Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.370
      1 /*	$NetBSD: tcp_input.c,v 1.370 2018/02/08 20:06:21 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.370 2018/02/08 20:06:21 maxv Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_inet.h"
    155 #include "opt_ipsec.h"
    156 #include "opt_inet_csum.h"
    157 #include "opt_tcp_debug.h"
    158 #endif
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 #include <sys/lwp.h> /* for lwp0 */
    176 #include <sys/cprng.h>
    177 
    178 #include <net/if.h>
    179 #include <net/if_types.h>
    180 
    181 #include <netinet/in.h>
    182 #include <netinet/in_systm.h>
    183 #include <netinet/ip.h>
    184 #include <netinet/in_pcb.h>
    185 #include <netinet/in_var.h>
    186 #include <netinet/ip_var.h>
    187 #include <netinet/in_offload.h>
    188 
    189 #ifdef INET6
    190 #ifndef INET
    191 #include <netinet/in.h>
    192 #endif
    193 #include <netinet/ip6.h>
    194 #include <netinet6/ip6_var.h>
    195 #include <netinet6/in6_pcb.h>
    196 #include <netinet6/ip6_var.h>
    197 #include <netinet6/in6_var.h>
    198 #include <netinet/icmp6.h>
    199 #include <netinet6/nd6.h>
    200 #ifdef TCP_SIGNATURE
    201 #include <netinet6/scope6_var.h>
    202 #endif
    203 #endif
    204 
    205 #ifndef INET6
    206 /* always need ip6.h for IP6_EXTHDR_GET */
    207 #include <netinet/ip6.h>
    208 #endif
    209 
    210 #include <netinet/tcp.h>
    211 #include <netinet/tcp_fsm.h>
    212 #include <netinet/tcp_seq.h>
    213 #include <netinet/tcp_timer.h>
    214 #include <netinet/tcp_var.h>
    215 #include <netinet/tcp_private.h>
    216 #include <netinet/tcpip.h>
    217 #include <netinet/tcp_congctl.h>
    218 #include <netinet/tcp_debug.h>
    219 
    220 #ifdef INET6
    221 #include "faith.h"
    222 #if defined(NFAITH) && NFAITH > 0
    223 #include <net/if_faith.h>
    224 #endif
    225 #endif	/* INET6 */
    226 
    227 #ifdef IPSEC
    228 #include <netipsec/ipsec.h>
    229 #include <netipsec/ipsec_var.h>
    230 #include <netipsec/ipsec_private.h>
    231 #include <netipsec/key.h>
    232 #ifdef INET6
    233 #include <netipsec/ipsec6.h>
    234 #endif
    235 #endif	/* IPSEC*/
    236 
    237 #include <netinet/tcp_vtw.h>
    238 
    239 int	tcprexmtthresh = 3;
    240 int	tcp_log_refused;
    241 
    242 int	tcp_do_autorcvbuf = 1;
    243 int	tcp_autorcvbuf_inc = 16 * 1024;
    244 int	tcp_autorcvbuf_max = 256 * 1024;
    245 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    246 
    247 static int tcp_rst_ppslim_count = 0;
    248 static struct timeval tcp_rst_ppslim_last;
    249 static int tcp_ackdrop_ppslim_count = 0;
    250 static struct timeval tcp_ackdrop_ppslim_last;
    251 
    252 static void syn_cache_timer(void *);
    253 
    254 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    255 
    256 /* for modulo comparisons of timestamps */
    257 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    258 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    259 
    260 /*
    261  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    262  */
    263 #ifdef INET6
    264 static inline void
    265 nd6_hint(struct tcpcb *tp)
    266 {
    267 	struct rtentry *rt = NULL;
    268 
    269 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    270 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    271 		nd6_nud_hint(rt);
    272 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
    273 }
    274 #else
    275 static inline void
    276 nd6_hint(struct tcpcb *tp)
    277 {
    278 }
    279 #endif
    280 
    281 /*
    282  * Compute ACK transmission behavior.  Delay the ACK unless
    283  * we have already delayed an ACK (must send an ACK every two segments).
    284  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    285  * option is enabled.
    286  */
    287 static void
    288 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    289 {
    290 
    291 	if (tp->t_flags & TF_DELACK ||
    292 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    293 		tp->t_flags |= TF_ACKNOW;
    294 	else
    295 		TCP_SET_DELACK(tp);
    296 }
    297 
    298 static void
    299 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    300 {
    301 
    302 	/*
    303 	 * If we had a pending ICMP message that refers to data that have
    304 	 * just been acknowledged, disregard the recorded ICMP message.
    305 	 */
    306 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    307 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    308 		tp->t_flags &= ~TF_PMTUD_PEND;
    309 
    310 	/*
    311 	 * Keep track of the largest chunk of data
    312 	 * acknowledged since last PMTU update
    313 	 */
    314 	if (tp->t_pmtud_mss_acked < acked)
    315 		tp->t_pmtud_mss_acked = acked;
    316 }
    317 
    318 /*
    319  * Convert TCP protocol fields to host order for easier processing.
    320  */
    321 static void
    322 tcp_fields_to_host(struct tcphdr *th)
    323 {
    324 
    325 	NTOHL(th->th_seq);
    326 	NTOHL(th->th_ack);
    327 	NTOHS(th->th_win);
    328 	NTOHS(th->th_urp);
    329 }
    330 
    331 /*
    332  * ... and reverse the above.
    333  */
    334 static void
    335 tcp_fields_to_net(struct tcphdr *th)
    336 {
    337 
    338 	HTONL(th->th_seq);
    339 	HTONL(th->th_ack);
    340 	HTONS(th->th_win);
    341 	HTONS(th->th_urp);
    342 }
    343 
    344 #ifdef TCP_CSUM_COUNTERS
    345 #include <sys/device.h>
    346 
    347 #if defined(INET)
    348 extern struct evcnt tcp_hwcsum_ok;
    349 extern struct evcnt tcp_hwcsum_bad;
    350 extern struct evcnt tcp_hwcsum_data;
    351 extern struct evcnt tcp_swcsum;
    352 #endif /* defined(INET) */
    353 #if defined(INET6)
    354 extern struct evcnt tcp6_hwcsum_ok;
    355 extern struct evcnt tcp6_hwcsum_bad;
    356 extern struct evcnt tcp6_hwcsum_data;
    357 extern struct evcnt tcp6_swcsum;
    358 #endif /* defined(INET6) */
    359 
    360 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    361 
    362 #else
    363 
    364 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    365 
    366 #endif /* TCP_CSUM_COUNTERS */
    367 
    368 #ifdef TCP_REASS_COUNTERS
    369 #include <sys/device.h>
    370 
    371 extern struct evcnt tcp_reass_;
    372 extern struct evcnt tcp_reass_empty;
    373 extern struct evcnt tcp_reass_iteration[8];
    374 extern struct evcnt tcp_reass_prependfirst;
    375 extern struct evcnt tcp_reass_prepend;
    376 extern struct evcnt tcp_reass_insert;
    377 extern struct evcnt tcp_reass_inserttail;
    378 extern struct evcnt tcp_reass_append;
    379 extern struct evcnt tcp_reass_appendtail;
    380 extern struct evcnt tcp_reass_overlaptail;
    381 extern struct evcnt tcp_reass_overlapfront;
    382 extern struct evcnt tcp_reass_segdup;
    383 extern struct evcnt tcp_reass_fragdup;
    384 
    385 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    386 
    387 #else
    388 
    389 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    390 
    391 #endif /* TCP_REASS_COUNTERS */
    392 
    393 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    394     int *);
    395 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    396     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    397 
    398 #ifdef INET
    399 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    400 #endif
    401 #ifdef INET6
    402 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    403 #endif
    404 
    405 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    406 
    407 #if defined(MBUFTRACE)
    408 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    409 #endif /* defined(MBUFTRACE) */
    410 
    411 static struct pool tcpipqent_pool;
    412 
    413 void
    414 tcpipqent_init(void)
    415 {
    416 
    417 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    418 	    NULL, IPL_VM);
    419 }
    420 
    421 struct ipqent *
    422 tcpipqent_alloc(void)
    423 {
    424 	struct ipqent *ipqe;
    425 	int s;
    426 
    427 	s = splvm();
    428 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    429 	splx(s);
    430 
    431 	return ipqe;
    432 }
    433 
    434 void
    435 tcpipqent_free(struct ipqent *ipqe)
    436 {
    437 	int s;
    438 
    439 	s = splvm();
    440 	pool_put(&tcpipqent_pool, ipqe);
    441 	splx(s);
    442 }
    443 
    444 static int
    445 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
    446 {
    447 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    448 	struct socket *so = NULL;
    449 	int pkt_flags;
    450 	tcp_seq pkt_seq;
    451 	unsigned pkt_len;
    452 	u_long rcvpartdupbyte = 0;
    453 	u_long rcvoobyte;
    454 #ifdef TCP_REASS_COUNTERS
    455 	u_int count = 0;
    456 #endif
    457 	uint64_t *tcps;
    458 
    459 	if (tp->t_inpcb)
    460 		so = tp->t_inpcb->inp_socket;
    461 #ifdef INET6
    462 	else if (tp->t_in6pcb)
    463 		so = tp->t_in6pcb->in6p_socket;
    464 #endif
    465 
    466 	TCP_REASS_LOCK_CHECK(tp);
    467 
    468 	/*
    469 	 * Call with th==0 after become established to
    470 	 * force pre-ESTABLISHED data up to user socket.
    471 	 */
    472 	if (th == 0)
    473 		goto present;
    474 
    475 	m_claimm(m, &tcp_reass_mowner);
    476 
    477 	rcvoobyte = *tlen;
    478 	/*
    479 	 * Copy these to local variables because the tcpiphdr
    480 	 * gets munged while we are collapsing mbufs.
    481 	 */
    482 	pkt_seq = th->th_seq;
    483 	pkt_len = *tlen;
    484 	pkt_flags = th->th_flags;
    485 
    486 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    487 
    488 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    489 		/*
    490 		 * When we miss a packet, the vast majority of time we get
    491 		 * packets that follow it in order.  So optimize for that.
    492 		 */
    493 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    494 			p->ipqe_len += pkt_len;
    495 			p->ipqe_flags |= pkt_flags;
    496 			m_cat(p->ipre_mlast, m);
    497 			TRAVERSE(p->ipre_mlast);
    498 			m = NULL;
    499 			tiqe = p;
    500 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    501 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    502 			goto skip_replacement;
    503 		}
    504 		/*
    505 		 * While we're here, if the pkt is completely beyond
    506 		 * anything we have, just insert it at the tail.
    507 		 */
    508 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    509 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    510 			goto insert_it;
    511 		}
    512 	}
    513 
    514 	q = TAILQ_FIRST(&tp->segq);
    515 
    516 	if (q != NULL) {
    517 		/*
    518 		 * If this segment immediately precedes the first out-of-order
    519 		 * block, simply slap the segment in front of it and (mostly)
    520 		 * skip the complicated logic.
    521 		 */
    522 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    523 			q->ipqe_seq = pkt_seq;
    524 			q->ipqe_len += pkt_len;
    525 			q->ipqe_flags |= pkt_flags;
    526 			m_cat(m, q->ipqe_m);
    527 			q->ipqe_m = m;
    528 			q->ipre_mlast = m; /* last mbuf may have changed */
    529 			TRAVERSE(q->ipre_mlast);
    530 			tiqe = q;
    531 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    532 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    533 			goto skip_replacement;
    534 		}
    535 	} else {
    536 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    537 	}
    538 
    539 	/*
    540 	 * Find a segment which begins after this one does.
    541 	 */
    542 	for (p = NULL; q != NULL; q = nq) {
    543 		nq = TAILQ_NEXT(q, ipqe_q);
    544 #ifdef TCP_REASS_COUNTERS
    545 		count++;
    546 #endif
    547 		/*
    548 		 * If the received segment is just right after this
    549 		 * fragment, merge the two together and then check
    550 		 * for further overlaps.
    551 		 */
    552 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    553 #ifdef TCPREASS_DEBUG
    554 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    555 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    556 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    557 #endif
    558 			pkt_len += q->ipqe_len;
    559 			pkt_flags |= q->ipqe_flags;
    560 			pkt_seq = q->ipqe_seq;
    561 			m_cat(q->ipre_mlast, m);
    562 			TRAVERSE(q->ipre_mlast);
    563 			m = q->ipqe_m;
    564 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    565 			goto free_ipqe;
    566 		}
    567 		/*
    568 		 * If the received segment is completely past this
    569 		 * fragment, we need to go the next fragment.
    570 		 */
    571 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    572 			p = q;
    573 			continue;
    574 		}
    575 		/*
    576 		 * If the fragment is past the received segment,
    577 		 * it (or any following) can't be concatenated.
    578 		 */
    579 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    580 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    581 			break;
    582 		}
    583 
    584 		/*
    585 		 * We've received all the data in this segment before.
    586 		 * mark it as a duplicate and return.
    587 		 */
    588 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    589 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    590 			tcps = TCP_STAT_GETREF();
    591 			tcps[TCP_STAT_RCVDUPPACK]++;
    592 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    593 			TCP_STAT_PUTREF();
    594 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    595 			m_freem(m);
    596 			if (tiqe != NULL) {
    597 				tcpipqent_free(tiqe);
    598 			}
    599 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    600 			goto out;
    601 		}
    602 		/*
    603 		 * Received segment completely overlaps this fragment
    604 		 * so we drop the fragment (this keeps the temporal
    605 		 * ordering of segments correct).
    606 		 */
    607 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    608 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    609 			rcvpartdupbyte += q->ipqe_len;
    610 			m_freem(q->ipqe_m);
    611 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    612 			goto free_ipqe;
    613 		}
    614 		/*
    615 		 * RX'ed segment extends past the end of the
    616 		 * fragment.  Drop the overlapping bytes.  Then
    617 		 * merge the fragment and segment then treat as
    618 		 * a longer received packet.
    619 		 */
    620 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    621 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    622 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    623 #ifdef TCPREASS_DEBUG
    624 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    625 			       tp, overlap,
    626 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    627 #endif
    628 			m_adj(m, overlap);
    629 			rcvpartdupbyte += overlap;
    630 			m_cat(q->ipre_mlast, m);
    631 			TRAVERSE(q->ipre_mlast);
    632 			m = q->ipqe_m;
    633 			pkt_seq = q->ipqe_seq;
    634 			pkt_len += q->ipqe_len - overlap;
    635 			rcvoobyte -= overlap;
    636 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    637 			goto free_ipqe;
    638 		}
    639 		/*
    640 		 * RX'ed segment extends past the front of the
    641 		 * fragment.  Drop the overlapping bytes on the
    642 		 * received packet.  The packet will then be
    643 		 * contatentated with this fragment a bit later.
    644 		 */
    645 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    646 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    647 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    648 #ifdef TCPREASS_DEBUG
    649 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    650 			       tp, overlap,
    651 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    652 #endif
    653 			m_adj(m, -overlap);
    654 			pkt_len -= overlap;
    655 			rcvpartdupbyte += overlap;
    656 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    657 			rcvoobyte -= overlap;
    658 		}
    659 		/*
    660 		 * If the received segment immediates precedes this
    661 		 * fragment then tack the fragment onto this segment
    662 		 * and reinsert the data.
    663 		 */
    664 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    665 #ifdef TCPREASS_DEBUG
    666 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    667 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    668 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    669 #endif
    670 			pkt_len += q->ipqe_len;
    671 			pkt_flags |= q->ipqe_flags;
    672 			m_cat(m, q->ipqe_m);
    673 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    674 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    675 			tp->t_segqlen--;
    676 			KASSERT(tp->t_segqlen >= 0);
    677 			KASSERT(tp->t_segqlen != 0 ||
    678 			    (TAILQ_EMPTY(&tp->segq) &&
    679 			    TAILQ_EMPTY(&tp->timeq)));
    680 			if (tiqe == NULL) {
    681 				tiqe = q;
    682 			} else {
    683 				tcpipqent_free(q);
    684 			}
    685 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    686 			break;
    687 		}
    688 		/*
    689 		 * If the fragment is before the segment, remember it.
    690 		 * When this loop is terminated, p will contain the
    691 		 * pointer to fragment that is right before the received
    692 		 * segment.
    693 		 */
    694 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    695 			p = q;
    696 
    697 		continue;
    698 
    699 		/*
    700 		 * This is a common operation.  It also will allow
    701 		 * to save doing a malloc/free in most instances.
    702 		 */
    703 	  free_ipqe:
    704 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    705 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    706 		tp->t_segqlen--;
    707 		KASSERT(tp->t_segqlen >= 0);
    708 		KASSERT(tp->t_segqlen != 0 ||
    709 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    710 		if (tiqe == NULL) {
    711 			tiqe = q;
    712 		} else {
    713 			tcpipqent_free(q);
    714 		}
    715 	}
    716 
    717 #ifdef TCP_REASS_COUNTERS
    718 	if (count > 7)
    719 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    720 	else if (count > 0)
    721 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    722 #endif
    723 
    724     insert_it:
    725 
    726 	/*
    727 	 * Allocate a new queue entry since the received segment did not
    728 	 * collapse onto any other out-of-order block; thus we are allocating
    729 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    730 	 * we would be reusing it.
    731 	 * XXX If we can't, just drop the packet.  XXX
    732 	 */
    733 	if (tiqe == NULL) {
    734 		tiqe = tcpipqent_alloc();
    735 		if (tiqe == NULL) {
    736 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    737 			m_freem(m);
    738 			goto out;
    739 		}
    740 	}
    741 
    742 	/*
    743 	 * Update the counters.
    744 	 */
    745 	tp->t_rcvoopack++;
    746 	tcps = TCP_STAT_GETREF();
    747 	tcps[TCP_STAT_RCVOOPACK]++;
    748 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    749 	if (rcvpartdupbyte) {
    750 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    751 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    752 	}
    753 	TCP_STAT_PUTREF();
    754 
    755 	/*
    756 	 * Insert the new fragment queue entry into both queues.
    757 	 */
    758 	tiqe->ipqe_m = m;
    759 	tiqe->ipre_mlast = m;
    760 	tiqe->ipqe_seq = pkt_seq;
    761 	tiqe->ipqe_len = pkt_len;
    762 	tiqe->ipqe_flags = pkt_flags;
    763 	if (p == NULL) {
    764 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    765 #ifdef TCPREASS_DEBUG
    766 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    767 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    768 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    769 #endif
    770 	} else {
    771 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    772 #ifdef TCPREASS_DEBUG
    773 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    774 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    775 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    776 #endif
    777 	}
    778 	tp->t_segqlen++;
    779 
    780 skip_replacement:
    781 
    782 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    783 
    784 present:
    785 	/*
    786 	 * Present data to user, advancing rcv_nxt through
    787 	 * completed sequence space.
    788 	 */
    789 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    790 		goto out;
    791 	q = TAILQ_FIRST(&tp->segq);
    792 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    793 		goto out;
    794 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    795 		goto out;
    796 
    797 	tp->rcv_nxt += q->ipqe_len;
    798 	pkt_flags = q->ipqe_flags & TH_FIN;
    799 	nd6_hint(tp);
    800 
    801 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    802 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    803 	tp->t_segqlen--;
    804 	KASSERT(tp->t_segqlen >= 0);
    805 	KASSERT(tp->t_segqlen != 0 ||
    806 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    807 	if (so->so_state & SS_CANTRCVMORE)
    808 		m_freem(q->ipqe_m);
    809 	else
    810 		sbappendstream(&so->so_rcv, q->ipqe_m);
    811 	tcpipqent_free(q);
    812 	TCP_REASS_UNLOCK(tp);
    813 	sorwakeup(so);
    814 	return (pkt_flags);
    815 out:
    816 	TCP_REASS_UNLOCK(tp);
    817 	return (0);
    818 }
    819 
    820 #ifdef INET6
    821 int
    822 tcp6_input(struct mbuf **mp, int *offp, int proto)
    823 {
    824 	struct mbuf *m = *mp;
    825 
    826 	/*
    827 	 * draft-itojun-ipv6-tcp-to-anycast
    828 	 * better place to put this in?
