tcp_input.c revision 1.364 1 /* $NetBSD: tcp_input.c,v 1.364 2018/02/08 09:05:20 dholland Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.364 2018/02/08 09:05:20 dholland Exp $");
152
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177
178 #include <net/if.h>
179 #include <net/if_types.h>
180
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif /* INET6 */
226
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/ipsec_private.h>
231 #include <netipsec/key.h>
232 #ifdef INET6
233 #include <netipsec/ipsec6.h>
234 #endif
235 #endif /* IPSEC*/
236
237 #include <netinet/tcp_vtw.h>
238
239 int tcprexmtthresh = 3;
240 int tcp_log_refused;
241
242 int tcp_do_autorcvbuf = 1;
243 int tcp_autorcvbuf_inc = 16 * 1024;
244 int tcp_autorcvbuf_max = 256 * 1024;
245 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
246
247 static int tcp_rst_ppslim_count = 0;
248 static struct timeval tcp_rst_ppslim_last;
249 static int tcp_ackdrop_ppslim_count = 0;
250 static struct timeval tcp_ackdrop_ppslim_last;
251
252 static void syn_cache_timer(void *);
253
254 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
255
256 /* for modulo comparisons of timestamps */
257 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
258 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
259
260 /*
261 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
262 */
263 #ifdef INET6
264 static inline void
265 nd6_hint(struct tcpcb *tp)
266 {
267 struct rtentry *rt = NULL;
268
269 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
270 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
271 nd6_nud_hint(rt);
272 rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
273 }
274 #else
275 static inline void
276 nd6_hint(struct tcpcb *tp)
277 {
278 }
279 #endif
280
281 /*
282 * Compute ACK transmission behavior. Delay the ACK unless
283 * we have already delayed an ACK (must send an ACK every two segments).
284 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
285 * option is enabled.
286 */
287 static void
288 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
289 {
290
291 if (tp->t_flags & TF_DELACK ||
292 (tcp_ack_on_push && th->th_flags & TH_PUSH))
293 tp->t_flags |= TF_ACKNOW;
294 else
295 TCP_SET_DELACK(tp);
296 }
297
298 static void
299 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
300 {
301
302 /*
303 * If we had a pending ICMP message that refers to data that have
304 * just been acknowledged, disregard the recorded ICMP message.
305 */
306 if ((tp->t_flags & TF_PMTUD_PEND) &&
307 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
308 tp->t_flags &= ~TF_PMTUD_PEND;
309
310 /*
311 * Keep track of the largest chunk of data
312 * acknowledged since last PMTU update
313 */
314 if (tp->t_pmtud_mss_acked < acked)
315 tp->t_pmtud_mss_acked = acked;
316 }
317
318 /*
319 * Convert TCP protocol fields to host order for easier processing.
320 */
321 static void
322 tcp_fields_to_host(struct tcphdr *th)
323 {
324
325 NTOHL(th->th_seq);
326 NTOHL(th->th_ack);
327 NTOHS(th->th_win);
328 NTOHS(th->th_urp);
329 }
330
331 /*
332 * ... and reverse the above.
333 */
334 static void
335 tcp_fields_to_net(struct tcphdr *th)
336 {
337
338 HTONL(th->th_seq);
339 HTONL(th->th_ack);
340 HTONS(th->th_win);
341 HTONS(th->th_urp);
342 }
343
344 #ifdef TCP_CSUM_COUNTERS
345 #include <sys/device.h>
346
347 #if defined(INET)
348 extern struct evcnt tcp_hwcsum_ok;
349 extern struct evcnt tcp_hwcsum_bad;
350 extern struct evcnt tcp_hwcsum_data;
351 extern struct evcnt tcp_swcsum;
352 #endif /* defined(INET) */
353 #if defined(INET6)
354 extern struct evcnt tcp6_hwcsum_ok;
355 extern struct evcnt tcp6_hwcsum_bad;
356 extern struct evcnt tcp6_hwcsum_data;
357 extern struct evcnt tcp6_swcsum;
358 #endif /* defined(INET6) */
359
360 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
361
362 #else
363
364 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
365
366 #endif /* TCP_CSUM_COUNTERS */
367
368 #ifdef TCP_REASS_COUNTERS
369 #include <sys/device.h>
370
371 extern struct evcnt tcp_reass_;
372 extern struct evcnt tcp_reass_empty;
373 extern struct evcnt tcp_reass_iteration[8];
374 extern struct evcnt tcp_reass_prependfirst;
375 extern struct evcnt tcp_reass_prepend;
376 extern struct evcnt tcp_reass_insert;
377 extern struct evcnt tcp_reass_inserttail;
378 extern struct evcnt tcp_reass_append;
379 extern struct evcnt tcp_reass_appendtail;
380 extern struct evcnt tcp_reass_overlaptail;
381 extern struct evcnt tcp_reass_overlapfront;
382 extern struct evcnt tcp_reass_segdup;
383 extern struct evcnt tcp_reass_fragdup;
384
385 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
386
387 #else
388
389 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
390
391 #endif /* TCP_REASS_COUNTERS */
392
393 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
394 int *);
395 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
396 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
397
398 #ifdef INET
399 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
400 #endif
401 #ifdef INET6
402 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
403 #endif
404
405 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
406
407 #if defined(MBUFTRACE)
408 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
409 #endif /* defined(MBUFTRACE) */
410
411 static struct pool tcpipqent_pool;
412
413 void
414 tcpipqent_init(void)
415 {
416
417 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
418 NULL, IPL_VM);
419 }
420
421 struct ipqent *
422 tcpipqent_alloc(void)
423 {
424 struct ipqent *ipqe;
425 int s;
426
427 s = splvm();
428 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
429 splx(s);
430
431 return ipqe;
432 }
433
434 void
435 tcpipqent_free(struct ipqent *ipqe)
436 {
437 int s;
438
439 s = splvm();
440 pool_put(&tcpipqent_pool, ipqe);
441 splx(s);
442 }
443
444 static int
445 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
446 {
447 struct ipqent *p, *q, *nq, *tiqe = NULL;
448 struct socket *so = NULL;
449 int pkt_flags;
450 tcp_seq pkt_seq;
451 unsigned pkt_len;
452 u_long rcvpartdupbyte = 0;
453 u_long rcvoobyte;
454 #ifdef TCP_REASS_COUNTERS
455 u_int count = 0;
456 #endif
457 uint64_t *tcps;
458
459 if (tp->t_inpcb)
460 so = tp->t_inpcb->inp_socket;
461 #ifdef INET6
462 else if (tp->t_in6pcb)
463 so = tp->t_in6pcb->in6p_socket;
464 #endif
465
466 TCP_REASS_LOCK_CHECK(tp);
467
468 /*
469 * Call with th==0 after become established to
470 * force pre-ESTABLISHED data up to user socket.
471 */
472 if (th == 0)
473 goto present;
474
475 m_claimm(m, &tcp_reass_mowner);
476
477 rcvoobyte = *tlen;
478 /*
479 * Copy these to local variables because the tcpiphdr
480 * gets munged while we are collapsing mbufs.
481 */
482 pkt_seq = th->th_seq;
483 pkt_len = *tlen;
484 pkt_flags = th->th_flags;
485
486 TCP_REASS_COUNTER_INCR(&tcp_reass_);
487
488 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
489 /*
490 * When we miss a packet, the vast majority of time we get
491 * packets that follow it in order. So optimize for that.
492 */
493 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
494 p->ipqe_len += pkt_len;
495 p->ipqe_flags |= pkt_flags;
496 m_cat(p->ipre_mlast, m);
497 TRAVERSE(p->ipre_mlast);
498 m = NULL;
499 tiqe = p;
500 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
501 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
502 goto skip_replacement;
503 }
504 /*
505 * While we're here, if the pkt is completely beyond
506 * anything we have, just insert it at the tail.
507 */
508 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
509 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
510 goto insert_it;
511 }
512 }
513
514 q = TAILQ_FIRST(&tp->segq);
515
516 if (q != NULL) {
517 /*
518 * If this segment immediately precedes the first out-of-order
519 * block, simply slap the segment in front of it and (mostly)
520 * skip the complicated logic.
521 */
522 if (pkt_seq + pkt_len == q->ipqe_seq) {
523 q->ipqe_seq = pkt_seq;
524 q->ipqe_len += pkt_len;
525 q->ipqe_flags |= pkt_flags;
526 m_cat(m, q->ipqe_m);
527 q->ipqe_m = m;
528 q->ipre_mlast = m; /* last mbuf may have changed */
529 TRAVERSE(q->ipre_mlast);
530 tiqe = q;
531 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
532 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
533 goto skip_replacement;
534 }
535 } else {
536 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
537 }
538
539 /*
540 * Find a segment which begins after this one does.
541 */
542 for (p = NULL; q != NULL; q = nq) {
543 nq = TAILQ_NEXT(q, ipqe_q);
544 #ifdef TCP_REASS_COUNTERS
545 count++;
546 #endif
547 /*
548 * If the received segment is just right after this
549 * fragment, merge the two together and then check
550 * for further overlaps.
551 */
552 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
553 #ifdef TCPREASS_DEBUG
554 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
555 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
556 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
557 #endif
558 pkt_len += q->ipqe_len;
559 pkt_flags |= q->ipqe_flags;
560 pkt_seq = q->ipqe_seq;
561 m_cat(q->ipre_mlast, m);
562 TRAVERSE(q->ipre_mlast);
563 m = q->ipqe_m;
564 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
565 goto free_ipqe;
566 }
567 /*
568 * If the received segment is completely past this
569 * fragment, we need to go the next fragment.
570 */
571 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
572 p = q;
573 continue;
574 }
575 /*
576 * If the fragment is past the received segment,
577 * it (or any following) can't be concatenated.
578 */
579 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
580 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
581 break;
582 }
583
584 /*
585 * We've received all the data in this segment before.
586 * mark it as a duplicate and return.
587 */
588 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
589 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
590 tcps = TCP_STAT_GETREF();
591 tcps[TCP_STAT_RCVDUPPACK]++;
592 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
593 TCP_STAT_PUTREF();
594 tcp_new_dsack(tp, pkt_seq, pkt_len);
595 m_freem(m);
596 if (tiqe != NULL) {
597 tcpipqent_free(tiqe);
598 }
599 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
600 goto out;
601 }
602 /*
603 * Received segment completely overlaps this fragment
604 * so we drop the fragment (this keeps the temporal
605 * ordering of segments correct).
606 */
607 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
608 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
609 rcvpartdupbyte += q->ipqe_len;
610 m_freem(q->ipqe_m);
611 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
612 goto free_ipqe;
613 }
614 /*
615 * RX'ed segment extends past the end of the
616 * fragment. Drop the overlapping bytes. Then
617 * merge the fragment and segment then treat as
618 * a longer received packet.
619 */
620 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
621 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
622 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
623 #ifdef TCPREASS_DEBUG
624 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
625 tp, overlap,
626 pkt_seq, pkt_seq + pkt_len, pkt_len);
627 #endif
628 m_adj(m, overlap);
629 rcvpartdupbyte += overlap;
630 m_cat(q->ipre_mlast, m);
631 TRAVERSE(q->ipre_mlast);
632 m = q->ipqe_m;
633 pkt_seq = q->ipqe_seq;
634 pkt_len += q->ipqe_len - overlap;
635 rcvoobyte -= overlap;
636 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
637 goto free_ipqe;
638 }
639 /*
640 * RX'ed segment extends past the front of the
641 * fragment. Drop the overlapping bytes on the
642 * received packet. The packet will then be
643 * contatentated with this fragment a bit later.
644 */
645 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
646 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
647 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
648 #ifdef TCPREASS_DEBUG
649 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
650 tp, overlap,
651 pkt_seq, pkt_seq + pkt_len, pkt_len);
652 #endif
653 m_adj(m, -overlap);
654 pkt_len -= overlap;
655 rcvpartdupbyte += overlap;
656 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
657 rcvoobyte -= overlap;
658 }
659 /*
660 * If the received segment immediates precedes this
661 * fragment then tack the fragment onto this segment
662 * and reinsert the data.
663 */
664 if (q->ipqe_seq == pkt_seq + pkt_len) {
665 #ifdef TCPREASS_DEBUG
666 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
667 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
668 pkt_seq, pkt_seq + pkt_len, pkt_len);
669 #endif
670 pkt_len += q->ipqe_len;
671 pkt_flags |= q->ipqe_flags;
672 m_cat(m, q->ipqe_m);
673 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
674 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
675 tp->t_segqlen--;
676 KASSERT(tp->t_segqlen >= 0);
677 KASSERT(tp->t_segqlen != 0 ||
678 (TAILQ_EMPTY(&tp->segq) &&
679 TAILQ_EMPTY(&tp->timeq)));
680 if (tiqe == NULL) {
681 tiqe = q;
682 } else {
683 tcpipqent_free(q);
684 }
685 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
686 break;
687 }
688 /*
689 * If the fragment is before the segment, remember it.
690 * When this loop is terminated, p will contain the
691 * pointer to fragment that is right before the received
692 * segment.
693 */
694 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
695 p = q;
696
697 continue;
698
699 /*
700 * This is a common operation. It also will allow
701 * to save doing a malloc/free in most instances.
702 */
703 free_ipqe:
704 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
705 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
706 tp->t_segqlen--;
707 KASSERT(tp->t_segqlen >= 0);
708 KASSERT(tp->t_segqlen != 0 ||
709 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
710 if (tiqe == NULL) {
711 tiqe = q;
712 } else {
713 tcpipqent_free(q);
714 }
715 }
716
717 #ifdef TCP_REASS_COUNTERS
718 if (count > 7)
719 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
720 else if (count > 0)
721 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
722 #endif
723
724 insert_it:
725
726 /*
727 * Allocate a new queue entry since the received segment did not
728 * collapse onto any other out-of-order block; thus we are allocating
729 * a new block. If it had collapsed, tiqe would not be NULL and
730 * we would be reusing it.
731 * XXX If we can't, just drop the packet. XXX
732 */
733 if (tiqe == NULL) {
734 tiqe = tcpipqent_alloc();
735 if (tiqe == NULL) {
736 TCP_STATINC(TCP_STAT_RCVMEMDROP);
737 m_freem(m);
738 goto out;
739 }
740 }
741
742 /*
743 * Update the counters.
744 */
745 tp->t_rcvoopack++;
746 tcps = TCP_STAT_GETREF();
747 tcps[TCP_STAT_RCVOOPACK]++;
748 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
749 if (rcvpartdupbyte) {
750 tcps[TCP_STAT_RCVPARTDUPPACK]++;
751 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
752 }
753 TCP_STAT_PUTREF();
754
755 /*
756 * Insert the new fragment queue entry into both queues.
757 */
758 tiqe->ipqe_m = m;
759 tiqe->ipre_mlast = m;
760 tiqe->ipqe_seq = pkt_seq;
761 tiqe->ipqe_len = pkt_len;
762 tiqe->ipqe_flags = pkt_flags;
763 if (p == NULL) {
764 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
765 #ifdef TCPREASS_DEBUG
766 if (tiqe->ipqe_seq != tp->rcv_nxt)
767 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
768 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
769 #endif
770 } else {
771 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
772 #ifdef TCPREASS_DEBUG
773 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
774 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
775 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
776 #endif
777 }
778 tp->t_segqlen++;
779
780 skip_replacement:
781
782 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
783
784 present:
785 /*
786 * Present data to user, advancing rcv_nxt through
787 * completed sequence space.
788 */
789 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
790 goto out;
791 q = TAILQ_FIRST(&tp->segq);
792 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
793 goto out;
794 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
795 goto out;
796
797 tp->rcv_nxt += q->ipqe_len;
798 pkt_flags = q->ipqe_flags & TH_FIN;
799 nd6_hint(tp);
800
801 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
802 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
803 tp->t_segqlen--;
804 KASSERT(tp->t_segqlen >= 0);
805 KASSERT(tp->t_segqlen != 0 ||
806 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
807 if (so->so_state & SS_CANTRCVMORE)
808 m_freem(q->ipqe_m);
809 else
810 sbappendstream(&so->so_rcv, q->ipqe_m);
811 tcpipqent_free(q);
812 TCP_REASS_UNLOCK(tp);
813 sorwakeup(so);
814 return (pkt_flags);
815 out:
816 TCP_REASS_UNLOCK(tp);
817 return (0);
818 }
819
820 #ifdef INET6
821 int
822 tcp6_input(struct mbuf **mp, int *offp, int proto)
823 {
824 struct mbuf *m = *mp;
825
826 /*
827 * draft-itojun-ipv6-tcp-to-anycast
828 * better place to put this in?
829 */
830 if (m->m_flags & M_ANYCAST6) {
831 struct ip6_hdr *ip6;
832 if (m->m_len < sizeof(struct ip6_hdr)) {
833 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
834 TCP_STATINC(TCP_STAT_RCVSHORT);
835 return IPPROTO_DONE;
836 }
837 }
838 ip6 = mtod(m, struct ip6_hdr *);
839 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
840 (char *)&ip6->ip6_dst - (char *)ip6);
841 return IPPROTO_DONE;
842 }
843
844 tcp_input(m, *offp, proto);
845 return IPPROTO_DONE;
846 }
847 #endif
848
849 #ifdef INET
850 static void
851 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
852 {
853 char src[INET_ADDRSTRLEN];
854 char dst[INET_ADDRSTRLEN];
855
856 if (ip) {
857 in_print(src, sizeof(src), &ip->ip_src);
858 in_print(dst, sizeof(dst), &ip->ip_dst);
859 }
860 else {
861 strlcpy(src, "(unknown)", sizeof(src));
862 strlcpy(dst, "(unknown)", sizeof(dst));
863 }
864 log(LOG_INFO,
865 "Connection attempt to TCP %s:%d from %s:%d\n",
866 dst, ntohs(th->th_dport),
867 src, ntohs(th->th_sport));
868 }
869 #endif
870
871 #ifdef INET6
872 static void
873 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
874 {
875 char src[INET6_ADDRSTRLEN];
876 char dst[INET6_ADDRSTRLEN];
877
878 if (ip6) {
879 in6_print(src, sizeof(src), &ip6->ip6_src);
880 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
881 }
882 else {
883 strlcpy(src, "(unknown v6)", sizeof(src));
884 strlcpy(dst, "(unknown v6)", sizeof(dst));
885 }
886 log(LOG_INFO,
887 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
888 dst, ntohs(th->th_dport),
889 src, ntohs(th->th_sport));
890 }
891 #endif
892
893 /*
894 * Checksum extended TCP header and data.
