Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.364
      1 /*	$NetBSD: tcp_input.c,v 1.364 2018/02/08 09:05:20 dholland Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.364 2018/02/08 09:05:20 dholland Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_inet.h"
    155 #include "opt_ipsec.h"
    156 #include "opt_inet_csum.h"
    157 #include "opt_tcp_debug.h"
    158 #endif
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 #include <sys/lwp.h> /* for lwp0 */
    176 #include <sys/cprng.h>
    177 
    178 #include <net/if.h>
    179 #include <net/if_types.h>
    180 
    181 #include <netinet/in.h>
    182 #include <netinet/in_systm.h>
    183 #include <netinet/ip.h>
    184 #include <netinet/in_pcb.h>
    185 #include <netinet/in_var.h>
    186 #include <netinet/ip_var.h>
    187 #include <netinet/in_offload.h>
    188 
    189 #ifdef INET6
    190 #ifndef INET
    191 #include <netinet/in.h>
    192 #endif
    193 #include <netinet/ip6.h>
    194 #include <netinet6/ip6_var.h>
    195 #include <netinet6/in6_pcb.h>
    196 #include <netinet6/ip6_var.h>
    197 #include <netinet6/in6_var.h>
    198 #include <netinet/icmp6.h>
    199 #include <netinet6/nd6.h>
    200 #ifdef TCP_SIGNATURE
    201 #include <netinet6/scope6_var.h>
    202 #endif
    203 #endif
    204 
    205 #ifndef INET6
    206 /* always need ip6.h for IP6_EXTHDR_GET */
    207 #include <netinet/ip6.h>
    208 #endif
    209 
    210 #include <netinet/tcp.h>
    211 #include <netinet/tcp_fsm.h>
    212 #include <netinet/tcp_seq.h>
    213 #include <netinet/tcp_timer.h>
    214 #include <netinet/tcp_var.h>
    215 #include <netinet/tcp_private.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #ifdef INET6
    221 #include "faith.h"
    222 #if defined(NFAITH) && NFAITH > 0
    223 #include <net/if_faith.h>
    224 #endif
    225 #endif	/* INET6 */
    226 
    227 #ifdef IPSEC
    228 #include <netipsec/ipsec.h>
    229 #include <netipsec/ipsec_var.h>
    230 #include <netipsec/ipsec_private.h>
    231 #include <netipsec/key.h>
    232 #ifdef INET6
    233 #include <netipsec/ipsec6.h>
    234 #endif
    235 #endif	/* IPSEC*/
    236 
    237 #include <netinet/tcp_vtw.h>
    238 
    239 int	tcprexmtthresh = 3;
    240 int	tcp_log_refused;
    241 
    242 int	tcp_do_autorcvbuf = 1;
    243 int	tcp_autorcvbuf_inc = 16 * 1024;
    244 int	tcp_autorcvbuf_max = 256 * 1024;
    245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    246 
    247 static int tcp_rst_ppslim_count = 0;
    248 static struct timeval tcp_rst_ppslim_last;
    249 static int tcp_ackdrop_ppslim_count = 0;
    250 static struct timeval tcp_ackdrop_ppslim_last;
    251 
    252 static void syn_cache_timer(void *);
    253 
    254 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    255 
    256 /* for modulo comparisons of timestamps */
    257 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    258 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    259 
    260 /*
    261  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    262  */
    263 #ifdef INET6
    264 static inline void
    265 nd6_hint(struct tcpcb *tp)
    266 {
    267 	struct rtentry *rt = NULL;
    268 
    269 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    270 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    271 		nd6_nud_hint(rt);
    272 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
    273 }
    274 #else
    275 static inline void
    276 nd6_hint(struct tcpcb *tp)
    277 {
    278 }
    279 #endif
    280 
    281 /*
    282  * Compute ACK transmission behavior.  Delay the ACK unless
    283  * we have already delayed an ACK (must send an ACK every two segments).
    284  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    285  * option is enabled.
    286  */
    287 static void
    288 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    289 {
    290 
    291 	if (tp->t_flags & TF_DELACK ||
    292 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    293 		tp->t_flags |= TF_ACKNOW;
    294 	else
    295 		TCP_SET_DELACK(tp);
    296 }
    297 
    298 static void
    299 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    300 {
    301 
    302 	/*
    303 	 * If we had a pending ICMP message that refers to data that have
    304 	 * just been acknowledged, disregard the recorded ICMP message.
    305 	 */
    306 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    307 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    308 		tp->t_flags &= ~TF_PMTUD_PEND;
    309 
    310 	/*
    311 	 * Keep track of the largest chunk of data
    312 	 * acknowledged since last PMTU update
    313 	 */
    314 	if (tp->t_pmtud_mss_acked < acked)
    315 		tp->t_pmtud_mss_acked = acked;
    316 }
    317 
    318 /*
    319  * Convert TCP protocol fields to host order for easier processing.
    320  */
    321 static void
    322 tcp_fields_to_host(struct tcphdr *th)
    323 {
    324 
    325 	NTOHL(th->th_seq);
    326 	NTOHL(th->th_ack);
    327 	NTOHS(th->th_win);
    328 	NTOHS(th->th_urp);
    329 }
    330 
    331 /*
    332  * ... and reverse the above.
    333  */
    334 static void
    335 tcp_fields_to_net(struct tcphdr *th)
    336 {
    337 
    338 	HTONL(th->th_seq);
    339 	HTONL(th->th_ack);
    340 	HTONS(th->th_win);
    341 	HTONS(th->th_urp);
    342 }
    343 
    344 #ifdef TCP_CSUM_COUNTERS
    345 #include <sys/device.h>
    346 
    347 #if defined(INET)
    348 extern struct evcnt tcp_hwcsum_ok;
    349 extern struct evcnt tcp_hwcsum_bad;
    350 extern struct evcnt tcp_hwcsum_data;
    351 extern struct evcnt tcp_swcsum;
    352 #endif /* defined(INET) */
    353 #if defined(INET6)
    354 extern struct evcnt tcp6_hwcsum_ok;
    355 extern struct evcnt tcp6_hwcsum_bad;
    356 extern struct evcnt tcp6_hwcsum_data;
    357 extern struct evcnt tcp6_swcsum;
    358 #endif /* defined(INET6) */
    359 
    360 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    361 
    362 #else
    363 
    364 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    365 
    366 #endif /* TCP_CSUM_COUNTERS */
    367 
    368 #ifdef TCP_REASS_COUNTERS
    369 #include <sys/device.h>
    370 
    371 extern struct evcnt tcp_reass_;
    372 extern struct evcnt tcp_reass_empty;
    373 extern struct evcnt tcp_reass_iteration[8];
    374 extern struct evcnt tcp_reass_prependfirst;
    375 extern struct evcnt tcp_reass_prepend;
    376 extern struct evcnt tcp_reass_insert;
    377 extern struct evcnt tcp_reass_inserttail;
    378 extern struct evcnt tcp_reass_append;
    379 extern struct evcnt tcp_reass_appendtail;
    380 extern struct evcnt tcp_reass_overlaptail;
    381 extern struct evcnt tcp_reass_overlapfront;
    382 extern struct evcnt tcp_reass_segdup;
    383 extern struct evcnt tcp_reass_fragdup;
    384 
    385 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    386 
    387 #else
    388 
    389 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    390 
    391 #endif /* TCP_REASS_COUNTERS */
    392 
    393 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    394     int *);
    395 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    396     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    397 
    398 #ifdef INET
    399 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    400 #endif
    401 #ifdef INET6
    402 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    403 #endif
    404 
    405 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    406 
    407 #if defined(MBUFTRACE)
    408 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    409 #endif /* defined(MBUFTRACE) */
    410 
    411 static struct pool tcpipqent_pool;
    412 
    413 void
    414 tcpipqent_init(void)
    415 {
    416 
    417 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    418 	    NULL, IPL_VM);
    419 }
    420 
    421 struct ipqent *
    422 tcpipqent_alloc(void)
    423 {
    424 	struct ipqent *ipqe;
    425 	int s;
    426 
    427 	s = splvm();
    428 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    429 	splx(s);
    430 
    431 	return ipqe;
    432 }
    433 
    434 void
    435 tcpipqent_free(struct ipqent *ipqe)
    436 {
    437 	int s;
    438 
    439 	s = splvm();
    440 	pool_put(&tcpipqent_pool, ipqe);
    441 	splx(s);
    442 }
    443 
    444 static int
    445 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    446 {
    447 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    448 	struct socket *so = NULL;
    449 	int pkt_flags;
    450 	tcp_seq pkt_seq;
    451 	unsigned pkt_len;
    452 	u_long rcvpartdupbyte = 0;
    453 	u_long rcvoobyte;
    454 #ifdef TCP_REASS_COUNTERS
    455 	u_int count = 0;
    456 #endif
    457 	uint64_t *tcps;
    458 
    459 	if (tp->t_inpcb)
    460 		so = tp->t_inpcb->inp_socket;
    461 #ifdef INET6
    462 	else if (tp->t_in6pcb)
    463 		so = tp->t_in6pcb->in6p_socket;
    464 #endif
    465 
    466 	TCP_REASS_LOCK_CHECK(tp);
    467 
    468 	/*
    469 	 * Call with th==0 after become established to
    470 	 * force pre-ESTABLISHED data up to user socket.
    471 	 */
    472 	if (th == 0)
    473 		goto present;
    474 
    475 	m_claimm(m, &tcp_reass_mowner);
    476 
    477 	rcvoobyte = *tlen;
    478 	/*
    479 	 * Copy these to local variables because the tcpiphdr
    480 	 * gets munged while we are collapsing mbufs.
    481 	 */
    482 	pkt_seq = th->th_seq;
    483 	pkt_len = *tlen;
    484 	pkt_flags = th->th_flags;
    485 
    486 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    487 
    488 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    489 		/*
    490 		 * When we miss a packet, the vast majority of time we get
    491 		 * packets that follow it in order.  So optimize for that.
    492 		 */
    493 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    494 			p->ipqe_len += pkt_len;
    495 			p->ipqe_flags |= pkt_flags;
    496 			m_cat(p->ipre_mlast, m);
    497 			TRAVERSE(p->ipre_mlast);
    498 			m = NULL;
    499 			tiqe = p;
    500 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    501 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    502 			goto skip_replacement;
    503 		}
    504 		/*
    505 		 * While we're here, if the pkt is completely beyond
    506 		 * anything we have, just insert it at the tail.
    507 		 */
    508 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    509 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    510 			goto insert_it;
    511 		}
    512 	}
    513 
    514 	q = TAILQ_FIRST(&tp->segq);
    515 
    516 	if (q != NULL) {
    517 		/*
    518 		 * If this segment immediately precedes the first out-of-order
    519 		 * block, simply slap the segment in front of it and (mostly)
    520 		 * skip the complicated logic.
    521 		 */
    522 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    523 			q->ipqe_seq = pkt_seq;
    524 			q->ipqe_len += pkt_len;
    525 			q->ipqe_flags |= pkt_flags;
    526 			m_cat(m, q->ipqe_m);
    527 			q->ipqe_m = m;
    528 			q->ipre_mlast = m; /* last mbuf may have changed */
    529 			TRAVERSE(q->ipre_mlast);
    530 			tiqe = q;
    531 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    532 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    533 			goto skip_replacement;
    534 		}
    535 	} else {
    536 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    537 	}
    538 
    539 	/*
    540 	 * Find a segment which begins after this one does.
    541 	 */
    542 	for (p = NULL; q != NULL; q = nq) {
    543 		nq = TAILQ_NEXT(q, ipqe_q);
    544 #ifdef TCP_REASS_COUNTERS
    545 		count++;
    546 #endif
    547 		/*
    548 		 * If the received segment is just right after this
    549 		 * fragment, merge the two together and then check
    550 		 * for further overlaps.
    551 		 */
    552 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    553 #ifdef TCPREASS_DEBUG
    554 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    555 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    556 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    557 #endif
    558 			pkt_len += q->ipqe_len;
    559 			pkt_flags |= q->ipqe_flags;
    560 			pkt_seq = q->ipqe_seq;
    561 			m_cat(q->ipre_mlast, m);
    562 			TRAVERSE(q->ipre_mlast);
    563 			m = q->ipqe_m;
    564 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    565 			goto free_ipqe;
    566 		}
    567 		/*
    568 		 * If the received segment is completely past this
    569 		 * fragment, we need to go the next fragment.
    570 		 */
    571 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    572 			p = q;
    573 			continue;
    574 		}
    575 		/*
    576 		 * If the fragment is past the received segment,
    577 		 * it (or any following) can't be concatenated.
    578 		 */
    579 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    580 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    581 			break;
    582 		}
    583 
    584 		/*
    585 		 * We've received all the data in this segment before.
    586 		 * mark it as a duplicate and return.
    587 		 */
    588 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    589 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    590 			tcps = TCP_STAT_GETREF();
    591 			tcps[TCP_STAT_RCVDUPPACK]++;
    592 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    593 			TCP_STAT_PUTREF();
    594 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    595 			m_freem(m);
    596 			if (tiqe != NULL) {
    597 				tcpipqent_free(tiqe);
    598 			}
    599 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    600 			goto out;
    601 		}
    602 		/*
    603 		 * Received segment completely overlaps this fragment
    604 		 * so we drop the fragment (this keeps the temporal
    605 		 * ordering of segments correct).
    606 		 */
    607 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    608 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    609 			rcvpartdupbyte += q->ipqe_len;
    610 			m_freem(q->ipqe_m);
    611 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    612 			goto free_ipqe;
    613 		}
    614 		/*
    615 		 * RX'ed segment extends past the end of the
    616 		 * fragment.  Drop the overlapping bytes.  Then
    617 		 * merge the fragment and segment then treat as
    618 		 * a longer received packet.
    619 		 */
    620 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    621 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    622 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    623 #ifdef TCPREASS_DEBUG
    624 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    625 			       tp, overlap,
    626 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    627 #endif
    628 			m_adj(m, overlap);
    629 			rcvpartdupbyte += overlap;
    630 			m_cat(q->ipre_mlast, m);
    631 			TRAVERSE(q->ipre_mlast);
    632 			m = q->ipqe_m;
    633 			pkt_seq = q->ipqe_seq;
    634 			pkt_len += q->ipqe_len - overlap;
    635 			rcvoobyte -= overlap;
    636 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    637 			goto free_ipqe;
    638 		}
    639 		/*
    640 		 * RX'ed segment extends past the front of the
    641 		 * fragment.  Drop the overlapping bytes on the
    642 		 * received packet.  The packet will then be
    643 		 * contatentated with this fragment a bit later.
    644 		 */
    645 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    646 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    647 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    648 #ifdef TCPREASS_DEBUG
    649 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    650 			       tp, overlap,
    651 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    652 #endif
    653 			m_adj(m, -overlap);
    654 			pkt_len -= overlap;
    655 			rcvpartdupbyte += overlap;
    656 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    657 			rcvoobyte -= overlap;
    658 		}
    659 		/*
    660 		 * If the received segment immediates precedes this
    661 		 * fragment then tack the fragment onto this segment
    662 		 * and reinsert the data.
    663 		 */
    664 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    665 #ifdef TCPREASS_DEBUG
    666 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    667 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    668 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    669 #endif
    670 			pkt_len += q->ipqe_len;
    671 			pkt_flags |= q->ipqe_flags;
    672 			m_cat(m, q->ipqe_m);
    673 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    674 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    675 			tp->t_segqlen--;
    676 			KASSERT(tp->t_segqlen >= 0);
    677 			KASSERT(tp->t_segqlen != 0 ||
    678 			    (TAILQ_EMPTY(&tp->segq) &&
    679 			    TAILQ_EMPTY(&tp->timeq)));
    680 			if (tiqe == NULL) {
    681 				tiqe = q;
    682 			} else {
    683 				tcpipqent_free(q);
    684 			}
    685 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    686 			break;
    687 		}
    688 		/*
    689 		 * If the fragment is before the segment, remember it.
    690 		 * When this loop is terminated, p will contain the
    691 		 * pointer to fragment that is right before the received
    692 		 * segment.
    693 		 */
    694 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    695 			p = q;
    696 
    697 		continue;
    698 
    699 		/*
    700 		 * This is a common operation.  It also will allow
    701 		 * to save doing a malloc/free in most instances.
    702 		 */
    703 	  free_ipqe:
    704 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    705 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    706 		tp->t_segqlen--;
    707 		KASSERT(tp->t_segqlen >= 0);
    708 		KASSERT(tp->t_segqlen != 0 ||
    709 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    710 		if (tiqe == NULL) {
    711 			tiqe = q;
    712 		} else {
    713 			tcpipqent_free(q);
    714 		}
    715 	}
    716 
    717 #ifdef TCP_REASS_COUNTERS
    718 	if (count > 7)
    719 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    720 	else if (count > 0)
    721 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    722 #endif
    723 
    724     insert_it:
    725 
    726 	/*
    727 	 * Allocate a new queue entry since the received segment did not
    728 	 * collapse onto any other out-of-order block; thus we are allocating
    729 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    730 	 * we would be reusing it.
    731 	 * XXX If we can't, just drop the packet.  XXX
    732 	 */
    733 	if (tiqe == NULL) {
    734 		tiqe = tcpipqent_alloc();
    735 		if (tiqe == NULL) {
    736 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    737 			m_freem(m);
    738 			goto out;
    739 		}
    740 	}
    741 
    742 	/*
    743 	 * Update the counters.
    744 	 */
    745 	tp->t_rcvoopack++;
    746 	tcps = TCP_STAT_GETREF();
    747 	tcps[TCP_STAT_RCVOOPACK]++;
    748 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    749 	if (rcvpartdupbyte) {
    750 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    751 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    752 	}
    753 	TCP_STAT_PUTREF();
    754 
    755 	/*
    756 	 * Insert the new fragment queue entry into both queues.
    757 	 */
    758 	tiqe->ipqe_m = m;
    759 	tiqe->ipre_mlast = m;
    760 	tiqe->ipqe_seq = pkt_seq;
    761 	tiqe->ipqe_len = pkt_len;
    762 	tiqe->ipqe_flags = pkt_flags;
    763 	if (p == NULL) {
    764 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    765 #ifdef TCPREASS_DEBUG
    766 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    767 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    768 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    769 #endif
    770 	} else {
    771 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    772 #ifdef TCPREASS_DEBUG
    773 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    774 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    775 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    776 #endif
    777 	}
    778 	tp->t_segqlen++;
    779 
    780 skip_replacement:
    781 
    782 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    783 
    784 present:
    785 	/*
    786 	 * Present data to user, advancing rcv_nxt through
    787 	 * completed sequence space.
    788 	 */
    789 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    790 		goto out;
    791 	q = TAILQ_FIRST(&tp->segq);
    792 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    793 		goto out;
    794 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    795 		goto out;
    796 
    797 	tp->rcv_nxt += q->ipqe_len;
    798 	pkt_flags = q->ipqe_flags & TH_FIN;
    799 	nd6_hint(tp);
    800 
    801 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    802 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    803 	tp->t_segqlen--;
    804 	KASSERT(tp->t_segqlen >= 0);
    805 	KASSERT(tp->t_segqlen != 0 ||
    806 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    807 	if (so->so_state & SS_CANTRCVMORE)
    808 		m_freem(q->ipqe_m);
    809 	else
    810 		sbappendstream(&so->so_rcv, q->ipqe_m);
    811 	tcpipqent_free(q);
    812 	TCP_REASS_UNLOCK(tp);
    813 	sorwakeup(so);
    814 	return (pkt_flags);
    815 out:
    816 	TCP_REASS_UNLOCK(tp);
    817 	return (0);
    818 }
    819 
    820 #ifdef INET6
    821 int
    822 tcp6_input(struct mbuf **mp, int *offp, int proto)
    823 {
    824 	struct mbuf *m = *mp;
    825 
    826 	/*
    827 	 * draft-itojun-ipv6-tcp-to-anycast
    828 	 * better place to put this in?
