Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.393
      1 /*	$NetBSD: tcp_input.c,v 1.393 2018/03/28 14:43:55 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.393 2018/03/28 14:43:55 maxv Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_inet.h"
    155 #include "opt_ipsec.h"
    156 #include "opt_inet_csum.h"
    157 #include "opt_tcp_debug.h"
    158 #endif
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 #include <sys/lwp.h> /* for lwp0 */
    176 #include <sys/cprng.h>
    177 
    178 #include <net/if.h>
    179 #include <net/if_types.h>
    180 
    181 #include <netinet/in.h>
    182 #include <netinet/in_systm.h>
    183 #include <netinet/ip.h>
    184 #include <netinet/in_pcb.h>
    185 #include <netinet/in_var.h>
    186 #include <netinet/ip_var.h>
    187 #include <netinet/in_offload.h>
    188 
    189 #ifdef INET6
    190 #include <netinet/ip6.h>
    191 #include <netinet6/ip6_var.h>
    192 #include <netinet6/in6_pcb.h>
    193 #include <netinet6/ip6_var.h>
    194 #include <netinet6/in6_var.h>
    195 #include <netinet/icmp6.h>
    196 #include <netinet6/nd6.h>
    197 #ifdef TCP_SIGNATURE
    198 #include <netinet6/scope6_var.h>
    199 #endif
    200 #endif
    201 
    202 #ifndef INET6
    203 /* always need ip6.h for IP6_EXTHDR_GET */
    204 #include <netinet/ip6.h>
    205 #endif
    206 
    207 #include <netinet/tcp.h>
    208 #include <netinet/tcp_fsm.h>
    209 #include <netinet/tcp_seq.h>
    210 #include <netinet/tcp_timer.h>
    211 #include <netinet/tcp_var.h>
    212 #include <netinet/tcp_private.h>
    213 #include <netinet/tcpip.h>
    214 #include <netinet/tcp_congctl.h>
    215 #include <netinet/tcp_debug.h>
    216 
    217 #ifdef INET6
    218 #include "faith.h"
    219 #if defined(NFAITH) && NFAITH > 0
    220 #include <net/if_faith.h>
    221 #endif
    222 #endif
    223 
    224 #ifdef IPSEC
    225 #include <netipsec/ipsec.h>
    226 #include <netipsec/ipsec_var.h>
    227 #include <netipsec/key.h>
    228 #ifdef INET6
    229 #include <netipsec/ipsec6.h>
    230 #endif
    231 #endif	/* IPSEC*/
    232 
    233 #include <netinet/tcp_vtw.h>
    234 
    235 int	tcprexmtthresh = 3;
    236 int	tcp_log_refused;
    237 
    238 int	tcp_do_autorcvbuf = 1;
    239 int	tcp_autorcvbuf_inc = 16 * 1024;
    240 int	tcp_autorcvbuf_max = 256 * 1024;
    241 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    242 
    243 static int tcp_rst_ppslim_count = 0;
    244 static struct timeval tcp_rst_ppslim_last;
    245 static int tcp_ackdrop_ppslim_count = 0;
    246 static struct timeval tcp_ackdrop_ppslim_last;
    247 
    248 static void syn_cache_timer(void *);
    249 
    250 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    251 
    252 /* for modulo comparisons of timestamps */
    253 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    254 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    255 
    256 /*
    257  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    258  */
    259 #ifdef INET6
    260 static inline void
    261 nd6_hint(struct tcpcb *tp)
    262 {
    263 	struct rtentry *rt = NULL;
    264 
    265 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    266 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    267 		nd6_nud_hint(rt);
    268 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
    269 }
    270 #else
    271 static inline void
    272 nd6_hint(struct tcpcb *tp)
    273 {
    274 }
    275 #endif
    276 
    277 /*
    278  * Compute ACK transmission behavior.  Delay the ACK unless
    279  * we have already delayed an ACK (must send an ACK every two segments).
    280  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    281  * option is enabled.
    282  */
    283 static void
    284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    285 {
    286 
    287 	if (tp->t_flags & TF_DELACK ||
    288 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    289 		tp->t_flags |= TF_ACKNOW;
    290 	else
    291 		TCP_SET_DELACK(tp);
    292 }
    293 
    294 static void
    295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    296 {
    297 
    298 	/*
    299 	 * If we had a pending ICMP message that refers to data that have
    300 	 * just been acknowledged, disregard the recorded ICMP message.
    301 	 */
    302 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    303 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    304 		tp->t_flags &= ~TF_PMTUD_PEND;
    305 
    306 	/*
    307 	 * Keep track of the largest chunk of data
    308 	 * acknowledged since last PMTU update
    309 	 */
    310 	if (tp->t_pmtud_mss_acked < acked)
    311 		tp->t_pmtud_mss_acked = acked;
    312 }
    313 
    314 /*
    315  * Convert TCP protocol fields to host order for easier processing.
    316  */
    317 static void
    318 tcp_fields_to_host(struct tcphdr *th)
    319 {
    320 
    321 	NTOHL(th->th_seq);
    322 	NTOHL(th->th_ack);
    323 	NTOHS(th->th_win);
    324 	NTOHS(th->th_urp);
    325 }
    326 
    327 /*
    328  * ... and reverse the above.
    329  */
    330 static void
    331 tcp_fields_to_net(struct tcphdr *th)
    332 {
    333 
    334 	HTONL(th->th_seq);
    335 	HTONL(th->th_ack);
    336 	HTONS(th->th_win);
    337 	HTONS(th->th_urp);
    338 }
    339 
    340 static void
    341 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
    342 {
    343 	if (th->th_urp > 1) {
    344 		th->th_urp -= todrop;
    345 	} else {
    346 		*tiflags &= ~TH_URG;
    347 		th->th_urp = 0;
    348 	}
    349 }
    350 
    351 #ifdef TCP_CSUM_COUNTERS
    352 #include <sys/device.h>
    353 
    354 extern struct evcnt tcp_hwcsum_ok;
    355 extern struct evcnt tcp_hwcsum_bad;
    356 extern struct evcnt tcp_hwcsum_data;
    357 extern struct evcnt tcp_swcsum;
    358 #if defined(INET6)
    359 extern struct evcnt tcp6_hwcsum_ok;
    360 extern struct evcnt tcp6_hwcsum_bad;
    361 extern struct evcnt tcp6_hwcsum_data;
    362 extern struct evcnt tcp6_swcsum;
    363 #endif /* defined(INET6) */
    364 
    365 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    366 
    367 #else
    368 
    369 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    370 
    371 #endif /* TCP_CSUM_COUNTERS */
    372 
    373 #ifdef TCP_REASS_COUNTERS
    374 #include <sys/device.h>
    375 
    376 extern struct evcnt tcp_reass_;
    377 extern struct evcnt tcp_reass_empty;
    378 extern struct evcnt tcp_reass_iteration[8];
    379 extern struct evcnt tcp_reass_prependfirst;
    380 extern struct evcnt tcp_reass_prepend;
    381 extern struct evcnt tcp_reass_insert;
    382 extern struct evcnt tcp_reass_inserttail;
    383 extern struct evcnt tcp_reass_append;
    384 extern struct evcnt tcp_reass_appendtail;
    385 extern struct evcnt tcp_reass_overlaptail;
    386 extern struct evcnt tcp_reass_overlapfront;
    387 extern struct evcnt tcp_reass_segdup;
    388 extern struct evcnt tcp_reass_fragdup;
    389 
    390 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    391 
    392 #else
    393 
    394 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    395 
    396 #endif /* TCP_REASS_COUNTERS */
    397 
    398 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    399     int);
    400 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    401     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    402 
    403 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    404 #ifdef INET6
    405 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    406 #endif
    407 
    408 #define	TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
    409 
    410 #if defined(MBUFTRACE)
    411 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    412 #endif /* defined(MBUFTRACE) */
    413 
    414 static struct pool tcpipqent_pool;
    415 
    416 void
    417 tcpipqent_init(void)
    418 {
    419 
    420 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    421 	    NULL, IPL_VM);
    422 }
    423 
    424 struct ipqent *
    425 tcpipqent_alloc(void)
    426 {
    427 	struct ipqent *ipqe;
    428 	int s;
    429 
    430 	s = splvm();
    431 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    432 	splx(s);
    433 
    434 	return ipqe;
    435 }
    436 
    437 void
    438 tcpipqent_free(struct ipqent *ipqe)
    439 {
    440 	int s;
    441 
    442 	s = splvm();
    443 	pool_put(&tcpipqent_pool, ipqe);
    444 	splx(s);
    445 }
    446 
    447 static int
    448 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
    449 {
    450 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    451 	struct socket *so = NULL;
    452 	int pkt_flags;
    453 	tcp_seq pkt_seq;
    454 	unsigned pkt_len;
    455 	u_long rcvpartdupbyte = 0;
    456 	u_long rcvoobyte;
    457 #ifdef TCP_REASS_COUNTERS
    458 	u_int count = 0;
    459 #endif
    460 	uint64_t *tcps;
    461 
    462 	if (tp->t_inpcb)
    463 		so = tp->t_inpcb->inp_socket;
    464 #ifdef INET6
    465 	else if (tp->t_in6pcb)
    466 		so = tp->t_in6pcb->in6p_socket;
    467 #endif
    468 
    469 	TCP_REASS_LOCK_CHECK(tp);
    470 
    471 	/*
    472 	 * Call with th==NULL after become established to
    473 	 * force pre-ESTABLISHED data up to user socket.
    474 	 */
    475 	if (th == NULL)
    476 		goto present;
    477 
    478 	m_claimm(m, &tcp_reass_mowner);
    479 
    480 	rcvoobyte = tlen;
    481 	/*
    482 	 * Copy these to local variables because the tcpiphdr
    483 	 * gets munged while we are collapsing mbufs.
    484 	 */
    485 	pkt_seq = th->th_seq;
    486 	pkt_len = tlen;
    487 	pkt_flags = th->th_flags;
    488 
    489 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    490 
    491 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    492 		/*
    493 		 * When we miss a packet, the vast majority of time we get
    494 		 * packets that follow it in order.  So optimize for that.