    829 	 */
    830 	if (m->m_flags & M_ANYCAST6) {
    831 		struct ip6_hdr *ip6;
    832 		if (m->m_len < sizeof(struct ip6_hdr)) {
    833 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    834 				TCP_STATINC(TCP_STAT_RCVSHORT);
    835 				return IPPROTO_DONE;
    836 			}
    837 		}
    838 		ip6 = mtod(m, struct ip6_hdr *);
    839 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    840 		    (char *)&ip6->ip6_dst - (char *)ip6);
    841 		return IPPROTO_DONE;
    842 	}
    843 
    844 	tcp_input(m, *offp, proto);
    845 	return IPPROTO_DONE;
    846 }
    847 #endif
    848 
    849 #ifdef INET
    850 static void
    851 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    852 {
    853 	char src[INET_ADDRSTRLEN];
    854 	char dst[INET_ADDRSTRLEN];
    855 
    856 	if (ip) {
    857 		in_print(src, sizeof(src), &ip->ip_src);
    858 		in_print(dst, sizeof(dst), &ip->ip_dst);
    859 	}
    860 	else {
    861 		strlcpy(src, "(unknown)", sizeof(src));
    862 		strlcpy(dst, "(unknown)", sizeof(dst));
    863 	}
    864 	log(LOG_INFO,
    865 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    866 	    dst, ntohs(th->th_dport),
    867 	    src, ntohs(th->th_sport));
    868 }
    869 #endif
    870 
    871 #ifdef INET6
    872 static void
    873 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    874 {
    875 	char src[INET6_ADDRSTRLEN];
    876 	char dst[INET6_ADDRSTRLEN];
    877 
    878 	if (ip6) {
    879 		in6_print(src, sizeof(src), &ip6->ip6_src);
    880 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    881 	}
    882 	else {
    883 		strlcpy(src, "(unknown v6)", sizeof(src));
    884 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    885 	}
    886 	log(LOG_INFO,
    887 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    888 	    dst, ntohs(th->th_dport),
    889 	    src, ntohs(th->th_sport));
    890 }
    891 #endif
    892 
    893 /*
    894  * Checksum extended TCP header and data.
    895  */
    896 int
    897 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    898     int toff, int off, int tlen)
    899 {
    900 	struct ifnet *rcvif;
    901 	int s;
    902 
    903 	/*
    904 	 * XXX it's better to record and check if this mbuf is
    905 	 * already checked.
    906 	 */
    907 
    908 	rcvif = m_get_rcvif(m, &s);
    909 	if (__predict_false(rcvif == NULL))
    910 		goto badcsum; /* XXX */
    911 
    912 	switch (af) {
    913 #ifdef INET
    914 	case AF_INET:
    915 		switch (m->m_pkthdr.csum_flags &
    916 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    917 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    918 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    920 			goto badcsum;
    921 
    922 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    923 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    924 
    925 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    926 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    927 				const struct ip *ip =
    928 				    mtod(m, const struct ip *);
    929 
    930 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    931 				    ip->ip_dst.s_addr,
    932 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    933 			}
    934 			if ((hw_csum ^ 0xffff) != 0)
    935 				goto badcsum;
    936 			break;
    937 		}
    938 
    939 		case M_CSUM_TCPv4:
    940 			/* Checksum was okay. */
    941 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    942 			break;
    943 
    944 		default:
    945 			/*
    946 			 * Must compute it ourselves.  Maybe skip checksum
    947 			 * on loopback interfaces.
    948 			 */
    949 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    950 					   tcp_do_loopback_cksum)) {
    951 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    952 				if (in4_cksum(m, IPPROTO_TCP, toff,
    953 					      tlen + off) != 0)
    954 					goto badcsum;
    955 			}
    956 			break;
    957 		}
    958 		break;
    959 #endif /* INET4 */
    960 
    961 #ifdef INET6
    962 	case AF_INET6:
    963 		switch (m->m_pkthdr.csum_flags &
    964 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    965 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    966 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    967 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    968 			goto badcsum;
    969 
    970 #if 0 /* notyet */
    971 		case M_CSUM_TCPv6|M_CSUM_DATA:
    972 #endif
    973 
    974 		case M_CSUM_TCPv6:
    975 			/* Checksum was okay. */
    976 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    977 			break;
    978 
    979 		default:
    980 			/*
    981 			 * Must compute it ourselves.  Maybe skip checksum
    982 			 * on loopback interfaces.
    983 			 */
    984 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    985 			    tcp_do_loopback_cksum)) {
    986 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    987 				if (in6_cksum(m, IPPROTO_TCP, toff,
    988 				    tlen + off) != 0)
    989 					goto badcsum;
    990 			}
    991 		}
    992 		break;
    993 #endif /* INET6 */
    994 	}
    995 	m_put_rcvif(rcvif, &s);
    996 
    997 	return 0;
    998 
    999 badcsum:
   1000 	m_put_rcvif(rcvif, &s);
   1001 	TCP_STATINC(TCP_STAT_RCVBADSUM);
   1002 	return -1;
   1003 }
   1004 
   1005 /* When a packet arrives addressed to a vestigial tcpbp, we
   1006  * nevertheless have to respond to it per the spec.
   1007  */
   1008 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
   1009 			  struct mbuf *m, int tlen, int multicast)
   1010 {
   1011 	int		tiflags;
   1012 	int		todrop;
   1013 	uint32_t	t_flags = 0;
   1014 	uint64_t	*tcps;
   1015 
   1016 	tiflags = th->th_flags;
   1017 	todrop  = vp->rcv_nxt - th->th_seq;
   1018 
   1019 	if (todrop > 0) {
   1020 		if (tiflags & TH_SYN) {
   1021 			tiflags &= ~TH_SYN;
   1022 			++th->th_seq;
   1023 			if (th->th_urp > 1)
   1024 				--th->th_urp;
   1025 			else {
   1026 				tiflags &= ~TH_URG;
   1027 				th->th_urp = 0;
   1028 			}
   1029 			--todrop;
   1030 		}
   1031 		if (todrop > tlen ||
   1032 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1033 			/*
   1034 			 * Any valid FIN or RST must be to the left of the
   1035 			 * window.  At this point the FIN or RST must be a
   1036 			 * duplicate or out of sequence; drop it.
   1037 			 */
   1038 			if (tiflags & TH_RST)
   1039 				goto drop;
   1040 			tiflags &= ~(TH_FIN|TH_RST);
   1041 			/*
   1042 			 * Send an ACK to resynchronize and drop any data.
   1043 			 * But keep on processing for RST or ACK.
   1044 			 */
   1045 			t_flags |= TF_ACKNOW;
   1046 			todrop = tlen;
   1047 			tcps = TCP_STAT_GETREF();
   1048 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1049 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1050 			TCP_STAT_PUTREF();
   1051 		} else if ((tiflags & TH_RST)
   1052 			   && th->th_seq != vp->rcv_nxt) {
   1053 			/*
   1054 			 * Test for reset before adjusting the sequence
   1055 			 * number for overlapping data.
   1056 			 */
   1057 			goto dropafterack_ratelim;
   1058 		} else {
   1059 			tcps = TCP_STAT_GETREF();
   1060 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1061 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1062 			TCP_STAT_PUTREF();
   1063 		}
   1064 
   1065 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1066 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1067 
   1068 		th->th_seq += todrop;
   1069 		tlen -= todrop;
   1070 
   1071 		if (th->th_urp > todrop)
   1072 			th->th_urp -= todrop;
   1073 		else {
   1074 			tiflags &= ~TH_URG;
   1075 			th->th_urp = 0;
   1076 		}
   1077 	}
   1078 
   1079 	/*
   1080 	 * If new data are received on a connection after the
   1081 	 * user processes are gone, then RST the other end.
   1082 	 */
   1083 	if (tlen) {
   1084 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1085 		goto dropwithreset;
   1086 	}
   1087 
   1088 	/*
   1089 	 * If segment ends after window, drop trailing data
   1090 	 * (and PUSH and FIN); if nothing left, just ACK.
   1091 	 */
   1092 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
   1093 
   1094 	if (todrop > 0) {
   1095 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1096 		if (todrop >= tlen) {
   1097 			/*
   1098 			 * The segment actually starts after the window.
   1099 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1100 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1101 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1102 			 */
   1103 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1104 			/*
   1105 			 * If a new connection request is received
   1106 			 * while in TIME_WAIT, drop the old connection
   1107 			 * and start over if the sequence numbers
   1108 			 * are above the previous ones.
   1109 			 */
   1110 			if ((tiflags & TH_SYN)
   1111 			    && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1112 				/* We only support this in the !NOFDREF case, which
   1113 				 * is to say: not here.
   1114 				 */
   1115 				goto dropwithreset;
   1116 			}
   1117 			/*
   1118 			 * If window is closed can only take segments at
   1119 			 * window edge, and have to drop data and PUSH from
   1120 			 * incoming segments.  Continue processing, but
   1121 			 * remember to ack.  Otherwise, drop segment
   1122 			 * and (if not RST) ack.
   1123 			 */
   1124 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1125 				t_flags |= TF_ACKNOW;
   1126 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1127 			} else
   1128 				goto dropafterack;
   1129 		} else
   1130 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1131 		m_adj(m, -todrop);
   1132 		tlen -= todrop;
   1133 		tiflags &= ~(TH_PUSH|TH_FIN);
   1134 	}
   1135 
   1136 	if (tiflags & TH_RST) {
   1137 		if (th->th_seq != vp->rcv_nxt)
   1138 			goto dropafterack_ratelim;
   1139 
   1140 		vtw_del(vp->ctl, vp->vtw);
   1141 		goto drop;
   1142 	}
   1143 
   1144 	/*
   1145 	 * If the ACK bit is off we drop the segment and return.
   1146 	 */
   1147 	if ((tiflags & TH_ACK) == 0) {
   1148 		if (t_flags & TF_ACKNOW)
   1149 			goto dropafterack;
   1150 		else
   1151 			goto drop;
   1152 	}
   1153 
   1154 	/*
   1155 	 * In TIME_WAIT state the only thing that should arrive
   1156 	 * is a retransmission of the remote FIN.  Acknowledge
   1157 	 * it and restart the finack timer.
   1158 	 */
   1159 	vtw_restart(vp);
   1160 	goto dropafterack;
   1161 
   1162 dropafterack:
   1163 	/*
   1164 	 * Generate an ACK dropping incoming segment if it occupies
   1165 	 * sequence space, where the ACK reflects our state.
   1166 	 */
   1167 	if (tiflags & TH_RST)
   1168 		goto drop;
   1169 	goto dropafterack2;
   1170 
   1171 dropafterack_ratelim:
   1172 	/*
   1173 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1174 	 */
   1175 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1176 			 tcp_ackdrop_ppslim) == 0) {
   1177 		/* XXX stat */
   1178 		goto drop;
   1179 	}
   1180 	/* ...fall into dropafterack2... */
   1181 
   1182 dropafterack2:
   1183 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
   1184 			  TH_ACK);
   1185 	return;
   1186 
   1187 dropwithreset:
   1188 	/*
   1189 	 * Generate a RST, dropping incoming segment.
   1190 	 * Make ACK acceptable to originator of segment.
   1191 	 */
   1192 	if (tiflags & TH_RST)
   1193 		goto drop;
   1194 
   1195 	if (tiflags & TH_ACK)
   1196 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1197 	else {
   1198 		if (tiflags & TH_SYN)
   1199 			++tlen;
   1200 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1201 				  TH_RST|TH_ACK);
   1202 	}
   1203 	return;
   1204 drop:
   1205 	m_freem(m);
   1206 }
   1207 
   1208 /*
   1209  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1210  */
   1211 void
   1212 tcp_input(struct mbuf *m, ...)
   1213 {
   1214 	struct tcphdr *th;
   1215 	struct ip *ip;
   1216 	struct inpcb *inp;
   1217 #ifdef INET6
   1218 	struct ip6_hdr *ip6;
   1219 	struct in6pcb *in6p;
   1220 #endif
   1221 	u_int8_t *optp = NULL;
   1222 	int optlen = 0;
   1223 	int len, tlen, toff, hdroptlen = 0;
   1224 	struct tcpcb *tp = NULL;
   1225 	int tiflags;
   1226 	struct socket *so = NULL;
   1227 	int todrop, acked, ourfinisacked, needoutput = 0;
   1228 	bool dupseg;
   1229 #ifdef TCP_DEBUG
   1230 	short ostate = 0;
   1231 #endif
   1232 	u_long tiwin;
   1233 	struct tcp_opt_info opti;
   1234 	int off, iphlen;
   1235 	va_list ap;
   1236 	int af;		/* af on the wire */
   1237 	struct mbuf *tcp_saveti = NULL;
   1238 	uint32_t ts_rtt;
   1239 	uint8_t iptos;
   1240 	uint64_t *tcps;
   1241 	vestigial_inpcb_t vestige;
   1242 
   1243 	vestige.valid = 0;
   1244 
   1245 	MCLAIM(m, &tcp_rx_mowner);
   1246 	va_start(ap, m);
   1247 	toff = va_arg(ap, int);
   1248 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1249 	va_end(ap);
   1250 
   1251 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1252 
   1253 	memset(&opti, 0, sizeof(opti));
   1254 	opti.ts_present = 0;
   1255 	opti.maxseg = 0;
   1256 
   1257 	/*
   1258 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1259 	 *
   1260 	 * TCP is, by definition, unicast, so we reject all
   1261 	 * multicast outright.
   1262 	 *
   1263 	 * Note, there are additional src/dst address checks in
   1264 	 * the AF-specific code below.
   1265 	 */
   1266 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1267 		/* XXX stat */
   1268 		goto drop;
   1269 	}
   1270 #ifdef INET6
   1271 	if (m->m_flags & M_ANYCAST6) {
   1272 		/* XXX stat */
   1273 		goto drop;
   1274 	}
   1275 #endif
   1276 
   1277 	IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
   1278 	if (th == NULL) {
   1279 		TCP_STATINC(TCP_STAT_RCVSHORT);
   1280 		return;
   1281 	}
   1282 
   1283 	/*
   1284 	 * Get IP and TCP header.
   1285 	 * Note: IP leaves IP header in first mbuf.
   1286 	 */
   1287 	ip = mtod(m, struct ip *);
   1288 	switch (ip->ip_v) {
   1289 #ifdef INET
   1290 	case 4:
   1291 #ifdef INET6
   1292 		ip6 = NULL;
   1293 #endif
   1294 		af = AF_INET;
   1295 		iphlen = sizeof(struct ip);
   1296 
   1297 		/* We do the checksum after PCB lookup... */
   1298 		len = ntohs(ip->ip_len);
   1299 		tlen = len - toff;
   1300 		iptos = ip->ip_tos;
   1301 		break;
   1302 #endif
   1303 #ifdef INET6
   1304 	case 6:
   1305 		ip = NULL;
   1306 		iphlen = sizeof(struct ip6_hdr);
   1307 		af = AF_INET6;
   1308 		ip6 = mtod(m, struct ip6_hdr *);
   1309 
   1310 		/*
   1311 		 * Be proactive about unspecified IPv6 address in source.
   1312 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1313 		 * unspecified IPv6 address can be used to confuse us.
   1314 		 *
   1315 		 * Note that packets with unspecified IPv6 destination is
   1316 		 * already dropped in ip6_input.
   1317 		 */
   1318 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1319 			/* XXX stat */
   1320 			goto drop;
   1321 		}
   1322 
   1323 		/*
   1324 		 * Make sure destination address is not multicast.
   1325 		 * Source address checked in ip6_input().
   1326 		 */
   1327 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1328 			/* XXX stat */
   1329 			goto drop;
   1330 		}
   1331 
   1332 		/* We do the checksum after PCB lookup... */
   1333 		len = m->m_pkthdr.len;
   1334 		tlen = len - toff;
   1335 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1336 		break;
   1337 #endif
   1338 	default:
   1339 		m_freem(m);
   1340 		return;
   1341 	}
   1342 
   1343 	/*
   1344 	 * Enforce alignment requirements that are violated in
   1345 	 * some cases, see kern/50766 for details.
   1346 	 */
   1347 	if (TCP_HDR_ALIGNED_P(th) == 0) {
   1348 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
   1349 		if (m == NULL) {
   1350 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1351 			return;
   1352 		}
   1353 		ip = mtod(m, struct ip *);
   1354 #ifdef INET6
   1355 		ip6 = mtod(m, struct ip6_hdr *);
   1356 #endif
   1357 		th = (struct tcphdr *)(mtod(m, char *) + toff);
   1358 	}
   1359 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1360 
   1361 	/*
   1362 	 * Check that TCP offset makes sense, pull out TCP options and
   1363 	 * adjust length.
   1364 	 */
   1365 	off = th->th_off << 2;
   1366 	if (off < sizeof(struct tcphdr) || off > tlen) {
   1367 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1368 		goto drop;
   1369 	}
   1370 	tlen -= off;
   1371 
   1372 	if (off > sizeof(struct tcphdr)) {
   1373 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1374 		if (th == NULL) {
   1375 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1376 			return;
   1377 		}
   1378 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1379 		optlen = off - sizeof (struct tcphdr);
   1380 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1381 		/*
   1382 		 * Do quick retrieval of timestamp options ("options
   1383 		 * prediction?").  If timestamp is the only option and it's
   1384 		 * formatted as recommended in RFC 1323 appendix A, we
   1385 		 * quickly get the values now and not bother calling
   1386 		 * tcp_dooptions(), etc.
   1387 		 */
   1388 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1389 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1390 			optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1391 		     *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1392 		     (th->th_flags & TH_SYN) == 0) {
   1393 			opti.ts_present = 1;
   1394 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1395 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1396 			optp = NULL;	/* we've parsed the options */
   1397 		}
   1398 	}
   1399 	tiflags = th->th_flags;
   1400 
   1401 	/*
   1402 	 * Checksum extended TCP header and data
   1403 	 */
   1404 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1405 		goto badcsum;
   1406 
   1407 	/*
   1408 	 * Locate pcb for segment.