    829 	 */
    830 	if (m->m_flags & M_ANYCAST6) {
    831 		struct ip6_hdr *ip6;
    832 		if (m->m_len < sizeof(struct ip6_hdr)) {
    833 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    834 				TCP_STATINC(TCP_STAT_RCVSHORT);
    835 				return IPPROTO_DONE;
    836 			}
    837 		}
    838 		ip6 = mtod(m, struct ip6_hdr *);
    839 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    840 		    (char *)&ip6->ip6_dst - (char *)ip6);
    841 		return IPPROTO_DONE;
    842 	}
    843 
    844 	tcp_input(m, *offp, proto);
    845 	return IPPROTO_DONE;
    846 }
    847 #endif
    848 
    849 #ifdef INET
    850 static void
    851 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    852 {
    853 	char src[INET_ADDRSTRLEN];
    854 	char dst[INET_ADDRSTRLEN];
    855 
    856 	if (ip) {
    857 		in_print(src, sizeof(src), &ip->ip_src);
    858 		in_print(dst, sizeof(dst), &ip->ip_dst);
    859 	}
    860 	else {
    861 		strlcpy(src, "(unknown)", sizeof(src));
    862 		strlcpy(dst, "(unknown)", sizeof(dst));
    863 	}
    864 	log(LOG_INFO,
    865 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    866 	    dst, ntohs(th->th_dport),
    867 	    src, ntohs(th->th_sport));
    868 }
    869 #endif
    870 
    871 #ifdef INET6
    872 static void
    873 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    874 {
    875 	char src[INET6_ADDRSTRLEN];
    876 	char dst[INET6_ADDRSTRLEN];
    877 
    878 	if (ip6) {
    879 		in6_print(src, sizeof(src), &ip6->ip6_src);
    880 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    881 	}
    882 	else {
    883 		strlcpy(src, "(unknown v6)", sizeof(src));
    884 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    885 	}
    886 	log(LOG_INFO,
    887 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    888 	    dst, ntohs(th->th_dport),
    889 	    src, ntohs(th->th_sport));
    890 }
    891 #endif
    892 
    893 /*
    894  * Checksum extended TCP header and data.
    895  */
    896 int
    897 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    898     int toff, int off, int tlen)
    899 {
    900 	struct ifnet *rcvif;
    901 	int s;
    902 
    903 	/*
    904 	 * XXX it's better to record and check if this mbuf is
    905 	 * already checked.
    906 	 */
    907 
    908 	rcvif = m_get_rcvif(m, &s);
    909 	if (__predict_false(rcvif == NULL))
    910 		goto badcsum; /* XXX */
    911 
    912 	switch (af) {
    913 #ifdef INET
    914 	case AF_INET:
    915 		switch (m->m_pkthdr.csum_flags &
    916 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    917 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    918 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    920 			goto badcsum;
    921 
    922 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    923 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    924 
    925 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    926 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    927 				const struct ip *ip =
    928 				    mtod(m, const struct ip *);
    929 
    930 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    931 				    ip->ip_dst.s_addr,
    932 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    933 			}
    934 			if ((hw_csum ^ 0xffff) != 0)
    935 				goto badcsum;
    936 			break;
    937 		}
    938 
    939 		case M_CSUM_TCPv4:
    940 			/* Checksum was okay. */
    941 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    942 			break;
    943 
    944 		default:
    945 			/*
    946 			 * Must compute it ourselves.  Maybe skip checksum
    947 			 * on loopback interfaces.
    948 			 */
    949 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    950 					   tcp_do_loopback_cksum)) {
    951 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    952 				if (in4_cksum(m, IPPROTO_TCP, toff,
    953 					      tlen + off) != 0)
    954 					goto badcsum;
    955 			}
    956 			break;
    957 		}
    958 		break;
    959 #endif /* INET4 */
    960 
    961 #ifdef INET6
    962 	case AF_INET6:
    963 		switch (m->m_pkthdr.csum_flags &
    964 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    965 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    966 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    967 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    968 			goto badcsum;
    969 
    970 #if 0 /* notyet */
    971 		case M_CSUM_TCPv6|M_CSUM_DATA:
    972 #endif
    973 
    974 		case M_CSUM_TCPv6:
    975 			/* Checksum was okay. */
    976 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    977 			break;
    978 
    979 		default:
    980 			/*
    981 			 * Must compute it ourselves.  Maybe skip checksum
    982 			 * on loopback interfaces.
    983 			 */
    984 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    985 			    tcp_do_loopback_cksum)) {
    986 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    987 				if (in6_cksum(m, IPPROTO_TCP, toff,
    988 				    tlen + off) != 0)
    989 					goto badcsum;
    990 			}
    991 		}
    992 		break;
    993 #endif /* INET6 */
    994 	}
    995 	m_put_rcvif(rcvif, &s);
    996 
    997 	return 0;
    998 
    999 badcsum:
   1000 	m_put_rcvif(rcvif, &s);
   1001 	TCP_STATINC(TCP_STAT_RCVBADSUM);
   1002 	return -1;
   1003 }
   1004 
   1005 /* When a packet arrives addressed to a vestigial tcpbp, we
   1006  * nevertheless have to respond to it per the spec.
   1007  */
   1008 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
   1009 			  struct mbuf *m, int tlen, int multicast)
   1010 {
   1011 	int		tiflags;
   1012 	int		todrop;
   1013 	uint32_t	t_flags = 0;
   1014 	uint64_t	*tcps;
   1015 
   1016 	tiflags = th->th_flags;
   1017 	todrop  = vp->rcv_nxt - th->th_seq;
   1018 
   1019 	if (todrop > 0) {
   1020 		if (tiflags & TH_SYN) {
   1021 			tiflags &= ~TH_SYN;
   1022 			++th->th_seq;
   1023 			if (th->th_urp > 1)
   1024 				--th->th_urp;
   1025 			else {
   1026 				tiflags &= ~TH_URG;
   1027 				th->th_urp = 0;
   1028 			}
   1029 			--todrop;
   1030 		}
   1031 		if (todrop > tlen ||
   1032 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1033 			/*
   1034 			 * Any valid FIN or RST must be to the left of the
   1035 			 * window.  At this point the FIN or RST must be a
   1036 			 * duplicate or out of sequence; drop it.
   1037 			 */
   1038 			if (tiflags & TH_RST)
   1039 				goto drop;
   1040 			tiflags &= ~(TH_FIN|TH_RST);
   1041 			/*
   1042 			 * Send an ACK to resynchronize and drop any data.
   1043 			 * But keep on processing for RST or ACK.
   1044 			 */
   1045 			t_flags |= TF_ACKNOW;
   1046 			todrop = tlen;
   1047 			tcps = TCP_STAT_GETREF();
   1048 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1049 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1050 			TCP_STAT_PUTREF();
   1051 		} else if ((tiflags & TH_RST)
   1052 			   && th->th_seq != vp->rcv_nxt) {
   1053 			/*
   1054 			 * Test for reset before adjusting the sequence
   1055 			 * number for overlapping data.
   1056 			 */
   1057 			goto dropafterack_ratelim;
   1058 		} else {
   1059 			tcps = TCP_STAT_GETREF();
   1060 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1061 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1062 			TCP_STAT_PUTREF();
   1063 		}
   1064 
   1065 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1066 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1067 
   1068 		th->th_seq += todrop;
   1069 		tlen -= todrop;
   1070 
   1071 		if (th->th_urp > todrop)
   1072 			th->th_urp -= todrop;
   1073 		else {
   1074 			tiflags &= ~TH_URG;
   1075 			th->th_urp = 0;
   1076 		}
   1077 	}
   1078 
   1079 	/*
   1080 	 * If new data are received on a connection after the
   1081 	 * user processes are gone, then RST the other end.
   1082 	 */
   1083 	if (tlen) {
   1084 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1085 		goto dropwithreset;
   1086 	}
   1087 
   1088 	/*
   1089 	 * If segment ends after window, drop trailing data
   1090 	 * (and PUSH and FIN); if nothing left, just ACK.
   1091 	 */
   1092 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
   1093 
   1094 	if (todrop > 0) {
   1095 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1096 		if (todrop >= tlen) {
   1097 			/*
   1098 			 * The segment actually starts after the window.
   1099 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1100 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1101 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1102 			 */
   1103 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1104 			/*
   1105 			 * If a new connection request is received
   1106 			 * while in TIME_WAIT, drop the old connection
   1107 			 * and start over if the sequence numbers
   1108 			 * are above the previous ones.
   1109 			 */
   1110 			if ((tiflags & TH_SYN)
   1111 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1112 				/* We only support this in the !NOFDREF case, which
   1113 				 * is to say: not here.
   1114 				 */
   1115 				goto dropwithreset;
   1116 			}
   1117 			/*
   1118 			 * If window is closed can only take segments at
   1119 			 * window edge, and have to drop data and PUSH from
   1120 			 * incoming segments.  Continue processing, but
   1121 			 * remember to ack.  Otherwise, drop segment
   1122 			 * and (if not RST) ack.
   1123 			 */
   1124 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1125 				t_flags |= TF_ACKNOW;
   1126 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1127 			} else
   1128 				goto dropafterack;
   1129 		} else
   1130 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1131 		m_adj(m, -todrop);
   1132 		tlen -= todrop;
   1133 		tiflags &= ~(TH_PUSH|TH_FIN);
   1134 	}
   1135 
   1136 	if (tiflags & TH_RST) {
   1137 		if (th->th_seq != vp->rcv_nxt)
   1138 			goto dropafterack_ratelim;
   1139 
   1140 		vtw_del(vp->ctl, vp->vtw);
   1141 		goto drop;
   1142 	}
   1143 
   1144 	/*
   1145 	 * If the ACK bit is off we drop the segment and return.
   1146 	 */
   1147 	if ((tiflags & TH_ACK) == 0) {
   1148 		if (t_flags & TF_ACKNOW)
   1149 			goto dropafterack;
   1150 		else
   1151 			goto drop;
   1152 	}
   1153 
   1154 	/*
   1155 	 * In TIME_WAIT state the only thing that should arrive
   1156 	 * is a retransmission of the remote FIN.  Acknowledge
   1157 	 * it and restart the finack timer.
   1158 	 */
   1159 	vtw_restart(vp);
   1160 	goto dropafterack;
   1161 
   1162 dropafterack:
   1163 	/*
   1164 	 * Generate an ACK dropping incoming segment if it occupies
   1165 	 * sequence space, where the ACK reflects our state.
   1166 	 */
   1167 	if (tiflags & TH_RST)
   1168 		goto drop;
   1169 	goto dropafterack2;
   1170 
   1171 dropafterack_ratelim:
   1172 	/*
   1173 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1174 	 */
   1175 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1176 			 tcp_ackdrop_ppslim) == 0) {
   1177 		/* XXX stat */
   1178 		goto drop;
   1179 	}
   1180 	/* ...fall into dropafterack2... */
   1181 
   1182 dropafterack2:
   1183 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
   1184 			  TH_ACK);
   1185 	return;
   1186 
   1187 dropwithreset:
   1188 	/*
   1189 	 * Generate a RST, dropping incoming segment.
   1190 	 * Make ACK acceptable to originator of segment.
   1191 	 */
   1192 	if (tiflags & TH_RST)
   1193 		goto drop;
   1194 
   1195 	if (tiflags & TH_ACK)
   1196 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1197 	else {
   1198 		if (tiflags & TH_SYN)
   1199 			++tlen;
   1200 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1201 				  TH_RST|TH_ACK);
   1202 	}
   1203 	return;
   1204 drop:
   1205 	m_freem(m);
   1206 }
   1207 
   1208 /*
   1209  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1210  */
   1211 void
   1212 tcp_input(struct mbuf *m, ...)
   1213 {
   1214 	struct tcphdr *th;
   1215 	struct ip *ip;
   1216 	struct inpcb *inp;
   1217 #ifdef INET6
   1218 	struct ip6_hdr *ip6;
   1219 	struct in6pcb *in6p;
   1220 #endif
   1221 	u_int8_t *optp = NULL;
   1222 	int optlen = 0;
   1223 	int len, tlen, toff, hdroptlen = 0;
   1224 	struct tcpcb *tp = 0;
   1225 	int tiflags;
   1226 	struct socket *so = NULL;
   1227 	int todrop, acked, ourfinisacked, needoutput = 0;
   1228 	bool dupseg;
   1229 #ifdef TCP_DEBUG
   1230 	short ostate = 0;
   1231 #endif
   1232 	u_long tiwin;
   1233 	struct tcp_opt_info opti;
   1234 	int off, iphlen;
   1235 	va_list ap;
   1236 	int af;		/* af on the wire */
   1237 	struct mbuf *tcp_saveti = NULL;
   1238 	uint32_t ts_rtt;
   1239 	uint8_t iptos;
   1240 	uint64_t *tcps;
   1241 	vestigial_inpcb_t vestige;
   1242 
   1243 	vestige.valid = 0;
   1244 
   1245 	MCLAIM(m, &tcp_rx_mowner);
   1246 	va_start(ap, m);
   1247 	toff = va_arg(ap, int);
   1248 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1249 	va_end(ap);
   1250 
   1251 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1252 
   1253 	memset(&opti, 0, sizeof(opti));
   1254 	opti.ts_present = 0;
   1255 	opti.maxseg = 0;
   1256 
   1257 	/*
   1258 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1259 	 *
   1260 	 * TCP is, by definition, unicast, so we reject all
   1261 	 * multicast outright.
   1262 	 *
   1263 	 * Note, there are additional src/dst address checks in
   1264 	 * the AF-specific code below.
   1265 	 */
   1266 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1267 		/* XXX stat */
   1268 		goto drop;
   1269 	}
   1270 #ifdef INET6
   1271 	if (m->m_flags & M_ANYCAST6) {
   1272 		/* XXX stat */
   1273 		goto drop;
   1274 	}
   1275 #endif
   1276 
   1277 	/*
   1278 	 * Get IP and TCP header.
   1279 	 * Note: IP leaves IP header in first mbuf.
   1280 	 */
   1281 	ip = mtod(m, struct ip *);
   1282 	switch (ip->ip_v) {
   1283 #ifdef INET
   1284 	case 4:
   1285 #ifdef INET6
   1286 		ip6 = NULL;
   1287 #endif
   1288 		af = AF_INET;
   1289 		iphlen = sizeof(struct ip);
   1290 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1291 			sizeof(struct tcphdr));
   1292 		if (th == NULL) {
   1293 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1294 			return;
   1295 		}
   1296 		/* We do the checksum after PCB lookup... */
   1297 		len = ntohs(ip->ip_len);
   1298 		tlen = len - toff;
   1299 		iptos = ip->ip_tos;
   1300 		break;
   1301 #endif
   1302 #ifdef INET6
   1303 	case 6:
   1304 		ip = NULL;
   1305 		iphlen = sizeof(struct ip6_hdr);
   1306 		af = AF_INET6;
   1307 		ip6 = mtod(m, struct ip6_hdr *);
   1308 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff,
   1309 			sizeof(struct tcphdr));
   1310 		if (th == NULL) {
   1311 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1312 			return;
   1313 		}
   1314 
   1315 		/* Be proactive about malicious use of IPv4 mapped address */
   1316 		if (IN6_IS_ADDR_V4MAPPED(&ip6->ip6_src) ||
   1317 		    IN6_IS_ADDR_V4MAPPED(&ip6->ip6_dst)) {
   1318 			/* XXX stat */
   1319 			goto drop;
   1320 		}
   1321 
   1322 		/*
   1323 		 * Be proactive about unspecified IPv6 address in source.
   1324 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1325 		 * unspecified IPv6 address can be used to confuse us.
   1326 		 *
   1327 		 * Note that packets with unspecified IPv6 destination is
   1328 		 * already dropped in ip6_input.
   1329 		 */
   1330 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1331 			/* XXX stat */
   1332 			goto drop;
   1333 		}
   1334 
   1335 		/*
   1336 		 * Make sure destination address is not multicast.
   1337 		 * Source address checked in ip6_input().
   1338 		 */
   1339 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1340 			/* XXX stat */
   1341 			goto drop;
   1342 		}
   1343 
   1344 		/* We do the checksum after PCB lookup... */
   1345 		len = m->m_pkthdr.len;
   1346 		tlen = len - toff;
   1347 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1348 		break;
   1349 #endif
   1350 	default:
   1351 		m_freem(m);
   1352 		return;
   1353 	}
   1354 	/*
   1355          * Enforce alignment requirements that are violated in
   1356 	 * some cases, see kern/50766 for details.
   1357 	 */
   1358 	if (TCP_HDR_ALIGNED_P(th) == 0) {
   1359 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
   1360 		if (m == NULL) {
   1361 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1362 			return;
   1363 		}
   1364 		ip = mtod(m, struct ip *);
   1365 #ifdef INET6
   1366 		ip6 = mtod(m, struct ip6_hdr *);
   1367 #endif
   1368 		th = (struct tcphdr *)(mtod(m, char *) + toff);
   1369 	}
   1370 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1371 
   1372 	/*
   1373 	 * Check that TCP offset makes sense,
   1374 	 * pull out TCP options and adjust length.		XXX
   1375 	 */
   1376 	off = th->th_off << 2;
   1377 	if (off < sizeof (struct tcphdr) || off > tlen) {
   1378 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1379 		goto drop;
   1380 	}
   1381 	tlen -= off;
   1382 
   1383 	/*
   1384 	 * tcp_input() has been modified to use tlen to mean the TCP data
   1385 	 * length throughout the function.  Other functions can use
   1386 	 * m->m_pkthdr.len as the basis for calculating the TCP data length.
   1387 	 * rja
   1388 	 */
   1389 
   1390 	if (off > sizeof (struct tcphdr)) {
   1391 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1392 		if (th == NULL) {
   1393 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1394 			return;
   1395 		}
   1396 		/*
   1397 		 * NOTE: ip/ip6 will not be affected by m_pulldown()
   1398 		 * (as they're before toff) and we don't need to update those.
   1399 		 */
   1400 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1401 		optlen = off - sizeof (struct tcphdr);
   1402 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1403 		/*
   1404 		 * Do quick retrieval of timestamp options ("options
   1405 		 * prediction?").  If timestamp is the only option and it's
   1406 		 * formatted as recommended in RFC 1323 appendix A, we
   1407 		 * quickly get the values now and not bother calling
   1408 		 * tcp_dooptions(), etc.
   1409 		 */
   1410 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1411 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1412 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1413 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1414 		     (th->th_flags & TH_SYN) == 0) {
   1415 			opti.ts_present = 1;
   1416 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1417 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1418 			optp = NULL;	/* we've parsed the options */
   1419 		}
   1420 	}
   1421 	tiflags = th->th_flags;
   1422 
   1423 	/*
   1424 	 * Checksum extended TCP header and data
   1425 	 */
   1426 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1427 		goto badcsum;
   1428 
   1429 	/*
   1430 	 * Locate pcb for segment.
