {
548 if (SEQ_GT(ti->ti_ack, tp->snd_una) &&
549 SEQ_LEQ(ti->ti_ack, tp->snd_max) &&
550 tp->snd_cwnd >= tp->snd_wnd &&
551 tp->t_dupacks < tcprexmtthresh) {
552 /*
553 * this is a pure ack for outstanding data.
554 */
555 ++tcpstat.tcps_predack;
556 if (opti.ts_present)
557 tcp_xmit_timer(tp,
558 tcp_now-opti.ts_ecr+1);
559 else if (tp->t_rtt &&
560 SEQ_GT(ti->ti_ack, tp->t_rtseq))
561 tcp_xmit_timer(tp, tp->t_rtt);
562 acked = ti->ti_ack - tp->snd_una;
563 tcpstat.tcps_rcvackpack++;
564 tcpstat.tcps_rcvackbyte += acked;
565 sbdrop(&so->so_snd, acked);
566 tp->snd_una = ti->ti_ack;
567 m_freem(m);
568
569 /*
570 * If all outstanding data are acked, stop
571 * retransmit timer, otherwise restart timer
572 * using current (possibly backed-off) value.
573 * If process is waiting for space,
574 * wakeup/selwakeup/signal. If data
575 * are ready to send, let tcp_output
576 * decide between more output or persist.
577 */
578 if (tp->snd_una == tp->snd_max)
579 tp->t_timer[TCPT_REXMT] = 0;
580 else if (tp->t_timer[TCPT_PERSIST] == 0)
581 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
582
583 if (sb_notify(&so->so_snd))
584 sowwakeup(so);
585 if (so->so_snd.sb_cc)
586 (void) tcp_output(tp);
587 return;
588 }
589 } else if (ti->ti_ack == tp->snd_una &&
590 tp->segq.lh_first == NULL &&
591 ti->ti_len <= sbspace(&so->so_rcv)) {
592 /*
593 * this is a pure, in-sequence data packet
594 * with nothing on the reassembly queue and
595 * we have enough buffer space to take it.
596 */
597 ++tcpstat.tcps_preddat;
598 tp->rcv_nxt += ti->ti_len;
599 tcpstat.tcps_rcvpack++;
600 tcpstat.tcps_rcvbyte += ti->ti_len;
601 /*
602 * Drop TCP, IP headers and TCP options then add data
603 * to socket buffer.
604 */
605 m->m_data += sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
606 m->m_len -= sizeof(struct tcpiphdr)+off-sizeof(struct tcphdr);
607 sbappend(&so->so_rcv, m);
608 sorwakeup(so);
609 if (ti->ti_flags & TH_PUSH)
610 tp->t_flags |= TF_ACKNOW;
611 else
612 tp->t_flags |= TF_DELACK;
613 return;
614 }
615 }
616
617 /*
618 * Drop TCP, IP headers and TCP options.
619 */
620 hdroptlen = sizeof(struct tcpiphdr) + off - sizeof(struct tcphdr);
621 m->m_data += hdroptlen;
622 m->m_len -= hdroptlen;
623
624 /*
625 * Calculate amount of space in receive window,
626 * and then do TCP input processing.
627 * Receive window is amount of space in rcv queue,
628 * but not less than advertised window.
629 */
630 { int win;
631
632 win = sbspace(&so->so_rcv);
633 if (win < 0)
634 win = 0;
635 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
636 }
637
638 switch (tp->t_state) {
639
640 /*
641 * If the state is SYN_SENT:
642 * if seg contains an ACK, but not for our SYN, drop the input.
643 * if seg contains a RST, then drop the connection.
644 * if seg does not contain SYN, then drop it.
645 * Otherwise this is an acceptable SYN segment
646 * initialize tp->rcv_nxt and tp->irs
647 * if seg contains ack then advance tp->snd_una
648 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
649 * arrange for segment to be acked (eventually)
650 * continue processing rest of data/controls, beginning with URG
651 */
652 case TCPS_SYN_SENT:
653 if ((tiflags & TH_ACK) &&
654 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
655 SEQ_GT(ti->ti_ack, tp->snd_max)))
656 goto dropwithreset;
657 if (tiflags & TH_RST) {
658 if (tiflags & TH_ACK)
659 tp = tcp_drop(tp, ECONNREFUSED);
660 goto drop;
661 }
662 if ((tiflags & TH_SYN) == 0)
663 goto drop;
664 if (tiflags & TH_ACK) {
665 tp->snd_una = ti->ti_ack;
666 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
667 tp->snd_nxt = tp->snd_una;
668 }
669 tp->t_timer[TCPT_REXMT] = 0;
670 tp->irs = ti->ti_seq;
671 tcp_rcvseqinit(tp);
672 tp->t_flags |= TF_ACKNOW;
673 tcp_mss_from_peer(tp, opti.maxseg);
674 tcp_rmx_rtt(tp);
675 if (tiflags & TH_ACK && SEQ_GT(tp->snd_una, tp->iss)) {
676 tcpstat.tcps_connects++;
677 soisconnected(so);
678 tcp_established(tp);
679 /* Do window scaling on this connection? */
680 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
681 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
682 tp->snd_scale = tp->requested_s_scale;
683 tp->rcv_scale = tp->request_r_scale;
684 }
685 (void) tcp_reass(tp, (struct tcpiphdr *)0,
686 (struct mbuf *)0);
687 /*
688 * if we didn't have to retransmit the SYN,
689 * use its rtt as our initial srtt & rtt var.
690 */
691 if (tp->t_rtt)
692 tcp_xmit_timer(tp, tp->t_rtt);
693 } else
694 tp->t_state = TCPS_SYN_RECEIVED;
695
696 /*
697 * Advance ti->ti_seq to correspond to first data byte.
698 * If data, trim to stay within window,
699 * dropping FIN if necessary.
700 */
701 ti->ti_seq++;
702 if (ti->ti_len > tp->rcv_wnd) {
703 todrop = ti->ti_len - tp->rcv_wnd;
704 m_adj(m, -todrop);
705 ti->ti_len = tp->rcv_wnd;
706 tiflags &= ~TH_FIN;
707 tcpstat.tcps_rcvpackafterwin++;
708 tcpstat.tcps_rcvbyteafterwin += todrop;
709 }
710 tp->snd_wl1 = ti->ti_seq - 1;
711 tp->rcv_up = ti->ti_seq;
712 goto step6;
713
714 /*
715 * If the state is SYN_RECEIVED:
716 * If seg contains an ACK, but not for our SYN, drop the input
717 * and generate an RST. See page 36, rfc793
718 */
719 case TCPS_SYN_RECEIVED:
720 if ((tiflags & TH_ACK) &&
721 (SEQ_LEQ(ti->ti_ack, tp->iss) ||
722 SEQ_GT(ti->ti_ack, tp->snd_max)))
723 goto dropwithreset;
724 break;
725 }
726
727 /*
728 * States other than LISTEN or SYN_SENT.
729 * First check timestamp, if present.
730 * Then check that at least some bytes of segment are within
731 * receive window. If segment begins before rcv_nxt,
732 * drop leading data (and SYN); if nothing left, just ack.
733 *
734 * RFC 1323 PAWS: If we have a timestamp reply on this segment
735 * and it's less than ts_recent, drop it.
736 */
737 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
738 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
739
740 /* Check to see if ts_recent is over 24 days old. */
741 if ((int)(tcp_now - tp->ts_recent_age) > TCP_PAWS_IDLE) {
742 /*
743 * Invalidate ts_recent. If this segment updates
744 * ts_recent, the age will be reset later and ts_recent
745 * will get a valid value. If it does not, setting
746 * ts_recent to zero will at least satisfy the
747 * requirement that zero be placed in the timestamp
748 * echo reply when ts_recent isn't valid. The
749 * age isn't reset until we get a valid ts_recent
750 * because we don't want out-of-order segments to be
751 * dropped when ts_recent is old.
