tcp_input.c revision 1.383 1 /* $NetBSD: tcp_input.c,v 1.383 2018/03/01 06:08:43 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.383 2018/03/01 06:08:43 maxv Exp $");
152
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177
178 #include <net/if.h>
179 #include <net/if_types.h>
180
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188
189 #ifdef INET6
190 #ifndef INET
191 #include <netinet/in.h>
192 #endif
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204
205 #ifndef INET6
206 /* always need ip6.h for IP6_EXTHDR_GET */
207 #include <netinet/ip6.h>
208 #endif
209
210 #include <netinet/tcp.h>
211 #include <netinet/tcp_fsm.h>
212 #include <netinet/tcp_seq.h>
213 #include <netinet/tcp_timer.h>
214 #include <netinet/tcp_var.h>
215 #include <netinet/tcp_private.h>
216 #include <netinet/tcpip.h>
217 #include <netinet/tcp_congctl.h>
218 #include <netinet/tcp_debug.h>
219
220 #ifdef INET6
221 #include "faith.h"
222 #if defined(NFAITH) && NFAITH > 0
223 #include <net/if_faith.h>
224 #endif
225 #endif /* INET6 */
226
227 #ifdef IPSEC
228 #include <netipsec/ipsec.h>
229 #include <netipsec/ipsec_var.h>
230 #include <netipsec/key.h>
231 #ifdef INET6
232 #include <netipsec/ipsec6.h>
233 #endif
234 #endif /* IPSEC*/
235
236 #include <netinet/tcp_vtw.h>
237
238 int tcprexmtthresh = 3;
239 int tcp_log_refused;
240
241 int tcp_do_autorcvbuf = 1;
242 int tcp_autorcvbuf_inc = 16 * 1024;
243 int tcp_autorcvbuf_max = 256 * 1024;
244 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
245
246 static int tcp_rst_ppslim_count = 0;
247 static struct timeval tcp_rst_ppslim_last;
248 static int tcp_ackdrop_ppslim_count = 0;
249 static struct timeval tcp_ackdrop_ppslim_last;
250
251 static void syn_cache_timer(void *);
252
253 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
254
255 /* for modulo comparisons of timestamps */
256 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
257 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
258
259 /*
260 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
261 */
262 #ifdef INET6
263 static inline void
264 nd6_hint(struct tcpcb *tp)
265 {
266 struct rtentry *rt = NULL;
267
268 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
269 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
270 nd6_nud_hint(rt);
271 rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
272 }
273 #else
274 static inline void
275 nd6_hint(struct tcpcb *tp)
276 {
277 }
278 #endif
279
280 /*
281 * Compute ACK transmission behavior. Delay the ACK unless
282 * we have already delayed an ACK (must send an ACK every two segments).
283 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
284 * option is enabled.
285 */
286 static void
287 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
288 {
289
290 if (tp->t_flags & TF_DELACK ||
291 (tcp_ack_on_push && th->th_flags & TH_PUSH))
292 tp->t_flags |= TF_ACKNOW;
293 else
294 TCP_SET_DELACK(tp);
295 }
296
297 static void
298 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
299 {
300
301 /*
302 * If we had a pending ICMP message that refers to data that have
303 * just been acknowledged, disregard the recorded ICMP message.
304 */
305 if ((tp->t_flags & TF_PMTUD_PEND) &&
306 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
307 tp->t_flags &= ~TF_PMTUD_PEND;
308
309 /*
310 * Keep track of the largest chunk of data
311 * acknowledged since last PMTU update
312 */
313 if (tp->t_pmtud_mss_acked < acked)
314 tp->t_pmtud_mss_acked = acked;
315 }
316
317 /*
318 * Convert TCP protocol fields to host order for easier processing.
319 */
320 static void
321 tcp_fields_to_host(struct tcphdr *th)
322 {
323
324 NTOHL(th->th_seq);
325 NTOHL(th->th_ack);
326 NTOHS(th->th_win);
327 NTOHS(th->th_urp);
328 }
329
330 /*
331 * ... and reverse the above.
332 */
333 static void
334 tcp_fields_to_net(struct tcphdr *th)
335 {
336
337 HTONL(th->th_seq);
338 HTONL(th->th_ack);
339 HTONS(th->th_win);
340 HTONS(th->th_urp);
341 }
342
343 #ifdef TCP_CSUM_COUNTERS
344 #include <sys/device.h>
345
346 #if defined(INET)
347 extern struct evcnt tcp_hwcsum_ok;
348 extern struct evcnt tcp_hwcsum_bad;
349 extern struct evcnt tcp_hwcsum_data;
350 extern struct evcnt tcp_swcsum;
351 #endif /* defined(INET) */
352 #if defined(INET6)
353 extern struct evcnt tcp6_hwcsum_ok;
354 extern struct evcnt tcp6_hwcsum_bad;
355 extern struct evcnt tcp6_hwcsum_data;
356 extern struct evcnt tcp6_swcsum;
357 #endif /* defined(INET6) */
358
359 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
360
361 #else
362
363 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
364
365 #endif /* TCP_CSUM_COUNTERS */
366
367 #ifdef TCP_REASS_COUNTERS
368 #include <sys/device.h>
369
370 extern struct evcnt tcp_reass_;
371 extern struct evcnt tcp_reass_empty;
372 extern struct evcnt tcp_reass_iteration[8];
373 extern struct evcnt tcp_reass_prependfirst;
374 extern struct evcnt tcp_reass_prepend;
375 extern struct evcnt tcp_reass_insert;
376 extern struct evcnt tcp_reass_inserttail;
377 extern struct evcnt tcp_reass_append;
378 extern struct evcnt tcp_reass_appendtail;
379 extern struct evcnt tcp_reass_overlaptail;
380 extern struct evcnt tcp_reass_overlapfront;
381 extern struct evcnt tcp_reass_segdup;
382 extern struct evcnt tcp_reass_fragdup;
383
384 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
385
386 #else
387
388 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
389
390 #endif /* TCP_REASS_COUNTERS */
391
392 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
393 int *);
394 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
395 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
396
397 #ifdef INET
398 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
399 #endif
400 #ifdef INET6
401 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
402 #endif
403
404 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
405
406 #if defined(MBUFTRACE)
407 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
408 #endif /* defined(MBUFTRACE) */
409
410 static struct pool tcpipqent_pool;
411
412 void
413 tcpipqent_init(void)
414 {
415
416 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
417 NULL, IPL_VM);
418 }
419
420 struct ipqent *
421 tcpipqent_alloc(void)
422 {
423 struct ipqent *ipqe;
424 int s;
425
426 s = splvm();
427 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
428 splx(s);
429
430 return ipqe;
431 }
432
433 void
434 tcpipqent_free(struct ipqent *ipqe)
435 {
436 int s;
437
438 s = splvm();
439 pool_put(&tcpipqent_pool, ipqe);
440 splx(s);
441 }
442
443 static int
444 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int *tlen)
445 {
446 struct ipqent *p, *q, *nq, *tiqe = NULL;
447 struct socket *so = NULL;
448 int pkt_flags;
449 tcp_seq pkt_seq;
450 unsigned pkt_len;
451 u_long rcvpartdupbyte = 0;
452 u_long rcvoobyte;
453 #ifdef TCP_REASS_COUNTERS
454 u_int count = 0;
455 #endif
456 uint64_t *tcps;
457
458 if (tp->t_inpcb)
459 so = tp->t_inpcb->inp_socket;
460 #ifdef INET6
461 else if (tp->t_in6pcb)
462 so = tp->t_in6pcb->in6p_socket;
463 #endif
464
465 TCP_REASS_LOCK_CHECK(tp);
466
467 /*
468 * Call with th==0 after become established to
469 * force pre-ESTABLISHED data up to user socket.
470 */
471 if (th == 0)
472 goto present;
473
474 m_claimm(m, &tcp_reass_mowner);
475
476 rcvoobyte = *tlen;
477 /*
478 * Copy these to local variables because the tcpiphdr
479 * gets munged while we are collapsing mbufs.
480 */
481 pkt_seq = th->th_seq;
482 pkt_len = *tlen;
483 pkt_flags = th->th_flags;
484
485 TCP_REASS_COUNTER_INCR(&tcp_reass_);
486
487 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
488 /*
489 * When we miss a packet, the vast majority of time we get
490 * packets that follow it in order. So optimize for that.
491 */
492 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
493 p->ipqe_len += pkt_len;
494 p->ipqe_flags |= pkt_flags;
495 m_cat(p->ipre_mlast, m);
496 TRAVERSE(p->ipre_mlast);
497 m = NULL;
498 tiqe = p;
499 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
500 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
501 goto skip_replacement;
502 }
503 /*
504 * While we're here, if the pkt is completely beyond
505 * anything we have, just insert it at the tail.
506 */
507 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
508 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
509 goto insert_it;
510 }
511 }
512
513 q = TAILQ_FIRST(&tp->segq);
514
515 if (q != NULL) {
516 /*
517 * If this segment immediately precedes the first out-of-order
518 * block, simply slap the segment in front of it and (mostly)
519 * skip the complicated logic.
520 */
521 if (pkt_seq + pkt_len == q->ipqe_seq) {
522 q->ipqe_seq = pkt_seq;
523 q->ipqe_len += pkt_len;
524 q->ipqe_flags |= pkt_flags;
525 m_cat(m, q->ipqe_m);
526 q->ipqe_m = m;
527 q->ipre_mlast = m; /* last mbuf may have changed */
528 TRAVERSE(q->ipre_mlast);
529 tiqe = q;
530 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
531 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
532 goto skip_replacement;
533 }
534 } else {
535 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
536 }
537
538 /*
539 * Find a segment which begins after this one does.
540 */
541 for (p = NULL; q != NULL; q = nq) {
542 nq = TAILQ_NEXT(q, ipqe_q);
543 #ifdef TCP_REASS_COUNTERS
544 count++;
545 #endif
546 /*
547 * If the received segment is just right after this
548 * fragment, merge the two together and then check
549 * for further overlaps.
550 */
551 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
552 #ifdef TCPREASS_DEBUG
553 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
554 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
555 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
556 #endif
557 pkt_len += q->ipqe_len;
558 pkt_flags |= q->ipqe_flags;
559 pkt_seq = q->ipqe_seq;
560 m_cat(q->ipre_mlast, m);
561 TRAVERSE(q->ipre_mlast);
562 m = q->ipqe_m;
563 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
564 goto free_ipqe;
565 }
566 /*
567 * If the received segment is completely past this
568 * fragment, we need to go the next fragment.
569 */
570 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
571 p = q;
572 continue;
573 }
574 /*
575 * If the fragment is past the received segment,
576 * it (or any following) can't be concatenated.
577 */
578 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
579 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
580 break;
581 }
582
583 /*
584 * We've received all the data in this segment before.
585 * mark it as a duplicate and return.
586 */
587 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
588 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
589 tcps = TCP_STAT_GETREF();
590 tcps[TCP_STAT_RCVDUPPACK]++;
591 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
592 TCP_STAT_PUTREF();
593 tcp_new_dsack(tp, pkt_seq, pkt_len);
594 m_freem(m);
595 if (tiqe != NULL) {
596 tcpipqent_free(tiqe);
597 }
598 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
599 goto out;
600 }
601 /*
602 * Received segment completely overlaps this fragment
603 * so we drop the fragment (this keeps the temporal
604 * ordering of segments correct).
605 */
606 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
607 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
608 rcvpartdupbyte += q->ipqe_len;
609 m_freem(q->ipqe_m);
610 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
611 goto free_ipqe;
612 }
613 /*
614 * RX'ed segment extends past the end of the
615 * fragment. Drop the overlapping bytes. Then
616 * merge the fragment and segment then treat as
617 * a longer received packet.
618 */
619 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
620 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
621 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
622 #ifdef TCPREASS_DEBUG
623 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
624 tp, overlap,
625 pkt_seq, pkt_seq + pkt_len, pkt_len);
626 #endif
627 m_adj(m, overlap);
628 rcvpartdupbyte += overlap;
629 m_cat(q->ipre_mlast, m);
630 TRAVERSE(q->ipre_mlast);
631 m = q->ipqe_m;
632 pkt_seq = q->ipqe_seq;
633 pkt_len += q->ipqe_len - overlap;
634 rcvoobyte -= overlap;
635 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
636 goto free_ipqe;
637 }
638 /*
639 * RX'ed segment extends past the front of the
640 * fragment. Drop the overlapping bytes on the
641 * received packet. The packet will then be
642 * contatentated with this fragment a bit later.
643 */
644 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
645 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
646 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
647 #ifdef TCPREASS_DEBUG
648 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
649 tp, overlap,
650 pkt_seq, pkt_seq + pkt_len, pkt_len);
651 #endif
652 m_adj(m, -overlap);
653 pkt_len -= overlap;
654 rcvpartdupbyte += overlap;
655 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
656 rcvoobyte -= overlap;
657 }
658 /*
659 * If the received segment immediates precedes this
660 * fragment then tack the fragment onto this segment
661 * and reinsert the data.
662 */
663 if (q->ipqe_seq == pkt_seq + pkt_len) {
664 #ifdef TCPREASS_DEBUG
665 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
666 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
667 pkt_seq, pkt_seq + pkt_len, pkt_len);
668 #endif
669 pkt_len += q->ipqe_len;
670 pkt_flags |= q->ipqe_flags;
671 m_cat(m, q->ipqe_m);
672 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
673 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
674 tp->t_segqlen--;
675 KASSERT(tp->t_segqlen >= 0);
676 KASSERT(tp->t_segqlen != 0 ||
677 (TAILQ_EMPTY(&tp->segq) &&
678 TAILQ_EMPTY(&tp->timeq)));
679 if (tiqe == NULL) {
680 tiqe = q;
681 } else {
682 tcpipqent_free(q);
683 }
684 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
685 break;
686 }
687 /*
688 * If the fragment is before the segment, remember it.
689 * When this loop is terminated, p will contain the
690 * pointer to fragment that is right before the received
691 * segment.
692 */
693 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
694 p = q;
695
696 continue;
697
698 /*
699 * This is a common operation. It also will allow
700 * to save doing a malloc/free in most instances.
701 */
702 free_ipqe:
703 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
704 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
705 tp->t_segqlen--;
706 KASSERT(tp->t_segqlen >= 0);
707 KASSERT(tp->t_segqlen != 0 ||
708 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
709 if (tiqe == NULL) {
710 tiqe = q;
711 } else {
712 tcpipqent_free(q);
713 }
714 }
715
716 #ifdef TCP_REASS_COUNTERS
717 if (count > 7)
718 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
719 else if (count > 0)
720 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
721 #endif
722
723 insert_it:
724
725 /*
726 * Allocate a new queue entry since the received segment did not
727 * collapse onto any other out-of-order block; thus we are allocating
728 * a new block. If it had collapsed, tiqe would not be NULL and
729 * we would be reusing it.
730 * XXX If we can't, just drop the packet. XXX
731 */
732 if (tiqe == NULL) {
733 tiqe = tcpipqent_alloc();
734 if (tiqe == NULL) {
735 TCP_STATINC(TCP_STAT_RCVMEMDROP);
736 m_freem(m);
737 goto out;
738 }
739 }
740
741 /*
742 * Update the counters.
743 */
744 tp->t_rcvoopack++;
745 tcps = TCP_STAT_GETREF();
746 tcps[TCP_STAT_RCVOOPACK]++;
747 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
748 if (rcvpartdupbyte) {
749 tcps[TCP_STAT_RCVPARTDUPPACK]++;
750 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
751 }
752 TCP_STAT_PUTREF();
753
754 /*
755 * Insert the new fragment queue entry into both queues.
756 */
757 tiqe->ipqe_m = m;
758 tiqe->ipre_mlast = m;
759 tiqe->ipqe_seq = pkt_seq;
760 tiqe->ipqe_len = pkt_len;
761 tiqe->ipqe_flags = pkt_flags;
762 if (p == NULL) {
763 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
764 #ifdef TCPREASS_DEBUG
765 if (tiqe->ipqe_seq != tp->rcv_nxt)
766 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
767 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
768 #endif
769 } else {
770 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
771 #ifdef TCPREASS_DEBUG
772 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
773 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
774 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
775 #endif
776 }
777 tp->t_segqlen++;
778
779 skip_replacement:
780
781 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
782
783 present:
784 /*
785 * Present data to user, advancing rcv_nxt through
786 * completed sequence space.
787 */
788 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
789 goto out;
790 q = TAILQ_FIRST(&tp->segq);
791 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
792 goto out;
793 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
794 goto out;
795
796 tp->rcv_nxt += q->ipqe_len;
797 pkt_flags = q->ipqe_flags & TH_FIN;
798 nd6_hint(tp);
799
800 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
801 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
802 tp->t_segqlen--;
803 KASSERT(tp->t_segqlen >= 0);
804 KASSERT(tp->t_segqlen != 0 ||
805 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
806 if (so->so_state & SS_CANTRCVMORE)
807 m_freem(q->ipqe_m);
808 else
809 sbappendstream(&so->so_rcv, q->ipqe_m);
810 tcpipqent_free(q);
811 TCP_REASS_UNLOCK(tp);
812 sorwakeup(so);
813 return (pkt_flags);
814 out:
815 TCP_REASS_UNLOCK(tp);
816 return (0);
817 }
818
819 #ifdef INET6
820 int
821 tcp6_input(struct mbuf **mp, int *offp, int proto)
822 {
823 struct mbuf *m = *mp;
824
825 /*
826 * draft-itojun-ipv6-tcp-to-anycast
827 * better place to put this in?