   1431 	 */
   1432 findpcb:
   1433 	inp = NULL;
   1434 #ifdef INET6
   1435 	in6p = NULL;
   1436 #endif
   1437 	switch (af) {
   1438 #ifdef INET
   1439 	case AF_INET:
   1440 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1441 					   ip->ip_dst, th->th_dport,
   1442 					   &vestige);
   1443 		if (inp == 0 && !vestige.valid) {
   1444 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1445 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst, th->th_dport);
   1446 		}
   1447 #ifdef INET6
   1448 		if (inp == 0 && !vestige.valid) {
   1449 			struct in6_addr s, d;
   1450 
   1451 			/* mapped addr case */
   1452 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1453 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1454 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1455 						     th->th_sport, &d, th->th_dport,
   1456 						     0, &vestige);
   1457 			if (in6p == 0 && !vestige.valid) {
   1458 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1459 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1460 				    th->th_dport, 0);
   1461 			}
   1462 		}
   1463 #endif
   1464 #ifndef INET6
   1465 		if (inp == 0 && !vestige.valid)
   1466 #else
   1467 		if (inp == 0 && in6p == 0 && !vestige.valid)
   1468 #endif
   1469 		{
   1470 			TCP_STATINC(TCP_STAT_NOPORT);
   1471 			if (tcp_log_refused &&
   1472 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1473 				tcp4_log_refused(ip, th);
   1474 			}
   1475 			tcp_fields_to_host(th);
   1476 			goto dropwithreset_ratelim;
   1477 		}
   1478 #if defined(IPSEC)
   1479 		if (ipsec_used) {
   1480 			if (inp &&
   1481 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
   1482 			    && ipsec4_in_reject(m, inp)) {
   1483 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1484 				goto drop;
   1485 			}
   1486 #ifdef INET6
   1487 			else if (in6p &&
   1488 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1489 			    && ipsec6_in_reject(m, in6p)) {
   1490 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1491 				goto drop;
   1492 			}
   1493 #endif
   1494 		}
   1495 #endif /*IPSEC*/
   1496 		break;
   1497 #endif /*INET*/
   1498 #ifdef INET6
   1499 	case AF_INET6:
   1500 	    {
   1501 		int faith;
   1502 
   1503 #if defined(NFAITH) && NFAITH > 0
   1504 		faith = faithprefix(&ip6->ip6_dst);
   1505 #else
   1506 		faith = 0;
   1507 #endif
   1508 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1509 					     th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1510 		if (!in6p && !vestige.valid) {
   1511 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1512 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1513 				th->th_dport, faith);
   1514 		}
   1515 		if (!in6p && !vestige.valid) {
   1516 			TCP_STATINC(TCP_STAT_NOPORT);
   1517 			if (tcp_log_refused &&
   1518 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1519 				tcp6_log_refused(ip6, th);
   1520 			}
   1521 			tcp_fields_to_host(th);
   1522 			goto dropwithreset_ratelim;
   1523 		}
   1524 #if defined(IPSEC)
   1525 		if (ipsec_used && in6p
   1526 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1527 		    && ipsec6_in_reject(m, in6p)) {
   1528 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1529 			goto drop;
   1530 		}
   1531 #endif /*IPSEC*/
   1532 		break;
   1533 	    }
   1534 #endif
   1535 	}
   1536 
   1537 	/*
   1538 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1539 	 * all data in the incoming segment is discarded.
   1540 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1541 	 * but should either do a listen or a connect soon.
   1542 	 */
   1543 	tp = NULL;
   1544 	so = NULL;
   1545 	if (inp) {
   1546 		/* Check the minimum TTL for socket. */
   1547 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1548 			goto drop;
   1549 
   1550 		tp = intotcpcb(inp);
   1551 		so = inp->inp_socket;
   1552 	}
   1553 #ifdef INET6
   1554 	else if (in6p) {
   1555 		tp = in6totcpcb(in6p);
   1556 		so = in6p->in6p_socket;
   1557 	}
   1558 #endif
   1559 	else if (vestige.valid) {
   1560 		int mc = 0;
   1561 
   1562 		/* We do not support the resurrection of vtw tcpcps.
   1563 		 */
   1564 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1565 			goto badcsum;
   1566 
   1567 		switch (af) {
   1568 #ifdef INET6
   1569 		case AF_INET6:
   1570 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
   1571 			break;
   1572 #endif
   1573 
   1574 		case AF_INET:
   1575 			mc = (IN_MULTICAST(ip->ip_dst.s_addr)
   1576 			      || in_broadcast(ip->ip_dst,
   1577 			                      m_get_rcvif_NOMPSAFE(m)));
   1578 			break;
   1579 		}
   1580 
   1581 		tcp_fields_to_host(th);
   1582 		tcp_vtw_input(th, &vestige, m, tlen, mc);
   1583 		m = 0;
   1584 		goto drop;
   1585 	}
   1586 
   1587 	if (tp == 0) {
   1588 		tcp_fields_to_host(th);
   1589 		goto dropwithreset_ratelim;
   1590 	}
   1591 	if (tp->t_state == TCPS_CLOSED)
   1592 		goto drop;
   1593 
   1594 	KASSERT(so->so_lock == softnet_lock);
   1595 	KASSERT(solocked(so));
   1596 
   1597 	tcp_fields_to_host(th);
   1598 
   1599 	/* Unscale the window into a 32-bit value. */
   1600 	if ((tiflags & TH_SYN) == 0)
   1601 		tiwin = th->th_win << tp->snd_scale;
   1602 	else
   1603 		tiwin = th->th_win;
   1604 
   1605 #ifdef INET6
   1606 	/* save packet options if user wanted */
   1607 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1608 		if (in6p->in6p_options) {
   1609 			m_freem(in6p->in6p_options);
   1610 			in6p->in6p_options = 0;
   1611 		}
   1612 		KASSERT(ip6 != NULL);
   1613 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1614 	}
   1615 #endif
   1616 
   1617 	if (so->so_options & (SO_DEBUG|SO_ACCEPTCONN)) {
   1618 		union syn_cache_sa src;
   1619 		union syn_cache_sa dst;
   1620 
   1621 		memset(&src, 0, sizeof(src));
   1622 		memset(&dst, 0, sizeof(dst));
   1623 		switch (af) {
   1624 #ifdef INET
   1625 		case AF_INET:
   1626 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1627 			src.sin.sin_family = AF_INET;
   1628 			src.sin.sin_addr = ip->ip_src;
   1629 			src.sin.sin_port = th->th_sport;
   1630 
   1631 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1632 			dst.sin.sin_family = AF_INET;
   1633 			dst.sin.sin_addr = ip->ip_dst;
   1634 			dst.sin.sin_port = th->th_dport;
   1635 			break;
   1636 #endif
   1637 #ifdef INET6
   1638 		case AF_INET6:
   1639 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1640 			src.sin6.sin6_family = AF_INET6;
   1641 			src.sin6.sin6_addr = ip6->ip6_src;
   1642 			src.sin6.sin6_port = th->th_sport;
   1643 
   1644 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1645 			dst.sin6.sin6_family = AF_INET6;
   1646 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1647 			dst.sin6.sin6_port = th->th_dport;
   1648 			break;
   1649 #endif /* INET6 */
   1650 		default:
   1651 			goto badsyn;	/*sanity*/
   1652 		}
   1653 
   1654 		if (so->so_options & SO_DEBUG) {
   1655 #ifdef TCP_DEBUG
   1656 			ostate = tp->t_state;
   1657 #endif
   1658 
   1659 			tcp_saveti = NULL;
   1660 			if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1661 				goto nosave;
   1662 
   1663 			if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1664 				tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1665 				if (!tcp_saveti)
   1666 					goto nosave;
   1667 			} else {
   1668 				MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1669 				if (!tcp_saveti)
   1670 					goto nosave;
   1671 				MCLAIM(m, &tcp_mowner);
   1672 				tcp_saveti->m_len = iphlen;
   1673 				m_copydata(m, 0, iphlen,
   1674 				    mtod(tcp_saveti, void *));
   1675 			}
   1676 
   1677 			if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1678 				m_freem(tcp_saveti);
   1679 				tcp_saveti = NULL;
   1680 			} else {
   1681 				tcp_saveti->m_len += sizeof(struct tcphdr);
   1682 				memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1683 				    sizeof(struct tcphdr));
   1684 			}
   1685 	nosave:;
   1686 		}
   1687 		if (so->so_options & SO_ACCEPTCONN) {
   1688 			if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1689 				if (tiflags & TH_RST) {
   1690 					syn_cache_reset(&src.sa, &dst.sa, th);
   1691 				} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1692 				    (TH_ACK|TH_SYN)) {
   1693 					/*
   1694 					 * Received a SYN,ACK.  This should
   1695 					 * never happen while we are in
   1696 					 * LISTEN.  Send an RST.
   1697 					 */
   1698 					goto badsyn;
   1699 				} else if (tiflags & TH_ACK) {
   1700 					so = syn_cache_get(&src.sa, &dst.sa,
   1701 						th, toff, tlen, so, m);
   1702 					if (so == NULL) {
   1703 						/*
   1704 						 * We don't have a SYN for
   1705 						 * this ACK; send an RST.
   1706 						 */
   1707 						goto badsyn;
   1708 					} else if (so ==
   1709 					    (struct socket *)(-1)) {
   1710 						/*
   1711 						 * We were unable to create
   1712 						 * the connection.  If the
   1713 						 * 3-way handshake was
   1714 						 * completed, and RST has
   1715 						 * been sent to the peer.
   1716 						 * Since the mbuf might be
   1717 						 * in use for the reply,
   1718 						 * do not free it.
   1719 						 */
   1720 						m = NULL;
   1721 					} else {
   1722 						/*
   1723 						 * We have created a
   1724 						 * full-blown connection.
   1725 						 */
   1726 						tp = NULL;
   1727 						inp = NULL;
   1728 #ifdef INET6
   1729 						in6p = NULL;
   1730 #endif
   1731 						switch (so->so_proto->pr_domain->dom_family) {
   1732 #ifdef INET
   1733 						case AF_INET:
   1734 							inp = sotoinpcb(so);
   1735 							tp = intotcpcb(inp);
   1736 							break;
   1737 #endif
   1738 #ifdef INET6
   1739 						case AF_INET6:
   1740 							in6p = sotoin6pcb(so);
   1741 							tp = in6totcpcb(in6p);
   1742 							break;
   1743 #endif
   1744 						}
   1745 						if (tp == NULL)
   1746 							goto badsyn;	/*XXX*/
   1747 						tiwin <<= tp->snd_scale;
   1748 						goto after_listen;
   1749 					}
   1750 				} else {
   1751 					/*
   1752 					 * None of RST, SYN or ACK was set.
   1753 					 * This is an invalid packet for a
   1754 					 * TCB in LISTEN state.  Send a RST.
   1755 					 */
   1756 					goto badsyn;
   1757 				}
   1758 			} else {
   1759 				/*
   1760 				 * Received a SYN.
   1761 				 *
   1762 				 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   1763 				 */
   1764 				if (m->m_flags & (M_BCAST|M_MCAST))
   1765 					goto drop;
   1766 
   1767 				switch (af) {
   1768 #ifdef INET6
   1769 				case AF_INET6:
   1770 					if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1771 						goto drop;
   1772 					break;
   1773 #endif /* INET6 */
   1774 				case AF_INET:
   1775 					if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1776 					    in_broadcast(ip->ip_dst,
   1777 					                 m_get_rcvif_NOMPSAFE(m)))
   1778 						goto drop;
   1779 				break;
   1780 				}
   1781 
   1782 #ifdef INET6
   1783 				/*
   1784 				 * If deprecated address is forbidden, we do
   1785 				 * not accept SYN to deprecated interface
   1786 				 * address to prevent any new inbound
   1787 				 * connection from getting established.
   1788 				 * When we do not accept SYN, we send a TCP
   1789 				 * RST, with deprecated source address (instead
   1790 				 * of dropping it).  We compromise it as it is
   1791 				 * much better for peer to send a RST, and
   1792 				 * RST will be the final packet for the
   1793 				 * exchange.
   1794 				 *
   1795 				 * If we do not forbid deprecated addresses, we
   1796 				 * accept the SYN packet.  RFC2462 does not
   1797 				 * suggest dropping SYN in this case.
   1798 				 * If we decipher RFC2462 5.5.4, it says like
   1799 				 * this:
   1800 				 * 1. use of deprecated addr with existing
   1801 				 *    communication is okay - "SHOULD continue
   1802 				 *    to be used"
   1803 				 * 2. use of it with new communication:
   1804 				 *   (2a) "SHOULD NOT be used if alternate
   1805 				 *        address with sufficient scope is
   1806 				 *        available"
   1807 				 *   (2b) nothing mentioned otherwise.
   1808 				 * Here we fall into (2b) case as we have no
   1809 				 * choice in our source address selection - we
   1810 				 * must obey the peer.
   1811 				 *
   1812 				 * The wording in RFC2462 is confusing, and
   1813 				 * there are multiple description text for
   1814 				 * deprecated address handling - worse, they
   1815 				 * are not exactly the same.  I believe 5.5.4
   1816 				 * is the best one, so we follow 5.5.4.
   1817 				 */
   1818 				if (af == AF_INET6 && !ip6_use_deprecated) {
   1819 					struct in6_ifaddr *ia6;
   1820 					int s;
   1821 					struct ifnet *rcvif = m_get_rcvif(m, &s);
   1822 					if (rcvif == NULL)
   1823 						goto dropwithreset; /* XXX */
   1824 					if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1825 					    &ip6->ip6_dst)) &&
   1826 					    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1827 						tp = NULL;
   1828 						m_put_rcvif(rcvif, &s);
   1829 						goto dropwithreset;
   1830 					}
   1831 					m_put_rcvif(rcvif, &s);
   1832 				}
   1833 #endif
   1834 
   1835 #if defined(IPSEC)
   1836 				if (ipsec_used) {
   1837 					switch (af) {
   1838 #ifdef INET
   1839 					case AF_INET:
   1840 						/*
   1841 						 * inp can be NULL when
   1842 						 * receiving an IPv4 packet on
   1843 						 * an IPv4-mapped IPv6 address.
   1844 						 */
   1845 						KASSERT(inp == NULL ||
   1846 						    sotoinpcb(so) == inp);
   1847 						if (!ipsec4_in_reject(m, inp))
   1848 							break;
   1849 						IPSEC_STATINC(
   1850 						    IPSEC_STAT_IN_POLVIO);
   1851 						tp = NULL;
   1852 						goto dropwithreset;
   1853 #endif
   1854 #ifdef INET6
   1855 					case AF_INET6:
   1856 						KASSERT(sotoin6pcb(so) == in6p);
   1857 						if (!ipsec6_in_reject(m, in6p))
   1858 							break;
   1859 						IPSEC6_STATINC(
   1860 						    IPSEC_STAT_IN_POLVIO);
   1861 						tp = NULL;
   1862 						goto dropwithreset;
   1863 #endif /*INET6*/
   1864 					}
   1865 				}
   1866 #endif /*IPSEC*/
   1867 
   1868 				/*
   1869 				 * LISTEN socket received a SYN
   1870 				 * from itself?  This can't possibly
   1871 				 * be valid; drop the packet.
   1872 				 */
   1873 				if (th->th_sport == th->th_dport) {
   1874 					int i;
   1875 
   1876 					switch (af) {
   1877 #ifdef INET
   1878 					case AF_INET:
   1879 						i = in_hosteq(ip->ip_src, ip->ip_dst);
   1880 						break;
   1881 #endif
   1882 #ifdef INET6
   1883 					case AF_INET6:
   1884 						i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src, &ip6->ip6_dst);
   1885 						break;
   1886 #endif
   1887 					default:
   1888 						i = 1;
   1889 					}
   1890 					if (i) {
   1891 						TCP_STATINC(TCP_STAT_BADSYN);
   1892 						goto drop;
   1893 					}
   1894 				}
   1895 
   1896 				/*
   1897 				 * SYN looks ok; create compressed TCP
   1898 				 * state for it.
   1899 				 */
   1900 				if (so->so_qlen <= so->so_qlimit &&
   1901 				    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1902 						so, m, optp, optlen, &opti))
   1903 					m = NULL;
   1904 			}
   1905 			goto drop;
   1906 		}
   1907 	}
   1908 
   1909 after_listen:
   1910 #ifdef DIAGNOSTIC
   1911 	/*
   1912 	 * Should not happen now that all embryonic connections
   1913 	 * are handled with compressed state.
   1914 	 */
   1915 	if (tp->t_state == TCPS_LISTEN)
   1916 		panic("tcp_input: TCPS_LISTEN");
   1917 #endif
   1918 
   1919 	/*
   1920 	 * Segment received on connection.
   1921 	 * Reset idle time and keep-alive timer.
   1922 	 */
   1923 	tp->t_rcvtime = tcp_now;
   1924 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1925 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1926 
   1927 	/*
   1928 	 * Process options.
   1929 	 */
   1930 #ifdef TCP_SIGNATURE
   1931 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1932 #else
   1933 	if (optp)
   1934 #endif
   1935 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1936 			goto drop;
   1937 
   1938 	if (TCP_SACK_ENABLED(tp)) {
   1939 		tcp_del_sackholes(tp, th);
   1940 	}
   1941 
   1942 	if (TCP_ECN_ALLOWED(tp)) {
   1943 		if (tiflags & TH_CWR) {
   1944 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1945 		}
   1946 		switch (iptos & IPTOS_ECN_MASK) {
   1947 		case IPTOS_ECN_CE:
   1948 			tp->t_flags |= TF_ECN_SND_ECE;
   1949 			TCP_STATINC(TCP_STAT_ECN_CE);
   1950 			break;
   1951 		case IPTOS_ECN_ECT0:
   1952 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1953 			break;
   1954 		case IPTOS_ECN_ECT1:
   1955 			/* XXX: ignore for now -- rpaulo */
   1956 			break;
   1957 		}
   1958 		/*
   1959 		 * Congestion experienced.
   1960 		 * Ignore if we are already trying to recover.
   1961 		 */
   1962 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1963 			tp->t_congctl->cong_exp(tp);
   1964 	}
   1965 
   1966 	if (opti.ts_present && opti.ts_ecr) {
   1967 		/*
   1968 		 * Calculate the RTT from the returned time stamp and the
   1969 		 * connection's time base.  If the time stamp is later than
   1970 		 * the current time, or is extremely old, fall back to non-1323
   1971 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1972 		 * at the same time.
   1973 		 *
   1974 		 * Note that ts_rtt is in units of slow ticks (500
   1975 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1976 		 * observed values will have large quantization noise.
   1977 		 * Our smoothed RTT is then the fraction of observed
   1978 		 * samples that are 1 tick instead of 0 (times 500
   1979 		 * ms).
   1980 		 *
   1981 		 * ts_rtt is increased by 1 to denote a valid sample,
   1982 		 * with 0 indicating an invalid measurement.  This
   1983 		 * extra 1 must be removed when ts_rtt is used, or
   1984 		 * else an an erroneous extra 500 ms will result.
   1985 		 */
   1986 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1987 		if (ts_rtt > TCP_PAWS_IDLE)
   1988 			ts_rtt = 0;
   1989 	} else {
   1990 		ts_rtt = 0;
   1991 	}
   1992 
   1993 	/*
   1994 	 * Header prediction: check for the two common cases
   1995 	 * of a uni-directional data xfer.  If the packet has
   1996 	 * no control flags, is in-sequence, the window didn't
   1997 	 * change and we're not retransmitting, it's a
   1998 	 * candidate.  If the length is zero and the ack moved
   1999 	 * forward, we're the sender side of the xfer.  Just
   2000 	 * free the data acked & wake any higher level process
   2001 	 * that was blocked waiting for space.  If the length
   2002 	 * is non-zero and the ack didn't move, we're the
   2003 	 * receiver side.  If we're getting packets in-order
   2004 	 * (the reassembly queue is empty), add the data to
   2005 	 * the socket buffer and note that we need a delayed ack.