752 */
753 tp->ts_recent = 0;
754 } else {
755 tcpstat.tcps_rcvduppack++;
756 tcpstat.tcps_rcvdupbyte += ti->ti_len;
757 tcpstat.tcps_pawsdrop++;
758 goto dropafterack;
759 }
760 }
761
762 todrop = tp->rcv_nxt - ti->ti_seq;
763 if (todrop > 0) {
764 if (tiflags & TH_SYN) {
765 tiflags &= ~TH_SYN;
766 ti->ti_seq++;
767 if (ti->ti_urp > 1)
768 ti->ti_urp--;
769 else {
770 tiflags &= ~TH_URG;
771 ti->ti_urp = 0;
772 }
773 todrop--;
774 }
775 if (todrop >= ti->ti_len) {
776 /*
777 * Any valid FIN must be to the left of the
778 * window. At this point, FIN must be a
779 * duplicate or out-of-sequence, so drop it.
780 */
781 tiflags &= ~TH_FIN;
782 /*
783 * Send ACK to resynchronize, and drop any data,
784 * but keep on processing for RST or ACK.
785 */
786 tp->t_flags |= TF_ACKNOW;
787 tcpstat.tcps_rcvdupbyte += todrop = ti->ti_len;
788 tcpstat.tcps_rcvduppack++;
789 } else {
790 tcpstat.tcps_rcvpartduppack++;
791 tcpstat.tcps_rcvpartdupbyte += todrop;
792 }
793 m_adj(m, todrop);
794 ti->ti_seq += todrop;
795 ti->ti_len -= todrop;
796 if (ti->ti_urp > todrop)
797 ti->ti_urp -= todrop;
798 else {
799 tiflags &= ~TH_URG;
800 ti->ti_urp = 0;
801 }
802 }
803
804 /*
805 * If new data are received on a connection after the
806 * user processes are gone, then RST the other end.
807 */
808 if ((so->so_state & SS_NOFDREF) &&
809 tp->t_state > TCPS_CLOSE_WAIT && ti->ti_len) {
810 tp = tcp_close(tp);
811 tcpstat.tcps_rcvafterclose++;
812 goto dropwithreset;
813 }
814
815 /*
816 * If segment ends after window, drop trailing data
817 * (and PUSH and FIN); if nothing left, just ACK.
818 */
819 todrop = (ti->ti_seq+ti->ti_len) - (tp->rcv_nxt+tp->rcv_wnd);
820 if (todrop > 0) {
821 tcpstat.tcps_rcvpackafterwin++;
822 if (todrop >= ti->ti_len) {
823 tcpstat.tcps_rcvbyteafterwin += ti->ti_len;
824 /*
825 * If a new connection request is received
826 * while in TIME_WAIT, drop the old connection
827 * and start over if the sequence numbers
828 * are above the previous ones.
829 */
830 if (tiflags & TH_SYN &&
831 tp->t_state == TCPS_TIME_WAIT &&
832 SEQ_GT(ti->ti_seq, tp->rcv_nxt)) {
833 iss = tcp_new_iss(tp, sizeof(struct tcpcb),
834 tp->rcv_nxt);
835 tp = tcp_close(tp);
836 /*
837 * We have already advanced the mbuf
838 * pointers past the IP+TCP headers and
839 * options. Restore those pointers before
840 * attempting to use the TCP header again.
841 */
842 m->m_data -= hdroptlen;
843 m->m_len += hdroptlen;
844 goto findpcb;
845 }
846 /*
847 * If window is closed can only take segments at
848 * window edge, and have to drop data and PUSH from
849 * incoming segments. Continue processing, but
850 * remember to ack. Otherwise, drop segment
851 * and ack.
852 */
853 if (tp->rcv_wnd == 0 && ti->ti_seq == tp->rcv_nxt) {
854 tp->t_flags |= TF_ACKNOW;
855 tcpstat.tcps_rcvwinprobe++;
856 } else
857 goto dropafterack;
858 } else
859 tcpstat.tcps_rcvbyteafterwin += todrop;
860 m_adj(m, -todrop);
861 ti->ti_len -= todrop;
862 tiflags &= ~(TH_PUSH|TH_FIN);
863 }
864
865 /*
866 * If last ACK falls within this segment's sequence numbers,
867 * record its timestamp.
868 */
869 if (opti.ts_present && SEQ_LEQ(ti->ti_seq, tp->last_ack_sent) &&
870 SEQ_LT(tp->last_ack_sent, ti->ti_seq + ti->ti_len +
871 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
872 tp->ts_recent_age = tcp_now;
873 tp->ts_recent = opti.ts_val;
874 }
875
876 /*
877 * If the RST bit is set examine the state:
878 * SYN_RECEIVED STATE:
879 * If passive open, return to LISTEN state.
880 * If active open, inform user that connection was refused.
881 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
882 * Inform user that connection was reset, and close tcb.
883 * CLOSING, LAST_ACK, TIME_WAIT STATES
884 * Close the tcb.
885 */
886 if (tiflags&TH_RST) switch (tp->t_state) {
887
888 case TCPS_SYN_RECEIVED:
889 so->so_error = ECONNREFUSED;
890 goto close;
891
892 case TCPS_ESTABLISHED:
893 case TCPS_FIN_WAIT_1:
894 case TCPS_FIN_WAIT_2:
895 case TCPS_CLOSE_WAIT:
896 so->so_error = ECONNRESET;
897 close:
898 tp->t_state = TCPS_CLOSED;
899 tcpstat.tcps_drops++;
900 tp = tcp_close(tp);
901 goto drop;
902
903 case TCPS_CLOSING:
904 case TCPS_LAST_ACK:
905 case TCPS_TIME_WAIT:
906 tp = tcp_close(tp);
907 goto drop;
908 }
909
910 /*
911 * If a SYN is in the window, then this is an
912 * error and we send an RST and drop the connection.
913 */
914 if (tiflags & TH_SYN) {
915 tp = tcp_drop(tp, ECONNRESET);
916 goto dropwithreset;
917 }
918
919 /*
920 * If the ACK bit is off we drop the segment and return.
921 */
922 if ((tiflags & TH_ACK) == 0)
923 goto drop;
924
925 /*
926 * Ack processing.
927 */
928 switch (tp->t_state) {
929
930 /*
931 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
932 * ESTABLISHED state and continue processing, otherwise
933 * send an RST.
934 */
935 case TCPS_SYN_RECEIVED:
936 if (SEQ_GT(tp->snd_una, ti->ti_ack) ||
937 SEQ_GT(ti->ti_ack, tp->snd_max))
938 goto dropwithreset;
939 tcpstat.tcps_connects++;
940 soisconnected(so);
941 tcp_established(tp);
942 /* Do window scaling? */
943 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
944 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
945 tp->snd_scale = tp->requested_s_scale;
946 tp->rcv_scale = tp->request_r_scale;
947 }
948 (void) tcp_reass(tp, (struct tcpiphdr *)0, (struct mbuf *)0);
949 tp->snd_wl1 = ti->ti_seq - 1;
950 /* fall into ... */
951
952 /*
953 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
954 * ACKs. If the ack is in the range
955 * tp->snd_una < ti->ti_ack <= tp->snd_max
956 * then advance tp->snd_una to ti->ti_ack and drop
957 * data from the retransmission queue. If this ACK reflects
958 * more up to date window information we update our window information.