895 */
896 int
897 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
898 int toff, int off, int tlen)
899 {
900 struct ifnet *rcvif;
901 int s;
902
903 /*
904 * XXX it's better to record and check if this mbuf is
905 * already checked.
906 */
907
908 rcvif = m_get_rcvif(m, &s);
909 if (__predict_false(rcvif == NULL))
910 goto badcsum; /* XXX */
911
912 switch (af) {
913 #ifdef INET
914 case AF_INET:
915 switch (m->m_pkthdr.csum_flags &
916 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
917 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
918 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
919 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
920 goto badcsum;
921
922 case M_CSUM_TCPv4|M_CSUM_DATA: {
923 u_int32_t hw_csum = m->m_pkthdr.csum_data;
924
925 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
926 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
927 const struct ip *ip =
928 mtod(m, const struct ip *);
929
930 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
931 ip->ip_dst.s_addr,
932 htons(hw_csum + tlen + off + IPPROTO_TCP));
933 }
934 if ((hw_csum ^ 0xffff) != 0)
935 goto badcsum;
936 break;
937 }
938
939 case M_CSUM_TCPv4:
940 /* Checksum was okay. */
941 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
942 break;
943
944 default:
945 /*
946 * Must compute it ourselves. Maybe skip checksum
947 * on loopback interfaces.
948 */
949 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
950 tcp_do_loopback_cksum)) {
951 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
952 if (in4_cksum(m, IPPROTO_TCP, toff,
953 tlen + off) != 0)
954 goto badcsum;
955 }
956 break;
957 }
958 break;
959 #endif /* INET4 */
960
961 #ifdef INET6
962 case AF_INET6:
963 switch (m->m_pkthdr.csum_flags &
964 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
965 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
966 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
967 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
968 goto badcsum;
969
970 #if 0 /* notyet */
971 case M_CSUM_TCPv6|M_CSUM_DATA:
972 #endif
973
974 case M_CSUM_TCPv6:
975 /* Checksum was okay. */
976 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
977 break;
978
979 default:
980 /*
981 * Must compute it ourselves. Maybe skip checksum
982 * on loopback interfaces.
983 */
984 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
985 tcp_do_loopback_cksum)) {
986 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
987 if (in6_cksum(m, IPPROTO_TCP, toff,
988 tlen + off) != 0)
989 goto badcsum;
990 }
991 }
992 break;
993 #endif /* INET6 */
994 }
995 m_put_rcvif(rcvif, &s);
996
997 return 0;
998
999 badcsum:
1000 m_put_rcvif(rcvif, &s);
1001 TCP_STATINC(TCP_STAT_RCVBADSUM);
1002 return -1;
1003 }
1004
1005 /* When a packet arrives addressed to a vestigial tcpbp, we
1006 * nevertheless have to respond to it per the spec.
1007 */
1008 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1009 struct mbuf *m, int tlen, int multicast)
1010 {
1011 int tiflags;
1012 int todrop;
1013 uint32_t t_flags = 0;
1014 uint64_t *tcps;
1015
1016 tiflags = th->th_flags;
1017 todrop = vp->rcv_nxt - th->th_seq;
1018
1019 if (todrop > 0) {
1020 if (tiflags & TH_SYN) {
1021 tiflags &= ~TH_SYN;
1022 ++th->th_seq;
1023 if (th->th_urp > 1)
1024 --th->th_urp;
1025 else {
1026 tiflags &= ~TH_URG;
1027 th->th_urp = 0;
1028 }
1029 --todrop;
1030 }
1031 if (todrop > tlen ||
1032 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1033 /*
1034 * Any valid FIN or RST must be to the left of the
1035 * window. At this point the FIN or RST must be a
1036 * duplicate or out of sequence; drop it.
1037 */
1038 if (tiflags & TH_RST)
1039 goto drop;
1040 tiflags &= ~(TH_FIN|TH_RST);
1041 /*
1042 * Send an ACK to resynchronize and drop any data.
1043 * But keep on processing for RST or ACK.
1044 */
1045 t_flags |= TF_ACKNOW;
1046 todrop = tlen;
1047 tcps = TCP_STAT_GETREF();
1048 tcps[TCP_STAT_RCVDUPPACK] += 1;
1049 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1050 TCP_STAT_PUTREF();
1051 } else if ((tiflags & TH_RST)
1052 && th->th_seq != vp->rcv_nxt) {
1053 /*
1054 * Test for reset before adjusting the sequence
1055 * number for overlapping data.
1056 */
1057 goto dropafterack_ratelim;
1058 } else {
1059 tcps = TCP_STAT_GETREF();
1060 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1061 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1062 TCP_STAT_PUTREF();
1063 }
1064
1065 // tcp_new_dsack(tp, th->th_seq, todrop);
1066 // hdroptlen += todrop; /*drop from head afterwards*/
1067
1068 th->th_seq += todrop;
1069 tlen -= todrop;
1070
1071 if (th->th_urp > todrop)
1072 th->th_urp -= todrop;
1073 else {
1074 tiflags &= ~TH_URG;
1075 th->th_urp = 0;
1076 }
1077 }
1078
1079 /*
1080 * If new data are received on a connection after the
1081 * user processes are gone, then RST the other end.
1082 */
1083 if (tlen) {
1084 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1085 goto dropwithreset;
1086 }
1087
1088 /*
1089 * If segment ends after window, drop trailing data
1090 * (and PUSH and FIN); if nothing left, just ACK.
1091 */
1092 todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1093
1094 if (todrop > 0) {
1095 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1096 if (todrop >= tlen) {
1097 /*
1098 * The segment actually starts after the window.
1099 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1100 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1101 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1102 */
1103 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1104 /*
1105 * If a new connection request is received
1106 * while in TIME_WAIT, drop the old connection
1107 * and start over if the sequence numbers
1108 * are above the previous ones.
1109 */
1110 if ((tiflags & TH_SYN)
1111 && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1112 /* We only support this in the !NOFDREF case, which
1113 * is to say: not here.
1114 */
1115 goto dropwithreset;
1116 }
1117 /*
1118 * If window is closed can only take segments at
1119 * window edge, and have to drop data and PUSH from
1120 * incoming segments. Continue processing, but
1121 * remember to ack. Otherwise, drop segment
1122 * and (if not RST) ack.
1123 */
1124 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1125 t_flags |= TF_ACKNOW;
1126 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1127 } else
1128 goto dropafterack;
1129 } else
1130 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1131 m_adj(m, -todrop);
1132 tlen -= todrop;
1133 tiflags &= ~(TH_PUSH|TH_FIN);
1134 }
1135
1136 if (tiflags & TH_RST) {
1137 if (th->th_seq != vp->rcv_nxt)
1138 goto dropafterack_ratelim;
1139
1140 vtw_del(vp->ctl, vp->vtw);
1141 goto drop;
1142 }
1143
1144 /*
1145 * If the ACK bit is off we drop the segment and return.
1146 */
1147 if ((tiflags & TH_ACK) == 0) {
1148 if (t_flags & TF_ACKNOW)
1149 goto dropafterack;
1150 else
1151 goto drop;
1152 }
1153
1154 /*
1155 * In TIME_WAIT state the only thing that should arrive
1156 * is a retransmission of the remote FIN. Acknowledge
1157 * it and restart the finack timer.
1158 */
1159 vtw_restart(vp);
1160 goto dropafterack;
1161
1162 dropafterack:
1163 /*
1164 * Generate an ACK dropping incoming segment if it occupies
1165 * sequence space, where the ACK reflects our state.
1166 */
1167 if (tiflags & TH_RST)
1168 goto drop;
1169 goto dropafterack2;
1170
1171 dropafterack_ratelim:
1172 /*
1173 * We may want to rate-limit ACKs against SYN/RST attack.
1174 */
1175 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1176 tcp_ackdrop_ppslim) == 0) {
1177 /* XXX stat */
1178 goto drop;
1179 }
1180 /* ...fall into dropafterack2... */
1181
1182 dropafterack2:
1183 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1184 TH_ACK);
1185 return;
1186
1187 dropwithreset:
1188 /*
1189 * Generate a RST, dropping incoming segment.
1190 * Make ACK acceptable to originator of segment.
1191 */
1192 if (tiflags & TH_RST)
1193 goto drop;
1194
1195 if (tiflags & TH_ACK)
1196 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1197 else {
1198 if (tiflags & TH_SYN)
1199 ++tlen;
1200 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1201 TH_RST|TH_ACK);
1202 }
1203 return;
1204 drop:
1205 m_freem(m);
1206 }
1207
1208 /*
1209 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1210 */
1211 void
1212 tcp_input(struct mbuf *m, ...)
1213 {
1214 struct tcphdr *th;
1215 struct ip *ip;
1216 struct inpcb *inp;
1217 #ifdef INET6
1218 struct ip6_hdr *ip6;
1219 struct in6pcb *in6p;
1220 #endif
1221 u_int8_t *optp = NULL;
1222 int optlen = 0;
1223 int len, tlen, toff, hdroptlen = 0;
1224 struct tcpcb *tp = 0;
1225 int tiflags;
1226 struct socket *so = NULL;
1227 int todrop, acked, ourfinisacked, needoutput = 0;
1228 bool dupseg;
1229 #ifdef TCP_DEBUG
1230 short ostate = 0;
1231 #endif
1232 u_long tiwin;
1233 struct tcp_opt_info opti;
1234 int off, iphlen;
1235 va_list ap;
1236 int af; /* af on the wire */
1237 struct mbuf *tcp_saveti = NULL;
1238 uint32_t ts_rtt;
1239 uint8_t iptos;
1240 uint64_t *tcps;
1241 vestigial_inpcb_t vestige;
1242
1243 vestige.valid = 0;
1244
1245 MCLAIM(m, &tcp_rx_mowner);
1246 va_start(ap, m);
1247 toff = va_arg(ap, int);
1248 (void)va_arg(ap, int); /* ignore value, advance ap */
1249 va_end(ap);
1250
1251 TCP_STATINC(TCP_STAT_RCVTOTAL);
1252
1253 memset(&opti, 0, sizeof(opti));
1254 opti.ts_present = 0;
1255 opti.maxseg = 0;
1256
1257 /*
1258 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1259 *
1260 * TCP is, by definition, unicast, so we reject all
1261 * multicast outright.
1262 *
1263 * Note, there are additional src/dst address checks in
1264 * the AF-specific code below.
1265 */
1266 if (m->m_flags & (M_BCAST|M_MCAST)) {
1267 /* XXX stat */
1268 goto drop;
1269 }
1270 #ifdef INET6
1271 if (m->m_flags & M_ANYCAST6) {
1272 /* XXX stat */
1273 goto drop;
1274 }
1275 #endif
1276
1277 /*
1278 * Get IP and TCP header.
1279 * Note: IP leaves IP header in first mbuf.
1280 */
1281 ip = mtod(m, struct ip *);
1282 switch (ip->ip_v) {
1283 #ifdef INET
1284 case 4:
1285 #ifdef INET6
1286 ip6 = NULL;
1287 #endif
1288 af = AF_INET;
1289 iphlen = sizeof(struct ip);
1290 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1291 sizeof(struct tcphdr));
1292 if (th == NULL) {
1293 TCP_STATINC(TCP_STAT_RCVSHORT);
1294 return;
1295 }
1296 /* We do the checksum after PCB lookup... */
1297 len = ntohs(ip->ip_len);
1298 tlen = len - toff;
1299 iptos = ip->ip_tos;
1300 break;
1301 #endif
1302 #ifdef INET6
1303 case 6:
1304 ip = NULL;
1305 iphlen = sizeof(struct ip6_hdr);
1306 af = AF_INET6;
1307 ip6 = mtod(m, struct ip6_hdr *);
1308 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
1309 sizeof(struct tcphdr));
1310 if (th == NULL) {
1311 TCP_STATINC(TCP_STAT_RCVSHORT);
1312 return;
1313 }
1314
1315 /* Be proactive about malicious use of IPv4 mapped address */
1316 if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
1317 IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
1318 /* XXX stat */
1319 goto drop;
1320 }
1321
1322 /*
1323 * Be proactive about unspecified IPv6 address in source.
1324 * As we use all-zero to indicate unbounded/unconnected pcb,
1325 * unspecified IPv6 address can be used to confuse us.
1326 *
1327 * Note that packets with unspecified IPv6 destination is
1328 * already dropped in ip6_input.
1329 */
1330 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1331 /* XXX stat */
1332 goto drop;
1333 }
1334
1335 /*
1336 * Make sure destination address is not multicast.
1337 * Source address checked in ip6_input().
1338 */
1339 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1340 /* XXX stat */
1341 goto drop;
1342 }
1343
1344 /* We do the checksum after PCB lookup... */
1345 len = m->m_pkthdr.len;
1346 tlen = len - toff;
1347 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1348 break;
1349 #endif
1350 default:
1351 m_freem(m);
1352 return;
1353 }
1354 /*
1355 * Enforce alignment requirements that are violated in
1356 * some cases, see kern/50766 for details.
1357 */
1358 if (TCP_HDR_ALIGNED_P(th) == 0) {
1359 m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1360 if (m == NULL) {
1361 TCP_STATINC(TCP_STAT_RCVSHORT);
1362 return;
1363 }
1364 ip = mtod(m, struct ip *);
1365 #ifdef INET6
1366 ip6 = mtod(m, struct ip6_hdr *);
1367 #endif
1368 th = (struct tcphdr *)(mtod(m, char *) + toff);
1369 }
1370 KASSERT(TCP_HDR_ALIGNED_P(th));
1371
1372 /*
1373 * Check that TCP offset makes sense,
1374 * pull out TCP options and adjust length. XXX
1375 */
1376 off = th->th_off << 2;
1377 if (off < sizeof (struct tcphdr) || off > tlen) {
1378 TCP_STATINC(TCP_STAT_RCVBADOFF);
1379 goto drop;
1380 }
1381 tlen -= off;
1382
1383 /*
1384 * tcp_input() has been modified to use tlen to mean the TCP data
1385 * length throughout the function. Other functions can use
1386 * m->m_pkthdr.len as the basis for calculating the TCP data length.
1387 * rja
1388 */
1389
1390 if (off > sizeof (struct tcphdr)) {
1391 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1392 if (th == NULL) {
1393 TCP_STATINC(TCP_STAT_RCVSHORT);
1394 return;
1395 }
1396 /*
1397 * NOTE: ip/ip6 will not be affected by m_pulldown()
1398 * (as they're before toff) and we don't need to update those.
1399 */
1400 KASSERT(TCP_HDR_ALIGNED_P(th));
1401 optlen = off - sizeof (struct tcphdr);
1402 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1403 /*
1404 * Do quick retrieval of timestamp options ("options
1405 * prediction?"). If timestamp is the only option and it's
1406 * formatted as recommended in RFC 1323 appendix A, we
1407 * quickly get the values now and not bother calling
1408 * tcp_dooptions(), etc.
1409 */
1410 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1411 (optlen > TCPOLEN_TSTAMP_APPA &&
1412 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1413 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1414 (th->th_flags & TH_SYN) == 0) {
1415 opti.ts_present = 1;
1416 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1417 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1418 optp = NULL; /* we've parsed the options */
1419 }
1420 }
1421 tiflags = th->th_flags;
1422
1423 /*
1424 * Checksum extended TCP header and data
1425 */
1426 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1427 goto badcsum;
1428
1429 /*
1430 * Locate pcb for segment.
1431 */
1432 findpcb:
1433 inp = NULL;
1434 #ifdef INET6
1435 in6p = NULL;
1436 #endif
1437 switch (af) {
1438 #ifdef INET
1439 case AF_INET:
1440 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1441 ip->ip_dst, th->th_dport,
1442 &vestige);
1443 if (inp == 0 && !vestige.valid) {
1444 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1445 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
1446 }
1447 #ifdef INET6
1448 if (inp == 0 && !vestige.valid) {
1449 struct in6_addr s, d;
1450
1451 /* mapped addr case */
1452 in6_in_2_v4mapin6(&ip->ip_src, &s);
1453 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1454 in6p = in6_pcblookup_connect(&tcbtable, &s,
1455 th->th_sport, &d, th->th_dport,
1456 0, &vestige);
1457 if (in6p == 0 && !vestige.valid) {
1458 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1459 in6p = in6_pcblookup_bind(&tcbtable, &d,
1460 th->th_dport, 0);
1461 }
1462 }
1463 #endif
1464 #ifndef INET6
1465 if (inp == 0 && !vestige.valid)
1466 #else
1467 if (inp == 0 && in6p == 0 && !vestige.valid)
1468 #endif
1469 {
1470 TCP_STATINC(TCP_STAT_NOPORT);
1471 if (tcp_log_refused &&
1472 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1473 tcp4_log_refused(ip, th);
1474 }
1475 tcp_fields_to_host(th);
1476 goto dropwithreset_ratelim;
1477 }
1478 #if defined(IPSEC)
1479 if (ipsec_used) {
1480 if (inp &&
1481 (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
1482 && ipsec4_in_reject(m, inp)) {
1483 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1484 goto drop;
1485 }
1486 #ifdef INET6
1487 else if (in6p &&
1488 (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1489 && ipsec6_in_reject(m, in6p)) {
1490 IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
1491 goto drop;
1492 }
1493 #endif
1494 }
1495 #endif /*IPSEC*/
1496 break;
1497 #endif /*INET*/
1498 #ifdef INET6
1499 case AF_INET6:
1500 {
1501 int faith;
1502
1503 #if defined(NFAITH) && NFAITH > 0
1504 faith = faithprefix(&ip6->ip6_dst);
1505 #else
1506 faith = 0;
1507 #endif
1508 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1509 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1510 if (!in6p && !vestige.valid) {
1511 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1512 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1513 th->th_dport, faith);
1514 }
1515 if (!in6p && !vestige.valid) {
1516 TCP_STATINC(TCP_STAT_NOPORT);
1517 if (tcp_log_refused &&
1518 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1519 tcp6_log_refused(ip6, th);
1520 }
1521 tcp_fields_to_host(th);
1522 goto dropwithreset_ratelim;
1523 }
1524 #if defined(IPSEC)
1525 if (ipsec_used && in6p
1526 && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
1527 && ipsec6_in_reject(m, in6p)) {
1528 IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
1529 goto drop;
1530 }
1531 #endif /*IPSEC*/
1532 break;
1533 }
1534 #endif
1535 }
1536
1537 /*
1538 * If the state is CLOSED (i.e., TCB does not exist) then
1539 * all data in the incoming segment is discarded.