828 */
829 if (m->m_flags & M_ANYCAST6) {
830 struct ip6_hdr *ip6;
831 if (m->m_len < sizeof(struct ip6_hdr)) {
832 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
833 TCP_STATINC(TCP_STAT_RCVSHORT);
834 return IPPROTO_DONE;
835 }
836 }
837 ip6 = mtod(m, struct ip6_hdr *);
838 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
839 (char *)&ip6->ip6_dst - (char *)ip6);
840 return IPPROTO_DONE;
841 }
842
843 tcp_input(m, *offp, proto);
844 return IPPROTO_DONE;
845 }
846 #endif
847
848 #ifdef INET
849 static void
850 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
851 {
852 char src[INET_ADDRSTRLEN];
853 char dst[INET_ADDRSTRLEN];
854
855 if (ip) {
856 in_print(src, sizeof(src), &ip->ip_src);
857 in_print(dst, sizeof(dst), &ip->ip_dst);
858 }
859 else {
860 strlcpy(src, "(unknown)", sizeof(src));
861 strlcpy(dst, "(unknown)", sizeof(dst));
862 }
863 log(LOG_INFO,
864 "Connection attempt to TCP %s:%d from %s:%d\n",
865 dst, ntohs(th->th_dport),
866 src, ntohs(th->th_sport));
867 }
868 #endif
869
870 #ifdef INET6
871 static void
872 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
873 {
874 char src[INET6_ADDRSTRLEN];
875 char dst[INET6_ADDRSTRLEN];
876
877 if (ip6) {
878 in6_print(src, sizeof(src), &ip6->ip6_src);
879 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
880 }
881 else {
882 strlcpy(src, "(unknown v6)", sizeof(src));
883 strlcpy(dst, "(unknown v6)", sizeof(dst));
884 }
885 log(LOG_INFO,
886 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
887 dst, ntohs(th->th_dport),
888 src, ntohs(th->th_sport));
889 }
890 #endif
891
892 /*
893 * Checksum extended TCP header and data.
894 */
895 int
896 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
897 int toff, int off, int tlen)
898 {
899 struct ifnet *rcvif;
900 int s;
901
902 /*
903 * XXX it's better to record and check if this mbuf is
904 * already checked.
905 */
906
907 rcvif = m_get_rcvif(m, &s);
908 if (__predict_false(rcvif == NULL))
909 goto badcsum; /* XXX */
910
911 switch (af) {
912 #ifdef INET
913 case AF_INET:
914 switch (m->m_pkthdr.csum_flags &
915 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
916 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
917 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
918 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
919 goto badcsum;
920
921 case M_CSUM_TCPv4|M_CSUM_DATA: {
922 u_int32_t hw_csum = m->m_pkthdr.csum_data;
923
924 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
925 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
926 const struct ip *ip =
927 mtod(m, const struct ip *);
928
929 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
930 ip->ip_dst.s_addr,
931 htons(hw_csum + tlen + off + IPPROTO_TCP));
932 }
933 if ((hw_csum ^ 0xffff) != 0)
934 goto badcsum;
935 break;
936 }
937
938 case M_CSUM_TCPv4:
939 /* Checksum was okay. */
940 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
941 break;
942
943 default:
944 /*
945 * Must compute it ourselves. Maybe skip checksum
946 * on loopback interfaces.
947 */
948 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
949 tcp_do_loopback_cksum)) {
950 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
951 if (in4_cksum(m, IPPROTO_TCP, toff,
952 tlen + off) != 0)
953 goto badcsum;
954 }
955 break;
956 }
957 break;
958 #endif /* INET4 */
959
960 #ifdef INET6
961 case AF_INET6:
962 switch (m->m_pkthdr.csum_flags &
963 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
964 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
965 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
966 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
967 goto badcsum;
968
969 #if 0 /* notyet */
970 case M_CSUM_TCPv6|M_CSUM_DATA:
971 #endif
972
973 case M_CSUM_TCPv6:
974 /* Checksum was okay. */
975 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
976 break;
977
978 default:
979 /*
980 * Must compute it ourselves. Maybe skip checksum
981 * on loopback interfaces.
982 */
983 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
984 tcp_do_loopback_cksum)) {
985 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
986 if (in6_cksum(m, IPPROTO_TCP, toff,
987 tlen + off) != 0)
988 goto badcsum;
989 }
990 }
991 break;
992 #endif /* INET6 */
993 }
994 m_put_rcvif(rcvif, &s);
995
996 return 0;
997
998 badcsum:
999 m_put_rcvif(rcvif, &s);
1000 TCP_STATINC(TCP_STAT_RCVBADSUM);
1001 return -1;
1002 }
1003
1004 /* When a packet arrives addressed to a vestigial tcpbp, we
1005 * nevertheless have to respond to it per the spec.
1006 */
1007 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1008 struct mbuf *m, int tlen)
1009 {
1010 int tiflags;
1011 int todrop;
1012 uint32_t t_flags = 0;
1013 uint64_t *tcps;
1014
1015 tiflags = th->th_flags;
1016 todrop = vp->rcv_nxt - th->th_seq;
1017
1018 if (todrop > 0) {
1019 if (tiflags & TH_SYN) {
1020 tiflags &= ~TH_SYN;
1021 ++th->th_seq;
1022 if (th->th_urp > 1)
1023 --th->th_urp;
1024 else {
1025 tiflags &= ~TH_URG;
1026 th->th_urp = 0;
1027 }
1028 --todrop;
1029 }
1030 if (todrop > tlen ||
1031 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1032 /*
1033 * Any valid FIN or RST must be to the left of the
1034 * window. At this point the FIN or RST must be a
1035 * duplicate or out of sequence; drop it.
1036 */
1037 if (tiflags & TH_RST)
1038 goto drop;
1039 tiflags &= ~(TH_FIN|TH_RST);
1040 /*
1041 * Send an ACK to resynchronize and drop any data.
1042 * But keep on processing for RST or ACK.
1043 */
1044 t_flags |= TF_ACKNOW;
1045 todrop = tlen;
1046 tcps = TCP_STAT_GETREF();
1047 tcps[TCP_STAT_RCVDUPPACK] += 1;
1048 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1049 TCP_STAT_PUTREF();
1050 } else if ((tiflags & TH_RST)
1051 && th->th_seq != vp->rcv_nxt) {
1052 /*
1053 * Test for reset before adjusting the sequence
1054 * number for overlapping data.
1055 */
1056 goto dropafterack_ratelim;
1057 } else {
1058 tcps = TCP_STAT_GETREF();
1059 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1060 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1061 TCP_STAT_PUTREF();
1062 }
1063
1064 // tcp_new_dsack(tp, th->th_seq, todrop);
1065 // hdroptlen += todrop; /*drop from head afterwards*/
1066
1067 th->th_seq += todrop;
1068 tlen -= todrop;
1069
1070 if (th->th_urp > todrop)
1071 th->th_urp -= todrop;
1072 else {
1073 tiflags &= ~TH_URG;
1074 th->th_urp = 0;
1075 }
1076 }
1077
1078 /*
1079 * If new data are received on a connection after the
1080 * user processes are gone, then RST the other end.
1081 */
1082 if (tlen) {
1083 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1084 goto dropwithreset;
1085 }
1086
1087 /*
1088 * If segment ends after window, drop trailing data
1089 * (and PUSH and FIN); if nothing left, just ACK.
1090 */
1091 todrop = (th->th_seq + tlen) - (vp->rcv_nxt+vp->rcv_wnd);
1092
1093 if (todrop > 0) {
1094 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1095 if (todrop >= tlen) {
1096 /*
1097 * The segment actually starts after the window.
1098 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1099 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1100 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1101 */
1102 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1103 /*
1104 * If a new connection request is received
1105 * while in TIME_WAIT, drop the old connection
1106 * and start over if the sequence numbers
1107 * are above the previous ones.
1108 */
1109 if ((tiflags & TH_SYN)
1110 && SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1111 /* We only support this in the !NOFDREF case, which
1112 * is to say: not here.
1113 */
1114 goto dropwithreset;
1115 }
1116 /*
1117 * If window is closed can only take segments at
1118 * window edge, and have to drop data and PUSH from
1119 * incoming segments. Continue processing, but
1120 * remember to ack. Otherwise, drop segment
1121 * and (if not RST) ack.
1122 */
1123 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1124 t_flags |= TF_ACKNOW;
1125 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1126 } else
1127 goto dropafterack;
1128 } else
1129 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1130 m_adj(m, -todrop);
1131 tlen -= todrop;
1132 tiflags &= ~(TH_PUSH|TH_FIN);
1133 }
1134
1135 if (tiflags & TH_RST) {
1136 if (th->th_seq != vp->rcv_nxt)
1137 goto dropafterack_ratelim;
1138
1139 vtw_del(vp->ctl, vp->vtw);
1140 goto drop;
1141 }
1142
1143 /*
1144 * If the ACK bit is off we drop the segment and return.
1145 */
1146 if ((tiflags & TH_ACK) == 0) {
1147 if (t_flags & TF_ACKNOW)
1148 goto dropafterack;
1149 else
1150 goto drop;
1151 }
1152
1153 /*
1154 * In TIME_WAIT state the only thing that should arrive
1155 * is a retransmission of the remote FIN. Acknowledge
1156 * it and restart the finack timer.
1157 */
1158 vtw_restart(vp);
1159 goto dropafterack;
1160
1161 dropafterack:
1162 /*
1163 * Generate an ACK dropping incoming segment if it occupies
1164 * sequence space, where the ACK reflects our state.
1165 */
1166 if (tiflags & TH_RST)
1167 goto drop;
1168 goto dropafterack2;
1169
1170 dropafterack_ratelim:
1171 /*
1172 * We may want to rate-limit ACKs against SYN/RST attack.
1173 */
1174 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1175 tcp_ackdrop_ppslim) == 0) {
1176 /* XXX stat */
1177 goto drop;
1178 }
1179 /* ...fall into dropafterack2... */
1180
1181 dropafterack2:
1182 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack,
1183 TH_ACK);
1184 return;
1185
1186 dropwithreset:
1187 /*
1188 * Generate a RST, dropping incoming segment.
1189 * Make ACK acceptable to originator of segment.
1190 */
1191 if (tiflags & TH_RST)
1192 goto drop;
1193
1194 if (tiflags & TH_ACK)
1195 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1196 else {
1197 if (tiflags & TH_SYN)
1198 ++tlen;
1199 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1200 TH_RST|TH_ACK);
1201 }
1202 return;
1203 drop:
1204 m_freem(m);
1205 }
1206
1207 /*
1208 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1209 */
1210 void
1211 tcp_input(struct mbuf *m, ...)
1212 {
1213 struct tcphdr *th;
1214 struct ip *ip;
1215 struct inpcb *inp;
1216 #ifdef INET6
1217 struct ip6_hdr *ip6;
1218 struct in6pcb *in6p;
1219 #endif
1220 u_int8_t *optp = NULL;
1221 int optlen = 0;
1222 int len, tlen, toff, hdroptlen = 0;
1223 struct tcpcb *tp = NULL;
1224 int tiflags;
1225 struct socket *so = NULL;
1226 int todrop, acked, ourfinisacked, needoutput = 0;
1227 bool dupseg;
1228 #ifdef TCP_DEBUG
1229 short ostate = 0;
1230 #endif
1231 u_long tiwin;
1232 struct tcp_opt_info opti;
1233 int off, iphlen;
1234 va_list ap;
1235 int af; /* af on the wire */
1236 struct mbuf *tcp_saveti = NULL;
1237 uint32_t ts_rtt;
1238 uint8_t iptos;
1239 uint64_t *tcps;
1240 vestigial_inpcb_t vestige;
1241
1242 vestige.valid = 0;
1243
1244 MCLAIM(m, &tcp_rx_mowner);
1245 va_start(ap, m);
1246 toff = va_arg(ap, int);
1247 (void)va_arg(ap, int); /* ignore value, advance ap */
1248 va_end(ap);
1249
1250 TCP_STATINC(TCP_STAT_RCVTOTAL);
1251
1252 memset(&opti, 0, sizeof(opti));
1253 opti.ts_present = 0;
1254 opti.maxseg = 0;
1255
1256 /*
1257 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1258 *
1259 * TCP is, by definition, unicast, so we reject all
1260 * multicast outright.
1261 *
1262 * Note, there are additional src/dst address checks in
1263 * the AF-specific code below.
1264 */
1265 if (m->m_flags & (M_BCAST|M_MCAST)) {
1266 /* XXX stat */
1267 goto drop;
1268 }
1269 #ifdef INET6
1270 if (m->m_flags & M_ANYCAST6) {
1271 /* XXX stat */
1272 goto drop;
1273 }
1274 #endif
1275
1276 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
1277 if (th == NULL) {
1278 TCP_STATINC(TCP_STAT_RCVSHORT);
1279 return;
1280 }
1281
1282 /*
1283 * Get IP and TCP header.
1284 * Note: IP leaves IP header in first mbuf.
1285 */
1286 ip = mtod(m, struct ip *);
1287 switch (ip->ip_v) {
1288 #ifdef INET
1289 case 4:
1290 #ifdef INET6
1291 ip6 = NULL;
1292 #endif
1293 af = AF_INET;
1294 iphlen = sizeof(struct ip);
1295
1296 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1297 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1298 goto drop;
1299
1300 /* We do the checksum after PCB lookup... */
1301 len = ntohs(ip->ip_len);
1302 tlen = len - toff;
1303 iptos = ip->ip_tos;
1304 break;
1305 #endif
1306 #ifdef INET6
1307 case 6:
1308 ip = NULL;
1309 iphlen = sizeof(struct ip6_hdr);
1310 af = AF_INET6;
1311 ip6 = mtod(m, struct ip6_hdr *);
1312
1313 /*
1314 * Be proactive about unspecified IPv6 address in source.
1315 * As we use all-zero to indicate unbounded/unconnected pcb,
1316 * unspecified IPv6 address can be used to confuse us.
1317 *
1318 * Note that packets with unspecified IPv6 destination is
1319 * already dropped in ip6_input.
1320 */
1321 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1322 /* XXX stat */
1323 goto drop;
1324 }
1325
1326 /*
1327 * Make sure destination address is not multicast.
1328 * Source address checked in ip6_input().
1329 */
1330 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1331 /* XXX stat */
1332 goto drop;
1333 }
1334
1335 /* We do the checksum after PCB lookup... */
1336 len = m->m_pkthdr.len;
1337 tlen = len - toff;
1338 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1339 break;
1340 #endif
1341 default:
1342 m_freem(m);
1343 return;
1344 }
1345
1346 /*
1347 * Enforce alignment requirements that are violated in
1348 * some cases, see kern/50766 for details.
1349 */
1350 if (TCP_HDR_ALIGNED_P(th) == 0) {
1351 m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1352 if (m == NULL) {
1353 TCP_STATINC(TCP_STAT_RCVSHORT);
1354 return;
1355 }
1356 ip = mtod(m, struct ip *);
1357 #ifdef INET6
1358 ip6 = mtod(m, struct ip6_hdr *);
1359 #endif
1360 th = (struct tcphdr *)(mtod(m, char *) + toff);
1361 }
1362 KASSERT(TCP_HDR_ALIGNED_P(th));
1363
1364 /*
1365 * Check that TCP offset makes sense, pull out TCP options and
1366 * adjust length.
1367 */
1368 off = th->th_off << 2;
1369 if (off < sizeof(struct tcphdr) || off > tlen) {
1370 TCP_STATINC(TCP_STAT_RCVBADOFF);
1371 goto drop;
1372 }
1373 tlen -= off;
1374
1375 if (off > sizeof(struct tcphdr)) {
1376 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1377 if (th == NULL) {
1378 TCP_STATINC(TCP_STAT_RCVSHORT);
1379 return;
1380 }
1381 KASSERT(TCP_HDR_ALIGNED_P(th));
1382 optlen = off - sizeof(struct tcphdr);
1383 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1384 /*
1385 * Do quick retrieval of timestamp options ("options
1386 * prediction?"). If timestamp is the only option and it's
1387 * formatted as recommended in RFC 1323 appendix A, we
1388 * quickly get the values now and not bother calling
1389 * tcp_dooptions(), etc.
1390 */
1391 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1392 (optlen > TCPOLEN_TSTAMP_APPA &&
1393 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1394 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1395 (th->th_flags & TH_SYN) == 0) {
1396 opti.ts_present = 1;
1397 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1398 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1399 optp = NULL; /* we've parsed the options */
1400 }
1401 }
1402 tiflags = th->th_flags;
1403
1404 /*
1405 * Checksum extended TCP header and data
1406 */
1407 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1408 goto badcsum;
1409
1410 /*
1411 * Locate pcb for segment.