959 */
960 case TCPS_ESTABLISHED:
961 case TCPS_FIN_WAIT_1:
962 case TCPS_FIN_WAIT_2:
963 case TCPS_CLOSE_WAIT:
964 case TCPS_CLOSING:
965 case TCPS_LAST_ACK:
966 case TCPS_TIME_WAIT:
967
968 if (SEQ_LEQ(ti->ti_ack, tp->snd_una)) {
969 if (ti->ti_len == 0 && tiwin == tp->snd_wnd) {
970 tcpstat.tcps_rcvdupack++;
971 /*
972 * If we have outstanding data (other than
973 * a window probe), this is a completely
974 * duplicate ack (ie, window info didn't
975 * change), the ack is the biggest we've
976 * seen and we've seen exactly our rexmt
977 * threshhold of them, assume a packet
978 * has been dropped and retransmit it.
979 * Kludge snd_nxt & the congestion
980 * window so we send only this one
981 * packet.
982 *
983 * We know we're losing at the current
984 * window size so do congestion avoidance
985 * (set ssthresh to half the current window
986 * and pull our congestion window back to
987 * the new ssthresh).
988 *
989 * Dup acks mean that packets have left the
990 * network (they're now cached at the receiver)
991 * so bump cwnd by the amount in the receiver
992 * to keep a constant cwnd packets in the
993 * network.
994 */
995 if (tp->t_timer[TCPT_REXMT] == 0 ||
996 ti->ti_ack != tp->snd_una)
997 tp->t_dupacks = 0;
998 else if (++tp->t_dupacks == tcprexmtthresh) {
999 tcp_seq onxt = tp->snd_nxt;
1000 u_int win =
1001 min(tp->snd_wnd, tp->snd_cwnd) /
1002 2 / tp->t_segsz;
1003
1004 if (win < 2)
1005 win = 2;
1006 tp->snd_ssthresh = win * tp->t_segsz;
1007 tp->t_timer[TCPT_REXMT] = 0;
1008 tp->t_rtt = 0;
1009 tp->snd_nxt = ti->ti_ack;
1010 tp->snd_cwnd = tp->t_segsz;
1011 (void) tcp_output(tp);
1012 tp->snd_cwnd = tp->snd_ssthresh +
1013 tp->t_segsz * tp->t_dupacks;
1014 if (SEQ_GT(onxt, tp->snd_nxt))
1015 tp->snd_nxt = onxt;
1016 goto drop;
1017 } else if (tp->t_dupacks > tcprexmtthresh) {
1018 tp->snd_cwnd += tp->t_segsz;
1019 (void) tcp_output(tp);
1020 goto drop;
1021 }
1022 } else
1023 tp->t_dupacks = 0;
1024 break;
1025 }
1026 /*
1027 * If the congestion window was inflated to account
1028 * for the other side's cached packets, retract it.
1029 */
1030 if (tp->t_dupacks >= tcprexmtthresh &&
1031 tp->snd_cwnd > tp->snd_ssthresh)
1032 tp->snd_cwnd = tp->snd_ssthresh;
1033 tp->t_dupacks = 0;
1034 if (SEQ_GT(ti->ti_ack, tp->snd_max)) {
1035 tcpstat.tcps_rcvacktoomuch++;
1036 goto dropafterack;
1037 }
1038 acked = ti->ti_ack - tp->snd_una;
1039 tcpstat.tcps_rcvackpack++;
1040 tcpstat.tcps_rcvackbyte += acked;
1041
1042 /*
1043 * If we have a timestamp reply, update smoothed
1044 * round trip time. If no timestamp is present but
1045 * transmit timer is running and timed sequence
1046 * number was acked, update smoothed round trip time.
1047 * Since we now have an rtt measurement, cancel the
1048 * timer backoff (cf., Phil Karn's retransmit alg.).
1049 * Recompute the initial retransmit timer.
1050 */
1051 if (opti.ts_present)
1052 tcp_xmit_timer(tp, tcp_now - opti.ts_ecr + 1);
1053 else if (tp->t_rtt && SEQ_GT(ti->ti_ack, tp->t_rtseq))
1054 tcp_xmit_timer(tp,tp->t_rtt);
1055
1056 /*
1057 * If all outstanding data is acked, stop retransmit
1058 * timer and remember to restart (more output or persist).
1059 * If there is more data to be acked, restart retransmit
1060 * timer, using current (possibly backed-off) value.
1061 */
1062 if (ti->ti_ack == tp->snd_max) {
1063 tp->t_timer[TCPT_REXMT] = 0;
1064 needoutput = 1;
1065 } else if (tp->t_timer[TCPT_PERSIST] == 0)
1066 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1067 /*
1068 * When new data is acked, open the congestion window.
1069 * If the window gives us less than ssthresh packets
1070 * in flight, open exponentially (segsz per packet).
1071 * Otherwise open linearly: segsz per window
1072 * (segsz^2 / cwnd per packet), plus a constant
1073 * fraction of a packet (segsz/8) to help larger windows
1074 * open quickly enough.
1075 */
1076 {
1077 register u_int cw = tp->snd_cwnd;
1078 register u_int incr = tp->t_segsz;
1079
1080 if (cw > tp->snd_ssthresh)
1081 incr = incr * incr / cw;
1082 tp->snd_cwnd = min(cw + incr, TCP_MAXWIN<<tp->snd_scale);
1083 }
1084 if (acked > so->so_snd.sb_cc) {
1085 tp->snd_wnd -= so->so_snd.sb_cc;
1086 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
1087 ourfinisacked = 1;
1088 } else {
1089 sbdrop(&so->so_snd, acked);
1090 tp->snd_wnd -= acked;
1091 ourfinisacked = 0;
1092 }
1093 if (sb_notify(&so->so_snd))
1094 sowwakeup(so);
1095 tp->snd_una = ti->ti_ack;
1096 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
1097 tp->snd_nxt = tp->snd_una;
1098
1099 switch (tp->t_state) {
1100
1101 /*
1102 * In FIN_WAIT_1 STATE in addition to the processing
1103 * for the ESTABLISHED state if our FIN is now acknowledged
1104 * then enter FIN_WAIT_2.
1105 */
1106 case TCPS_FIN_WAIT_1:
1107 if (ourfinisacked) {
1108 /*
1109 * If we can't receive any more
1110 * data, then closing user can proceed.
1111 * Starting the timer is contrary to the
1112 * specification, but if we don't get a FIN
1113 * we'll hang forever.
1114 */
1115 if (so->so_state & SS_CANTRCVMORE) {
1116 soisdisconnected(so);
1117 tp->t_timer[TCPT_2MSL] = tcp_maxidle;
1118 }
1119 tp->t_state = TCPS_FIN_WAIT_2;
1120 }
1121 break;
1122
1123 /*
1124 * In CLOSING STATE in addition to the processing for
1125 * the ESTABLISHED state if the ACK acknowledges our FIN
1126 * then enter the TIME-WAIT state, otherwise ignore
1127 * the segment.
1128 */
1129 case TCPS_CLOSING:
1130 if (ourfinisacked) {
1131 tp->t_state = TCPS_TIME_WAIT;
1132 tcp_canceltimers(tp);
1133 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1134 soisdisconnected(so);
1135 }
1136 break;
1137
1138 /*
1139 * In LAST_ACK, we may still be waiting for data to drain
1140 * and/or to be acked, as well as for the ack of our FIN.
1141 * If our FIN is now acknowledged, delete the TCB,
1142 * enter the closed state and return.
1143 */
1144 case TCPS_LAST_ACK:
1145 if (ourfinisacked) {
1146 tp = tcp_close(tp);
1147 goto drop;
1148 }
1149 break;
1150
1151 /*
1152 * In TIME_WAIT state the only thing that should arrive
1153 * is a retransmission of the remote FIN. Acknowledge
1154 * it and restart the finack timer.