   2006 	 */
   2007 	if (tp->t_state == TCPS_ESTABLISHED &&
   2008 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   2009 	        == TH_ACK &&
   2010 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   2011 	    th->th_seq == tp->rcv_nxt &&
   2012 	    tiwin && tiwin == tp->snd_wnd &&
   2013 	    tp->snd_nxt == tp->snd_max) {
   2014 
   2015 		/*
   2016 		 * If last ACK falls within this segment's sequence numbers,
   2017 		 * record the timestamp.
   2018 		 * NOTE that the test is modified according to the latest
   2019 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2020 		 *
   2021 		 * note that we already know
   2022 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   2023 		 */
   2024 		if (opti.ts_present &&
   2025 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   2026 			tp->ts_recent_age = tcp_now;
   2027 			tp->ts_recent = opti.ts_val;
   2028 		}
   2029 
   2030 		if (tlen == 0) {
   2031 			/* Ack prediction. */
   2032 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   2033 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   2034 			    tp->snd_cwnd >= tp->snd_wnd &&
   2035 			    tp->t_partialacks < 0) {
   2036 				/*
   2037 				 * this is a pure ack for outstanding data.
   2038 				 */
   2039 				if (ts_rtt)
   2040 					tcp_xmit_timer(tp, ts_rtt - 1);
   2041 				else if (tp->t_rtttime &&
   2042 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   2043 					tcp_xmit_timer(tp,
   2044 					  tcp_now - tp->t_rtttime);
   2045 				acked = th->th_ack - tp->snd_una;
   2046 				tcps = TCP_STAT_GETREF();
   2047 				tcps[TCP_STAT_PREDACK]++;
   2048 				tcps[TCP_STAT_RCVACKPACK]++;
   2049 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   2050 				TCP_STAT_PUTREF();
   2051 				nd6_hint(tp);
   2052 
   2053 				if (acked > (tp->t_lastoff - tp->t_inoff))
   2054 					tp->t_lastm = NULL;
   2055 				sbdrop(&so->so_snd, acked);
   2056 				tp->t_lastoff -= acked;
   2057 
   2058 				icmp_check(tp, th, acked);
   2059 
   2060 				tp->snd_una = th->th_ack;
   2061 				tp->snd_fack = tp->snd_una;
   2062 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   2063 					tp->snd_high = tp->snd_una;
   2064 				m_freem(m);
   2065 
   2066 				/*
   2067 				 * If all outstanding data are acked, stop
   2068 				 * retransmit timer, otherwise restart timer
   2069 				 * using current (possibly backed-off) value.
   2070 				 * If process is waiting for space,
   2071 				 * wakeup/selnotify/signal.  If data
   2072 				 * are ready to send, let tcp_output
   2073 				 * decide between more output or persist.
   2074 				 */
   2075 				if (tp->snd_una == tp->snd_max)
   2076 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2077 				else if (TCP_TIMER_ISARMED(tp,
   2078 				    TCPT_PERSIST) == 0)
   2079 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   2080 					    tp->t_rxtcur);
   2081 
   2082 				sowwakeup(so);
   2083 				if (so->so_snd.sb_cc) {
   2084 					KERNEL_LOCK(1, NULL);
   2085 					(void) tcp_output(tp);
   2086 					KERNEL_UNLOCK_ONE(NULL);
   2087 				}
   2088 				if (tcp_saveti)
   2089 					m_freem(tcp_saveti);
   2090 				return;
   2091 			}
   2092 		} else if (th->th_ack == tp->snd_una &&
   2093 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2094 		    tlen <= sbspace(&so->so_rcv)) {
   2095 			int newsize = 0;	/* automatic sockbuf scaling */
   2096 
   2097 			/*
   2098 			 * this is a pure, in-sequence data packet
   2099 			 * with nothing on the reassembly queue and
   2100 			 * we have enough buffer space to take it.
   2101 			 */
   2102 			tp->rcv_nxt += tlen;
   2103 			tcps = TCP_STAT_GETREF();
   2104 			tcps[TCP_STAT_PREDDAT]++;
   2105 			tcps[TCP_STAT_RCVPACK]++;
   2106 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2107 			TCP_STAT_PUTREF();
   2108 			nd6_hint(tp);
   2109 
   2110 		/*
   2111 		 * Automatic sizing enables the performance of large buffers
   2112 		 * and most of the efficiency of small ones by only allocating
   2113 		 * space when it is needed.
   2114 		 *
   2115 		 * On the receive side the socket buffer memory is only rarely
   2116 		 * used to any significant extent.  This allows us to be much
   2117 		 * more aggressive in scaling the receive socket buffer.  For
   2118 		 * the case that the buffer space is actually used to a large
   2119 		 * extent and we run out of kernel memory we can simply drop
   2120 		 * the new segments; TCP on the sender will just retransmit it
   2121 		 * later.  Setting the buffer size too big may only consume too
   2122 		 * much kernel memory if the application doesn't read() from
   2123 		 * the socket or packet loss or reordering makes use of the
   2124 		 * reassembly queue.
   2125 		 *
   2126 		 * The criteria to step up the receive buffer one notch are:
   2127 		 *  1. the number of bytes received during the time it takes
   2128 		 *     one timestamp to be reflected back to us (the RTT);
   2129 		 *  2. received bytes per RTT is within seven eighth of the
   2130 		 *     current socket buffer size;
   2131 		 *  3. receive buffer size has not hit maximal automatic size;
   2132 		 *
   2133 		 * This algorithm does one step per RTT at most and only if
   2134 		 * we receive a bulk stream w/o packet losses or reorderings.
   2135 		 * Shrinking the buffer during idle times is not necessary as
   2136 		 * it doesn't consume any memory when idle.
   2137 		 *
   2138 		 * TODO: Only step up if the application is actually serving
   2139 		 * the buffer to better manage the socket buffer resources.
   2140 		 */
   2141 			if (tcp_do_autorcvbuf &&
   2142 			    opti.ts_ecr &&
   2143 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2144 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2145 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2146 					if (tp->rfbuf_cnt >
   2147 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2148 					    so->so_rcv.sb_hiwat <
   2149 					    tcp_autorcvbuf_max) {
   2150 						newsize =
   2151 						    min(so->so_rcv.sb_hiwat +
   2152 						    tcp_autorcvbuf_inc,
   2153 						    tcp_autorcvbuf_max);
   2154 					}
   2155 					/* Start over with next RTT. */
   2156 					tp->rfbuf_ts = 0;
   2157 					tp->rfbuf_cnt = 0;
   2158 				} else
   2159 					tp->rfbuf_cnt += tlen;	/* add up */
   2160 			}
   2161 
   2162 			/*
   2163 			 * Drop TCP, IP headers and TCP options then add data
   2164 			 * to socket buffer.
   2165 			 */
   2166 			if (so->so_state & SS_CANTRCVMORE)
   2167 				m_freem(m);
   2168 			else {
   2169 				/*
   2170 				 * Set new socket buffer size.
   2171 				 * Give up when limit is reached.
   2172 				 */
   2173 				if (newsize)
   2174 					if (!sbreserve(&so->so_rcv,
   2175 					    newsize, so))
   2176 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2177 				m_adj(m, toff + off);
   2178 				sbappendstream(&so->so_rcv, m);
   2179 			}
   2180 			sorwakeup(so);
   2181 			tcp_setup_ack(tp, th);
   2182 			if (tp->t_flags & TF_ACKNOW) {
   2183 				KERNEL_LOCK(1, NULL);
   2184 				(void) tcp_output(tp);
   2185 				KERNEL_UNLOCK_ONE(NULL);
   2186 			}
   2187 			if (tcp_saveti)
   2188 				m_freem(tcp_saveti);
   2189 			return;
   2190 		}
   2191 	}
   2192 
   2193 	/*
   2194 	 * Compute mbuf offset to TCP data segment.
   2195 	 */
   2196 	hdroptlen = toff + off;
   2197 
   2198 	/*
   2199 	 * Calculate amount of space in receive window,
   2200 	 * and then do TCP input processing.
   2201 	 * Receive window is amount of space in rcv queue,
   2202 	 * but not less than advertised window.
   2203 	 */
   2204 	{ int win;
   2205 
   2206 	win = sbspace(&so->so_rcv);
   2207 	if (win < 0)
   2208 		win = 0;
   2209 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2210 	}
   2211 
   2212 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2213 	tp->rfbuf_ts = 0;
   2214 	tp->rfbuf_cnt = 0;
   2215 
   2216 	switch (tp->t_state) {
   2217 	/*
   2218 	 * If the state is SYN_SENT:
   2219 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2220 	 *	if seg contains a RST, then drop the connection.
   2221 	 *	if seg does not contain SYN, then drop it.
   2222 	 * Otherwise this is an acceptable SYN segment
   2223 	 *	initialize tp->rcv_nxt and tp->irs
   2224 	 *	if seg contains ack then advance tp->snd_una
   2225 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2226 	 *	    is ECN capable.
   2227 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2228 	 *	arrange for segment to be acked (eventually)
   2229 	 *	continue processing rest of data/controls, beginning with URG
   2230 	 */
   2231 	case TCPS_SYN_SENT:
   2232 		if ((tiflags & TH_ACK) &&
   2233 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2234 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2235 			goto dropwithreset;
   2236 		if (tiflags & TH_RST) {
   2237 			if (tiflags & TH_ACK)
   2238 				tp = tcp_drop(tp, ECONNREFUSED);
   2239 			goto drop;
   2240 		}
   2241 		if ((tiflags & TH_SYN) == 0)
   2242 			goto drop;
   2243 		if (tiflags & TH_ACK) {
   2244 			tp->snd_una = th->th_ack;
   2245 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2246 				tp->snd_nxt = tp->snd_una;
   2247 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2248 				tp->snd_high = tp->snd_una;
   2249 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2250 
   2251 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2252 				tp->t_flags |= TF_ECN_PERMIT;
   2253 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2254 			}
   2255 
   2256 		}
   2257 		tp->irs = th->th_seq;
   2258 		tcp_rcvseqinit(tp);
   2259 		tp->t_flags |= TF_ACKNOW;
   2260 		tcp_mss_from_peer(tp, opti.maxseg);
   2261 
   2262 		/*
   2263 		 * Initialize the initial congestion window.  If we
   2264 		 * had to retransmit the SYN, we must initialize cwnd
   2265 		 * to 1 segment (i.e. the Loss Window).
   2266 		 */
   2267 		if (tp->t_flags & TF_SYN_REXMT)
   2268 			tp->snd_cwnd = tp->t_peermss;
   2269 		else {
   2270 			int ss = tcp_init_win;
   2271 #ifdef INET
   2272 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2273 				ss = tcp_init_win_local;
   2274 #endif
   2275 #ifdef INET6
   2276 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2277 				ss = tcp_init_win_local;
   2278 #endif
   2279 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2280 		}
   2281 
   2282 		tcp_rmx_rtt(tp);
   2283 		if (tiflags & TH_ACK) {
   2284 			TCP_STATINC(TCP_STAT_CONNECTS);
   2285 			/*
   2286 			 * move tcp_established before soisconnected
   2287 			 * because upcall handler can drive tcp_output
   2288 			 * functionality.
   2289 			 * XXX we might call soisconnected at the end of
   2290 			 * all processing
   2291 			 */
   2292 			tcp_established(tp);
   2293 			soisconnected(so);
   2294 			/* Do window scaling on this connection? */
   2295 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2296 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2297 				tp->snd_scale = tp->requested_s_scale;
   2298 				tp->rcv_scale = tp->request_r_scale;
   2299 			}
   2300 			TCP_REASS_LOCK(tp);
   2301 			(void) tcp_reass(tp, NULL, NULL, &tlen);
   2302 			/*
   2303 			 * if we didn't have to retransmit the SYN,
   2304 			 * use its rtt as our initial srtt & rtt var.
   2305 			 */
   2306 			if (tp->t_rtttime)
   2307 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2308 		} else
   2309 			tp->t_state = TCPS_SYN_RECEIVED;
   2310 
   2311 		/*
   2312 		 * Advance th->th_seq to correspond to first data byte.
   2313 		 * If data, trim to stay within window,
   2314 		 * dropping FIN if necessary.
   2315 		 */
   2316 		th->th_seq++;
   2317 		if (tlen > tp->rcv_wnd) {
   2318 			todrop = tlen - tp->rcv_wnd;
   2319 			m_adj(m, -todrop);
   2320 			tlen = tp->rcv_wnd;
   2321 			tiflags &= ~TH_FIN;
   2322 			tcps = TCP_STAT_GETREF();
   2323 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2324 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2325 			TCP_STAT_PUTREF();
   2326 		}
   2327 		tp->snd_wl1 = th->th_seq - 1;
   2328 		tp->rcv_up = th->th_seq;
   2329 		goto step6;
   2330 
   2331 	/*
   2332 	 * If the state is SYN_RECEIVED:
   2333 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2334 	 *	and generate an RST.  See page 36, rfc793
   2335 	 */
   2336 	case TCPS_SYN_RECEIVED:
   2337 		if ((tiflags & TH_ACK) &&
   2338 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2339 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2340 			goto dropwithreset;
   2341 		break;
   2342 	}
   2343 
   2344 	/*
   2345 	 * States other than LISTEN or SYN_SENT.
   2346 	 * First check timestamp, if present.
   2347 	 * Then check that at least some bytes of segment are within
   2348 	 * receive window.  If segment begins before rcv_nxt,
   2349 	 * drop leading data (and SYN); if nothing left, just ack.
   2350 	 *
   2351 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2352 	 * and it's less than ts_recent, drop it.
   2353 	 */
   2354 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2355 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2356 
   2357 		/* Check to see if ts_recent is over 24 days old.  */
   2358 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2359 			/*
   2360 			 * Invalidate ts_recent.  If this segment updates
   2361 			 * ts_recent, the age will be reset later and ts_recent
   2362 			 * will get a valid value.  If it does not, setting
   2363 			 * ts_recent to zero will at least satisfy the
   2364 			 * requirement that zero be placed in the timestamp
   2365 			 * echo reply when ts_recent isn't valid.  The
   2366 			 * age isn't reset until we get a valid ts_recent
   2367 			 * because we don't want out-of-order segments to be
   2368 			 * dropped when ts_recent is old.
   2369 			 */
   2370 			tp->ts_recent = 0;
   2371 		} else {
   2372 			tcps = TCP_STAT_GETREF();
   2373 			tcps[TCP_STAT_RCVDUPPACK]++;
   2374 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2375 			tcps[TCP_STAT_PAWSDROP]++;
   2376 			TCP_STAT_PUTREF();
   2377 			tcp_new_dsack(tp, th->th_seq, tlen);
   2378 			goto dropafterack;
   2379 		}
   2380 	}
   2381 
   2382 	todrop = tp->rcv_nxt - th->th_seq;
   2383 	dupseg = false;
   2384 	if (todrop > 0) {
   2385 		if (tiflags & TH_SYN) {
   2386 			tiflags &= ~TH_SYN;
   2387 			th->th_seq++;
   2388 			if (th->th_urp > 1)
   2389 				th->th_urp--;
   2390 			else {
   2391 				tiflags &= ~TH_URG;
   2392 				th->th_urp = 0;
   2393 			}
   2394 			todrop--;
   2395 		}
   2396 		if (todrop > tlen ||
   2397 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2398 			/*
   2399 			 * Any valid FIN or RST must be to the left of the
   2400 			 * window.  At this point the FIN or RST must be a
   2401 			 * duplicate or out of sequence; drop it.
   2402 			 */
   2403 			if (tiflags & TH_RST)
   2404 				goto drop;
   2405 			tiflags &= ~(TH_FIN|TH_RST);
   2406 			/*
   2407 			 * Send an ACK to resynchronize and drop any data.
   2408 			 * But keep on processing for RST or ACK.
   2409 			 */
   2410 			tp->t_flags |= TF_ACKNOW;
   2411 			todrop = tlen;
   2412 			dupseg = true;
   2413 			tcps = TCP_STAT_GETREF();
   2414 			tcps[TCP_STAT_RCVDUPPACK]++;
   2415 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2416 			TCP_STAT_PUTREF();
   2417 		} else if ((tiflags & TH_RST) &&
   2418 			   th->th_seq != tp->rcv_nxt) {
   2419 			/*
   2420 			 * Test for reset before adjusting the sequence
   2421 			 * number for overlapping data.
   2422 			 */
   2423 			goto dropafterack_ratelim;
   2424 		} else {
   2425 			tcps = TCP_STAT_GETREF();
   2426 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2427 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2428 			TCP_STAT_PUTREF();
   2429 		}
   2430 		tcp_new_dsack(tp, th->th_seq, todrop);
   2431 		hdroptlen += todrop;	/*drop from head afterwards*/
   2432 		th->th_seq += todrop;
   2433 		tlen -= todrop;
   2434 		if (th->th_urp > todrop)
   2435 			th->th_urp -= todrop;
   2436 		else {
   2437 			tiflags &= ~TH_URG;
   2438 			th->th_urp = 0;
   2439 		}
   2440 	}
   2441 
   2442 	/*
   2443 	 * If new data are received on a connection after the
   2444 	 * user processes are gone, then RST the other end.
   2445 	 */
   2446 	if ((so->so_state & SS_NOFDREF) &&
   2447 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2448 		tp = tcp_close(tp);
   2449 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2450 		goto dropwithreset;
   2451 	}
   2452 
   2453 	/*
   2454 	 * If segment ends after window, drop trailing data
   2455 	 * (and PUSH and FIN); if nothing left, just ACK.
   2456 	 */
   2457 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2458 	if (todrop > 0) {
   2459 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2460 		if (todrop >= tlen) {
   2461 			/*
   2462 			 * The segment actually starts after the window.
   2463 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2464 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2465 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2466 			 */
   2467 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2468 			/*
   2469 			 * If a new connection request is received
   2470 			 * while in TIME_WAIT, drop the old connection
   2471 			 * and start over if the sequence numbers
   2472 			 * are above the previous ones.
   2473 			 *
   2474 			 * NOTE: We will checksum the packet again, and
   2475 			 * so we need to put the header fields back into
   2476 			 * network order!
   2477 			 * XXX This kind of sucks, but we don't expect
   2478 			 * XXX this to happen very often, so maybe it
   2479 			 * XXX doesn't matter so much.
   2480 			 */
   2481 			if (tiflags & TH_SYN &&
   2482 			    tp->t_state == TCPS_TIME_WAIT &&
   2483 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2484 				tp = tcp_close(tp);
   2485 				tcp_fields_to_net(th);
   2486 				goto findpcb;
   2487 			}
   2488 			/*
   2489 			 * If window is closed can only take segments at
   2490 			 * window edge, and have to drop data and PUSH from
   2491 			 * incoming segments.  Continue processing, but
   2492 			 * remember to ack.  Otherwise, drop segment
   2493 			 * and (if not RST) ack.
   2494 			 */
   2495 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2496 				tp->t_flags |= TF_ACKNOW;
   2497 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2498 			} else
   2499 				goto dropafterack;
   2500 		} else
   2501 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2502 		m_adj(m, -todrop);
   2503 		tlen -= todrop;
   2504 		tiflags &= ~(TH_PUSH|TH_FIN);
   2505 	}
   2506 
   2507 	/*
   2508 	 * If last ACK falls within this segment's sequence numbers,
   2509 	 *  record the timestamp.
   2510 	 * NOTE:
   2511 	 * 1) That the test incorporates suggestions from the latest
   2512 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2513 	 * 2) That updating only on newer timestamps interferes with
   2514 	 *    our earlier PAWS tests, so this check should be solely
   2515 	 *    predicated on the sequence space of this segment.