1540 * If the TCB exists but is in CLOSED state, it is embryonic,
1541 * but should either do a listen or a connect soon.
1542 */
1543 tp = NULL;
1544 so = NULL;
1545 if (inp) {
1546 /* Check the minimum TTL for socket. */
1547 if (ip->ip_ttl < inp->inp_ip_minttl)
1548 goto drop;
1549
1550 tp = intotcpcb(inp);
1551 so = inp->inp_socket;
1552 }
1553 #ifdef INET6
1554 else if (in6p) {
1555 tp = in6totcpcb(in6p);
1556 so = in6p->in6p_socket;
1557 }
1558 #endif
1559 else if (vestige.valid) {
1560 int mc = 0;
1561
1562 /* We do not support the resurrection of vtw tcpcps.
1563 */
1564 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1565 goto badcsum;
1566
1567 switch (af) {
1568 #ifdef INET6
1569 case AF_INET6:
1570 mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
1571 break;
1572 #endif
1573
1574 case AF_INET:
1575 mc = (IN_MULTICAST(ip->ip_dst.s_addr)
1576 || in_broadcast(ip->ip_dst,
1577 m_get_rcvif_NOMPSAFE(m)));
1578 break;
1579 }
1580
1581 tcp_fields_to_host(th);
1582 tcp_vtw_input(th, &vestige, m, tlen, mc);
1583 m = 0;
1584 goto drop;
1585 }
1586
1587 if (tp == 0) {
1588 tcp_fields_to_host(th);
1589 goto dropwithreset_ratelim;
1590 }
1591 if (tp->t_state == TCPS_CLOSED)
1592 goto drop;
1593
1594 KASSERT(so->so_lock == softnet_lock);
1595 KASSERT(solocked(so));
1596
1597 tcp_fields_to_host(th);
1598
1599 /* Unscale the window into a 32-bit value. */
1600 if ((tiflags & TH_SYN) == 0)
1601 tiwin = th->th_win << tp->snd_scale;
1602 else
1603 tiwin = th->th_win;
1604
1605 #ifdef INET6
1606 /* save packet options if user wanted */
1607 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1608 if (in6p->in6p_options) {
1609 m_freem(in6p->in6p_options);
1610 in6p->in6p_options = 0;
1611 }
1612 KASSERT(ip6 != NULL);
1613 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1614 }
1615 #endif
1616
1617 if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
1618 union syn_cache_sa src;
1619 union syn_cache_sa dst;
1620
1621 memset(&src, 0, sizeof(src));
1622 memset(&dst, 0, sizeof(dst));
1623 switch (af) {
1624 #ifdef INET
1625 case AF_INET:
1626 src.sin.sin_len = sizeof(struct sockaddr_in);
1627 src.sin.sin_family = AF_INET;
1628 src.sin.sin_addr = ip->ip_src;
1629 src.sin.sin_port = th->th_sport;
1630
1631 dst.sin.sin_len = sizeof(struct sockaddr_in);
1632 dst.sin.sin_family = AF_INET;
1633 dst.sin.sin_addr = ip->ip_dst;
1634 dst.sin.sin_port = th->th_dport;
1635 break;
1636 #endif
1637 #ifdef INET6
1638 case AF_INET6:
1639 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1640 src.sin6.sin6_family = AF_INET6;
1641 src.sin6.sin6_addr = ip6->ip6_src;
1642 src.sin6.sin6_port = th->th_sport;
1643
1644 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1645 dst.sin6.sin6_family = AF_INET6;
1646 dst.sin6.sin6_addr = ip6->ip6_dst;
1647 dst.sin6.sin6_port = th->th_dport;
1648 break;
1649 #endif /* INET6 */
1650 default:
1651 goto badsyn; /*sanity*/
1652 }
1653
1654 if (so->so_options & SO_DEBUG) {
1655 #ifdef TCP_DEBUG
1656 ostate = tp->t_state;
1657 #endif
1658
1659 tcp_saveti = NULL;
1660 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1661 goto nosave;
1662
1663 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1664 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1665 if (!tcp_saveti)
1666 goto nosave;
1667 } else {
1668 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1669 if (!tcp_saveti)
1670 goto nosave;
1671 MCLAIM(m, &tcp_mowner);
1672 tcp_saveti->m_len = iphlen;
1673 m_copydata(m, 0, iphlen,
1674 mtod(tcp_saveti, void *));
1675 }
1676
1677 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1678 m_freem(tcp_saveti);
1679 tcp_saveti = NULL;
1680 } else {
1681 tcp_saveti->m_len += sizeof(struct tcphdr);
1682 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1683 sizeof(struct tcphdr));
1684 }
1685 nosave:;
1686 }
1687 if (so->so_options & SO_ACCEPTCONN) {
1688 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1689 if (tiflags & TH_RST) {
1690 syn_cache_reset(&src.sa, &dst.sa, th);
1691 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1692 (TH_ACK|TH_SYN)) {
1693 /*
1694 * Received a SYN,ACK. This should
1695 * never happen while we are in
1696 * LISTEN. Send an RST.
1697 */
1698 goto badsyn;
1699 } else if (tiflags & TH_ACK) {
1700 so = syn_cache_get(&src.sa, &dst.sa,
1701 th, toff, tlen, so, m);
1702 if (so == NULL) {
1703 /*
1704 * We don't have a SYN for
1705 * this ACK; send an RST.
1706 */
1707 goto badsyn;
1708 } else if (so ==
1709 (struct socket *)(-1)) {
1710 /*
1711 * We were unable to create
1712 * the connection. If the
1713 * 3-way handshake was
1714 * completed, and RST has
1715 * been sent to the peer.
1716 * Since the mbuf might be
1717 * in use for the reply,
1718 * do not free it.
1719 */
1720 m = NULL;
1721 } else {
1722 /*
1723 * We have created a
1724 * full-blown connection.
1725 */
1726 tp = NULL;
1727 inp = NULL;
1728 #ifdef INET6
1729 in6p = NULL;
1730 #endif
1731 switch (so->so_proto->pr_domain->dom_family) {
1732 #ifdef INET
1733 case AF_INET:
1734 inp = sotoinpcb(so);
1735 tp = intotcpcb(inp);
1736 break;
1737 #endif
1738 #ifdef INET6
1739 case AF_INET6:
1740 in6p = sotoin6pcb(so);
1741 tp = in6totcpcb(in6p);
1742 break;
1743 #endif
1744 }
1745 if (tp == NULL)
1746 goto badsyn; /*XXX*/
1747 tiwin <<= tp->snd_scale;
1748 goto after_listen;
1749 }
1750 } else {
1751 /*
1752 * None of RST, SYN or ACK was set.
1753 * This is an invalid packet for a
1754 * TCB in LISTEN state. Send a RST.
1755 */
1756 goto badsyn;
1757 }
1758 } else {
1759 /*
1760 * Received a SYN.
1761 *
1762 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
1763 */
1764 if (m->m_flags & (M_BCAST|M_MCAST))
1765 goto drop;
1766
1767 switch (af) {
1768 #ifdef INET6
1769 case AF_INET6:
1770 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
1771 goto drop;
1772 break;
1773 #endif /* INET6 */
1774 case AF_INET:
1775 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1776 in_broadcast(ip->ip_dst,
1777 m_get_rcvif_NOMPSAFE(m)))
1778 goto drop;
1779 break;
1780 }
1781
1782 #ifdef INET6
1783 /*
1784 * If deprecated address is forbidden, we do
1785 * not accept SYN to deprecated interface
1786 * address to prevent any new inbound
1787 * connection from getting established.
1788 * When we do not accept SYN, we send a TCP
1789 * RST, with deprecated source address (instead
1790 * of dropping it). We compromise it as it is
1791 * much better for peer to send a RST, and
1792 * RST will be the final packet for the
1793 * exchange.
1794 *
1795 * If we do not forbid deprecated addresses, we
1796 * accept the SYN packet. RFC2462 does not
1797 * suggest dropping SYN in this case.
1798 * If we decipher RFC2462 5.5.4, it says like
1799 * this:
1800 * 1. use of deprecated addr with existing
1801 * communication is okay - "SHOULD continue
1802 * to be used"
1803 * 2. use of it with new communication:
1804 * (2a) "SHOULD NOT be used if alternate
1805 * address with sufficient scope is
1806 * available"
1807 * (2b) nothing mentioned otherwise.
1808 * Here we fall into (2b) case as we have no
1809 * choice in our source address selection - we
1810 * must obey the peer.
1811 *
1812 * The wording in RFC2462 is confusing, and
1813 * there are multiple description text for
1814 * deprecated address handling - worse, they
1815 * are not exactly the same. I believe 5.5.4
1816 * is the best one, so we follow 5.5.4.
1817 */
1818 if (af == AF_INET6 && !ip6_use_deprecated) {
1819 struct in6_ifaddr *ia6;
1820 int s;
1821 struct ifnet *rcvif = m_get_rcvif(m, &s);
1822 if (rcvif == NULL)
1823 goto dropwithreset; /* XXX */
1824 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1825 &ip6->ip6_dst)) &&
1826 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1827 tp = NULL;
1828 m_put_rcvif(rcvif, &s);
1829 goto dropwithreset;
1830 }
1831 m_put_rcvif(rcvif, &s);
1832 }
1833 #endif
1834
1835 #if defined(IPSEC)
1836 if (ipsec_used) {
1837 switch (af) {
1838 #ifdef INET
1839 case AF_INET:
1840 /*
1841 * inp can be NULL when
1842 * receiving an IPv4 packet on
1843 * an IPv4-mapped IPv6 address.
1844 */
1845 KASSERT(inp == NULL ||
1846 sotoinpcb(so) == inp);
1847 if (!ipsec4_in_reject(m, inp))
1848 break;
1849 IPSEC_STATINC(
1850 IPSEC_STAT_IN_POLVIO);
1851 tp = NULL;
1852 goto dropwithreset;
1853 #endif
1854 #ifdef INET6
1855 case AF_INET6:
1856 KASSERT(sotoin6pcb(so) == in6p);
1857 if (!ipsec6_in_reject(m, in6p))
1858 break;
1859 IPSEC6_STATINC(
1860 IPSEC_STAT_IN_POLVIO);
1861 tp = NULL;
1862 goto dropwithreset;
1863 #endif /*INET6*/
1864 }
1865 }
1866 #endif /*IPSEC*/
1867
1868 /*
1869 * LISTEN socket received a SYN
1870 * from itself? This can't possibly
1871 * be valid; drop the packet.
1872 */
1873 if (th->th_sport == th->th_dport) {
1874 int i;
1875
1876 switch (af) {
1877 #ifdef INET
1878 case AF_INET:
1879 i = in_hosteq(ip->ip_src, ip->ip_dst);
1880 break;
1881 #endif
1882 #ifdef INET6
1883 case AF_INET6:
1884 i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
1885 break;
1886 #endif
1887 default:
1888 i = 1;
1889 }
1890 if (i) {
1891 TCP_STATINC(TCP_STAT_BADSYN);
1892 goto drop;
1893 }
1894 }
1895
1896 /*
1897 * SYN looks ok; create compressed TCP
1898 * state for it.
1899 */
1900 if (so->so_qlen <= so->so_qlimit &&
1901 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1902 so, m, optp, optlen, &opti))
1903 m = NULL;
1904 }
1905 goto drop;
1906 }
1907 }
1908
1909 after_listen:
1910 #ifdef DIAGNOSTIC
1911 /*
1912 * Should not happen now that all embryonic connections
1913 * are handled with compressed state.
1914 */
1915 if (tp->t_state == TCPS_LISTEN)
1916 panic("tcp_input: TCPS_LISTEN");
1917 #endif
1918
1919 /*
1920 * Segment received on connection.
1921 * Reset idle time and keep-alive timer.
1922 */
1923 tp->t_rcvtime = tcp_now;
1924 if (TCPS_HAVEESTABLISHED(tp->t_state))
1925 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1926
1927 /*
1928 * Process options.
1929 */
1930 #ifdef TCP_SIGNATURE
1931 if (optp || (tp->t_flags & TF_SIGNATURE))
1932 #else
1933 if (optp)
1934 #endif
1935 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1936 goto drop;
1937
1938 if (TCP_SACK_ENABLED(tp)) {
1939 tcp_del_sackholes(tp, th);
1940 }
1941
1942 if (TCP_ECN_ALLOWED(tp)) {
1943 if (tiflags & TH_CWR) {
1944 tp->t_flags &= ~TF_ECN_SND_ECE;
1945 }
1946 switch (iptos & IPTOS_ECN_MASK) {
1947 case IPTOS_ECN_CE:
1948 tp->t_flags |= TF_ECN_SND_ECE;
1949 TCP_STATINC(TCP_STAT_ECN_CE);
1950 break;
1951 case IPTOS_ECN_ECT0:
1952 TCP_STATINC(TCP_STAT_ECN_ECT);
1953 break;
1954 case IPTOS_ECN_ECT1:
1955 /* XXX: ignore for now -- rpaulo */
1956 break;
1957 }
1958 /*
1959 * Congestion experienced.
1960 * Ignore if we are already trying to recover.
1961 */
1962 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1963 tp->t_congctl->cong_exp(tp);
1964 }
1965
1966 if (opti.ts_present && opti.ts_ecr) {
1967 /*
1968 * Calculate the RTT from the returned time stamp and the
1969 * connection's time base. If the time stamp is later than
1970 * the current time, or is extremely old, fall back to non-1323
1971 * RTT calculation. Since ts_rtt is unsigned, we can test both
1972 * at the same time.
1973 *
1974 * Note that ts_rtt is in units of slow ticks (500
1975 * ms). Since most earthbound RTTs are < 500 ms,
1976 * observed values will have large quantization noise.
1977 * Our smoothed RTT is then the fraction of observed
1978 * samples that are 1 tick instead of 0 (times 500
1979 * ms).
1980 *
1981 * ts_rtt is increased by 1 to denote a valid sample,
1982 * with 0 indicating an invalid measurement. This
1983 * extra 1 must be removed when ts_rtt is used, or
1984 * else an an erroneous extra 500 ms will result.
1985 */
1986 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1987 if (ts_rtt > TCP_PAWS_IDLE)
1988 ts_rtt = 0;
1989 } else {
1990 ts_rtt = 0;
1991 }
1992
1993 /*
1994 * Header prediction: check for the two common cases
1995 * of a uni-directional data xfer. If the packet has
1996 * no control flags, is in-sequence, the window didn't
1997 * change and we're not retransmitting, it's a
1998 * candidate. If the length is zero and the ack moved
1999 * forward, we're the sender side of the xfer. Just
2000 * free the data acked & wake any higher level process
2001 * that was blocked waiting for space. If the length
2002 * is non-zero and the ack didn't move, we're the
2003 * receiver side. If we're getting packets in-order
2004 * (the reassembly queue is empty), add the data to
2005 * the socket buffer and note that we need a delayed ack.
2006 */
2007 if (tp->t_state == TCPS_ESTABLISHED &&
2008 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
2009 == TH_ACK &&
2010 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
2011 th->th_seq == tp->rcv_nxt &&
2012 tiwin && tiwin == tp->snd_wnd &&
2013 tp->snd_nxt == tp->snd_max) {
2014
2015 /*
2016 * If last ACK falls within this segment's sequence numbers,
2017 * record the timestamp.
2018 * NOTE that the test is modified according to the latest
2019 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2020 *
2021 * note that we already know
2022 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
2023 */
2024 if (opti.ts_present &&
2025 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
2026 tp->ts_recent_age = tcp_now;
2027 tp->ts_recent = opti.ts_val;
2028 }
2029
2030 if (tlen == 0) {
2031 /* Ack prediction. */
2032 if (SEQ_GT(th->th_ack, tp->snd_una) &&
2033 SEQ_LEQ(th->th_ack, tp->snd_max) &&
2034 tp->snd_cwnd >= tp->snd_wnd &&
2035 tp->t_partialacks < 0) {
2036 /*
2037 * this is a pure ack for outstanding data.
2038 */
2039 if (ts_rtt)
2040 tcp_xmit_timer(tp, ts_rtt - 1);
2041 else if (tp->t_rtttime &&
2042 SEQ_GT(th->th_ack, tp->t_rtseq))
2043 tcp_xmit_timer(tp,
2044 tcp_now - tp->t_rtttime);
2045 acked = th->th_ack - tp->snd_una;
2046 tcps = TCP_STAT_GETREF();
2047 tcps[TCP_STAT_PREDACK]++;
2048 tcps[TCP_STAT_RCVACKPACK]++;
2049 tcps[TCP_STAT_RCVACKBYTE] += acked;
2050 TCP_STAT_PUTREF();
2051 nd6_hint(tp);
2052
2053 if (acked > (tp->t_lastoff - tp->t_inoff))
2054 tp->t_lastm = NULL;
2055 sbdrop(&so->so_snd, acked);
2056 tp->t_lastoff -= acked;
2057
2058 icmp_check(tp, th, acked);
2059
2060 tp->snd_una = th->th_ack;
2061 tp->snd_fack = tp->snd_una;
2062 if (SEQ_LT(tp->snd_high, tp->snd_una))
2063 tp->snd_high = tp->snd_una;
2064 m_freem(m);
2065
2066 /*
2067 * If all outstanding data are acked, stop
2068 * retransmit timer, otherwise restart timer
2069 * using current (possibly backed-off) value.