1155 */
1156 case TCPS_TIME_WAIT:
1157 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1158 goto dropafterack;
1159 }
1160 }
1161
1162 step6:
1163 /*
1164 * Update window information.
1165 * Don't look at window if no ACK: TAC's send garbage on first SYN.
1166 */
1167 if (((tiflags & TH_ACK) && SEQ_LT(tp->snd_wl1, ti->ti_seq)) ||
1168 (tp->snd_wl1 == ti->ti_seq && SEQ_LT(tp->snd_wl2, ti->ti_ack)) ||
1169 (tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)) {
1170 /* keep track of pure window updates */
1171 if (ti->ti_len == 0 &&
1172 tp->snd_wl2 == ti->ti_ack && tiwin > tp->snd_wnd)
1173 tcpstat.tcps_rcvwinupd++;
1174 tp->snd_wnd = tiwin;
1175 tp->snd_wl1 = ti->ti_seq;
1176 tp->snd_wl2 = ti->ti_ack;
1177 if (tp->snd_wnd > tp->max_sndwnd)
1178 tp->max_sndwnd = tp->snd_wnd;
1179 needoutput = 1;
1180 }
1181
1182 /*
1183 * Process segments with URG.
1184 */
1185 if ((tiflags & TH_URG) && ti->ti_urp &&
1186 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1187 /*
1188 * This is a kludge, but if we receive and accept
1189 * random urgent pointers, we'll crash in
1190 * soreceive. It's hard to imagine someone
1191 * actually wanting to send this much urgent data.
1192 */
1193 if (ti->ti_urp + so->so_rcv.sb_cc > sb_max) {
1194 ti->ti_urp = 0; /* XXX */
1195 tiflags &= ~TH_URG; /* XXX */
1196 goto dodata; /* XXX */
1197 }
1198 /*
1199 * If this segment advances the known urgent pointer,
1200 * then mark the data stream. This should not happen
1201 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
1202 * a FIN has been received from the remote side.
1203 * In these states we ignore the URG.
1204 *
1205 * According to RFC961 (Assigned Protocols),
1206 * the urgent pointer points to the last octet
1207 * of urgent data. We continue, however,
1208 * to consider it to indicate the first octet
1209 * of data past the urgent section as the original
1210 * spec states (in one of two places).
1211 */
1212 if (SEQ_GT(ti->ti_seq+ti->ti_urp, tp->rcv_up)) {
1213 tp->rcv_up = ti->ti_seq + ti->ti_urp;
1214 so->so_oobmark = so->so_rcv.sb_cc +
1215 (tp->rcv_up - tp->rcv_nxt) - 1;
1216 if (so->so_oobmark == 0)
1217 so->so_state |= SS_RCVATMARK;
1218 sohasoutofband(so);
1219 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
1220 }
1221 /*
1222 * Remove out of band data so doesn't get presented to user.
1223 * This can happen independent of advancing the URG pointer,
1224 * but if two URG's are pending at once, some out-of-band
1225 * data may creep in... ick.
1226 */
1227 if (ti->ti_urp <= (u_int16_t) ti->ti_len
1228 #ifdef SO_OOBINLINE
1229 && (so->so_options & SO_OOBINLINE) == 0
1230 #endif
1231 )
1232 tcp_pulloutofband(so, ti, m);
1233 } else
1234 /*
1235 * If no out of band data is expected,
1236 * pull receive urgent pointer along
1237 * with the receive window.
1238 */
1239 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
1240 tp->rcv_up = tp->rcv_nxt;
1241 dodata: /* XXX */
1242
1243 /*
1244 * Process the segment text, merging it into the TCP sequencing queue,
1245 * and arranging for acknowledgment of receipt if necessary.
1246 * This process logically involves adjusting tp->rcv_wnd as data
1247 * is presented to the user (this happens in tcp_usrreq.c,
1248 * case PRU_RCVD). If a FIN has already been received on this
1249 * connection then we just ignore the text.
1250 */
1251 if ((ti->ti_len || (tiflags & TH_FIN)) &&
1252 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1253 TCP_REASS(tp, ti, m, so, tiflags);
1254 /*
1255 * Note the amount of data that peer has sent into
1256 * our window, in order to estimate the sender's
1257 * buffer size.
1258 */
1259 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
1260 } else {
1261 m_freem(m);
1262 tiflags &= ~TH_FIN;
1263 }
1264
1265 /*
1266 * If FIN is received ACK the FIN and let the user know
1267 * that the connection is closing. Ignore a FIN received before
1268 * the connection is fully established.
1269 */
1270 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
1271 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
1272 socantrcvmore(so);
1273 tp->t_flags |= TF_ACKNOW;
1274 tp->rcv_nxt++;
1275 }
1276 switch (tp->t_state) {
1277
1278 /*
1279 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
1280 */
1281 case TCPS_ESTABLISHED:
1282 tp->t_state = TCPS_CLOSE_WAIT;
1283 break;
1284
1285 /*
1286 * If still in FIN_WAIT_1 STATE FIN has not been acked so
1287 * enter the CLOSING state.
1288 */
1289 case TCPS_FIN_WAIT_1:
1290 tp->t_state = TCPS_CLOSING;
1291 break;
1292
1293 /*
1294 * In FIN_WAIT_2 state enter the TIME_WAIT state,
1295 * starting the time-wait timer, turning off the other
1296 * standard timers.
1297 */
1298 case TCPS_FIN_WAIT_2:
1299 tp->t_state = TCPS_TIME_WAIT;
1300 tcp_canceltimers(tp);
1301 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1302 soisdisconnected(so);
1303 break;
1304
1305 /*
1306 * In TIME_WAIT state restart the 2 MSL time_wait timer.
1307 */
1308 case TCPS_TIME_WAIT:
1309 tp->t_timer[TCPT_2MSL] = 2 * TCPTV_MSL;
1310 break;
1311 }
1312 }
1313 if (so->so_options & SO_DEBUG)
1314 tcp_trace(TA_INPUT, ostate, tp, &tcp_saveti, 0);
1315
1316 /*
1317 * Return any desired output.
1318 */
1319 if (needoutput || (tp->t_flags & TF_ACKNOW))
1320 (void) tcp_output(tp);
1321 return;
1322
1323 badsyn:
1324 /*
1325 * Received a bad SYN. Increment counters and dropwithreset.
1326 */
1327 tcpstat.tcps_badsyn++;
1328 tp = NULL;
1329 goto dropwithreset;
1330
1331 dropafterack:
1332 /*
1333 * Generate an ACK dropping incoming segment if it occupies
1334 * sequence space, where the ACK reflects our state.
1335 */
1336 if (tiflags & TH_RST)
1337 goto drop;
1338 m_freem(m);
1339 tp->t_flags |= TF_ACKNOW;
1340 (void) tcp_output(tp);
1341 return;
1342
1343 dropwithreset:
1344 /*
1345 * Generate a RST, dropping incoming segment.
1346 * Make ACK acceptable to originator of segment.
1347 * Don't bother to respond if destination was broadcast/multicast.
1348 */
1349 if ((tiflags & TH_RST) || m->m_flags & (M_BCAST|M_MCAST) ||
1350 IN_MULTICAST(ti->ti_dst.s_addr))
1351 goto drop;
1352 if (tiflags & TH_ACK)
1353 (void)tcp_respond(tp, ti, m, (tcp_seq)0, ti->ti_ack, TH_RST);
1354 else {
1355 if (tiflags & TH_SYN)
1356 ti->ti_len++;
1357 (void)tcp_respond(tp, ti, m, ti->ti_seq+ti->ti_len, (tcp_seq)0,
1358 TH_RST|TH_ACK);
1359 }
1360 return;
1361
1362 drop:
1363 /*
1364 * Drop space held by incoming segment and return.