   2516 	 * 3) That we modify the segment boundary check to be
   2517 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2518 	 *    instead of RFC1323's
   2519 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2520 	 *    This modified check allows us to overcome RFC1323's
   2521 	 *    limitations as described in Stevens TCP/IP Illustrated
   2522 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2523 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2524 	 */
   2525 	if (opti.ts_present &&
   2526 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2527 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2528 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2529 		tp->ts_recent_age = tcp_now;
   2530 		tp->ts_recent = opti.ts_val;
   2531 	}
   2532 
   2533 	/*
   2534 	 * If the RST bit is set examine the state:
   2535 	 *    SYN_RECEIVED STATE:
   2536 	 *	If passive open, return to LISTEN state.
   2537 	 *	If active open, inform user that connection was refused.
   2538 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2539 	 *	Inform user that connection was reset, and close tcb.
   2540 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2541 	 *	Close the tcb.
   2542 	 */
   2543 	if (tiflags & TH_RST) {
   2544 		if (th->th_seq != tp->rcv_nxt)
   2545 			goto dropafterack_ratelim;
   2546 
   2547 		switch (tp->t_state) {
   2548 		case TCPS_SYN_RECEIVED:
   2549 			so->so_error = ECONNREFUSED;
   2550 			goto close;
   2551 
   2552 		case TCPS_ESTABLISHED:
   2553 		case TCPS_FIN_WAIT_1:
   2554 		case TCPS_FIN_WAIT_2:
   2555 		case TCPS_CLOSE_WAIT:
   2556 			so->so_error = ECONNRESET;
   2557 		close:
   2558 			tp->t_state = TCPS_CLOSED;
   2559 			TCP_STATINC(TCP_STAT_DROPS);
   2560 			tp = tcp_close(tp);
   2561 			goto drop;
   2562 
   2563 		case TCPS_CLOSING:
   2564 		case TCPS_LAST_ACK:
   2565 		case TCPS_TIME_WAIT:
   2566 			tp = tcp_close(tp);
   2567 			goto drop;
   2568 		}
   2569 	}
   2570 
   2571 	/*
   2572 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2573 	 * we must be in a synchronized state.  RFC791 states (under RST
   2574 	 * generation) that any unacceptable segment (an out-of-order SYN
   2575 	 * qualifies) received in a synchronized state must elicit only an
   2576 	 * empty acknowledgment segment ... and the connection remains in
   2577 	 * the same state.
   2578 	 */
   2579 	if (tiflags & TH_SYN) {
   2580 		if (tp->rcv_nxt == th->th_seq) {
   2581 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2582 			    TH_ACK);
   2583 			if (tcp_saveti)
   2584 				m_freem(tcp_saveti);
   2585 			return;
   2586 		}
   2587 
   2588 		goto dropafterack_ratelim;
   2589 	}
   2590 
   2591 	/*
   2592 	 * If the ACK bit is off we drop the segment and return.
   2593 	 */
   2594 	if ((tiflags & TH_ACK) == 0) {
   2595 		if (tp->t_flags & TF_ACKNOW)
   2596 			goto dropafterack;
   2597 		else
   2598 			goto drop;
   2599 	}
   2600 
   2601 	/*
   2602 	 * Ack processing.
   2603 	 */
   2604 	switch (tp->t_state) {
   2605 
   2606 	/*
   2607 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2608 	 * ESTABLISHED state and continue processing, otherwise
   2609 	 * send an RST.
   2610 	 */
   2611 	case TCPS_SYN_RECEIVED:
   2612 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2613 		    SEQ_GT(th->th_ack, tp->snd_max))
   2614 			goto dropwithreset;
   2615 		TCP_STATINC(TCP_STAT_CONNECTS);
   2616 		soisconnected(so);
   2617 		tcp_established(tp);
   2618 		/* Do window scaling? */
   2619 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2620 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2621 			tp->snd_scale = tp->requested_s_scale;
   2622 			tp->rcv_scale = tp->request_r_scale;
   2623 		}
   2624 		TCP_REASS_LOCK(tp);
   2625 		(void) tcp_reass(tp, NULL, NULL, &tlen);
   2626 		tp->snd_wl1 = th->th_seq - 1;
   2627 		/* fall into ... */
   2628 
   2629 	/*
   2630 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2631 	 * ACKs.  If the ack is in the range
   2632 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2633 	 * then advance tp->snd_una to th->th_ack and drop
   2634 	 * data from the retransmission queue.  If this ACK reflects
   2635 	 * more up to date window information we update our window information.
   2636 	 */
   2637 	case TCPS_ESTABLISHED:
   2638 	case TCPS_FIN_WAIT_1:
   2639 	case TCPS_FIN_WAIT_2:
   2640 	case TCPS_CLOSE_WAIT:
   2641 	case TCPS_CLOSING:
   2642 	case TCPS_LAST_ACK:
   2643 	case TCPS_TIME_WAIT:
   2644 
   2645 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2646 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2647 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2648 				/*
   2649 				 * If we have outstanding data (other than
   2650 				 * a window probe), this is a completely
   2651 				 * duplicate ack (ie, window info didn't
   2652 				 * change), the ack is the biggest we've
   2653 				 * seen and we've seen exactly our rexmt
   2654 				 * threshhold of them, assume a packet
   2655 				 * has been dropped and retransmit it.
   2656 				 * Kludge snd_nxt & the congestion
   2657 				 * window so we send only this one
   2658 				 * packet.
   2659 				 */
   2660 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2661 				    th->th_ack != tp->snd_una)
   2662 					tp->t_dupacks = 0;
   2663 				else if (tp->t_partialacks < 0 &&
   2664 					 (++tp->t_dupacks == tcprexmtthresh ||
   2665 					 TCP_FACK_FASTRECOV(tp))) {
   2666 					/*
   2667 					 * Do the fast retransmit, and adjust
   2668 					 * congestion control paramenters.
   2669 					 */
   2670 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2671 						/* False fast retransmit */
   2672 						break;
   2673 					} else
   2674 						goto drop;
   2675 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2676 					tp->snd_cwnd += tp->t_segsz;
   2677 					KERNEL_LOCK(1, NULL);
   2678 					(void) tcp_output(tp);
   2679 					KERNEL_UNLOCK_ONE(NULL);
   2680 					goto drop;
   2681 				}
   2682 			} else {
   2683 				/*
   2684 				 * If the ack appears to be very old, only
   2685 				 * allow data that is in-sequence.  This
   2686 				 * makes it somewhat more difficult to insert
   2687 				 * forged data by guessing sequence numbers.
   2688 				 * Sent an ack to try to update the send
   2689 				 * sequence number on the other side.
   2690 				 */
   2691 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2692 				    SEQ_LT(th->th_ack,
   2693 				    tp->snd_una - tp->max_sndwnd))
   2694 					goto dropafterack;
   2695 			}
   2696 			break;
   2697 		}
   2698 		/*
   2699 		 * If the congestion window was inflated to account
   2700 		 * for the other side's cached packets, retract it.
   2701 		 */
   2702 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2703 
   2704 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2705 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2706 			goto dropafterack;
   2707 		}
   2708 		acked = th->th_ack - tp->snd_una;
   2709 		tcps = TCP_STAT_GETREF();
   2710 		tcps[TCP_STAT_RCVACKPACK]++;
   2711 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2712 		TCP_STAT_PUTREF();
   2713 
   2714 		/*
   2715 		 * If we have a timestamp reply, update smoothed
   2716 		 * round trip time.  If no timestamp is present but
   2717 		 * transmit timer is running and timed sequence
   2718 		 * number was acked, update smoothed round trip time.
   2719 		 * Since we now have an rtt measurement, cancel the
   2720 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2721 		 * Recompute the initial retransmit timer.
   2722 		 */
   2723 		if (ts_rtt)
   2724 			tcp_xmit_timer(tp, ts_rtt - 1);
   2725 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2726 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2727 
   2728 		/*
   2729 		 * If all outstanding data is acked, stop retransmit
   2730 		 * timer and remember to restart (more output or persist).
   2731 		 * If there is more data to be acked, restart retransmit
   2732 		 * timer, using current (possibly backed-off) value.
   2733 		 */
   2734 		if (th->th_ack == tp->snd_max) {
   2735 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2736 			needoutput = 1;
   2737 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2738 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2739 
   2740 		/*
   2741 		 * New data has been acked, adjust the congestion window.
   2742 		 */
   2743 		tp->t_congctl->newack(tp, th);
   2744 
   2745 		nd6_hint(tp);
   2746 		if (acked > so->so_snd.sb_cc) {
   2747 			tp->snd_wnd -= so->so_snd.sb_cc;
   2748 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2749 			ourfinisacked = 1;
   2750 		} else {
   2751 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2752 				tp->t_lastm = NULL;
   2753 			sbdrop(&so->so_snd, acked);
   2754 			tp->t_lastoff -= acked;
   2755 			if (tp->snd_wnd > acked)
   2756 				tp->snd_wnd -= acked;
   2757 			else
   2758 				tp->snd_wnd = 0;
   2759 			ourfinisacked = 0;
   2760 		}
   2761 		sowwakeup(so);
   2762 
   2763 		icmp_check(tp, th, acked);
   2764 
   2765 		tp->snd_una = th->th_ack;
   2766 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2767 			tp->snd_fack = tp->snd_una;
   2768 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2769 			tp->snd_nxt = tp->snd_una;
   2770 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2771 			tp->snd_high = tp->snd_una;
   2772 
   2773 		switch (tp->t_state) {
   2774 
   2775 		/*
   2776 		 * In FIN_WAIT_1 STATE in addition to the processing
   2777 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2778 		 * then enter FIN_WAIT_2.
   2779 		 */
   2780 		case TCPS_FIN_WAIT_1:
   2781 			if (ourfinisacked) {
   2782 				/*
   2783 				 * If we can't receive any more
   2784 				 * data, then closing user can proceed.
   2785 				 * Starting the timer is contrary to the
   2786 				 * specification, but if we don't get a FIN
   2787 				 * we'll hang forever.
   2788 				 */
   2789 				if (so->so_state & SS_CANTRCVMORE) {
   2790 					soisdisconnected(so);
   2791 					if (tp->t_maxidle > 0)
   2792 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2793 						    tp->t_maxidle);
   2794 				}
   2795 				tp->t_state = TCPS_FIN_WAIT_2;
   2796 			}
   2797 			break;
   2798 
   2799 	 	/*
   2800 		 * In CLOSING STATE in addition to the processing for
   2801 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2802 		 * then enter the TIME-WAIT state, otherwise ignore
   2803 		 * the segment.
   2804 		 */
   2805 		case TCPS_CLOSING:
   2806 			if (ourfinisacked) {
   2807 				tp->t_state = TCPS_TIME_WAIT;
   2808 				tcp_canceltimers(tp);
   2809 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2810 				soisdisconnected(so);
   2811 			}
   2812 			break;
   2813 
   2814 		/*
   2815 		 * In LAST_ACK, we may still be waiting for data to drain
   2816 		 * and/or to be acked, as well as for the ack of our FIN.
   2817 		 * If our FIN is now acknowledged, delete the TCB,
   2818 		 * enter the closed state and return.
   2819 		 */
   2820 		case TCPS_LAST_ACK:
   2821 			if (ourfinisacked) {
   2822 				tp = tcp_close(tp);
   2823 				goto drop;
   2824 			}
   2825 			break;
   2826 
   2827 		/*
   2828 		 * In TIME_WAIT state the only thing that should arrive
   2829 		 * is a retransmission of the remote FIN.  Acknowledge
   2830 		 * it and restart the finack timer.
   2831 		 */
   2832 		case TCPS_TIME_WAIT:
   2833 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2834 			goto dropafterack;
   2835 		}
   2836 	}
   2837 
   2838 step6:
   2839 	/*
   2840 	 * Update window information.
   2841 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2842 	 */
   2843 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2844 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2845 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2846 		/* keep track of pure window updates */
   2847 		if (tlen == 0 &&
   2848 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2849 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2850 		tp->snd_wnd = tiwin;
   2851 		tp->snd_wl1 = th->th_seq;
   2852 		tp->snd_wl2 = th->th_ack;
   2853 		if (tp->snd_wnd > tp->max_sndwnd)
   2854 			tp->max_sndwnd = tp->snd_wnd;
   2855 		needoutput = 1;
   2856 	}
   2857 
   2858 	/*
   2859 	 * Process segments with URG.
   2860 	 */
   2861 	if ((tiflags & TH_URG) && th->th_urp &&
   2862 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2863 		/*
   2864 		 * This is a kludge, but if we receive and accept
   2865 		 * random urgent pointers, we'll crash in
   2866 		 * soreceive.  It's hard to imagine someone
   2867 		 * actually wanting to send this much urgent data.
   2868 		 */
   2869 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2870 			th->th_urp = 0;			/* XXX */
   2871 			tiflags &= ~TH_URG;		/* XXX */
   2872 			goto dodata;			/* XXX */
   2873 		}
   2874 		/*
   2875 		 * If this segment advances the known urgent pointer,
   2876 		 * then mark the data stream.  This should not happen
   2877 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2878 		 * a FIN has been received from the remote side.
   2879 		 * In these states we ignore the URG.
   2880 		 *
   2881 		 * According to RFC961 (Assigned Protocols),
   2882 		 * the urgent pointer points to the last octet
   2883 		 * of urgent data.  We continue, however,
   2884 		 * to consider it to indicate the first octet
   2885 		 * of data past the urgent section as the original
   2886 		 * spec states (in one of two places).
   2887 		 */
   2888 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2889 			tp->rcv_up = th->th_seq + th->th_urp;
   2890 			so->so_oobmark = so->so_rcv.sb_cc +
   2891 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2892 			if (so->so_oobmark == 0)
   2893 				so->so_state |= SS_RCVATMARK;
   2894 			sohasoutofband(so);
   2895 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2896 		}
   2897 		/*
   2898 		 * Remove out of band data so doesn't get presented to user.
   2899 		 * This can happen independent of advancing the URG pointer,
   2900 		 * but if two URG's are pending at once, some out-of-band
   2901 		 * data may creep in... ick.
   2902 		 */
   2903 		if (th->th_urp <= (u_int16_t) tlen
   2904 #ifdef SO_OOBINLINE
   2905 		     && (so->so_options & SO_OOBINLINE) == 0
   2906 #endif
   2907 		     )
   2908 			tcp_pulloutofband(so, th, m, hdroptlen);
   2909 	} else
   2910 		/*
   2911 		 * If no out of band data is expected,
   2912 		 * pull receive urgent pointer along
   2913 		 * with the receive window.
   2914 		 */
   2915 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2916 			tp->rcv_up = tp->rcv_nxt;
   2917 dodata:							/* XXX */
   2918 
   2919 	/*
   2920 	 * Process the segment text, merging it into the TCP sequencing queue,
   2921 	 * and arranging for acknowledgement of receipt if necessary.
   2922 	 * This process logically involves adjusting tp->rcv_wnd as data
   2923 	 * is presented to the user (this happens in tcp_usrreq.c,
   2924 	 * tcp_rcvd()).  If a FIN has already been received on this
   2925 	 * connection then we just ignore the text.
   2926 	 */
   2927 	if ((tlen || (tiflags & TH_FIN)) &&
   2928 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2929 		/*
   2930 		 * Insert segment ti into reassembly queue of tcp with
   2931 		 * control block tp.  Return TH_FIN if reassembly now includes
   2932 		 * a segment with FIN.  The macro form does the common case
   2933 		 * inline (segment is the next to be received on an
   2934 		 * established connection, and the queue is empty),
   2935 		 * avoiding linkage into and removal from the queue and
   2936 		 * repetition of various conversions.
   2937 		 * Set DELACK for segments received in order, but ack
   2938 		 * immediately when segments are out of order
   2939 		 * (so fast retransmit can work).
   2940 		 */
   2941 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2942 		TCP_REASS_LOCK(tp);
   2943 		if (th->th_seq == tp->rcv_nxt &&
   2944 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2945 		    tp->t_state == TCPS_ESTABLISHED) {
   2946 			tcp_setup_ack(tp, th);
   2947 			tp->rcv_nxt += tlen;
   2948 			tiflags = th->th_flags & TH_FIN;
   2949 			tcps = TCP_STAT_GETREF();
   2950 			tcps[TCP_STAT_RCVPACK]++;
   2951 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2952 			TCP_STAT_PUTREF();
   2953 			nd6_hint(tp);
   2954 			if (so->so_state & SS_CANTRCVMORE)
   2955 				m_freem(m);
   2956 			else {
   2957 				m_adj(m, hdroptlen);
   2958 				sbappendstream(&(so)->so_rcv, m);
   2959 			}
   2960 			TCP_REASS_UNLOCK(tp);
   2961 			sorwakeup(so);
   2962 		} else {
   2963 			m_adj(m, hdroptlen);
   2964 			tiflags = tcp_reass(tp, th, m, &tlen);
   2965 			tp->t_flags |= TF_ACKNOW;
   2966 		}
   2967 
   2968 		/*
   2969 		 * Note the amount of data that peer has sent into
   2970 		 * our window, in order to estimate the sender's
   2971 		 * buffer size.
   2972 		 */
   2973 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2974 	} else {
   2975 		m_freem(m);
   2976 		m = NULL;
   2977 		tiflags &= ~TH_FIN;
   2978 	}
   2979 
   2980 	/*
   2981 	 * If FIN is received ACK the FIN and let the user know
   2982 	 * that the connection is closing.  Ignore a FIN received before
   2983 	 * the connection is fully established.
   2984 	 */
   2985 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2986 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2987 			socantrcvmore(so);
   2988 			tp->t_flags |= TF_ACKNOW;
   2989 			tp->rcv_nxt++;
   2990 		}
   2991 		switch (tp->t_state) {
   2992 
   2993 	 	/*
   2994 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2995 		 */
   2996 		case TCPS_ESTABLISHED:
   2997 			tp->t_state = TCPS_CLOSE_WAIT;
   2998 			break;
   2999 
   3000 	 	/*
   3001 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   3002 		 * enter the CLOSING state.
   3003 		 */
   3004 		case TCPS_FIN_WAIT_1:
   3005 			tp->t_state = TCPS_CLOSING;
   3006 			break;
   3007 
   3008 	 	/*
   3009 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   3010 		 * starting the time-wait timer, turning off the other
   3011 		 * standard timers.
   3012 		 */
   3013 		case TCPS_FIN_WAIT_2:
   3014 			tp->t_state = TCPS_TIME_WAIT;
   3015 			tcp_canceltimers(tp);
   3016 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   3017 			soisdisconnected(so);
   3018 			break;
   3019 
   3020 		/*
   3021 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   3022 		 */
   3023 		case TCPS_TIME_WAIT:
   3024 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   3025 			break;
   3026 		}
   3027 	}
   3028 #ifdef TCP_DEBUG
   3029 	if (so->so_options & SO_DEBUG)
   3030 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   3031 #endif
   3032 
   3033 	/*
   3034 	 * Return any desired output.
   3035 	 */
   3036 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   3037 		KERNEL_LOCK(1, NULL);
   3038 		(void) tcp_output(tp);
   3039 		KERNEL_UNLOCK_ONE(NULL);
   3040 	}
   3041 	if (tcp_saveti)
   3042 		m_freem(tcp_saveti);
   3043 
   3044 	if (tp->t_state == TCPS_TIME_WAIT
   3045 	    && (so->so_state & SS_NOFDREF)
   3046 	    && (tp->t_inpcb || af != AF_INET)
   3047 	    && (tp->t_in6pcb || af != AF_INET6)
   3048 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   3049 	    && TAILQ_EMPTY(&tp->segq)
   3050 	    && vtw_add(af, tp)) {
   3051 		;
   3052 	}
   3053 	return;
   3054 
   3055 badsyn:
   3056 	/*
   3057 	 * Received a bad SYN.  Increment counters and dropwithreset.