2070 * If process is waiting for space,
2071 * wakeup/selnotify/signal. If data
2072 * are ready to send, let tcp_output
2073 * decide between more output or persist.
2074 */
2075 if (tp->snd_una == tp->snd_max)
2076 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2077 else if (TCP_TIMER_ISARMED(tp,
2078 TCPT_PERSIST) == 0)
2079 TCP_TIMER_ARM(tp, TCPT_REXMT,
2080 tp->t_rxtcur);
2081
2082 sowwakeup(so);
2083 if (so->so_snd.sb_cc) {
2084 KERNEL_LOCK(1, NULL);
2085 (void) tcp_output(tp);
2086 KERNEL_UNLOCK_ONE(NULL);
2087 }
2088 if (tcp_saveti)
2089 m_freem(tcp_saveti);
2090 return;
2091 }
2092 } else if (th->th_ack == tp->snd_una &&
2093 TAILQ_FIRST(&tp->segq) == NULL &&
2094 tlen <= sbspace(&so->so_rcv)) {
2095 int newsize = 0; /* automatic sockbuf scaling */
2096
2097 /*
2098 * this is a pure, in-sequence data packet
2099 * with nothing on the reassembly queue and
2100 * we have enough buffer space to take it.
2101 */
2102 tp->rcv_nxt += tlen;
2103 tcps = TCP_STAT_GETREF();
2104 tcps[TCP_STAT_PREDDAT]++;
2105 tcps[TCP_STAT_RCVPACK]++;
2106 tcps[TCP_STAT_RCVBYTE] += tlen;
2107 TCP_STAT_PUTREF();
2108 nd6_hint(tp);
2109
2110 /*
2111 * Automatic sizing enables the performance of large buffers
2112 * and most of the efficiency of small ones by only allocating
2113 * space when it is needed.
2114 *
2115 * On the receive side the socket buffer memory is only rarely
2116 * used to any significant extent. This allows us to be much
2117 * more aggressive in scaling the receive socket buffer. For
2118 * the case that the buffer space is actually used to a large
2119 * extent and we run out of kernel memory we can simply drop
2120 * the new segments; TCP on the sender will just retransmit it
2121 * later. Setting the buffer size too big may only consume too
2122 * much kernel memory if the application doesn't read() from
2123 * the socket or packet loss or reordering makes use of the
2124 * reassembly queue.
2125 *
2126 * The criteria to step up the receive buffer one notch are:
2127 * 1. the number of bytes received during the time it takes
2128 * one timestamp to be reflected back to us (the RTT);
2129 * 2. received bytes per RTT is within seven eighth of the
2130 * current socket buffer size;
2131 * 3. receive buffer size has not hit maximal automatic size;
2132 *
2133 * This algorithm does one step per RTT at most and only if
2134 * we receive a bulk stream w/o packet losses or reorderings.
2135 * Shrinking the buffer during idle times is not necessary as
2136 * it doesn't consume any memory when idle.
2137 *
2138 * TODO: Only step up if the application is actually serving
2139 * the buffer to better manage the socket buffer resources.
2140 */
2141 if (tcp_do_autorcvbuf &&
2142 opti.ts_ecr &&
2143 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2144 if (opti.ts_ecr > tp->rfbuf_ts &&
2145 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2146 if (tp->rfbuf_cnt >
2147 (so->so_rcv.sb_hiwat / 8 * 7) &&
2148 so->so_rcv.sb_hiwat <
2149 tcp_autorcvbuf_max) {
2150 newsize =
2151 min(so->so_rcv.sb_hiwat +
2152 tcp_autorcvbuf_inc,
2153 tcp_autorcvbuf_max);
2154 }
2155 /* Start over with next RTT. */
2156 tp->rfbuf_ts = 0;
2157 tp->rfbuf_cnt = 0;
2158 } else
2159 tp->rfbuf_cnt += tlen; /* add up */
2160 }
2161
2162 /*
2163 * Drop TCP, IP headers and TCP options then add data
2164 * to socket buffer.
2165 */
2166 if (so->so_state & SS_CANTRCVMORE)
2167 m_freem(m);
2168 else {
2169 /*
2170 * Set new socket buffer size.
2171 * Give up when limit is reached.
2172 */
2173 if (newsize)
2174 if (!sbreserve(&so->so_rcv,
2175 newsize, so))
2176 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2177 m_adj(m, toff + off);
2178 sbappendstream(&so->so_rcv, m);
2179 }
2180 sorwakeup(so);
2181 tcp_setup_ack(tp, th);
2182 if (tp->t_flags & TF_ACKNOW) {
2183 KERNEL_LOCK(1, NULL);
2184 (void) tcp_output(tp);
2185 KERNEL_UNLOCK_ONE(NULL);
2186 }
2187 if (tcp_saveti)
2188 m_freem(tcp_saveti);
2189 return;
2190 }
2191 }
2192
2193 /*
2194 * Compute mbuf offset to TCP data segment.
2195 */
2196 hdroptlen = toff + off;
2197
2198 /*
2199 * Calculate amount of space in receive window,
2200 * and then do TCP input processing.
2201 * Receive window is amount of space in rcv queue,
2202 * but not less than advertised window.
2203 */
2204 { int win;
2205
2206 win = sbspace(&so->so_rcv);
2207 if (win < 0)
2208 win = 0;
2209 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2210 }
2211
2212 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2213 tp->rfbuf_ts = 0;
2214 tp->rfbuf_cnt = 0;
2215
2216 switch (tp->t_state) {
2217 /*
2218 * If the state is SYN_SENT:
2219 * if seg contains an ACK, but not for our SYN, drop the input.
2220 * if seg contains a RST, then drop the connection.
2221 * if seg does not contain SYN, then drop it.
2222 * Otherwise this is an acceptable SYN segment
2223 * initialize tp->rcv_nxt and tp->irs
2224 * if seg contains ack then advance tp->snd_una
2225 * if seg contains a ECE and ECN support is enabled, the stream
2226 * is ECN capable.
2227 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2228 * arrange for segment to be acked (eventually)
2229 * continue processing rest of data/controls, beginning with URG
2230 */
2231 case TCPS_SYN_SENT:
2232 if ((tiflags & TH_ACK) &&
2233 (SEQ_LEQ(th->th_ack, tp->iss) ||
2234 SEQ_GT(th->th_ack, tp->snd_max)))
2235 goto dropwithreset;
2236 if (tiflags & TH_RST) {
2237 if (tiflags & TH_ACK)
2238 tp = tcp_drop(tp, ECONNREFUSED);
2239 goto drop;
2240 }
2241 if ((tiflags & TH_SYN) == 0)
2242 goto drop;
2243 if (tiflags & TH_ACK) {
2244 tp->snd_una = th->th_ack;
2245 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2246 tp->snd_nxt = tp->snd_una;
2247 if (SEQ_LT(tp->snd_high, tp->snd_una))
2248 tp->snd_high = tp->snd_una;
2249 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2250
2251 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2252 tp->t_flags |= TF_ECN_PERMIT;
2253 TCP_STATINC(TCP_STAT_ECN_SHS);
2254 }
2255
2256 }
2257 tp->irs = th->th_seq;
2258 tcp_rcvseqinit(tp);
2259 tp->t_flags |= TF_ACKNOW;
2260 tcp_mss_from_peer(tp, opti.maxseg);
2261
2262 /*
2263 * Initialize the initial congestion window. If we
2264 * had to retransmit the SYN, we must initialize cwnd
2265 * to 1 segment (i.e. the Loss Window).
2266 */
2267 if (tp->t_flags & TF_SYN_REXMT)
2268 tp->snd_cwnd = tp->t_peermss;
2269 else {
2270 int ss = tcp_init_win;
2271 #ifdef INET
2272 if (inp != NULL && in_localaddr(inp->inp_faddr))
2273 ss = tcp_init_win_local;
2274 #endif
2275 #ifdef INET6
2276 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2277 ss = tcp_init_win_local;
2278 #endif
2279 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2280 }
2281
2282 tcp_rmx_rtt(tp);
2283 if (tiflags & TH_ACK) {
2284 TCP_STATINC(TCP_STAT_CONNECTS);
2285 /*
2286 * move tcp_established before soisconnected
2287 * because upcall handler can drive tcp_output
2288 * functionality.
2289 * XXX we might call soisconnected at the end of
2290 * all processing
2291 */
2292 tcp_established(tp);
2293 soisconnected(so);
2294 /* Do window scaling on this connection? */
2295 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2296 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2297 tp->snd_scale = tp->requested_s_scale;
2298 tp->rcv_scale = tp->request_r_scale;
2299 }
2300 TCP_REASS_LOCK(tp);
2301 (void) tcp_reass(tp, NULL, NULL, &tlen);
2302 /*
2303 * if we didn't have to retransmit the SYN,
2304 * use its rtt as our initial srtt & rtt var.
2305 */
2306 if (tp->t_rtttime)
2307 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2308 } else
2309 tp->t_state = TCPS_SYN_RECEIVED;
2310
2311 /*
2312 * Advance th->th_seq to correspond to first data byte.
2313 * If data, trim to stay within window,
2314 * dropping FIN if necessary.
2315 */
2316 th->th_seq++;
2317 if (tlen > tp->rcv_wnd) {
2318 todrop = tlen - tp->rcv_wnd;
2319 m_adj(m, -todrop);
2320 tlen = tp->rcv_wnd;
2321 tiflags &= ~TH_FIN;
2322 tcps = TCP_STAT_GETREF();
2323 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2324 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2325 TCP_STAT_PUTREF();
2326 }
2327 tp->snd_wl1 = th->th_seq - 1;
2328 tp->rcv_up = th->th_seq;
2329 goto step6;
2330
2331 /*
2332 * If the state is SYN_RECEIVED:
2333 * If seg contains an ACK, but not for our SYN, drop the input
2334 * and generate an RST. See page 36, rfc793
2335 */
2336 case TCPS_SYN_RECEIVED:
2337 if ((tiflags & TH_ACK) &&
2338 (SEQ_LEQ(th->th_ack, tp->iss) ||
2339 SEQ_GT(th->th_ack, tp->snd_max)))
2340 goto dropwithreset;
2341 break;
2342 }
2343
2344 /*
2345 * States other than LISTEN or SYN_SENT.
2346 * First check timestamp, if present.
2347 * Then check that at least some bytes of segment are within
2348 * receive window. If segment begins before rcv_nxt,
2349 * drop leading data (and SYN); if nothing left, just ack.
2350 *
2351 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2352 * and it's less than ts_recent, drop it.
2353 */
2354 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2355 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2356
2357 /* Check to see if ts_recent is over 24 days old. */
2358 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2359 /*
2360 * Invalidate ts_recent. If this segment updates
2361 * ts_recent, the age will be reset later and ts_recent
2362 * will get a valid value. If it does not, setting
2363 * ts_recent to zero will at least satisfy the
2364 * requirement that zero be placed in the timestamp
2365 * echo reply when ts_recent isn't valid. The
2366 * age isn't reset until we get a valid ts_recent
2367 * because we don't want out-of-order segments to be
2368 * dropped when ts_recent is old.
2369 */
2370 tp->ts_recent = 0;
2371 } else {
2372 tcps = TCP_STAT_GETREF();
2373 tcps[TCP_STAT_RCVDUPPACK]++;
2374 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2375 tcps[TCP_STAT_PAWSDROP]++;
2376 TCP_STAT_PUTREF();
2377 tcp_new_dsack(tp, th->th_seq, tlen);
2378 goto dropafterack;
2379 }
2380 }
2381
2382 todrop = tp->rcv_nxt - th->th_seq;
2383 dupseg = false;
2384 if (todrop > 0) {
2385 if (tiflags & TH_SYN) {
2386 tiflags &= ~TH_SYN;
2387 th->th_seq++;
2388 if (th->th_urp > 1)
2389 th->th_urp--;
2390 else {
2391 tiflags &= ~TH_URG;
2392 th->th_urp = 0;
2393 }
2394 todrop--;
2395 }
2396 if (todrop > tlen ||
2397 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2398 /*
2399 * Any valid FIN or RST must be to the left of the
2400 * window. At this point the FIN or RST must be a
2401 * duplicate or out of sequence; drop it.
2402 */
2403 if (tiflags & TH_RST)
2404 goto drop;
2405 tiflags &= ~(TH_FIN|TH_RST);
2406 /*
2407 * Send an ACK to resynchronize and drop any data.
2408 * But keep on processing for RST or ACK.
2409 */
2410 tp->t_flags |= TF_ACKNOW;
2411 todrop = tlen;
2412 dupseg = true;
2413 tcps = TCP_STAT_GETREF();
2414 tcps[TCP_STAT_RCVDUPPACK]++;
2415 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2416 TCP_STAT_PUTREF();
2417 } else if ((tiflags & TH_RST) &&
2418 th->th_seq != tp->rcv_nxt) {
2419 /*
2420 * Test for reset before adjusting the sequence
2421 * number for overlapping data.
2422 */
2423 goto dropafterack_ratelim;
2424 } else {
2425 tcps = TCP_STAT_GETREF();
2426 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2427 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2428 TCP_STAT_PUTREF();
2429 }
2430 tcp_new_dsack(tp, th->th_seq, todrop);
2431 hdroptlen += todrop; /*drop from head afterwards*/
2432 th->th_seq += todrop;
2433 tlen -= todrop;
2434 if (th->th_urp > todrop)
2435 th->th_urp -= todrop;
2436 else {
2437 tiflags &= ~TH_URG;
2438 th->th_urp = 0;
2439 }
2440 }
2441
2442 /*
2443 * If new data are received on a connection after the
2444 * user processes are gone, then RST the other end.
2445 */
2446 if ((so->so_state & SS_NOFDREF) &&
2447 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2448 tp = tcp_close(tp);
2449 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2450 goto dropwithreset;
2451 }
2452
2453 /*
2454 * If segment ends after window, drop trailing data
2455 * (and PUSH and FIN); if nothing left, just ACK.
2456 */
2457 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2458 if (todrop > 0) {
2459 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2460 if (todrop >= tlen) {
2461 /*
2462 * The segment actually starts after the window.
2463 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2464 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2465 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2466 */
2467 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2468 /*
2469 * If a new connection request is received
2470 * while in TIME_WAIT, drop the old connection
2471 * and start over if the sequence numbers
2472 * are above the previous ones.
2473 *
2474 * NOTE: We will checksum the packet again, and
2475 * so we need to put the header fields back into
2476 * network order!
2477 * XXX This kind of sucks, but we don't expect
2478 * XXX this to happen very often, so maybe it
2479 * XXX doesn't matter so much.
2480 */
2481 if (tiflags & TH_SYN &&
2482 tp->t_state == TCPS_TIME_WAIT &&
2483 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2484 tp = tcp_close(tp);
2485 tcp_fields_to_net(th);
2486 goto findpcb;
2487 }
2488 /*
2489 * If window is closed can only take segments at
2490 * window edge, and have to drop data and PUSH from
2491 * incoming segments. Continue processing, but
2492 * remember to ack. Otherwise, drop segment
2493 * and (if not RST) ack.
2494 */
2495 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2496 tp->t_flags |= TF_ACKNOW;
2497 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2498 } else
2499 goto dropafterack;
2500 } else
2501 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2502 m_adj(m, -todrop);
2503 tlen -= todrop;
2504 tiflags &= ~(TH_PUSH|TH_FIN);
2505 }
2506
2507 /*
2508 * If last ACK falls within this segment's sequence numbers,
2509 * record the timestamp.
2510 * NOTE:
2511 * 1) That the test incorporates suggestions from the latest
2512 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2513 * 2) That updating only on newer timestamps interferes with
2514 * our earlier PAWS tests, so this check should be solely
2515 * predicated on the sequence space of this segment.
2516 * 3) That we modify the segment boundary check to be
2517 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2518 * instead of RFC1323's
2519 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2520 * This modified check allows us to overcome RFC1323's
2521 * limitations as described in Stevens TCP/IP Illustrated
2522 * Vol. 2 p.869. In such cases, we can still calculate the
2523 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2524 */
2525 if (opti.ts_present &&
2526 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2527 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2528 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2529 tp->ts_recent_age = tcp_now;
2530 tp->ts_recent = opti.ts_val;
2531 }
2532
2533 /*
2534 * If the RST bit is set examine the state:
2535 * SYN_RECEIVED STATE:
2536 * If passive open, return to LISTEN state.
2537 * If active open, inform user that connection was refused.
2538 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2539 * Inform user that connection was reset, and close tcb.
2540 * CLOSING, LAST_ACK, TIME_WAIT STATES
2541 * Close the tcb.
2542 */
2543 if (tiflags & TH_RST) {
2544 if (th->th_seq != tp->rcv_nxt)
2545 goto dropafterack_ratelim;
2546
2547 switch (tp->t_state) {
2548 case TCPS_SYN_RECEIVED:
2549 so->so_error = ECONNREFUSED;
2550 goto close;
2551
2552 case TCPS_ESTABLISHED:
2553 case TCPS_FIN_WAIT_1:
2554 case TCPS_FIN_WAIT_2:
2555 case TCPS_CLOSE_WAIT:
2556 so->so_error = ECONNRESET;
2557 close:
2558 tp->t_state = TCPS_CLOSED;
2559 TCP_STATINC(TCP_STAT_DROPS);
2560 tp = tcp_close(tp);
2561 goto drop;
2562
2563 case TCPS_CLOSING:
2564 case TCPS_LAST_ACK:
2565 case TCPS_TIME_WAIT:
2566 tp = tcp_close(tp);
2567 goto drop;
2568 }
2569 }
2570
2571 /*
2572 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2573 * we must be in a synchronized state. RFC791 states (under RST
2574 * generation) that any unacceptable segment (an out-of-order SYN
2575 * qualifies) received in a synchronized state must elicit only an
2576 * empty acknowledgment segment ... and the connection remains in
2577 * the same state.