   1409 	 */
   1410 findpcb:
   1411 	inp = NULL;
   1412 #ifdef INET6
   1413 	in6p = NULL;
   1414 #endif
   1415 	switch (af) {
   1416 #ifdef INET
   1417 	case AF_INET:
   1418 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1419 		    ip->ip_dst, th->th_dport, &vestige);
   1420 		if (inp == 0 && !vestige.valid) {
   1421 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1422 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
   1423 			    th->th_dport);
   1424 		}
   1425 #ifdef INET6
   1426 		if (inp == 0 && !vestige.valid) {
   1427 			struct in6_addr s, d;
   1428 
   1429 			/* mapped addr case */
   1430 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1431 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1432 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1433 			    th->th_sport, &d, th->th_dport, 0, &vestige);
   1434 			if (in6p == 0 && !vestige.valid) {
   1435 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1436 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1437 				    th->th_dport, 0);
   1438 			}
   1439 		}
   1440 #endif
   1441 #ifndef INET6
   1442 		if (inp == 0 && !vestige.valid)
   1443 #else
   1444 		if (inp == 0 && in6p == 0 && !vestige.valid)
   1445 #endif
   1446 		{
   1447 			TCP_STATINC(TCP_STAT_NOPORT);
   1448 			if (tcp_log_refused &&
   1449 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1450 				tcp4_log_refused(ip, th);
   1451 			}
   1452 			tcp_fields_to_host(th);
   1453 			goto dropwithreset_ratelim;
   1454 		}
   1455 #if defined(IPSEC)
   1456 		if (ipsec_used) {
   1457 			if (inp &&
   1458 			    (inp->inp_socket->so_options & SO_ACCEPTCONN) == 0
   1459 			    && ipsec4_in_reject(m, inp)) {
   1460 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1461 				goto drop;
   1462 			}
   1463 #ifdef INET6
   1464 			else if (in6p &&
   1465 			    (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1466 			    && ipsec6_in_reject(m, in6p)) {
   1467 				IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1468 				goto drop;
   1469 			}
   1470 #endif
   1471 		}
   1472 #endif /*IPSEC*/
   1473 		break;
   1474 #endif /*INET*/
   1475 #ifdef INET6
   1476 	case AF_INET6:
   1477 	    {
   1478 		int faith;
   1479 
   1480 #if defined(NFAITH) && NFAITH > 0
   1481 		faith = faithprefix(&ip6->ip6_dst);
   1482 #else
   1483 		faith = 0;
   1484 #endif
   1485 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1486 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1487 		if (!in6p && !vestige.valid) {
   1488 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1489 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1490 			    th->th_dport, faith);
   1491 		}
   1492 		if (!in6p && !vestige.valid) {
   1493 			TCP_STATINC(TCP_STAT_NOPORT);
   1494 			if (tcp_log_refused &&
   1495 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1496 				tcp6_log_refused(ip6, th);
   1497 			}
   1498 			tcp_fields_to_host(th);
   1499 			goto dropwithreset_ratelim;
   1500 		}
   1501 #if defined(IPSEC)
   1502 		if (ipsec_used && in6p
   1503 		    && (in6p->in6p_socket->so_options & SO_ACCEPTCONN) == 0
   1504 		    && ipsec6_in_reject(m, in6p)) {
   1505 			IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1506 			goto drop;
   1507 		}
   1508 #endif /*IPSEC*/
   1509 		break;
   1510 	    }
   1511 #endif
   1512 	}
   1513 
   1514 	/*
   1515 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1516 	 * all data in the incoming segment is discarded.
   1517 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1518 	 * but should either do a listen or a connect soon.
   1519 	 */
   1520 	tp = NULL;
   1521 	so = NULL;
   1522 	if (inp) {
   1523 		/* Check the minimum TTL for socket. */
   1524 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1525 			goto drop;
   1526 
   1527 		tp = intotcpcb(inp);
   1528 		so = inp->inp_socket;
   1529 	}
   1530 #ifdef INET6
   1531 	else if (in6p) {
   1532 		tp = in6totcpcb(in6p);
   1533 		so = in6p->in6p_socket;
   1534 	}
   1535 #endif
   1536 	else if (vestige.valid) {
   1537 		int mc = 0;
   1538 
   1539 		/* We do not support the resurrection of vtw tcpcps. */
   1540 		if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1541 			goto badcsum;
   1542 
   1543 		switch (af) {
   1544 #ifdef INET6
   1545 		case AF_INET6:
   1546 			mc = IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst);
   1547 			break;
   1548 #endif
   1549 
   1550 		case AF_INET:
   1551 			mc = (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1552 			    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)));
   1553 			break;
   1554 		}
   1555 
   1556 		tcp_fields_to_host(th);
   1557 		tcp_vtw_input(th, &vestige, m, tlen, mc);
   1558 		m = NULL;
   1559 		goto drop;
   1560 	}
   1561 
   1562 	if (tp == NULL) {
   1563 		tcp_fields_to_host(th);
   1564 		goto dropwithreset_ratelim;
   1565 	}
   1566 	if (tp->t_state == TCPS_CLOSED)
   1567 		goto drop;
   1568 
   1569 	KASSERT(so->so_lock == softnet_lock);
   1570 	KASSERT(solocked(so));
   1571 
   1572 	tcp_fields_to_host(th);
   1573 
   1574 	/* Unscale the window into a 32-bit value. */
   1575 	if ((tiflags & TH_SYN) == 0)
   1576 		tiwin = th->th_win << tp->snd_scale;
   1577 	else
   1578 		tiwin = th->th_win;
   1579 
   1580 #ifdef INET6
   1581 	/* save packet options if user wanted */
   1582 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1583 		if (in6p->in6p_options) {
   1584 			m_freem(in6p->in6p_options);
   1585 			in6p->in6p_options = 0;
   1586 		}
   1587 		KASSERT(ip6 != NULL);
   1588 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1589 	}
   1590 #endif
   1591 
   1592 	if (so->so_options & SO_DEBUG) {
   1593 #ifdef TCP_DEBUG
   1594 		ostate = tp->t_state;
   1595 #endif
   1596 
   1597 		tcp_saveti = NULL;
   1598 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1599 			goto nosave;
   1600 
   1601 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1602 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1603 			if (!tcp_saveti)
   1604 				goto nosave;
   1605 		} else {
   1606 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1607 			if (!tcp_saveti)
   1608 				goto nosave;
   1609 			MCLAIM(m, &tcp_mowner);
   1610 			tcp_saveti->m_len = iphlen;
   1611 			m_copydata(m, 0, iphlen,
   1612 			    mtod(tcp_saveti, void *));
   1613 		}
   1614 
   1615 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1616 			m_freem(tcp_saveti);
   1617 			tcp_saveti = NULL;
   1618 		} else {
   1619 			tcp_saveti->m_len += sizeof(struct tcphdr);
   1620 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1621 			    sizeof(struct tcphdr));
   1622 		}
   1623 nosave:;
   1624 	}
   1625 
   1626 	if (so->so_options & SO_ACCEPTCONN) {
   1627 		union syn_cache_sa src;
   1628 		union syn_cache_sa dst;
   1629 
   1630 		memset(&src, 0, sizeof(src));
   1631 		memset(&dst, 0, sizeof(dst));
   1632 		switch (af) {
   1633 #ifdef INET
   1634 		case AF_INET:
   1635 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1636 			src.sin.sin_family = AF_INET;
   1637 			src.sin.sin_addr = ip->ip_src;
   1638 			src.sin.sin_port = th->th_sport;
   1639 
   1640 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1641 			dst.sin.sin_family = AF_INET;
   1642 			dst.sin.sin_addr = ip->ip_dst;
   1643 			dst.sin.sin_port = th->th_dport;
   1644 			break;
   1645 #endif
   1646 #ifdef INET6
   1647 		case AF_INET6:
   1648 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1649 			src.sin6.sin6_family = AF_INET6;
   1650 			src.sin6.sin6_addr = ip6->ip6_src;
   1651 			src.sin6.sin6_port = th->th_sport;
   1652 
   1653 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1654 			dst.sin6.sin6_family = AF_INET6;
   1655 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1656 			dst.sin6.sin6_port = th->th_dport;
   1657 			break;
   1658 #endif /* INET6 */
   1659 		default:
   1660 			goto badsyn;	/*sanity*/
   1661 		}
   1662 
   1663 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1664 			if (tiflags & TH_RST) {
   1665 				syn_cache_reset(&src.sa, &dst.sa, th);
   1666 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1667 			    (TH_ACK|TH_SYN)) {
   1668 				/*
   1669 				 * Received a SYN,ACK.  This should
   1670 				 * never happen while we are in
   1671 				 * LISTEN.  Send an RST.
   1672 				 */
   1673 				goto badsyn;
   1674 			} else if (tiflags & TH_ACK) {
   1675 				so = syn_cache_get(&src.sa, &dst.sa,
   1676 				    th, toff, tlen, so, m);
   1677 				if (so == NULL) {
   1678 					/*
   1679 					 * We don't have a SYN for this ACK;
   1680 					 * send an RST.
   1681 					 */
   1682 					goto badsyn;
   1683 				} else if (so == (struct socket *)(-1)) {
   1684 					/*
   1685 					 * We were unable to create the
   1686 					 * connection. If the 3-way handshake
   1687 					 * was completed, and RST has been
   1688 					 * sent to the peer. Since the mbuf
   1689 					 * might be in use for the reply, do
   1690 					 * not free it.
   1691 					 */
   1692 					m = NULL;
   1693 				} else {
   1694 					/*
   1695 					 * We have created a full-blown
   1696 					 * connection.
   1697 					 */
   1698 					tp = NULL;
   1699 					inp = NULL;
   1700 #ifdef INET6
   1701 					in6p = NULL;
   1702 #endif
   1703 					switch (so->so_proto->pr_domain->dom_family) {
   1704 #ifdef INET
   1705 					case AF_INET:
   1706 						inp = sotoinpcb(so);
   1707 						tp = intotcpcb(inp);
   1708 						break;
   1709 #endif
   1710 #ifdef INET6
   1711 					case AF_INET6:
   1712 						in6p = sotoin6pcb(so);
   1713 						tp = in6totcpcb(in6p);
   1714 						break;
   1715 #endif
   1716 					}
   1717 					if (tp == NULL)
   1718 						goto badsyn;	/*XXX*/
   1719 					tiwin <<= tp->snd_scale;
   1720 					goto after_listen;
   1721 				}
   1722 			} else {
   1723 				/*
   1724 				 * None of RST, SYN or ACK was set.
   1725 				 * This is an invalid packet for a
   1726 				 * TCB in LISTEN state.  Send a RST.
   1727 				 */
   1728 				goto badsyn;
   1729 			}
   1730 		} else {
   1731 			/*
   1732 			 * Received a SYN.
   1733 			 */
   1734 
   1735 			switch (af) {
   1736 #ifdef INET6
   1737 			case AF_INET6:
   1738 				if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   1739 					goto drop;
   1740 				break;
   1741 #endif /* INET6 */
   1742 			case AF_INET:
   1743 				if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1744 				    in_broadcast(ip->ip_dst,
   1745 				                 m_get_rcvif_NOMPSAFE(m)))
   1746 					goto drop;
   1747 				break;
   1748 			}
   1749 
   1750 #ifdef INET6
   1751 			/*
   1752 			 * If deprecated address is forbidden, we do
   1753 			 * not accept SYN to deprecated interface
   1754 			 * address to prevent any new inbound
   1755 			 * connection from getting established.
   1756 			 * When we do not accept SYN, we send a TCP
   1757 			 * RST, with deprecated source address (instead
   1758 			 * of dropping it).  We compromise it as it is
   1759 			 * much better for peer to send a RST, and
   1760 			 * RST will be the final packet for the
   1761 			 * exchange.
   1762 			 *
   1763 			 * If we do not forbid deprecated addresses, we
   1764 			 * accept the SYN packet.  RFC2462 does not
   1765 			 * suggest dropping SYN in this case.
   1766 			 * If we decipher RFC2462 5.5.4, it says like
   1767 			 * this:
   1768 			 * 1. use of deprecated addr with existing
   1769 			 *    communication is okay - "SHOULD continue
   1770 			 *    to be used"
   1771 			 * 2. use of it with new communication:
   1772 			 *   (2a) "SHOULD NOT be used if alternate
   1773 			 *        address with sufficient scope is
   1774 			 *        available"
   1775 			 *   (2b) nothing mentioned otherwise.
   1776 			 * Here we fall into (2b) case as we have no
   1777 			 * choice in our source address selection - we
   1778 			 * must obey the peer.
   1779 			 *
   1780 			 * The wording in RFC2462 is confusing, and
   1781 			 * there are multiple description text for
   1782 			 * deprecated address handling - worse, they
   1783 			 * are not exactly the same.  I believe 5.5.4
   1784 			 * is the best one, so we follow 5.5.4.
   1785 			 */
   1786 			if (af == AF_INET6 && !ip6_use_deprecated) {
   1787 				struct in6_ifaddr *ia6;
   1788 				int s;
   1789 				struct ifnet *rcvif = m_get_rcvif(m, &s);
   1790 				if (rcvif == NULL)
   1791 					goto dropwithreset; /* XXX */
   1792 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1793 				    &ip6->ip6_dst)) &&
   1794 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1795 					tp = NULL;
   1796 					m_put_rcvif(rcvif, &s);
   1797 					goto dropwithreset;
   1798 				}
   1799 				m_put_rcvif(rcvif, &s);
   1800 			}
   1801 #endif
   1802 
   1803 #if defined(IPSEC)
   1804 			if (ipsec_used) {
   1805 				switch (af) {
   1806 #ifdef INET
   1807 				case AF_INET:
   1808 					/*
   1809 					 * inp can be NULL when receiving an
   1810 					 * IPv4 packet on an IPv4-mapped IPv6
   1811 					 * address.
   1812 					 */
   1813 					KASSERT(inp == NULL ||
   1814 					    sotoinpcb(so) == inp);
   1815 					if (!ipsec4_in_reject(m, inp))
   1816 						break;
   1817 					IPSEC_STATINC(IPSEC_STAT_IN_POLVIO);
   1818 					tp = NULL;
   1819 					goto dropwithreset;
   1820 #endif
   1821 #ifdef INET6
   1822 				case AF_INET6:
   1823 					KASSERT(sotoin6pcb(so) == in6p);
   1824 					if (!ipsec6_in_reject(m, in6p))
   1825 						break;
   1826 					IPSEC6_STATINC(IPSEC_STAT_IN_POLVIO);
   1827 					tp = NULL;
   1828 					goto dropwithreset;
   1829 #endif /*INET6*/
   1830 				}
   1831 			}
   1832 #endif /*IPSEC*/
   1833 
   1834 			/*
   1835 			 * LISTEN socket received a SYN from itself? This
   1836 			 * can't possibly be valid; drop the packet.
   1837 			 */
   1838 			if (th->th_sport == th->th_dport) {
   1839 				int i;
   1840 
   1841 				switch (af) {
   1842 #ifdef INET
   1843 				case AF_INET:
   1844 					i = in_hosteq(ip->ip_src, ip->ip_dst);
   1845 					break;
   1846 #endif
   1847 #ifdef INET6
   1848 				case AF_INET6:
   1849 					i = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
   1850 					    &ip6->ip6_dst);
   1851 					break;
   1852 #endif
   1853 				default:
   1854 					i = 1;
   1855 				}
   1856 				if (i) {
   1857 					TCP_STATINC(TCP_STAT_BADSYN);
   1858 					goto drop;
   1859 				}
   1860 			}
   1861 
   1862 			/*
   1863 			 * SYN looks ok; create compressed TCP
   1864 			 * state for it.
   1865 			 */
   1866 			if (so->so_qlen <= so->so_qlimit &&
   1867 			    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1868 			    so, m, optp, optlen, &opti))
   1869 				m = NULL;
   1870 		}
   1871 
   1872 		goto drop;
   1873 	}
   1874 
   1875 after_listen:
   1876 	/*
   1877 	 * Should not happen now that all embryonic connections
   1878 	 * are handled with compressed state.
   1879 	 */
   1880 	KASSERT(tp->t_state != TCPS_LISTEN);
   1881 
   1882 	/*
   1883 	 * Segment received on connection.
   1884 	 * Reset idle time and keep-alive timer.
   1885 	 */
   1886 	tp->t_rcvtime = tcp_now;
   1887 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1888 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1889 
   1890 	/*
   1891 	 * Process options.
   1892 	 */
   1893 #ifdef TCP_SIGNATURE
   1894 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1895 #else
   1896 	if (optp)
   1897 #endif
   1898 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1899 			goto drop;
   1900 
   1901 	if (TCP_SACK_ENABLED(tp)) {
   1902 		tcp_del_sackholes(tp, th);
   1903 	}
   1904 
   1905 	if (TCP_ECN_ALLOWED(tp)) {
   1906 		if (tiflags & TH_CWR) {
   1907 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1908 		}
   1909 		switch (iptos & IPTOS_ECN_MASK) {
   1910 		case IPTOS_ECN_CE:
   1911 			tp->t_flags |= TF_ECN_SND_ECE;
   1912 			TCP_STATINC(TCP_STAT_ECN_CE);
   1913 			break;
   1914 		case IPTOS_ECN_ECT0:
   1915 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1916 			break;
   1917 		case IPTOS_ECN_ECT1:
   1918 			/* XXX: ignore for now -- rpaulo */
   1919 			break;
   1920 		}
   1921 		/*
   1922 		 * Congestion experienced.
   1923 		 * Ignore if we are already trying to recover.
   1924 		 */
   1925 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1926 			tp->t_congctl->cong_exp(tp);
   1927 	}
   1928 
   1929 	if (opti.ts_present && opti.ts_ecr) {
   1930 		/*
   1931 		 * Calculate the RTT from the returned time stamp and the
   1932 		 * connection's time base.  If the time stamp is later than
   1933 		 * the current time, or is extremely old, fall back to non-1323
   1934 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1935 		 * at the same time.
   1936 		 *
   1937 		 * Note that ts_rtt is in units of slow ticks (500
   1938 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1939 		 * observed values will have large quantization noise.
   1940 		 * Our smoothed RTT is then the fraction of observed
   1941 		 * samples that are 1 tick instead of 0 (times 500
   1942 		 * ms).
   1943 		 *
   1944 		 * ts_rtt is increased by 1 to denote a valid sample,
   1945 		 * with 0 indicating an invalid measurement.  This
   1946 		 * extra 1 must be removed when ts_rtt is used, or
   1947 		 * else an an erroneous extra 500 ms will result.
   1948 		 */
   1949 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1950 		if (ts_rtt > TCP_PAWS_IDLE)
   1951 			ts_rtt = 0;
   1952 	} else {
   1953 		ts_rtt = 0;
   1954 	}
   1955 
   1956 	/*
   1957 	 * Header prediction: check for the two common cases
   1958 	 * of a uni-directional data xfer.  If the packet has
   1959 	 * no control flags, is in-sequence, the window didn't
   1960 	 * change and we're not retransmitting, it's a
   1961 	 * candidate.  If the length is zero and the ack moved
   1962 	 * forward, we're the sender side of the xfer.  Just
   1963 	 * free the data acked & wake any higher level process
   1964 	 * that was blocked waiting for space.  If the length
   1965 	 * is non-zero and the ack didn't move, we're the
   1966 	 * receiver side.  If we're getting packets in-order
   1967 	 * (the reassembly queue is empty), add the data to
   1968 	 * the socket buffer and note that we need a delayed ack.
   1969 	 */
   1970 	if (tp->t_state == TCPS_ESTABLISHED &&
   1971 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1972 	        == TH_ACK &&
   1973 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1974 	    th->th_seq == tp->rcv_nxt &&
   1975 	    tiwin && tiwin == tp->snd_wnd &&
   1976 	    tp->snd_nxt == tp->snd_max) {
   1977 
   1978 		/*
   1979 		 * If last ACK falls within this segment's sequence numbers,
   1980 		 * record the timestamp.
   1981 		 * NOTE that the test is modified according to the latest
   1982 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1983 		 *
   1984 		 * note that we already know
   1985 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1986 		 */
   1987 		if (opti.ts_present &&
   1988 		    SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1989 			tp->ts_recent_age = tcp_now;
   1990 			tp->ts_recent = opti.ts_val;
   1991 		}
   1992 
   1993 		if (tlen == 0) {
   1994 			/* Ack prediction. */
   1995 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1996 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1997 			    tp->snd_cwnd >= tp->snd_wnd &&
   1998 			    tp->t_partialacks < 0) {
   1999 				/*
   2000 				 * this is a pure ack for outstanding data.