    495 		 */
    496 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    497 			p->ipqe_len += pkt_len;
    498 			p->ipqe_flags |= pkt_flags;
    499 			m_cat(p->ipre_mlast, m);
    500 			TRAVERSE(p->ipre_mlast);
    501 			m = NULL;
    502 			tiqe = p;
    503 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    504 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    505 			goto skip_replacement;
    506 		}
    507 		/*
    508 		 * While we're here, if the pkt is completely beyond
    509 		 * anything we have, just insert it at the tail.
    510 		 */
    511 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    512 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    513 			goto insert_it;
    514 		}
    515 	}
    516 
    517 	q = TAILQ_FIRST(&tp->segq);
    518 
    519 	if (q != NULL) {
    520 		/*
    521 		 * If this segment immediately precedes the first out-of-order
    522 		 * block, simply slap the segment in front of it and (mostly)
    523 		 * skip the complicated logic.
    524 		 */
    525 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    526 			q->ipqe_seq = pkt_seq;
    527 			q->ipqe_len += pkt_len;
    528 			q->ipqe_flags |= pkt_flags;
    529 			m_cat(m, q->ipqe_m);
    530 			q->ipqe_m = m;
    531 			q->ipre_mlast = m; /* last mbuf may have changed */
    532 			TRAVERSE(q->ipre_mlast);
    533 			tiqe = q;
    534 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    535 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    536 			goto skip_replacement;
    537 		}
    538 	} else {
    539 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    540 	}
    541 
    542 	/*
    543 	 * Find a segment which begins after this one does.
    544 	 */
    545 	for (p = NULL; q != NULL; q = nq) {
    546 		nq = TAILQ_NEXT(q, ipqe_q);
    547 #ifdef TCP_REASS_COUNTERS
    548 		count++;
    549 #endif
    550 		/*
    551 		 * If the received segment is just right after this
    552 		 * fragment, merge the two together and then check
    553 		 * for further overlaps.
    554 		 */
    555 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    556 #ifdef TCPREASS_DEBUG
    557 			printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
    558 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    559 			       q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
    560 #endif
    561 			pkt_len += q->ipqe_len;
    562 			pkt_flags |= q->ipqe_flags;
    563 			pkt_seq = q->ipqe_seq;
    564 			m_cat(q->ipre_mlast, m);
    565 			TRAVERSE(q->ipre_mlast);
    566 			m = q->ipqe_m;
    567 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    568 			goto free_ipqe;
    569 		}
    570 		/*
    571 		 * If the received segment is completely past this
    572 		 * fragment, we need to go the next fragment.
    573 		 */
    574 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    575 			p = q;
    576 			continue;
    577 		}
    578 		/*
    579 		 * If the fragment is past the received segment,
    580 		 * it (or any following) can't be concatenated.
    581 		 */
    582 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    583 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    584 			break;
    585 		}
    586 
    587 		/*
    588 		 * We've received all the data in this segment before.
    589 		 * mark it as a duplicate and return.
    590 		 */
    591 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    592 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    593 			tcps = TCP_STAT_GETREF();
    594 			tcps[TCP_STAT_RCVDUPPACK]++;
    595 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    596 			TCP_STAT_PUTREF();
    597 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    598 			m_freem(m);
    599 			if (tiqe != NULL) {
    600 				tcpipqent_free(tiqe);
    601 			}
    602 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    603 			goto out;
    604 		}
    605 		/*
    606 		 * Received segment completely overlaps this fragment
    607 		 * so we drop the fragment (this keeps the temporal
    608 		 * ordering of segments correct).
    609 		 */
    610 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    611 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    612 			rcvpartdupbyte += q->ipqe_len;
    613 			m_freem(q->ipqe_m);
    614 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    615 			goto free_ipqe;
    616 		}
    617 		/*
    618 		 * RX'ed segment extends past the end of the
    619 		 * fragment.  Drop the overlapping bytes.  Then
    620 		 * merge the fragment and segment then treat as
    621 		 * a longer received packet.
    622 		 */
    623 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    624 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    625 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    626 #ifdef TCPREASS_DEBUG
    627 			printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
    628 			       tp, overlap,
    629 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    630 #endif
    631 			m_adj(m, overlap);
    632 			rcvpartdupbyte += overlap;
    633 			m_cat(q->ipre_mlast, m);
    634 			TRAVERSE(q->ipre_mlast);
    635 			m = q->ipqe_m;
    636 			pkt_seq = q->ipqe_seq;
    637 			pkt_len += q->ipqe_len - overlap;
    638 			rcvoobyte -= overlap;
    639 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    640 			goto free_ipqe;
    641 		}
    642 		/*
    643 		 * RX'ed segment extends past the front of the
    644 		 * fragment.  Drop the overlapping bytes on the
    645 		 * received packet.  The packet will then be
    646 		 * contatentated with this fragment a bit later.
    647 		 */
    648 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    649 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    650 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    651 #ifdef TCPREASS_DEBUG
    652 			printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
    653 			       tp, overlap,
    654 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    655 #endif
    656 			m_adj(m, -overlap);
    657 			pkt_len -= overlap;
    658 			rcvpartdupbyte += overlap;
    659 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    660 			rcvoobyte -= overlap;
    661 		}
    662 		/*
    663 		 * If the received segment immediates precedes this
    664 		 * fragment then tack the fragment onto this segment
    665 		 * and reinsert the data.
    666 		 */
    667 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    668 #ifdef TCPREASS_DEBUG
    669 			printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
    670 			       tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
    671 			       pkt_seq, pkt_seq + pkt_len, pkt_len);
    672 #endif
    673 			pkt_len += q->ipqe_len;
    674 			pkt_flags |= q->ipqe_flags;
    675 			m_cat(m, q->ipqe_m);
    676 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    677 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    678 			tp->t_segqlen--;
    679 			KASSERT(tp->t_segqlen >= 0);
    680 			KASSERT(tp->t_segqlen != 0 ||
    681 			    (TAILQ_EMPTY(&tp->segq) &&
    682 			    TAILQ_EMPTY(&tp->timeq)));
    683 			if (tiqe == NULL) {
    684 				tiqe = q;
    685 			} else {
    686 				tcpipqent_free(q);
    687 			}
    688 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    689 			break;
    690 		}
    691 		/*
    692 		 * If the fragment is before the segment, remember it.
    693 		 * When this loop is terminated, p will contain the
    694 		 * pointer to fragment that is right before the received
    695 		 * segment.
    696 		 */
    697 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    698 			p = q;
    699 
    700 		continue;
    701 
    702 		/*
    703 		 * This is a common operation.  It also will allow
    704 		 * to save doing a malloc/free in most instances.
    705 		 */
    706 	  free_ipqe:
    707 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    708 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    709 		tp->t_segqlen--;
    710 		KASSERT(tp->t_segqlen >= 0);
    711 		KASSERT(tp->t_segqlen != 0 ||
    712 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    713 		if (tiqe == NULL) {
    714 			tiqe = q;
    715 		} else {
    716 			tcpipqent_free(q);
    717 		}
    718 	}
    719 
    720 #ifdef TCP_REASS_COUNTERS
    721 	if (count > 7)
    722 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    723 	else if (count > 0)
    724 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    725 #endif
    726 
    727     insert_it:
    728 
    729 	/*
    730 	 * Allocate a new queue entry since the received segment did not
    731 	 * collapse onto any other out-of-order block; thus we are allocating
    732 	 * a new block.  If it had collapsed, tiqe would not be NULL and
    733 	 * we would be reusing it.
    734 	 * XXX If we can't, just drop the packet.  XXX
    735 	 */
    736 	if (tiqe == NULL) {
    737 		tiqe = tcpipqent_alloc();
    738 		if (tiqe == NULL) {
    739 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    740 			m_freem(m);
    741 			goto out;
    742 		}
    743 	}
    744 
    745 	/*
    746 	 * Update the counters.
    747 	 */
    748 	tp->t_rcvoopack++;
    749 	tcps = TCP_STAT_GETREF();
    750 	tcps[TCP_STAT_RCVOOPACK]++;
    751 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    752 	if (rcvpartdupbyte) {
    753 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    754 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    755 	}
    756 	TCP_STAT_PUTREF();
    757 
    758 	/*
    759 	 * Insert the new fragment queue entry into both queues.
    760 	 */
    761 	tiqe->ipqe_m = m;
    762 	tiqe->ipre_mlast = m;
    763 	tiqe->ipqe_seq = pkt_seq;
    764 	tiqe->ipqe_len = pkt_len;
    765 	tiqe->ipqe_flags = pkt_flags;
    766 	if (p == NULL) {
    767 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    768 #ifdef TCPREASS_DEBUG
    769 		if (tiqe->ipqe_seq != tp->rcv_nxt)
    770 			printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
    771 			       tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
    772 #endif
    773 	} else {
    774 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    775 #ifdef TCPREASS_DEBUG
    776 		printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
    777 		       tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
    778 		       p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
    779 #endif
    780 	}
    781 	tp->t_segqlen++;
    782 
    783 skip_replacement:
    784 
    785 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    786 
    787 present:
    788 	/*
    789 	 * Present data to user, advancing rcv_nxt through
    790 	 * completed sequence space.
    791 	 */
    792 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    793 		goto out;
    794 	q = TAILQ_FIRST(&tp->segq);
    795 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    796 		goto out;
    797 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    798 		goto out;
    799 
    800 	tp->rcv_nxt += q->ipqe_len;
    801 	pkt_flags = q->ipqe_flags & TH_FIN;
    802 	nd6_hint(tp);
    803 
    804 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    805 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    806 	tp->t_segqlen--;
    807 	KASSERT(tp->t_segqlen >= 0);
    808 	KASSERT(tp->t_segqlen != 0 ||
    809 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    810 	if (so->so_state & SS_CANTRCVMORE)
    811 		m_freem(q->ipqe_m);
    812 	else
    813 		sbappendstream(&so->so_rcv, q->ipqe_m);
    814 	tcpipqent_free(q);
    815 	TCP_REASS_UNLOCK(tp);
    816 	sorwakeup(so);
    817 	return (pkt_flags);
    818 out:
    819 	TCP_REASS_UNLOCK(tp);
    820 	return (0);
    821 }
    822 
    823 #ifdef INET6
    824 int
    825 tcp6_input(struct mbuf **mp, int *offp, int proto)
    826 {
    827 	struct mbuf *m = *mp;
    828 
    829 	/*
    830 	 * draft-itojun-ipv6-tcp-to-anycast
    831 	 * better place to put this in?