2578 */
2579 if (tiflags & TH_SYN) {
2580 if (tp->rcv_nxt == th->th_seq) {
2581 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2582 TH_ACK);
2583 if (tcp_saveti)
2584 m_freem(tcp_saveti);
2585 return;
2586 }
2587
2588 goto dropafterack_ratelim;
2589 }
2590
2591 /*
2592 * If the ACK bit is off we drop the segment and return.
2593 */
2594 if ((tiflags & TH_ACK) == 0) {
2595 if (tp->t_flags & TF_ACKNOW)
2596 goto dropafterack;
2597 else
2598 goto drop;
2599 }
2600
2601 /*
2602 * Ack processing.
2603 */
2604 switch (tp->t_state) {
2605
2606 /*
2607 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2608 * ESTABLISHED state and continue processing, otherwise
2609 * send an RST.
2610 */
2611 case TCPS_SYN_RECEIVED:
2612 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2613 SEQ_GT(th->th_ack, tp->snd_max))
2614 goto dropwithreset;
2615 TCP_STATINC(TCP_STAT_CONNECTS);
2616 soisconnected(so);
2617 tcp_established(tp);
2618 /* Do window scaling? */
2619 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2620 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2621 tp->snd_scale = tp->requested_s_scale;
2622 tp->rcv_scale = tp->request_r_scale;
2623 }
2624 TCP_REASS_LOCK(tp);
2625 (void) tcp_reass(tp, NULL, NULL, &tlen);
2626 tp->snd_wl1 = th->th_seq - 1;
2627 /* fall into ... */
2628
2629 /*
2630 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2631 * ACKs. If the ack is in the range
2632 * tp->snd_una < th->th_ack <= tp->snd_max
2633 * then advance tp->snd_una to th->th_ack and drop
2634 * data from the retransmission queue. If this ACK reflects
2635 * more up to date window information we update our window information.
2636 */
2637 case TCPS_ESTABLISHED:
2638 case TCPS_FIN_WAIT_1:
2639 case TCPS_FIN_WAIT_2:
2640 case TCPS_CLOSE_WAIT:
2641 case TCPS_CLOSING:
2642 case TCPS_LAST_ACK:
2643 case TCPS_TIME_WAIT:
2644
2645 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2646 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2647 TCP_STATINC(TCP_STAT_RCVDUPACK);
2648 /*
2649 * If we have outstanding data (other than
2650 * a window probe), this is a completely
2651 * duplicate ack (ie, window info didn't
2652 * change), the ack is the biggest we've
2653 * seen and we've seen exactly our rexmt
2654 * threshhold of them, assume a packet
2655 * has been dropped and retransmit it.
2656 * Kludge snd_nxt & the congestion
2657 * window so we send only this one
2658 * packet.
2659 */
2660 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2661 th->th_ack != tp->snd_una)
2662 tp->t_dupacks = 0;
2663 else if (tp->t_partialacks < 0 &&
2664 (++tp->t_dupacks == tcprexmtthresh ||
2665 TCP_FACK_FASTRECOV(tp))) {
2666 /*
2667 * Do the fast retransmit, and adjust
2668 * congestion control paramenters.
2669 */
2670 if (tp->t_congctl->fast_retransmit(tp, th)) {
2671 /* False fast retransmit */
2672 break;
2673 } else
2674 goto drop;
2675 } else if (tp->t_dupacks > tcprexmtthresh) {
2676 tp->snd_cwnd += tp->t_segsz;
2677 KERNEL_LOCK(1, NULL);
2678 (void) tcp_output(tp);
2679 KERNEL_UNLOCK_ONE(NULL);
2680 goto drop;
2681 }
2682 } else {
2683 /*
2684 * If the ack appears to be very old, only
2685 * allow data that is in-sequence. This
2686 * makes it somewhat more difficult to insert
2687 * forged data by guessing sequence numbers.
2688 * Sent an ack to try to update the send
2689 * sequence number on the other side.
2690 */
2691 if (tlen && th->th_seq != tp->rcv_nxt &&
2692 SEQ_LT(th->th_ack,
2693 tp->snd_una - tp->max_sndwnd))
2694 goto dropafterack;
2695 }
2696 break;
2697 }
2698 /*
2699 * If the congestion window was inflated to account
2700 * for the other side's cached packets, retract it.
2701 */
2702 tp->t_congctl->fast_retransmit_newack(tp, th);
2703
2704 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2705 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2706 goto dropafterack;
2707 }
2708 acked = th->th_ack - tp->snd_una;
2709 tcps = TCP_STAT_GETREF();
2710 tcps[TCP_STAT_RCVACKPACK]++;
2711 tcps[TCP_STAT_RCVACKBYTE] += acked;
2712 TCP_STAT_PUTREF();
2713
2714 /*
2715 * If we have a timestamp reply, update smoothed
2716 * round trip time. If no timestamp is present but
2717 * transmit timer is running and timed sequence
2718 * number was acked, update smoothed round trip time.
2719 * Since we now have an rtt measurement, cancel the
2720 * timer backoff (cf., Phil Karn's retransmit alg.).
2721 * Recompute the initial retransmit timer.
2722 */
2723 if (ts_rtt)
2724 tcp_xmit_timer(tp, ts_rtt - 1);
2725 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2726 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2727
2728 /*
2729 * If all outstanding data is acked, stop retransmit
2730 * timer and remember to restart (more output or persist).
2731 * If there is more data to be acked, restart retransmit
2732 * timer, using current (possibly backed-off) value.
2733 */
2734 if (th->th_ack == tp->snd_max) {
2735 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2736 needoutput = 1;
2737 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2738 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2739
2740 /*
2741 * New data has been acked, adjust the congestion window.
2742 */
2743 tp->t_congctl->newack(tp, th);
2744
2745 nd6_hint(tp);
2746 if (acked > so->so_snd.sb_cc) {
2747 tp->snd_wnd -= so->so_snd.sb_cc;
2748 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2749 ourfinisacked = 1;
2750 } else {
2751 if (acked > (tp->t_lastoff - tp->t_inoff))
2752 tp->t_lastm = NULL;
2753 sbdrop(&so->so_snd, acked);
2754 tp->t_lastoff -= acked;
2755 if (tp->snd_wnd > acked)
2756 tp->snd_wnd -= acked;
2757 else
2758 tp->snd_wnd = 0;
2759 ourfinisacked = 0;
2760 }
2761 sowwakeup(so);
2762
2763 icmp_check(tp, th, acked);
2764
2765 tp->snd_una = th->th_ack;
2766 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2767 tp->snd_fack = tp->snd_una;
2768 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2769 tp->snd_nxt = tp->snd_una;
2770 if (SEQ_LT(tp->snd_high, tp->snd_una))
2771 tp->snd_high = tp->snd_una;
2772
2773 switch (tp->t_state) {
2774
2775 /*
2776 * In FIN_WAIT_1 STATE in addition to the processing
2777 * for the ESTABLISHED state if our FIN is now acknowledged
2778 * then enter FIN_WAIT_2.
2779 */
2780 case TCPS_FIN_WAIT_1:
2781 if (ourfinisacked) {
2782 /*
2783 * If we can't receive any more
2784 * data, then closing user can proceed.
2785 * Starting the timer is contrary to the
2786 * specification, but if we don't get a FIN
2787 * we'll hang forever.
2788 */
2789 if (so->so_state & SS_CANTRCVMORE) {
2790 soisdisconnected(so);
2791 if (tp->t_maxidle > 0)
2792 TCP_TIMER_ARM(tp, TCPT_2MSL,
2793 tp->t_maxidle);
2794 }
2795 tp->t_state = TCPS_FIN_WAIT_2;
2796 }
2797 break;
2798
2799 /*
2800 * In CLOSING STATE in addition to the processing for
2801 * the ESTABLISHED state if the ACK acknowledges our FIN
2802 * then enter the TIME-WAIT state, otherwise ignore
2803 * the segment.
2804 */
2805 case TCPS_CLOSING:
2806 if (ourfinisacked) {
2807 tp->t_state = TCPS_TIME_WAIT;
2808 tcp_canceltimers(tp);
2809 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2810 soisdisconnected(so);
2811 }
2812 break;
2813
2814 /*
2815 * In LAST_ACK, we may still be waiting for data to drain
2816 * and/or to be acked, as well as for the ack of our FIN.
2817 * If our FIN is now acknowledged, delete the TCB,
2818 * enter the closed state and return.
2819 */
2820 case TCPS_LAST_ACK:
2821 if (ourfinisacked) {
2822 tp = tcp_close(tp);
2823 goto drop;
2824 }
2825 break;
2826
2827 /*
2828 * In TIME_WAIT state the only thing that should arrive
2829 * is a retransmission of the remote FIN. Acknowledge
2830 * it and restart the finack timer.
2831 */
2832 case TCPS_TIME_WAIT:
2833 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2834 goto dropafterack;
2835 }
2836 }
2837
2838 step6:
2839 /*
2840 * Update window information.
2841 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2842 */
2843 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2844 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2845 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2846 /* keep track of pure window updates */
2847 if (tlen == 0 &&
2848 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2849 TCP_STATINC(TCP_STAT_RCVWINUPD);
2850 tp->snd_wnd = tiwin;
2851 tp->snd_wl1 = th->th_seq;
2852 tp->snd_wl2 = th->th_ack;
2853 if (tp->snd_wnd > tp->max_sndwnd)
2854 tp->max_sndwnd = tp->snd_wnd;
2855 needoutput = 1;
2856 }
2857
2858 /*
2859 * Process segments with URG.
2860 */
2861 if ((tiflags & TH_URG) && th->th_urp &&
2862 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2863 /*
2864 * This is a kludge, but if we receive and accept
2865 * random urgent pointers, we'll crash in
2866 * soreceive. It's hard to imagine someone
2867 * actually wanting to send this much urgent data.
2868 */
2869 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2870 th->th_urp = 0; /* XXX */
2871 tiflags &= ~TH_URG; /* XXX */
2872 goto dodata; /* XXX */
2873 }
2874 /*
2875 * If this segment advances the known urgent pointer,
2876 * then mark the data stream. This should not happen
2877 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2878 * a FIN has been received from the remote side.
2879 * In these states we ignore the URG.
2880 *
2881 * According to RFC961 (Assigned Protocols),
2882 * the urgent pointer points to the last octet
2883 * of urgent data. We continue, however,
2884 * to consider it to indicate the first octet
2885 * of data past the urgent section as the original
2886 * spec states (in one of two places).
2887 */
2888 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2889 tp->rcv_up = th->th_seq + th->th_urp;
2890 so->so_oobmark = so->so_rcv.sb_cc +
2891 (tp->rcv_up - tp->rcv_nxt) - 1;
2892 if (so->so_oobmark == 0)
2893 so->so_state |= SS_RCVATMARK;
2894 sohasoutofband(so);
2895 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2896 }
2897 /*
2898 * Remove out of band data so doesn't get presented to user.
2899 * This can happen independent of advancing the URG pointer,
2900 * but if two URG's are pending at once, some out-of-band
2901 * data may creep in... ick.
2902 */
2903 if (th->th_urp <= (u_int16_t) tlen
2904 #ifdef SO_OOBINLINE
2905 && (so->so_options & SO_OOBINLINE) == 0
2906 #endif
2907 )
2908 tcp_pulloutofband(so, th, m, hdroptlen);
2909 } else
2910 /*
2911 * If no out of band data is expected,
2912 * pull receive urgent pointer along
2913 * with the receive window.
2914 */
2915 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2916 tp->rcv_up = tp->rcv_nxt;
2917 dodata: /* XXX */
2918
2919 /*
2920 * Process the segment text, merging it into the TCP sequencing queue,
2921 * and arranging for acknowledgement of receipt if necessary.
2922 * This process logically involves adjusting tp->rcv_wnd as data
2923 * is presented to the user (this happens in tcp_usrreq.c,
2924 * tcp_rcvd()). If a FIN has already been received on this
2925 * connection then we just ignore the text.
2926 */
2927 if ((tlen || (tiflags & TH_FIN)) &&
2928 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2929 /*
2930 * Insert segment ti into reassembly queue of tcp with
2931 * control block tp. Return TH_FIN if reassembly now includes
2932 * a segment with FIN. The macro form does the common case
2933 * inline (segment is the next to be received on an
2934 * established connection, and the queue is empty),
2935 * avoiding linkage into and removal from the queue and
2936 * repetition of various conversions.
2937 * Set DELACK for segments received in order, but ack
2938 * immediately when segments are out of order
2939 * (so fast retransmit can work).
2940 */
2941 /* NOTE: this was TCP_REASS() macro, but used only once */
2942 TCP_REASS_LOCK(tp);
2943 if (th->th_seq == tp->rcv_nxt &&
2944 TAILQ_FIRST(&tp->segq) == NULL &&
2945 tp->t_state == TCPS_ESTABLISHED) {
2946 tcp_setup_ack(tp, th);
2947 tp->rcv_nxt += tlen;
2948 tiflags = th->th_flags & TH_FIN;
2949 tcps = TCP_STAT_GETREF();
2950 tcps[TCP_STAT_RCVPACK]++;
2951 tcps[TCP_STAT_RCVBYTE] += tlen;
2952 TCP_STAT_PUTREF();
2953 nd6_hint(tp);
2954 if (so->so_state & SS_CANTRCVMORE)
2955 m_freem(m);
2956 else {
2957 m_adj(m, hdroptlen);
2958 sbappendstream(&(so)->so_rcv, m);
2959 }
2960 TCP_REASS_UNLOCK(tp);
2961 sorwakeup(so);
2962 } else {
2963 m_adj(m, hdroptlen);
2964 tiflags = tcp_reass(tp, th, m, &tlen);
2965 tp->t_flags |= TF_ACKNOW;
2966 }
2967
2968 /*
2969 * Note the amount of data that peer has sent into
2970 * our window, in order to estimate the sender's
2971 * buffer size.
2972 */
2973 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2974 } else {
2975 m_freem(m);
2976 m = NULL;
2977 tiflags &= ~TH_FIN;
2978 }
2979
2980 /*
2981 * If FIN is received ACK the FIN and let the user know
2982 * that the connection is closing. Ignore a FIN received before
2983 * the connection is fully established.
2984 */
2985 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2986 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2987 socantrcvmore(so);
2988 tp->t_flags |= TF_ACKNOW;
2989 tp->rcv_nxt++;
2990 }
2991 switch (tp->t_state) {
2992
2993 /*
2994 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2995 */
2996 case TCPS_ESTABLISHED:
2997 tp->t_state = TCPS_CLOSE_WAIT;
2998 break;
2999
3000 /*
3001 * If still in FIN_WAIT_1 STATE FIN has not been acked so
3002 * enter the CLOSING state.
3003 */
3004 case TCPS_FIN_WAIT_1:
3005 tp->t_state = TCPS_CLOSING;
3006 break;
3007
3008 /*
3009 * In FIN_WAIT_2 state enter the TIME_WAIT state,
3010 * starting the time-wait timer, turning off the other
3011 * standard timers.
3012 */
3013 case TCPS_FIN_WAIT_2:
3014 tp->t_state = TCPS_TIME_WAIT;
3015 tcp_canceltimers(tp);
3016 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3017 soisdisconnected(so);
3018 break;
3019
3020 /*
3021 * In TIME_WAIT state restart the 2 MSL time_wait timer.
3022 */
3023 case TCPS_TIME_WAIT:
3024 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
3025 break;
3026 }
3027 }
3028 #ifdef TCP_DEBUG
3029 if (so->so_options & SO_DEBUG)
3030 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
3031 #endif
3032
3033 /*
3034 * Return any desired output.
3035 */
3036 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
3037 KERNEL_LOCK(1, NULL);
3038 (void) tcp_output(tp);
3039 KERNEL_UNLOCK_ONE(NULL);
3040 }
3041 if (tcp_saveti)
3042 m_freem(tcp_saveti);
3043
3044 if (tp->t_state == TCPS_TIME_WAIT
3045 && (so->so_state & SS_NOFDREF)
3046 && (tp->t_inpcb || af != AF_INET)
3047 && (tp->t_in6pcb || af != AF_INET6)
3048 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
3049 && TAILQ_EMPTY(&tp->segq)
3050 && vtw_add(af, tp)) {
3051 ;
3052 }
3053 return;
3054
3055 badsyn:
3056 /*
3057 * Received a bad SYN. Increment counters and dropwithreset.
3058 */
3059 TCP_STATINC(TCP_STAT_BADSYN);
3060 tp = NULL;
3061 goto dropwithreset;
3062
3063 dropafterack:
3064 /*
3065 * Generate an ACK dropping incoming segment if it occupies
3066 * sequence space, where the ACK reflects our state.
3067 */
3068 if (tiflags & TH_RST)
3069 goto drop;
3070 goto dropafterack2;
3071
3072 dropafterack_ratelim:
3073 /*
3074 * We may want to rate-limit ACKs against SYN/RST attack.
3075 */
3076 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
3077 tcp_ackdrop_ppslim) == 0) {
3078 /* XXX stat */
3079 goto drop;
3080 }
3081 /* ...fall into dropafterack2... */
3082
3083 dropafterack2:
3084 m_freem(m);
3085 tp->t_flags |= TF_ACKNOW;
3086 KERNEL_LOCK(1, NULL);
3087 (void) tcp_output(tp);
3088 KERNEL_UNLOCK_ONE(NULL);
3089 if (tcp_saveti)
3090 m_freem(tcp_saveti);
3091 return;
3092
3093 dropwithreset_ratelim:
3094 /*
3095 * We may want to rate-limit RSTs in certain situations,
3096 * particularly if we are sending an RST in response to
3097 * an attempt to connect to or otherwise communicate with
3098 * a port for which we have no socket.
3099 */
3100 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
3101 tcp_rst_ppslim) == 0) {
3102 /* XXX stat */
3103 goto drop;
3104 }
3105 /* ...fall into dropwithreset... */
3106
3107 dropwithreset:
3108 /*
3109 * Generate a RST, dropping incoming segment.