   2001 				 */
   2002 				if (ts_rtt)
   2003 					tcp_xmit_timer(tp, ts_rtt - 1);
   2004 				else if (tp->t_rtttime &&
   2005 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   2006 					tcp_xmit_timer(tp,
   2007 					  tcp_now - tp->t_rtttime);
   2008 				acked = th->th_ack - tp->snd_una;
   2009 				tcps = TCP_STAT_GETREF();
   2010 				tcps[TCP_STAT_PREDACK]++;
   2011 				tcps[TCP_STAT_RCVACKPACK]++;
   2012 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   2013 				TCP_STAT_PUTREF();
   2014 				nd6_hint(tp);
   2015 
   2016 				if (acked > (tp->t_lastoff - tp->t_inoff))
   2017 					tp->t_lastm = NULL;
   2018 				sbdrop(&so->so_snd, acked);
   2019 				tp->t_lastoff -= acked;
   2020 
   2021 				icmp_check(tp, th, acked);
   2022 
   2023 				tp->snd_una = th->th_ack;
   2024 				tp->snd_fack = tp->snd_una;
   2025 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   2026 					tp->snd_high = tp->snd_una;
   2027 				m_freem(m);
   2028 
   2029 				/*
   2030 				 * If all outstanding data are acked, stop
   2031 				 * retransmit timer, otherwise restart timer
   2032 				 * using current (possibly backed-off) value.
   2033 				 * If process is waiting for space,
   2034 				 * wakeup/selnotify/signal.  If data
   2035 				 * are ready to send, let tcp_output
   2036 				 * decide between more output or persist.
   2037 				 */
   2038 				if (tp->snd_una == tp->snd_max)
   2039 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2040 				else if (TCP_TIMER_ISARMED(tp,
   2041 				    TCPT_PERSIST) == 0)
   2042 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   2043 					    tp->t_rxtcur);
   2044 
   2045 				sowwakeup(so);
   2046 				if (so->so_snd.sb_cc) {
   2047 					KERNEL_LOCK(1, NULL);
   2048 					(void) tcp_output(tp);
   2049 					KERNEL_UNLOCK_ONE(NULL);
   2050 				}
   2051 				if (tcp_saveti)
   2052 					m_freem(tcp_saveti);
   2053 				return;
   2054 			}
   2055 		} else if (th->th_ack == tp->snd_una &&
   2056 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2057 		    tlen <= sbspace(&so->so_rcv)) {
   2058 			int newsize = 0;	/* automatic sockbuf scaling */
   2059 
   2060 			/*
   2061 			 * this is a pure, in-sequence data packet
   2062 			 * with nothing on the reassembly queue and
   2063 			 * we have enough buffer space to take it.
   2064 			 */
   2065 			tp->rcv_nxt += tlen;
   2066 			tcps = TCP_STAT_GETREF();
   2067 			tcps[TCP_STAT_PREDDAT]++;
   2068 			tcps[TCP_STAT_RCVPACK]++;
   2069 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2070 			TCP_STAT_PUTREF();
   2071 			nd6_hint(tp);
   2072 
   2073 		/*
   2074 		 * Automatic sizing enables the performance of large buffers
   2075 		 * and most of the efficiency of small ones by only allocating
   2076 		 * space when it is needed.
   2077 		 *
   2078 		 * On the receive side the socket buffer memory is only rarely
   2079 		 * used to any significant extent.  This allows us to be much
   2080 		 * more aggressive in scaling the receive socket buffer.  For
   2081 		 * the case that the buffer space is actually used to a large
   2082 		 * extent and we run out of kernel memory we can simply drop
   2083 		 * the new segments; TCP on the sender will just retransmit it
   2084 		 * later.  Setting the buffer size too big may only consume too
   2085 		 * much kernel memory if the application doesn't read() from
   2086 		 * the socket or packet loss or reordering makes use of the
   2087 		 * reassembly queue.
   2088 		 *
   2089 		 * The criteria to step up the receive buffer one notch are:
   2090 		 *  1. the number of bytes received during the time it takes
   2091 		 *     one timestamp to be reflected back to us (the RTT);
   2092 		 *  2. received bytes per RTT is within seven eighth of the
   2093 		 *     current socket buffer size;
   2094 		 *  3. receive buffer size has not hit maximal automatic size;
   2095 		 *
   2096 		 * This algorithm does one step per RTT at most and only if
   2097 		 * we receive a bulk stream w/o packet losses or reorderings.
   2098 		 * Shrinking the buffer during idle times is not necessary as
   2099 		 * it doesn't consume any memory when idle.
   2100 		 *
   2101 		 * TODO: Only step up if the application is actually serving
   2102 		 * the buffer to better manage the socket buffer resources.
   2103 		 */
   2104 			if (tcp_do_autorcvbuf &&
   2105 			    opti.ts_ecr &&
   2106 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2107 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2108 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2109 					if (tp->rfbuf_cnt >
   2110 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2111 					    so->so_rcv.sb_hiwat <
   2112 					    tcp_autorcvbuf_max) {
   2113 						newsize =
   2114 						    min(so->so_rcv.sb_hiwat +
   2115 						    tcp_autorcvbuf_inc,
   2116 						    tcp_autorcvbuf_max);
   2117 					}
   2118 					/* Start over with next RTT. */
   2119 					tp->rfbuf_ts = 0;
   2120 					tp->rfbuf_cnt = 0;
   2121 				} else
   2122 					tp->rfbuf_cnt += tlen;	/* add up */
   2123 			}
   2124 
   2125 			/*
   2126 			 * Drop TCP, IP headers and TCP options then add data
   2127 			 * to socket buffer.
   2128 			 */
   2129 			if (so->so_state & SS_CANTRCVMORE)
   2130 				m_freem(m);
   2131 			else {
   2132 				/*
   2133 				 * Set new socket buffer size.
   2134 				 * Give up when limit is reached.
   2135 				 */
   2136 				if (newsize)
   2137 					if (!sbreserve(&so->so_rcv,
   2138 					    newsize, so))
   2139 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2140 				m_adj(m, toff + off);
   2141 				sbappendstream(&so->so_rcv, m);
   2142 			}
   2143 			sorwakeup(so);
   2144 			tcp_setup_ack(tp, th);
   2145 			if (tp->t_flags & TF_ACKNOW) {
   2146 				KERNEL_LOCK(1, NULL);
   2147 				(void) tcp_output(tp);
   2148 				KERNEL_UNLOCK_ONE(NULL);
   2149 			}
   2150 			if (tcp_saveti)
   2151 				m_freem(tcp_saveti);
   2152 			return;
   2153 		}
   2154 	}
   2155 
   2156 	/*
   2157 	 * Compute mbuf offset to TCP data segment.
   2158 	 */
   2159 	hdroptlen = toff + off;
   2160 
   2161 	/*
   2162 	 * Calculate amount of space in receive window,
   2163 	 * and then do TCP input processing.
   2164 	 * Receive window is amount of space in rcv queue,
   2165 	 * but not less than advertised window.
   2166 	 */
   2167 	{ int win;
   2168 
   2169 	win = sbspace(&so->so_rcv);
   2170 	if (win < 0)
   2171 		win = 0;
   2172 	tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2173 	}
   2174 
   2175 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2176 	tp->rfbuf_ts = 0;
   2177 	tp->rfbuf_cnt = 0;
   2178 
   2179 	switch (tp->t_state) {
   2180 	/*
   2181 	 * If the state is SYN_SENT:
   2182 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2183 	 *	if seg contains a RST, then drop the connection.
   2184 	 *	if seg does not contain SYN, then drop it.
   2185 	 * Otherwise this is an acceptable SYN segment
   2186 	 *	initialize tp->rcv_nxt and tp->irs
   2187 	 *	if seg contains ack then advance tp->snd_una
   2188 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2189 	 *	    is ECN capable.
   2190 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2191 	 *	arrange for segment to be acked (eventually)
   2192 	 *	continue processing rest of data/controls, beginning with URG
   2193 	 */
   2194 	case TCPS_SYN_SENT:
   2195 		if ((tiflags & TH_ACK) &&
   2196 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2197 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2198 			goto dropwithreset;
   2199 		if (tiflags & TH_RST) {
   2200 			if (tiflags & TH_ACK)
   2201 				tp = tcp_drop(tp, ECONNREFUSED);
   2202 			goto drop;
   2203 		}
   2204 		if ((tiflags & TH_SYN) == 0)
   2205 			goto drop;
   2206 		if (tiflags & TH_ACK) {
   2207 			tp->snd_una = th->th_ack;
   2208 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2209 				tp->snd_nxt = tp->snd_una;
   2210 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2211 				tp->snd_high = tp->snd_una;
   2212 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2213 
   2214 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2215 				tp->t_flags |= TF_ECN_PERMIT;
   2216 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2217 			}
   2218 
   2219 		}
   2220 		tp->irs = th->th_seq;
   2221 		tcp_rcvseqinit(tp);
   2222 		tp->t_flags |= TF_ACKNOW;
   2223 		tcp_mss_from_peer(tp, opti.maxseg);
   2224 
   2225 		/*
   2226 		 * Initialize the initial congestion window.  If we
   2227 		 * had to retransmit the SYN, we must initialize cwnd
   2228 		 * to 1 segment (i.e. the Loss Window).
   2229 		 */
   2230 		if (tp->t_flags & TF_SYN_REXMT)
   2231 			tp->snd_cwnd = tp->t_peermss;
   2232 		else {
   2233 			int ss = tcp_init_win;
   2234 #ifdef INET
   2235 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2236 				ss = tcp_init_win_local;
   2237 #endif
   2238 #ifdef INET6
   2239 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2240 				ss = tcp_init_win_local;
   2241 #endif
   2242 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2243 		}
   2244 
   2245 		tcp_rmx_rtt(tp);
   2246 		if (tiflags & TH_ACK) {
   2247 			TCP_STATINC(TCP_STAT_CONNECTS);
   2248 			/*
   2249 			 * move tcp_established before soisconnected
   2250 			 * because upcall handler can drive tcp_output
   2251 			 * functionality.
   2252 			 * XXX we might call soisconnected at the end of
   2253 			 * all processing
   2254 			 */
   2255 			tcp_established(tp);
   2256 			soisconnected(so);
   2257 			/* Do window scaling on this connection? */
   2258 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2259 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2260 				tp->snd_scale = tp->requested_s_scale;
   2261 				tp->rcv_scale = tp->request_r_scale;
   2262 			}
   2263 			TCP_REASS_LOCK(tp);
   2264 			(void) tcp_reass(tp, NULL, NULL, &tlen);
   2265 			/*
   2266 			 * if we didn't have to retransmit the SYN,
   2267 			 * use its rtt as our initial srtt & rtt var.
   2268 			 */
   2269 			if (tp->t_rtttime)
   2270 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2271 		} else
   2272 			tp->t_state = TCPS_SYN_RECEIVED;
   2273 
   2274 		/*
   2275 		 * Advance th->th_seq to correspond to first data byte.
   2276 		 * If data, trim to stay within window,
   2277 		 * dropping FIN if necessary.
   2278 		 */
   2279 		th->th_seq++;
   2280 		if (tlen > tp->rcv_wnd) {
   2281 			todrop = tlen - tp->rcv_wnd;
   2282 			m_adj(m, -todrop);
   2283 			tlen = tp->rcv_wnd;
   2284 			tiflags &= ~TH_FIN;
   2285 			tcps = TCP_STAT_GETREF();
   2286 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2287 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2288 			TCP_STAT_PUTREF();
   2289 		}
   2290 		tp->snd_wl1 = th->th_seq - 1;
   2291 		tp->rcv_up = th->th_seq;
   2292 		goto step6;
   2293 
   2294 	/*
   2295 	 * If the state is SYN_RECEIVED:
   2296 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2297 	 *	and generate an RST.  See page 36, rfc793
   2298 	 */
   2299 	case TCPS_SYN_RECEIVED:
   2300 		if ((tiflags & TH_ACK) &&
   2301 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2302 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2303 			goto dropwithreset;
   2304 		break;
   2305 	}
   2306 
   2307 	/*
   2308 	 * States other than LISTEN or SYN_SENT.
   2309 	 * First check timestamp, if present.
   2310 	 * Then check that at least some bytes of segment are within
   2311 	 * receive window.  If segment begins before rcv_nxt,
   2312 	 * drop leading data (and SYN); if nothing left, just ack.
   2313 	 *
   2314 	 * RFC 1323 PAWS: If we have a timestamp reply on this segment
   2315 	 * and it's less than ts_recent, drop it.
   2316 	 */
   2317 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2318 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2319 
   2320 		/* Check to see if ts_recent is over 24 days old.  */
   2321 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2322 			/*
   2323 			 * Invalidate ts_recent.  If this segment updates
   2324 			 * ts_recent, the age will be reset later and ts_recent
   2325 			 * will get a valid value.  If it does not, setting
   2326 			 * ts_recent to zero will at least satisfy the
   2327 			 * requirement that zero be placed in the timestamp
   2328 			 * echo reply when ts_recent isn't valid.  The
   2329 			 * age isn't reset until we get a valid ts_recent
   2330 			 * because we don't want out-of-order segments to be
   2331 			 * dropped when ts_recent is old.
   2332 			 */
   2333 			tp->ts_recent = 0;
   2334 		} else {
   2335 			tcps = TCP_STAT_GETREF();
   2336 			tcps[TCP_STAT_RCVDUPPACK]++;
   2337 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2338 			tcps[TCP_STAT_PAWSDROP]++;
   2339 			TCP_STAT_PUTREF();
   2340 			tcp_new_dsack(tp, th->th_seq, tlen);
   2341 			goto dropafterack;
   2342 		}
   2343 	}
   2344 
   2345 	todrop = tp->rcv_nxt - th->th_seq;
   2346 	dupseg = false;
   2347 	if (todrop > 0) {
   2348 		if (tiflags & TH_SYN) {
   2349 			tiflags &= ~TH_SYN;
   2350 			th->th_seq++;
   2351 			if (th->th_urp > 1)
   2352 				th->th_urp--;
   2353 			else {
   2354 				tiflags &= ~TH_URG;
   2355 				th->th_urp = 0;
   2356 			}
   2357 			todrop--;
   2358 		}
   2359 		if (todrop > tlen ||
   2360 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2361 			/*
   2362 			 * Any valid FIN or RST must be to the left of the
   2363 			 * window.  At this point the FIN or RST must be a
   2364 			 * duplicate or out of sequence; drop it.
   2365 			 */
   2366 			if (tiflags & TH_RST)
   2367 				goto drop;
   2368 			tiflags &= ~(TH_FIN|TH_RST);
   2369 			/*
   2370 			 * Send an ACK to resynchronize and drop any data.
   2371 			 * But keep on processing for RST or ACK.
   2372 			 */
   2373 			tp->t_flags |= TF_ACKNOW;
   2374 			todrop = tlen;
   2375 			dupseg = true;
   2376 			tcps = TCP_STAT_GETREF();
   2377 			tcps[TCP_STAT_RCVDUPPACK]++;
   2378 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2379 			TCP_STAT_PUTREF();
   2380 		} else if ((tiflags & TH_RST) &&
   2381 			   th->th_seq != tp->rcv_nxt) {
   2382 			/*
   2383 			 * Test for reset before adjusting the sequence
   2384 			 * number for overlapping data.
   2385 			 */
   2386 			goto dropafterack_ratelim;
   2387 		} else {
   2388 			tcps = TCP_STAT_GETREF();
   2389 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2390 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2391 			TCP_STAT_PUTREF();
   2392 		}
   2393 		tcp_new_dsack(tp, th->th_seq, todrop);
   2394 		hdroptlen += todrop;	/*drop from head afterwards*/
   2395 		th->th_seq += todrop;
   2396 		tlen -= todrop;
   2397 		if (th->th_urp > todrop)
   2398 			th->th_urp -= todrop;
   2399 		else {
   2400 			tiflags &= ~TH_URG;
   2401 			th->th_urp = 0;
   2402 		}
   2403 	}
   2404 
   2405 	/*
   2406 	 * If new data are received on a connection after the
   2407 	 * user processes are gone, then RST the other end.
   2408 	 */
   2409 	if ((so->so_state & SS_NOFDREF) &&
   2410 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2411 		tp = tcp_close(tp);
   2412 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2413 		goto dropwithreset;
   2414 	}
   2415 
   2416 	/*
   2417 	 * If segment ends after window, drop trailing data
   2418 	 * (and PUSH and FIN); if nothing left, just ACK.
   2419 	 */
   2420 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
   2421 	if (todrop > 0) {
   2422 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2423 		if (todrop >= tlen) {
   2424 			/*
   2425 			 * The segment actually starts after the window.
   2426 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2427 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2428 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2429 			 */
   2430 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2431 			/*
   2432 			 * If a new connection request is received
   2433 			 * while in TIME_WAIT, drop the old connection
   2434 			 * and start over if the sequence numbers
   2435 			 * are above the previous ones.
   2436 			 *
   2437 			 * NOTE: We will checksum the packet again, and
   2438 			 * so we need to put the header fields back into
   2439 			 * network order!
   2440 			 * XXX This kind of sucks, but we don't expect
   2441 			 * XXX this to happen very often, so maybe it
   2442 			 * XXX doesn't matter so much.
   2443 			 */
   2444 			if (tiflags & TH_SYN &&
   2445 			    tp->t_state == TCPS_TIME_WAIT &&
   2446 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2447 				tp = tcp_close(tp);
   2448 				tcp_fields_to_net(th);
   2449 				goto findpcb;
   2450 			}
   2451 			/*
   2452 			 * If window is closed can only take segments at
   2453 			 * window edge, and have to drop data and PUSH from
   2454 			 * incoming segments.  Continue processing, but
   2455 			 * remember to ack.  Otherwise, drop segment
   2456 			 * and (if not RST) ack.
   2457 			 */
   2458 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2459 				tp->t_flags |= TF_ACKNOW;
   2460 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2461 			} else
   2462 				goto dropafterack;
   2463 		} else
   2464 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2465 		m_adj(m, -todrop);
   2466 		tlen -= todrop;
   2467 		tiflags &= ~(TH_PUSH|TH_FIN);
   2468 	}
   2469 
   2470 	/*
   2471 	 * If last ACK falls within this segment's sequence numbers,
   2472 	 *  record the timestamp.
   2473 	 * NOTE:
   2474 	 * 1) That the test incorporates suggestions from the latest
   2475 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2476 	 * 2) That updating only on newer timestamps interferes with
   2477 	 *    our earlier PAWS tests, so this check should be solely
   2478 	 *    predicated on the sequence space of this segment.
   2479 	 * 3) That we modify the segment boundary check to be
   2480 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2481 	 *    instead of RFC1323's
   2482 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2483 	 *    This modified check allows us to overcome RFC1323's
   2484 	 *    limitations as described in Stevens TCP/IP Illustrated
   2485 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2486 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2487 	 */
   2488 	if (opti.ts_present &&
   2489 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2490 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2491 		    ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2492 		tp->ts_recent_age = tcp_now;
   2493 		tp->ts_recent = opti.ts_val;
   2494 	}
   2495 
   2496 	/*
   2497 	 * If the RST bit is set examine the state:
   2498 	 *    SYN_RECEIVED STATE:
   2499 	 *	If passive open, return to LISTEN state.
   2500 	 *	If active open, inform user that connection was refused.
   2501 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
   2502 	 *	Inform user that connection was reset, and close tcb.
   2503 	 *    CLOSING, LAST_ACK, TIME_WAIT STATES
   2504 	 *	Close the tcb.