1412 */
1413 findpcb:
1414 inp = NULL;
1415 #ifdef INET6
1416 in6p = NULL;
1417 #endif
1418 switch (af) {
1419 #ifdef INET
1420 case AF_INET:
1421 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1422 ip->ip_dst, th->th_dport, &vestige);
1423 if (inp == NULL && !vestige.valid) {
1424 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1425 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1426 th->th_dport);
1427 }
1428 #ifdef INET6
1429 if (inp == NULL && !vestige.valid) {
1430 struct in6_addr s, d;
1431
1432 /* mapped addr case */
1433 in6_in_2_v4mapin6(&ip->ip_src, &s);
1434 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1435 in6p = in6_pcblookup_connect(&tcbtable, &s,
1436 th->th_sport, &d, th->th_dport, 0, &vestige);
1437 if (in6p == 0 && !vestige.valid) {
1438 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1439 in6p = in6_pcblookup_bind(&tcbtable, &d,
1440 th->th_dport, 0);
1441 }
1442 }
1443 #endif
1444 #ifndef INET6
1445 if (inp == NULL && !vestige.valid)
1446 #else
1447 if (inp == NULL && in6p == NULL && !vestige.valid)
1448 #endif
1449 {
1450 TCP_STATINC(TCP_STAT_NOPORT);
1451 if (tcp_log_refused &&
1452 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1453 tcp4_log_refused(ip, th);
1454 }
1455 tcp_fields_to_host(th);
1456 goto dropwithreset_ratelim;
1457 }
1458 #if defined(IPSEC)
1459 if (ipsec_used) {
1460 if (inp && ipsec_in_reject(m, inp)) {
1461 goto drop;
1462 }
1463 #ifdef INET6
1464 else if (in6p && ipsec_in_reject(m, in6p)) {
1465 goto drop;
1466 }
1467 #endif
1468 }
1469 #endif /*IPSEC*/
1470 break;
1471 #endif /*INET*/
1472 #ifdef INET6
1473 case AF_INET6:
1474 {
1475 int faith;
1476
1477 #if defined(NFAITH) && NFAITH > 0
1478 faith = faithprefix(&ip6->ip6_dst);
1479 #else
1480 faith = 0;
1481 #endif
1482 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1483 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1484 if (!in6p && !vestige.valid) {
1485 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1486 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1487 th->th_dport, faith);
1488 }
1489 if (!in6p && !vestige.valid) {
1490 TCP_STATINC(TCP_STAT_NOPORT);
1491 if (tcp_log_refused &&
1492 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1493 tcp6_log_refused(ip6, th);
1494 }
1495 tcp_fields_to_host(th);
1496 goto dropwithreset_ratelim;
1497 }
1498 #if defined(IPSEC)
1499 if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1500 goto drop;
1501 }
1502 #endif /*IPSEC*/
1503 break;
1504 }
1505 #endif
1506 }
1507
1508 /*
1509 * If the state is CLOSED (i.e., TCB does not exist) then
1510 * all data in the incoming segment is discarded.
1511 * If the TCB exists but is in CLOSED state, it is embryonic,
1512 * but should either do a listen or a connect soon.
1513 */
1514 tp = NULL;
1515 so = NULL;
1516 if (inp) {
1517 /* Check the minimum TTL for socket. */
1518 if (ip->ip_ttl < inp->inp_ip_minttl)
1519 goto drop;
1520
1521 tp = intotcpcb(inp);
1522 so = inp->inp_socket;
1523 }
1524 #ifdef INET6
1525 else if (in6p) {
1526 tp = in6totcpcb(in6p);
1527 so = in6p->in6p_socket;
1528 }
1529 #endif
1530 else if (vestige.valid) {
1531 /* We do not support the resurrection of vtw tcpcps. */
1532 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1533 goto badcsum;
1534
1535 tcp_fields_to_host(th);
1536 tcp_vtw_input(th, &vestige, m, tlen);
1537 m = NULL;
1538 goto drop;
1539 }
1540
1541 if (tp == NULL) {
1542 tcp_fields_to_host(th);
1543 goto dropwithreset_ratelim;
1544 }
1545 if (tp->t_state == TCPS_CLOSED)
1546 goto drop;
1547
1548 KASSERT(so->so_lock == softnet_lock);
1549 KASSERT(solocked(so));
1550
1551 tcp_fields_to_host(th);
1552
1553 /* Unscale the window into a 32-bit value. */
1554 if ((tiflags & TH_SYN) == 0)
1555 tiwin = th->th_win << tp->snd_scale;
1556 else
1557 tiwin = th->th_win;
1558
1559 #ifdef INET6
1560 /* save packet options if user wanted */
1561 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1562 if (in6p->in6p_options) {
1563 m_freem(in6p->in6p_options);
1564 in6p->in6p_options = NULL;
1565 }
1566 KASSERT(ip6 != NULL);
1567 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1568 }
1569 #endif
1570
1571 if (so->so_options & SO_DEBUG) {
1572 #ifdef TCP_DEBUG
1573 ostate = tp->t_state;
1574 #endif
1575
1576 tcp_saveti = NULL;
1577 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1578 goto nosave;
1579
1580 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1581 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1582 if (tcp_saveti == NULL)
1583 goto nosave;
1584 } else {
1585 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1586 if (tcp_saveti == NULL)
1587 goto nosave;
1588 MCLAIM(m, &tcp_mowner);
1589 tcp_saveti->m_len = iphlen;
1590 m_copydata(m, 0, iphlen,
1591 mtod(tcp_saveti, void *));
1592 }
1593
1594 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1595 m_freem(tcp_saveti);
1596 tcp_saveti = NULL;
1597 } else {
1598 tcp_saveti->m_len += sizeof(struct tcphdr);
1599 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1600 sizeof(struct tcphdr));
1601 }
1602 nosave:;
1603 }
1604
1605 if (so->so_options & SO_ACCEPTCONN) {
1606 union syn_cache_sa src;
1607 union syn_cache_sa dst;
1608
1609 KASSERT(tp->t_state == TCPS_LISTEN);
1610
1611 memset(&src, 0, sizeof(src));
1612 memset(&dst, 0, sizeof(dst));
1613 switch (af) {
1614 #ifdef INET
1615 case AF_INET:
1616 src.sin.sin_len = sizeof(struct sockaddr_in);
1617 src.sin.sin_family = AF_INET;
1618 src.sin.sin_addr = ip->ip_src;
1619 src.sin.sin_port = th->th_sport;
1620
1621 dst.sin.sin_len = sizeof(struct sockaddr_in);
1622 dst.sin.sin_family = AF_INET;
1623 dst.sin.sin_addr = ip->ip_dst;
1624 dst.sin.sin_port = th->th_dport;
1625 break;
1626 #endif
1627 #ifdef INET6
1628 case AF_INET6:
1629 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1630 src.sin6.sin6_family = AF_INET6;
1631 src.sin6.sin6_addr = ip6->ip6_src;
1632 src.sin6.sin6_port = th->th_sport;
1633
1634 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1635 dst.sin6.sin6_family = AF_INET6;
1636 dst.sin6.sin6_addr = ip6->ip6_dst;
1637 dst.sin6.sin6_port = th->th_dport;
1638 break;
1639 #endif /* INET6 */
1640 }
1641
1642 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1643 if (tiflags & TH_RST) {
1644 syn_cache_reset(&src.sa, &dst.sa, th);
1645 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1646 (TH_ACK|TH_SYN)) {
1647 /*
1648 * Received a SYN,ACK. This should never
1649 * happen while we are in LISTEN. Send an RST.
1650 */
1651 goto badsyn;
1652 } else if (tiflags & TH_ACK) {
1653 so = syn_cache_get(&src.sa, &dst.sa,
1654 th, toff, tlen, so, m);
1655 if (so == NULL) {
1656 /*
1657 * We don't have a SYN for this ACK;
1658 * send an RST.
1659 */
1660 goto badsyn;
1661 } else if (so == (struct socket *)(-1)) {
1662 /*
1663 * We were unable to create the
1664 * connection. If the 3-way handshake
1665 * was completed, and RST has been
1666 * sent to the peer. Since the mbuf
1667 * might be in use for the reply, do
1668 * not free it.
1669 */
1670 m = NULL;
1671 } else {
1672 /*
1673 * We have created a full-blown
1674 * connection.
1675 */
1676 tp = NULL;
1677 inp = NULL;
1678 #ifdef INET6
1679 in6p = NULL;
1680 #endif
1681 switch (so->so_proto->pr_domain->dom_family) {
1682 #ifdef INET
1683 case AF_INET:
1684 inp = sotoinpcb(so);
1685 tp = intotcpcb(inp);
1686 break;
1687 #endif
1688 #ifdef INET6
1689 case AF_INET6:
1690 in6p = sotoin6pcb(so);
1691 tp = in6totcpcb(in6p);
1692 break;
1693 #endif
1694 }
1695 if (tp == NULL)
1696 goto badsyn; /*XXX*/
1697 tiwin <<= tp->snd_scale;
1698 goto after_listen;
1699 }
1700 } else {
1701 /*
1702 * None of RST, SYN or ACK was set.
1703 * This is an invalid packet for a
1704 * TCB in LISTEN state. Send a RST.
1705 */
1706 goto badsyn;
1707 }
1708 } else {
1709 /*
1710 * Received a SYN.
1711 */
1712
1713 #ifdef INET6
1714 /*
1715 * If deprecated address is forbidden, we do
1716 * not accept SYN to deprecated interface
1717 * address to prevent any new inbound
1718 * connection from getting established.
1719 * When we do not accept SYN, we send a TCP
1720 * RST, with deprecated source address (instead
1721 * of dropping it). We compromise it as it is
1722 * much better for peer to send a RST, and
1723 * RST will be the final packet for the
1724 * exchange.
1725 *
1726 * If we do not forbid deprecated addresses, we
1727 * accept the SYN packet. RFC2462 does not
1728 * suggest dropping SYN in this case.
1729 * If we decipher RFC2462 5.5.4, it says like
1730 * this:
1731 * 1. use of deprecated addr with existing
1732 * communication is okay - "SHOULD continue
1733 * to be used"
1734 * 2. use of it with new communication:
1735 * (2a) "SHOULD NOT be used if alternate
1736 * address with sufficient scope is
1737 * available"
1738 * (2b) nothing mentioned otherwise.
1739 * Here we fall into (2b) case as we have no
1740 * choice in our source address selection - we
1741 * must obey the peer.
1742 *
1743 * The wording in RFC2462 is confusing, and
1744 * there are multiple description text for
1745 * deprecated address handling - worse, they
1746 * are not exactly the same. I believe 5.5.4
1747 * is the best one, so we follow 5.5.4.
1748 */
1749 if (af == AF_INET6 && !ip6_use_deprecated) {
1750 struct in6_ifaddr *ia6;
1751 int s;
1752 struct ifnet *rcvif = m_get_rcvif(m, &s);
1753 if (rcvif == NULL)
1754 goto dropwithreset; /* XXX */
1755 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1756 &ip6->ip6_dst)) &&
1757 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1758 tp = NULL;
1759 m_put_rcvif(rcvif, &s);
1760 goto dropwithreset;
1761 }
1762 m_put_rcvif(rcvif, &s);
1763 }
1764 #endif
1765
1766 /*
1767 * LISTEN socket received a SYN from itself? This
1768 * can't possibly be valid; drop the packet.
1769 */
1770 if (th->th_sport == th->th_dport) {
1771 int eq = 0;
1772
1773 switch (af) {
1774 #ifdef INET
1775 case AF_INET:
1776 eq = in_hosteq(ip->ip_src, ip->ip_dst);
1777 break;
1778 #endif
1779 #ifdef INET6
1780 case AF_INET6:
1781 eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1782 &ip6->ip6_dst);
1783 break;
1784 #endif
1785 }
1786 if (eq) {
1787 TCP_STATINC(TCP_STAT_BADSYN);
1788 goto drop;
1789 }
1790 }
1791
1792 /*
1793 * SYN looks ok; create compressed TCP
1794 * state for it.
1795 */
1796 if (so->so_qlen <= so->so_qlimit &&
1797 syn_cache_add(&src.sa, &dst.sa, th, tlen,
1798 so, m, optp, optlen, &opti))
1799 m = NULL;
1800 }
1801
1802 goto drop;
1803 }
1804
1805 after_listen:
1806 /*
1807 * Should not happen now that all embryonic connections
1808 * are handled with compressed state.
1809 */
1810 KASSERT(tp->t_state != TCPS_LISTEN);
1811
1812 /*
1813 * Segment received on connection.
1814 * Reset idle time and keep-alive timer.
1815 */
1816 tp->t_rcvtime = tcp_now;
1817 if (TCPS_HAVEESTABLISHED(tp->t_state))
1818 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1819
1820 /*
1821 * Process options.
1822 */
1823 #ifdef TCP_SIGNATURE
1824 if (optp || (tp->t_flags & TF_SIGNATURE))
1825 #else
1826 if (optp)
1827 #endif
1828 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1829 goto drop;
1830
1831 if (TCP_SACK_ENABLED(tp)) {
1832 tcp_del_sackholes(tp, th);
1833 }
1834
1835 if (TCP_ECN_ALLOWED(tp)) {
1836 if (tiflags & TH_CWR) {
1837 tp->t_flags &= ~TF_ECN_SND_ECE;
1838 }
1839 switch (iptos & IPTOS_ECN_MASK) {
1840 case IPTOS_ECN_CE:
1841 tp->t_flags |= TF_ECN_SND_ECE;
1842 TCP_STATINC(TCP_STAT_ECN_CE);
1843 break;
1844 case IPTOS_ECN_ECT0:
1845 TCP_STATINC(TCP_STAT_ECN_ECT);
1846 break;
1847 case IPTOS_ECN_ECT1:
1848 /* XXX: ignore for now -- rpaulo */
1849 break;
1850 }
1851 /*
1852 * Congestion experienced.
1853 * Ignore if we are already trying to recover.
1854 */
1855 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1856 tp->t_congctl->cong_exp(tp);
1857 }
1858
1859 if (opti.ts_present && opti.ts_ecr) {
1860 /*
1861 * Calculate the RTT from the returned time stamp and the
1862 * connection's time base. If the time stamp is later than
1863 * the current time, or is extremely old, fall back to non-1323
1864 * RTT calculation. Since ts_rtt is unsigned, we can test both
1865 * at the same time.
1866 *
1867 * Note that ts_rtt is in units of slow ticks (500
1868 * ms). Since most earthbound RTTs are < 500 ms,
1869 * observed values will have large quantization noise.
1870 * Our smoothed RTT is then the fraction of observed
1871 * samples that are 1 tick instead of 0 (times 500
1872 * ms).
1873 *
1874 * ts_rtt is increased by 1 to denote a valid sample,
1875 * with 0 indicating an invalid measurement. This
1876 * extra 1 must be removed when ts_rtt is used, or
1877 * else an an erroneous extra 500 ms will result.
1878 */
1879 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1880 if (ts_rtt > TCP_PAWS_IDLE)
1881 ts_rtt = 0;
1882 } else {
1883 ts_rtt = 0;
1884 }
1885
1886 /*
1887 * Header prediction: check for the two common cases
1888 * of a uni-directional data xfer. If the packet has
1889 * no control flags, is in-sequence, the window didn't
1890 * change and we're not retransmitting, it's a
1891 * candidate. If the length is zero and the ack moved
1892 * forward, we're the sender side of the xfer. Just
1893 * free the data acked & wake any higher level process
1894 * that was blocked waiting for space. If the length
1895 * is non-zero and the ack didn't move, we're the
1896 * receiver side. If we're getting packets in-order
1897 * (the reassembly queue is empty), add the data to
1898 * the socket buffer and note that we need a delayed ack.
1899 */
1900 if (tp->t_state == TCPS_ESTABLISHED &&
1901 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1902 == TH_ACK &&
1903 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1904 th->th_seq == tp->rcv_nxt &&
1905 tiwin && tiwin == tp->snd_wnd &&
1906 tp->snd_nxt == tp->snd_max) {
1907
1908 /*
1909 * If last ACK falls within this segment's sequence numbers,
1910 * record the timestamp.
1911 * NOTE that the test is modified according to the latest
1912 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1913 *
1914 * note that we already know
1915 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1916 */
1917 if (opti.ts_present &&
1918 SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1919 tp->ts_recent_age = tcp_now;
1920 tp->ts_recent = opti.ts_val;
1921 }
1922
1923 if (tlen == 0) {
1924 /* Ack prediction. */
1925 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1926 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1927 tp->snd_cwnd >= tp->snd_wnd &&
1928 tp->t_partialacks < 0) {
1929 /*
1930 * this is a pure ack for outstanding data.
1931 */
1932 if (ts_rtt)
1933 tcp_xmit_timer(tp, ts_rtt - 1);
1934 else if (tp->t_rtttime &&
1935 SEQ_GT(th->th_ack, tp->t_rtseq))
1936 tcp_xmit_timer(tp,
1937 tcp_now - tp->t_rtttime);
1938 acked = th->th_ack - tp->snd_una;
1939 tcps = TCP_STAT_GETREF();
1940 tcps[TCP_STAT_PREDACK]++;
1941 tcps[TCP_STAT_RCVACKPACK]++;
1942 tcps[TCP_STAT_RCVACKBYTE] += acked;
1943 TCP_STAT_PUTREF();
1944 nd6_hint(tp);
1945
1946 if (acked > (tp->t_lastoff - tp->t_inoff))
1947 tp->t_lastm = NULL;
1948 sbdrop(&so->so_snd, acked);
1949 tp->t_lastoff -= acked;
1950
1951 icmp_check(tp, th, acked);
1952
1953 tp->snd_una = th->th_ack;
1954 tp->snd_fack = tp->snd_una;
1955 if (SEQ_LT(tp->snd_high, tp->snd_una))
1956 tp->snd_high = tp->snd_una;
1957 m_freem(m);
1958
1959 /*
1960 * If all outstanding data are acked, stop
1961 * retransmit timer, otherwise restart timer
1962 * using current (possibly backed-off) value.
1963 * If process is waiting for space,
1964 * wakeup/selnotify/signal. If data
1965 * are ready to send, let tcp_output
1966 * decide between more output or persist.
1967 */
1968 if (tp->snd_una == tp->snd_max)
1969 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1970 else if (TCP_TIMER_ISARMED(tp,
1971 TCPT_PERSIST) == 0)
1972 TCP_TIMER_ARM(tp, TCPT_REXMT,
1973 tp->t_rxtcur);
1974
1975 sowwakeup(so);
1976 if (so->so_snd.sb_cc) {
1977 KERNEL_LOCK(1, NULL);
1978 (void) tcp_output(tp);
1979 KERNEL_UNLOCK_ONE(NULL);
1980 }
1981 if (tcp_saveti)
1982 m_freem(tcp_saveti);
1983 return;
1984 }
1985 } else if (th->th_ack == tp->snd_una &&
1986 TAILQ_FIRST(&tp->segq) == NULL &&
1987 tlen <= sbspace(&so->so_rcv)) {
1988 int newsize = 0; /* automatic sockbuf scaling */
1989
1990 /*
1991 * this is a pure, in-sequence data packet
1992 * with nothing on the reassembly queue and
1993 * we have enough buffer space to take it.