1365 */
1366 if (tp && (tp->t_inpcb->inp_socket->so_options & SO_DEBUG))
1367 tcp_trace(TA_DROP, ostate, tp, &tcp_saveti, 0);
1368 m_freem(m);
1369 return;
1370 #ifndef TUBA_INCLUDE
1371 }
1372
1373 void
1374 tcp_dooptions(tp, cp, cnt, ti, oi)
1375 struct tcpcb *tp;
1376 u_char *cp;
1377 int cnt;
1378 struct tcpiphdr *ti;
1379 struct tcp_opt_info *oi;
1380 {
1381 u_int16_t mss;
1382 int opt, optlen;
1383
1384 for (; cnt > 0; cnt -= optlen, cp += optlen) {
1385 opt = cp[0];
1386 if (opt == TCPOPT_EOL)
1387 break;
1388 if (opt == TCPOPT_NOP)
1389 optlen = 1;
1390 else {
1391 optlen = cp[1];
1392 if (optlen <= 0)
1393 break;
1394 }
1395 switch (opt) {
1396
1397 default:
1398 continue;
1399
1400 case TCPOPT_MAXSEG:
1401 if (optlen != TCPOLEN_MAXSEG)
1402 continue;
1403 if (!(ti->ti_flags & TH_SYN))
1404 continue;
1405 bcopy(cp + 2, &mss, sizeof(mss));
1406 oi->maxseg = ntohs(mss);
1407 break;
1408
1409 case TCPOPT_WINDOW:
1410 if (optlen != TCPOLEN_WINDOW)
1411 continue;
1412 if (!(ti->ti_flags & TH_SYN))
1413 continue;
1414 tp->t_flags |= TF_RCVD_SCALE;
1415 tp->requested_s_scale = min(cp[2], TCP_MAX_WINSHIFT);
1416 break;
1417
1418 case TCPOPT_TIMESTAMP:
1419 if (optlen != TCPOLEN_TIMESTAMP)
1420 continue;
1421 oi->ts_present = 1;
1422 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
1423 NTOHL(oi->ts_val);
1424 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
1425 NTOHL(oi->ts_ecr);
1426
1427 /*
1428 * A timestamp received in a SYN makes
1429 * it ok to send timestamp requests and replies.
1430 */
1431 if (ti->ti_flags & TH_SYN) {
1432 tp->t_flags |= TF_RCVD_TSTMP;
1433 tp->ts_recent = oi->ts_val;
1434 tp->ts_recent_age = tcp_now;
1435 }
1436 break;
1437 }
1438 }
1439 }
1440
1441 /*
1442 * Pull out of band byte out of a segment so
1443 * it doesn't appear in the user's data queue.
1444 * It is still reflected in the segment length for
1445 * sequencing purposes.
1446 */
1447 void
1448 tcp_pulloutofband(so, ti, m)
1449 struct socket *so;
1450 struct tcpiphdr *ti;
1451 register struct mbuf *m;
1452 {
1453 int cnt = ti->ti_urp - 1;
1454
1455 while (cnt >= 0) {
1456 if (m->m_len > cnt) {
1457 char *cp = mtod(m, caddr_t) + cnt;
1458 struct tcpcb *tp = sototcpcb(so);
1459
1460 tp->t_iobc = *cp;
1461 tp->t_oobflags |= TCPOOB_HAVEDATA;
1462 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
1463 m->m_len--;
1464 return;
1465 }
1466 cnt -= m->m_len;
1467 m = m->m_next;
1468 if (m == 0)
1469 break;
1470 }
1471 panic("tcp_pulloutofband");
1472 }
1473
1474 /*
1475 * Collect new round-trip time estimate
1476 * and update averages and current timeout.
1477 */
1478 void
1479 tcp_xmit_timer(tp, rtt)
1480 register struct tcpcb *tp;
1481 short rtt;
1482 {
1483 register short delta;
1484
1485 tcpstat.tcps_rttupdated++;
1486 --rtt;
1487 if (tp->t_srtt != 0) {
1488 /*
1489 * srtt is stored as fixed point with 3 bits after the
1490 * binary point (i.e., scaled by 8). The following magic
1491 * is equivalent to the smoothing algorithm in rfc793 with
1492 * an alpha of .875 (srtt = rtt/8 + srtt*7/8 in fixed
1493 * point). Adjust rtt to origin 0.
1494 */
1495 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
1496 if ((tp->t_srtt += delta) <= 0)
1497 tp->t_srtt = 1 << 2;
1498 /*
1499 * We accumulate a smoothed rtt variance (actually, a
1500 * smoothed mean difference), then set the retransmit
1501 * timer to smoothed rtt + 4 times the smoothed variance.
1502 * rttvar is stored as fixed point with 2 bits after the
1503 * binary point (scaled by 4). The following is
1504 * equivalent to rfc793 smoothing with an alpha of .75
1505 * (rttvar = rttvar*3/4 + |delta| / 4). This replaces
1506 * rfc793's wired-in beta.
1507 */
1508 if (delta < 0)
1509 delta = -delta;
1510 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
1511 if ((tp->t_rttvar += delta) <= 0)
1512 tp->t_rttvar = 1 << 2;
1513 } else {
1514 /*
1515 * No rtt measurement yet - use the unsmoothed rtt.
1516 * Set the variance to half the rtt (so our first
1517 * retransmit happens at 3*rtt).
1518 */
1519 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
1520 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
1521 }
1522 tp->t_rtt = 0;
1523 tp->t_rxtshift = 0;
1524
1525 /*
1526 * the retransmit should happen at rtt + 4 * rttvar.
1527 * Because of the way we do the smoothing, srtt and rttvar
1528 * will each average +1/2 tick of bias. When we compute
1529 * the retransmit timer, we want 1/2 tick of rounding and
1530 * 1 extra tick because of +-1/2 tick uncertainty in the
1531 * firing of the timer. The bias will give us exactly the
1532 * 1.5 tick we need. But, because the bias is
1533 * statistical, we have to test that we don't drop below
1534 * the minimum feasible timer (which is 2 ticks).
1535 */
1536 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
1537 rtt + 2, TCPTV_REXMTMAX);
1538
1539 /*
1540 * We received an ack for a packet that wasn't retransmitted;
1541 * it is probably safe to discard any error indications we've
1542 * received recently. This isn't quite right, but close enough
1543 * for now (a route might have failed after we sent a segment,
1544 * and the return path might not be symmetrical).
1545 */
1546 tp->t_softerror = 0;
1547 }
1548
1549 /*
1550 * TCP compressed state engine. Currently used to hold compressed
1551 * state for SYN_RECEIVED.