   3058 	 */
   3059 	TCP_STATINC(TCP_STAT_BADSYN);
   3060 	tp = NULL;
   3061 	goto dropwithreset;
   3062 
   3063 dropafterack:
   3064 	/*
   3065 	 * Generate an ACK dropping incoming segment if it occupies
   3066 	 * sequence space, where the ACK reflects our state.
   3067 	 */
   3068 	if (tiflags & TH_RST)
   3069 		goto drop;
   3070 	goto dropafterack2;
   3071 
   3072 dropafterack_ratelim:
   3073 	/*
   3074 	 * We may want to rate-limit ACKs against SYN/RST attack.
   3075 	 */
   3076 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   3077 	    tcp_ackdrop_ppslim) == 0) {
   3078 		/* XXX stat */
   3079 		goto drop;
   3080 	}
   3081 	/* ...fall into dropafterack2... */
   3082 
   3083 dropafterack2:
   3084 	m_freem(m);
   3085 	tp->t_flags |= TF_ACKNOW;
   3086 	KERNEL_LOCK(1, NULL);
   3087 	(void) tcp_output(tp);
   3088 	KERNEL_UNLOCK_ONE(NULL);
   3089 	if (tcp_saveti)
   3090 		m_freem(tcp_saveti);
   3091 	return;
   3092 
   3093 dropwithreset_ratelim:
   3094 	/*
   3095 	 * We may want to rate-limit RSTs in certain situations,
   3096 	 * particularly if we are sending an RST in response to
   3097 	 * an attempt to connect to or otherwise communicate with
   3098 	 * a port for which we have no socket.
   3099 	 */
   3100 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   3101 	    tcp_rst_ppslim) == 0) {
   3102 		/* XXX stat */
   3103 		goto drop;
   3104 	}
   3105 	/* ...fall into dropwithreset... */
   3106 
   3107 dropwithreset:
   3108 	/*
   3109 	 * Generate a RST, dropping incoming segment.
   3110 	 * Make ACK acceptable to originator of segment.
   3111 	 */
   3112 	if (tiflags & TH_RST)
   3113 		goto drop;
   3114 
   3115 	switch (af) {
   3116 #ifdef INET6
   3117 	case AF_INET6:
   3118 		/* For following calls to tcp_respond */
   3119 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   3120 			goto drop;
   3121 		break;
   3122 #endif /* INET6 */
   3123 	case AF_INET:
   3124 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   3125 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   3126 			goto drop;
   3127 	}
   3128 
   3129 	if (tiflags & TH_ACK)
   3130 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3131 	else {
   3132 		if (tiflags & TH_SYN)
   3133 			tlen++;
   3134 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3135 		    TH_RST|TH_ACK);
   3136 	}
   3137 	if (tcp_saveti)
   3138 		m_freem(tcp_saveti);
   3139 	return;
   3140 
   3141 badcsum:
   3142 drop:
   3143 	/*
   3144 	 * Drop space held by incoming segment and return.
   3145 	 */
   3146 	if (tp) {
   3147 		if (tp->t_inpcb)
   3148 			so = tp->t_inpcb->inp_socket;
   3149 #ifdef INET6
   3150 		else if (tp->t_in6pcb)
   3151 			so = tp->t_in6pcb->in6p_socket;
   3152 #endif
   3153 		else
   3154 			so = NULL;
   3155 #ifdef TCP_DEBUG
   3156 		if (so && (so->so_options & SO_DEBUG) != 0)
   3157 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3158 #endif
   3159 	}
   3160 	if (tcp_saveti)
   3161 		m_freem(tcp_saveti);
   3162 	m_freem(m);
   3163 	return;
   3164 }
   3165 
   3166 #ifdef TCP_SIGNATURE
   3167 int
   3168 tcp_signature_apply(void *fstate, void *data, u_int len)
   3169 {
   3170 
   3171 	MD5Update(fstate, (u_char *)data, len);
   3172 	return (0);
   3173 }
   3174 
   3175 struct secasvar *
   3176 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   3177 {
   3178 	struct ip *ip;
   3179 	struct ip6_hdr *ip6;
   3180 
   3181 	ip = mtod(m, struct ip *);
   3182 	switch (ip->ip_v) {
   3183 	case 4:
   3184 		ip = mtod(m, struct ip *);
   3185 		ip6 = NULL;
   3186 		break;
   3187 	case 6:
   3188 		ip = NULL;
   3189 		ip6 = mtod(m, struct ip6_hdr *);
   3190 		break;
   3191 	default:
   3192 		return (NULL);
   3193 	}
   3194 
   3195 #ifdef IPSEC
   3196 	union sockaddr_union dst;
   3197 
   3198 	/* Extract the destination from the IP header in the mbuf. */
   3199 	memset(&dst, 0, sizeof(union sockaddr_union));
   3200 	if (ip != NULL) {
   3201 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   3202 		dst.sa.sa_family = AF_INET;
   3203 		dst.sin.sin_addr = ip->ip_dst;
   3204 	} else {
   3205 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3206 		dst.sa.sa_family = AF_INET6;
   3207 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3208 	}
   3209 
   3210 	/*
   3211 	 * Look up an SADB entry which matches the address of the peer.
   3212 	 */
   3213 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3214 #else
   3215 	return NULL;
   3216 #endif
   3217 }
   3218 
   3219 int
   3220 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3221     struct secasvar *sav, char *sig)
   3222 {
   3223 	MD5_CTX ctx;
   3224 	struct ip *ip;
   3225 	struct ipovly *ipovly;
   3226 #ifdef INET6
   3227 	struct ip6_hdr *ip6;
   3228 	struct ip6_hdr_pseudo ip6pseudo;
   3229 #endif /* INET6 */
   3230 	struct ippseudo ippseudo;
   3231 	struct tcphdr th0;
   3232 	int l, tcphdrlen;
   3233 
   3234 	if (sav == NULL)
   3235 		return (-1);
   3236 
   3237 	tcphdrlen = th->th_off * 4;
   3238 
   3239 	switch (mtod(m, struct ip *)->ip_v) {
   3240 	case 4:
   3241 		MD5Init(&ctx);
   3242 		ip = mtod(m, struct ip *);
   3243 		memset(&ippseudo, 0, sizeof(ippseudo));
   3244 		ipovly = (struct ipovly *)ip;
   3245 		ippseudo.ippseudo_src = ipovly->ih_src;
   3246 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3247 		ippseudo.ippseudo_pad = 0;
   3248 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3249 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3250 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3251 		break;
   3252 #if INET6
   3253 	case 6:
   3254 		MD5Init(&ctx);
   3255 		ip6 = mtod(m, struct ip6_hdr *);
   3256 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3257 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3258 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3259 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3260 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3261 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3262 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3263 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3264 		break;
   3265 #endif /* INET6 */
   3266 	default:
   3267 		return (-1);
   3268 	}
   3269 
   3270 	th0 = *th;
   3271 	th0.th_sum = 0;
   3272 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3273 
   3274 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3275 	if (l > 0)
   3276 		m_apply(m, thoff + tcphdrlen,
   3277 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3278 		    tcp_signature_apply, &ctx);
   3279 
   3280 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3281 	MD5Final(sig, &ctx);
   3282 
   3283 	return (0);
   3284 }
   3285 #endif
   3286 
   3287 /*
   3288  * tcp_dooptions: parse and process tcp options.
   3289  *
   3290  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3291  * otherwise returns 0.
   3292  */
   3293 
   3294 static int
   3295 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3296     struct tcphdr *th,
   3297     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3298 {
   3299 	u_int16_t mss;
   3300 	int opt, optlen = 0;
   3301 #ifdef TCP_SIGNATURE
   3302 	void *sigp = NULL;
   3303 	char sigbuf[TCP_SIGLEN];
   3304 	struct secasvar *sav = NULL;
   3305 #endif
   3306 
   3307 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3308 		opt = cp[0];
   3309 		if (opt == TCPOPT_EOL)
   3310 			break;
   3311 		if (opt == TCPOPT_NOP)
   3312 			optlen = 1;
   3313 		else {
   3314 			if (cnt < 2)
   3315 				break;
   3316 			optlen = cp[1];
   3317 			if (optlen < 2 || optlen > cnt)
   3318 				break;
   3319 		}
   3320 		switch (opt) {
   3321 
   3322 		default:
   3323 			continue;
   3324 
   3325 		case TCPOPT_MAXSEG:
   3326 			if (optlen != TCPOLEN_MAXSEG)
   3327 				continue;
   3328 			if (!(th->th_flags & TH_SYN))
   3329 				continue;
   3330 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3331 				continue;
   3332 			bcopy(cp + 2, &mss, sizeof(mss));
   3333 			oi->maxseg = ntohs(mss);
   3334 			break;
   3335 
   3336 		case TCPOPT_WINDOW:
   3337 			if (optlen != TCPOLEN_WINDOW)
   3338 				continue;
   3339 			if (!(th->th_flags & TH_SYN))
   3340 				continue;
   3341 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3342 				continue;
   3343 			tp->t_flags |= TF_RCVD_SCALE;
   3344 			tp->requested_s_scale = cp[2];
   3345 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3346 				char buf[INET6_ADDRSTRLEN];
   3347 				struct ip *ip = mtod(m, struct ip *);
   3348 #ifdef INET6
   3349 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3350 #endif
   3351 				if (ip)
   3352 					in_print(buf, sizeof(buf),
   3353 					    &ip->ip_src);
   3354 #ifdef INET6
   3355 				else if (ip6)
   3356 					in6_print(buf, sizeof(buf),
   3357 					    &ip6->ip6_src);
   3358 #endif
   3359 				else
   3360 					strlcpy(buf, "(unknown)", sizeof(buf));
   3361 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3362 				    "assuming %d\n",
   3363 				    tp->requested_s_scale, buf,
   3364 				    TCP_MAX_WINSHIFT);
   3365 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3366 			}
   3367 			break;
   3368 
   3369 		case TCPOPT_TIMESTAMP:
   3370 			if (optlen != TCPOLEN_TIMESTAMP)
   3371 				continue;
   3372 			oi->ts_present = 1;
   3373 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3374 			NTOHL(oi->ts_val);
   3375 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3376 			NTOHL(oi->ts_ecr);
   3377 
   3378 			if (!(th->th_flags & TH_SYN))
   3379 				continue;
   3380 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3381 				continue;
   3382 			/*
   3383 			 * A timestamp received in a SYN makes
   3384 			 * it ok to send timestamp requests and replies.
   3385 			 */
   3386 			tp->t_flags |= TF_RCVD_TSTMP;
   3387 			tp->ts_recent = oi->ts_val;
   3388 			tp->ts_recent_age = tcp_now;
   3389                         break;
   3390 
   3391 		case TCPOPT_SACK_PERMITTED:
   3392 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3393 				continue;
   3394 			if (!(th->th_flags & TH_SYN))
   3395 				continue;
   3396 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3397 				continue;
   3398 			if (tcp_do_sack) {
   3399 				tp->t_flags |= TF_SACK_PERMIT;
   3400 				tp->t_flags |= TF_WILL_SACK;
   3401 			}
   3402 			break;
   3403 
   3404 		case TCPOPT_SACK:
   3405 			tcp_sack_option(tp, th, cp, optlen);
   3406 			break;
   3407 #ifdef TCP_SIGNATURE
   3408 		case TCPOPT_SIGNATURE:
   3409 			if (optlen != TCPOLEN_SIGNATURE)
   3410 				continue;
   3411 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3412 				return (-1);
   3413 
   3414 			sigp = sigbuf;
   3415 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3416 			tp->t_flags |= TF_SIGNATURE;
   3417 			break;
   3418 #endif
   3419 		}
   3420 	}
   3421 
   3422 #ifndef TCP_SIGNATURE
   3423 	return 0;
   3424 #else
   3425 	if (tp->t_flags & TF_SIGNATURE) {
   3426 
   3427 		sav = tcp_signature_getsav(m, th);
   3428 
   3429 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3430 			return (-1);
   3431 	}
   3432 
   3433 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3434 		goto out;
   3435 
   3436 	if (sigp) {
   3437 		char sig[TCP_SIGLEN];
   3438 
   3439 		tcp_fields_to_net(th);
   3440 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3441 			tcp_fields_to_host(th);
   3442 			goto out;
   3443 		}
   3444 		tcp_fields_to_host(th);
   3445 
   3446 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3447 			TCP_STATINC(TCP_STAT_BADSIG);
   3448 			goto out;
   3449 		} else
   3450 			TCP_STATINC(TCP_STAT_GOODSIG);
   3451 
   3452 		key_sa_recordxfer(sav, m);
   3453 		KEY_SA_UNREF(&sav);
   3454 	}
   3455 	return 0;
   3456 out:
   3457 	if (sav != NULL)
   3458 		KEY_SA_UNREF(&sav);
   3459 	return -1;
   3460 #endif
   3461 }
   3462 
   3463 /*
   3464  * Pull out of band byte out of a segment so
   3465  * it doesn't appear in the user's data queue.
   3466  * It is still reflected in the segment length for
   3467  * sequencing purposes.
   3468  */
   3469 void
   3470 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3471     struct mbuf *m, int off)
   3472 {
   3473 	int cnt = off + th->th_urp - 1;
   3474 
   3475 	while (cnt >= 0) {
   3476 		if (m->m_len > cnt) {
   3477 			char *cp = mtod(m, char *) + cnt;
   3478 			struct tcpcb *tp = sototcpcb(so);
   3479 
   3480 			tp->t_iobc = *cp;
   3481 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3482 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3483 			m->m_len--;
   3484 			return;
   3485 		}
   3486 		cnt -= m->m_len;
   3487 		m = m->m_next;
   3488 		if (m == 0)
   3489 			break;
   3490 	}
   3491 	panic("tcp_pulloutofband");
   3492 }
   3493 
   3494 /*
   3495  * Collect new round-trip time estimate
   3496  * and update averages and current timeout.
   3497  *
   3498  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3499  * difference of two timestamps.
   3500  */
   3501 void
   3502 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3503 {
   3504 	int32_t delta;
   3505 
   3506 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3507 	if (tp->t_srtt != 0) {
   3508 		/*
   3509 		 * Compute the amount to add to srtt for smoothing,
   3510 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3511 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3512 		 * shift left 5 bits, subtract srtt to get the
   3513 		 * diference, and then shift right by TCP_RTT_SHIFT
   3514 		 * (3) to obtain 1/8 of the difference.
   3515 		 */
   3516 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3517 		/*
   3518 		 * This can never happen, because delta's lowest
   3519 		 * possible value is 1/8 of t_srtt.  But if it does,
   3520 		 * set srtt to some reasonable value, here chosen
   3521 		 * as 1/8 tick.
   3522 		 */
   3523 		if ((tp->t_srtt += delta) <= 0)
   3524 			tp->t_srtt = 1 << 2;
   3525 		/*
   3526 		 * RFC2988 requires that rttvar be updated first.
   3527 		 * This code is compliant because "delta" is the old
   3528 		 * srtt minus the new observation (scaled).
   3529 		 *
   3530 		 * RFC2988 says:
   3531 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3532 		 *
   3533 		 * delta is in units of 1/32 ticks, and has then been
   3534 		 * divided by 8.  This is equivalent to being in 1/16s
   3535 		 * units and divided by 4.  Subtract from it 1/4 of
   3536 		 * the existing rttvar to form the (signed) amount to
   3537 		 * adjust.
   3538 		 */
   3539 		if (delta < 0)
   3540 			delta = -delta;
   3541 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3542 		/*
   3543 		 * As with srtt, this should never happen.  There is
   3544 		 * no support in RFC2988 for this operation.  But 1/4s
   3545 		 * as rttvar when faced with something arguably wrong
   3546 		 * is ok.
   3547 		 */
   3548 		if ((tp->t_rttvar += delta) <= 0)
   3549 			tp->t_rttvar = 1 << 2;
   3550 
   3551 		/*
   3552 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3553 		 * Problem is: it doesn't work.  Disabled by defaulting
   3554 		 * tcp_rttlocal to 0; see corresponding code in
   3555 		 * tcp_subr that selects local vs remote in a different way.
   3556 		 *
   3557 		 * The static branch prediction hint here should be removed
   3558 		 * when the rtt estimator is fixed and the rtt_enable code
   3559 		 * is turned back on.
   3560 		 */
   3561 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3562 		    && tp->t_srtt > tcp_msl_remote_threshold
   3563 		    && tp->t_msl  < tcp_msl_remote) {
   3564 			tp->t_msl = tcp_msl_remote;
   3565 		}
   3566 	} else {
   3567 		/*
   3568 		 * This is the first measurement.  Per RFC2988, 2.2,
   3569 		 * set rtt=R and srtt=R/2.
   3570 		 * For srtt, storage representation is 1/32 ticks,
   3571 		 * so shift left by 5.
   3572 		 * For rttvar, storage representation is 1/16 ticks,
   3573 		 * So shift left by 4, but then right by 1 to halve.
   3574 		 */
   3575 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3576 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3577 	}
   3578 	tp->t_rtttime = 0;
   3579 	tp->t_rxtshift = 0;
   3580 
   3581 	/*
   3582 	 * the retransmit should happen at rtt + 4 * rttvar.
   3583 	 * Because of the way we do the smoothing, srtt and rttvar
   3584 	 * will each average +1/2 tick of bias.  When we compute
   3585 	 * the retransmit timer, we want 1/2 tick of rounding and
   3586 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3587 	 * firing of the timer.  The bias will give us exactly the
   3588 	 * 1.5 tick we need.  But, because the bias is
   3589 	 * statistical, we have to test that we don't drop below
   3590 	 * the minimum feasible timer (which is 2 ticks).
   3591 	 */
   3592 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3593 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3594 
   3595 	/*
   3596 	 * We received an ack for a packet that wasn't retransmitted;
   3597 	 * it is probably safe to discard any error indications we've
   3598 	 * received recently.  This isn't quite right, but close enough
   3599 	 * for now (a route might have failed after we sent a segment,
   3600 	 * and the return path might not be symmetrical).
   3601 	 */
   3602 	tp->t_softerror = 0;
   3603 }
   3604 
   3605 
   3606 /*
   3607  * TCP compressed state engine.  Currently used to hold compressed
   3608  * state for SYN_RECEIVED.
   3609  */
   3610 
   3611 u_long	syn_cache_count;
   3612 u_int32_t syn_hash1, syn_hash2;
   3613 
   3614 #define SYN_HASH(sa, sp, dp) \
   3615 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3616 				     ((u_int32_t)(sp)))^syn_hash2)))
   3617 #ifndef INET6
   3618 #define	SYN_HASHALL(hash, src, dst) \
   3619 do {									\
   3620 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3621 		((const struct sockaddr_in *)(src))->sin_port,		\
   3622 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3623 } while (/*CONSTCOND*/ 0)
   3624 #else
   3625 #define SYN_HASH6(sa, sp, dp) \
   3626 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3627 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3628 	 & 0x7fffffff)
   3629 
   3630 #define SYN_HASHALL(hash, src, dst) \
   3631 do {									\
   3632 	switch ((src)->sa_family) {					\
   3633 	case AF_INET:							\
   3634 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3635 			((const struct sockaddr_in *)(src))->sin_port,	\
   3636 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3637 		break;							\
   3638 	case AF_INET6:							\
   3639 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3640 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3641 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3642 		break;							\
   3643 	default:							\
   3644 		hash = 0;						\
   3645 	}								\
   3646 } while (/*CONSTCOND*/0)
   3647 #endif /* INET6 */
   3648 
   3649 static struct pool syn_cache_pool;
   3650 
   3651 /*
   3652  * We don't estimate RTT with SYNs, so each packet starts with the default
   3653  * RTT and each timer step has a fixed timeout value.