    832 	 */
    833 	if (m->m_flags & M_ANYCAST6) {
    834 		struct ip6_hdr *ip6;
    835 		if (m->m_len < sizeof(struct ip6_hdr)) {
    836 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    837 				TCP_STATINC(TCP_STAT_RCVSHORT);
    838 				return IPPROTO_DONE;
    839 			}
    840 		}
    841 		ip6 = mtod(m, struct ip6_hdr *);
    842 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    843 		    (char *)&ip6->ip6_dst - (char *)ip6);
    844 		return IPPROTO_DONE;
    845 	}
    846 
    847 	tcp_input(m, *offp, proto);
    848 	return IPPROTO_DONE;
    849 }
    850 #endif
    851 
    852 static void
    853 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    854 {
    855 	char src[INET_ADDRSTRLEN];
    856 	char dst[INET_ADDRSTRLEN];
    857 
    858 	if (ip) {
    859 		in_print(src, sizeof(src), &ip->ip_src);
    860 		in_print(dst, sizeof(dst), &ip->ip_dst);
    861 	} else {
    862 		strlcpy(src, "(unknown)", sizeof(src));
    863 		strlcpy(dst, "(unknown)", sizeof(dst));
    864 	}
    865 	log(LOG_INFO,
    866 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    867 	    dst, ntohs(th->th_dport),
    868 	    src, ntohs(th->th_sport));
    869 }
    870 
    871 #ifdef INET6
    872 static void
    873 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    874 {
    875 	char src[INET6_ADDRSTRLEN];
    876 	char dst[INET6_ADDRSTRLEN];
    877 
    878 	if (ip6) {
    879 		in6_print(src, sizeof(src), &ip6->ip6_src);
    880 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    881 	} else {
    882 		strlcpy(src, "(unknown v6)", sizeof(src));
    883 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    884 	}
    885 	log(LOG_INFO,
    886 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    887 	    dst, ntohs(th->th_dport),
    888 	    src, ntohs(th->th_sport));
    889 }
    890 #endif
    891 
    892 /*
    893  * Checksum extended TCP header and data.
    894  */
    895 int
    896 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    897     int toff, int off, int tlen)
    898 {
    899 	struct ifnet *rcvif;
    900 	int s;
    901 
    902 	/*
    903 	 * XXX it's better to record and check if this mbuf is
    904 	 * already checked.
    905 	 */
    906 
    907 	rcvif = m_get_rcvif(m, &s);
    908 	if (__predict_false(rcvif == NULL))
    909 		goto badcsum; /* XXX */
    910 
    911 	switch (af) {
    912 	case AF_INET:
    913 		switch (m->m_pkthdr.csum_flags &
    914 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    915 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    916 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    917 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    918 			goto badcsum;
    919 
    920 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    921 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    922 
    923 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    924 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    925 				const struct ip *ip =
    926 				    mtod(m, const struct ip *);
    927 
    928 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    929 				    ip->ip_dst.s_addr,
    930 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    931 			}
    932 			if ((hw_csum ^ 0xffff) != 0)
    933 				goto badcsum;
    934 			break;
    935 		}
    936 
    937 		case M_CSUM_TCPv4:
    938 			/* Checksum was okay. */
    939 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    940 			break;
    941 
    942 		default:
    943 			/*
    944 			 * Must compute it ourselves.  Maybe skip checksum
    945 			 * on loopback interfaces.
    946 			 */
    947 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    948 					   tcp_do_loopback_cksum)) {
    949 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    950 				if (in4_cksum(m, IPPROTO_TCP, toff,
    951 					      tlen + off) != 0)
    952 					goto badcsum;
    953 			}
    954 			break;
    955 		}
    956 		break;
    957 
    958 #ifdef INET6
    959 	case AF_INET6:
    960 		switch (m->m_pkthdr.csum_flags &
    961 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    962 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    963 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    964 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    965 			goto badcsum;
    966 
    967 #if 0 /* notyet */
    968 		case M_CSUM_TCPv6|M_CSUM_DATA:
    969 #endif
    970 
    971 		case M_CSUM_TCPv6:
    972 			/* Checksum was okay. */
    973 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    974 			break;
    975 
    976 		default:
    977 			/*
    978 			 * Must compute it ourselves.  Maybe skip checksum
    979 			 * on loopback interfaces.
    980 			 */
    981 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    982 			    tcp_do_loopback_cksum)) {
    983 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    984 				if (in6_cksum(m, IPPROTO_TCP, toff,
    985 				    tlen + off) != 0)
    986 					goto badcsum;
    987 			}
    988 		}
    989 		break;
    990 #endif /* INET6 */
    991 	}
    992 	m_put_rcvif(rcvif, &s);
    993 
    994 	return 0;
    995 
    996 badcsum:
    997 	m_put_rcvif(rcvif, &s);
    998 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    999 	return -1;
   1000 }
   1001 
   1002 /*
   1003  * When a packet arrives addressed to a vestigial tcpbp, we
   1004  * nevertheless have to respond to it per the spec.
   1005  *
   1006  * This code is duplicated from the one in tcp_input().
   1007  */
   1008 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
   1009     struct mbuf *m, int tlen)
   1010 {
   1011 	int tiflags;
   1012 	int todrop;
   1013 	uint32_t t_flags = 0;
   1014 	uint64_t *tcps;
   1015 
   1016 	tiflags = th->th_flags;
   1017 	todrop  = vp->rcv_nxt - th->th_seq;
   1018 
   1019 	if (todrop > 0) {
   1020 		if (tiflags & TH_SYN) {
   1021 			tiflags &= ~TH_SYN;
   1022 			th->th_seq++;
   1023 			tcp_urp_drop(th, 1, &tiflags);
   1024 			todrop--;
   1025 		}
   1026 		if (todrop > tlen ||
   1027 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1028 			/*
   1029 			 * Any valid FIN or RST must be to the left of the
   1030 			 * window.  At this point the FIN or RST must be a
   1031 			 * duplicate or out of sequence; drop it.
   1032 			 */
   1033 			if (tiflags & TH_RST)
   1034 				goto drop;
   1035 			tiflags &= ~(TH_FIN|TH_RST);
   1036 
   1037 			/*
   1038 			 * Send an ACK to resynchronize and drop any data.
   1039 			 * But keep on processing for RST or ACK.
   1040 			 */
   1041 			t_flags |= TF_ACKNOW;
   1042 			todrop = tlen;
   1043 			tcps = TCP_STAT_GETREF();
   1044 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1045 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1046 			TCP_STAT_PUTREF();
   1047 		} else if ((tiflags & TH_RST) &&
   1048 		    th->th_seq != vp->rcv_nxt) {
   1049 			/*
   1050 			 * Test for reset before adjusting the sequence
   1051 			 * number for overlapping data.
   1052 			 */
   1053 			goto dropafterack_ratelim;
   1054 		} else {
   1055 			tcps = TCP_STAT_GETREF();
   1056 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1057 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1058 			TCP_STAT_PUTREF();
   1059 		}
   1060 
   1061 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1062 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1063 
   1064 		th->th_seq += todrop;
   1065 		tlen -= todrop;
   1066 		tcp_urp_drop(th, todrop, &tiflags);
   1067 	}
   1068 
   1069 	/*
   1070 	 * If new data are received on a connection after the
   1071 	 * user processes are gone, then RST the other end.
   1072 	 */
   1073 	if (tlen) {
   1074 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1075 		goto dropwithreset;
   1076 	}
   1077 
   1078 	/*
   1079 	 * If segment ends after window, drop trailing data
   1080 	 * (and PUSH and FIN); if nothing left, just ACK.
   1081 	 */
   1082 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
   1083 
   1084 	if (todrop > 0) {
   1085 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1086 		if (todrop >= tlen) {
   1087 			/*
   1088 			 * The segment actually starts after the window.
   1089 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1090 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1091 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1092 			 */
   1093 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1094 
   1095 			/*
   1096 			 * If a new connection request is received
   1097 			 * while in TIME_WAIT, drop the old connection
   1098 			 * and start over if the sequence numbers
   1099 			 * are above the previous ones.
   1100 			 */
   1101 			if ((tiflags & TH_SYN) &&
   1102 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1103 				/*
   1104 				 * We only support this in the !NOFDREF case, which
   1105 				 * is to say: not here.
   1106 				 */
   1107 				goto dropwithreset;
   1108 			}
   1109 
   1110 			/*
   1111 			 * If window is closed can only take segments at
   1112 			 * window edge, and have to drop data and PUSH from
   1113 			 * incoming segments.  Continue processing, but
   1114 			 * remember to ack.  Otherwise, drop segment
   1115 			 * and (if not RST) ack.
   1116 			 */
   1117 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1118 				t_flags |= TF_ACKNOW;
   1119 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1120 			} else {
   1121 				goto dropafterack;
   1122 			}
   1123 		} else {
   1124 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1125 		}
   1126 		m_adj(m, -todrop);
   1127 		tlen -= todrop;
   1128 		tiflags &= ~(TH_PUSH|TH_FIN);
   1129 	}
   1130 
   1131 	if (tiflags & TH_RST) {
   1132 		if (th->th_seq != vp->rcv_nxt)
   1133 			goto dropafterack_ratelim;
   1134 
   1135 		vtw_del(vp->ctl, vp->vtw);
   1136 		goto drop;
   1137 	}
   1138 
   1139 	/*
   1140 	 * If the ACK bit is off we drop the segment and return.
   1141 	 */
   1142 	if ((tiflags & TH_ACK) == 0) {
   1143 		if (t_flags & TF_ACKNOW)
   1144 			goto dropafterack;
   1145 		else
   1146 			goto drop;
   1147 	}
   1148 
   1149 	/*
   1150 	 * In TIME_WAIT state the only thing that should arrive
   1151 	 * is a retransmission of the remote FIN.  Acknowledge
   1152 	 * it and restart the finack timer.