   2505 	 */
   2506 	if (tiflags & TH_RST) {
   2507 		if (th->th_seq != tp->rcv_nxt)
   2508 			goto dropafterack_ratelim;
   2509 
   2510 		switch (tp->t_state) {
   2511 		case TCPS_SYN_RECEIVED:
   2512 			so->so_error = ECONNREFUSED;
   2513 			goto close;
   2514 
   2515 		case TCPS_ESTABLISHED:
   2516 		case TCPS_FIN_WAIT_1:
   2517 		case TCPS_FIN_WAIT_2:
   2518 		case TCPS_CLOSE_WAIT:
   2519 			so->so_error = ECONNRESET;
   2520 		close:
   2521 			tp->t_state = TCPS_CLOSED;
   2522 			TCP_STATINC(TCP_STAT_DROPS);
   2523 			tp = tcp_close(tp);
   2524 			goto drop;
   2525 
   2526 		case TCPS_CLOSING:
   2527 		case TCPS_LAST_ACK:
   2528 		case TCPS_TIME_WAIT:
   2529 			tp = tcp_close(tp);
   2530 			goto drop;
   2531 		}
   2532 	}
   2533 
   2534 	/*
   2535 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2536 	 * we must be in a synchronized state.  RFC791 states (under RST
   2537 	 * generation) that any unacceptable segment (an out-of-order SYN
   2538 	 * qualifies) received in a synchronized state must elicit only an
   2539 	 * empty acknowledgment segment ... and the connection remains in
   2540 	 * the same state.
   2541 	 */
   2542 	if (tiflags & TH_SYN) {
   2543 		if (tp->rcv_nxt == th->th_seq) {
   2544 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2545 			    TH_ACK);
   2546 			if (tcp_saveti)
   2547 				m_freem(tcp_saveti);
   2548 			return;
   2549 		}
   2550 
   2551 		goto dropafterack_ratelim;
   2552 	}
   2553 
   2554 	/*
   2555 	 * If the ACK bit is off we drop the segment and return.
   2556 	 */
   2557 	if ((tiflags & TH_ACK) == 0) {
   2558 		if (tp->t_flags & TF_ACKNOW)
   2559 			goto dropafterack;
   2560 		else
   2561 			goto drop;
   2562 	}
   2563 
   2564 	/*
   2565 	 * Ack processing.
   2566 	 */
   2567 	switch (tp->t_state) {
   2568 
   2569 	/*
   2570 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2571 	 * ESTABLISHED state and continue processing, otherwise
   2572 	 * send an RST.
   2573 	 */
   2574 	case TCPS_SYN_RECEIVED:
   2575 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2576 		    SEQ_GT(th->th_ack, tp->snd_max))
   2577 			goto dropwithreset;
   2578 		TCP_STATINC(TCP_STAT_CONNECTS);
   2579 		soisconnected(so);
   2580 		tcp_established(tp);
   2581 		/* Do window scaling? */
   2582 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2583 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2584 			tp->snd_scale = tp->requested_s_scale;
   2585 			tp->rcv_scale = tp->request_r_scale;
   2586 		}
   2587 		TCP_REASS_LOCK(tp);
   2588 		(void) tcp_reass(tp, NULL, NULL, &tlen);
   2589 		tp->snd_wl1 = th->th_seq - 1;
   2590 		/* fall into ... */
   2591 
   2592 	/*
   2593 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2594 	 * ACKs.  If the ack is in the range
   2595 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2596 	 * then advance tp->snd_una to th->th_ack and drop
   2597 	 * data from the retransmission queue.  If this ACK reflects
   2598 	 * more up to date window information we update our window information.
   2599 	 */
   2600 	case TCPS_ESTABLISHED:
   2601 	case TCPS_FIN_WAIT_1:
   2602 	case TCPS_FIN_WAIT_2:
   2603 	case TCPS_CLOSE_WAIT:
   2604 	case TCPS_CLOSING:
   2605 	case TCPS_LAST_ACK:
   2606 	case TCPS_TIME_WAIT:
   2607 
   2608 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2609 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2610 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2611 				/*
   2612 				 * If we have outstanding data (other than
   2613 				 * a window probe), this is a completely
   2614 				 * duplicate ack (ie, window info didn't
   2615 				 * change), the ack is the biggest we've
   2616 				 * seen and we've seen exactly our rexmt
   2617 				 * threshhold of them, assume a packet
   2618 				 * has been dropped and retransmit it.
   2619 				 * Kludge snd_nxt & the congestion
   2620 				 * window so we send only this one
   2621 				 * packet.
   2622 				 */
   2623 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2624 				    th->th_ack != tp->snd_una)
   2625 					tp->t_dupacks = 0;
   2626 				else if (tp->t_partialacks < 0 &&
   2627 					 (++tp->t_dupacks == tcprexmtthresh ||
   2628 					 TCP_FACK_FASTRECOV(tp))) {
   2629 					/*
   2630 					 * Do the fast retransmit, and adjust
   2631 					 * congestion control paramenters.
   2632 					 */
   2633 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2634 						/* False fast retransmit */
   2635 						break;
   2636 					} else
   2637 						goto drop;
   2638 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2639 					tp->snd_cwnd += tp->t_segsz;
   2640 					KERNEL_LOCK(1, NULL);
   2641 					(void) tcp_output(tp);
   2642 					KERNEL_UNLOCK_ONE(NULL);
   2643 					goto drop;
   2644 				}
   2645 			} else {
   2646 				/*
   2647 				 * If the ack appears to be very old, only
   2648 				 * allow data that is in-sequence.  This
   2649 				 * makes it somewhat more difficult to insert
   2650 				 * forged data by guessing sequence numbers.
   2651 				 * Sent an ack to try to update the send
   2652 				 * sequence number on the other side.
   2653 				 */
   2654 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2655 				    SEQ_LT(th->th_ack,
   2656 				    tp->snd_una - tp->max_sndwnd))
   2657 					goto dropafterack;
   2658 			}
   2659 			break;
   2660 		}
   2661 		/*
   2662 		 * If the congestion window was inflated to account
   2663 		 * for the other side's cached packets, retract it.
   2664 		 */
   2665 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2666 
   2667 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2668 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2669 			goto dropafterack;
   2670 		}
   2671 		acked = th->th_ack - tp->snd_una;
   2672 		tcps = TCP_STAT_GETREF();
   2673 		tcps[TCP_STAT_RCVACKPACK]++;
   2674 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2675 		TCP_STAT_PUTREF();
   2676 
   2677 		/*
   2678 		 * If we have a timestamp reply, update smoothed
   2679 		 * round trip time.  If no timestamp is present but
   2680 		 * transmit timer is running and timed sequence
   2681 		 * number was acked, update smoothed round trip time.
   2682 		 * Since we now have an rtt measurement, cancel the
   2683 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2684 		 * Recompute the initial retransmit timer.
   2685 		 */
   2686 		if (ts_rtt)
   2687 			tcp_xmit_timer(tp, ts_rtt - 1);
   2688 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2689 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2690 
   2691 		/*
   2692 		 * If all outstanding data is acked, stop retransmit
   2693 		 * timer and remember to restart (more output or persist).
   2694 		 * If there is more data to be acked, restart retransmit
   2695 		 * timer, using current (possibly backed-off) value.
   2696 		 */
   2697 		if (th->th_ack == tp->snd_max) {
   2698 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2699 			needoutput = 1;
   2700 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2701 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2702 
   2703 		/*
   2704 		 * New data has been acked, adjust the congestion window.
   2705 		 */
   2706 		tp->t_congctl->newack(tp, th);
   2707 
   2708 		nd6_hint(tp);
   2709 		if (acked > so->so_snd.sb_cc) {
   2710 			tp->snd_wnd -= so->so_snd.sb_cc;
   2711 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2712 			ourfinisacked = 1;
   2713 		} else {
   2714 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2715 				tp->t_lastm = NULL;
   2716 			sbdrop(&so->so_snd, acked);
   2717 			tp->t_lastoff -= acked;
   2718 			if (tp->snd_wnd > acked)
   2719 				tp->snd_wnd -= acked;
   2720 			else
   2721 				tp->snd_wnd = 0;
   2722 			ourfinisacked = 0;
   2723 		}
   2724 		sowwakeup(so);
   2725 
   2726 		icmp_check(tp, th, acked);
   2727 
   2728 		tp->snd_una = th->th_ack;
   2729 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2730 			tp->snd_fack = tp->snd_una;
   2731 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2732 			tp->snd_nxt = tp->snd_una;
   2733 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2734 			tp->snd_high = tp->snd_una;
   2735 
   2736 		switch (tp->t_state) {
   2737 
   2738 		/*
   2739 		 * In FIN_WAIT_1 STATE in addition to the processing
   2740 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2741 		 * then enter FIN_WAIT_2.
   2742 		 */
   2743 		case TCPS_FIN_WAIT_1:
   2744 			if (ourfinisacked) {
   2745 				/*
   2746 				 * If we can't receive any more
   2747 				 * data, then closing user can proceed.
   2748 				 * Starting the timer is contrary to the
   2749 				 * specification, but if we don't get a FIN
   2750 				 * we'll hang forever.
   2751 				 */
   2752 				if (so->so_state & SS_CANTRCVMORE) {
   2753 					soisdisconnected(so);
   2754 					if (tp->t_maxidle > 0)
   2755 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2756 						    tp->t_maxidle);
   2757 				}
   2758 				tp->t_state = TCPS_FIN_WAIT_2;
   2759 			}
   2760 			break;
   2761 
   2762 	 	/*
   2763 		 * In CLOSING STATE in addition to the processing for
   2764 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2765 		 * then enter the TIME-WAIT state, otherwise ignore
   2766 		 * the segment.
   2767 		 */
   2768 		case TCPS_CLOSING:
   2769 			if (ourfinisacked) {
   2770 				tp->t_state = TCPS_TIME_WAIT;
   2771 				tcp_canceltimers(tp);
   2772 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2773 				soisdisconnected(so);
   2774 			}
   2775 			break;
   2776 
   2777 		/*
   2778 		 * In LAST_ACK, we may still be waiting for data to drain
   2779 		 * and/or to be acked, as well as for the ack of our FIN.
   2780 		 * If our FIN is now acknowledged, delete the TCB,
   2781 		 * enter the closed state and return.
   2782 		 */
   2783 		case TCPS_LAST_ACK:
   2784 			if (ourfinisacked) {
   2785 				tp = tcp_close(tp);
   2786 				goto drop;
   2787 			}
   2788 			break;
   2789 
   2790 		/*
   2791 		 * In TIME_WAIT state the only thing that should arrive
   2792 		 * is a retransmission of the remote FIN.  Acknowledge
   2793 		 * it and restart the finack timer.
   2794 		 */
   2795 		case TCPS_TIME_WAIT:
   2796 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2797 			goto dropafterack;
   2798 		}
   2799 	}
   2800 
   2801 step6:
   2802 	/*
   2803 	 * Update window information.
   2804 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2805 	 */
   2806 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2807 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2808 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2809 		/* keep track of pure window updates */
   2810 		if (tlen == 0 &&
   2811 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2812 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2813 		tp->snd_wnd = tiwin;
   2814 		tp->snd_wl1 = th->th_seq;
   2815 		tp->snd_wl2 = th->th_ack;
   2816 		if (tp->snd_wnd > tp->max_sndwnd)
   2817 			tp->max_sndwnd = tp->snd_wnd;
   2818 		needoutput = 1;
   2819 	}
   2820 
   2821 	/*
   2822 	 * Process segments with URG.
   2823 	 */
   2824 	if ((tiflags & TH_URG) && th->th_urp &&
   2825 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2826 		/*
   2827 		 * This is a kludge, but if we receive and accept
   2828 		 * random urgent pointers, we'll crash in
   2829 		 * soreceive.  It's hard to imagine someone
   2830 		 * actually wanting to send this much urgent data.
   2831 		 */
   2832 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2833 			th->th_urp = 0;			/* XXX */
   2834 			tiflags &= ~TH_URG;		/* XXX */
   2835 			goto dodata;			/* XXX */
   2836 		}
   2837 		/*
   2838 		 * If this segment advances the known urgent pointer,
   2839 		 * then mark the data stream.  This should not happen
   2840 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2841 		 * a FIN has been received from the remote side.
   2842 		 * In these states we ignore the URG.
   2843 		 *
   2844 		 * According to RFC961 (Assigned Protocols),
   2845 		 * the urgent pointer points to the last octet
   2846 		 * of urgent data.  We continue, however,
   2847 		 * to consider it to indicate the first octet
   2848 		 * of data past the urgent section as the original
   2849 		 * spec states (in one of two places).
   2850 		 */
   2851 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2852 			tp->rcv_up = th->th_seq + th->th_urp;
   2853 			so->so_oobmark = so->so_rcv.sb_cc +
   2854 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2855 			if (so->so_oobmark == 0)
   2856 				so->so_state |= SS_RCVATMARK;
   2857 			sohasoutofband(so);
   2858 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2859 		}
   2860 		/*
   2861 		 * Remove out of band data so doesn't get presented to user.
   2862 		 * This can happen independent of advancing the URG pointer,
   2863 		 * but if two URG's are pending at once, some out-of-band
   2864 		 * data may creep in... ick.
   2865 		 */
   2866 		if (th->th_urp <= (u_int16_t) tlen
   2867 #ifdef SO_OOBINLINE
   2868 		     && (so->so_options & SO_OOBINLINE) == 0
   2869 #endif
   2870 		     )
   2871 			tcp_pulloutofband(so, th, m, hdroptlen);
   2872 	} else
   2873 		/*
   2874 		 * If no out of band data is expected,
   2875 		 * pull receive urgent pointer along
   2876 		 * with the receive window.
   2877 		 */
   2878 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2879 			tp->rcv_up = tp->rcv_nxt;
   2880 dodata:							/* XXX */
   2881 
   2882 	/*
   2883 	 * Process the segment text, merging it into the TCP sequencing queue,
   2884 	 * and arranging for acknowledgement of receipt if necessary.
   2885 	 * This process logically involves adjusting tp->rcv_wnd as data
   2886 	 * is presented to the user (this happens in tcp_usrreq.c,
   2887 	 * tcp_rcvd()).  If a FIN has already been received on this
   2888 	 * connection then we just ignore the text.
   2889 	 */
   2890 	if ((tlen || (tiflags & TH_FIN)) &&
   2891 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2892 		/*
   2893 		 * Insert segment ti into reassembly queue of tcp with
   2894 		 * control block tp.  Return TH_FIN if reassembly now includes
   2895 		 * a segment with FIN.  The macro form does the common case
   2896 		 * inline (segment is the next to be received on an
   2897 		 * established connection, and the queue is empty),
   2898 		 * avoiding linkage into and removal from the queue and
   2899 		 * repetition of various conversions.
   2900 		 * Set DELACK for segments received in order, but ack
   2901 		 * immediately when segments are out of order
   2902 		 * (so fast retransmit can work).
   2903 		 */
   2904 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2905 		TCP_REASS_LOCK(tp);
   2906 		if (th->th_seq == tp->rcv_nxt &&
   2907 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2908 		    tp->t_state == TCPS_ESTABLISHED) {
   2909 			tcp_setup_ack(tp, th);
   2910 			tp->rcv_nxt += tlen;
   2911 			tiflags = th->th_flags & TH_FIN;
   2912 			tcps = TCP_STAT_GETREF();
   2913 			tcps[TCP_STAT_RCVPACK]++;
   2914 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2915 			TCP_STAT_PUTREF();
   2916 			nd6_hint(tp);
   2917 			if (so->so_state & SS_CANTRCVMORE)
   2918 				m_freem(m);
   2919 			else {
   2920 				m_adj(m, hdroptlen);
   2921 				sbappendstream(&(so)->so_rcv, m);
   2922 			}
   2923 			TCP_REASS_UNLOCK(tp);
   2924 			sorwakeup(so);
   2925 		} else {
   2926 			m_adj(m, hdroptlen);
   2927 			tiflags = tcp_reass(tp, th, m, &tlen);
   2928 			tp->t_flags |= TF_ACKNOW;
   2929 		}
   2930 
   2931 		/*
   2932 		 * Note the amount of data that peer has sent into
   2933 		 * our window, in order to estimate the sender's
   2934 		 * buffer size.
   2935 		 */
   2936 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2937 	} else {
   2938 		m_freem(m);
   2939 		m = NULL;
   2940 		tiflags &= ~TH_FIN;
   2941 	}
   2942 
   2943 	/*
   2944 	 * If FIN is received ACK the FIN and let the user know
   2945 	 * that the connection is closing.  Ignore a FIN received before
   2946 	 * the connection is fully established.
   2947 	 */
   2948 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2949 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2950 			socantrcvmore(so);
   2951 			tp->t_flags |= TF_ACKNOW;
   2952 			tp->rcv_nxt++;
   2953 		}
   2954 		switch (tp->t_state) {
   2955 
   2956 	 	/*
   2957 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2958 		 */
   2959 		case TCPS_ESTABLISHED:
   2960 			tp->t_state = TCPS_CLOSE_WAIT;
   2961 			break;
   2962 
   2963 	 	/*
   2964 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2965 		 * enter the CLOSING state.
   2966 		 */
   2967 		case TCPS_FIN_WAIT_1:
   2968 			tp->t_state = TCPS_CLOSING;
   2969 			break;
   2970 
   2971 	 	/*
   2972 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2973 		 * starting the time-wait timer, turning off the other
   2974 		 * standard timers.
   2975 		 */
   2976 		case TCPS_FIN_WAIT_2:
   2977 			tp->t_state = TCPS_TIME_WAIT;
   2978 			tcp_canceltimers(tp);
   2979 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2980 			soisdisconnected(so);
   2981 			break;
   2982 
   2983 		/*
   2984 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2985 		 */
   2986 		case TCPS_TIME_WAIT:
   2987 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2988 			break;
   2989 		}
   2990 	}
   2991 #ifdef TCP_DEBUG
   2992 	if (so->so_options & SO_DEBUG)
   2993 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2994 #endif
   2995 
   2996 	/*
   2997 	 * Return any desired output.
   2998 	 */
   2999 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   3000 		KERNEL_LOCK(1, NULL);
   3001 		(void) tcp_output(tp);
   3002 		KERNEL_UNLOCK_ONE(NULL);
   3003 	}
   3004 	if (tcp_saveti)
   3005 		m_freem(tcp_saveti);
   3006 
   3007 	if (tp->t_state == TCPS_TIME_WAIT
   3008 	    && (so->so_state & SS_NOFDREF)
   3009 	    && (tp->t_inpcb || af != AF_INET)
   3010 	    && (tp->t_in6pcb || af != AF_INET6)
   3011 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   3012 	    && TAILQ_EMPTY(&tp->segq)
   3013 	    && vtw_add(af, tp)) {
   3014 		;
   3015 	}
   3016 	return;
   3017 
   3018 badsyn:
   3019 	/*
   3020 	 * Received a bad SYN.  Increment counters and dropwithreset.
   3021 	 */
   3022 	TCP_STATINC(TCP_STAT_BADSYN);
   3023 	tp = NULL;
   3024 	goto dropwithreset;
   3025 
   3026 dropafterack:
   3027 	/*
   3028 	 * Generate an ACK dropping incoming segment if it occupies
   3029 	 * sequence space, where the ACK reflects our state.
   3030 	 */
   3031 	if (tiflags & TH_RST)
   3032 		goto drop;
   3033 	goto dropafterack2;
   3034 
   3035 dropafterack_ratelim:
   3036 	/*
   3037 	 * We may want to rate-limit ACKs against SYN/RST attack.