3110 * Make ACK acceptable to originator of segment.
3111 */
3112 if (tiflags & TH_RST)
3113 goto drop;
3114
3115 switch (af) {
3116 #ifdef INET6
3117 case AF_INET6:
3118 /* For following calls to tcp_respond */
3119 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
3120 goto drop;
3121 break;
3122 #endif /* INET6 */
3123 case AF_INET:
3124 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
3125 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
3126 goto drop;
3127 }
3128
3129 if (tiflags & TH_ACK)
3130 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3131 else {
3132 if (tiflags & TH_SYN)
3133 tlen++;
3134 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3135 TH_RST|TH_ACK);
3136 }
3137 if (tcp_saveti)
3138 m_freem(tcp_saveti);
3139 return;
3140
3141 badcsum:
3142 drop:
3143 /*
3144 * Drop space held by incoming segment and return.
3145 */
3146 if (tp) {
3147 if (tp->t_inpcb)
3148 so = tp->t_inpcb->inp_socket;
3149 #ifdef INET6
3150 else if (tp->t_in6pcb)
3151 so = tp->t_in6pcb->in6p_socket;
3152 #endif
3153 else
3154 so = NULL;
3155 #ifdef TCP_DEBUG
3156 if (so && (so->so_options & SO_DEBUG) != 0)
3157 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3158 #endif
3159 }
3160 if (tcp_saveti)
3161 m_freem(tcp_saveti);
3162 m_freem(m);
3163 return;
3164 }
3165
3166 #ifdef TCP_SIGNATURE
3167 int
3168 tcp_signature_apply(void *fstate, void *data, u_int len)
3169 {
3170
3171 MD5Update(fstate, (u_char *)data, len);
3172 return (0);
3173 }
3174
3175 struct secasvar *
3176 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
3177 {
3178 struct ip *ip;
3179 struct ip6_hdr *ip6;
3180
3181 ip = mtod(m, struct ip *);
3182 switch (ip->ip_v) {
3183 case 4:
3184 ip = mtod(m, struct ip *);
3185 ip6 = NULL;
3186 break;
3187 case 6:
3188 ip = NULL;
3189 ip6 = mtod(m, struct ip6_hdr *);
3190 break;
3191 default:
3192 return (NULL);
3193 }
3194
3195 #ifdef IPSEC
3196 union sockaddr_union dst;
3197
3198 /* Extract the destination from the IP header in the mbuf. */
3199 memset(&dst, 0, sizeof(union sockaddr_union));
3200 if (ip != NULL) {
3201 dst.sa.sa_len = sizeof(struct sockaddr_in);
3202 dst.sa.sa_family = AF_INET;
3203 dst.sin.sin_addr = ip->ip_dst;
3204 } else {
3205 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3206 dst.sa.sa_family = AF_INET6;
3207 dst.sin6.sin6_addr = ip6->ip6_dst;
3208 }
3209
3210 /*
3211 * Look up an SADB entry which matches the address of the peer.
3212 */
3213 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3214 #else
3215 return NULL;
3216 #endif
3217 }
3218
3219 int
3220 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3221 struct secasvar *sav, char *sig)
3222 {
3223 MD5_CTX ctx;
3224 struct ip *ip;
3225 struct ipovly *ipovly;
3226 #ifdef INET6
3227 struct ip6_hdr *ip6;
3228 struct ip6_hdr_pseudo ip6pseudo;
3229 #endif /* INET6 */
3230 struct ippseudo ippseudo;
3231 struct tcphdr th0;
3232 int l, tcphdrlen;
3233
3234 if (sav == NULL)
3235 return (-1);
3236
3237 tcphdrlen = th->th_off * 4;
3238
3239 switch (mtod(m, struct ip *)->ip_v) {
3240 case 4:
3241 MD5Init(&ctx);
3242 ip = mtod(m, struct ip *);
3243 memset(&ippseudo, 0, sizeof(ippseudo));
3244 ipovly = (struct ipovly *)ip;
3245 ippseudo.ippseudo_src = ipovly->ih_src;
3246 ippseudo.ippseudo_dst = ipovly->ih_dst;
3247 ippseudo.ippseudo_pad = 0;
3248 ippseudo.ippseudo_p = IPPROTO_TCP;
3249 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3250 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3251 break;
3252 #if INET6
3253 case 6:
3254 MD5Init(&ctx);
3255 ip6 = mtod(m, struct ip6_hdr *);
3256 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3257 ip6pseudo.ip6ph_src = ip6->ip6_src;
3258 in6_clearscope(&ip6pseudo.ip6ph_src);
3259 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3260 in6_clearscope(&ip6pseudo.ip6ph_dst);
3261 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3262 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3263 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3264 break;
3265 #endif /* INET6 */
3266 default:
3267 return (-1);
3268 }
3269
3270 th0 = *th;
3271 th0.th_sum = 0;
3272 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3273
3274 l = m->m_pkthdr.len - thoff - tcphdrlen;
3275 if (l > 0)
3276 m_apply(m, thoff + tcphdrlen,
3277 m->m_pkthdr.len - thoff - tcphdrlen,
3278 tcp_signature_apply, &ctx);
3279
3280 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3281 MD5Final(sig, &ctx);
3282
3283 return (0);
3284 }
3285 #endif
3286
3287 /*
3288 * tcp_dooptions: parse and process tcp options.
3289 *
3290 * returns -1 if this segment should be dropped. (eg. wrong signature)
3291 * otherwise returns 0.
3292 */
3293
3294 static int
3295 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
3296 struct tcphdr *th,
3297 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3298 {
3299 u_int16_t mss;
3300 int opt, optlen = 0;
3301 #ifdef TCP_SIGNATURE
3302 void *sigp = NULL;
3303 char sigbuf[TCP_SIGLEN];
3304 struct secasvar *sav = NULL;
3305 #endif
3306
3307 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3308 opt = cp[0];
3309 if (opt == TCPOPT_EOL)
3310 break;
3311 if (opt == TCPOPT_NOP)
3312 optlen = 1;
3313 else {
3314 if (cnt < 2)
3315 break;
3316 optlen = cp[1];
3317 if (optlen < 2 || optlen > cnt)
3318 break;
3319 }
3320 switch (opt) {
3321
3322 default:
3323 continue;
3324
3325 case TCPOPT_MAXSEG:
3326 if (optlen != TCPOLEN_MAXSEG)
3327 continue;
3328 if (!(th->th_flags & TH_SYN))
3329 continue;
3330 if (TCPS_HAVERCVDSYN(tp->t_state))
3331 continue;
3332 bcopy(cp + 2, &mss, sizeof(mss));
3333 oi->maxseg = ntohs(mss);
3334 break;
3335
3336 case TCPOPT_WINDOW:
3337 if (optlen != TCPOLEN_WINDOW)
3338 continue;
3339 if (!(th->th_flags & TH_SYN))
3340 continue;
3341 if (TCPS_HAVERCVDSYN(tp->t_state))
3342 continue;
3343 tp->t_flags |= TF_RCVD_SCALE;
3344 tp->requested_s_scale = cp[2];
3345 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3346 char buf[INET6_ADDRSTRLEN];
3347 struct ip *ip = mtod(m, struct ip *);
3348 #ifdef INET6
3349 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3350 #endif
3351 if (ip)
3352 in_print(buf, sizeof(buf),
3353 &ip->ip_src);
3354 #ifdef INET6
3355 else if (ip6)
3356 in6_print(buf, sizeof(buf),
3357 &ip6->ip6_src);
3358 #endif
3359 else
3360 strlcpy(buf, "(unknown)", sizeof(buf));
3361 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3362 "assuming %d\n",
3363 tp->requested_s_scale, buf,
3364 TCP_MAX_WINSHIFT);
3365 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3366 }
3367 break;
3368
3369 case TCPOPT_TIMESTAMP:
3370 if (optlen != TCPOLEN_TIMESTAMP)
3371 continue;
3372 oi->ts_present = 1;
3373 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3374 NTOHL(oi->ts_val);
3375 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3376 NTOHL(oi->ts_ecr);
3377
3378 if (!(th->th_flags & TH_SYN))
3379 continue;
3380 if (TCPS_HAVERCVDSYN(tp->t_state))
3381 continue;
3382 /*
3383 * A timestamp received in a SYN makes
3384 * it ok to send timestamp requests and replies.
3385 */
3386 tp->t_flags |= TF_RCVD_TSTMP;
3387 tp->ts_recent = oi->ts_val;
3388 tp->ts_recent_age = tcp_now;
3389 break;
3390
3391 case TCPOPT_SACK_PERMITTED:
3392 if (optlen != TCPOLEN_SACK_PERMITTED)
3393 continue;
3394 if (!(th->th_flags & TH_SYN))
3395 continue;
3396 if (TCPS_HAVERCVDSYN(tp->t_state))
3397 continue;
3398 if (tcp_do_sack) {
3399 tp->t_flags |= TF_SACK_PERMIT;
3400 tp->t_flags |= TF_WILL_SACK;
3401 }
3402 break;
3403
3404 case TCPOPT_SACK:
3405 tcp_sack_option(tp, th, cp, optlen);
3406 break;
3407 #ifdef TCP_SIGNATURE
3408 case TCPOPT_SIGNATURE:
3409 if (optlen != TCPOLEN_SIGNATURE)
3410 continue;
3411 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3412 return (-1);
3413
3414 sigp = sigbuf;
3415 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3416 tp->t_flags |= TF_SIGNATURE;
3417 break;
3418 #endif
3419 }
3420 }
3421
3422 #ifndef TCP_SIGNATURE
3423 return 0;
3424 #else
3425 if (tp->t_flags & TF_SIGNATURE) {
3426
3427 sav = tcp_signature_getsav(m, th);
3428
3429 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3430 return (-1);
3431 }
3432
3433 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3434 goto out;
3435
3436 if (sigp) {
3437 char sig[TCP_SIGLEN];
3438
3439 tcp_fields_to_net(th);
3440 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3441 tcp_fields_to_host(th);
3442 goto out;
3443 }
3444 tcp_fields_to_host(th);
3445
3446 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3447 TCP_STATINC(TCP_STAT_BADSIG);
3448 goto out;
3449 } else
3450 TCP_STATINC(TCP_STAT_GOODSIG);
3451
3452 key_sa_recordxfer(sav, m);
3453 KEY_SA_UNREF(&sav);
3454 }
3455 return 0;
3456 out:
3457 if (sav != NULL)
3458 KEY_SA_UNREF(&sav);
3459 return -1;
3460 #endif
3461 }
3462
3463 /*
3464 * Pull out of band byte out of a segment so
3465 * it doesn't appear in the user's data queue.
3466 * It is still reflected in the segment length for
3467 * sequencing purposes.
3468 */
3469 void
3470 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3471 struct mbuf *m, int off)
3472 {
3473 int cnt = off + th->th_urp - 1;
3474
3475 while (cnt >= 0) {
3476 if (m->m_len > cnt) {
3477 char *cp = mtod(m, char *) + cnt;
3478 struct tcpcb *tp = sototcpcb(so);
3479
3480 tp->t_iobc = *cp;
3481 tp->t_oobflags |= TCPOOB_HAVEDATA;
3482 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3483 m->m_len--;
3484 return;
3485 }
3486 cnt -= m->m_len;
3487 m = m->m_next;
3488 if (m == 0)
3489 break;
3490 }
3491 panic("tcp_pulloutofband");
3492 }
3493
3494 /*
3495 * Collect new round-trip time estimate
3496 * and update averages and current timeout.
3497 *
3498 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3499 * difference of two timestamps.
3500 */
3501 void
3502 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3503 {
3504 int32_t delta;
3505
3506 TCP_STATINC(TCP_STAT_RTTUPDATED);
3507 if (tp->t_srtt != 0) {
3508 /*
3509 * Compute the amount to add to srtt for smoothing,
3510 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3511 * srtt is stored in 1/32 slow ticks, we conceptually
3512 * shift left 5 bits, subtract srtt to get the
3513 * diference, and then shift right by TCP_RTT_SHIFT
3514 * (3) to obtain 1/8 of the difference.
3515 */
3516 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3517 /*
3518 * This can never happen, because delta's lowest
3519 * possible value is 1/8 of t_srtt. But if it does,
3520 * set srtt to some reasonable value, here chosen
3521 * as 1/8 tick.
3522 */
3523 if ((tp->t_srtt += delta) <= 0)
3524 tp->t_srtt = 1 << 2;
3525 /*
3526 * RFC2988 requires that rttvar be updated first.
3527 * This code is compliant because "delta" is the old
3528 * srtt minus the new observation (scaled).
3529 *
3530 * RFC2988 says:
3531 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3532 *
3533 * delta is in units of 1/32 ticks, and has then been
3534 * divided by 8. This is equivalent to being in 1/16s
3535 * units and divided by 4. Subtract from it 1/4 of
3536 * the existing rttvar to form the (signed) amount to
3537 * adjust.
3538 */
3539 if (delta < 0)
3540 delta = -delta;
3541 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3542 /*
3543 * As with srtt, this should never happen. There is
3544 * no support in RFC2988 for this operation. But 1/4s
3545 * as rttvar when faced with something arguably wrong
3546 * is ok.
3547 */
3548 if ((tp->t_rttvar += delta) <= 0)
3549 tp->t_rttvar = 1 << 2;
3550
3551 /*
3552 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3553 * Problem is: it doesn't work. Disabled by defaulting
3554 * tcp_rttlocal to 0; see corresponding code in
3555 * tcp_subr that selects local vs remote in a different way.
3556 *
3557 * The static branch prediction hint here should be removed
3558 * when the rtt estimator is fixed and the rtt_enable code
3559 * is turned back on.
3560 */
3561 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3562 && tp->t_srtt > tcp_msl_remote_threshold
3563 && tp->t_msl < tcp_msl_remote) {
3564 tp->t_msl = tcp_msl_remote;
3565 }
3566 } else {
3567 /*
3568 * This is the first measurement. Per RFC2988, 2.2,
3569 * set rtt=R and srtt=R/2.
3570 * For srtt, storage representation is 1/32 ticks,
3571 * so shift left by 5.
3572 * For rttvar, storage representation is 1/16 ticks,
3573 * So shift left by 4, but then right by 1 to halve.
3574 */
3575 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3576 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3577 }
3578 tp->t_rtttime = 0;
3579 tp->t_rxtshift = 0;
3580
3581 /*
3582 * the retransmit should happen at rtt + 4 * rttvar.
3583 * Because of the way we do the smoothing, srtt and rttvar
3584 * will each average +1/2 tick of bias. When we compute
3585 * the retransmit timer, we want 1/2 tick of rounding and
3586 * 1 extra tick because of +-1/2 tick uncertainty in the
3587 * firing of the timer. The bias will give us exactly the
3588 * 1.5 tick we need. But, because the bias is
3589 * statistical, we have to test that we don't drop below
3590 * the minimum feasible timer (which is 2 ticks).
3591 */
3592 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3593 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3594
3595 /*
3596 * We received an ack for a packet that wasn't retransmitted;
3597 * it is probably safe to discard any error indications we've
3598 * received recently. This isn't quite right, but close enough
3599 * for now (a route might have failed after we sent a segment,
3600 * and the return path might not be symmetrical).
3601 */
3602 tp->t_softerror = 0;
3603 }
3604
3605
3606 /*
3607 * TCP compressed state engine. Currently used to hold compressed
3608 * state for SYN_RECEIVED.
3609 */
3610
3611 u_long syn_cache_count;
3612 u_int32_t syn_hash1, syn_hash2;
3613
3614 #define SYN_HASH(sa, sp, dp) \
3615 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3616 ((u_int32_t)(sp)))^syn_hash2)))
3617 #ifndef INET6
3618 #define SYN_HASHALL(hash, src, dst) \
3619 do { \
3620 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3621 ((const struct sockaddr_in *)(src))->sin_port, \
3622 ((const struct sockaddr_in *)(dst))->sin_port); \
3623 } while (/*CONSTCOND*/ 0)
3624 #else
3625 #define SYN_HASH6(sa, sp, dp) \
3626 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3627 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3628 & 0x7fffffff)
3629
3630 #define SYN_HASHALL(hash, src, dst) \
3631 do { \
3632 switch ((src)->sa_family) { \
3633 case AF_INET: \
3634 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3635 ((const struct sockaddr_in *)(src))->sin_port, \
3636 ((const struct sockaddr_in *)(dst))->sin_port); \
3637 break; \
3638 case AF_INET6: \
3639 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3640 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3641 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3642 break; \
3643 default: \
3644 hash = 0; \
3645 } \
3646 } while (/*CONSTCOND*/0)
3647 #endif /* INET6 */
3648
3649 static struct pool syn_cache_pool;
3650
3651 /*
3652 * We don't estimate RTT with SYNs, so each packet starts with the default
3653 * RTT and each timer step has a fixed timeout value.
3654 */
3655 static inline void
3656 syn_cache_timer_arm(struct syn_cache *sc)
3657 {
3658
3659 TCPT_RANGESET(sc->sc_rxtcur,
3660 TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3661 TCPTV_REXMTMAX);
3662 callout_reset(&sc->sc_timer,
3663 sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3664 }
3665
3666 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3667
3668 static inline void
3669 syn_cache_rm(struct syn_cache *sc)
3670 {
3671 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3672 sc, sc_bucketq);
3673 sc->sc_tp = NULL;
3674 LIST_REMOVE(sc, sc_tpq);
3675 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3676 callout_stop(&sc->sc_timer);
3677 syn_cache_count--;
3678 }
3679
3680 static inline void
3681 syn_cache_put(struct syn_cache *sc)
3682 {
3683 if (sc->sc_ipopts)
3684 (void) m_free(sc->sc_ipopts);
3685 rtcache_free(&sc->sc_route);
3686 sc->sc_flags |= SCF_DEAD;
3687 if (!callout_invoking(&sc->sc_timer))
3688 callout_schedule(&(sc)->sc_timer, 1);
3689 }
3690
3691 void
3692 syn_cache_init(void)
3693 {
3694 int i;
3695
3696 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3697 "synpl", NULL, IPL_SOFTNET);
3698
3699 /* Initialize the hash buckets. */
3700 for (i = 0; i < tcp_syn_cache_size; i++)
3701 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3702 }
3703
3704 void
3705 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3706 {
3707 struct syn_cache_head *scp;
3708 struct syn_cache *sc2;
3709 int s;
3710
3711 /*
3712 * If there are no entries in the hash table, reinitialize
3713 * the hash secrets.