1552 */
1553
1554 u_long syn_cache_count;
1555 u_int32_t syn_hash1, syn_hash2;
1556
1557 #define SYN_HASH(sa, sp, dp) \
1558 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
1559 ((u_int32_t)(sp)))^syn_hash2)) \
1560 & 0x7fffffff)
1561
1562 #define eptosp(ep, e, s) ((struct s *)((char *)(ep) - \
1563 ((char *)(&((struct s *)0)->e) - (char *)0)))
1564
1565 #define SYN_CACHE_RM(sc, p, scp) { \
1566 *(p) = (sc)->sc_next; \
1567 if ((sc)->sc_next) \
1568 (sc)->sc_next->sc_timer += (sc)->sc_timer; \
1569 else { \
1570 (scp)->sch_timer_sum -= (sc)->sc_timer; \
1571 if ((scp)->sch_timer_sum <= 0) \
1572 (scp)->sch_timer_sum = -1; \
1573 /* If need be, fix up the last pointer */ \
1574 if ((scp)->sch_first) \
1575 (scp)->sch_last = eptosp(p, sc_next, syn_cache); \
1576 } \
1577 (scp)->sch_length--; \
1578 syn_cache_count--; \
1579 }
1580
1581 void
1582 syn_cache_insert(sc, prevp, headp)
1583 struct syn_cache *sc;
1584 struct syn_cache ***prevp;
1585 struct syn_cache_head **headp;
1586 {
1587 struct syn_cache_head *scp, *scp2, *sce;
1588 struct syn_cache *sc2;
1589 static u_int timeo_val;
1590 int s;
1591
1592 /* Initialize the hash secrets when adding the first entry */
1593 if (syn_cache_count == 0) {
1594 struct timeval tv;
1595 microtime(&tv);
1596 syn_hash1 = random() ^ (u_long)≻
1597 syn_hash2 = random() ^ tv.tv_usec;
1598 }
1599
1600 sc->sc_hash = SYN_HASH(&sc->sc_src, sc->sc_sport, sc->sc_dport);
1601 sc->sc_next = NULL;
1602 scp = &tcp_syn_cache[sc->sc_hash % tcp_syn_cache_size];
1603 *headp = scp;
1604
1605 /*
1606 * Make sure that we don't overflow the per-bucket
1607 * limit or the total cache size limit.
1608 */
1609 s = splsoftnet();
1610 if (scp->sch_length >= tcp_syn_bucket_limit) {
1611 tcpstat.tcps_sc_bucketoverflow++;
1612 sc2 = scp->sch_first;
1613 scp->sch_first = sc2->sc_next;
1614 FREE(sc2, M_PCB);
1615 } else if (syn_cache_count >= tcp_syn_cache_limit) {
1616 tcpstat.tcps_sc_overflowed++;
1617 /*
1618 * The cache is full. Toss the first (i.e, oldest)
1619 * element in this bucket.
1620 */
1621 scp2 = scp;
1622 if (scp2->sch_first == NULL) {
1623 sce = &tcp_syn_cache[tcp_syn_cache_size];
1624 for (++scp2; scp2 != scp; scp2++) {
1625 if (scp2 >= sce)
1626 scp2 = &tcp_syn_cache[0];
1627 if (scp2->sch_first)
1628 break;
1629 }
1630 }
1631 sc2 = scp2->sch_first;
1632 if (sc2 == NULL) {
1633 FREE(sc, M_PCB);
1634 return;
1635 }
1636 if ((scp2->sch_first = sc2->sc_next) == NULL)
1637 scp2->sch_last = NULL;
1638 else
1639 sc2->sc_next->sc_timer += sc2->sc_timer;
1640 FREE(sc2, M_PCB);
1641 } else {
1642 scp->sch_length++;
1643 syn_cache_count++;
1644 }
1645 tcpstat.tcps_sc_added++;
1646
1647 /*
1648 * Put it into the bucket.
1649 */
1650 if (scp->sch_first == NULL)
1651 *prevp = &scp->sch_first;
1652 else {
1653 *prevp = &scp->sch_last->sc_next;
1654 tcpstat.tcps_sc_collisions++;
1655 }
1656 **prevp = sc;
1657 scp->sch_last = sc;
1658
1659 /*
1660 * If the timeout value has changed
1661 * 1) force it to fit in a u_char
1662 * 2) Run the timer routine to truncate all
1663 * existing entries to the new timeout value.
1664 */
1665 if (timeo_val != tcp_syn_cache_timeo) {
1666 tcp_syn_cache_timeo = min(tcp_syn_cache_timeo, UCHAR_MAX);
1667 if (timeo_val > tcp_syn_cache_timeo)
1668 syn_cache_timer(timeo_val - tcp_syn_cache_timeo);
1669 timeo_val = tcp_syn_cache_timeo;
1670 }
1671 if (scp->sch_timer_sum > 0)
1672 sc->sc_timer = tcp_syn_cache_timeo - scp->sch_timer_sum;
1673 else if (scp->sch_timer_sum == 0) {
1674 /* When the bucket timer is 0, it is not in the cache queue. */
1675 scp->sch_headq = tcp_syn_cache_first;
1676 tcp_syn_cache_first = scp;
1677 sc->sc_timer = tcp_syn_cache_timeo;
1678 }
1679 scp->sch_timer_sum = tcp_syn_cache_timeo;
1680 splx(s);
1681 }
1682
1683 /*
1684 * Walk down the cache list, decrementing the timer of
1685 * the first element on each entry. If the timer goes
1686 * to zero, remove it and all successive entries with
1687 * a zero timer.
1688 */
1689 void
1690 syn_cache_timer(interval)
1691 int interval;
1692 {
1693 struct syn_cache_head *scp, **pscp;
1694 struct syn_cache *sc, *scn;
1695 int n, s;
1696
1697 pscp = &tcp_syn_cache_first;
1698 scp = tcp_syn_cache_first;
1699 s = splsoftnet();
1700 while (scp) {
1701 /*
1702 * Remove any empty hash buckets
1703 * from the cache queue.
1704 */
1705 if ((sc = scp->sch_first) == NULL) {
1706 *pscp = scp->sch_headq;
1707 scp->sch_headq = NULL;
1708 scp->sch_timer_sum = 0;
1709 scp->sch_first = scp->sch_last = NULL;
1710 scp->sch_length = 0;
1711 scp = *pscp;
1712 continue;
1713 }
1714
1715 scp->sch_timer_sum -= interval;
1716 if (scp->sch_timer_sum <= 0)
1717 scp->sch_timer_sum = -1;
1718 n = interval;
1719 while (sc->sc_timer <= n) {
1720 n -= sc->sc_timer;
1721 scn = sc->sc_next;
1722 tcpstat.tcps_sc_timed_out++;
1723 syn_cache_count--;
1724 FREE(sc, M_PCB);
1725 scp->sch_length--;
1726 if ((sc = scn) == NULL)
1727 break;
1728 }
1729 if ((scp->sch_first = sc) != NULL) {
1730 sc->sc_timer -= n;
1731 pscp = &scp->sch_headq;
1732 scp = scp->sch_headq;
1733 }
1734 }
1735 splx(s);
1736 }
1737
1738 /*
1739 * Find an entry in the syn cache.
1740 */
1741 struct syn_cache *
1742 syn_cache_lookup(ti, prevp, headp)
1743 struct tcpiphdr *ti;
1744 struct syn_cache ***prevp;
1745 struct syn_cache_head **headp;
1746 {
1747 struct syn_cache *sc, **prev;
1748 struct syn_cache_head *head;
1749 u_int32_t hash;
1750 int s;
1751
1752 hash = SYN_HASH(&ti->ti_src, ti->ti_sport, ti->ti_dport);
1753
1754 head = &tcp_syn_cache[hash % tcp_syn_cache_size];
1755 *headp = head;
1756 prev = &head->sch_first;
1757 s = splsoftnet();
1758 for (sc = head->sch_first; sc; prev = &sc->sc_next, sc = sc->sc_next) {
1759 if (sc->sc_hash != hash)
1760 continue;
1761 if (sc->sc_src.s_addr == ti->ti_src.s_addr &&
1762 sc->sc_sport == ti->ti_sport &&
1763 sc->sc_dport == ti->ti_dport &&
1764 sc->sc_dst.s_addr == ti->ti_dst.s_addr) {
1765 *prevp = prev;
1766 splx(s);
1767 return (sc);
1768 }
1769 }
1770 splx(s);
1771 return (NULL);
1772 }
1773
1774 /*
1775 * This function gets called when we receive an ACK for a
1776 * socket in the LISTEN state. We look up the connection
1777 * in the syn cache, and if its there, we pull it out of
1778 * the cache and turn it into a full-blown connection in
1779 * the SYN-RECEIVED state.