   3038 	 */
   3039 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   3040 	    tcp_ackdrop_ppslim) == 0) {
   3041 		/* XXX stat */
   3042 		goto drop;
   3043 	}
   3044 	/* ...fall into dropafterack2... */
   3045 
   3046 dropafterack2:
   3047 	m_freem(m);
   3048 	tp->t_flags |= TF_ACKNOW;
   3049 	KERNEL_LOCK(1, NULL);
   3050 	(void) tcp_output(tp);
   3051 	KERNEL_UNLOCK_ONE(NULL);
   3052 	if (tcp_saveti)
   3053 		m_freem(tcp_saveti);
   3054 	return;
   3055 
   3056 dropwithreset_ratelim:
   3057 	/*
   3058 	 * We may want to rate-limit RSTs in certain situations,
   3059 	 * particularly if we are sending an RST in response to
   3060 	 * an attempt to connect to or otherwise communicate with
   3061 	 * a port for which we have no socket.
   3062 	 */
   3063 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   3064 	    tcp_rst_ppslim) == 0) {
   3065 		/* XXX stat */
   3066 		goto drop;
   3067 	}
   3068 	/* ...fall into dropwithreset... */
   3069 
   3070 dropwithreset:
   3071 	/*
   3072 	 * Generate a RST, dropping incoming segment.
   3073 	 * Make ACK acceptable to originator of segment.
   3074 	 */
   3075 	if (tiflags & TH_RST)
   3076 		goto drop;
   3077 
   3078 	switch (af) {
   3079 #ifdef INET6
   3080 	case AF_INET6:
   3081 		/* For following calls to tcp_respond */
   3082 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst))
   3083 			goto drop;
   3084 		break;
   3085 #endif /* INET6 */
   3086 	case AF_INET:
   3087 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   3088 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   3089 			goto drop;
   3090 	}
   3091 
   3092 	if (tiflags & TH_ACK)
   3093 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   3094 	else {
   3095 		if (tiflags & TH_SYN)
   3096 			tlen++;
   3097 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3098 		    TH_RST|TH_ACK);
   3099 	}
   3100 	if (tcp_saveti)
   3101 		m_freem(tcp_saveti);
   3102 	return;
   3103 
   3104 badcsum:
   3105 drop:
   3106 	/*
   3107 	 * Drop space held by incoming segment and return.
   3108 	 */
   3109 	if (tp) {
   3110 		if (tp->t_inpcb)
   3111 			so = tp->t_inpcb->inp_socket;
   3112 #ifdef INET6
   3113 		else if (tp->t_in6pcb)
   3114 			so = tp->t_in6pcb->in6p_socket;
   3115 #endif
   3116 		else
   3117 			so = NULL;
   3118 #ifdef TCP_DEBUG
   3119 		if (so && (so->so_options & SO_DEBUG) != 0)
   3120 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3121 #endif
   3122 	}
   3123 	if (tcp_saveti)
   3124 		m_freem(tcp_saveti);
   3125 	m_freem(m);
   3126 	return;
   3127 }
   3128 
   3129 #ifdef TCP_SIGNATURE
   3130 int
   3131 tcp_signature_apply(void *fstate, void *data, u_int len)
   3132 {
   3133 
   3134 	MD5Update(fstate, (u_char *)data, len);
   3135 	return (0);
   3136 }
   3137 
   3138 struct secasvar *
   3139 tcp_signature_getsav(struct mbuf *m, struct tcphdr *th)
   3140 {
   3141 	struct ip *ip;
   3142 	struct ip6_hdr *ip6;
   3143 
   3144 	ip = mtod(m, struct ip *);
   3145 	switch (ip->ip_v) {
   3146 	case 4:
   3147 		ip = mtod(m, struct ip *);
   3148 		ip6 = NULL;
   3149 		break;
   3150 	case 6:
   3151 		ip = NULL;
   3152 		ip6 = mtod(m, struct ip6_hdr *);
   3153 		break;
   3154 	default:
   3155 		return (NULL);
   3156 	}
   3157 
   3158 #ifdef IPSEC
   3159 	union sockaddr_union dst;
   3160 
   3161 	/* Extract the destination from the IP header in the mbuf. */
   3162 	memset(&dst, 0, sizeof(union sockaddr_union));
   3163 	if (ip != NULL) {
   3164 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   3165 		dst.sa.sa_family = AF_INET;
   3166 		dst.sin.sin_addr = ip->ip_dst;
   3167 	} else {
   3168 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3169 		dst.sa.sa_family = AF_INET6;
   3170 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3171 	}
   3172 
   3173 	/*
   3174 	 * Look up an SADB entry which matches the address of the peer.
   3175 	 */
   3176 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3177 #else
   3178 	return NULL;
   3179 #endif
   3180 }
   3181 
   3182 int
   3183 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3184     struct secasvar *sav, char *sig)
   3185 {
   3186 	MD5_CTX ctx;
   3187 	struct ip *ip;
   3188 	struct ipovly *ipovly;
   3189 #ifdef INET6
   3190 	struct ip6_hdr *ip6;
   3191 	struct ip6_hdr_pseudo ip6pseudo;
   3192 #endif /* INET6 */
   3193 	struct ippseudo ippseudo;
   3194 	struct tcphdr th0;
   3195 	int l, tcphdrlen;
   3196 
   3197 	if (sav == NULL)
   3198 		return (-1);
   3199 
   3200 	tcphdrlen = th->th_off * 4;
   3201 
   3202 	switch (mtod(m, struct ip *)->ip_v) {
   3203 	case 4:
   3204 		MD5Init(&ctx);
   3205 		ip = mtod(m, struct ip *);
   3206 		memset(&ippseudo, 0, sizeof(ippseudo));
   3207 		ipovly = (struct ipovly *)ip;
   3208 		ippseudo.ippseudo_src = ipovly->ih_src;
   3209 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3210 		ippseudo.ippseudo_pad = 0;
   3211 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3212 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3213 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3214 		break;
   3215 #if INET6
   3216 	case 6:
   3217 		MD5Init(&ctx);
   3218 		ip6 = mtod(m, struct ip6_hdr *);
   3219 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3220 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3221 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3222 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3223 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3224 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3225 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3226 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3227 		break;
   3228 #endif /* INET6 */
   3229 	default:
   3230 		return (-1);
   3231 	}
   3232 
   3233 	th0 = *th;
   3234 	th0.th_sum = 0;
   3235 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3236 
   3237 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3238 	if (l > 0)
   3239 		m_apply(m, thoff + tcphdrlen,
   3240 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3241 		    tcp_signature_apply, &ctx);
   3242 
   3243 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3244 	MD5Final(sig, &ctx);
   3245 
   3246 	return (0);
   3247 }
   3248 #endif
   3249 
   3250 /*
   3251  * tcp_dooptions: parse and process tcp options.
   3252  *
   3253  * returns -1 if this segment should be dropped.  (eg. wrong signature)
   3254  * otherwise returns 0.
   3255  */
   3256 
   3257 static int
   3258 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt,
   3259     struct tcphdr *th,
   3260     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3261 {
   3262 	u_int16_t mss;
   3263 	int opt, optlen = 0;
   3264 #ifdef TCP_SIGNATURE
   3265 	void *sigp = NULL;
   3266 	char sigbuf[TCP_SIGLEN];
   3267 	struct secasvar *sav = NULL;
   3268 #endif
   3269 
   3270 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3271 		opt = cp[0];
   3272 		if (opt == TCPOPT_EOL)
   3273 			break;
   3274 		if (opt == TCPOPT_NOP)
   3275 			optlen = 1;
   3276 		else {
   3277 			if (cnt < 2)
   3278 				break;
   3279 			optlen = cp[1];
   3280 			if (optlen < 2 || optlen > cnt)
   3281 				break;
   3282 		}
   3283 		switch (opt) {
   3284 
   3285 		default:
   3286 			continue;
   3287 
   3288 		case TCPOPT_MAXSEG:
   3289 			if (optlen != TCPOLEN_MAXSEG)
   3290 				continue;
   3291 			if (!(th->th_flags & TH_SYN))
   3292 				continue;
   3293 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3294 				continue;
   3295 			bcopy(cp + 2, &mss, sizeof(mss));
   3296 			oi->maxseg = ntohs(mss);
   3297 			break;
   3298 
   3299 		case TCPOPT_WINDOW:
   3300 			if (optlen != TCPOLEN_WINDOW)
   3301 				continue;
   3302 			if (!(th->th_flags & TH_SYN))
   3303 				continue;
   3304 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3305 				continue;
   3306 			tp->t_flags |= TF_RCVD_SCALE;
   3307 			tp->requested_s_scale = cp[2];
   3308 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3309 				char buf[INET6_ADDRSTRLEN];
   3310 				struct ip *ip = mtod(m, struct ip *);
   3311 #ifdef INET6
   3312 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3313 #endif
   3314 				if (ip)
   3315 					in_print(buf, sizeof(buf),
   3316 					    &ip->ip_src);
   3317 #ifdef INET6
   3318 				else if (ip6)
   3319 					in6_print(buf, sizeof(buf),
   3320 					    &ip6->ip6_src);
   3321 #endif
   3322 				else
   3323 					strlcpy(buf, "(unknown)", sizeof(buf));
   3324 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3325 				    "assuming %d\n",
   3326 				    tp->requested_s_scale, buf,
   3327 				    TCP_MAX_WINSHIFT);
   3328 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3329 			}
   3330 			break;
   3331 
   3332 		case TCPOPT_TIMESTAMP:
   3333 			if (optlen != TCPOLEN_TIMESTAMP)
   3334 				continue;
   3335 			oi->ts_present = 1;
   3336 			bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
   3337 			NTOHL(oi->ts_val);
   3338 			bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
   3339 			NTOHL(oi->ts_ecr);
   3340 
   3341 			if (!(th->th_flags & TH_SYN))
   3342 				continue;
   3343 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3344 				continue;
   3345 			/*
   3346 			 * A timestamp received in a SYN makes
   3347 			 * it ok to send timestamp requests and replies.
   3348 			 */
   3349 			tp->t_flags |= TF_RCVD_TSTMP;
   3350 			tp->ts_recent = oi->ts_val;
   3351 			tp->ts_recent_age = tcp_now;
   3352                         break;
   3353 
   3354 		case TCPOPT_SACK_PERMITTED:
   3355 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3356 				continue;
   3357 			if (!(th->th_flags & TH_SYN))
   3358 				continue;
   3359 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3360 				continue;
   3361 			if (tcp_do_sack) {
   3362 				tp->t_flags |= TF_SACK_PERMIT;
   3363 				tp->t_flags |= TF_WILL_SACK;
   3364 			}
   3365 			break;
   3366 
   3367 		case TCPOPT_SACK:
   3368 			tcp_sack_option(tp, th, cp, optlen);
   3369 			break;
   3370 #ifdef TCP_SIGNATURE
   3371 		case TCPOPT_SIGNATURE:
   3372 			if (optlen != TCPOLEN_SIGNATURE)
   3373 				continue;
   3374 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3375 				return (-1);
   3376 
   3377 			sigp = sigbuf;
   3378 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3379 			tp->t_flags |= TF_SIGNATURE;
   3380 			break;
   3381 #endif
   3382 		}
   3383 	}
   3384 
   3385 #ifndef TCP_SIGNATURE
   3386 	return 0;
   3387 #else
   3388 	if (tp->t_flags & TF_SIGNATURE) {
   3389 
   3390 		sav = tcp_signature_getsav(m, th);
   3391 
   3392 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3393 			return (-1);
   3394 	}
   3395 
   3396 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3397 		goto out;
   3398 
   3399 	if (sigp) {
   3400 		char sig[TCP_SIGLEN];
   3401 
   3402 		tcp_fields_to_net(th);
   3403 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3404 			tcp_fields_to_host(th);
   3405 			goto out;
   3406 		}
   3407 		tcp_fields_to_host(th);
   3408 
   3409 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3410 			TCP_STATINC(TCP_STAT_BADSIG);
   3411 			goto out;
   3412 		} else
   3413 			TCP_STATINC(TCP_STAT_GOODSIG);
   3414 
   3415 		key_sa_recordxfer(sav, m);
   3416 		KEY_SA_UNREF(&sav);
   3417 	}
   3418 	return 0;
   3419 out:
   3420 	if (sav != NULL)
   3421 		KEY_SA_UNREF(&sav);
   3422 	return -1;
   3423 #endif
   3424 }
   3425 
   3426 /*
   3427  * Pull out of band byte out of a segment so
   3428  * it doesn't appear in the user's data queue.
   3429  * It is still reflected in the segment length for
   3430  * sequencing purposes.
   3431  */
   3432 void
   3433 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3434     struct mbuf *m, int off)
   3435 {
   3436 	int cnt = off + th->th_urp - 1;
   3437 
   3438 	while (cnt >= 0) {
   3439 		if (m->m_len > cnt) {
   3440 			char *cp = mtod(m, char *) + cnt;
   3441 			struct tcpcb *tp = sototcpcb(so);
   3442 
   3443 			tp->t_iobc = *cp;
   3444 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3445 			bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
   3446 			m->m_len--;
   3447 			return;
   3448 		}
   3449 		cnt -= m->m_len;
   3450 		m = m->m_next;
   3451 		if (m == 0)
   3452 			break;
   3453 	}
   3454 	panic("tcp_pulloutofband");
   3455 }
   3456 
   3457 /*
   3458  * Collect new round-trip time estimate
   3459  * and update averages and current timeout.
   3460  *
   3461  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3462  * difference of two timestamps.
   3463  */
   3464 void
   3465 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3466 {
   3467 	int32_t delta;
   3468 
   3469 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3470 	if (tp->t_srtt != 0) {
   3471 		/*
   3472 		 * Compute the amount to add to srtt for smoothing,
   3473 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3474 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3475 		 * shift left 5 bits, subtract srtt to get the
   3476 		 * diference, and then shift right by TCP_RTT_SHIFT
   3477 		 * (3) to obtain 1/8 of the difference.
   3478 		 */
   3479 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3480 		/*
   3481 		 * This can never happen, because delta's lowest
   3482 		 * possible value is 1/8 of t_srtt.  But if it does,
   3483 		 * set srtt to some reasonable value, here chosen
   3484 		 * as 1/8 tick.
   3485 		 */
   3486 		if ((tp->t_srtt += delta) <= 0)
   3487 			tp->t_srtt = 1 << 2;
   3488 		/*
   3489 		 * RFC2988 requires that rttvar be updated first.
   3490 		 * This code is compliant because "delta" is the old
   3491 		 * srtt minus the new observation (scaled).
   3492 		 *
   3493 		 * RFC2988 says:
   3494 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3495 		 *
   3496 		 * delta is in units of 1/32 ticks, and has then been
   3497 		 * divided by 8.  This is equivalent to being in 1/16s
   3498 		 * units and divided by 4.  Subtract from it 1/4 of
   3499 		 * the existing rttvar to form the (signed) amount to
   3500 		 * adjust.
   3501 		 */
   3502 		if (delta < 0)
   3503 			delta = -delta;
   3504 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3505 		/*
   3506 		 * As with srtt, this should never happen.  There is
   3507 		 * no support in RFC2988 for this operation.  But 1/4s
   3508 		 * as rttvar when faced with something arguably wrong
   3509 		 * is ok.
   3510 		 */
   3511 		if ((tp->t_rttvar += delta) <= 0)
   3512 			tp->t_rttvar = 1 << 2;
   3513 
   3514 		/*
   3515 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3516 		 * Problem is: it doesn't work.  Disabled by defaulting
   3517 		 * tcp_rttlocal to 0; see corresponding code in
   3518 		 * tcp_subr that selects local vs remote in a different way.
   3519 		 *
   3520 		 * The static branch prediction hint here should be removed
   3521 		 * when the rtt estimator is fixed and the rtt_enable code
   3522 		 * is turned back on.
   3523 		 */
   3524 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3525 		    && tp->t_srtt > tcp_msl_remote_threshold
   3526 		    && tp->t_msl  < tcp_msl_remote) {
   3527 			tp->t_msl = tcp_msl_remote;
   3528 		}
   3529 	} else {
   3530 		/*
   3531 		 * This is the first measurement.  Per RFC2988, 2.2,
   3532 		 * set rtt=R and srtt=R/2.
   3533 		 * For srtt, storage representation is 1/32 ticks,
   3534 		 * so shift left by 5.
   3535 		 * For rttvar, storage representation is 1/16 ticks,
   3536 		 * So shift left by 4, but then right by 1 to halve.
   3537 		 */
   3538 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3539 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3540 	}
   3541 	tp->t_rtttime = 0;
   3542 	tp->t_rxtshift = 0;
   3543 
   3544 	/*
   3545 	 * the retransmit should happen at rtt + 4 * rttvar.
   3546 	 * Because of the way we do the smoothing, srtt and rttvar
   3547 	 * will each average +1/2 tick of bias.  When we compute
   3548 	 * the retransmit timer, we want 1/2 tick of rounding and
   3549 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3550 	 * firing of the timer.  The bias will give us exactly the
   3551 	 * 1.5 tick we need.  But, because the bias is
   3552 	 * statistical, we have to test that we don't drop below
   3553 	 * the minimum feasible timer (which is 2 ticks).
   3554 	 */
   3555 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3556 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3557 
   3558 	/*
   3559 	 * We received an ack for a packet that wasn't retransmitted;
   3560 	 * it is probably safe to discard any error indications we've
   3561 	 * received recently.  This isn't quite right, but close enough
   3562 	 * for now (a route might have failed after we sent a segment,
   3563 	 * and the return path might not be symmetrical).
   3564 	 */
   3565 	tp->t_softerror = 0;
   3566 }
   3567 
   3568 
   3569 /*
   3570  * TCP compressed state engine.  Currently used to hold compressed
   3571  * state for SYN_RECEIVED.
   3572  */
   3573 
   3574 u_long	syn_cache_count;
   3575 u_int32_t syn_hash1, syn_hash2;
   3576 
   3577 #define SYN_HASH(sa, sp, dp) \
   3578 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3579 				     ((u_int32_t)(sp)))^syn_hash2)))
   3580 #ifndef INET6
   3581 #define	SYN_HASHALL(hash, src, dst) \
   3582 do {									\
   3583 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3584 		((const struct sockaddr_in *)(src))->sin_port,		\
   3585 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3586 } while (/*CONSTCOND*/ 0)
   3587 #else
   3588 #define SYN_HASH6(sa, sp, dp) \
   3589 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3590 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3591 	 & 0x7fffffff)
   3592 
   3593 #define SYN_HASHALL(hash, src, dst) \
   3594 do {									\
   3595 	switch ((src)->sa_family) {					\
   3596 	case AF_INET:							\
   3597 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3598 			((const struct sockaddr_in *)(src))->sin_port,	\
   3599 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3600 		break;							\
   3601 	case AF_INET6:							\
   3602 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3603 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3604 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3605 		break;							\
   3606 	default:							\
   3607 		hash = 0;						\
   3608 	}								\
   3609 } while (/*CONSTCOND*/0)
   3610 #endif /* INET6 */
   3611 
   3612 static struct pool syn_cache_pool;
   3613 
   3614 /*
   3615  * We don't estimate RTT with SYNs, so each packet starts with the default
   3616  * RTT and each timer step has a fixed timeout value.