1994 */
1995 tp->rcv_nxt += tlen;
1996 tcps = TCP_STAT_GETREF();
1997 tcps[TCP_STAT_PREDDAT]++;
1998 tcps[TCP_STAT_RCVPACK]++;
1999 tcps[TCP_STAT_RCVBYTE] += tlen;
2000 TCP_STAT_PUTREF();
2001 nd6_hint(tp);
2002
2003 /*
2004 * Automatic sizing enables the performance of large buffers
2005 * and most of the efficiency of small ones by only allocating
2006 * space when it is needed.
2007 *
2008 * On the receive side the socket buffer memory is only rarely
2009 * used to any significant extent. This allows us to be much
2010 * more aggressive in scaling the receive socket buffer. For
2011 * the case that the buffer space is actually used to a large
2012 * extent and we run out of kernel memory we can simply drop
2013 * the new segments; TCP on the sender will just retransmit it
2014 * later. Setting the buffer size too big may only consume too
2015 * much kernel memory if the application doesn't read() from
2016 * the socket or packet loss or reordering makes use of the
2017 * reassembly queue.
2018 *
2019 * The criteria to step up the receive buffer one notch are:
2020 * 1. the number of bytes received during the time it takes
2021 * one timestamp to be reflected back to us (the RTT);
2022 * 2. received bytes per RTT is within seven eighth of the
2023 * current socket buffer size;
2024 * 3. receive buffer size has not hit maximal automatic size;
2025 *
2026 * This algorithm does one step per RTT at most and only if
2027 * we receive a bulk stream w/o packet losses or reorderings.
2028 * Shrinking the buffer during idle times is not necessary as
2029 * it doesn't consume any memory when idle.
2030 *
2031 * TODO: Only step up if the application is actually serving
2032 * the buffer to better manage the socket buffer resources.
2033 */
2034 if (tcp_do_autorcvbuf &&
2035 opti.ts_ecr &&
2036 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2037 if (opti.ts_ecr > tp->rfbuf_ts &&
2038 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2039 if (tp->rfbuf_cnt >
2040 (so->so_rcv.sb_hiwat / 8 * 7) &&
2041 so->so_rcv.sb_hiwat <
2042 tcp_autorcvbuf_max) {
2043 newsize =
2044 min(so->so_rcv.sb_hiwat +
2045 tcp_autorcvbuf_inc,
2046 tcp_autorcvbuf_max);
2047 }
2048 /* Start over with next RTT. */
2049 tp->rfbuf_ts = 0;
2050 tp->rfbuf_cnt = 0;
2051 } else
2052 tp->rfbuf_cnt += tlen; /* add up */
2053 }
2054
2055 /*
2056 * Drop TCP, IP headers and TCP options then add data
2057 * to socket buffer.
2058 */
2059 if (so->so_state & SS_CANTRCVMORE)
2060 m_freem(m);
2061 else {
2062 /*
2063 * Set new socket buffer size.
2064 * Give up when limit is reached.
2065 */
2066 if (newsize)
2067 if (!sbreserve(&so->so_rcv,
2068 newsize, so))
2069 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2070 m_adj(m, toff + off);
2071 sbappendstream(&so->so_rcv, m);
2072 }
2073 sorwakeup(so);
2074 tcp_setup_ack(tp, th);
2075 if (tp->t_flags & TF_ACKNOW) {
2076 KERNEL_LOCK(1, NULL);
2077 (void) tcp_output(tp);
2078 KERNEL_UNLOCK_ONE(NULL);
2079 }
2080 if (tcp_saveti)
2081 m_freem(tcp_saveti);
2082 return;
2083 }
2084 }
2085
2086 /*
2087 * Compute mbuf offset to TCP data segment.
2088 */
2089 hdroptlen = toff + off;
2090
2091 /*
2092 * Calculate amount of space in receive window,
2093 * and then do TCP input processing.
2094 * Receive window is amount of space in rcv queue,
2095 * but not less than advertised window.
2096 */
2097 { int win;
2098
2099 win = sbspace(&so->so_rcv);
2100 if (win < 0)
2101 win = 0;
2102 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2103 }
2104
2105 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2106 tp->rfbuf_ts = 0;
2107 tp->rfbuf_cnt = 0;
2108
2109 switch (tp->t_state) {
2110 /*
2111 * If the state is SYN_SENT:
2112 * if seg contains an ACK, but not for our SYN, drop the input.
2113 * if seg contains a RST, then drop the connection.
2114 * if seg does not contain SYN, then drop it.
2115 * Otherwise this is an acceptable SYN segment
2116 * initialize tp->rcv_nxt and tp->irs
2117 * if seg contains ack then advance tp->snd_una
2118 * if seg contains a ECE and ECN support is enabled, the stream
2119 * is ECN capable.
2120 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2121 * arrange for segment to be acked (eventually)
2122 * continue processing rest of data/controls, beginning with URG
2123 */
2124 case TCPS_SYN_SENT:
2125 if ((tiflags & TH_ACK) &&
2126 (SEQ_LEQ(th->th_ack, tp->iss) ||
2127 SEQ_GT(th->th_ack, tp->snd_max)))
2128 goto dropwithreset;
2129 if (tiflags & TH_RST) {
2130 if (tiflags & TH_ACK)
2131 tp = tcp_drop(tp, ECONNREFUSED);
2132 goto drop;
2133 }
2134 if ((tiflags & TH_SYN) == 0)
2135 goto drop;
2136 if (tiflags & TH_ACK) {
2137 tp->snd_una = th->th_ack;
2138 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2139 tp->snd_nxt = tp->snd_una;
2140 if (SEQ_LT(tp->snd_high, tp->snd_una))
2141 tp->snd_high = tp->snd_una;
2142 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2143
2144 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2145 tp->t_flags |= TF_ECN_PERMIT;
2146 TCP_STATINC(TCP_STAT_ECN_SHS);
2147 }
2148
2149 }
2150 tp->irs = th->th_seq;
2151 tcp_rcvseqinit(tp);
2152 tp->t_flags |= TF_ACKNOW;
2153 tcp_mss_from_peer(tp, opti.maxseg);
2154
2155 /*
2156 * Initialize the initial congestion window. If we
2157 * had to retransmit the SYN, we must initialize cwnd
2158 * to 1 segment (i.e. the Loss Window).
2159 */
2160 if (tp->t_flags & TF_SYN_REXMT)
2161 tp->snd_cwnd = tp->t_peermss;
2162 else {
2163 int ss = tcp_init_win;
2164 #ifdef INET
2165 if (inp != NULL && in_localaddr(inp->inp_faddr))
2166 ss = tcp_init_win_local;
2167 #endif
2168 #ifdef INET6
2169 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2170 ss = tcp_init_win_local;
2171 #endif
2172 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2173 }
2174
2175 tcp_rmx_rtt(tp);
2176 if (tiflags & TH_ACK) {
2177 TCP_STATINC(TCP_STAT_CONNECTS);
2178 /*
2179 * move tcp_established before soisconnected
2180 * because upcall handler can drive tcp_output
2181 * functionality.
2182 * XXX we might call soisconnected at the end of
2183 * all processing
2184 */
2185 tcp_established(tp);
2186 soisconnected(so);
2187 /* Do window scaling on this connection? */
2188 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2189 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2190 tp->snd_scale = tp->requested_s_scale;
2191 tp->rcv_scale = tp->request_r_scale;
2192 }
2193 TCP_REASS_LOCK(tp);
2194 (void) tcp_reass(tp, NULL, NULL, &tlen);
2195 /*
2196 * if we didn't have to retransmit the SYN,
2197 * use its rtt as our initial srtt & rtt var.
2198 */
2199 if (tp->t_rtttime)
2200 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2201 } else
2202 tp->t_state = TCPS_SYN_RECEIVED;
2203
2204 /*
2205 * Advance th->th_seq to correspond to first data byte.
2206 * If data, trim to stay within window,
2207 * dropping FIN if necessary.
2208 */
2209 th->th_seq++;
2210 if (tlen > tp->rcv_wnd) {
2211 todrop = tlen - tp->rcv_wnd;
2212 m_adj(m, -todrop);
2213 tlen = tp->rcv_wnd;
2214 tiflags &= ~TH_FIN;
2215 tcps = TCP_STAT_GETREF();
2216 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2217 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2218 TCP_STAT_PUTREF();
2219 }
2220 tp->snd_wl1 = th->th_seq - 1;
2221 tp->rcv_up = th->th_seq;
2222 goto step6;
2223
2224 /*
2225 * If the state is SYN_RECEIVED:
2226 * If seg contains an ACK, but not for our SYN, drop the input
2227 * and generate an RST. See page 36, rfc793
2228 */
2229 case TCPS_SYN_RECEIVED:
2230 if ((tiflags & TH_ACK) &&
2231 (SEQ_LEQ(th->th_ack, tp->iss) ||
2232 SEQ_GT(th->th_ack, tp->snd_max)))
2233 goto dropwithreset;
2234 break;
2235 }
2236
2237 /*
2238 * States other than LISTEN or SYN_SENT.
2239 * First check timestamp, if present.
2240 * Then check that at least some bytes of segment are within
2241 * receive window. If segment begins before rcv_nxt,
2242 * drop leading data (and SYN); if nothing left, just ack.
2243 *
2244 * RFC 1323 PAWS: If we have a timestamp reply on this segment
2245 * and it's less than ts_recent, drop it.
2246 */
2247 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2248 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2249
2250 /* Check to see if ts_recent is over 24 days old. */
2251 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2252 /*
2253 * Invalidate ts_recent. If this segment updates
2254 * ts_recent, the age will be reset later and ts_recent
2255 * will get a valid value. If it does not, setting
2256 * ts_recent to zero will at least satisfy the
2257 * requirement that zero be placed in the timestamp
2258 * echo reply when ts_recent isn't valid. The
2259 * age isn't reset until we get a valid ts_recent
2260 * because we don't want out-of-order segments to be
2261 * dropped when ts_recent is old.
2262 */
2263 tp->ts_recent = 0;
2264 } else {
2265 tcps = TCP_STAT_GETREF();
2266 tcps[TCP_STAT_RCVDUPPACK]++;
2267 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2268 tcps[TCP_STAT_PAWSDROP]++;
2269 TCP_STAT_PUTREF();
2270 tcp_new_dsack(tp, th->th_seq, tlen);
2271 goto dropafterack;
2272 }
2273 }
2274
2275 todrop = tp->rcv_nxt - th->th_seq;
2276 dupseg = false;
2277 if (todrop > 0) {
2278 if (tiflags & TH_SYN) {
2279 tiflags &= ~TH_SYN;
2280 th->th_seq++;
2281 if (th->th_urp > 1)
2282 th->th_urp--;
2283 else {
2284 tiflags &= ~TH_URG;
2285 th->th_urp = 0;
2286 }
2287 todrop--;
2288 }
2289 if (todrop > tlen ||
2290 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2291 /*
2292 * Any valid FIN or RST must be to the left of the
2293 * window. At this point the FIN or RST must be a
2294 * duplicate or out of sequence; drop it.
2295 */
2296 if (tiflags & TH_RST)
2297 goto drop;
2298 tiflags &= ~(TH_FIN|TH_RST);
2299 /*
2300 * Send an ACK to resynchronize and drop any data.
2301 * But keep on processing for RST or ACK.
2302 */
2303 tp->t_flags |= TF_ACKNOW;
2304 todrop = tlen;
2305 dupseg = true;
2306 tcps = TCP_STAT_GETREF();
2307 tcps[TCP_STAT_RCVDUPPACK]++;
2308 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2309 TCP_STAT_PUTREF();
2310 } else if ((tiflags & TH_RST) &&
2311 th->th_seq != tp->rcv_nxt) {
2312 /*
2313 * Test for reset before adjusting the sequence
2314 * number for overlapping data.
2315 */
2316 goto dropafterack_ratelim;
2317 } else {
2318 tcps = TCP_STAT_GETREF();
2319 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2320 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2321 TCP_STAT_PUTREF();
2322 }
2323 tcp_new_dsack(tp, th->th_seq, todrop);
2324 hdroptlen += todrop; /*drop from head afterwards*/
2325 th->th_seq += todrop;
2326 tlen -= todrop;
2327 if (th->th_urp > todrop)
2328 th->th_urp -= todrop;
2329 else {
2330 tiflags &= ~TH_URG;
2331 th->th_urp = 0;
2332 }
2333 }
2334
2335 /*
2336 * If new data are received on a connection after the
2337 * user processes are gone, then RST the other end.
2338 */
2339 if ((so->so_state & SS_NOFDREF) &&
2340 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2341 tp = tcp_close(tp);
2342 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2343 goto dropwithreset;
2344 }
2345
2346 /*
2347 * If segment ends after window, drop trailing data
2348 * (and PUSH and FIN); if nothing left, just ACK.
2349 */
2350 todrop = (th->th_seq + tlen) - (tp->rcv_nxt+tp->rcv_wnd);
2351 if (todrop > 0) {
2352 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2353 if (todrop >= tlen) {
2354 /*
2355 * The segment actually starts after the window.
2356 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2357 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2358 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2359 */
2360 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2361 /*
2362 * If a new connection request is received
2363 * while in TIME_WAIT, drop the old connection
2364 * and start over if the sequence numbers
2365 * are above the previous ones.
2366 *
2367 * NOTE: We will checksum the packet again, and
2368 * so we need to put the header fields back into
2369 * network order!
2370 * XXX This kind of sucks, but we don't expect
2371 * XXX this to happen very often, so maybe it
2372 * XXX doesn't matter so much.
2373 */
2374 if (tiflags & TH_SYN &&
2375 tp->t_state == TCPS_TIME_WAIT &&
2376 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2377 tp = tcp_close(tp);
2378 tcp_fields_to_net(th);
2379 goto findpcb;
2380 }
2381 /*
2382 * If window is closed can only take segments at
2383 * window edge, and have to drop data and PUSH from
2384 * incoming segments. Continue processing, but
2385 * remember to ack. Otherwise, drop segment
2386 * and (if not RST) ack.
2387 */
2388 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2389 tp->t_flags |= TF_ACKNOW;
2390 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2391 } else
2392 goto dropafterack;
2393 } else
2394 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2395 m_adj(m, -todrop);
2396 tlen -= todrop;
2397 tiflags &= ~(TH_PUSH|TH_FIN);
2398 }
2399
2400 /*
2401 * If last ACK falls within this segment's sequence numbers,
2402 * record the timestamp.
2403 * NOTE:
2404 * 1) That the test incorporates suggestions from the latest
2405 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2406 * 2) That updating only on newer timestamps interferes with
2407 * our earlier PAWS tests, so this check should be solely
2408 * predicated on the sequence space of this segment.
2409 * 3) That we modify the segment boundary check to be
2410 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2411 * instead of RFC1323's
2412 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2413 * This modified check allows us to overcome RFC1323's
2414 * limitations as described in Stevens TCP/IP Illustrated
2415 * Vol. 2 p.869. In such cases, we can still calculate the
2416 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2417 */
2418 if (opti.ts_present &&
2419 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2420 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2421 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2422 tp->ts_recent_age = tcp_now;
2423 tp->ts_recent = opti.ts_val;
2424 }
2425
2426 /*
2427 * If the RST bit is set examine the state:
2428 * SYN_RECEIVED STATE:
2429 * If passive open, return to LISTEN state.
2430 * If active open, inform user that connection was refused.
2431 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT STATES:
2432 * Inform user that connection was reset, and close tcb.
2433 * CLOSING, LAST_ACK, TIME_WAIT STATES
2434 * Close the tcb.
2435 */
2436 if (tiflags & TH_RST) {
2437 if (th->th_seq != tp->rcv_nxt)
2438 goto dropafterack_ratelim;
2439
2440 switch (tp->t_state) {
2441 case TCPS_SYN_RECEIVED:
2442 so->so_error = ECONNREFUSED;
2443 goto close;
2444
2445 case TCPS_ESTABLISHED:
2446 case TCPS_FIN_WAIT_1:
2447 case TCPS_FIN_WAIT_2:
2448 case TCPS_CLOSE_WAIT:
2449 so->so_error = ECONNRESET;
2450 close:
2451 tp->t_state = TCPS_CLOSED;
2452 TCP_STATINC(TCP_STAT_DROPS);
2453 tp = tcp_close(tp);
2454 goto drop;
2455
2456 case TCPS_CLOSING:
2457 case TCPS_LAST_ACK:
2458 case TCPS_TIME_WAIT:
2459 tp = tcp_close(tp);
2460 goto drop;
2461 }
2462 }
2463
2464 /*
2465 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2466 * we must be in a synchronized state. RFC791 states (under RST
2467 * generation) that any unacceptable segment (an out-of-order SYN
2468 * qualifies) received in a synchronized state must elicit only an
2469 * empty acknowledgment segment ... and the connection remains in
2470 * the same state.
2471 */
2472 if (tiflags & TH_SYN) {
2473 if (tp->rcv_nxt == th->th_seq) {
2474 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2475 TH_ACK);
2476 if (tcp_saveti)
2477 m_freem(tcp_saveti);
2478 return;
2479 }
2480
2481 goto dropafterack_ratelim;
2482 }
2483
2484 /*
2485 * If the ACK bit is off we drop the segment and return.
2486 */
2487 if ((tiflags & TH_ACK) == 0) {
2488 if (tp->t_flags & TF_ACKNOW)
2489 goto dropafterack;
2490 else
2491 goto drop;
2492 }
2493
2494 /*
2495 * Ack processing.