3714 */
3715 if (syn_cache_count == 0) {
3716 syn_hash1 = cprng_fast32();
3717 syn_hash2 = cprng_fast32();
3718 }
3719
3720 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3721 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3722 scp = &tcp_syn_cache[sc->sc_bucketidx];
3723
3724 /*
3725 * Make sure that we don't overflow the per-bucket
3726 * limit or the total cache size limit.
3727 */
3728 s = splsoftnet();
3729 if (scp->sch_length >= tcp_syn_bucket_limit) {
3730 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3731 /*
3732 * The bucket is full. Toss the oldest element in the
3733 * bucket. This will be the first entry in the bucket.
3734 */
3735 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3736 #ifdef DIAGNOSTIC
3737 /*
3738 * This should never happen; we should always find an
3739 * entry in our bucket.
3740 */
3741 if (sc2 == NULL)
3742 panic("syn_cache_insert: bucketoverflow: impossible");
3743 #endif
3744 syn_cache_rm(sc2);
3745 syn_cache_put(sc2); /* calls pool_put but see spl above */
3746 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3747 struct syn_cache_head *scp2, *sce;
3748
3749 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3750 /*
3751 * The cache is full. Toss the oldest entry in the
3752 * first non-empty bucket we can find.
3753 *
3754 * XXX We would really like to toss the oldest
3755 * entry in the cache, but we hope that this
3756 * condition doesn't happen very often.
3757 */
3758 scp2 = scp;
3759 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3760 sce = &tcp_syn_cache[tcp_syn_cache_size];
3761 for (++scp2; scp2 != scp; scp2++) {
3762 if (scp2 >= sce)
3763 scp2 = &tcp_syn_cache[0];
3764 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3765 break;
3766 }
3767 #ifdef DIAGNOSTIC
3768 /*
3769 * This should never happen; we should always find a
3770 * non-empty bucket.
3771 */
3772 if (scp2 == scp)
3773 panic("syn_cache_insert: cacheoverflow: "
3774 "impossible");
3775 #endif
3776 }
3777 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3778 syn_cache_rm(sc2);
3779 syn_cache_put(sc2); /* calls pool_put but see spl above */
3780 }
3781
3782 /*
3783 * Initialize the entry's timer.
3784 */
3785 sc->sc_rxttot = 0;
3786 sc->sc_rxtshift = 0;
3787 syn_cache_timer_arm(sc);
3788
3789 /* Link it from tcpcb entry */
3790 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3791
3792 /* Put it into the bucket. */
3793 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3794 scp->sch_length++;
3795 syn_cache_count++;
3796
3797 TCP_STATINC(TCP_STAT_SC_ADDED);
3798 splx(s);
3799 }
3800
3801 /*
3802 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3803 * If we have retransmitted an entry the maximum number of times, expire
3804 * that entry.
3805 */
3806 static void
3807 syn_cache_timer(void *arg)
3808 {
3809 struct syn_cache *sc = arg;
3810
3811 mutex_enter(softnet_lock);
3812 KERNEL_LOCK(1, NULL);
3813
3814 callout_ack(&sc->sc_timer);
3815
3816 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3817 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3818 goto free;
3819 }
3820
3821 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3822 /* Drop it -- too many retransmissions. */
3823 goto dropit;
3824 }
3825
3826 /*
3827 * Compute the total amount of time this entry has
3828 * been on a queue. If this entry has been on longer
3829 * than the keep alive timer would allow, expire it.
3830 */
3831 sc->sc_rxttot += sc->sc_rxtcur;
3832 if (sc->sc_rxttot >= tcp_keepinit)
3833 goto dropit;
3834
3835 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3836 (void) syn_cache_respond(sc, NULL);
3837
3838 /* Advance the timer back-off. */
3839 sc->sc_rxtshift++;
3840 syn_cache_timer_arm(sc);
3841
3842 goto out;
3843
3844 dropit:
3845 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3846 syn_cache_rm(sc);
3847 if (sc->sc_ipopts)
3848 (void) m_free(sc->sc_ipopts);
3849 rtcache_free(&sc->sc_route);
3850
3851 free:
3852 callout_destroy(&sc->sc_timer);
3853 pool_put(&syn_cache_pool, sc);
3854
3855 out:
3856 KERNEL_UNLOCK_ONE(NULL);
3857 mutex_exit(softnet_lock);
3858 }
3859
3860 /*
3861 * Remove syn cache created by the specified tcb entry,
3862 * because this does not make sense to keep them
3863 * (if there's no tcb entry, syn cache entry will never be used)
3864 */
3865 void
3866 syn_cache_cleanup(struct tcpcb *tp)
3867 {
3868 struct syn_cache *sc, *nsc;
3869 int s;
3870
3871 s = splsoftnet();
3872
3873 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3874 nsc = LIST_NEXT(sc, sc_tpq);
3875
3876 #ifdef DIAGNOSTIC
3877 if (sc->sc_tp != tp)
3878 panic("invalid sc_tp in syn_cache_cleanup");
3879 #endif
3880 syn_cache_rm(sc);
3881 syn_cache_put(sc); /* calls pool_put but see spl above */
3882 }
3883 /* just for safety */
3884 LIST_INIT(&tp->t_sc);
3885
3886 splx(s);
3887 }
3888
3889 /*
3890 * Find an entry in the syn cache.
3891 */
3892 struct syn_cache *
3893 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3894 struct syn_cache_head **headp)
3895 {
3896 struct syn_cache *sc;
3897 struct syn_cache_head *scp;
3898 u_int32_t hash;
3899 int s;
3900
3901 SYN_HASHALL(hash, src, dst);
3902
3903 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3904 *headp = scp;
3905 s = splsoftnet();
3906 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3907 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3908 if (sc->sc_hash != hash)
3909 continue;
3910 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3911 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3912 splx(s);
3913 return (sc);
3914 }
3915 }
3916 splx(s);
3917 return (NULL);
3918 }
3919
3920 /*
3921 * This function gets called when we receive an ACK for a
3922 * socket in the LISTEN state. We look up the connection
3923 * in the syn cache, and if its there, we pull it out of
3924 * the cache and turn it into a full-blown connection in
3925 * the SYN-RECEIVED state.
3926 *
3927 * The return values may not be immediately obvious, and their effects
3928 * can be subtle, so here they are:
3929 *
3930 * NULL SYN was not found in cache; caller should drop the
3931 * packet and send an RST.
3932 *
3933 * -1 We were unable to create the new connection, and are
3934 * aborting it. An ACK,RST is being sent to the peer
3935 * (unless we got screwey sequence numbners; see below),
3936 * because the 3-way handshake has been completed. Caller
3937 * should not free the mbuf, since we may be using it. If
3938 * we are not, we will free it.
3939 *
3940 * Otherwise, the return value is a pointer to the new socket
3941 * associated with the connection.
3942 */
3943 struct socket *
3944 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3945 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3946 struct socket *so, struct mbuf *m)
3947 {
3948 struct syn_cache *sc;
3949 struct syn_cache_head *scp;
3950 struct inpcb *inp = NULL;
3951 #ifdef INET6
3952 struct in6pcb *in6p = NULL;
3953 #endif
3954 struct tcpcb *tp = 0;
3955 int s;
3956 struct socket *oso;
3957
3958 s = splsoftnet();
3959 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3960 splx(s);
3961 return (NULL);
3962 }
3963
3964 /*
3965 * Verify the sequence and ack numbers. Try getting the correct
3966 * response again.
3967 */
3968 if ((th->th_ack != sc->sc_iss + 1) ||
3969 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3970 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3971 (void) syn_cache_respond(sc, m);
3972 splx(s);
3973 return ((struct socket *)(-1));
3974 }
3975
3976 /* Remove this cache entry */
3977 syn_cache_rm(sc);
3978 splx(s);
3979
3980 /*
3981 * Ok, create the full blown connection, and set things up
3982 * as they would have been set up if we had created the
3983 * connection when the SYN arrived. If we can't create
3984 * the connection, abort it.
3985 */
3986 /*
3987 * inp still has the OLD in_pcb stuff, set the
3988 * v6-related flags on the new guy, too. This is
3989 * done particularly for the case where an AF_INET6
3990 * socket is bound only to a port, and a v4 connection
3991 * comes in on that port.
3992 * we also copy the flowinfo from the original pcb
3993 * to the new one.
3994 */
3995 oso = so;
3996 so = sonewconn(so, true);
3997 if (so == NULL)
3998 goto resetandabort;
3999
4000 switch (so->so_proto->pr_domain->dom_family) {
4001 #ifdef INET
4002 case AF_INET:
4003 inp = sotoinpcb(so);
4004 break;
4005 #endif
4006 #ifdef INET6
4007 case AF_INET6:
4008 in6p = sotoin6pcb(so);
4009 break;
4010 #endif
4011 }
4012 switch (src->sa_family) {
4013 #ifdef INET
4014 case AF_INET:
4015 if (inp) {
4016 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
4017 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
4018 inp->inp_options = ip_srcroute(m);
4019 in_pcbstate(inp, INP_BOUND);
4020 if (inp->inp_options == NULL) {
4021 inp->inp_options = sc->sc_ipopts;
4022 sc->sc_ipopts = NULL;
4023 }
4024 }
4025 #ifdef INET6
4026 else if (in6p) {
4027 /* IPv4 packet to AF_INET6 socket */
4028 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
4029 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
4030 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
4031 &in6p->in6p_laddr.s6_addr32[3],
4032 sizeof(((struct sockaddr_in *)dst)->sin_addr));
4033 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
4034 in6totcpcb(in6p)->t_family = AF_INET;
4035 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
4036 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
4037 else
4038 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
4039 in6_pcbstate(in6p, IN6P_BOUND);
4040 }
4041 #endif
4042 break;
4043 #endif
4044 #ifdef INET6
4045 case AF_INET6:
4046 if (in6p) {
4047 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
4048 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
4049 in6_pcbstate(in6p, IN6P_BOUND);
4050 }
4051 break;
4052 #endif
4053 }
4054 #ifdef INET6
4055 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
4056 struct in6pcb *oin6p = sotoin6pcb(oso);
4057 /* inherit socket options from the listening socket */
4058 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
4059 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
4060 m_freem(in6p->in6p_options);
4061 in6p->in6p_options = 0;
4062 }
4063 ip6_savecontrol(in6p, &in6p->in6p_options,
4064 mtod(m, struct ip6_hdr *), m);
4065 }
4066 #endif
4067
4068 #if defined(IPSEC)
4069 if (ipsec_used) {
4070 /*
4071 * we make a copy of policy, instead of sharing the policy, for
4072 * better behavior in terms of SA lookup and dead SA removal.
4073 */
4074 if (inp) {
4075 /* copy old policy into new socket's */
4076 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
4077 inp->inp_sp))
4078 printf("tcp_input: could not copy policy\n");
4079 }
4080 #ifdef INET6
4081 else if (in6p) {
4082 /* copy old policy into new socket's */
4083 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
4084 in6p->in6p_sp))
4085 printf("tcp_input: could not copy policy\n");
4086 }
4087 #endif
4088 }
4089 #endif
4090
4091 /*
4092 * Give the new socket our cached route reference.
4093 */
4094 if (inp) {
4095 rtcache_copy(&inp->inp_route, &sc->sc_route);
4096 rtcache_free(&sc->sc_route);
4097 }
4098 #ifdef INET6
4099 else {
4100 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
4101 rtcache_free(&sc->sc_route);
4102 }
4103 #endif
4104
4105 if (inp) {
4106 struct sockaddr_in sin;
4107 memcpy(&sin, src, src->sa_len);
4108 if (in_pcbconnect(inp, &sin, &lwp0)) {
4109 goto resetandabort;
4110 }
4111 }
4112 #ifdef INET6
4113 else if (in6p) {
4114 struct sockaddr_in6 sin6;
4115 memcpy(&sin6, src, src->sa_len);
4116 if (src->sa_family == AF_INET) {
4117 /* IPv4 packet to AF_INET6 socket */
4118 in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
4119 }
4120 if (in6_pcbconnect(in6p, &sin6, NULL)) {
4121 goto resetandabort;
4122 }
4123 }
4124 #endif
4125 else {
4126 goto resetandabort;
4127 }
4128
4129 if (inp)
4130 tp = intotcpcb(inp);
4131 #ifdef INET6
4132 else if (in6p)
4133 tp = in6totcpcb(in6p);
4134 #endif
4135 else
4136 tp = NULL;
4137 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4138 if (sc->sc_request_r_scale != 15) {
4139 tp->requested_s_scale = sc->sc_requested_s_scale;
4140 tp->request_r_scale = sc->sc_request_r_scale;
4141 tp->snd_scale = sc->sc_requested_s_scale;
4142 tp->rcv_scale = sc->sc_request_r_scale;
4143 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4144 }
4145 if (sc->sc_flags & SCF_TIMESTAMP)
4146 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4147 tp->ts_timebase = sc->sc_timebase;
4148
4149 tp->t_template = tcp_template(tp);
4150 if (tp->t_template == 0) {
4151 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
4152 so = NULL;
4153 m_freem(m);
4154 goto abort;
4155 }
4156
4157 tp->iss = sc->sc_iss;
4158 tp->irs = sc->sc_irs;
4159 tcp_sendseqinit(tp);
4160 tcp_rcvseqinit(tp);
4161 tp->t_state = TCPS_SYN_RECEIVED;
4162 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4163 TCP_STATINC(TCP_STAT_ACCEPTS);
4164
4165 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4166 tp->t_flags |= TF_WILL_SACK;
4167
4168 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4169 tp->t_flags |= TF_ECN_PERMIT;
4170
4171 #ifdef TCP_SIGNATURE
4172 if (sc->sc_flags & SCF_SIGNATURE)
4173 tp->t_flags |= TF_SIGNATURE;
4174 #endif
4175
4176 /* Initialize tp->t_ourmss before we deal with the peer's! */
4177 tp->t_ourmss = sc->sc_ourmaxseg;
4178 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4179
4180 /*
4181 * Initialize the initial congestion window. If we
4182 * had to retransmit the SYN,ACK, we must initialize cwnd
4183 * to 1 segment (i.e. the Loss Window).
4184 */
4185 if (sc->sc_rxtshift)
4186 tp->snd_cwnd = tp->t_peermss;
4187 else {
4188 int ss = tcp_init_win;
4189 #ifdef INET
4190 if (inp != NULL && in_localaddr(inp->inp_faddr))
4191 ss = tcp_init_win_local;
4192 #endif
4193 #ifdef INET6
4194 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4195 ss = tcp_init_win_local;
4196 #endif
4197 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4198 }
4199
4200 tcp_rmx_rtt(tp);
4201 tp->snd_wl1 = sc->sc_irs;
4202 tp->rcv_up = sc->sc_irs + 1;
4203
4204 /*
4205 * This is what whould have happened in tcp_output() when
4206 * the SYN,ACK was sent.
4207 */
4208 tp->snd_up = tp->snd_una;
4209 tp->snd_max = tp->snd_nxt = tp->iss+1;
4210 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4211 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4212 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4213 tp->last_ack_sent = tp->rcv_nxt;
4214 tp->t_partialacks = -1;
4215 tp->t_dupacks = 0;
4216
4217 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4218 s = splsoftnet();
4219 syn_cache_put(sc);
4220 splx(s);
4221 return (so);
4222
4223 resetandabort:
4224 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4225 abort:
4226 if (so != NULL) {
4227 (void) soqremque(so, 1);
4228 (void) soabort(so);
4229 mutex_enter(softnet_lock);
4230 }
4231 s = splsoftnet();
4232 syn_cache_put(sc);
4233 splx(s);
4234 TCP_STATINC(TCP_STAT_SC_ABORTED);
4235 return ((struct socket *)(-1));
4236 }
4237
4238 /*
4239 * This function is called when we get a RST for a
4240 * non-existent connection, so that we can see if the
4241 * connection is in the syn cache. If it is, zap it.
4242 */
4243
4244 void
4245 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4246 {
4247 struct syn_cache *sc;
4248 struct syn_cache_head *scp;
4249 int s = splsoftnet();
4250
4251 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4252 splx(s);
4253 return;
4254 }
4255 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4256 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4257 splx(s);
4258 return;
4259 }
4260 syn_cache_rm(sc);
4261 TCP_STATINC(TCP_STAT_SC_RESET);
4262 syn_cache_put(sc); /* calls pool_put but see spl above */
4263 splx(s);
4264 }
4265
4266 void
4267 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4268 struct tcphdr *th)
4269 {
4270 struct syn_cache *sc;
4271 struct syn_cache_head *scp;
4272 int s;
4273
4274 s = splsoftnet();
4275 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4276 splx(s);
4277 return;
4278 }
4279 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4280 if (ntohl (th->th_seq) != sc->sc_iss) {
4281 splx(s);
4282 return;
4283 }
4284
4285 /*
4286 * If we've retransmitted 3 times and this is our second error,
4287 * we remove the entry. Otherwise, we allow it to continue on.
4288 * This prevents us from incorrectly nuking an entry during a
4289 * spurious network outage.
4290 *
4291 * See tcp_notify().
4292 */
4293 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4294 sc->sc_flags |= SCF_UNREACH;
4295 splx(s);
4296 return;
4297 }
4298
4299 syn_cache_rm(sc);
4300 TCP_STATINC(TCP_STAT_SC_UNREACH);
4301 syn_cache_put(sc); /* calls pool_put but see spl above */
4302 splx(s);
4303 }
4304
4305 /*
4306 * Given a LISTEN socket and an inbound SYN request, add
4307 * this to the syn cache, and send back a segment:
4308 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4309 * to the source.