   3617  */
   3618 static inline void
   3619 syn_cache_timer_arm(struct syn_cache *sc)
   3620 {
   3621 
   3622 	TCPT_RANGESET(sc->sc_rxtcur,
   3623 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
   3624 	    TCPTV_REXMTMAX);
   3625 	callout_reset(&sc->sc_timer,
   3626 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
   3627 }
   3628 
   3629 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3630 
   3631 static inline void
   3632 syn_cache_rm(struct syn_cache *sc)
   3633 {
   3634 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3635 	    sc, sc_bucketq);
   3636 	sc->sc_tp = NULL;
   3637 	LIST_REMOVE(sc, sc_tpq);
   3638 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3639 	callout_stop(&sc->sc_timer);
   3640 	syn_cache_count--;
   3641 }
   3642 
   3643 static inline void
   3644 syn_cache_put(struct syn_cache *sc)
   3645 {
   3646 	if (sc->sc_ipopts)
   3647 		(void) m_free(sc->sc_ipopts);
   3648 	rtcache_free(&sc->sc_route);
   3649 	sc->sc_flags |= SCF_DEAD;
   3650 	if (!callout_invoking(&sc->sc_timer))
   3651 		callout_schedule(&(sc)->sc_timer, 1);
   3652 }
   3653 
   3654 void
   3655 syn_cache_init(void)
   3656 {
   3657 	int i;
   3658 
   3659 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3660 	    "synpl", NULL, IPL_SOFTNET);
   3661 
   3662 	/* Initialize the hash buckets. */
   3663 	for (i = 0; i < tcp_syn_cache_size; i++)
   3664 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3665 }
   3666 
   3667 void
   3668 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3669 {
   3670 	struct syn_cache_head *scp;
   3671 	struct syn_cache *sc2;
   3672 	int s;
   3673 
   3674 	/*
   3675 	 * If there are no entries in the hash table, reinitialize
   3676 	 * the hash secrets.
   3677 	 */
   3678 	if (syn_cache_count == 0) {
   3679 		syn_hash1 = cprng_fast32();
   3680 		syn_hash2 = cprng_fast32();
   3681 	}
   3682 
   3683 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3684 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3685 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3686 
   3687 	/*
   3688 	 * Make sure that we don't overflow the per-bucket
   3689 	 * limit or the total cache size limit.
   3690 	 */
   3691 	s = splsoftnet();
   3692 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3693 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3694 		/*
   3695 		 * The bucket is full.  Toss the oldest element in the
   3696 		 * bucket.  This will be the first entry in the bucket.
   3697 		 */
   3698 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3699 #ifdef DIAGNOSTIC
   3700 		/*
   3701 		 * This should never happen; we should always find an
   3702 		 * entry in our bucket.
   3703 		 */
   3704 		if (sc2 == NULL)
   3705 			panic("syn_cache_insert: bucketoverflow: impossible");
   3706 #endif
   3707 		syn_cache_rm(sc2);
   3708 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3709 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3710 		struct syn_cache_head *scp2, *sce;
   3711 
   3712 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3713 		/*
   3714 		 * The cache is full.  Toss the oldest entry in the
   3715 		 * first non-empty bucket we can find.
   3716 		 *
   3717 		 * XXX We would really like to toss the oldest
   3718 		 * entry in the cache, but we hope that this
   3719 		 * condition doesn't happen very often.
   3720 		 */
   3721 		scp2 = scp;
   3722 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3723 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3724 			for (++scp2; scp2 != scp; scp2++) {
   3725 				if (scp2 >= sce)
   3726 					scp2 = &tcp_syn_cache[0];
   3727 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3728 					break;
   3729 			}
   3730 #ifdef DIAGNOSTIC
   3731 			/*
   3732 			 * This should never happen; we should always find a
   3733 			 * non-empty bucket.
   3734 			 */
   3735 			if (scp2 == scp)
   3736 				panic("syn_cache_insert: cacheoverflow: "
   3737 				    "impossible");
   3738 #endif
   3739 		}
   3740 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3741 		syn_cache_rm(sc2);
   3742 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3743 	}
   3744 
   3745 	/*
   3746 	 * Initialize the entry's timer.
   3747 	 */
   3748 	sc->sc_rxttot = 0;
   3749 	sc->sc_rxtshift = 0;
   3750 	syn_cache_timer_arm(sc);
   3751 
   3752 	/* Link it from tcpcb entry */
   3753 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3754 
   3755 	/* Put it into the bucket. */
   3756 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3757 	scp->sch_length++;
   3758 	syn_cache_count++;
   3759 
   3760 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3761 	splx(s);
   3762 }
   3763 
   3764 /*
   3765  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3766  * If we have retransmitted an entry the maximum number of times, expire
   3767  * that entry.
   3768  */
   3769 static void
   3770 syn_cache_timer(void *arg)
   3771 {
   3772 	struct syn_cache *sc = arg;
   3773 
   3774 	mutex_enter(softnet_lock);
   3775 	KERNEL_LOCK(1, NULL);
   3776 
   3777 	callout_ack(&sc->sc_timer);
   3778 
   3779 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3780 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3781 		goto free;
   3782 	}
   3783 
   3784 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3785 		/* Drop it -- too many retransmissions. */
   3786 		goto dropit;
   3787 	}
   3788 
   3789 	/*
   3790 	 * Compute the total amount of time this entry has
   3791 	 * been on a queue.  If this entry has been on longer
   3792 	 * than the keep alive timer would allow, expire it.
   3793 	 */
   3794 	sc->sc_rxttot += sc->sc_rxtcur;
   3795 	if (sc->sc_rxttot >= tcp_keepinit)
   3796 		goto dropit;
   3797 
   3798 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3799 	(void) syn_cache_respond(sc, NULL);
   3800 
   3801 	/* Advance the timer back-off. */
   3802 	sc->sc_rxtshift++;
   3803 	syn_cache_timer_arm(sc);
   3804 
   3805 	goto out;
   3806 
   3807  dropit:
   3808 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3809 	syn_cache_rm(sc);
   3810 	if (sc->sc_ipopts)
   3811 		(void) m_free(sc->sc_ipopts);
   3812 	rtcache_free(&sc->sc_route);
   3813 
   3814  free:
   3815 	callout_destroy(&sc->sc_timer);
   3816 	pool_put(&syn_cache_pool, sc);
   3817 
   3818  out:
   3819 	KERNEL_UNLOCK_ONE(NULL);
   3820 	mutex_exit(softnet_lock);
   3821 }
   3822 
   3823 /*
   3824  * Remove syn cache created by the specified tcb entry,
   3825  * because this does not make sense to keep them
   3826  * (if there's no tcb entry, syn cache entry will never be used)
   3827  */
   3828 void
   3829 syn_cache_cleanup(struct tcpcb *tp)
   3830 {
   3831 	struct syn_cache *sc, *nsc;
   3832 	int s;
   3833 
   3834 	s = splsoftnet();
   3835 
   3836 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3837 		nsc = LIST_NEXT(sc, sc_tpq);
   3838 
   3839 #ifdef DIAGNOSTIC
   3840 		if (sc->sc_tp != tp)
   3841 			panic("invalid sc_tp in syn_cache_cleanup");
   3842 #endif
   3843 		syn_cache_rm(sc);
   3844 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3845 	}
   3846 	/* just for safety */
   3847 	LIST_INIT(&tp->t_sc);
   3848 
   3849 	splx(s);
   3850 }
   3851 
   3852 /*
   3853  * Find an entry in the syn cache.
   3854  */
   3855 struct syn_cache *
   3856 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3857     struct syn_cache_head **headp)
   3858 {
   3859 	struct syn_cache *sc;
   3860 	struct syn_cache_head *scp;
   3861 	u_int32_t hash;
   3862 	int s;
   3863 
   3864 	SYN_HASHALL(hash, src, dst);
   3865 
   3866 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3867 	*headp = scp;
   3868 	s = splsoftnet();
   3869 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3870 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3871 		if (sc->sc_hash != hash)
   3872 			continue;
   3873 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3874 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3875 			splx(s);
   3876 			return (sc);
   3877 		}
   3878 	}
   3879 	splx(s);
   3880 	return (NULL);
   3881 }
   3882 
   3883 /*
   3884  * This function gets called when we receive an ACK for a
   3885  * socket in the LISTEN state.  We look up the connection
   3886  * in the syn cache, and if its there, we pull it out of
   3887  * the cache and turn it into a full-blown connection in
   3888  * the SYN-RECEIVED state.
   3889  *
   3890  * The return values may not be immediately obvious, and their effects
   3891  * can be subtle, so here they are:
   3892  *
   3893  *	NULL	SYN was not found in cache; caller should drop the
   3894  *		packet and send an RST.
   3895  *
   3896  *	-1	We were unable to create the new connection, and are
   3897  *		aborting it.  An ACK,RST is being sent to the peer
   3898  *		(unless we got screwey sequence numbners; see below),
   3899  *		because the 3-way handshake has been completed.  Caller
   3900  *		should not free the mbuf, since we may be using it.  If
   3901  *		we are not, we will free it.
   3902  *
   3903  *	Otherwise, the return value is a pointer to the new socket
   3904  *	associated with the connection.
   3905  */
   3906 struct socket *
   3907 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3908     struct tcphdr *th, unsigned int hlen, unsigned int tlen,
   3909     struct socket *so, struct mbuf *m)
   3910 {
   3911 	struct syn_cache *sc;
   3912 	struct syn_cache_head *scp;
   3913 	struct inpcb *inp = NULL;
   3914 #ifdef INET6
   3915 	struct in6pcb *in6p = NULL;
   3916 #endif
   3917 	struct tcpcb *tp = 0;
   3918 	int s;
   3919 	struct socket *oso;
   3920 
   3921 	s = splsoftnet();
   3922 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3923 		splx(s);
   3924 		return (NULL);
   3925 	}
   3926 
   3927 	/*
   3928 	 * Verify the sequence and ack numbers.  Try getting the correct
   3929 	 * response again.
   3930 	 */
   3931 	if ((th->th_ack != sc->sc_iss + 1) ||
   3932 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3933 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3934 		(void) syn_cache_respond(sc, m);
   3935 		splx(s);
   3936 		return ((struct socket *)(-1));
   3937 	}
   3938 
   3939 	/* Remove this cache entry */
   3940 	syn_cache_rm(sc);
   3941 	splx(s);
   3942 
   3943 	/*
   3944 	 * Ok, create the full blown connection, and set things up
   3945 	 * as they would have been set up if we had created the
   3946 	 * connection when the SYN arrived.  If we can't create
   3947 	 * the connection, abort it.
   3948 	 */
   3949 	/*
   3950 	 * inp still has the OLD in_pcb stuff, set the
   3951 	 * v6-related flags on the new guy, too.   This is
   3952 	 * done particularly for the case where an AF_INET6
   3953 	 * socket is bound only to a port, and a v4 connection
   3954 	 * comes in on that port.
   3955 	 * we also copy the flowinfo from the original pcb
   3956 	 * to the new one.
   3957 	 */
   3958 	oso = so;
   3959 	so = sonewconn(so, true);
   3960 	if (so == NULL)
   3961 		goto resetandabort;
   3962 
   3963 	switch (so->so_proto->pr_domain->dom_family) {
   3964 #ifdef INET
   3965 	case AF_INET:
   3966 		inp = sotoinpcb(so);
   3967 		break;
   3968 #endif
   3969 #ifdef INET6
   3970 	case AF_INET6:
   3971 		in6p = sotoin6pcb(so);
   3972 		break;
   3973 #endif
   3974 	}
   3975 	switch (src->sa_family) {
   3976 #ifdef INET
   3977 	case AF_INET:
   3978 		if (inp) {
   3979 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3980 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3981 			inp->inp_options = ip_srcroute(m);
   3982 			in_pcbstate(inp, INP_BOUND);
   3983 			if (inp->inp_options == NULL) {
   3984 				inp->inp_options = sc->sc_ipopts;
   3985 				sc->sc_ipopts = NULL;
   3986 			}
   3987 		}
   3988 #ifdef INET6
   3989 		else if (in6p) {
   3990 			/* IPv4 packet to AF_INET6 socket */
   3991 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   3992 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3993 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3994 				&in6p->in6p_laddr.s6_addr32[3],
   3995 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3996 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3997 			in6totcpcb(in6p)->t_family = AF_INET;
   3998 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3999 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   4000 			else
   4001 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   4002 			in6_pcbstate(in6p, IN6P_BOUND);
   4003 		}
   4004 #endif
   4005 		break;
   4006 #endif
   4007 #ifdef INET6
   4008 	case AF_INET6:
   4009 		if (in6p) {
   4010 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   4011 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   4012 			in6_pcbstate(in6p, IN6P_BOUND);
   4013 		}
   4014 		break;
   4015 #endif
   4016 	}
   4017 #ifdef INET6
   4018 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   4019 		struct in6pcb *oin6p = sotoin6pcb(oso);
   4020 		/* inherit socket options from the listening socket */
   4021 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   4022 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   4023 			m_freem(in6p->in6p_options);
   4024 			in6p->in6p_options = 0;
   4025 		}
   4026 		ip6_savecontrol(in6p, &in6p->in6p_options,
   4027 			mtod(m, struct ip6_hdr *), m);
   4028 	}
   4029 #endif
   4030 
   4031 #if defined(IPSEC)
   4032 	if (ipsec_used) {
   4033 		/*
   4034 		 * we make a copy of policy, instead of sharing the policy, for
   4035 		 * better behavior in terms of SA lookup and dead SA removal.
   4036 		 */
   4037 		if (inp) {
   4038 			/* copy old policy into new socket's */
   4039 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
   4040 			    inp->inp_sp))
   4041 				printf("tcp_input: could not copy policy\n");
   4042 		}
   4043 #ifdef INET6
   4044 		else if (in6p) {
   4045 			/* copy old policy into new socket's */
   4046 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   4047 			    in6p->in6p_sp))
   4048 				printf("tcp_input: could not copy policy\n");
   4049 		}
   4050 #endif
   4051 	}
   4052 #endif
   4053 
   4054 	/*
   4055 	 * Give the new socket our cached route reference.
   4056 	 */
   4057 	if (inp) {
   4058 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   4059 		rtcache_free(&sc->sc_route);
   4060 	}
   4061 #ifdef INET6
   4062 	else {
   4063 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   4064 		rtcache_free(&sc->sc_route);
   4065 	}
   4066 #endif
   4067 
   4068 	if (inp) {
   4069 		struct sockaddr_in sin;
   4070 		memcpy(&sin, src, src->sa_len);
   4071 		if (in_pcbconnect(inp, &sin, &lwp0)) {
   4072 			goto resetandabort;
   4073 		}
   4074 	}
   4075 #ifdef INET6
   4076 	else if (in6p) {
   4077 		struct sockaddr_in6 sin6;
   4078 		memcpy(&sin6, src, src->sa_len);
   4079 		if (src->sa_family == AF_INET) {
   4080 			/* IPv4 packet to AF_INET6 socket */
   4081 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
   4082 		}
   4083 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
   4084 			goto resetandabort;
   4085 		}
   4086 	}
   4087 #endif
   4088 	else {
   4089 		goto resetandabort;
   4090 	}
   4091 
   4092 	if (inp)
   4093 		tp = intotcpcb(inp);
   4094 #ifdef INET6
   4095 	else if (in6p)
   4096 		tp = in6totcpcb(in6p);
   4097 #endif
   4098 	else
   4099 		tp = NULL;
   4100 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   4101 	if (sc->sc_request_r_scale != 15) {
   4102 		tp->requested_s_scale = sc->sc_requested_s_scale;
   4103 		tp->request_r_scale = sc->sc_request_r_scale;
   4104 		tp->snd_scale = sc->sc_requested_s_scale;
   4105 		tp->rcv_scale = sc->sc_request_r_scale;
   4106 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   4107 	}
   4108 	if (sc->sc_flags & SCF_TIMESTAMP)
   4109 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   4110 	tp->ts_timebase = sc->sc_timebase;
   4111 
   4112 	tp->t_template = tcp_template(tp);
   4113 	if (tp->t_template == 0) {
   4114 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   4115 		so = NULL;
   4116 		m_freem(m);
   4117 		goto abort;
   4118 	}
   4119 
   4120 	tp->iss = sc->sc_iss;
   4121 	tp->irs = sc->sc_irs;
   4122 	tcp_sendseqinit(tp);
   4123 	tcp_rcvseqinit(tp);
   4124 	tp->t_state = TCPS_SYN_RECEIVED;
   4125 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4126 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4127 
   4128 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4129 		tp->t_flags |= TF_WILL_SACK;
   4130 
   4131 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4132 		tp->t_flags |= TF_ECN_PERMIT;
   4133 
   4134 #ifdef TCP_SIGNATURE
   4135 	if (sc->sc_flags & SCF_SIGNATURE)
   4136 		tp->t_flags |= TF_SIGNATURE;
   4137 #endif
   4138 
   4139 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4140 	tp->t_ourmss = sc->sc_ourmaxseg;
   4141 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4142 
   4143 	/*
   4144 	 * Initialize the initial congestion window.  If we
   4145 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4146 	 * to 1 segment (i.e. the Loss Window).
   4147 	 */
   4148 	if (sc->sc_rxtshift)
   4149 		tp->snd_cwnd = tp->t_peermss;
   4150 	else {
   4151 		int ss = tcp_init_win;
   4152 #ifdef INET
   4153 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4154 			ss = tcp_init_win_local;
   4155 #endif
   4156 #ifdef INET6
   4157 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4158 			ss = tcp_init_win_local;
   4159 #endif
   4160 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4161 	}
   4162 
   4163 	tcp_rmx_rtt(tp);
   4164 	tp->snd_wl1 = sc->sc_irs;
   4165 	tp->rcv_up = sc->sc_irs + 1;
   4166 
   4167 	/*
   4168 	 * This is what whould have happened in tcp_output() when
   4169 	 * the SYN,ACK was sent.
   4170 	 */
   4171 	tp->snd_up = tp->snd_una;
   4172 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4173 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4174 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4175 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4176 	tp->last_ack_sent = tp->rcv_nxt;
   4177 	tp->t_partialacks = -1;
   4178 	tp->t_dupacks = 0;
   4179 
   4180 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4181 	s = splsoftnet();
   4182 	syn_cache_put(sc);
   4183 	splx(s);
   4184 	return (so);
   4185 
   4186 resetandabort:
   4187 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4188 abort:
   4189 	if (so != NULL) {
   4190 		(void) soqremque(so, 1);
   4191 		(void) soabort(so);
   4192 		mutex_enter(softnet_lock);
   4193 	}
   4194 	s = splsoftnet();
   4195 	syn_cache_put(sc);
   4196 	splx(s);
   4197 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4198 	return ((struct socket *)(-1));
   4199 }
   4200 
   4201 /*
   4202  * This function is called when we get a RST for a
   4203  * non-existent connection, so that we can see if the
   4204  * connection is in the syn cache.  If it is, zap it.
   4205  */
   4206 
   4207 void
   4208 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4209 {
   4210 	struct syn_cache *sc;
   4211 	struct syn_cache_head *scp;
   4212 	int s = splsoftnet();
   4213 
   4214 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4215 		splx(s);
   4216 		return;
   4217 	}
   4218 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4219 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4220 		splx(s);
   4221 		return;
   4222 	}
   4223 	syn_cache_rm(sc);
   4224 	TCP_STATINC(TCP_STAT_SC_RESET);
   4225 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4226 	splx(s);
   4227 }
   4228 
   4229 void
   4230 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4231     struct tcphdr *th)
   4232 {
   4233 	struct syn_cache *sc;
   4234 	struct syn_cache_head *scp;
   4235 	int s;
   4236 
   4237 	s = splsoftnet();
   4238 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4239 		splx(s);
   4240 		return;
   4241 	}
   4242 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4243 	if (ntohl (th->th_seq) != sc->sc_iss) {
   4244 		splx(s);
   4245 		return;
   4246 	}
   4247 
   4248 	/*
   4249 	 * If we've retransmitted 3 times and this is our second error,
   4250 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4251 	 * This prevents us from incorrectly nuking an entry during a
   4252 	 * spurious network outage.