   1153 	 */
   1154 	vtw_restart(vp);
   1155 	goto dropafterack;
   1156 
   1157 dropafterack:
   1158 	/*
   1159 	 * Generate an ACK dropping incoming segment if it occupies
   1160 	 * sequence space, where the ACK reflects our state.
   1161 	 */
   1162 	if (tiflags & TH_RST)
   1163 		goto drop;
   1164 	goto dropafterack2;
   1165 
   1166 dropafterack_ratelim:
   1167 	/*
   1168 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1169 	 */
   1170 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1171 	    tcp_ackdrop_ppslim) == 0) {
   1172 		/* XXX stat */
   1173 		goto drop;
   1174 	}
   1175 	/* ...fall into dropafterack2... */
   1176 
   1177 dropafterack2:
   1178 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
   1179 	return;
   1180 
   1181 dropwithreset:
   1182 	/*
   1183 	 * Generate a RST, dropping incoming segment.
   1184 	 * Make ACK acceptable to originator of segment.
   1185 	 */
   1186 	if (tiflags & TH_RST)
   1187 		goto drop;
   1188 
   1189 	if (tiflags & TH_ACK) {
   1190 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1191 	} else {
   1192 		if (tiflags & TH_SYN)
   1193 			++tlen;
   1194 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1195 		    TH_RST|TH_ACK);
   1196 	}
   1197 	return;
   1198 drop:
   1199 	m_freem(m);
   1200 }
   1201 
   1202 /*
   1203  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1204  */
   1205 void
   1206 tcp_input(struct mbuf *m, ...)
   1207 {
   1208 	struct tcphdr *th;
   1209 	struct ip *ip;
   1210 	struct inpcb *inp;
   1211 #ifdef INET6
   1212 	struct ip6_hdr *ip6;
   1213 	struct in6pcb *in6p;
   1214 #endif
   1215 	u_int8_t *optp = NULL;
   1216 	int optlen = 0;
   1217 	int len, tlen, toff, hdroptlen = 0;
   1218 	struct tcpcb *tp = NULL;
   1219 	int tiflags;
   1220 	struct socket *so = NULL;
   1221 	int todrop, acked, ourfinisacked, needoutput = 0;
   1222 	bool dupseg;
   1223 #ifdef TCP_DEBUG
   1224 	short ostate = 0;
   1225 #endif
   1226 	u_long tiwin;
   1227 	struct tcp_opt_info opti;
   1228 	int off, iphlen;
   1229 	va_list ap;
   1230 	int af;		/* af on the wire */
   1231 	struct mbuf *tcp_saveti = NULL;
   1232 	uint32_t ts_rtt;
   1233 	uint8_t iptos;
   1234 	uint64_t *tcps;
   1235 	vestigial_inpcb_t vestige;
   1236 
   1237 	vestige.valid = 0;
   1238 
   1239 	MCLAIM(m, &tcp_rx_mowner);
   1240 	va_start(ap, m);
   1241 	toff = va_arg(ap, int);
   1242 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1243 	va_end(ap);
   1244 
   1245 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1246 
   1247 	memset(&opti, 0, sizeof(opti));
   1248 	opti.ts_present = 0;
   1249 	opti.maxseg = 0;
   1250 
   1251 	/*
   1252 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1253 	 *
   1254 	 * TCP is, by definition, unicast, so we reject all
   1255 	 * multicast outright.
   1256 	 *
   1257 	 * Note, there are additional src/dst address checks in
   1258 	 * the AF-specific code below.
   1259 	 */
   1260 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1261 		/* XXX stat */
   1262 		goto drop;
   1263 	}
   1264 #ifdef INET6
   1265 	if (m->m_flags & M_ANYCAST6) {
   1266 		/* XXX stat */
   1267 		goto drop;
   1268 	}
   1269 #endif
   1270 
   1271 	IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
   1272 	if (th == NULL) {
   1273 		TCP_STATINC(TCP_STAT_RCVSHORT);
   1274 		return;
   1275 	}
   1276 
   1277 	/*
   1278 	 * Get IP and TCP header.
   1279 	 * Note: IP leaves IP header in first mbuf.
   1280 	 */
   1281 	ip = mtod(m, struct ip *);
   1282 	switch (ip->ip_v) {
   1283 	case 4:
   1284 #ifdef INET6
   1285 		ip6 = NULL;
   1286 #endif
   1287 		af = AF_INET;
   1288 		iphlen = sizeof(struct ip);
   1289 
   1290 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1291 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   1292 			goto drop;
   1293 
   1294 		/* We do the checksum after PCB lookup... */
   1295 		len = ntohs(ip->ip_len);
   1296 		tlen = len - toff;
   1297 		iptos = ip->ip_tos;
   1298 		break;
   1299 #ifdef INET6
   1300 	case 6:
   1301 		ip = NULL;
   1302 		iphlen = sizeof(struct ip6_hdr);
   1303 		af = AF_INET6;
   1304 		ip6 = mtod(m, struct ip6_hdr *);
   1305 
   1306 		/*
   1307 		 * Be proactive about unspecified IPv6 address in source.
   1308 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1309 		 * unspecified IPv6 address can be used to confuse us.
   1310 		 *
   1311 		 * Note that packets with unspecified IPv6 destination is
   1312 		 * already dropped in ip6_input.
   1313 		 */
   1314 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1315 			/* XXX stat */
   1316 			goto drop;
   1317 		}
   1318 
   1319 		/*
   1320 		 * Make sure destination address is not multicast.
   1321 		 * Source address checked in ip6_input().
   1322 		 */
   1323 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1324 			/* XXX stat */
   1325 			goto drop;
   1326 		}
   1327 
   1328 		/* We do the checksum after PCB lookup... */
   1329 		len = m->m_pkthdr.len;
   1330 		tlen = len - toff;
   1331 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1332 		break;
   1333 #endif
   1334 	default:
   1335 		m_freem(m);
   1336 		return;
   1337 	}
   1338 
   1339 	/*
   1340 	 * Enforce alignment requirements that are violated in
   1341 	 * some cases, see kern/50766 for details.
   1342 	 */
   1343 	if (TCP_HDR_ALIGNED_P(th) == 0) {
   1344 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
   1345 		if (m == NULL) {
   1346 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1347 			return;
   1348 		}
   1349 		ip = mtod(m, struct ip *);
   1350 #ifdef INET6
   1351 		ip6 = mtod(m, struct ip6_hdr *);
   1352 #endif
   1353 		th = (struct tcphdr *)(mtod(m, char *) + toff);
   1354 	}
   1355 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1356 
   1357 	/*
   1358 	 * Check that TCP offset makes sense, pull out TCP options and
   1359 	 * adjust length.
   1360 	 */
   1361 	off = th->th_off << 2;
   1362 	if (off < sizeof(struct tcphdr) || off > tlen) {
   1363 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1364 		goto drop;
   1365 	}
   1366 	tlen -= off;
   1367 
   1368 	if (off > sizeof(struct tcphdr)) {
   1369 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1370 		if (th == NULL) {
   1371 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1372 			return;
   1373 		}
   1374 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1375 		optlen = off - sizeof(struct tcphdr);
   1376 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1377 
   1378 		/*
   1379 		 * Do quick retrieval of timestamp options.
   1380 		 *
   1381 		 * If timestamp is the only option and it's formatted as
   1382 		 * recommended in RFC 1323 appendix A, we quickly get the
   1383 		 * values now and don't bother calling tcp_dooptions(),
   1384 		 * etc.
   1385 		 */
   1386 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1387 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1388 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1389 		    *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1390 		    (th->th_flags & TH_SYN) == 0) {
   1391 			opti.ts_present = 1;
   1392 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1393 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1394 			optp = NULL;	/* we've parsed the options */
   1395 		}
   1396 	}
   1397 	tiflags = th->th_flags;
   1398 
   1399 	/*
   1400 	 * Checksum extended TCP header and data
   1401 	 */
   1402 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1403 		goto badcsum;
   1404 
   1405 	/*
   1406 	 * Locate pcb for segment.
   1407 	 */
   1408 findpcb:
   1409 	inp = NULL;
   1410 #ifdef INET6
   1411 	in6p = NULL;
   1412 #endif
   1413 	switch (af) {
   1414 	case AF_INET:
   1415 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1416 		    ip->ip_dst, th->th_dport, &vestige);
   1417 		if (inp == NULL && !vestige.valid) {
   1418 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1419 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
   1420 			    th->th_dport);
   1421 		}
   1422 #ifdef INET6
   1423 		if (inp == NULL && !vestige.valid) {
   1424 			struct in6_addr s, d;
   1425 
   1426 			/* mapped addr case */
   1427 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1428 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1429 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1430 			    th->th_sport, &d, th->th_dport, 0, &vestige);
   1431 			if (in6p == 0 && !vestige.valid) {
   1432 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1433 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1434 				    th->th_dport, 0);
   1435 			}
   1436 		}
   1437 #endif
   1438 #ifndef INET6
   1439 		if (inp == NULL && !vestige.valid)
   1440 #else
   1441 		if (inp == NULL && in6p == NULL && !vestige.valid)
   1442 #endif
   1443 		{
   1444 			TCP_STATINC(TCP_STAT_NOPORT);
   1445 			if (tcp_log_refused &&
   1446 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1447 				tcp4_log_refused(ip, th);
   1448 			}
   1449 			tcp_fields_to_host(th);
   1450 			goto dropwithreset_ratelim;
   1451 		}
   1452 #if defined(IPSEC)
   1453 		if (ipsec_used) {
   1454 			if (inp && ipsec_in_reject(m, inp)) {
   1455 				goto drop;
   1456 			}
   1457 #ifdef INET6
   1458 			else if (in6p && ipsec_in_reject(m, in6p)) {
   1459 				goto drop;
   1460 			}
   1461 #endif
   1462 		}
   1463 #endif /*IPSEC*/
   1464 		break;
   1465 #ifdef INET6
   1466 	case AF_INET6:
   1467 	    {
   1468 		int faith;
   1469 
   1470 #if defined(NFAITH) && NFAITH > 0
   1471 		faith = faithprefix(&ip6->ip6_dst);
   1472 #else
   1473 		faith = 0;
   1474 #endif
   1475 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1476 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1477 		if (!in6p && !vestige.valid) {
   1478 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1479 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1480 			    th->th_dport, faith);
   1481 		}
   1482 		if (!in6p && !vestige.valid) {
   1483 			TCP_STATINC(TCP_STAT_NOPORT);
   1484 			if (tcp_log_refused &&
   1485 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1486 				tcp6_log_refused(ip6, th);
   1487 			}
   1488 			tcp_fields_to_host(th);
   1489 			goto dropwithreset_ratelim;
   1490 		}
   1491 #if defined(IPSEC)
   1492 		if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
   1493 			goto drop;
   1494 		}
   1495 #endif
   1496 		break;
   1497 	    }
   1498 #endif
   1499 	}
   1500 
   1501 	tcp_fields_to_host(th);
   1502 
   1503 	/*
   1504 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1505 	 * all data in the incoming segment is discarded.