4310 *
4311 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4312 * Doing so would require that we hold onto the data and deliver it
4313 * to the application. However, if we are the target of a SYN-flood
4314 * DoS attack, an attacker could send data which would eventually
4315 * consume all available buffer space if it were ACKed. By not ACKing
4316 * the data, we avoid this DoS scenario.
4317 */
4318
4319 int
4320 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4321 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4322 int optlen, struct tcp_opt_info *oi)
4323 {
4324 struct tcpcb tb, *tp;
4325 long win;
4326 struct syn_cache *sc;
4327 struct syn_cache_head *scp;
4328 struct mbuf *ipopts;
4329 struct tcp_opt_info opti;
4330 int s;
4331
4332 tp = sototcpcb(so);
4333
4334 memset(&opti, 0, sizeof(opti));
4335
4336 /*
4337 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
4338 *
4339 * Note this check is performed in tcp_input() very early on.
4340 */
4341
4342 /*
4343 * Initialize some local state.
4344 */
4345 win = sbspace(&so->so_rcv);
4346 if (win > TCP_MAXWIN)
4347 win = TCP_MAXWIN;
4348
4349 switch (src->sa_family) {
4350 #ifdef INET
4351 case AF_INET:
4352 /*
4353 * Remember the IP options, if any.
4354 */
4355 ipopts = ip_srcroute(m);
4356 break;
4357 #endif
4358 default:
4359 ipopts = NULL;
4360 }
4361
4362 #ifdef TCP_SIGNATURE
4363 if (optp || (tp->t_flags & TF_SIGNATURE))
4364 #else
4365 if (optp)
4366 #endif
4367 {
4368 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4369 #ifdef TCP_SIGNATURE
4370 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4371 #endif
4372 tb.t_state = TCPS_LISTEN;
4373 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4374 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4375 return (0);
4376 } else
4377 tb.t_flags = 0;
4378
4379 /*
4380 * See if we already have an entry for this connection.
4381 * If we do, resend the SYN,ACK. We do not count this
4382 * as a retransmission (XXX though maybe we should).
4383 */
4384 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4385 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4386 if (ipopts) {
4387 /*
4388 * If we were remembering a previous source route,
4389 * forget it and use the new one we've been given.
4390 */
4391 if (sc->sc_ipopts)
4392 (void) m_free(sc->sc_ipopts);
4393 sc->sc_ipopts = ipopts;
4394 }
4395 sc->sc_timestamp = tb.ts_recent;
4396 if (syn_cache_respond(sc, m) == 0) {
4397 uint64_t *tcps = TCP_STAT_GETREF();
4398 tcps[TCP_STAT_SNDACKS]++;
4399 tcps[TCP_STAT_SNDTOTAL]++;
4400 TCP_STAT_PUTREF();
4401 }
4402 return (1);
4403 }
4404
4405 s = splsoftnet();
4406 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4407 splx(s);
4408 if (sc == NULL) {
4409 if (ipopts)
4410 (void) m_free(ipopts);
4411 return (0);
4412 }
4413
4414 /*
4415 * Fill in the cache, and put the necessary IP and TCP
4416 * options into the reply.
4417 */
4418 memset(sc, 0, sizeof(struct syn_cache));
4419 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4420 bcopy(src, &sc->sc_src, src->sa_len);
4421 bcopy(dst, &sc->sc_dst, dst->sa_len);
4422 sc->sc_flags = 0;
4423 sc->sc_ipopts = ipopts;
4424 sc->sc_irs = th->th_seq;
4425 switch (src->sa_family) {
4426 #ifdef INET
4427 case AF_INET:
4428 {
4429 struct sockaddr_in *srcin = (void *) src;
4430 struct sockaddr_in *dstin = (void *) dst;
4431
4432 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4433 &srcin->sin_addr, dstin->sin_port,
4434 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4435 break;
4436 }
4437 #endif /* INET */
4438 #ifdef INET6
4439 case AF_INET6:
4440 {
4441 struct sockaddr_in6 *srcin6 = (void *) src;
4442 struct sockaddr_in6 *dstin6 = (void *) dst;
4443
4444 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4445 &srcin6->sin6_addr, dstin6->sin6_port,
4446 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4447 break;
4448 }
4449 #endif /* INET6 */
4450 }
4451 sc->sc_peermaxseg = oi->maxseg;
4452 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4453 m_get_rcvif_NOMPSAFE(m) : NULL,
4454 sc->sc_src.sa.sa_family);
4455 sc->sc_win = win;
4456 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4457 sc->sc_timestamp = tb.ts_recent;
4458 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4459 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4460 sc->sc_flags |= SCF_TIMESTAMP;
4461 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4462 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4463 sc->sc_requested_s_scale = tb.requested_s_scale;
4464 sc->sc_request_r_scale = 0;
4465 /*
4466 * Pick the smallest possible scaling factor that
4467 * will still allow us to scale up to sb_max.
4468 *
4469 * We do this because there are broken firewalls that
4470 * will corrupt the window scale option, leading to
4471 * the other endpoint believing that our advertised
4472 * window is unscaled. At scale factors larger than
4473 * 5 the unscaled window will drop below 1500 bytes,
4474 * leading to serious problems when traversing these
4475 * broken firewalls.
4476 *
4477 * With the default sbmax of 256K, a scale factor
4478 * of 3 will be chosen by this algorithm. Those who
4479 * choose a larger sbmax should watch out
4480 * for the compatiblity problems mentioned above.
4481 *
4482 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4483 * or <SYN,ACK>) segment itself is never scaled.
4484 */
4485 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4486 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4487 sc->sc_request_r_scale++;
4488 } else {
4489 sc->sc_requested_s_scale = 15;
4490 sc->sc_request_r_scale = 15;
4491 }
4492 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4493 sc->sc_flags |= SCF_SACK_PERMIT;
4494
4495 /*
4496 * ECN setup packet received.
4497 */
4498 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4499 sc->sc_flags |= SCF_ECN_PERMIT;
4500
4501 #ifdef TCP_SIGNATURE
4502 if (tb.t_flags & TF_SIGNATURE)
4503 sc->sc_flags |= SCF_SIGNATURE;
4504 #endif
4505 sc->sc_tp = tp;
4506 if (syn_cache_respond(sc, m) == 0) {
4507 uint64_t *tcps = TCP_STAT_GETREF();
4508 tcps[TCP_STAT_SNDACKS]++;
4509 tcps[TCP_STAT_SNDTOTAL]++;
4510 TCP_STAT_PUTREF();
4511 syn_cache_insert(sc, tp);
4512 } else {
4513 s = splsoftnet();
4514 /*
4515 * syn_cache_put() will try to schedule the timer, so
4516 * we need to initialize it
4517 */
4518 syn_cache_timer_arm(sc);
4519 syn_cache_put(sc);
4520 splx(s);
4521 TCP_STATINC(TCP_STAT_SC_DROPPED);
4522 }
4523 return (1);
4524 }
4525
4526 /*
4527 * syn_cache_respond: (re)send SYN+ACK.
4528 *
4529 * returns 0 on success. otherwise returns an errno, typically ENOBUFS.
4530 */
4531
4532 int
4533 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
4534 {
4535 #ifdef INET6
4536 struct rtentry *rt = NULL;
4537 #endif
4538 struct route *ro;
4539 u_int8_t *optp;
4540 int optlen, error;
4541 u_int16_t tlen;
4542 struct ip *ip = NULL;
4543 #ifdef INET6
4544 struct ip6_hdr *ip6 = NULL;
4545 #endif
4546 struct tcpcb *tp = NULL;
4547 struct tcphdr *th;
4548 u_int hlen;
4549 #ifdef TCP_SIGNATURE
4550 struct secasvar *sav = NULL;
4551 u_int8_t *sigp = NULL;
4552 #endif
4553
4554 ro = &sc->sc_route;
4555 switch (sc->sc_src.sa.sa_family) {
4556 case AF_INET:
4557 hlen = sizeof(struct ip);
4558 break;
4559 #ifdef INET6
4560 case AF_INET6:
4561 hlen = sizeof(struct ip6_hdr);
4562 break;
4563 #endif
4564 default:
4565 if (m)
4566 m_freem(m);
4567 return (EAFNOSUPPORT);
4568 }
4569
4570 /* worst case scanario, since we don't know the option size yet */
4571 tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4572
4573 /*
4574 * Create the IP+TCP header from scratch.
4575 */
4576 if (m)
4577 m_freem(m);
4578 #ifdef DIAGNOSTIC
4579 if (max_linkhdr + tlen > MCLBYTES)
4580 return ENOBUFS;
4581 #endif
4582
4583 MGETHDR(m, M_DONTWAIT, MT_DATA);
4584 if (m && (max_linkhdr + tlen) > MHLEN) {
4585 MCLGET(m, M_DONTWAIT);
4586 if ((m->m_flags & M_EXT) == 0) {
4587 m_freem(m);
4588 m = NULL;
4589 }
4590 }
4591 if (m == NULL)
4592 return ENOBUFS;
4593 MCLAIM(m, &tcp_tx_mowner);
4594
4595 /* Fixup the mbuf. */
4596 m->m_data += max_linkhdr;
4597 if (sc->sc_tp)
4598 tp = sc->sc_tp;
4599 m_reset_rcvif(m);
4600 memset(mtod(m, u_char *), 0, tlen);
4601
4602 switch (sc->sc_src.sa.sa_family) {
4603 case AF_INET:
4604 ip = mtod(m, struct ip *);
4605 ip->ip_v = 4;
4606 ip->ip_dst = sc->sc_src.sin.sin_addr;
4607 ip->ip_src = sc->sc_dst.sin.sin_addr;
4608 ip->ip_p = IPPROTO_TCP;
4609 th = (struct tcphdr *)(ip + 1);
4610 th->th_dport = sc->sc_src.sin.sin_port;
4611 th->th_sport = sc->sc_dst.sin.sin_port;
4612 break;
4613 #ifdef INET6
4614 case AF_INET6:
4615 ip6 = mtod(m, struct ip6_hdr *);
4616 ip6->ip6_vfc = IPV6_VERSION;
4617 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4618 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4619 ip6->ip6_nxt = IPPROTO_TCP;
4620 /* ip6_plen will be updated in ip6_output() */
4621 th = (struct tcphdr *)(ip6 + 1);
4622 th->th_dport = sc->sc_src.sin6.sin6_port;
4623 th->th_sport = sc->sc_dst.sin6.sin6_port;
4624 break;
4625 #endif
4626 default:
4627 return ENOBUFS;
4628 }
4629
4630 th->th_seq = htonl(sc->sc_iss);
4631 th->th_ack = htonl(sc->sc_irs + 1);
4632 th->th_flags = TH_SYN|TH_ACK;
4633 th->th_win = htons(sc->sc_win);
4634 /* th_x2, th_sum, th_urp already 0 from memset */
4635
4636 /* Tack on the TCP options. */
4637 optp = (u_int8_t *)(th + 1);
4638 optlen = 0;
4639 *optp++ = TCPOPT_MAXSEG;
4640 *optp++ = TCPOLEN_MAXSEG;
4641 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4642 *optp++ = sc->sc_ourmaxseg & 0xff;
4643 optlen += TCPOLEN_MAXSEG;
4644
4645 if (sc->sc_request_r_scale != 15) {
4646 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4647 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4648 sc->sc_request_r_scale);
4649 optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4650 optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4651 }
4652
4653 if (sc->sc_flags & SCF_SACK_PERMIT) {
4654 /* Let the peer know that we will SACK. */
4655 *optp++ = TCPOPT_SACK_PERMITTED;
4656 *optp++ = TCPOLEN_SACK_PERMITTED;
4657 optlen += TCPOLEN_SACK_PERMITTED;
4658 }
4659
4660 if (sc->sc_flags & SCF_TIMESTAMP) {
4661 while (optlen % 4 != 2) {
4662 optlen += TCPOLEN_NOP;
4663 *optp++ = TCPOPT_NOP;
4664 }
4665 *optp++ = TCPOPT_TIMESTAMP;
4666 *optp++ = TCPOLEN_TIMESTAMP;
4667 u_int32_t *lp = (u_int32_t *)(optp);
4668 /* Form timestamp option as shown in appendix A of RFC 1323. */
4669 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4670 *lp = htonl(sc->sc_timestamp);
4671 optp += TCPOLEN_TIMESTAMP - 2;
4672 optlen += TCPOLEN_TIMESTAMP;
4673 }
4674
4675 #ifdef TCP_SIGNATURE
4676 if (sc->sc_flags & SCF_SIGNATURE) {
4677
4678 sav = tcp_signature_getsav(m, th);
4679
4680 if (sav == NULL) {
4681 if (m)
4682 m_freem(m);
4683 return (EPERM);
4684 }
4685
4686 *optp++ = TCPOPT_SIGNATURE;
4687 *optp++ = TCPOLEN_SIGNATURE;
4688 sigp = optp;
4689 memset(optp, 0, TCP_SIGLEN);
4690 optp += TCP_SIGLEN;
4691 optlen += TCPOLEN_SIGNATURE;
4692
4693 }
4694 #endif
4695 /* Terminate and pad TCP options to a 4 byte boundary. */
4696 if (optlen % 4) {
4697 optlen += TCPOLEN_EOL;
4698 *optp++ = TCPOPT_EOL;
4699 }
4700 /*
4701 * According to RFC 793 (STD0007):
4702 * "The content of the header beyond the End-of-Option option
4703 * must be header padding (i.e., zero)."
4704 * and later: "The padding is composed of zeros."
4705 */
4706 while (optlen % 4) {
4707 optlen += TCPOLEN_PAD;
4708 *optp++ = TCPOPT_PAD;
4709 }
4710
4711 /* compute the actual values now that we've added the options */
4712 tlen = hlen + sizeof(struct tcphdr) + optlen;
4713 m->m_len = m->m_pkthdr.len = tlen;
4714 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4715
4716 #ifdef TCP_SIGNATURE
4717 if (sav) {
4718 (void)tcp_signature(m, th, hlen, sav, sigp);
4719 key_sa_recordxfer(sav, m);
4720 KEY_SA_UNREF(&sav);
4721 }
4722 #endif
4723
4724 /*
4725 * Send ECN SYN-ACK setup packet.
4726 * Routes can be asymetric, so, even if we receive a packet
4727 * with ECE and CWR set, we must not assume no one will block
4728 * the ECE packet we are about to send.
4729 */
4730 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4731 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4732 th->th_flags |= TH_ECE;
4733 TCP_STATINC(TCP_STAT_ECN_SHS);
4734
4735 /*
4736 * draft-ietf-tcpm-ecnsyn-00.txt
4737 *
4738 * "[...] a TCP node MAY respond to an ECN-setup
4739 * SYN packet by setting ECT in the responding
4740 * ECN-setup SYN/ACK packet, indicating to routers
4741 * that the SYN/ACK packet is ECN-Capable.
4742 * This allows a congested router along the path
4743 * to mark the packet instead of dropping the
4744 * packet as an indication of congestion."
4745 *
4746 * "[...] There can be a great benefit in setting
4747 * an ECN-capable codepoint in SYN/ACK packets [...]
4748 * Congestion is most likely to occur in
4749 * the server-to-client direction. As a result,
4750 * setting an ECN-capable codepoint in SYN/ACK
4751 * packets can reduce the occurence of three-second
4752 * retransmit timeouts resulting from the drop
4753 * of SYN/ACK packets."
4754 *
4755 * Page 4 and 6, January 2006.
4756 */
4757
4758 switch (sc->sc_src.sa.sa_family) {
4759 #ifdef INET
4760 case AF_INET:
4761 ip->ip_tos |= IPTOS_ECN_ECT0;
4762 break;
4763 #endif
4764 #ifdef INET6
4765 case AF_INET6:
4766 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4767 break;
4768 #endif
4769 }
4770 TCP_STATINC(TCP_STAT_ECN_ECT);
4771 }
4772
4773
4774 /* Compute the packet's checksum. */
4775 switch (sc->sc_src.sa.sa_family) {
4776 case AF_INET:
4777 ip->ip_len = htons(tlen - hlen);
4778 th->th_sum = 0;
4779 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4780 break;
4781 #ifdef INET6
4782 case AF_INET6:
4783 ip6->ip6_plen = htons(tlen - hlen);
4784 th->th_sum = 0;
4785 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4786 break;
4787 #endif
4788 }
4789
4790 /*
4791 * Fill in some straggling IP bits. Note the stack expects
4792 * ip_len to be in host order, for convenience.
4793 */
4794 switch (sc->sc_src.sa.sa_family) {
4795 #ifdef INET
4796 case AF_INET:
4797 ip->ip_len = htons(tlen);
4798 ip->ip_ttl = ip_defttl;
4799 /* XXX tos? */
4800 break;
4801 #endif
4802 #ifdef INET6
4803 case AF_INET6:
4804 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4805 ip6->ip6_vfc |= IPV6_VERSION;
4806 ip6->ip6_plen = htons(tlen - hlen);
4807 /* ip6_hlim will be initialized afterwards */
4808 /* XXX flowlabel? */
4809 break;
4810 #endif
4811 }
4812
4813 /* XXX use IPsec policy on listening socket, on SYN ACK */
4814 tp = sc->sc_tp;
4815
4816 switch (sc->sc_src.sa.sa_family) {
4817 #ifdef INET
4818 case AF_INET:
4819 error = ip_output(m, sc->sc_ipopts, ro,
4820 (ip_mtudisc ? IP_MTUDISC : 0),
4821 NULL, tp ? tp->t_inpcb : NULL);
4822 break;
4823 #endif
4824 #ifdef INET6
4825 case AF_INET6:
4826 ip6->ip6_hlim = in6_selecthlim(NULL,
4827 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4828 rtcache_unref(rt, ro);
4829
4830 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4831 tp ? tp->t_in6pcb : NULL, NULL);
4832 break;
4833 #endif
4834 default:
4835 error = EAFNOSUPPORT;
4836 break;
4837 }
4838 return (error);
4839 }
4840