   4253 	 *
   4254 	 * See tcp_notify().
   4255 	 */
   4256 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4257 		sc->sc_flags |= SCF_UNREACH;
   4258 		splx(s);
   4259 		return;
   4260 	}
   4261 
   4262 	syn_cache_rm(sc);
   4263 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4264 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4265 	splx(s);
   4266 }
   4267 
   4268 /*
   4269  * Given a LISTEN socket and an inbound SYN request, add
   4270  * this to the syn cache, and send back a segment:
   4271  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4272  * to the source.
   4273  *
   4274  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4275  * Doing so would require that we hold onto the data and deliver it
   4276  * to the application.  However, if we are the target of a SYN-flood
   4277  * DoS attack, an attacker could send data which would eventually
   4278  * consume all available buffer space if it were ACKed.  By not ACKing
   4279  * the data, we avoid this DoS scenario.
   4280  */
   4281 
   4282 int
   4283 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4284     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4285     int optlen, struct tcp_opt_info *oi)
   4286 {
   4287 	struct tcpcb tb, *tp;
   4288 	long win;
   4289 	struct syn_cache *sc;
   4290 	struct syn_cache_head *scp;
   4291 	struct mbuf *ipopts;
   4292 	struct tcp_opt_info opti;
   4293 	int s;
   4294 
   4295 	tp = sototcpcb(so);
   4296 
   4297 	memset(&opti, 0, sizeof(opti));
   4298 
   4299 	/*
   4300 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN
   4301 	 *
   4302 	 * Note this check is performed in tcp_input() very early on.
   4303 	 */
   4304 
   4305 	/*
   4306 	 * Initialize some local state.
   4307 	 */
   4308 	win = sbspace(&so->so_rcv);
   4309 	if (win > TCP_MAXWIN)
   4310 		win = TCP_MAXWIN;
   4311 
   4312 	switch (src->sa_family) {
   4313 #ifdef INET
   4314 	case AF_INET:
   4315 		/*
   4316 		 * Remember the IP options, if any.
   4317 		 */
   4318 		ipopts = ip_srcroute(m);
   4319 		break;
   4320 #endif
   4321 	default:
   4322 		ipopts = NULL;
   4323 	}
   4324 
   4325 #ifdef TCP_SIGNATURE
   4326 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4327 #else
   4328 	if (optp)
   4329 #endif
   4330 	{
   4331 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4332 #ifdef TCP_SIGNATURE
   4333 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4334 #endif
   4335 		tb.t_state = TCPS_LISTEN;
   4336 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4337 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4338 			return (0);
   4339 	} else
   4340 		tb.t_flags = 0;
   4341 
   4342 	/*
   4343 	 * See if we already have an entry for this connection.
   4344 	 * If we do, resend the SYN,ACK.  We do not count this
   4345 	 * as a retransmission (XXX though maybe we should).
   4346 	 */
   4347 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4348 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4349 		if (ipopts) {
   4350 			/*
   4351 			 * If we were remembering a previous source route,
   4352 			 * forget it and use the new one we've been given.
   4353 			 */
   4354 			if (sc->sc_ipopts)
   4355 				(void) m_free(sc->sc_ipopts);
   4356 			sc->sc_ipopts = ipopts;
   4357 		}
   4358 		sc->sc_timestamp = tb.ts_recent;
   4359 		if (syn_cache_respond(sc, m) == 0) {
   4360 			uint64_t *tcps = TCP_STAT_GETREF();
   4361 			tcps[TCP_STAT_SNDACKS]++;
   4362 			tcps[TCP_STAT_SNDTOTAL]++;
   4363 			TCP_STAT_PUTREF();
   4364 		}
   4365 		return (1);
   4366 	}
   4367 
   4368 	s = splsoftnet();
   4369 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4370 	splx(s);
   4371 	if (sc == NULL) {
   4372 		if (ipopts)
   4373 			(void) m_free(ipopts);
   4374 		return (0);
   4375 	}
   4376 
   4377 	/*
   4378 	 * Fill in the cache, and put the necessary IP and TCP
   4379 	 * options into the reply.
   4380 	 */
   4381 	memset(sc, 0, sizeof(struct syn_cache));
   4382 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4383 	bcopy(src, &sc->sc_src, src->sa_len);
   4384 	bcopy(dst, &sc->sc_dst, dst->sa_len);
   4385 	sc->sc_flags = 0;
   4386 	sc->sc_ipopts = ipopts;
   4387 	sc->sc_irs = th->th_seq;
   4388 	switch (src->sa_family) {
   4389 #ifdef INET
   4390 	case AF_INET:
   4391 	    {
   4392 		struct sockaddr_in *srcin = (void *) src;
   4393 		struct sockaddr_in *dstin = (void *) dst;
   4394 
   4395 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4396 		    &srcin->sin_addr, dstin->sin_port,
   4397 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4398 		break;
   4399 	    }
   4400 #endif /* INET */
   4401 #ifdef INET6
   4402 	case AF_INET6:
   4403 	    {
   4404 		struct sockaddr_in6 *srcin6 = (void *) src;
   4405 		struct sockaddr_in6 *dstin6 = (void *) dst;
   4406 
   4407 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4408 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4409 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4410 		break;
   4411 	    }
   4412 #endif /* INET6 */
   4413 	}
   4414 	sc->sc_peermaxseg = oi->maxseg;
   4415 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4416 						m_get_rcvif_NOMPSAFE(m) : NULL,
   4417 						sc->sc_src.sa.sa_family);
   4418 	sc->sc_win = win;
   4419 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4420 	sc->sc_timestamp = tb.ts_recent;
   4421 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4422 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4423 		sc->sc_flags |= SCF_TIMESTAMP;
   4424 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4425 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4426 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4427 		sc->sc_request_r_scale = 0;
   4428 		/*
   4429 		 * Pick the smallest possible scaling factor that
   4430 		 * will still allow us to scale up to sb_max.
   4431 		 *
   4432 		 * We do this because there are broken firewalls that
   4433 		 * will corrupt the window scale option, leading to
   4434 		 * the other endpoint believing that our advertised
   4435 		 * window is unscaled.  At scale factors larger than
   4436 		 * 5 the unscaled window will drop below 1500 bytes,
   4437 		 * leading to serious problems when traversing these
   4438 		 * broken firewalls.
   4439 		 *
   4440 		 * With the default sbmax of 256K, a scale factor
   4441 		 * of 3 will be chosen by this algorithm.  Those who
   4442 		 * choose a larger sbmax should watch out
   4443 		 * for the compatiblity problems mentioned above.
   4444 		 *
   4445 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4446 		 * or <SYN,ACK>) segment itself is never scaled.
   4447 		 */
   4448 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4449 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4450 			sc->sc_request_r_scale++;
   4451 	} else {
   4452 		sc->sc_requested_s_scale = 15;
   4453 		sc->sc_request_r_scale = 15;
   4454 	}
   4455 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4456 		sc->sc_flags |= SCF_SACK_PERMIT;
   4457 
   4458 	/*
   4459 	 * ECN setup packet received.
   4460 	 */
   4461 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4462 		sc->sc_flags |= SCF_ECN_PERMIT;
   4463 
   4464 #ifdef TCP_SIGNATURE
   4465 	if (tb.t_flags & TF_SIGNATURE)
   4466 		sc->sc_flags |= SCF_SIGNATURE;
   4467 #endif
   4468 	sc->sc_tp = tp;
   4469 	if (syn_cache_respond(sc, m) == 0) {
   4470 		uint64_t *tcps = TCP_STAT_GETREF();
   4471 		tcps[TCP_STAT_SNDACKS]++;
   4472 		tcps[TCP_STAT_SNDTOTAL]++;
   4473 		TCP_STAT_PUTREF();
   4474 		syn_cache_insert(sc, tp);
   4475 	} else {
   4476 		s = splsoftnet();
   4477 		/*
   4478 		 * syn_cache_put() will try to schedule the timer, so
   4479 		 * we need to initialize it
   4480 		 */
   4481 		syn_cache_timer_arm(sc);
   4482 		syn_cache_put(sc);
   4483 		splx(s);
   4484 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4485 	}
   4486 	return (1);
   4487 }
   4488 
   4489 /*
   4490  * syn_cache_respond: (re)send SYN+ACK.
   4491  *
   4492  * returns 0 on success.  otherwise returns an errno, typically ENOBUFS.
   4493  */
   4494 
   4495 int
   4496 syn_cache_respond(struct syn_cache *sc, struct mbuf *m)
   4497 {
   4498 #ifdef INET6
   4499 	struct rtentry *rt = NULL;
   4500 #endif
   4501 	struct route *ro;
   4502 	u_int8_t *optp;
   4503 	int optlen, error;
   4504 	u_int16_t tlen;
   4505 	struct ip *ip = NULL;
   4506 #ifdef INET6
   4507 	struct ip6_hdr *ip6 = NULL;
   4508 #endif
   4509 	struct tcpcb *tp = NULL;
   4510 	struct tcphdr *th;
   4511 	u_int hlen;
   4512 #ifdef TCP_SIGNATURE
   4513 	struct secasvar *sav = NULL;
   4514 	u_int8_t *sigp = NULL;
   4515 #endif
   4516 
   4517 	ro = &sc->sc_route;
   4518 	switch (sc->sc_src.sa.sa_family) {
   4519 	case AF_INET:
   4520 		hlen = sizeof(struct ip);
   4521 		break;
   4522 #ifdef INET6
   4523 	case AF_INET6:
   4524 		hlen = sizeof(struct ip6_hdr);
   4525 		break;
   4526 #endif
   4527 	default:
   4528 		if (m)
   4529 			m_freem(m);
   4530 		return (EAFNOSUPPORT);
   4531 	}
   4532 
   4533 	/* worst case scanario, since we don't know the option size yet  */
   4534 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
   4535 
   4536 	/*
   4537 	 * Create the IP+TCP header from scratch.
   4538 	 */
   4539 	if (m)
   4540 		m_freem(m);
   4541 #ifdef DIAGNOSTIC
   4542 	if (max_linkhdr + tlen > MCLBYTES)
   4543 		return ENOBUFS;
   4544 #endif
   4545 
   4546 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4547 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4548 		MCLGET(m, M_DONTWAIT);
   4549 		if ((m->m_flags & M_EXT) == 0) {
   4550 			m_freem(m);
   4551 			m = NULL;
   4552 		}
   4553 	}
   4554 	if (m == NULL)
   4555 		return ENOBUFS;
   4556 	MCLAIM(m, &tcp_tx_mowner);
   4557 
   4558 	/* Fixup the mbuf. */
   4559 	m->m_data += max_linkhdr;
   4560 	if (sc->sc_tp)
   4561 		tp = sc->sc_tp;
   4562 	m_reset_rcvif(m);
   4563 	memset(mtod(m, u_char *), 0, tlen);
   4564 
   4565 	switch (sc->sc_src.sa.sa_family) {
   4566 	case AF_INET:
   4567 		ip = mtod(m, struct ip *);
   4568 		ip->ip_v = 4;
   4569 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4570 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4571 		ip->ip_p = IPPROTO_TCP;
   4572 		th = (struct tcphdr *)(ip + 1);
   4573 		th->th_dport = sc->sc_src.sin.sin_port;
   4574 		th->th_sport = sc->sc_dst.sin.sin_port;
   4575 		break;
   4576 #ifdef INET6
   4577 	case AF_INET6:
   4578 		ip6 = mtod(m, struct ip6_hdr *);
   4579 		ip6->ip6_vfc = IPV6_VERSION;
   4580 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4581 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4582 		ip6->ip6_nxt = IPPROTO_TCP;
   4583 		/* ip6_plen will be updated in ip6_output() */
   4584 		th = (struct tcphdr *)(ip6 + 1);
   4585 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4586 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4587 		break;
   4588 #endif
   4589 	default:
   4590 		return ENOBUFS;
   4591 	}
   4592 
   4593 	th->th_seq = htonl(sc->sc_iss);
   4594 	th->th_ack = htonl(sc->sc_irs + 1);
   4595 	th->th_flags = TH_SYN|TH_ACK;
   4596 	th->th_win = htons(sc->sc_win);
   4597 	/* th_x2, th_sum, th_urp already 0 from memset */
   4598 
   4599 	/* Tack on the TCP options. */
   4600 	optp = (u_int8_t *)(th + 1);
   4601 	optlen = 0;
   4602 	*optp++ = TCPOPT_MAXSEG;
   4603 	*optp++ = TCPOLEN_MAXSEG;
   4604 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4605 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4606 	optlen += TCPOLEN_MAXSEG;
   4607 
   4608 	if (sc->sc_request_r_scale != 15) {
   4609 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4610 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4611 		    sc->sc_request_r_scale);
   4612 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4613 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4614 	}
   4615 
   4616 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4617 		/* Let the peer know that we will SACK. */
   4618 		*optp++ = TCPOPT_SACK_PERMITTED;
   4619 		*optp++ = TCPOLEN_SACK_PERMITTED;
   4620 		optlen += TCPOLEN_SACK_PERMITTED;
   4621 	}
   4622 
   4623 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4624                 while (optlen % 4 != 2) {
   4625                         optlen += TCPOLEN_NOP;
   4626                         *optp++ = TCPOPT_NOP;
   4627                 }
   4628 		*optp++ = TCPOPT_TIMESTAMP;
   4629 		*optp++ = TCPOLEN_TIMESTAMP;
   4630 		u_int32_t *lp = (u_int32_t *)(optp);
   4631 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4632 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4633 		*lp   = htonl(sc->sc_timestamp);
   4634 		optp += TCPOLEN_TIMESTAMP - 2;
   4635 		optlen += TCPOLEN_TIMESTAMP;
   4636 	}
   4637 
   4638 #ifdef TCP_SIGNATURE
   4639 	if (sc->sc_flags & SCF_SIGNATURE) {
   4640 
   4641 		sav = tcp_signature_getsav(m, th);
   4642 
   4643 		if (sav == NULL) {
   4644 			if (m)
   4645 				m_freem(m);
   4646 			return (EPERM);
   4647 		}
   4648 
   4649 		*optp++ = TCPOPT_SIGNATURE;
   4650 		*optp++ = TCPOLEN_SIGNATURE;
   4651 		sigp = optp;
   4652 		memset(optp, 0, TCP_SIGLEN);
   4653 		optp += TCP_SIGLEN;
   4654 		optlen += TCPOLEN_SIGNATURE;
   4655 
   4656 	}
   4657 #endif
   4658 	/* Terminate and pad TCP options to a 4 byte boundary. */
   4659 	if (optlen % 4) {
   4660 		optlen += TCPOLEN_EOL;
   4661 		*optp++ = TCPOPT_EOL;
   4662 	}
   4663 	/*
   4664 	 * According to RFC 793 (STD0007):
   4665 	 *   "The content of the header beyond the End-of-Option option
   4666 	 *    must be header padding (i.e., zero)."
   4667 	 *   and later: "The padding is composed of zeros."
   4668 	 */
   4669 	while (optlen % 4) {
   4670 		optlen += TCPOLEN_PAD;
   4671 		*optp++ = TCPOPT_PAD;
   4672 	}
   4673 
   4674 	/* compute the actual values now that we've added the options */
   4675 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4676 	m->m_len = m->m_pkthdr.len = tlen;
   4677 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4678 
   4679 #ifdef TCP_SIGNATURE
   4680 	if (sav) {
   4681 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4682 		key_sa_recordxfer(sav, m);
   4683 		KEY_SA_UNREF(&sav);
   4684 	}
   4685 #endif
   4686 
   4687 	/*
   4688 	 * Send ECN SYN-ACK setup packet.
   4689 	 * Routes can be asymetric, so, even if we receive a packet
   4690 	 * with ECE and CWR set, we must not assume no one will block
   4691 	 * the ECE packet we are about to send.
   4692 	 */
   4693 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4694 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4695 		th->th_flags |= TH_ECE;
   4696 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4697 
   4698 		/*
   4699 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4700 		 *
   4701 		 * "[...] a TCP node MAY respond to an ECN-setup
   4702 		 * SYN packet by setting ECT in the responding
   4703 		 * ECN-setup SYN/ACK packet, indicating to routers
   4704 		 * that the SYN/ACK packet is ECN-Capable.
   4705 		 * This allows a congested router along the path
   4706 		 * to mark the packet instead of dropping the
   4707 		 * packet as an indication of congestion."
   4708 		 *
   4709 		 * "[...] There can be a great benefit in setting
   4710 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4711 		 * Congestion is  most likely to occur in
   4712 		 * the server-to-client direction.  As a result,
   4713 		 * setting an ECN-capable codepoint in SYN/ACK
   4714 		 * packets can reduce the occurence of three-second
   4715 		 * retransmit timeouts resulting from the drop
   4716 		 * of SYN/ACK packets."
   4717 		 *
   4718 		 * Page 4 and 6, January 2006.
   4719 		 */
   4720 
   4721 		switch (sc->sc_src.sa.sa_family) {
   4722 #ifdef INET
   4723 		case AF_INET:
   4724 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4725 			break;
   4726 #endif
   4727 #ifdef INET6
   4728 		case AF_INET6:
   4729 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4730 			break;
   4731 #endif
   4732 		}
   4733 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4734 	}
   4735 
   4736 
   4737 	/* Compute the packet's checksum. */
   4738 	switch (sc->sc_src.sa.sa_family) {
   4739 	case AF_INET:
   4740 		ip->ip_len = htons(tlen - hlen);
   4741 		th->th_sum = 0;
   4742 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4743 		break;
   4744 #ifdef INET6
   4745 	case AF_INET6:
   4746 		ip6->ip6_plen = htons(tlen - hlen);
   4747 		th->th_sum = 0;
   4748 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4749 		break;
   4750 #endif
   4751 	}
   4752 
   4753 	/*
   4754 	 * Fill in some straggling IP bits.  Note the stack expects
   4755 	 * ip_len to be in host order, for convenience.
   4756 	 */
   4757 	switch (sc->sc_src.sa.sa_family) {
   4758 #ifdef INET
   4759 	case AF_INET:
   4760 		ip->ip_len = htons(tlen);
   4761 		ip->ip_ttl = ip_defttl;
   4762 		/* XXX tos? */
   4763 		break;
   4764 #endif
   4765 #ifdef INET6
   4766 	case AF_INET6:
   4767 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4768 		ip6->ip6_vfc |= IPV6_VERSION;
   4769 		ip6->ip6_plen = htons(tlen - hlen);
   4770 		/* ip6_hlim will be initialized afterwards */
   4771 		/* XXX flowlabel? */
   4772 		break;
   4773 #endif
   4774 	}
   4775 
   4776 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4777 	tp = sc->sc_tp;
   4778 
   4779 	switch (sc->sc_src.sa.sa_family) {
   4780 #ifdef INET
   4781 	case AF_INET:
   4782 		error = ip_output(m, sc->sc_ipopts, ro,
   4783 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4784 		    NULL, tp ? tp->t_inpcb : NULL);
   4785 		break;
   4786 #endif
   4787 #ifdef INET6
   4788 	case AF_INET6:
   4789 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4790 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
   4791 		rtcache_unref(rt, ro);
   4792 
   4793 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
   4794 		    tp ? tp->t_in6pcb : NULL, NULL);
   4795 		break;
   4796 #endif
   4797 	default:
   4798 		error = EAFNOSUPPORT;
   4799 		break;
   4800 	}
   4801 	return (error);
   4802 }
   4803