1780 *
1781 * The return values may not be immediately obvious, and their effects
1782 * can be subtle, so here they are:
1783 *
1784 * NULL SYN was not found in cache; caller should drop the
1785 * packet and send an RST.
1786 *
1787 * -1 We were unable to create the new connection, and are
1788 * aborting it. An ACK,RST is being sent to the peer
1789 * (unless we got screwey sequence numbners; see below),
1790 * because the 3-way handshake has been completed. Caller
1791 * should not free the mbuf, since we may be using it. If
1792 * we are not, we will free it.
1793 *
1794 * Otherwise, the return value is a pointer to the new socket
1795 * associated with the connection.
1796 */
1797 struct socket *
1798 syn_cache_get(so, m)
1799 struct socket *so;
1800 struct mbuf *m;
1801 {
1802 struct syn_cache *sc, **sc_prev;
1803 struct syn_cache_head *head;
1804 register struct inpcb *inp;
1805 register struct tcpcb *tp = 0;
1806 register struct tcpiphdr *ti;
1807 struct sockaddr_in *sin;
1808 struct mbuf *am;
1809 long win;
1810 int s;
1811
1812 ti = mtod(m, struct tcpiphdr *);
1813 s = splsoftnet();
1814 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1815 splx(s);
1816 return (NULL);
1817 }
1818
1819 win = sbspace(&so->so_rcv);
1820 if (win > TCP_MAXWIN)
1821 win = TCP_MAXWIN;
1822
1823 /*
1824 * Verify the sequence and ack numbers.
1825 */
1826 if ((ti->ti_ack != sc->sc_iss + 1) ||
1827 SEQ_LEQ(ti->ti_seq, sc->sc_irs) ||
1828 SEQ_GT(ti->ti_seq, sc->sc_irs + 1 + win)) {
1829 (void) syn_cache_respond(sc, m, ti, win, 0);
1830 splx(s);
1831 return ((struct socket *)(-1));
1832 }
1833
1834 /* Remove this cache entry */
1835 SYN_CACHE_RM(sc, sc_prev, head);
1836 splx(s);
1837
1838 /*
1839 * Ok, create the full blown connection, and set things up
1840 * as they would have been set up if we had created the
1841 * connection when the SYN arrived. If we can't create
1842 * the connection, abort it.
1843 */
1844 so = sonewconn(so, SS_ISCONNECTED);
1845 if (so == NULL)
1846 goto resetandabort;
1847
1848 inp = sotoinpcb(so);
1849 inp->inp_laddr = sc->sc_dst;
1850 inp->inp_lport = sc->sc_dport;
1851 in_pcbstate(inp, INP_BOUND);
1852 #if BSD>=43
1853 inp->inp_options = ip_srcroute();
1854 #endif
1855
1856 am = m_get(M_DONTWAIT, MT_SONAME); /* XXX */
1857 if (am == NULL) {
1858 m_freem(m);
1859 goto resetandabort;
1860 }
1861 am->m_len = sizeof(struct sockaddr_in);
1862 sin = mtod(am, struct sockaddr_in *);
1863 sin->sin_family = AF_INET;
1864 sin->sin_len = sizeof(*sin);
1865 sin->sin_addr = sc->sc_src;
1866 sin->sin_port = sc->sc_sport;
1867 bzero((caddr_t)sin->sin_zero, sizeof(sin->sin_zero));
1868 if (in_pcbconnect(inp, am)) {
1869 (void) m_free(am);
1870 m_freem(m);
1871 goto resetandabort;
1872 }
1873 (void) m_free(am);
1874
1875 tp = intotcpcb(inp);
1876 if (sc->sc_request_r_scale != 15) {
1877 tp->requested_s_scale = sc->sc_requested_s_scale;
1878 tp->request_r_scale = sc->sc_request_r_scale;
1879 tp->snd_scale = sc->sc_requested_s_scale;
1880 tp->rcv_scale = sc->sc_request_r_scale;
1881 tp->t_flags |= TF_RCVD_SCALE;
1882 }
1883 if (sc->sc_tstmp)
1884 tp->t_flags |= TF_RCVD_TSTMP;
1885
1886 tp->t_template = tcp_template(tp);
1887 if (tp->t_template == 0) {
1888 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
1889 so = NULL;
1890 m_freem(m);
1891 goto abort;
1892 }
1893
1894 tp->iss = sc->sc_iss;
1895 tp->irs = sc->sc_irs;
1896 tcp_sendseqinit(tp);
1897 tcp_rcvseqinit(tp);
1898 tp->t_state = TCPS_SYN_RECEIVED;
1899 tp->t_timer[TCPT_KEEP] = TCPTV_KEEP_INIT;
1900 tcpstat.tcps_accepts++;
1901
1902 /* Initialize tp->t_ourmss before we deal with the peer's! */
1903 tp->t_ourmss = sc->sc_ourmaxseg;
1904 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
1905 tcp_rmx_rtt(tp);
1906 tp->snd_wl1 = sc->sc_irs;
1907 tp->rcv_up = sc->sc_irs + 1;
1908
1909 /*
1910 * This is what whould have happened in tcp_ouput() when
1911 * the SYN,ACK was sent.
1912 */
1913 tp->snd_up = tp->snd_una;
1914 tp->snd_max = tp->snd_nxt = tp->iss+1;
1915 tp->t_timer[TCPT_REXMT] = tp->t_rxtcur;
1916 if (win > 0 && SEQ_GT(tp->rcv_nxt+win, tp->rcv_adv))
1917 tp->rcv_adv = tp->rcv_nxt + win;
1918 tp->last_ack_sent = tp->rcv_nxt;
1919
1920 tcpstat.tcps_sc_completed++;
1921 FREE(sc, M_PCB);
1922 return (so);
1923
1924 resetandabort:
1925 (void) tcp_respond(NULL, ti, m, ti->ti_seq+ti->ti_len,
1926 (tcp_seq)0, TH_RST|TH_ACK);
1927 abort:
1928 if (so != NULL)
1929 (void) soabort(so);
1930 FREE(sc, M_PCB);
1931 tcpstat.tcps_sc_aborted++;
1932 return ((struct socket *)(-1));
1933 }
1934
1935 /*
1936 * This function is called when we get a RST for a
1937 * non-existant connection, so that we can see if the
1938 * connection is in the syn cache. If it is, zap it.
1939 */
1940
1941 void
1942 syn_cache_reset(ti)
1943 register struct tcpiphdr *ti;
1944 {
1945 struct syn_cache *sc, **sc_prev;
1946 struct syn_cache_head *head;
1947 int s = splsoftnet();
1948
1949 if ((sc = syn_cache_lookup(ti, &sc_prev, &head)) == NULL) {
1950 splx(s);
1951 return;
1952 }
1953 if (SEQ_LT(ti->ti_seq,sc->sc_irs) ||
1954 SEQ_GT(ti->ti_seq, sc->sc_irs+1)) {
1955 splx(s);
1956 return;
1957 }
1958 SYN_CACHE_RM(sc, sc_prev, head);
1959 splx(s);
1960 tcpstat.tcps_sc_reset++;
1961 FREE(sc, M_PCB);
1962 }
1963
1964 void
1965 syn_cache_unreach(ip, th)
1966 struct ip *ip;
1967 struct tcphdr *th;
1968 {
1969 struct syn_cache *sc, **sc_prev;
1970 struct syn_cache_head *head;
1971 struct tcpiphdr ti2;
1972 int s;
1973
1974 ti2.ti_src.s_addr = ip->ip_dst.s_addr;
1975 ti2.ti_dst.s_addr = ip->ip_src.s_addr;
1976 ti2.ti_sport = th->th_dport;
1977 ti2.ti_dport = th->th_sport;
1978
1979 s = splsoftnet();
1980 if ((sc = syn_cache_lookup(&ti2, &sc_prev, &head)) == NULL) {
1981 splx(s);
1982 return;
1983 }
1984 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
1985 if (ntohl (th->th_seq) != sc->sc_iss) {
1986 splx(s);
1987 return;
1988 }
1989 SYN_CACHE_RM(sc, sc_prev, head);
1990 splx(s);
1991 tcpstat.tcps_sc_unreach++;
1992 FREE(sc, M_PCB);
1993 }
1994
1995 /*
1996 * Given a LISTEN socket and an inbound SYN request, add
1997 * this to the syn cache, and send back a segment:
1998 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
1999 * to the source.