   3654  */
   3655 static inline void
   3656 syn_cache_timer_arm(struct syn_cache *sc)
   3657 {
   3658 
   3659 	TCPT_RANGESET(sc->sc_rxtcur,
   3660 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
   3661 	    TCPTV_REXMTMAX);
   3662 	callout_reset(&sc->sc_timer,
   3663 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
   3664 }
   3665 
   3666 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3667 
   3668 static inline void
   3669 syn_cache_rm(struct syn_cache *sc)
   3670 {
   3671 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3672 	    sc, sc_bucketq);
   3673 	sc->sc_tp = NULL;
   3674 	LIST_REMOVE(sc, sc_tpq);
   3675 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3676 	callout_stop(&sc->sc_timer);
   3677 	syn_cache_count--;
   3678 }
   3679 
   3680 static inline void
   3681 syn_cache_put(struct syn_cache *sc)
   3682 {
   3683 	if (sc->sc_ipopts)
   3684 		(void) m_free(sc->sc_ipopts);
   3685 	rtcache_free(&sc->sc_route);
   3686 	sc->sc_flags |= SCF_DEAD;
   3687 	if (!callout_invoking(&sc->sc_timer))
   3688 		callout_schedule(&(sc)->sc_timer, 1);
   3689 }
   3690 
   3691 void
   3692 syn_cache_init(void)
   3693 {
   3694 	int i;
   3695 
   3696 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3697 	    "synpl", NULL, IPL_SOFTNET);
   3698 
   3699 	/* Initialize the hash buckets. */
   3700 	for (i = 0; i < tcp_syn_cache_size; i++)
   3701 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3702 }
   3703 
   3704 void
   3705 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3706 {
   3707 	struct syn_cache_head *scp;
   3708 	struct syn_cache *sc2;
   3709 	int s;
   3710 
   3711 	/*
   3712 	 * If there are no entries in the hash table, reinitialize
   3713 	 * the hash secrets.
   3714 	 */
   3715 	if (syn_cache_count == 0) {
   3716 		syn_hash1 = cprng_fast32();
   3717 		syn_hash2 = cprng_fast32();
   3718 	}
   3719 
   3720 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3721 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3722 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3723 
   3724 	/*
   3725 	 * Make sure that we don't overflow the per-bucket
   3726 	 * limit or the total cache size limit.
   3727 	 */
   3728 	s = splsoftnet();
   3729 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3730 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3731 		/*
   3732 		 * The bucket is full.  Toss the oldest element in the
   3733 		 * bucket.  This will be the first entry in the bucket.
   3734 		 */
   3735 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3736 #ifdef DIAGNOSTIC
   3737 		/*
   3738 		 * This should never happen; we should always find an
   3739 		 * entry in our bucket.
   3740 		 */
   3741 		if (sc2 == NULL)
   3742 			panic("syn_cache_insert: bucketoverflow: impossible");
   3743 #endif
   3744 		syn_cache_rm(sc2);
   3745 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3746 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3747 		struct syn_cache_head *scp2, *sce;
   3748 
   3749 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3750 		/*
   3751 		 * The cache is full.  Toss the oldest entry in the
   3752 		 * first non-empty bucket we can find.
   3753 		 *
   3754 		 * XXX We would really like to toss the oldest
   3755 		 * entry in the cache, but we hope that this
   3756 		 * condition doesn't happen very often.
   3757 		 */
   3758 		scp2 = scp;
   3759 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3760 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3761 			for (++scp2; scp2 != scp; scp2++) {
   3762 				if (scp2 >= sce)
   3763 					scp2 = &tcp_syn_cache[0];
   3764 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3765 					break;
   3766 			}
   3767 #ifdef DIAGNOSTIC
   3768 			/*
   3769 			 * This should never happen; we should always find a
   3770 			 * non-empty bucket.
   3771 			 */
   3772 			if (scp2 == scp)
   3773 				panic("syn_cache_insert: cacheoverflow: "
   3774 				    "impossible");
   3775 #endif
   3776 		}
   3777 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3778 		syn_cache_rm(sc2);
   3779 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3780 	}
   3781 
   3782 	/*
   3783 	 * Initialize the entry's timer.
   3784 	 */
   3785 	sc->sc_rxttot = 0;
   3786 	sc->sc_rxtshift = 0;
   3787 	syn_cache_timer_arm(sc);
   3788 
   3789 	/* Link it from tcpcb entry */
   3790 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3791 
   3792 	/* Put it into the bucket. */
   3793 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3794 	scp->sch_length++;
   3795 	syn_cache_count++;
   3796 
   3797 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3798 	splx(s);
   3799 }
   3800 
   3801 /*
   3802  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3803  * If we have retransmitted an entry the maximum number of times, expire
   3804  * that entry.
   3805  */
   3806 static void
   3807 syn_cache_timer(void *arg)
   3808 {
   3809 	struct syn_cache *sc = arg;
   3810 
   3811 	mutex_enter(softnet_lock);
   3812 	KERNEL_LOCK(1, NULL);
   3813 
   3814 	callout_ack(&sc->sc_timer);
   3815 
   3816 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3817 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3818 		goto free;
   3819 	}
   3820 
   3821 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3822 		/* Drop it -- too many retransmissions. */
   3823 		goto dropit;
   3824 	}
   3825 
   3826 	/*
   3827 	 * Compute the total amount of time this entry has
   3828 	 * been on a queue.  If this entry has been on longer
   3829 	 * than the keep alive timer would allow, expire it.
   3830 	 */
   3831 	sc->sc_rxttot += sc->sc_rxtcur;
   3832 	if (sc->sc_rxttot >= tcp_keepinit)
   3833 		goto dropit;
   3834 
   3835 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3836 	(void) syn_cache_respond(sc, NULL);
   3837 
   3838 	/* Advance the timer back-off. */
   3839 	sc->sc_rxtshift++;
   3840 	syn_cache_timer_arm(sc);
   3841 
   3842 	goto out;
   3843 
   3844  dropit:
   3845 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3846 	syn_cache_rm(sc);
   3847 	if (sc->sc_ipopts)
   3848 		(void) m_free(sc->sc_ipopts);
   3849 	rtcache_free(&sc->sc_route);
   3850 
   3851  free:
   3852 	callout_destroy(&sc->sc_timer);
   3853 	pool_put(&syn_cache_pool, sc);
   3854 
   3855  out:
   3856 	KERNEL_UNLOCK_ONE(NULL);
   3857 	mutex_exit(softnet_lock);
   3858 }
   3859 
   3860 /*
   3861  * Remove syn cache created by the specified tcb entry,
   3862  * because this does not make sense to keep them
   3863  * (if there's no tcb entry, syn cache entry will never be used)
   3864  */
   3865 void
   3866 syn_cache_cleanup(struct tcpcb *tp)
   3867 {
   3868 	struct syn_cache *sc, *nsc;
   3869 	int s;
   3870 
   3871 	s = splsoftnet();
   3872 
   3873 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3874 		nsc = LIST_NEXT(sc, sc_tpq);
   3875 
   3876 #ifdef DIAGNOSTIC
   3877 		if (sc->sc_tp != tp)
   3878 			panic("invalid sc_tp in syn_cache_cleanup");
   3879 #endif
   3880 		syn_cache_rm(sc);
   3881 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3882 	}
   3883 	/* just for safety */
   3884 	LIST_INIT(&tp->t_sc);
   3885 
   3886 	splx(s);
   3887 }
   3888 
   3889 /*
   3890  * Find an entry in the syn cache.
   3891  */
   3892 struct syn_cache *
   3893 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3894     struct syn_cache_head **headp)
   3895 {
   3896 	struct syn_cache *sc;
   3897 	struct syn_cache_head *scp;
   3898 	u_int32_t hash;
   3899 	int s;
   3900 
   3901 	SYN_HASHALL(hash, src, dst);
   3902 
   3903 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3904 	*headp = scp;
   3905 	s = splsoftnet();
   3906 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3907 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3908 		if (sc->sc_hash != hash)
   3909 			continue;
   3910 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3911 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3912 			splx(s);
   3913 			return (sc);
   3914 		}
   3915 	}
   3916 	splx(s);
   3917 	return (NULL);
   3918 }
   3919 
   3920 /*
   3921  * This function gets called when we receive an ACK for a
   3922  * socket in the LISTEN state.  We look up the connection
   3923  * in the syn cache, and if its there, we pull it out of
   3924  * the cache and turn it into a full-blown connection in
   3925  * the SYN-RECEIVED state.
   3926  *
   3927  * The return values may not be immediately obvious, and their effects
   3928  * can be subtle, so here they are:
   3929  *
   3930  *	NULL	SYN was not found in cache; caller should drop the
   3931  *		packet and send an RST.
   3932  *
   3933  *	-1	We were unable to create the new connection, and are
   3934  *		aborting it.  An ACK,RST is being sent to the peer
   3935  *		(unless we got screwey sequence numbners; see below),
   3936  *		because the 3-way handshake has been completed.  Caller
   3937  *		should not free the mbuf, since we may be using it.  If
   3938  *		we are not, we will free it.
   3939  *
   3940  *	Otherwise, the return value is a pointer to the new socket
   3941  *	associated with the connection.
   3942  */
   3943 struct socket *
   3944 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3945     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3946     struct socket *so, struct mbuf *m)
   3947 {
   3948 	struct syn_cache *sc;
   3949 	struct syn_cache_head *scp;
   3950 	struct inpcb *inp = NULL;
   3951 #ifdef INET6
   3952 	struct in6pcb *in6p = NULL;
   3953 #endif
   3954 	struct tcpcb *tp = 0;
   3955 	int s;
   3956 	struct socket *oso;
   3957 
   3958 	s = splsoftnet();
   3959 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3960 		splx(s);
   3961 		return (NULL);
   3962 	}
   3963 
   3964 	/*
   3965 	 * Verify the sequence and ack numbers.  Try getting the correct
   3966 	 * response again.
   3967 	 */
   3968 	if ((th->th_ack != sc->sc_iss + 1) ||
   3969 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3970 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3971 		(void) syn_cache_respond(sc, m);
   3972 		splx(s);
   3973 		return ((struct socket *)(-1));
   3974 	}
   3975 
   3976 	/* Remove this cache entry */
   3977 	syn_cache_rm(sc);
   3978 	splx(s);
   3979 
   3980 	/*
   3981 	 * Ok, create the full blown connection, and set things up
   3982 	 * as they would have been set up if we had created the
   3983 	 * connection when the SYN arrived.  If we can't create
   3984 	 * the connection, abort it.
   3985 	 */
   3986 	/*
   3987 	 * inp still has the OLD in_pcb stuff, set the
   3988 	 * v6-related flags on the new guy, too.   This is
   3989 	 * done particularly for the case where an AF_INET6
   3990 	 * socket is bound only to a port, and a v4 connection
   3991 	 * comes in on that port.
   3992 	 * we also copy the flowinfo from the original pcb
   3993 	 * to the new one.
   3994 	 */
   3995 	oso = so;
   3996 	so = sonewconn(so, true);
   3997 	if (so == NULL)
   3998 		goto resetandabort;
   3999 
   4000 	switch (so->so_proto->pr_domain->dom_family) {
   4001 #ifdef INET
   4002 	case AF_INET:
   4003 		inp = sotoinpcb(so);
   4004 		break;
   4005 #endif
   4006 #ifdef INET6
   4007 	case AF_INET6:
   4008 		in6p = sotoin6pcb(so);
   4009 		break;
   4010 #endif
   4011 	}
   4012 	switch (src->sa_family) {
   4013 #ifdef INET
   4014 	case AF_INET:
   4015 		if (inp) {
   4016 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   4017 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   4018 			inp->inp_options = ip_srcroute(m);
   4019 			in_pcbstate(inp, INP_BOUND);
   4020 			if (inp->inp_options == NULL) {
   4021 				inp->inp_options = sc->sc_ipopts;
   4022 				sc->sc_ipopts = NULL;
   4023 			}
   4024 		}
   4025 #ifdef INET6
   4026 		else if (in6p) {
   4027 			/* IPv4 packet to AF_INET6 socket */
   4028 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   4029 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   4030 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   4031 				&in6p->in6p_laddr.s6_addr32[3],
   4032 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   4033 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   4034 			in6totcpcb(in6p)->t_family = AF_INET;
   4035 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   4036 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   4037 			else
   4038 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   4039 			in6_pcbstate(in6p, IN6P_BOUND);
   4040 		}
   4041 #endif
   4042 		break;
   4043 #endif
   4044 #ifdef INET6
   4045 	case AF_INET6:
   4046 		if (in6p) {
   4047 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   4048 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   4049 			in6_pcbstate(in6p, IN6P_BOUND);
   4050 		}
   4051 		break;
   4052 #endif
   4053 	}
   4054 #ifdef INET6
   4055 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   4056 		struct in6pcb *oin6p = sotoin6pcb(oso);
   4057 		/* inherit socket options from the listening socket */
   4058 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   4059 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   4060 			m_freem(in6p->in6p_options);
   4061 			in6p->in6p_options = 0;
   4062 		}
   4063 		ip6_savecontrol(in6p, &in6p->in6p_options,
   4064 			mtod(m, struct ip6_hdr *), m);
   4065 	}
   4066 #endif
   4067 
   4068 #if defined(IPSEC)
   4069 	if (ipsec_used) {
   4070 		/*
   4071 		 * we make a copy of policy, instead of sharing the policy, for
   4072 		 * better behavior in terms of SA lookup and dead SA removal.
   4073 		 */
   4074 		if (inp) {
   4075 			/* copy old policy into new socket's */
   4076 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
   4077 			    inp->inp_sp))
   4078 				printf("tcp_input: could not copy policy\n");
   4079 		}
   4080 #ifdef INET6
   4081 		else if (in6p) {
   4082 			/* copy old policy into new socket's */
   4083 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   4084 			    in6p->in6p_sp))
   4085 				printf("tcp_input: could not copy policy\n");
   4086 		}
   4087 #endif
   4088 	}
   4089 #endif
   4090 
   4091 	/*
   4092 	 * Give the new socket our cached route reference.
   4093 	 */
   4094 	if (inp) {
   4095 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   4096 		rtcache_free(&sc->sc_route);
   4097 	}
   4098 #ifdef INET6
   4099 	else {
   4100 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   4101 		rtcache_free(&sc->sc_route);
   4102 	}
   4103 #endif
   4104 
   4105 	if (inp) {
   4106 		struct sockaddr_in sin;
   4107 		memcpy(&sin, src, src->sa_len);
   4108 		if (in_pcbconnect(inp, &sin, &lwp0)) {
   4109 			goto resetandabort;
   4110 		}
   4111 	}
   4112 #ifdef INET6
   4113 	else if (in6p) {
   4114 		struct sockaddr_in6 sin6;
   4115 		memcpy(&sin6, src, src->sa_len);
   4116 		if (src->sa_family == AF_INET) {
   4117 			/* IPv4 packet to AF_INET6 socket */
   4118 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
   4119 		}
   4120 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
   4121 			goto resetandabort;
   4122 		}
   4123 	}
   4124 #endif
   4125 	else {
   4126 		goto resetandabort;
   4127 	}
   4128 
   4129 	if (inp)
   4130 		tp = intotcpcb(inp);
   4131 #ifdef INET6
   4132 	else if (in6p)
   4133 		tp = in6totcpcb(in6p);
   4134 #endif
   4135 	else
   4136 		tp = NULL;
   4137 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   4138 	if (sc->sc_request_r_scale != 15) {
   4139 		tp->requested_s_scale = sc->sc_requested_s_scale;
   4140 		tp->request_r_scale = sc->sc_request_r_scale;
   4141 		tp->snd_scale = sc->sc_requested_s_scale;
   4142 		tp->rcv_scale = sc->sc_request_r_scale;
   4143 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   4144 	}
   4145 	if (sc->sc_flags & SCF_TIMESTAMP)
   4146 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   4147 	tp->ts_timebase = sc->sc_timebase;
   4148 
   4149 	tp->t_template = tcp_template(tp);
   4150 	if (tp->t_template == 0) {
   4151 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   4152 		so = NULL;
   4153 		m_freem(m);
   4154 		goto abort;
   4155 	}
   4156 
   4157 	tp->iss = sc->sc_iss;
   4158 	tp->irs = sc->sc_irs;
   4159 	tcp_sendseqinit(tp);
   4160 	tcp_rcvseqinit(tp);
   4161 	tp->t_state = TCPS_SYN_RECEIVED;
   4162 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4163 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4164 
   4165 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4166 		tp->t_flags |= TF_WILL_SACK;
   4167 
   4168 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4169 		tp->t_flags |= TF_ECN_PERMIT;
   4170 
   4171 #ifdef TCP_SIGNATURE
   4172 	if (sc->sc_flags & SCF_SIGNATURE)
   4173 		tp->t_flags |= TF_SIGNATURE;
   4174 #endif
   4175 
   4176 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4177 	tp->t_ourmss = sc->sc_ourmaxseg;
   4178 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4179 
   4180 	/*
   4181 	 * Initialize the initial congestion window.  If we
   4182 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4183 	 * to 1 segment (i.e. the Loss Window).
   4184 	 */
   4185 	if (sc->sc_rxtshift)
   4186 		tp->snd_cwnd = tp->t_peermss;
   4187 	else {
   4188 		int ss = tcp_init_win;
   4189 #ifdef INET
   4190 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4191 			ss = tcp_init_win_local;
   4192 #endif
   4193 #ifdef INET6
   4194 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4195 			ss = tcp_init_win_local;
   4196 #endif
   4197 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4198 	}
   4199 
   4200 	tcp_rmx_rtt(tp);
   4201 	tp->snd_wl1 = sc->sc_irs;
   4202 	tp->rcv_up = sc->sc_irs + 1;
   4203 
   4204 	/*
   4205 	 * This is what whould have happened in tcp_output() when
   4206 	 * the SYN,ACK was sent.
   4207 	 */
   4208 	tp->snd_up = tp->snd_una;
   4209 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4210 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4211 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4212 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4213 	tp->last_ack_sent = tp->rcv_nxt;
   4214 	tp->t_partialacks = -1;
   4215 	tp->t_dupacks = 0;
   4216 
   4217 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4218 	s = splsoftnet();
   4219 	syn_cache_put(sc);
   4220 	splx(s);
   4221 	return (so);
   4222 
   4223 resetandabort:
   4224 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4225 abort:
   4226 	if (so != NULL) {
   4227 		(void) soqremque(so, 1);
   4228 		(void) soabort(so);
   4229 		mutex_enter(softnet_lock);
   4230 	}
   4231 	s = splsoftnet();
   4232 	syn_cache_put(sc);
   4233 	splx(s);
   4234 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4235 	return ((struct socket *)(-1));
   4236 }
   4237 
   4238 /*
   4239  * This function is called when we get a RST for a
   4240  * non-existent connection, so that we can see if the
   4241  * connection is in the syn cache.  If it is, zap it.
   4242  */
   4243 
   4244 void
   4245 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4246 {
   4247 	struct syn_cache *sc;
   4248 	struct syn_cache_head *scp;
   4249 	int s = splsoftnet();
   4250 
   4251 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4252 		splx(s);
   4253 		return;
   4254 	}
   4255 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4256 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4257 		splx(s);
   4258 		return;
   4259 	}
   4260 	syn_cache_rm(sc);
   4261 	TCP_STATINC(TCP_STAT_SC_RESET);
   4262 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4263 	splx(s);
   4264 }
   4265 
   4266 void
   4267 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4268     struct tcphdr *th)
   4269 {
   4270 	struct syn_cache *sc;
   4271 	struct syn_cache_head *scp;
   4272 	int s;
   4273 
   4274 	s = splsoftnet();
   4275 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4276 		splx(s);
   4277 		return;
   4278 	}
   4279 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4280 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4281 		splx(s);
   4282 		return;
   4283 	}
   4284 
   4285 	/*
   4286 	 * If we've retransmitted 3 times and this is our second error,
   4287 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4288 	 * This prevents us from incorrectly nuking an entry during a
   4289 	 * spurious network outage.