2496 */
2497 switch (tp->t_state) {
2498
2499 /*
2500 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2501 * ESTABLISHED state and continue processing, otherwise
2502 * send an RST.
2503 */
2504 case TCPS_SYN_RECEIVED:
2505 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2506 SEQ_GT(th->th_ack, tp->snd_max))
2507 goto dropwithreset;
2508 TCP_STATINC(TCP_STAT_CONNECTS);
2509 soisconnected(so);
2510 tcp_established(tp);
2511 /* Do window scaling? */
2512 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2513 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2514 tp->snd_scale = tp->requested_s_scale;
2515 tp->rcv_scale = tp->request_r_scale;
2516 }
2517 TCP_REASS_LOCK(tp);
2518 (void) tcp_reass(tp, NULL, NULL, &tlen);
2519 tp->snd_wl1 = th->th_seq - 1;
2520 /* fall into ... */
2521
2522 /*
2523 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2524 * ACKs. If the ack is in the range
2525 * tp->snd_una < th->th_ack <= tp->snd_max
2526 * then advance tp->snd_una to th->th_ack and drop
2527 * data from the retransmission queue. If this ACK reflects
2528 * more up to date window information we update our window information.
2529 */
2530 case TCPS_ESTABLISHED:
2531 case TCPS_FIN_WAIT_1:
2532 case TCPS_FIN_WAIT_2:
2533 case TCPS_CLOSE_WAIT:
2534 case TCPS_CLOSING:
2535 case TCPS_LAST_ACK:
2536 case TCPS_TIME_WAIT:
2537
2538 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2539 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2540 TCP_STATINC(TCP_STAT_RCVDUPACK);
2541 /*
2542 * If we have outstanding data (other than
2543 * a window probe), this is a completely
2544 * duplicate ack (ie, window info didn't
2545 * change), the ack is the biggest we've
2546 * seen and we've seen exactly our rexmt
2547 * threshhold of them, assume a packet
2548 * has been dropped and retransmit it.
2549 * Kludge snd_nxt & the congestion
2550 * window so we send only this one
2551 * packet.
2552 */
2553 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2554 th->th_ack != tp->snd_una)
2555 tp->t_dupacks = 0;
2556 else if (tp->t_partialacks < 0 &&
2557 (++tp->t_dupacks == tcprexmtthresh ||
2558 TCP_FACK_FASTRECOV(tp))) {
2559 /*
2560 * Do the fast retransmit, and adjust
2561 * congestion control paramenters.
2562 */
2563 if (tp->t_congctl->fast_retransmit(tp, th)) {
2564 /* False fast retransmit */
2565 break;
2566 } else
2567 goto drop;
2568 } else if (tp->t_dupacks > tcprexmtthresh) {
2569 tp->snd_cwnd += tp->t_segsz;
2570 KERNEL_LOCK(1, NULL);
2571 (void) tcp_output(tp);
2572 KERNEL_UNLOCK_ONE(NULL);
2573 goto drop;
2574 }
2575 } else {
2576 /*
2577 * If the ack appears to be very old, only
2578 * allow data that is in-sequence. This
2579 * makes it somewhat more difficult to insert
2580 * forged data by guessing sequence numbers.
2581 * Sent an ack to try to update the send
2582 * sequence number on the other side.
2583 */
2584 if (tlen && th->th_seq != tp->rcv_nxt &&
2585 SEQ_LT(th->th_ack,
2586 tp->snd_una - tp->max_sndwnd))
2587 goto dropafterack;
2588 }
2589 break;
2590 }
2591 /*
2592 * If the congestion window was inflated to account
2593 * for the other side's cached packets, retract it.
2594 */
2595 tp->t_congctl->fast_retransmit_newack(tp, th);
2596
2597 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2598 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2599 goto dropafterack;
2600 }
2601 acked = th->th_ack - tp->snd_una;
2602 tcps = TCP_STAT_GETREF();
2603 tcps[TCP_STAT_RCVACKPACK]++;
2604 tcps[TCP_STAT_RCVACKBYTE] += acked;
2605 TCP_STAT_PUTREF();
2606
2607 /*
2608 * If we have a timestamp reply, update smoothed
2609 * round trip time. If no timestamp is present but
2610 * transmit timer is running and timed sequence
2611 * number was acked, update smoothed round trip time.
2612 * Since we now have an rtt measurement, cancel the
2613 * timer backoff (cf., Phil Karn's retransmit alg.).
2614 * Recompute the initial retransmit timer.
2615 */
2616 if (ts_rtt)
2617 tcp_xmit_timer(tp, ts_rtt - 1);
2618 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2619 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2620
2621 /*
2622 * If all outstanding data is acked, stop retransmit
2623 * timer and remember to restart (more output or persist).
2624 * If there is more data to be acked, restart retransmit
2625 * timer, using current (possibly backed-off) value.
2626 */
2627 if (th->th_ack == tp->snd_max) {
2628 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2629 needoutput = 1;
2630 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2631 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2632
2633 /*
2634 * New data has been acked, adjust the congestion window.
2635 */
2636 tp->t_congctl->newack(tp, th);
2637
2638 nd6_hint(tp);
2639 if (acked > so->so_snd.sb_cc) {
2640 tp->snd_wnd -= so->so_snd.sb_cc;
2641 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2642 ourfinisacked = 1;
2643 } else {
2644 if (acked > (tp->t_lastoff - tp->t_inoff))
2645 tp->t_lastm = NULL;
2646 sbdrop(&so->so_snd, acked);
2647 tp->t_lastoff -= acked;
2648 if (tp->snd_wnd > acked)
2649 tp->snd_wnd -= acked;
2650 else
2651 tp->snd_wnd = 0;
2652 ourfinisacked = 0;
2653 }
2654 sowwakeup(so);
2655
2656 icmp_check(tp, th, acked);
2657
2658 tp->snd_una = th->th_ack;
2659 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2660 tp->snd_fack = tp->snd_una;
2661 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2662 tp->snd_nxt = tp->snd_una;
2663 if (SEQ_LT(tp->snd_high, tp->snd_una))
2664 tp->snd_high = tp->snd_una;
2665
2666 switch (tp->t_state) {
2667
2668 /*
2669 * In FIN_WAIT_1 STATE in addition to the processing
2670 * for the ESTABLISHED state if our FIN is now acknowledged
2671 * then enter FIN_WAIT_2.
2672 */
2673 case TCPS_FIN_WAIT_1:
2674 if (ourfinisacked) {
2675 /*
2676 * If we can't receive any more
2677 * data, then closing user can proceed.
2678 * Starting the timer is contrary to the
2679 * specification, but if we don't get a FIN
2680 * we'll hang forever.
2681 */
2682 if (so->so_state & SS_CANTRCVMORE) {
2683 soisdisconnected(so);
2684 if (tp->t_maxidle > 0)
2685 TCP_TIMER_ARM(tp, TCPT_2MSL,
2686 tp->t_maxidle);
2687 }
2688 tp->t_state = TCPS_FIN_WAIT_2;
2689 }
2690 break;
2691
2692 /*
2693 * In CLOSING STATE in addition to the processing for
2694 * the ESTABLISHED state if the ACK acknowledges our FIN
2695 * then enter the TIME-WAIT state, otherwise ignore
2696 * the segment.
2697 */
2698 case TCPS_CLOSING:
2699 if (ourfinisacked) {
2700 tp->t_state = TCPS_TIME_WAIT;
2701 tcp_canceltimers(tp);
2702 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2703 soisdisconnected(so);
2704 }
2705 break;
2706
2707 /*
2708 * In LAST_ACK, we may still be waiting for data to drain
2709 * and/or to be acked, as well as for the ack of our FIN.
2710 * If our FIN is now acknowledged, delete the TCB,
2711 * enter the closed state and return.
2712 */
2713 case TCPS_LAST_ACK:
2714 if (ourfinisacked) {
2715 tp = tcp_close(tp);
2716 goto drop;
2717 }
2718 break;
2719
2720 /*
2721 * In TIME_WAIT state the only thing that should arrive
2722 * is a retransmission of the remote FIN. Acknowledge
2723 * it and restart the finack timer.
2724 */
2725 case TCPS_TIME_WAIT:
2726 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2727 goto dropafterack;
2728 }
2729 }
2730
2731 step6:
2732 /*
2733 * Update window information.
2734 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2735 */
2736 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2737 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2738 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2739 /* keep track of pure window updates */
2740 if (tlen == 0 &&
2741 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2742 TCP_STATINC(TCP_STAT_RCVWINUPD);
2743 tp->snd_wnd = tiwin;
2744 tp->snd_wl1 = th->th_seq;
2745 tp->snd_wl2 = th->th_ack;
2746 if (tp->snd_wnd > tp->max_sndwnd)
2747 tp->max_sndwnd = tp->snd_wnd;
2748 needoutput = 1;
2749 }
2750
2751 /*
2752 * Process segments with URG.
2753 */
2754 if ((tiflags & TH_URG) && th->th_urp &&
2755 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2756 /*
2757 * This is a kludge, but if we receive and accept
2758 * random urgent pointers, we'll crash in
2759 * soreceive. It's hard to imagine someone
2760 * actually wanting to send this much urgent data.
2761 */
2762 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2763 th->th_urp = 0; /* XXX */
2764 tiflags &= ~TH_URG; /* XXX */
2765 goto dodata; /* XXX */
2766 }
2767 /*
2768 * If this segment advances the known urgent pointer,
2769 * then mark the data stream. This should not happen
2770 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2771 * a FIN has been received from the remote side.
2772 * In these states we ignore the URG.
2773 *
2774 * According to RFC961 (Assigned Protocols),
2775 * the urgent pointer points to the last octet
2776 * of urgent data. We continue, however,
2777 * to consider it to indicate the first octet
2778 * of data past the urgent section as the original
2779 * spec states (in one of two places).
2780 */
2781 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2782 tp->rcv_up = th->th_seq + th->th_urp;
2783 so->so_oobmark = so->so_rcv.sb_cc +
2784 (tp->rcv_up - tp->rcv_nxt) - 1;
2785 if (so->so_oobmark == 0)
2786 so->so_state |= SS_RCVATMARK;
2787 sohasoutofband(so);
2788 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2789 }
2790 /*
2791 * Remove out of band data so doesn't get presented to user.
2792 * This can happen independent of advancing the URG pointer,
2793 * but if two URG's are pending at once, some out-of-band
2794 * data may creep in... ick.
2795 */
2796 if (th->th_urp <= (u_int16_t) tlen
2797 #ifdef SO_OOBINLINE
2798 && (so->so_options & SO_OOBINLINE) == 0
2799 #endif
2800 )
2801 tcp_pulloutofband(so, th, m, hdroptlen);
2802 } else
2803 /*
2804 * If no out of band data is expected,
2805 * pull receive urgent pointer along
2806 * with the receive window.
2807 */
2808 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2809 tp->rcv_up = tp->rcv_nxt;
2810 dodata: /* XXX */
2811
2812 /*
2813 * Process the segment text, merging it into the TCP sequencing queue,
2814 * and arranging for acknowledgement of receipt if necessary.
2815 * This process logically involves adjusting tp->rcv_wnd as data
2816 * is presented to the user (this happens in tcp_usrreq.c,
2817 * tcp_rcvd()). If a FIN has already been received on this
2818 * connection then we just ignore the text.
2819 */
2820 if ((tlen || (tiflags & TH_FIN)) &&
2821 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2822 /*
2823 * Insert segment ti into reassembly queue of tcp with
2824 * control block tp. Return TH_FIN if reassembly now includes
2825 * a segment with FIN. The macro form does the common case
2826 * inline (segment is the next to be received on an
2827 * established connection, and the queue is empty),
2828 * avoiding linkage into and removal from the queue and
2829 * repetition of various conversions.
2830 * Set DELACK for segments received in order, but ack
2831 * immediately when segments are out of order
2832 * (so fast retransmit can work).
2833 */
2834 /* NOTE: this was TCP_REASS() macro, but used only once */
2835 TCP_REASS_LOCK(tp);
2836 if (th->th_seq == tp->rcv_nxt &&
2837 TAILQ_FIRST(&tp->segq) == NULL &&
2838 tp->t_state == TCPS_ESTABLISHED) {
2839 tcp_setup_ack(tp, th);
2840 tp->rcv_nxt += tlen;
2841 tiflags = th->th_flags & TH_FIN;
2842 tcps = TCP_STAT_GETREF();
2843 tcps[TCP_STAT_RCVPACK]++;
2844 tcps[TCP_STAT_RCVBYTE] += tlen;
2845 TCP_STAT_PUTREF();
2846 nd6_hint(tp);
2847 if (so->so_state & SS_CANTRCVMORE)
2848 m_freem(m);
2849 else {
2850 m_adj(m, hdroptlen);
2851 sbappendstream(&(so)->so_rcv, m);
2852 }
2853 TCP_REASS_UNLOCK(tp);
2854 sorwakeup(so);
2855 } else {
2856 m_adj(m, hdroptlen);
2857 tiflags = tcp_reass(tp, th, m, &tlen);
2858 tp->t_flags |= TF_ACKNOW;
2859 }
2860
2861 /*
2862 * Note the amount of data that peer has sent into
2863 * our window, in order to estimate the sender's
2864 * buffer size.
2865 */
2866 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2867 } else {
2868 m_freem(m);
2869 m = NULL;
2870 tiflags &= ~TH_FIN;
2871 }
2872
2873 /*
2874 * If FIN is received ACK the FIN and let the user know
2875 * that the connection is closing. Ignore a FIN received before
2876 * the connection is fully established.
2877 */
2878 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2879 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2880 socantrcvmore(so);
2881 tp->t_flags |= TF_ACKNOW;
2882 tp->rcv_nxt++;
2883 }
2884 switch (tp->t_state) {
2885
2886 /*
2887 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2888 */
2889 case TCPS_ESTABLISHED:
2890 tp->t_state = TCPS_CLOSE_WAIT;
2891 break;
2892
2893 /*
2894 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2895 * enter the CLOSING state.
2896 */
2897 case TCPS_FIN_WAIT_1:
2898 tp->t_state = TCPS_CLOSING;
2899 break;
2900
2901 /*
2902 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2903 * starting the time-wait timer, turning off the other
2904 * standard timers.
2905 */
2906 case TCPS_FIN_WAIT_2:
2907 tp->t_state = TCPS_TIME_WAIT;
2908 tcp_canceltimers(tp);
2909 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2910 soisdisconnected(so);
2911 break;
2912
2913 /*
2914 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2915 */
2916 case TCPS_TIME_WAIT:
2917 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2918 break;
2919 }
2920 }
2921 #ifdef TCP_DEBUG
2922 if (so->so_options & SO_DEBUG)
2923 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2924 #endif
2925
2926 /*
2927 * Return any desired output.
2928 */
2929 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2930 KERNEL_LOCK(1, NULL);
2931 (void) tcp_output(tp);
2932 KERNEL_UNLOCK_ONE(NULL);
2933 }
2934 if (tcp_saveti)
2935 m_freem(tcp_saveti);
2936
2937 if (tp->t_state == TCPS_TIME_WAIT
2938 && (so->so_state & SS_NOFDREF)
2939 && (tp->t_inpcb || af != AF_INET)
2940 && (tp->t_in6pcb || af != AF_INET6)
2941 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2942 && TAILQ_EMPTY(&tp->segq)
2943 && vtw_add(af, tp)) {
2944 ;
2945 }
2946 return;
2947
2948 badsyn:
2949 /*
2950 * Received a bad SYN. Increment counters and dropwithreset.
2951 */
2952 TCP_STATINC(TCP_STAT_BADSYN);
2953 tp = NULL;
2954 goto dropwithreset;
2955
2956 dropafterack:
2957 /*
2958 * Generate an ACK dropping incoming segment if it occupies
2959 * sequence space, where the ACK reflects our state.
2960 */
2961 if (tiflags & TH_RST)
2962 goto drop;
2963 goto dropafterack2;
2964
2965 dropafterack_ratelim:
2966 /*
2967 * We may want to rate-limit ACKs against SYN/RST attack.
2968 */
2969 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2970 tcp_ackdrop_ppslim) == 0) {
2971 /* XXX stat */
2972 goto drop;
2973 }
2974 /* ...fall into dropafterack2... */
2975
2976 dropafterack2:
2977 m_freem(m);
2978 tp->t_flags |= TF_ACKNOW;
2979 KERNEL_LOCK(1, NULL);
2980 (void) tcp_output(tp);
2981 KERNEL_UNLOCK_ONE(NULL);
2982 if (tcp_saveti)
2983 m_freem(tcp_saveti);
2984 return;
2985
2986 dropwithreset_ratelim:
2987 /*
2988 * We may want to rate-limit RSTs in certain situations,
2989 * particularly if we are sending an RST in response to
2990 * an attempt to connect to or otherwise communicate with
2991 * a port for which we have no socket.
2992 */
2993 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2994 tcp_rst_ppslim) == 0) {
2995 /* XXX stat */
2996 goto drop;
2997 }
2998 /* ...fall into dropwithreset... */
2999
3000 dropwithreset:
3001 /*
3002 * Generate a RST, dropping incoming segment.
3003 * Make ACK acceptable to originator of segment.
3004 */
3005 if (tiflags & TH_RST)
3006 goto drop;
3007 if (tiflags & TH_ACK) {
3008 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
3009 } else {
3010 if (tiflags & TH_SYN)
3011 tlen++;
3012 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3013 TH_RST|TH_ACK);
3014 }
3015 if (tcp_saveti)
3016 m_freem(tcp_saveti);
3017 return;
3018
3019 badcsum:
3020 drop:
3021 /*
3022 * Drop space held by incoming segment and return.