2000 *
2001 * XXX We don't properly handle SYN-with-data!
2002 */
2003
2004 int
2005 syn_cache_add(so, m, optp, optlen, oi)
2006 struct socket *so;
2007 struct mbuf *m;
2008 u_char *optp;
2009 int optlen;
2010 struct tcp_opt_info *oi;
2011 {
2012 register struct tcpiphdr *ti;
2013 struct tcpcb tb, *tp;
2014 long win;
2015 struct syn_cache *sc, **sc_prev;
2016 struct syn_cache_head *scp;
2017 extern int tcp_do_rfc1323;
2018
2019 tp = sototcpcb(so);
2020 ti = mtod(m, struct tcpiphdr *);
2021
2022 /*
2023 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
2024 * in_broadcast() should never return true on a received
2025 * packet with M_BCAST not set.
2026 */
2027 if (m->m_flags & (M_BCAST|M_MCAST) ||
2028 IN_MULTICAST(ti->ti_src.s_addr) ||
2029 IN_MULTICAST(ti->ti_dst.s_addr))
2030 return (0);
2031
2032 /*
2033 * Initialize some local state.
2034 */
2035 win = sbspace(&so->so_rcv);
2036 if (win > TCP_MAXWIN)
2037 win = TCP_MAXWIN;
2038
2039 if (optp) {
2040 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
2041 tcp_dooptions(&tb, optp, optlen, ti, oi);
2042 } else
2043 tb.t_flags = 0;
2044
2045 /*
2046 * See if we already have an entry for this connection.
2047 */
2048 if ((sc = syn_cache_lookup(ti, &sc_prev, &scp)) != NULL) {
2049 tcpstat.tcps_sc_dupesyn++;
2050 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2051 tcpstat.tcps_sndacks++;
2052 tcpstat.tcps_sndtotal++;
2053 }
2054 return (1);
2055 }
2056
2057 MALLOC(sc, struct syn_cache *, sizeof(*sc), M_PCB, M_NOWAIT);
2058 if (sc == NULL)
2059 return (0);
2060 /*
2061 * Fill in the cache, and put the necessary TCP
2062 * options into the reply.
2063 */
2064 sc->sc_src.s_addr = ti->ti_src.s_addr;
2065 sc->sc_dst.s_addr = ti->ti_dst.s_addr;
2066 sc->sc_sport = ti->ti_sport;
2067 sc->sc_dport = ti->ti_dport;
2068 sc->sc_irs = ti->ti_seq;
2069 sc->sc_iss = tcp_new_iss(sc, sizeof(struct syn_cache), 0);
2070 sc->sc_peermaxseg = oi->maxseg;
2071 sc->sc_ourmaxseg = tcp_mss_to_advertise(tp);
2072 sc->sc_tstmp = (tcp_do_rfc1323 && (tb.t_flags & TF_RCVD_TSTMP)) ? 1 : 0;
2073 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2074 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2075 sc->sc_requested_s_scale = tb.requested_s_scale;
2076 sc->sc_request_r_scale = 0;
2077 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
2078 TCP_MAXWIN << sc->sc_request_r_scale <
2079 so->so_rcv.sb_hiwat)
2080 sc->sc_request_r_scale++;
2081 } else {
2082 sc->sc_requested_s_scale = 15;
2083 sc->sc_request_r_scale = 15;
2084 }
2085 if (syn_cache_respond(sc, m, ti, win, tb.ts_recent) == 0) {
2086 syn_cache_insert(sc, &sc_prev, &scp);
2087 tcpstat.tcps_sndacks++;
2088 tcpstat.tcps_sndtotal++;
2089 } else {
2090 FREE(sc, M_PCB);
2091 tcpstat.tcps_sc_dropped++;
2092 }
2093 return (1);
2094 }
2095
2096 int
2097 syn_cache_respond(sc, m, ti, win, ts)
2098 struct syn_cache *sc;
2099 struct mbuf *m;
2100 register struct tcpiphdr *ti;
2101 long win;
2102 u_long ts;
2103 {
2104 u_int8_t *optp;
2105 int optlen;
2106
2107 /*
2108 * Tack on the TCP options. If there isn't enough trailing
2109 * space for them, move up the fixed header to make space.
2110 */
2111 optlen = 4 + (sc->sc_request_r_scale != 15 ? 4 : 0) +
2112 (sc->sc_tstmp ? TCPOLEN_TSTAMP_APPA : 0);
2113 if (optlen > M_TRAILINGSPACE(m)) {
2114 if (M_LEADINGSPACE(m) >= optlen) {
2115 m->m_data -= optlen;
2116 m->m_len += optlen;
2117 } else {
2118 struct mbuf *m0 = m;
2119 if ((m = m_gethdr(M_DONTWAIT, MT_HEADER)) == NULL) {
2120 m_freem(m0);
2121 return (ENOBUFS);
2122 }
2123 MH_ALIGN(m, sizeof(*ti) + optlen);
2124 m->m_next = m0; /* this gets freed below */
2125 }
2126 ovbcopy((caddr_t)ti, mtod(m, caddr_t), sizeof(*ti));
2127 ti = mtod(m, struct tcpiphdr *);
2128 }
2129
2130 optp = (u_int8_t *)(ti + 1);
2131 optp[0] = TCPOPT_MAXSEG;
2132 optp[1] = 4;
2133 optp[2] = (sc->sc_ourmaxseg >> 8) & 0xff;
2134 optp[3] = sc->sc_ourmaxseg & 0xff;
2135 optlen = 4;
2136
2137 if (sc->sc_request_r_scale != 15) {
2138 *((u_int32_t *)(optp + optlen)) = htonl(TCPOPT_NOP << 24 |
2139 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
2140 sc->sc_request_r_scale);
2141 optlen += 4;
2142 }
2143
2144 if (sc->sc_tstmp) {
2145 u_int32_t *lp = (u_int32_t *)(optp + optlen);
2146 /* Form timestamp option as shown in appendix A of RFC 1323. */
2147 *lp++ = htonl(TCPOPT_TSTAMP_HDR);
2148 *lp++ = htonl(tcp_now);
2149 *lp = htonl(ts);
2150 optlen += TCPOLEN_TSTAMP_APPA;
2151 }
2152
2153 /*
2154 * Toss any trailing mbufs. No need to worry about
2155 * m_len and m_pkthdr.len, since tcp_respond() will
2156 * unconditionally set them.
2157 */
2158 if (m->m_next) {
2159 m_freem(m->m_next);
2160 m->m_next = NULL;
2161 }
2162
2163 /*
2164 * Fill in the fields that tcp_respond() will not touch, and
2165 * then send the response.
2166 */
2167 ti->ti_off = (sizeof(struct tcphdr) + optlen) >> 2;
2168 ti->ti_win = htons(win);
2169 return (tcp_respond(NULL, ti, m, sc->sc_irs + 1, sc->sc_iss,
2170 TH_SYN|TH_ACK));
2171 }
2172 #endif /* TUBA_INCLUDE */
2173