   4290 	 *
   4291 	 * See tcp_notify().
   4292 	 */
   4293 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4294 		sc->sc_flags |= SCF_UNREACH;
   4295 		splx(s);
   4296 		return;
   4297 	}
   4298 
   4299 	syn_cache_rm(sc);
   4300 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4301 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4302 	splx(s);
   4303 }
   4304 
   4305 /*
   4306  * Given a LISTEN socket and an inbound SYN request, add
   4307  * this to the syn cache, and send back a segment:
   4308  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4309  * to the source.
   4310  *
   4311  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4312  * Doing so would require that we hold onto the data and deliver it
   4313  * to the application.  However, if we are the target of a SYN-flood
   4314  * DoS attack, an attacker could send data which would eventually
   4315  * consume all available buffer space if it were ACKed.  By not ACKing
   4316  * the data, we avoid this DoS scenario.
   4317  */
   4318 
   4319 int
   4320 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4321     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4322     int optlen, struct tcp_opt_info *oi)
   4323 {
   4324 	struct tcpcb tb, *tp;
   4325 	long win;
   4326 	struct syn_cache *sc;
   4327 	struct syn_cache_head *scp;
   4328 	struct mbuf *ipopts;
   4329 	struct tcp_opt_info opti;
   4330 	int s;
   4331 
   4332 	tp = sototcpcb(so);
   4333 
   4334 	memset(&opti, 0, sizeof(opti));
   4335 
   4336 	/*
   4337 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4338 	 *
   4339 	 * Note this check is performed in tcp_input() very early on.
   4340 	 */
   4341 
   4342 	/*
   4343 	 * Initialize some local state.
   4344 	 */
   4345 	win = sbspace(&so->so_rcv);
   4346 	if (win > TCP_MAXWIN)
   4347 		win = TCP_MAXWIN;
   4348 
   4349 	switch (src->sa_family) {
   4350 #ifdef INET
   4351 	case AF_INET:
   4352 		/*
   4353 		 * Remember the IP options, if any.
   4354 		 */
   4355 		ipopts = ip_srcroute(m);
   4356 		break;
   4357 #endif
   4358 	default:
   4359 		ipopts = NULL;
   4360 	}
   4361 
   4362 #ifdef TCP_SIGNATURE
   4363 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4364 #else
   4365 	if (optp)
   4366 #endif
   4367 	{
   4368 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4369 #ifdef TCP_SIGNATURE
   4370 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4371 #endif
   4372 		tb.t_state = TCPS_LISTEN;
   4373 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4374 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4375 			return (0);
   4376 	} else
   4377 		tb.t_flags = 0;
   4378 
   4379 	/*
   4380 	 * See if we already have an entry for this connection.
   4381 	 * If we do, resend the SYN,ACK.  We do not count this
   4382 	 * as a retransmission (XXX though maybe we should).
   4383 	 */
   4384 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4385 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4386 		if (ipopts) {
   4387 			/*
   4388 			 * If we were remembering a previous source route,
   4389 			 * forget it and use the new one we've been given.
   4390 			 */
   4391 			if (sc->sc_ipopts)
   4392 				(void) m_free(sc->sc_ipopts);
   4393 			sc->sc_ipopts = ipopts;
   4394 		}
   4395 		sc->sc_timestamp = tb.ts_recent;
   4396 		if (syn_cache_respond(sc, m) == 0) {
   4397 			uint64_t *tcps = TCP_STAT_GETREF();
   4398 			tcps[TCP_STAT_SNDACKS]++;
   4399 			tcps[TCP_STAT_SNDTOTAL]++;
   4400 			TCP_STAT_PUTREF();
   4401 		}
   4402 		return (1);
   4403 	}
   4404 
   4405 	s = splsoftnet();
   4406 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4407 	splx(s);
   4408 	if (sc == NULL) {
   4409 		if (ipopts)
   4410 			(void) m_free(ipopts);
   4411 		return (0);
   4412 	}
   4413 
   4414 	/*
   4415 	 * Fill in the cache, and put the necessary IP and TCP
   4416 	 * options into the reply.
   4417 	 */
   4418 	memset(sc, 0, sizeof(struct syn_cache));
   4419 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4420 	bcopy(src, &sc->sc_src, src->sa_len);
   4421 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4422 	sc->sc_flags = 0;
   4423 	sc->sc_ipopts = ipopts;
   4424 	sc->sc_irs = th->th_seq;
   4425 	switch (src->sa_family) {
   4426 #ifdef INET
   4427 	case AF_INET:
   4428 	    {
   4429 		struct sockaddr_in *srcin = (void *) src;
   4430 		struct sockaddr_in *dstin = (void *) dst;
   4431 
   4432 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4433 		    &srcin->sin_addr, dstin->sin_port,
   4434 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4435 		break;
   4436 	    }
   4437 #endif /* INET */
   4438 #ifdef INET6
   4439 	case AF_INET6:
   4440 	    {
   4441 		struct sockaddr_in6 *srcin6 = (void *) src;
   4442 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4443 
   4444 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4445 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4446 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4447 		break;
   4448 	    }
   4449 #endif /* INET6 */
   4450 	}
   4451 	sc->sc_peermaxseg = oi->maxseg;
   4452 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4453 						m_get_rcvif_NOMPSAFE(m) : NULL,
   4454 						sc->sc_src.sa.sa_family);
   4455 	sc->sc_win = win;
   4456 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4457 	sc->sc_timestamp = tb.ts_recent;
   4458 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4459 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4460 		sc->sc_flags |= SCF_TIMESTAMP;
   4461 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4462 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4463 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4464 		sc->sc_request_r_scale = 0;
   4465 		/*
   4466 		 * Pick the smallest possible scaling factor that
   4467 		 * will still allow us to scale up to sb_max.
   4468 		 *
   4469 		 * We do this because there are broken firewalls that
   4470 		 * will corrupt the window scale option, leading to
   4471 		 * the other endpoint believing that our advertised
   4472 		 * window is unscaled.  At scale factors larger than
   4473 		 * 5 the unscaled window will drop below 1500 bytes,
   4474 		 * leading to serious problems when traversing these
   4475 		 * broken firewalls.
   4476 		 *
   4477 		 * With the default sbmax of 256K, a scale factor
   4478 		 * of 3 will be chosen by this algorithm.  Those who
   4479 		 * choose a larger sbmax should watch out
   4480 		 * for the compatiblity problems mentioned above.
   4481 		 *
   4482 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4483 		 * or <SYN,ACK>) segment itself is never scaled.
   4484 		 */
   4485 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4486 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4487 			sc->sc_request_r_scale++;
   4488 	} else {
   4489 		sc->sc_requested_s_scale = 15;
   4490 		sc->sc_request_r_scale = 15;
   4491 	}
   4492 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4493 		sc->sc_flags |= SCF_SACK_PERMIT;
   4494 
   4495 	/*
   4496 	 * ECN setup packet received.
   4497 	 */
   4498 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4499 		sc->sc_flags |= SCF_ECN_PERMIT;
   4500 
   4501 #ifdef TCP_SIGNATURE
   4502 	if (tb.t_flags & TF_SIGNATURE)
   4503 		sc->sc_flags |= SCF_SIGNATURE;
   4504 #endif
   4505 	sc->sc_tp = tp;
   4506 	if (syn_cache_respond(sc, m) == 0) {
   4507 		uint64_t *tcps = TCP_STAT_GETREF();
   4508 		tcps[TCP_STAT_SNDACKS]++;
   4509 		tcps[TCP_STAT_SNDTOTAL]++;
   4510 		TCP_STAT_PUTREF();
   4511 		syn_cache_insert(sc, tp);
   4512 	} else {
   4513 		s = splsoftnet();
   4514 		/*
   4515 		 * syn_cache_put() will try to schedule the timer, so
   4516 		 * we need to initialize it
   4517 		 */
   4518 		syn_cache_timer_arm(sc);
   4519 		syn_cache_put(sc);
   4520 		splx(s);
   4521 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4522 	}
   4523 	return (1);
   4524 }
   4525 
   4526 /*
   4527  * syn_cache_respond: (re)send SYN+ACK.
   4528  *
   4529  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
   4530  */
   4531 
   4532 int
   4533 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4534 {
   4535 #ifdef INET6
   4536 	struct rtentry *rt = NULL;
   4537 #endif
   4538 	struct route *ro;
   4539 	u_int8_t *optp;
   4540 	int optlen, error;
   4541 	u_int16_t tlen;
   4542 	struct ip *ip = NULL;
   4543 #ifdef INET6
   4544 	struct ip6_hdr *ip6 = NULL;
   4545 #endif
   4546 	struct tcpcb *tp = NULL;
   4547 	struct tcphdr *th;
   4548 	u_int hlen;
   4549 #ifdef TCP_SIGNATURE
   4550 	struct secasvar *sav = NULL;
   4551 	u_int8_t *sigp = NULL;
   4552 #endif
   4553 
   4554 	ro = &sc->sc_route;
   4555 	switch (sc->sc_src.sa.sa_family) {
   4556 	case AF_INET:
   4557 		hlen = sizeof(struct ip);
   4558 		break;
   4559 #ifdef INET6
   4560 	case AF_INET6:
   4561 		hlen = sizeof(struct ip6_hdr);
   4562 		break;
   4563 #endif
   4564 	default:
   4565 		if (m)
   4566 			m_freem(m);
   4567 		return (EAFNOSUPPORT);
   4568 	}
   4569 
   4570 	/* worst case scanario, since we don't know the option size yet  */
   4571 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
   4572 
   4573 	/*
   4574 	 * Create the IP+TCP header from scratch.
   4575 	 */
   4576 	if (m)
   4577 		m_freem(m);
   4578 #ifdef DIAGNOSTIC
   4579 	if (max_linkhdr + tlen > MCLBYTES)
   4580 		return ENOBUFS;
   4581 #endif
   4582 
   4583 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4584 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4585 		MCLGET(m, M_DONTWAIT);
   4586 		if ((m->m_flags & M_EXT) == 0) {
   4587 			m_freem(m);
   4588 			m = NULL;
   4589 		}
   4590 	}
   4591 	if (m == NULL)
   4592 		return ENOBUFS;
   4593 	MCLAIM(m, &tcp_tx_mowner);
   4594 
   4595 	/* Fixup the mbuf. */
   4596 	m->m_data += max_linkhdr;
   4597 	if (sc->sc_tp)
   4598 		tp = sc->sc_tp;
   4599 	m_reset_rcvif(m);
   4600 	memset(mtod(m, u_char *), 0, tlen);
   4601 
   4602 	switch (sc->sc_src.sa.sa_family) {
   4603 	case AF_INET:
   4604 		ip = mtod(m, struct ip *);
   4605 		ip->ip_v = 4;
   4606 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4607 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4608 		ip->ip_p = IPPROTO_TCP;
   4609 		th = (struct tcphdr *)(ip + 1);
   4610 		th->th_dport = sc->sc_src.sin.sin_port;
   4611 		th->th_sport = sc->sc_dst.sin.sin_port;
   4612 		break;
   4613 #ifdef INET6
   4614 	case AF_INET6:
   4615 		ip6 = mtod(m, struct ip6_hdr *);
   4616 		ip6->ip6_vfc = IPV6_VERSION;
   4617 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4618 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4619 		ip6->ip6_nxt = IPPROTO_TCP;
   4620 		/* ip6_plen will be updated in ip6_output() */
   4621 		th = (struct tcphdr *)(ip6 + 1);
   4622 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4623 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4624 		break;
   4625 #endif
   4626 	default:
   4627 		return ENOBUFS;
   4628 	}
   4629 
   4630 	th->th_seq = htonl(sc->sc_iss);
   4631 	th->th_ack = htonl(sc->sc_irs + 1);
   4632 	th->th_flags = TH_SYN|TH_ACK;
   4633 	th->th_win = htons(sc->sc_win);
   4634 	/* th_x2, th_sum, th_urp already 0 from memset */
   4635 
   4636 	/* Tack on the TCP options. */
   4637 	optp = (u_int8_t *)(th + 1);
   4638 	optlen = 0;
   4639 	*optp++ = TCPOPT_MAXSEG;
   4640 	*optp++ = TCPOLEN_MAXSEG;
   4641 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4642 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4643 	optlen += TCPOLEN_MAXSEG;
   4644 
   4645 	if (sc->sc_request_r_scale != 15) {
   4646 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4647 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4648 		    sc->sc_request_r_scale);
   4649 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4650 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4651 	}
   4652 
   4653 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4654 		/* Let the peer know that we will SACK. */
   4655 		*optp++ = TCPOPT_SACK_PERMITTED;
   4656 		*optp++ = TCPOLEN_SACK_PERMITTED;
   4657 		optlen += TCPOLEN_SACK_PERMITTED;
   4658 	}
   4659 
   4660 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4661                 while (optlen % 4 != 2) {
   4662                         optlen += TCPOLEN_NOP;
   4663                         *optp++ = TCPOPT_NOP;
   4664                 }
   4665 		*optp++ = TCPOPT_TIMESTAMP;
   4666 		*optp++ = TCPOLEN_TIMESTAMP;
   4667 		u_int32_t *lp = (u_int32_t *)(optp);
   4668 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4669 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4670 		*lp   = htonl(sc->sc_timestamp);
   4671 		optp += TCPOLEN_TIMESTAMP - 2;
   4672 		optlen += TCPOLEN_TIMESTAMP;
   4673 	}
   4674 
   4675 #ifdef TCP_SIGNATURE
   4676 	if (sc->sc_flags & SCF_SIGNATURE) {
   4677 
   4678 		sav = tcp_signature_getsav(m, th);
   4679 
   4680 		if (sav == NULL) {
   4681 			if (m)
   4682 				m_freem(m);
   4683 			return (EPERM);
   4684 		}
   4685 
   4686 		*optp++ = TCPOPT_SIGNATURE;
   4687 		*optp++ = TCPOLEN_SIGNATURE;
   4688 		sigp = optp;
   4689 		memset(optp, 0, TCP_SIGLEN);
   4690 		optp += TCP_SIGLEN;
   4691 		optlen += TCPOLEN_SIGNATURE;
   4692 
   4693 	}
   4694 #endif
   4695 	/* Terminate and pad TCP options to a 4 byte boundary. */
   4696 	if (optlen % 4) {
   4697 		optlen += TCPOLEN_EOL;
   4698 		*optp++ = TCPOPT_EOL;
   4699 	}
   4700 	/*
   4701 	 * According to RFC 793 (STD0007):
   4702 	 *   "The content of the header beyond the End-of-Option option
   4703 	 *    must be header padding (i.e., zero)."
   4704 	 *   and later: "The padding is composed of zeros."
   4705 	 */
   4706 	while (optlen % 4) {
   4707 		optlen += TCPOLEN_PAD;
   4708 		*optp++ = TCPOPT_PAD;
   4709 	}
   4710 
   4711 	/* compute the actual values now that we've added the options */
   4712 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4713 	m->m_len = m->m_pkthdr.len = tlen;
   4714 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4715 
   4716 #ifdef TCP_SIGNATURE
   4717 	if (sav) {
   4718 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4719 		key_sa_recordxfer(sav, m);
   4720 		KEY_SA_UNREF(&sav);
   4721 	}
   4722 #endif
   4723 
   4724 	/*
   4725 	 * Send ECN SYN-ACK setup packet.
   4726 	 * Routes can be asymetric, so, even if we receive a packet
   4727 	 * with ECE and CWR set, we must not assume no one will block
   4728 	 * the ECE packet we are about to send.
   4729 	 */
   4730 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4731 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4732 		th->th_flags |= TH_ECE;
   4733 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4734 
   4735 		/*
   4736 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4737 		 *
   4738 		 * "[...] a TCP node MAY respond to an ECN-setup
   4739 		 * SYN packet by setting ECT in the responding
   4740 		 * ECN-setup SYN/ACK packet, indicating to routers
   4741 		 * that the SYN/ACK packet is ECN-Capable.
   4742 		 * This allows a congested router along the path
   4743 		 * to mark the packet instead of dropping the
   4744 		 * packet as an indication of congestion."
   4745 		 *
   4746 		 * "[...] There can be a great benefit in setting
   4747 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4748 		 * Congestion is  most likely to occur in
   4749 		 * the server-to-client direction.  As a result,
   4750 		 * setting an ECN-capable codepoint in SYN/ACK
   4751 		 * packets can reduce the occurence of three-second
   4752 		 * retransmit timeouts resulting from the drop
   4753 		 * of SYN/ACK packets."
   4754 		 *
   4755 		 * Page 4 and 6, January 2006.
   4756 		 */
   4757 
   4758 		switch (sc->sc_src.sa.sa_family) {
   4759 #ifdef INET
   4760 		case AF_INET:
   4761 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4762 			break;
   4763 #endif
   4764 #ifdef INET6
   4765 		case AF_INET6:
   4766 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4767 			break;
   4768 #endif
   4769 		}
   4770 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4771 	}
   4772 
   4773 
   4774 	/* Compute the packet's checksum. */
   4775 	switch (sc->sc_src.sa.sa_family) {
   4776 	case AF_INET:
   4777 		ip->ip_len = htons(tlen - hlen);
   4778 		th->th_sum = 0;
   4779 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4780 		break;
   4781 #ifdef INET6
   4782 	case AF_INET6:
   4783 		ip6->ip6_plen = htons(tlen - hlen);
   4784 		th->th_sum = 0;
   4785 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4786 		break;
   4787 #endif
   4788 	}
   4789 
   4790 	/*
   4791 	 * Fill in some straggling IP bits.  Note the stack expects
   4792 	 * ip_len to be in host order, for convenience.
   4793 	 */
   4794 	switch (sc->sc_src.sa.sa_family) {
   4795 #ifdef INET
   4796 	case AF_INET:
   4797 		ip->ip_len = htons(tlen);
   4798 		ip->ip_ttl = ip_defttl;
   4799 		/* XXX tos? */
   4800 		break;
   4801 #endif
   4802 #ifdef INET6
   4803 	case AF_INET6:
   4804 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4805 		ip6->ip6_vfc |= IPV6_VERSION;
   4806 		ip6->ip6_plen = htons(tlen - hlen);
   4807 		/* ip6_hlim will be initialized afterwards */
   4808 		/* XXX flowlabel? */
   4809 		break;
   4810 #endif
   4811 	}
   4812 
   4813 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4814 	tp = sc->sc_tp;
   4815 
   4816 	switch (sc->sc_src.sa.sa_family) {
   4817 #ifdef INET
   4818 	case AF_INET:
   4819 		error = ip_output(m, sc->sc_ipopts, ro,
   4820 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4821 		    NULL, tp ? tp->t_inpcb : NULL);
   4822 		break;
   4823 #endif
   4824 #ifdef INET6
   4825 	case AF_INET6:
   4826 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4827 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
   4828 		rtcache_unref(rt, ro);
   4829 
   4830 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
   4831 		    tp ? tp->t_in6pcb : NULL, NULL);
   4832 		break;
   4833 #endif
   4834 	default:
   4835 		error = EAFNOSUPPORT;
   4836 		break;
   4837 	}
   4838 	return (error);
   4839 }
   4840