3023 */
3024 if (tp) {
3025 if (tp->t_inpcb)
3026 so = tp->t_inpcb->inp_socket;
3027 #ifdef INET6
3028 else if (tp->t_in6pcb)
3029 so = tp->t_in6pcb->in6p_socket;
3030 #endif
3031 else
3032 so = NULL;
3033 #ifdef TCP_DEBUG
3034 if (so && (so->so_options & SO_DEBUG) != 0)
3035 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3036 #endif
3037 }
3038 if (tcp_saveti)
3039 m_freem(tcp_saveti);
3040 m_freem(m);
3041 return;
3042 }
3043
3044 #ifdef TCP_SIGNATURE
3045 int
3046 tcp_signature_apply(void *fstate, void *data, u_int len)
3047 {
3048
3049 MD5Update(fstate, (u_char *)data, len);
3050 return (0);
3051 }
3052
3053 struct secasvar *
3054 tcp_signature_getsav(struct mbuf *m)
3055 {
3056 struct ip *ip;
3057 struct ip6_hdr *ip6;
3058
3059 ip = mtod(m, struct ip *);
3060 switch (ip->ip_v) {
3061 case 4:
3062 ip = mtod(m, struct ip *);
3063 ip6 = NULL;
3064 break;
3065 case 6:
3066 ip = NULL;
3067 ip6 = mtod(m, struct ip6_hdr *);
3068 break;
3069 default:
3070 return (NULL);
3071 }
3072
3073 #ifdef IPSEC
3074 union sockaddr_union dst;
3075
3076 /* Extract the destination from the IP header in the mbuf. */
3077 memset(&dst, 0, sizeof(union sockaddr_union));
3078 if (ip != NULL) {
3079 dst.sa.sa_len = sizeof(struct sockaddr_in);
3080 dst.sa.sa_family = AF_INET;
3081 dst.sin.sin_addr = ip->ip_dst;
3082 } else {
3083 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3084 dst.sa.sa_family = AF_INET6;
3085 dst.sin6.sin6_addr = ip6->ip6_dst;
3086 }
3087
3088 /*
3089 * Look up an SADB entry which matches the address of the peer.
3090 */
3091 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3092 #else
3093 return NULL;
3094 #endif
3095 }
3096
3097 int
3098 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3099 struct secasvar *sav, char *sig)
3100 {
3101 MD5_CTX ctx;
3102 struct ip *ip;
3103 struct ipovly *ipovly;
3104 #ifdef INET6
3105 struct ip6_hdr *ip6;
3106 struct ip6_hdr_pseudo ip6pseudo;
3107 #endif /* INET6 */
3108 struct ippseudo ippseudo;
3109 struct tcphdr th0;
3110 int l, tcphdrlen;
3111
3112 if (sav == NULL)
3113 return (-1);
3114
3115 tcphdrlen = th->th_off * 4;
3116
3117 switch (mtod(m, struct ip *)->ip_v) {
3118 case 4:
3119 MD5Init(&ctx);
3120 ip = mtod(m, struct ip *);
3121 memset(&ippseudo, 0, sizeof(ippseudo));
3122 ipovly = (struct ipovly *)ip;
3123 ippseudo.ippseudo_src = ipovly->ih_src;
3124 ippseudo.ippseudo_dst = ipovly->ih_dst;
3125 ippseudo.ippseudo_pad = 0;
3126 ippseudo.ippseudo_p = IPPROTO_TCP;
3127 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3128 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3129 break;
3130 #if INET6
3131 case 6:
3132 MD5Init(&ctx);
3133 ip6 = mtod(m, struct ip6_hdr *);
3134 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3135 ip6pseudo.ip6ph_src = ip6->ip6_src;
3136 in6_clearscope(&ip6pseudo.ip6ph_src);
3137 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3138 in6_clearscope(&ip6pseudo.ip6ph_dst);
3139 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3140 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3141 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3142 break;
3143 #endif /* INET6 */
3144 default:
3145 return (-1);
3146 }
3147
3148 th0 = *th;
3149 th0.th_sum = 0;
3150 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3151
3152 l = m->m_pkthdr.len - thoff - tcphdrlen;
3153 if (l > 0)
3154 m_apply(m, thoff + tcphdrlen,
3155 m->m_pkthdr.len - thoff - tcphdrlen,
3156 tcp_signature_apply, &ctx);
3157
3158 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3159 MD5Final(sig, &ctx);
3160
3161 return (0);
3162 }
3163 #endif
3164
3165 /*
3166 * tcp_dooptions: parse and process tcp options.
3167 *
3168 * returns -1 if this segment should be dropped. (eg. wrong signature)
3169 * otherwise returns 0.
3170 */
3171
3172 static int
3173 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3174 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3175 {
3176 u_int16_t mss;
3177 int opt, optlen = 0;
3178 #ifdef TCP_SIGNATURE
3179 void *sigp = NULL;
3180 char sigbuf[TCP_SIGLEN];
3181 struct secasvar *sav = NULL;
3182 #endif
3183
3184 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3185 opt = cp[0];
3186 if (opt == TCPOPT_EOL)
3187 break;
3188 if (opt == TCPOPT_NOP)
3189 optlen = 1;
3190 else {
3191 if (cnt < 2)
3192 break;
3193 optlen = cp[1];
3194 if (optlen < 2 || optlen > cnt)
3195 break;
3196 }
3197 switch (opt) {
3198
3199 default:
3200 continue;
3201
3202 case TCPOPT_MAXSEG:
3203 if (optlen != TCPOLEN_MAXSEG)
3204 continue;
3205 if (!(th->th_flags & TH_SYN))
3206 continue;
3207 if (TCPS_HAVERCVDSYN(tp->t_state))
3208 continue;
3209 bcopy(cp + 2, &mss, sizeof(mss));
3210 oi->maxseg = ntohs(mss);
3211 break;
3212
3213 case TCPOPT_WINDOW:
3214 if (optlen != TCPOLEN_WINDOW)
3215 continue;
3216 if (!(th->th_flags & TH_SYN))
3217 continue;
3218 if (TCPS_HAVERCVDSYN(tp->t_state))
3219 continue;
3220 tp->t_flags |= TF_RCVD_SCALE;
3221 tp->requested_s_scale = cp[2];
3222 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3223 char buf[INET6_ADDRSTRLEN];
3224 struct ip *ip = mtod(m, struct ip *);
3225 #ifdef INET6
3226 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3227 #endif
3228 if (ip)
3229 in_print(buf, sizeof(buf),
3230 &ip->ip_src);
3231 #ifdef INET6
3232 else if (ip6)
3233 in6_print(buf, sizeof(buf),
3234 &ip6->ip6_src);
3235 #endif
3236 else
3237 strlcpy(buf, "(unknown)", sizeof(buf));
3238 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3239 "assuming %d\n",
3240 tp->requested_s_scale, buf,
3241 TCP_MAX_WINSHIFT);
3242 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3243 }
3244 break;
3245
3246 case TCPOPT_TIMESTAMP:
3247 if (optlen != TCPOLEN_TIMESTAMP)
3248 continue;
3249 oi->ts_present = 1;
3250 bcopy(cp + 2, &oi->ts_val, sizeof(oi->ts_val));
3251 NTOHL(oi->ts_val);
3252 bcopy(cp + 6, &oi->ts_ecr, sizeof(oi->ts_ecr));
3253 NTOHL(oi->ts_ecr);
3254
3255 if (!(th->th_flags & TH_SYN))
3256 continue;
3257 if (TCPS_HAVERCVDSYN(tp->t_state))
3258 continue;
3259 /*
3260 * A timestamp received in a SYN makes
3261 * it ok to send timestamp requests and replies.
3262 */
3263 tp->t_flags |= TF_RCVD_TSTMP;
3264 tp->ts_recent = oi->ts_val;
3265 tp->ts_recent_age = tcp_now;
3266 break;
3267
3268 case TCPOPT_SACK_PERMITTED:
3269 if (optlen != TCPOLEN_SACK_PERMITTED)
3270 continue;
3271 if (!(th->th_flags & TH_SYN))
3272 continue;
3273 if (TCPS_HAVERCVDSYN(tp->t_state))
3274 continue;
3275 if (tcp_do_sack) {
3276 tp->t_flags |= TF_SACK_PERMIT;
3277 tp->t_flags |= TF_WILL_SACK;
3278 }
3279 break;
3280
3281 case TCPOPT_SACK:
3282 tcp_sack_option(tp, th, cp, optlen);
3283 break;
3284 #ifdef TCP_SIGNATURE
3285 case TCPOPT_SIGNATURE:
3286 if (optlen != TCPOLEN_SIGNATURE)
3287 continue;
3288 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3289 return (-1);
3290
3291 sigp = sigbuf;
3292 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3293 tp->t_flags |= TF_SIGNATURE;
3294 break;
3295 #endif
3296 }
3297 }
3298
3299 #ifndef TCP_SIGNATURE
3300 return 0;
3301 #else
3302 if (tp->t_flags & TF_SIGNATURE) {
3303 sav = tcp_signature_getsav(m);
3304 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3305 return (-1);
3306 }
3307
3308 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3309 goto out;
3310
3311 if (sigp) {
3312 char sig[TCP_SIGLEN];
3313
3314 tcp_fields_to_net(th);
3315 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3316 tcp_fields_to_host(th);
3317 goto out;
3318 }
3319 tcp_fields_to_host(th);
3320
3321 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3322 TCP_STATINC(TCP_STAT_BADSIG);
3323 goto out;
3324 } else
3325 TCP_STATINC(TCP_STAT_GOODSIG);
3326
3327 key_sa_recordxfer(sav, m);
3328 KEY_SA_UNREF(&sav);
3329 }
3330 return 0;
3331 out:
3332 if (sav != NULL)
3333 KEY_SA_UNREF(&sav);
3334 return -1;
3335 #endif
3336 }
3337
3338 /*
3339 * Pull out of band byte out of a segment so
3340 * it doesn't appear in the user's data queue.
3341 * It is still reflected in the segment length for
3342 * sequencing purposes.
3343 */
3344 void
3345 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3346 struct mbuf *m, int off)
3347 {
3348 int cnt = off + th->th_urp - 1;
3349
3350 while (cnt >= 0) {
3351 if (m->m_len > cnt) {
3352 char *cp = mtod(m, char *) + cnt;
3353 struct tcpcb *tp = sototcpcb(so);
3354
3355 tp->t_iobc = *cp;
3356 tp->t_oobflags |= TCPOOB_HAVEDATA;
3357 bcopy(cp+1, cp, (unsigned)(m->m_len - cnt - 1));
3358 m->m_len--;
3359 return;
3360 }
3361 cnt -= m->m_len;
3362 m = m->m_next;
3363 if (m == 0)
3364 break;
3365 }
3366 panic("tcp_pulloutofband");
3367 }
3368
3369 /*
3370 * Collect new round-trip time estimate
3371 * and update averages and current timeout.
3372 *
3373 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3374 * difference of two timestamps.
3375 */
3376 void
3377 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3378 {
3379 int32_t delta;
3380
3381 TCP_STATINC(TCP_STAT_RTTUPDATED);
3382 if (tp->t_srtt != 0) {
3383 /*
3384 * Compute the amount to add to srtt for smoothing,
3385 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3386 * srtt is stored in 1/32 slow ticks, we conceptually
3387 * shift left 5 bits, subtract srtt to get the
3388 * diference, and then shift right by TCP_RTT_SHIFT
3389 * (3) to obtain 1/8 of the difference.
3390 */
3391 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3392 /*
3393 * This can never happen, because delta's lowest
3394 * possible value is 1/8 of t_srtt. But if it does,
3395 * set srtt to some reasonable value, here chosen
3396 * as 1/8 tick.
3397 */
3398 if ((tp->t_srtt += delta) <= 0)
3399 tp->t_srtt = 1 << 2;
3400 /*
3401 * RFC2988 requires that rttvar be updated first.
3402 * This code is compliant because "delta" is the old
3403 * srtt minus the new observation (scaled).
3404 *
3405 * RFC2988 says:
3406 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3407 *
3408 * delta is in units of 1/32 ticks, and has then been
3409 * divided by 8. This is equivalent to being in 1/16s
3410 * units and divided by 4. Subtract from it 1/4 of
3411 * the existing rttvar to form the (signed) amount to
3412 * adjust.
3413 */
3414 if (delta < 0)
3415 delta = -delta;
3416 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3417 /*
3418 * As with srtt, this should never happen. There is
3419 * no support in RFC2988 for this operation. But 1/4s
3420 * as rttvar when faced with something arguably wrong
3421 * is ok.
3422 */
3423 if ((tp->t_rttvar += delta) <= 0)
3424 tp->t_rttvar = 1 << 2;
3425
3426 /*
3427 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3428 * Problem is: it doesn't work. Disabled by defaulting
3429 * tcp_rttlocal to 0; see corresponding code in
3430 * tcp_subr that selects local vs remote in a different way.
3431 *
3432 * The static branch prediction hint here should be removed
3433 * when the rtt estimator is fixed and the rtt_enable code
3434 * is turned back on.
3435 */
3436 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3437 && tp->t_srtt > tcp_msl_remote_threshold
3438 && tp->t_msl < tcp_msl_remote) {
3439 tp->t_msl = tcp_msl_remote;
3440 }
3441 } else {
3442 /*
3443 * This is the first measurement. Per RFC2988, 2.2,
3444 * set rtt=R and srtt=R/2.
3445 * For srtt, storage representation is 1/32 ticks,
3446 * so shift left by 5.
3447 * For rttvar, storage representation is 1/16 ticks,
3448 * So shift left by 4, but then right by 1 to halve.
3449 */
3450 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3451 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3452 }
3453 tp->t_rtttime = 0;
3454 tp->t_rxtshift = 0;
3455
3456 /*
3457 * the retransmit should happen at rtt + 4 * rttvar.
3458 * Because of the way we do the smoothing, srtt and rttvar
3459 * will each average +1/2 tick of bias. When we compute
3460 * the retransmit timer, we want 1/2 tick of rounding and
3461 * 1 extra tick because of +-1/2 tick uncertainty in the
3462 * firing of the timer. The bias will give us exactly the
3463 * 1.5 tick we need. But, because the bias is
3464 * statistical, we have to test that we don't drop below
3465 * the minimum feasible timer (which is 2 ticks).
3466 */
3467 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3468 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3469
3470 /*
3471 * We received an ack for a packet that wasn't retransmitted;
3472 * it is probably safe to discard any error indications we've
3473 * received recently. This isn't quite right, but close enough
3474 * for now (a route might have failed after we sent a segment,
3475 * and the return path might not be symmetrical).
3476 */
3477 tp->t_softerror = 0;
3478 }
3479
3480
3481 /*
3482 * TCP compressed state engine. Currently used to hold compressed
3483 * state for SYN_RECEIVED.
3484 */
3485
3486 u_long syn_cache_count;
3487 u_int32_t syn_hash1, syn_hash2;
3488
3489 #define SYN_HASH(sa, sp, dp) \
3490 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3491 ((u_int32_t)(sp)))^syn_hash2)))
3492 #ifndef INET6
3493 #define SYN_HASHALL(hash, src, dst) \
3494 do { \
3495 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3496 ((const struct sockaddr_in *)(src))->sin_port, \
3497 ((const struct sockaddr_in *)(dst))->sin_port); \
3498 } while (/*CONSTCOND*/ 0)
3499 #else
3500 #define SYN_HASH6(sa, sp, dp) \
3501 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3502 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3503 & 0x7fffffff)
3504
3505 #define SYN_HASHALL(hash, src, dst) \
3506 do { \
3507 switch ((src)->sa_family) { \
3508 case AF_INET: \
3509 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3510 ((const struct sockaddr_in *)(src))->sin_port, \
3511 ((const struct sockaddr_in *)(dst))->sin_port); \
3512 break; \
3513 case AF_INET6: \
3514 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3515 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3516 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3517 break; \
3518 default: \
3519 hash = 0; \
3520 } \
3521 } while (/*CONSTCOND*/0)
3522 #endif /* INET6 */
3523
3524 static struct pool syn_cache_pool;
3525
3526 /*
3527 * We don't estimate RTT with SYNs, so each packet starts with the default
3528 * RTT and each timer step has a fixed timeout value.
3529 */
3530 static inline void
3531 syn_cache_timer_arm(struct syn_cache *sc)
3532 {
3533
3534 TCPT_RANGESET(sc->sc_rxtcur,
3535 TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3536 TCPTV_REXMTMAX);
3537 callout_reset(&sc->sc_timer,
3538 sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3539 }
3540
3541 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3542
3543 static inline void
3544 syn_cache_rm(struct syn_cache *sc)
3545 {
3546 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3547 sc, sc_bucketq);
3548 sc->sc_tp = NULL;
3549 LIST_REMOVE(sc, sc_tpq);
3550 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3551 callout_stop(&sc->sc_timer);
3552 syn_cache_count--;
3553 }
3554
3555 static inline void
3556 syn_cache_put(struct syn_cache *sc)
3557 {
3558 if (sc->sc_ipopts)
3559 (void) m_free(sc->sc_ipopts);
3560 rtcache_free(&sc->sc_route);
3561 sc->sc_flags |= SCF_DEAD;
3562 if (!callout_invoking(&sc->sc_timer))
3563 callout_schedule(&(sc)->sc_timer, 1);
3564 }
3565
3566 void
3567 syn_cache_init(void)
3568 {
3569 int i;
3570
3571 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3572 "synpl", NULL, IPL_SOFTNET);
3573
3574 /* Initialize the hash buckets. */
3575 for (i = 0; i < tcp_syn_cache_size; i++)
3576 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3577 }
3578
3579 void
3580 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3581 {
3582 struct syn_cache_head *scp;
3583 struct syn_cache *sc2;
3584 int s;
3585
3586 /*
3587 * If there are no entries in the hash table, reinitialize
3588 * the hash secrets.