   1506 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1507 	 * but should either do a listen or a connect soon.
   1508 	 */
   1509 	tp = NULL;
   1510 	so = NULL;
   1511 	if (inp) {
   1512 		/* Check the minimum TTL for socket. */
   1513 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1514 			goto drop;
   1515 
   1516 		tp = intotcpcb(inp);
   1517 		so = inp->inp_socket;
   1518 	}
   1519 #ifdef INET6
   1520 	else if (in6p) {
   1521 		tp = in6totcpcb(in6p);
   1522 		so = in6p->in6p_socket;
   1523 	}
   1524 #endif
   1525 	else if (vestige.valid) {
   1526 		/* We do not support the resurrection of vtw tcpcps. */
   1527 		tcp_vtw_input(th, &vestige, m, tlen);
   1528 		m = NULL;
   1529 		goto drop;
   1530 	}
   1531 
   1532 	if (tp == NULL)
   1533 		goto dropwithreset_ratelim;
   1534 	if (tp->t_state == TCPS_CLOSED)
   1535 		goto drop;
   1536 
   1537 	KASSERT(so->so_lock == softnet_lock);
   1538 	KASSERT(solocked(so));
   1539 
   1540 	/* Unscale the window into a 32-bit value. */
   1541 	if ((tiflags & TH_SYN) == 0)
   1542 		tiwin = th->th_win << tp->snd_scale;
   1543 	else
   1544 		tiwin = th->th_win;
   1545 
   1546 #ifdef INET6
   1547 	/* save packet options if user wanted */
   1548 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1549 		if (in6p->in6p_options) {
   1550 			m_freem(in6p->in6p_options);
   1551 			in6p->in6p_options = NULL;
   1552 		}
   1553 		KASSERT(ip6 != NULL);
   1554 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1555 	}
   1556 #endif
   1557 
   1558 	if (so->so_options & SO_DEBUG) {
   1559 #ifdef TCP_DEBUG
   1560 		ostate = tp->t_state;
   1561 #endif
   1562 
   1563 		tcp_saveti = NULL;
   1564 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1565 			goto nosave;
   1566 
   1567 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1568 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1569 			if (tcp_saveti == NULL)
   1570 				goto nosave;
   1571 		} else {
   1572 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1573 			if (tcp_saveti == NULL)
   1574 				goto nosave;
   1575 			MCLAIM(m, &tcp_mowner);
   1576 			tcp_saveti->m_len = iphlen;
   1577 			m_copydata(m, 0, iphlen,
   1578 			    mtod(tcp_saveti, void *));
   1579 		}
   1580 
   1581 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1582 			m_freem(tcp_saveti);
   1583 			tcp_saveti = NULL;
   1584 		} else {
   1585 			tcp_saveti->m_len += sizeof(struct tcphdr);
   1586 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1587 			    sizeof(struct tcphdr));
   1588 		}
   1589 nosave:;
   1590 	}
   1591 
   1592 	if (so->so_options & SO_ACCEPTCONN) {
   1593 		union syn_cache_sa src;
   1594 		union syn_cache_sa dst;
   1595 
   1596 		KASSERT(tp->t_state == TCPS_LISTEN);
   1597 
   1598 		memset(&src, 0, sizeof(src));
   1599 		memset(&dst, 0, sizeof(dst));
   1600 		switch (af) {
   1601 		case AF_INET:
   1602 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1603 			src.sin.sin_family = AF_INET;
   1604 			src.sin.sin_addr = ip->ip_src;
   1605 			src.sin.sin_port = th->th_sport;
   1606 
   1607 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1608 			dst.sin.sin_family = AF_INET;
   1609 			dst.sin.sin_addr = ip->ip_dst;
   1610 			dst.sin.sin_port = th->th_dport;
   1611 			break;
   1612 #ifdef INET6
   1613 		case AF_INET6:
   1614 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1615 			src.sin6.sin6_family = AF_INET6;
   1616 			src.sin6.sin6_addr = ip6->ip6_src;
   1617 			src.sin6.sin6_port = th->th_sport;
   1618 
   1619 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1620 			dst.sin6.sin6_family = AF_INET6;
   1621 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1622 			dst.sin6.sin6_port = th->th_dport;
   1623 			break;
   1624 #endif
   1625 		}
   1626 
   1627 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1628 			if (tiflags & TH_RST) {
   1629 				syn_cache_reset(&src.sa, &dst.sa, th);
   1630 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1631 			    (TH_ACK|TH_SYN)) {
   1632 				/*
   1633 				 * Received a SYN,ACK. This should never
   1634 				 * happen while we are in LISTEN. Send an RST.
   1635 				 */
   1636 				goto badsyn;
   1637 			} else if (tiflags & TH_ACK) {
   1638 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
   1639 				if (so == NULL) {
   1640 					/*
   1641 					 * We don't have a SYN for this ACK;
   1642 					 * send an RST.
   1643 					 */
   1644 					goto badsyn;
   1645 				} else if (so == (struct socket *)(-1)) {
   1646 					/*
   1647 					 * We were unable to create the
   1648 					 * connection. If the 3-way handshake
   1649 					 * was completed, and RST has been
   1650 					 * sent to the peer. Since the mbuf
   1651 					 * might be in use for the reply, do
   1652 					 * not free it.
   1653 					 */
   1654 					m = NULL;
   1655 				} else {
   1656 					/*
   1657 					 * We have created a full-blown
   1658 					 * connection.
   1659 					 */
   1660 					tp = NULL;
   1661 					inp = NULL;
   1662 #ifdef INET6
   1663 					in6p = NULL;
   1664 #endif
   1665 					switch (so->so_proto->pr_domain->dom_family) {
   1666 					case AF_INET:
   1667 						inp = sotoinpcb(so);
   1668 						tp = intotcpcb(inp);
   1669 						break;
   1670 #ifdef INET6
   1671 					case AF_INET6:
   1672 						in6p = sotoin6pcb(so);
   1673 						tp = in6totcpcb(in6p);
   1674 						break;
   1675 #endif
   1676 					}
   1677 					if (tp == NULL)
   1678 						goto badsyn;	/*XXX*/
   1679 					tiwin <<= tp->snd_scale;
   1680 					goto after_listen;
   1681 				}
   1682 			} else {
   1683 				/*
   1684 				 * None of RST, SYN or ACK was set.
   1685 				 * This is an invalid packet for a
   1686 				 * TCB in LISTEN state.  Send a RST.
   1687 				 */
   1688 				goto badsyn;
   1689 			}
   1690 		} else {
   1691 			/*
   1692 			 * Received a SYN.
   1693 			 */
   1694 
   1695 #ifdef INET6
   1696 			/*
   1697 			 * If deprecated address is forbidden, we do
   1698 			 * not accept SYN to deprecated interface
   1699 			 * address to prevent any new inbound
   1700 			 * connection from getting established.
   1701 			 * When we do not accept SYN, we send a TCP
   1702 			 * RST, with deprecated source address (instead
   1703 			 * of dropping it).  We compromise it as it is
   1704 			 * much better for peer to send a RST, and
   1705 			 * RST will be the final packet for the
   1706 			 * exchange.
   1707 			 *
   1708 			 * If we do not forbid deprecated addresses, we
   1709 			 * accept the SYN packet.  RFC2462 does not
   1710 			 * suggest dropping SYN in this case.
   1711 			 * If we decipher RFC2462 5.5.4, it says like
   1712 			 * this:
   1713 			 * 1. use of deprecated addr with existing
   1714 			 *    communication is okay - "SHOULD continue
   1715 			 *    to be used"
   1716 			 * 2. use of it with new communication:
   1717 			 *   (2a) "SHOULD NOT be used if alternate
   1718 			 *        address with sufficient scope is
   1719 			 *        available"
   1720 			 *   (2b) nothing mentioned otherwise.
   1721 			 * Here we fall into (2b) case as we have no
   1722 			 * choice in our source address selection - we
   1723 			 * must obey the peer.
   1724 			 *
   1725 			 * The wording in RFC2462 is confusing, and
   1726 			 * there are multiple description text for
   1727 			 * deprecated address handling - worse, they
   1728 			 * are not exactly the same.  I believe 5.5.4
   1729 			 * is the best one, so we follow 5.5.4.
   1730 			 */
   1731 			if (af == AF_INET6 && !ip6_use_deprecated) {
   1732 				struct in6_ifaddr *ia6;
   1733 				int s;
   1734 				struct ifnet *rcvif = m_get_rcvif(m, &s);
   1735 				if (rcvif == NULL)
   1736 					goto dropwithreset; /* XXX */
   1737 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1738 				    &ip6->ip6_dst)) &&
   1739 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1740 					tp = NULL;
   1741 					m_put_rcvif(rcvif, &s);
   1742 					goto dropwithreset;
   1743 				}
   1744 				m_put_rcvif(rcvif, &s);
   1745 			}
   1746 #endif
   1747 
   1748 			/*
   1749 			 * LISTEN socket received a SYN from itself? This
   1750 			 * can't possibly be valid; drop the packet.