3589 */
3590 if (syn_cache_count == 0) {
3591 syn_hash1 = cprng_fast32();
3592 syn_hash2 = cprng_fast32();
3593 }
3594
3595 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3596 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3597 scp = &tcp_syn_cache[sc->sc_bucketidx];
3598
3599 /*
3600 * Make sure that we don't overflow the per-bucket
3601 * limit or the total cache size limit.
3602 */
3603 s = splsoftnet();
3604 if (scp->sch_length >= tcp_syn_bucket_limit) {
3605 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3606 /*
3607 * The bucket is full. Toss the oldest element in the
3608 * bucket. This will be the first entry in the bucket.
3609 */
3610 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3611 #ifdef DIAGNOSTIC
3612 /*
3613 * This should never happen; we should always find an
3614 * entry in our bucket.
3615 */
3616 if (sc2 == NULL)
3617 panic("syn_cache_insert: bucketoverflow: impossible");
3618 #endif
3619 syn_cache_rm(sc2);
3620 syn_cache_put(sc2); /* calls pool_put but see spl above */
3621 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3622 struct syn_cache_head *scp2, *sce;
3623
3624 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3625 /*
3626 * The cache is full. Toss the oldest entry in the
3627 * first non-empty bucket we can find.
3628 *
3629 * XXX We would really like to toss the oldest
3630 * entry in the cache, but we hope that this
3631 * condition doesn't happen very often.
3632 */
3633 scp2 = scp;
3634 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3635 sce = &tcp_syn_cache[tcp_syn_cache_size];
3636 for (++scp2; scp2 != scp; scp2++) {
3637 if (scp2 >= sce)
3638 scp2 = &tcp_syn_cache[0];
3639 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3640 break;
3641 }
3642 #ifdef DIAGNOSTIC
3643 /*
3644 * This should never happen; we should always find a
3645 * non-empty bucket.
3646 */
3647 if (scp2 == scp)
3648 panic("syn_cache_insert: cacheoverflow: "
3649 "impossible");
3650 #endif
3651 }
3652 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3653 syn_cache_rm(sc2);
3654 syn_cache_put(sc2); /* calls pool_put but see spl above */
3655 }
3656
3657 /*
3658 * Initialize the entry's timer.
3659 */
3660 sc->sc_rxttot = 0;
3661 sc->sc_rxtshift = 0;
3662 syn_cache_timer_arm(sc);
3663
3664 /* Link it from tcpcb entry */
3665 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3666
3667 /* Put it into the bucket. */
3668 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3669 scp->sch_length++;
3670 syn_cache_count++;
3671
3672 TCP_STATINC(TCP_STAT_SC_ADDED);
3673 splx(s);
3674 }
3675
3676 /*
3677 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3678 * If we have retransmitted an entry the maximum number of times, expire
3679 * that entry.
3680 */
3681 static void
3682 syn_cache_timer(void *arg)
3683 {
3684 struct syn_cache *sc = arg;
3685
3686 mutex_enter(softnet_lock);
3687 KERNEL_LOCK(1, NULL);
3688
3689 callout_ack(&sc->sc_timer);
3690
3691 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3692 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3693 goto free;
3694 }
3695
3696 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3697 /* Drop it -- too many retransmissions. */
3698 goto dropit;
3699 }
3700
3701 /*
3702 * Compute the total amount of time this entry has
3703 * been on a queue. If this entry has been on longer
3704 * than the keep alive timer would allow, expire it.
3705 */
3706 sc->sc_rxttot += sc->sc_rxtcur;
3707 if (sc->sc_rxttot >= tcp_keepinit)
3708 goto dropit;
3709
3710 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3711 (void)syn_cache_respond(sc);
3712
3713 /* Advance the timer back-off. */
3714 sc->sc_rxtshift++;
3715 syn_cache_timer_arm(sc);
3716
3717 goto out;
3718
3719 dropit:
3720 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3721 syn_cache_rm(sc);
3722 if (sc->sc_ipopts)
3723 (void) m_free(sc->sc_ipopts);
3724 rtcache_free(&sc->sc_route);
3725
3726 free:
3727 callout_destroy(&sc->sc_timer);
3728 pool_put(&syn_cache_pool, sc);
3729
3730 out:
3731 KERNEL_UNLOCK_ONE(NULL);
3732 mutex_exit(softnet_lock);
3733 }
3734
3735 /*
3736 * Remove syn cache created by the specified tcb entry,
3737 * because this does not make sense to keep them
3738 * (if there's no tcb entry, syn cache entry will never be used)
3739 */
3740 void
3741 syn_cache_cleanup(struct tcpcb *tp)
3742 {
3743 struct syn_cache *sc, *nsc;
3744 int s;
3745
3746 s = splsoftnet();
3747
3748 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3749 nsc = LIST_NEXT(sc, sc_tpq);
3750
3751 #ifdef DIAGNOSTIC
3752 if (sc->sc_tp != tp)
3753 panic("invalid sc_tp in syn_cache_cleanup");
3754 #endif
3755 syn_cache_rm(sc);
3756 syn_cache_put(sc); /* calls pool_put but see spl above */
3757 }
3758 /* just for safety */
3759 LIST_INIT(&tp->t_sc);
3760
3761 splx(s);
3762 }
3763
3764 /*
3765 * Find an entry in the syn cache.
3766 */
3767 struct syn_cache *
3768 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3769 struct syn_cache_head **headp)
3770 {
3771 struct syn_cache *sc;
3772 struct syn_cache_head *scp;
3773 u_int32_t hash;
3774 int s;
3775
3776 SYN_HASHALL(hash, src, dst);
3777
3778 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3779 *headp = scp;
3780 s = splsoftnet();
3781 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3782 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3783 if (sc->sc_hash != hash)
3784 continue;
3785 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3786 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3787 splx(s);
3788 return (sc);
3789 }
3790 }
3791 splx(s);
3792 return (NULL);
3793 }
3794
3795 /*
3796 * This function gets called when we receive an ACK for a
3797 * socket in the LISTEN state. We look up the connection
3798 * in the syn cache, and if its there, we pull it out of
3799 * the cache and turn it into a full-blown connection in
3800 * the SYN-RECEIVED state.
3801 *
3802 * The return values may not be immediately obvious, and their effects
3803 * can be subtle, so here they are:
3804 *
3805 * NULL SYN was not found in cache; caller should drop the
3806 * packet and send an RST.
3807 *
3808 * -1 We were unable to create the new connection, and are
3809 * aborting it. An ACK,RST is being sent to the peer
3810 * (unless we got screwey sequence numbners; see below),
3811 * because the 3-way handshake has been completed. Caller
3812 * should not free the mbuf, since we may be using it. If
3813 * we are not, we will free it.
3814 *
3815 * Otherwise, the return value is a pointer to the new socket
3816 * associated with the connection.
3817 */
3818 struct socket *
3819 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3820 struct tcphdr *th, unsigned int hlen, unsigned int tlen,
3821 struct socket *so, struct mbuf *m)
3822 {
3823 struct syn_cache *sc;
3824 struct syn_cache_head *scp;
3825 struct inpcb *inp = NULL;
3826 #ifdef INET6
3827 struct in6pcb *in6p = NULL;
3828 #endif
3829 struct tcpcb *tp = 0;
3830 int s;
3831 struct socket *oso;
3832
3833 s = splsoftnet();
3834 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3835 splx(s);
3836 return (NULL);
3837 }
3838
3839 /*
3840 * Verify the sequence and ack numbers. Try getting the correct
3841 * response again.
3842 */
3843 if ((th->th_ack != sc->sc_iss + 1) ||
3844 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3845 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3846 m_freem(m);
3847 (void)syn_cache_respond(sc);
3848 splx(s);
3849 return ((struct socket *)(-1));
3850 }
3851
3852 /* Remove this cache entry */
3853 syn_cache_rm(sc);
3854 splx(s);
3855
3856 /*
3857 * Ok, create the full blown connection, and set things up
3858 * as they would have been set up if we had created the
3859 * connection when the SYN arrived. If we can't create
3860 * the connection, abort it.
3861 */
3862 /*
3863 * inp still has the OLD in_pcb stuff, set the
3864 * v6-related flags on the new guy, too. This is
3865 * done particularly for the case where an AF_INET6
3866 * socket is bound only to a port, and a v4 connection
3867 * comes in on that port.
3868 * we also copy the flowinfo from the original pcb
3869 * to the new one.
3870 */
3871 oso = so;
3872 so = sonewconn(so, true);
3873 if (so == NULL)
3874 goto resetandabort;
3875
3876 switch (so->so_proto->pr_domain->dom_family) {
3877 #ifdef INET
3878 case AF_INET:
3879 inp = sotoinpcb(so);
3880 break;
3881 #endif
3882 #ifdef INET6
3883 case AF_INET6:
3884 in6p = sotoin6pcb(so);
3885 break;
3886 #endif
3887 }
3888 switch (src->sa_family) {
3889 #ifdef INET
3890 case AF_INET:
3891 if (inp) {
3892 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3893 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3894 inp->inp_options = ip_srcroute(m);
3895 in_pcbstate(inp, INP_BOUND);
3896 if (inp->inp_options == NULL) {
3897 inp->inp_options = sc->sc_ipopts;
3898 sc->sc_ipopts = NULL;
3899 }
3900 }
3901 #ifdef INET6
3902 else if (in6p) {
3903 /* IPv4 packet to AF_INET6 socket */
3904 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3905 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3906 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3907 &in6p->in6p_laddr.s6_addr32[3],
3908 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3909 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3910 in6totcpcb(in6p)->t_family = AF_INET;
3911 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3912 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3913 else
3914 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3915 in6_pcbstate(in6p, IN6P_BOUND);
3916 }
3917 #endif
3918 break;
3919 #endif
3920 #ifdef INET6
3921 case AF_INET6:
3922 if (in6p) {
3923 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3924 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3925 in6_pcbstate(in6p, IN6P_BOUND);
3926 }
3927 break;
3928 #endif
3929 }
3930 #ifdef INET6
3931 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3932 struct in6pcb *oin6p = sotoin6pcb(oso);
3933 /* inherit socket options from the listening socket */
3934 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3935 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3936 m_freem(in6p->in6p_options);
3937 in6p->in6p_options = 0;
3938 }
3939 ip6_savecontrol(in6p, &in6p->in6p_options,
3940 mtod(m, struct ip6_hdr *), m);
3941 }
3942 #endif
3943
3944 #if defined(IPSEC)
3945 if (ipsec_used) {
3946 /*
3947 * we make a copy of policy, instead of sharing the policy, for
3948 * better behavior in terms of SA lookup and dead SA removal.
3949 */
3950 if (inp) {
3951 /* copy old policy into new socket's */
3952 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
3953 inp->inp_sp))
3954 printf("tcp_input: could not copy policy\n");
3955 }
3956 #ifdef INET6
3957 else if (in6p) {
3958 /* copy old policy into new socket's */
3959 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3960 in6p->in6p_sp))
3961 printf("tcp_input: could not copy policy\n");
3962 }
3963 #endif
3964 }
3965 #endif
3966
3967 /*
3968 * Give the new socket our cached route reference.
3969 */
3970 if (inp) {
3971 rtcache_copy(&inp->inp_route, &sc->sc_route);
3972 rtcache_free(&sc->sc_route);
3973 }
3974 #ifdef INET6
3975 else {
3976 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3977 rtcache_free(&sc->sc_route);
3978 }
3979 #endif
3980
3981 if (inp) {
3982 struct sockaddr_in sin;
3983 memcpy(&sin, src, src->sa_len);
3984 if (in_pcbconnect(inp, &sin, &lwp0)) {
3985 goto resetandabort;
3986 }
3987 }
3988 #ifdef INET6
3989 else if (in6p) {
3990 struct sockaddr_in6 sin6;
3991 memcpy(&sin6, src, src->sa_len);
3992 if (src->sa_family == AF_INET) {
3993 /* IPv4 packet to AF_INET6 socket */
3994 in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3995 }
3996 if (in6_pcbconnect(in6p, &sin6, NULL)) {
3997 goto resetandabort;
3998 }
3999 }
4000 #endif
4001 else {
4002 goto resetandabort;
4003 }
4004
4005 if (inp)
4006 tp = intotcpcb(inp);
4007 #ifdef INET6
4008 else if (in6p)
4009 tp = in6totcpcb(in6p);
4010 #endif
4011 else
4012 tp = NULL;
4013 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
4014 if (sc->sc_request_r_scale != 15) {
4015 tp->requested_s_scale = sc->sc_requested_s_scale;
4016 tp->request_r_scale = sc->sc_request_r_scale;
4017 tp->snd_scale = sc->sc_requested_s_scale;
4018 tp->rcv_scale = sc->sc_request_r_scale;
4019 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
4020 }
4021 if (sc->sc_flags & SCF_TIMESTAMP)
4022 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4023 tp->ts_timebase = sc->sc_timebase;
4024
4025 tp->t_template = tcp_template(tp);
4026 if (tp->t_template == 0) {
4027 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
4028 so = NULL;
4029 m_freem(m);
4030 goto abort;
4031 }
4032
4033 tp->iss = sc->sc_iss;
4034 tp->irs = sc->sc_irs;
4035 tcp_sendseqinit(tp);
4036 tcp_rcvseqinit(tp);
4037 tp->t_state = TCPS_SYN_RECEIVED;
4038 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4039 TCP_STATINC(TCP_STAT_ACCEPTS);
4040
4041 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4042 tp->t_flags |= TF_WILL_SACK;
4043
4044 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4045 tp->t_flags |= TF_ECN_PERMIT;
4046
4047 #ifdef TCP_SIGNATURE
4048 if (sc->sc_flags & SCF_SIGNATURE)
4049 tp->t_flags |= TF_SIGNATURE;
4050 #endif
4051
4052 /* Initialize tp->t_ourmss before we deal with the peer's! */
4053 tp->t_ourmss = sc->sc_ourmaxseg;
4054 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4055
4056 /*
4057 * Initialize the initial congestion window. If we
4058 * had to retransmit the SYN,ACK, we must initialize cwnd
4059 * to 1 segment (i.e. the Loss Window).
4060 */
4061 if (sc->sc_rxtshift)
4062 tp->snd_cwnd = tp->t_peermss;
4063 else {
4064 int ss = tcp_init_win;
4065 #ifdef INET
4066 if (inp != NULL && in_localaddr(inp->inp_faddr))
4067 ss = tcp_init_win_local;
4068 #endif
4069 #ifdef INET6
4070 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4071 ss = tcp_init_win_local;
4072 #endif
4073 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4074 }
4075
4076 tcp_rmx_rtt(tp);
4077 tp->snd_wl1 = sc->sc_irs;
4078 tp->rcv_up = sc->sc_irs + 1;
4079
4080 /*
4081 * This is what whould have happened in tcp_output() when
4082 * the SYN,ACK was sent.
4083 */
4084 tp->snd_up = tp->snd_una;
4085 tp->snd_max = tp->snd_nxt = tp->iss+1;
4086 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4087 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4088 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4089 tp->last_ack_sent = tp->rcv_nxt;
4090 tp->t_partialacks = -1;
4091 tp->t_dupacks = 0;
4092
4093 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4094 s = splsoftnet();
4095 syn_cache_put(sc);
4096 splx(s);
4097 return (so);
4098
4099 resetandabort:
4100 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4101 abort:
4102 if (so != NULL) {
4103 (void) soqremque(so, 1);
4104 (void) soabort(so);
4105 mutex_enter(softnet_lock);
4106 }
4107 s = splsoftnet();
4108 syn_cache_put(sc);
4109 splx(s);
4110 TCP_STATINC(TCP_STAT_SC_ABORTED);
4111 return ((struct socket *)(-1));
4112 }
4113
4114 /*
4115 * This function is called when we get a RST for a
4116 * non-existent connection, so that we can see if the
4117 * connection is in the syn cache. If it is, zap it.
4118 */
4119
4120 void
4121 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4122 {
4123 struct syn_cache *sc;
4124 struct syn_cache_head *scp;
4125 int s = splsoftnet();
4126
4127 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4128 splx(s);
4129 return;
4130 }
4131 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4132 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4133 splx(s);
4134 return;
4135 }
4136 syn_cache_rm(sc);
4137 TCP_STATINC(TCP_STAT_SC_RESET);
4138 syn_cache_put(sc); /* calls pool_put but see spl above */
4139 splx(s);
4140 }
4141
4142 void
4143 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4144 struct tcphdr *th)
4145 {
4146 struct syn_cache *sc;
4147 struct syn_cache_head *scp;
4148 int s;
4149
4150 s = splsoftnet();
4151 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4152 splx(s);
4153 return;
4154 }
4155 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4156 if (ntohl (th->th_seq) != sc->sc_iss) {
4157 splx(s);
4158 return;
4159 }
4160
4161 /*
4162 * If we've retransmitted 3 times and this is our second error,
4163 * we remove the entry. Otherwise, we allow it to continue on.
4164 * This prevents us from incorrectly nuking an entry during a
4165 * spurious network outage.
4166 *
4167 * See tcp_notify().
4168 */
4169 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4170 sc->sc_flags |= SCF_UNREACH;
4171 splx(s);
4172 return;
4173 }
4174
4175 syn_cache_rm(sc);
4176 TCP_STATINC(TCP_STAT_SC_UNREACH);
4177 syn_cache_put(sc); /* calls pool_put but see spl above */
4178 splx(s);
4179 }
4180
4181 /*
4182 * Given a LISTEN socket and an inbound SYN request, add
4183 * this to the syn cache, and send back a segment:
4184 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4185 * to the source.
4186 *
4187 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4188 * Doing so would require that we hold onto the data and deliver it
4189 * to the application. However, if we are the target of a SYN-flood
4190 * DoS attack, an attacker could send data which would eventually
4191 * consume all available buffer space if it were ACKed. By not ACKing
4192 * the data, we avoid this DoS scenario.
4193 */
4194 int
4195 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4196 unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
4197 int optlen, struct tcp_opt_info *oi)
4198 {
4199 struct tcpcb tb, *tp;
4200 long win;
4201 struct syn_cache *sc;
4202 struct syn_cache_head *scp;
4203 struct mbuf *ipopts;
4204 struct tcp_opt_info opti;
4205 int s;
4206
4207 tp = sototcpcb(so);
4208
4209 memset(&opti, 0, sizeof(opti));
4210
4211 /*
4212 * Initialize some local state.
4213 */
4214 win = sbspace(&so->so_rcv);
4215 if (win > TCP_MAXWIN)
4216 win = TCP_MAXWIN;
4217
4218 #ifdef TCP_SIGNATURE
4219 if (optp || (tp->t_flags & TF_SIGNATURE))
4220 #else
4221 if (optp)
4222 #endif
4223 {
4224 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4225 #ifdef TCP_SIGNATURE
4226 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4227 #endif
4228 tb.t_state = TCPS_LISTEN;
4229 if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
4230 sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
4231 return 0;
4232 } else
4233 tb.t_flags = 0;
4234
4235 switch (src->sa_family) {
4236 #ifdef INET
4237 case AF_INET:
4238 /*
4239 * Remember the IP options, if any.
4240 */
4241 ipopts = ip_srcroute(m);
4242 break;
4243 #endif
4244 default:
4245 ipopts = NULL;
4246 }
4247
4248 /*
4249 * See if we already have an entry for this connection.
4250 * If we do, resend the SYN,ACK. We do not count this
4251 * as a retransmission (XXX though maybe we should).
4252 */
4253 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4254 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4255 if (ipopts) {
4256 /*
4257 * If we were remembering a previous source route,
4258 * forget it and use the new one we've been given.
4259 */
4260 if (sc->sc_ipopts)
4261 (void)m_free(sc->sc_ipopts);
4262 sc->sc_ipopts = ipopts;
4263 }
4264 sc->sc_timestamp = tb.ts_recent;
4265 m_freem(m);
4266 if (syn_cache_respond(sc) == 0) {
4267 uint64_t *tcps = TCP_STAT_GETREF();
4268 tcps[TCP_STAT_SNDACKS]++;
4269 tcps[TCP_STAT_SNDTOTAL]++;
4270 TCP_STAT_PUTREF();
4271 }
4272 return 1;
4273 }
4274
4275 s = splsoftnet();
4276 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4277 splx(s);
4278 if (sc == NULL) {
4279 if (ipopts)
4280 (void)m_free(ipopts);
4281 return 0;
4282 }
4283
4284 /*
4285 * Fill in the cache, and put the necessary IP and TCP
4286 * options into the reply.
4287 */
4288 memset(sc, 0, sizeof(struct syn_cache));
4289 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4290 bcopy(src, &sc->sc_src, src->sa_len);
4291 bcopy(dst, &sc->sc_dst, dst->sa_len);
4292 sc->sc_flags = 0;
4293 sc->sc_ipopts = ipopts;
4294 sc->sc_irs = th->th_seq;
4295 switch (src->sa_family) {
4296 #ifdef INET
4297 case AF_INET:
4298 {
4299 struct sockaddr_in *srcin = (void *)src;
4300 struct sockaddr_in *dstin = (void *)dst;
4301
4302 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4303 &srcin->sin_addr, dstin->sin_port,
4304 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4305 break;
4306 }
4307 #endif /* INET */
4308 #ifdef INET6
4309 case AF_INET6:
4310 {
4311 struct sockaddr_in6 *srcin6 = (void *)src;
4312 struct sockaddr_in6 *dstin6 = (void *)dst;
4313
4314 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4315 &srcin6->sin6_addr, dstin6->sin6_port,
4316 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4317 break;
4318 }
4319 #endif /* INET6 */
4320 }
4321 sc->sc_peermaxseg = oi->maxseg;
4322 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4323 m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4324 sc->sc_win = win;
4325 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4326 sc->sc_timestamp = tb.ts_recent;
4327 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4328 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4329 sc->sc_flags |= SCF_TIMESTAMP;
4330 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4331 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4332 sc->sc_requested_s_scale = tb.requested_s_scale;
4333 sc->sc_request_r_scale = 0;
4334 /*
4335 * Pick the smallest possible scaling factor that
4336 * will still allow us to scale up to sb_max.
4337 *
4338 * We do this because there are broken firewalls that
4339 * will corrupt the window scale option, leading to
4340 * the other endpoint believing that our advertised
4341 * window is unscaled. At scale factors larger than
4342 * 5 the unscaled window will drop below 1500 bytes,
4343 * leading to serious problems when traversing these
4344 * broken firewalls.
4345 *
4346 * With the default sbmax of 256K, a scale factor
4347 * of 3 will be chosen by this algorithm. Those who
4348 * choose a larger sbmax should watch out
4349 * for the compatiblity problems mentioned above.
4350 *
4351 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4352 * or <SYN,ACK>) segment itself is never scaled.
4353 */
4354 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4355 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4356 sc->sc_request_r_scale++;
4357 } else {
4358 sc->sc_requested_s_scale = 15;
4359 sc->sc_request_r_scale = 15;
4360 }
4361 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4362 sc->sc_flags |= SCF_SACK_PERMIT;
4363
4364 /*
4365 * ECN setup packet received.
4366 */
4367 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4368 sc->sc_flags |= SCF_ECN_PERMIT;
4369
4370 #ifdef TCP_SIGNATURE
4371 if (tb.t_flags & TF_SIGNATURE)
4372 sc->sc_flags |= SCF_SIGNATURE;
4373 #endif
4374 sc->sc_tp = tp;
4375 m_freem(m);
4376 if (syn_cache_respond(sc) == 0) {
4377 uint64_t *tcps = TCP_STAT_GETREF();
4378 tcps[TCP_STAT_SNDACKS]++;
4379 tcps[TCP_STAT_SNDTOTAL]++;
4380 TCP_STAT_PUTREF();
4381 syn_cache_insert(sc, tp);
4382 } else {
4383 s = splsoftnet();
4384 /*
4385 * syn_cache_put() will try to schedule the timer, so
4386 * we need to initialize it
4387 */
4388 syn_cache_timer_arm(sc);
4389 syn_cache_put(sc);
4390 splx(s);
4391 TCP_STATINC(TCP_STAT_SC_DROPPED);
4392 }
4393 return 1;
4394 }
4395
4396 /*
4397 * syn_cache_respond: (re)send SYN+ACK.
4398 *
4399 * returns 0 on success. otherwise returns an errno, typically ENOBUFS.
4400 */
4401
4402 int
4403 syn_cache_respond(struct syn_cache *sc)
4404 {
4405 #ifdef INET6
4406 struct rtentry *rt = NULL;
4407 #endif
4408 struct route *ro;
4409 u_int8_t *optp;
4410 int optlen, error;
4411 u_int16_t tlen;
4412 struct ip *ip = NULL;
4413 #ifdef INET6
4414 struct ip6_hdr *ip6 = NULL;
4415 #endif
4416 struct tcpcb *tp = NULL;
4417 struct tcphdr *th;
4418 struct mbuf *m;
4419 u_int hlen;
4420 #ifdef TCP_SIGNATURE
4421 struct secasvar *sav = NULL;
4422 u_int8_t *sigp = NULL;
4423 #endif
4424
4425 ro = &sc->sc_route;
4426 switch (sc->sc_src.sa.sa_family) {
4427 case AF_INET:
4428 hlen = sizeof(struct ip);
4429 break;
4430 #ifdef INET6
4431 case AF_INET6:
4432 hlen = sizeof(struct ip6_hdr);
4433 break;
4434 #endif
4435 default:
4436 return (EAFNOSUPPORT);
4437 }
4438
4439 /* worst case scanario, since we don't know the option size yet */
4440 tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4441
4442 /*
4443 * Create the IP+TCP header from scratch.
4444 */
4445 #ifdef DIAGNOSTIC
4446 if (max_linkhdr + tlen > MCLBYTES)
4447 return ENOBUFS;
4448 #endif
4449
4450 MGETHDR(m, M_DONTWAIT, MT_DATA);
4451 if (m && (max_linkhdr + tlen) > MHLEN) {
4452 MCLGET(m, M_DONTWAIT);
4453 if ((m->m_flags & M_EXT) == 0) {
4454 m_freem(m);
4455 m = NULL;
4456 }
4457 }
4458 if (m == NULL)
4459 return ENOBUFS;
4460 MCLAIM(m, &tcp_tx_mowner);
4461
4462 /* Fixup the mbuf. */
4463 m->m_data += max_linkhdr;
4464 if (sc->sc_tp)
4465 tp = sc->sc_tp;
4466 m_reset_rcvif(m);
4467 memset(mtod(m, u_char *), 0, tlen);
4468
4469 switch (sc->sc_src.sa.sa_family) {
4470 case AF_INET:
4471 ip = mtod(m, struct ip *);
4472 ip->ip_v = 4;
4473 ip->ip_dst = sc->sc_src.sin.sin_addr;
4474 ip->ip_src = sc->sc_dst.sin.sin_addr;
4475 ip->ip_p = IPPROTO_TCP;
4476 th = (struct tcphdr *)(ip + 1);
4477 th->th_dport = sc->sc_src.sin.sin_port;
4478 th->th_sport = sc->sc_dst.sin.sin_port;
4479 break;
4480 #ifdef INET6
4481 case AF_INET6:
4482 ip6 = mtod(m, struct ip6_hdr *);
4483 ip6->ip6_vfc = IPV6_VERSION;
4484 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4485 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4486 ip6->ip6_nxt = IPPROTO_TCP;
4487 /* ip6_plen will be updated in ip6_output() */
4488 th = (struct tcphdr *)(ip6 + 1);
4489 th->th_dport = sc->sc_src.sin6.sin6_port;
4490 th->th_sport = sc->sc_dst.sin6.sin6_port;
4491 break;
4492 #endif
4493 default:
4494 return ENOBUFS;
4495 }
4496
4497 th->th_seq = htonl(sc->sc_iss);
4498 th->th_ack = htonl(sc->sc_irs + 1);
4499 th->th_flags = TH_SYN|TH_ACK;
4500 th->th_win = htons(sc->sc_win);
4501 /* th_x2, th_sum, th_urp already 0 from memset */
4502
4503 /* Tack on the TCP options. */
4504 optp = (u_int8_t *)(th + 1);
4505 optlen = 0;
4506 *optp++ = TCPOPT_MAXSEG;
4507 *optp++ = TCPOLEN_MAXSEG;
4508 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4509 *optp++ = sc->sc_ourmaxseg & 0xff;
4510 optlen += TCPOLEN_MAXSEG;
4511
4512 if (sc->sc_request_r_scale != 15) {
4513 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4514 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4515 sc->sc_request_r_scale);
4516 optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4517 optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4518 }
4519
4520 if (sc->sc_flags & SCF_SACK_PERMIT) {
4521 /* Let the peer know that we will SACK. */
4522 *optp++ = TCPOPT_SACK_PERMITTED;
4523 *optp++ = TCPOLEN_SACK_PERMITTED;
4524 optlen += TCPOLEN_SACK_PERMITTED;
4525 }
4526
4527 if (sc->sc_flags & SCF_TIMESTAMP) {
4528 while (optlen % 4 != 2) {
4529 optlen += TCPOLEN_NOP;
4530 *optp++ = TCPOPT_NOP;
4531 }
4532 *optp++ = TCPOPT_TIMESTAMP;
4533 *optp++ = TCPOLEN_TIMESTAMP;
4534 u_int32_t *lp = (u_int32_t *)(optp);
4535 /* Form timestamp option as shown in appendix A of RFC 1323. */
4536 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4537 *lp = htonl(sc->sc_timestamp);
4538 optp += TCPOLEN_TIMESTAMP - 2;
4539 optlen += TCPOLEN_TIMESTAMP;
4540 }
4541
4542 #ifdef TCP_SIGNATURE
4543 if (sc->sc_flags & SCF_SIGNATURE) {
4544 sav = tcp_signature_getsav(m);
4545 if (sav == NULL) {
4546 if (m)
4547 m_freem(m);
4548 return (EPERM);
4549 }
4550
4551 *optp++ = TCPOPT_SIGNATURE;
4552 *optp++ = TCPOLEN_SIGNATURE;
4553 sigp = optp;
4554 memset(optp, 0, TCP_SIGLEN);
4555 optp += TCP_SIGLEN;
4556 optlen += TCPOLEN_SIGNATURE;
4557
4558 }
4559 #endif
4560 /* Terminate and pad TCP options to a 4 byte boundary. */
4561 if (optlen % 4) {
4562 optlen += TCPOLEN_EOL;
4563 *optp++ = TCPOPT_EOL;
4564 }
4565 /*
4566 * According to RFC 793 (STD0007):
4567 * "The content of the header beyond the End-of-Option option
4568 * must be header padding (i.e., zero)."
4569 * and later: "The padding is composed of zeros."
4570 */
4571 while (optlen % 4) {
4572 optlen += TCPOLEN_PAD;
4573 *optp++ = TCPOPT_PAD;
4574 }
4575
4576 /* compute the actual values now that we've added the options */
4577 tlen = hlen + sizeof(struct tcphdr) + optlen;
4578 m->m_len = m->m_pkthdr.len = tlen;
4579 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4580
4581 #ifdef TCP_SIGNATURE
4582 if (sav) {
4583 (void)tcp_signature(m, th, hlen, sav, sigp);
4584 key_sa_recordxfer(sav, m);
4585 KEY_SA_UNREF(&sav);
4586 }
4587 #endif
4588
4589 /*
4590 * Send ECN SYN-ACK setup packet.
4591 * Routes can be asymetric, so, even if we receive a packet
4592 * with ECE and CWR set, we must not assume no one will block
4593 * the ECE packet we are about to send.
4594 */
4595 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4596 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4597 th->th_flags |= TH_ECE;
4598 TCP_STATINC(TCP_STAT_ECN_SHS);
4599
4600 /*
4601 * draft-ietf-tcpm-ecnsyn-00.txt
4602 *
4603 * "[...] a TCP node MAY respond to an ECN-setup
4604 * SYN packet by setting ECT in the responding
4605 * ECN-setup SYN/ACK packet, indicating to routers
4606 * that the SYN/ACK packet is ECN-Capable.
4607 * This allows a congested router along the path
4608 * to mark the packet instead of dropping the
4609 * packet as an indication of congestion."
4610 *
4611 * "[...] There can be a great benefit in setting
4612 * an ECN-capable codepoint in SYN/ACK packets [...]
4613 * Congestion is most likely to occur in
4614 * the server-to-client direction. As a result,
4615 * setting an ECN-capable codepoint in SYN/ACK
4616 * packets can reduce the occurence of three-second
4617 * retransmit timeouts resulting from the drop
4618 * of SYN/ACK packets."
4619 *
4620 * Page 4 and 6, January 2006.
4621 */
4622
4623 switch (sc->sc_src.sa.sa_family) {
4624 #ifdef INET
4625 case AF_INET:
4626 ip->ip_tos |= IPTOS_ECN_ECT0;
4627 break;
4628 #endif
4629 #ifdef INET6
4630 case AF_INET6:
4631 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4632 break;
4633 #endif
4634 }
4635 TCP_STATINC(TCP_STAT_ECN_ECT);
4636 }
4637
4638
4639 /* Compute the packet's checksum. */
4640 switch (sc->sc_src.sa.sa_family) {
4641 case AF_INET:
4642 ip->ip_len = htons(tlen - hlen);
4643 th->th_sum = 0;
4644 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4645 break;
4646 #ifdef INET6
4647 case AF_INET6:
4648 ip6->ip6_plen = htons(tlen - hlen);
4649 th->th_sum = 0;
4650 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4651 break;
4652 #endif
4653 }
4654
4655 /*
4656 * Fill in some straggling IP bits. Note the stack expects
4657 * ip_len to be in host order, for convenience.
4658 */
4659 switch (sc->sc_src.sa.sa_family) {
4660 #ifdef INET
4661 case AF_INET:
4662 ip->ip_len = htons(tlen);
4663 ip->ip_ttl = ip_defttl;
4664 /* XXX tos? */
4665 break;
4666 #endif
4667 #ifdef INET6
4668 case AF_INET6:
4669 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4670 ip6->ip6_vfc |= IPV6_VERSION;
4671 ip6->ip6_plen = htons(tlen - hlen);
4672 /* ip6_hlim will be initialized afterwards */
4673 /* XXX flowlabel? */
4674 break;
4675 #endif
4676 }
4677
4678 /* XXX use IPsec policy on listening socket, on SYN ACK */
4679 tp = sc->sc_tp;
4680
4681 switch (sc->sc_src.sa.sa_family) {
4682 #ifdef INET
4683 case AF_INET:
4684 error = ip_output(m, sc->sc_ipopts, ro,
4685 (ip_mtudisc ? IP_MTUDISC : 0),
4686 NULL, tp ? tp->t_inpcb : NULL);
4687 break;
4688 #endif
4689 #ifdef INET6
4690 case AF_INET6:
4691 ip6->ip6_hlim = in6_selecthlim(NULL,
4692 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4693 rtcache_unref(rt, ro);
4694
4695 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4696 tp ? tp->t_in6pcb : NULL, NULL);
4697 break;
4698 #endif
4699 default:
4700 error = EAFNOSUPPORT;
4701 break;
4702 }
4703 return (error);
4704 }
4705