   1751 			 */
   1752 			if (th->th_sport == th->th_dport) {
   1753 				int eq = 0;
   1754 
   1755 				switch (af) {
   1756 				case AF_INET:
   1757 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
   1758 					break;
   1759 #ifdef INET6
   1760 				case AF_INET6:
   1761 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
   1762 					    &ip6->ip6_dst);
   1763 					break;
   1764 #endif
   1765 				}
   1766 				if (eq) {
   1767 					TCP_STATINC(TCP_STAT_BADSYN);
   1768 					goto drop;
   1769 				}
   1770 			}
   1771 
   1772 			/*
   1773 			 * SYN looks ok; create compressed TCP
   1774 			 * state for it.
   1775 			 */
   1776 			if (so->so_qlen <= so->so_qlimit &&
   1777 			    syn_cache_add(&src.sa, &dst.sa, th, tlen,
   1778 			    so, m, optp, optlen, &opti))
   1779 				m = NULL;
   1780 		}
   1781 
   1782 		goto drop;
   1783 	}
   1784 
   1785 after_listen:
   1786 	/*
   1787 	 * From here on, we're dealing with !LISTEN.
   1788 	 */
   1789 	KASSERT(tp->t_state != TCPS_LISTEN);
   1790 
   1791 	/*
   1792 	 * Segment received on connection.
   1793 	 * Reset idle time and keep-alive timer.
   1794 	 */
   1795 	tp->t_rcvtime = tcp_now;
   1796 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1797 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1798 
   1799 	/*
   1800 	 * Process options.
   1801 	 */
   1802 #ifdef TCP_SIGNATURE
   1803 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1804 #else
   1805 	if (optp)
   1806 #endif
   1807 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1808 			goto drop;
   1809 
   1810 	if (TCP_SACK_ENABLED(tp)) {
   1811 		tcp_del_sackholes(tp, th);
   1812 	}
   1813 
   1814 	if (TCP_ECN_ALLOWED(tp)) {
   1815 		if (tiflags & TH_CWR) {
   1816 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1817 		}
   1818 		switch (iptos & IPTOS_ECN_MASK) {
   1819 		case IPTOS_ECN_CE:
   1820 			tp->t_flags |= TF_ECN_SND_ECE;
   1821 			TCP_STATINC(TCP_STAT_ECN_CE);
   1822 			break;
   1823 		case IPTOS_ECN_ECT0:
   1824 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1825 			break;
   1826 		case IPTOS_ECN_ECT1:
   1827 			/* XXX: ignore for now -- rpaulo */
   1828 			break;
   1829 		}
   1830 		/*
   1831 		 * Congestion experienced.
   1832 		 * Ignore if we are already trying to recover.
   1833 		 */
   1834 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1835 			tp->t_congctl->cong_exp(tp);
   1836 	}
   1837 
   1838 	if (opti.ts_present && opti.ts_ecr) {
   1839 		/*
   1840 		 * Calculate the RTT from the returned time stamp and the
   1841 		 * connection's time base.  If the time stamp is later than
   1842 		 * the current time, or is extremely old, fall back to non-1323
   1843 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1844 		 * at the same time.
   1845 		 *
   1846 		 * Note that ts_rtt is in units of slow ticks (500
   1847 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1848 		 * observed values will have large quantization noise.
   1849 		 * Our smoothed RTT is then the fraction of observed
   1850 		 * samples that are 1 tick instead of 0 (times 500
   1851 		 * ms).
   1852 		 *
   1853 		 * ts_rtt is increased by 1 to denote a valid sample,
   1854 		 * with 0 indicating an invalid measurement.  This
   1855 		 * extra 1 must be removed when ts_rtt is used, or
   1856 		 * else an an erroneous extra 500 ms will result.
   1857 		 */
   1858 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1859 		if (ts_rtt > TCP_PAWS_IDLE)
   1860 			ts_rtt = 0;
   1861 	} else {
   1862 		ts_rtt = 0;
   1863 	}
   1864 
   1865 	/*
   1866 	 * Fast path: check for the two common cases of a uni-directional
   1867 	 * data transfer. If:
   1868 	 *    o We are in the ESTABLISHED state, and
   1869 	 *    o The packet has no control flags, and
   1870 	 *    o The packet is in-sequence, and
   1871 	 *    o The window didn't change, and
   1872 	 *    o We are not retransmitting
   1873 	 * It's a candidate.
   1874 	 *
   1875 	 * If the length (tlen) is zero and the ack moved forward, we're
   1876 	 * the sender side of the transfer. Just free the data acked and
   1877 	 * wake any higher level process that was blocked waiting for
   1878 	 * space.
   1879 	 *
   1880 	 * If the length is non-zero and the ack didn't move, we're the
   1881 	 * receiver side. If we're getting packets in-order (the reassembly
   1882 	 * queue is empty), add the data to the socket buffer and note
   1883 	 * that we need a delayed ack.
   1884 	 */
   1885 	if (tp->t_state == TCPS_ESTABLISHED &&
   1886 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1887 	        == TH_ACK &&
   1888 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1889 	    th->th_seq == tp->rcv_nxt &&
   1890 	    tiwin && tiwin == tp->snd_wnd &&
   1891 	    tp->snd_nxt == tp->snd_max) {
   1892 
   1893 		/*
   1894 		 * If last ACK falls within this segment's sequence numbers,
   1895 		 * record the timestamp.
   1896 		 * NOTE that the test is modified according to the latest
   1897 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1898 		 *
   1899 		 * note that we already know
   1900 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1901 		 */
   1902 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1903 			tp->ts_recent_age = tcp_now;
   1904 			tp->ts_recent = opti.ts_val;
   1905 		}
   1906 
   1907 		if (tlen == 0) {
   1908 			/* Ack prediction. */
   1909 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1910 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1911 			    tp->snd_cwnd >= tp->snd_wnd &&
   1912 			    tp->t_partialacks < 0) {
   1913 				/*
   1914 				 * this is a pure ack for outstanding data.
   1915 				 */
   1916 				if (ts_rtt)
   1917 					tcp_xmit_timer(tp, ts_rtt - 1);
   1918 				else if (tp->t_rtttime &&
   1919 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1920 					tcp_xmit_timer(tp,
   1921 					  tcp_now - tp->t_rtttime);
   1922 				acked = th->th_ack - tp->snd_una;
   1923 				tcps = TCP_STAT_GETREF();
   1924 				tcps[TCP_STAT_PREDACK]++;
   1925 				tcps[TCP_STAT_RCVACKPACK]++;
   1926 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   1927 				TCP_STAT_PUTREF();
   1928 				nd6_hint(tp);
   1929 
   1930 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1931 					tp->t_lastm = NULL;
   1932 				sbdrop(&so->so_snd, acked);
   1933 				tp->t_lastoff -= acked;
   1934 
   1935 				icmp_check(tp, th, acked);
   1936 
   1937 				tp->snd_una = th->th_ack;
   1938 				tp->snd_fack = tp->snd_una;
   1939 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1940 					tp->snd_high = tp->snd_una;
   1941 				m_freem(m);
   1942 
   1943 				/*
   1944 				 * If all outstanding data are acked, stop
   1945 				 * retransmit timer, otherwise restart timer
   1946 				 * using current (possibly backed-off) value.
   1947 				 * If process is waiting for space,
   1948 				 * wakeup/selnotify/signal.  If data
   1949 				 * are ready to send, let tcp_output
   1950 				 * decide between more output or persist.
   1951 				 */
   1952 				if (tp->snd_una == tp->snd_max)
   1953 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1954 				else if (TCP_TIMER_ISARMED(tp,
   1955 				    TCPT_PERSIST) == 0)
   1956 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1957 					    tp->t_rxtcur);
   1958 
   1959 				sowwakeup(so);
   1960 				if (so->so_snd.sb_cc) {
   1961 					KERNEL_LOCK(1, NULL);
   1962 					(void)tcp_output(tp);
   1963 					KERNEL_UNLOCK_ONE(NULL);
   1964 				}
   1965 				if (tcp_saveti)
   1966 					m_freem(tcp_saveti);
   1967 				return;
   1968 			}
   1969 		} else if (th->th_ack == tp->snd_una &&
   1970 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1971 		    tlen <= sbspace(&so->so_rcv)) {
   1972 			int newsize = 0;
   1973 
   1974 			/*
   1975 			 * this is a pure, in-sequence data packet
   1976 			 * with nothing on the reassembly queue and
   1977 			 * we have enough buffer space to take it.
   1978 			 */
   1979 			tp->rcv_nxt += tlen;
   1980 			tcps = TCP_STAT_GETREF();
   1981 			tcps[TCP_STAT_PREDDAT]++;
   1982 			tcps[TCP_STAT_RCVPACK]++;
   1983 			tcps[TCP_STAT_RCVBYTE] += tlen;
   1984 			TCP_STAT_PUTREF();
   1985 			nd6_hint(tp);
   1986 
   1987 		/*
   1988 		 * Automatic sizing enables the performance of large buffers
   1989 		 * and most of the efficiency of small ones by only allocating
   1990 		 * space when it is needed.
   1991 		 *
   1992 		 * On the receive side the socket buffer memory is only rarely
   1993 		 * used to any significant extent.  This allows us to be much
   1994 		 * more aggressive in scaling the receive socket buffer.  For
   1995 		 * the case that the buffer space is actually used to a large
   1996 		 * extent and we run out of kernel memory we can simply drop
   1997 		 * the new segments; TCP on the sender will just retransmit it
   1998 		 * later.  Setting the buffer size too big may only consume too
   1999 		 * much kernel memory if the application doesn't read() from
   2000 		 * the socket or packet loss or reordering makes use of the
   2001 		 * reassembly queue.
   2002 		 *
   2003 		 * The criteria to step up the receive buffer one notch are:
   2004 		 *  1. the number of bytes received during the time it takes
   2005 		 *     one timestamp to be reflected back to us (the RTT);
   2006 		 *  2. received bytes per RTT is within seven eighth of the
   2007 		 *     current socket buffer size;
   2008 		 *  3. receive buffer size has not hit maximal automatic size;
   2009 		 *
   2010 		 * This algorithm does one step per RTT at most and only if
   2011 		 * we receive a bulk stream w/o packet losses or reorderings.
   2012 		 * Shrinking the buffer during idle times is not necessary as
   2013 		 * it doesn't consume any memory when idle.
   2014 		 *
   2015 		 * TODO: Only step up if the application is actually serving
   2016 		 * the buffer to better manage the socket buffer resources.
   2017 		 */
   2018 			if (tcp_do_autorcvbuf &&
   2019 			    opti.ts_ecr &&
   2020 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2021 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2022 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2023 					if (tp->rfbuf_cnt >
   2024 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2025 					    so->so_rcv.sb_hiwat <
   2026 					    tcp_autorcvbuf_max) {
   2027 						newsize =
   2028 						    min(so->so_rcv.sb_hiwat +
   2029 						    tcp_autorcvbuf_inc,
   2030 						    tcp_autorcvbuf_max);
   2031 					}
   2032 					/* Start over with next RTT. */
   2033 					tp->rfbuf_ts = 0;
   2034 					tp->rfbuf_cnt = 0;
   2035 				} else
   2036 					tp->rfbuf_cnt += tlen;	/* add up */
   2037 			}
   2038 
   2039 			/*
   2040 			 * Drop TCP, IP headers and TCP options then add data
   2041 			 * to socket buffer.
   2042 			 */
   2043 			if (so->so_state & SS_CANTRCVMORE) {
   2044 				m_freem(m);
   2045 			} else {
   2046 				/*
   2047 				 * Set new socket buffer size.
   2048 				 * Give up when limit is reached.
   2049 				 */
   2050 				if (newsize)
   2051 					if (!sbreserve(&so->so_rcv,
   2052 					    newsize, so))
   2053 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2054 				m_adj(m, toff + off);
   2055 				sbappendstream(&so->so_rcv, m);
   2056 			}
   2057 			sorwakeup(so);
   2058 			tcp_setup_ack(tp, th);
   2059 			if (tp->t_flags & TF_ACKNOW) {
   2060 				KERNEL_LOCK(1, NULL);
   2061 				(void)tcp_output(tp);
   2062 				KERNEL_UNLOCK_ONE(NULL);
   2063 			}
   2064 			if (tcp_saveti)
   2065 				m_freem(tcp_saveti);
   2066 			return;
   2067 		}
   2068 	}
   2069 
   2070 	/*
   2071 	 * Compute mbuf offset to TCP data segment.
   2072 	 */
   2073 	hdroptlen = toff + off;
   2074 
   2075 	/*
   2076 	 * Calculate amount of space in receive window. Receive window is
   2077 	 * amount of space in rcv queue, but not less than advertised
   2078 	 * window.
   2079 	 */
   2080 	{
   2081 		int win;
   2082 		win = sbspace(&so->so_rcv);
   2083 		if (win < 0)
   2084 			win = 0;
   2085 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2086 	}
   2087 
   2088 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2089 	tp->rfbuf_ts = 0;
   2090 	tp->rfbuf_cnt = 0;
   2091 
   2092 	switch (tp->t_state) {
   2093 	/*
   2094 	 * If the state is SYN_SENT:
   2095 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2096 	 *	if seg contains a RST, then drop the connection.
   2097 	 *	if seg does not contain SYN, then drop it.
   2098 	 * Otherwise this is an acceptable SYN segment
   2099 	 *	initialize tp->rcv_nxt and tp->irs
   2100 	 *	if seg contains ack then advance tp->snd_una
   2101 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2102 	 *	    is ECN capable.
   2103 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2104 	 *	arrange for segment to be acked (eventually)
   2105 	 *	continue processing rest of data/controls, beginning with URG
   2106 	 */
   2107 	case TCPS_SYN_SENT:
   2108 		if ((tiflags & TH_ACK) &&
   2109 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2110 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2111 			goto dropwithreset;
   2112 		if (tiflags & TH_RST) {
   2113 			if (tiflags & TH_ACK)
   2114 				tp = tcp_drop(tp, ECONNREFUSED);
   2115 			goto drop;
   2116 		}
   2117 		if ((tiflags & TH_SYN) == 0)
   2118 			goto drop;
   2119 		if (tiflags & TH_ACK) {
   2120 			tp->snd_una = th->th_ack;
   2121 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2122 				tp->snd_nxt = tp->snd_una;
   2123 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2124 				tp->snd_high = tp->snd_una;
   2125 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2126 
   2127 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2128 				tp->t_flags |= TF_ECN_PERMIT;
   2129 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2130 			}
   2131 		}
   2132 		tp->irs = th->th_seq;
   2133 		tcp_rcvseqinit(tp);
   2134 		tp->t_flags |= TF_ACKNOW;
   2135 		tcp_mss_from_peer(tp, opti.maxseg);
   2136 
   2137 		/*
   2138 		 * Initialize the initial congestion window.  If we
   2139 		 * had to retransmit the SYN, we must initialize cwnd
   2140 		 * to 1 segment (i.e. the Loss Window).
   2141 		 */
   2142 		if (tp->t_flags & TF_SYN_REXMT)
   2143 			tp->snd_cwnd = tp->t_peermss;
   2144 		else {
   2145 			int ss = tcp_init_win;
   2146 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2147 				ss = tcp_init_win_local;
   2148 #ifdef INET6
   2149 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2150 				ss = tcp_init_win_local;
   2151 #endif
   2152 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2153 		}
   2154 
   2155 		tcp_rmx_rtt(tp);
   2156 		if (tiflags & TH_ACK) {
   2157 			TCP_STATINC(TCP_STAT_CONNECTS);
   2158 			/*
   2159 			 * move tcp_established before soisconnected
   2160 			 * because upcall handler can drive tcp_output
   2161 			 * functionality.
   2162 			 * XXX we might call soisconnected at the end of
   2163 			 * all processing
   2164 			 */
   2165 			tcp_established(tp);
   2166 			soisconnected(so);
   2167 			/* Do window scaling on this connection? */
   2168 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2169 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2170 				tp->snd_scale = tp->requested_s_scale;
   2171 				tp->rcv_scale = tp->request_r_scale;
   2172 			}
   2173 			TCP_REASS_LOCK(tp);
   2174 			(void)tcp_reass(tp, NULL, NULL, tlen);
   2175 			/*
   2176 			 * if we didn't have to retransmit the SYN,
   2177 			 * use its rtt as our initial srtt & rtt var.
   2178 			 */
   2179 			if (tp->t_rtttime)
   2180 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2181 		} else {
   2182 			tp->t_state = TCPS_SYN_RECEIVED;
   2183 		}
   2184 
   2185 		/*
   2186 		 * Advance th->th_seq to correspond to first data byte.
   2187 		 * If data, trim to stay within window,
   2188 		 * dropping FIN if necessary.
   2189 		 */
   2190 		th->th_seq++;
   2191 		if (tlen > tp->rcv_wnd) {
   2192 			todrop = tlen - tp->rcv_wnd;
   2193 			m_adj(m, -todrop);
   2194 			tlen = tp->rcv_wnd;
   2195 			tiflags &= ~TH_FIN;
   2196 			tcps = TCP_STAT_GETREF();
   2197 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2198 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2199 			TCP_STAT_PUTREF();
   2200 		}
   2201 		tp->snd_wl1 = th->th_seq - 1;
   2202 		tp->rcv_up = th->th_seq;
   2203 		goto step6;
   2204 
   2205 	/*
   2206 	 * If the state is SYN_RECEIVED:
   2207 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2208 	 *	and generate an RST.  See page 36, rfc793
   2209 	 */
   2210 	case TCPS_SYN_RECEIVED:
   2211 		if ((tiflags & TH_ACK) &&
   2212 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2213 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2214 			goto dropwithreset;
   2215 		break;
   2216 	}
   2217 
   2218 	/*
   2219 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
   2220 	 */
   2221 	KASSERT(tp->t_state != TCPS_LISTEN &&
   2222 	    tp->t_state != TCPS_SYN_SENT);
   2223 
   2224 	/*
   2225 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
   2226 	 * it's less than ts_recent, drop it.
   2227 	 */
   2228 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2229 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2230 		/* Check to see if ts_recent is over 24 days old.  */
   2231 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2232 			/*
   2233 			 * Invalidate ts_recent.  If this segment updates
   2234 			 * ts_recent, the age will be reset later and ts_recent
   2235 			 * will get a valid value.  If it does not, setting
   2236 			 * ts_recent to zero will at least satisfy the
   2237 			 * requirement that zero be placed in the timestamp
   2238 			 * echo reply when ts_recent isn't valid.  The
   2239 			 * age isn't reset until we get a valid ts_recent
   2240 			 * because we don't want out-of-order segments to be
   2241 			 * dropped when ts_recent is old.
   2242 			 */
   2243 			tp->ts_recent = 0;
   2244 		} else {
   2245 			tcps = TCP_STAT_GETREF();
   2246 			tcps[TCP_STAT_RCVDUPPACK]++;
   2247 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2248 			tcps[TCP_STAT_PAWSDROP]++;
   2249 			TCP_STAT_PUTREF();
   2250 			tcp_new_dsack(tp, th->th_seq, tlen);
   2251 			goto dropafterack;
   2252 		}
   2253 	}
   2254 
   2255 	/*
   2256 	 * Check that at least some bytes of the segment are within the
   2257 	 * receive window. If segment begins before rcv_nxt, drop leading
   2258 	 * data (and SYN); if nothing left, just ack.
   2259 	 */
   2260 	todrop = tp->rcv_nxt - th->th_seq;
   2261 	dupseg = false;
   2262 	if (todrop > 0) {
   2263 		if (tiflags & TH_SYN) {
   2264 			tiflags &= ~TH_SYN;
   2265 			th->th_seq++;
   2266 			tcp_urp_drop(th, 1, &tiflags);
   2267 			todrop--;
   2268 		}
   2269 		if (todrop > tlen ||
   2270 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2271 			/*
   2272 			 * Any valid FIN or RST must be to the left of the
   2273 			 * window.  At this point the FIN or RST must be a
   2274 			 * duplicate or out of sequence; drop it.
   2275 			 */
   2276 			if (tiflags & TH_RST)
   2277 				goto drop;
   2278 			tiflags &= ~(TH_FIN|TH_RST);
   2279 
   2280 			/*
   2281 			 * Send an ACK to resynchronize and drop any data.
   2282 			 * But keep on processing for RST or ACK.
   2283 			 */
   2284 			tp->t_flags |= TF_ACKNOW;
   2285 			todrop = tlen;
   2286 			dupseg = true;
   2287 			tcps = TCP_STAT_GETREF();
   2288 			tcps[TCP_STAT_RCVDUPPACK]++;
   2289 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2290 			TCP_STAT_PUTREF();
   2291 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
   2292 			/*
   2293 			 * Test for reset before adjusting the sequence
   2294 			 * number for overlapping data.
   2295 			 */
   2296 			goto dropafterack_ratelim;
   2297 		} else {
   2298 			tcps = TCP_STAT_GETREF();
   2299 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2300 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2301 			TCP_STAT_PUTREF();
   2302 		}
   2303 		tcp_new_dsack(tp, th->th_seq, todrop);
   2304 		hdroptlen += todrop;	/* drop from head afterwards */
   2305 		th->th_seq += todrop;
   2306 		tlen -= todrop;
   2307 		tcp_urp_drop(th, todrop, &tiflags);
   2308 	}
   2309 
   2310 	/*
   2311 	 * If new data is received on a connection after the user processes
   2312 	 * are gone, then RST the other end.
   2313 	 */
   2314 	if ((so->so_state & SS_NOFDREF) &&
   2315 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2316 		tp = tcp_close(tp);
   2317 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2318 		goto dropwithreset;
   2319 	}
   2320 
   2321 	/*
   2322 	 * If the segment ends after the window, drop trailing data (and
   2323 	 * PUSH and FIN); if nothing left, just ACK.
   2324 	 */
   2325 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
   2326 	if (todrop > 0) {
   2327 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2328 		if (todrop >= tlen) {
   2329 			/*
   2330 			 * The segment actually starts after the window.
   2331 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2332 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2333 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2334 			 */
   2335 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2336 
   2337 			/*
   2338 			 * If a new connection request is received while in
   2339 			 * TIME_WAIT, drop the old connection and start over
   2340 			 * if the sequence numbers are above the previous
   2341 			 * ones.
   2342 			 *
   2343 			 * NOTE: We need to put the header fields back into
   2344 			 * network order.
   2345 			 */
   2346 			if ((tiflags & TH_SYN) &&
   2347 			    tp->t_state == TCPS_TIME_WAIT &&
   2348 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2349 				tp = tcp_close(tp);
   2350 				tcp_fields_to_net(th);
   2351 				goto findpcb;
   2352 			}
   2353 
   2354 			/*
   2355 			 * If window is closed can only take segments at
   2356 			 * window edge, and have to drop data and PUSH from
   2357 			 * incoming segments.  Continue processing, but
   2358 			 * remember to ack.  Otherwise, drop segment
   2359 			 * and (if not RST) ack.
   2360 			 */
   2361 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2362 				tp->t_flags |= TF_ACKNOW;
   2363 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2364 			} else {
   2365 				goto dropafterack;
   2366 			}
   2367 		} else {
   2368 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2369 		}
   2370 		m_adj(m, -todrop);
   2371 		tlen -= todrop;
   2372 		tiflags &= ~(TH_PUSH|TH_FIN);
   2373 	}
   2374 
   2375 	/*
   2376 	 * If last ACK falls within this segment's sequence numbers,
   2377 	 *  record the timestamp.
   2378 	 * NOTE:
   2379 	 * 1) That the test incorporates suggestions from the latest
   2380 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2381 	 * 2) That updating only on newer timestamps interferes with
   2382 	 *    our earlier PAWS tests, so this check should be solely
   2383 	 *    predicated on the sequence space of this segment.
   2384 	 * 3) That we modify the segment boundary check to be
   2385 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2386 	 *    instead of RFC1323's
   2387 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2388 	 *    This modified check allows us to overcome RFC1323's
   2389 	 *    limitations as described in Stevens TCP/IP Illustrated
   2390 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2391 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2392 	 */
   2393 	if (opti.ts_present &&
   2394 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2395 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2396 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2397 		tp->ts_recent_age = tcp_now;
   2398 		tp->ts_recent = opti.ts_val;
   2399 	}
   2400 
   2401 	/*
   2402 	 * If the RST bit is set examine the state:
   2403 	 *    RECEIVED state:
   2404 	 *        If passive open, return to LISTEN state.
   2405 	 *        If active open, inform user that connection was refused.
   2406 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
   2407 	 *        Inform user that connection was reset, and close tcb.
   2408 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
   2409 	 *        Close the tcb.
   2410 	 */
   2411 	if (tiflags & TH_RST) {
   2412 		if (th->th_seq != tp->rcv_nxt)
   2413 			goto dropafterack_ratelim;
   2414 
   2415 		switch (tp->t_state) {
   2416 		case TCPS_SYN_RECEIVED:
   2417 			so->so_error = ECONNREFUSED;
   2418 			goto close;
   2419 
   2420 		case TCPS_ESTABLISHED:
   2421 		case TCPS_FIN_WAIT_1:
   2422 		case TCPS_FIN_WAIT_2:
   2423 		case TCPS_CLOSE_WAIT:
   2424 			so->so_error = ECONNRESET;
   2425 		close:
   2426 			tp->t_state = TCPS_CLOSED;
   2427 			TCP_STATINC(TCP_STAT_DROPS);
   2428 			tp = tcp_close(tp);
   2429 			goto drop;
   2430 
   2431 		case TCPS_CLOSING:
   2432 		case TCPS_LAST_ACK:
   2433 		case TCPS_TIME_WAIT:
   2434 			tp = tcp_close(tp);
   2435 			goto drop;
   2436 		}
   2437 	}
   2438 
   2439 	/*
   2440 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2441 	 * we must be in a synchronized state.  RFC791 states (under RST
   2442 	 * generation) that any unacceptable segment (an out-of-order SYN
   2443 	 * qualifies) received in a synchronized state must elicit only an
   2444 	 * empty acknowledgment segment ... and the connection remains in
   2445 	 * the same state.
   2446 	 */
   2447 	if (tiflags & TH_SYN) {
   2448 		if (tp->rcv_nxt == th->th_seq) {
   2449 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2450 			    TH_ACK);
   2451 			if (tcp_saveti)
   2452 				m_freem(tcp_saveti);
   2453 			return;
   2454 		}
   2455 
   2456 		goto dropafterack_ratelim;
   2457 	}
   2458 
   2459 	/*
   2460 	 * If the ACK bit is off we drop the segment and return.
   2461 	 */
   2462 	if ((tiflags & TH_ACK) == 0) {
   2463 		if (tp->t_flags & TF_ACKNOW)
   2464 			goto dropafterack;
   2465 		else
   2466 			goto drop;
   2467 	}
   2468 
   2469 	/*
   2470 	 * From here on, we're doing ACK processing.
   2471 	 */
   2472 
   2473 	switch (tp->t_state) {
   2474 	/*
   2475 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2476 	 * ESTABLISHED state and continue processing, otherwise
   2477 	 * send an RST.
   2478 	 */
   2479 	case TCPS_SYN_RECEIVED:
   2480 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2481 		    SEQ_GT(th->th_ack, tp->snd_max))
   2482 			goto dropwithreset;
   2483 		TCP_STATINC(TCP_STAT_CONNECTS);
   2484 		soisconnected(so);
   2485 		tcp_established(tp);
   2486 		/* Do window scaling? */
   2487 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2488 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2489 			tp->snd_scale = tp->requested_s_scale;
   2490 			tp->rcv_scale = tp->request_r_scale;
   2491 		}
   2492 		TCP_REASS_LOCK(tp);
   2493 		(void)tcp_reass(tp, NULL, NULL, tlen);
   2494 		tp->snd_wl1 = th->th_seq - 1;
   2495 		/* FALLTHROUGH */
   2496 
   2497 	/*
   2498 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2499 	 * ACKs.  If the ack is in the range
   2500 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2501 	 * then advance tp->snd_una to th->th_ack and drop
   2502 	 * data from the retransmission queue.  If this ACK reflects
   2503 	 * more up to date window information we update our window information.
   2504 	 */
   2505 	case TCPS_ESTABLISHED:
   2506 	case TCPS_FIN_WAIT_1:
   2507 	case TCPS_FIN_WAIT_2:
   2508 	case TCPS_CLOSE_WAIT:
   2509 	case TCPS_CLOSING:
   2510 	case TCPS_LAST_ACK:
   2511 	case TCPS_TIME_WAIT:
   2512 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2513 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2514 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2515 				/*
   2516 				 * If we have outstanding data (other than
   2517 				 * a window probe), this is a completely
   2518 				 * duplicate ack (ie, window info didn't
   2519 				 * change), the ack is the biggest we've
   2520 				 * seen and we've seen exactly our rexmt
   2521 				 * threshhold of them, assume a packet
   2522 				 * has been dropped and retransmit it.
   2523 				 * Kludge snd_nxt & the congestion
   2524 				 * window so we send only this one
   2525 				 * packet.
   2526 				 */
   2527 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2528 				    th->th_ack != tp->snd_una)
   2529 					tp->t_dupacks = 0;
   2530 				else if (tp->t_partialacks < 0 &&
   2531 				    (++tp->t_dupacks == tcprexmtthresh ||
   2532 				     TCP_FACK_FASTRECOV(tp))) {
   2533 					/*
   2534 					 * Do the fast retransmit, and adjust
   2535 					 * congestion control paramenters.
   2536 					 */
   2537 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2538 						/* False fast retransmit */
   2539 						break;
   2540 					} else
   2541 						goto drop;
   2542 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2543 					tp->snd_cwnd += tp->t_segsz;
   2544 					KERNEL_LOCK(1, NULL);
   2545 					(void)tcp_output(tp);
   2546 					KERNEL_UNLOCK_ONE(NULL);
   2547 					goto drop;
   2548 				}
   2549 			} else {
   2550 				/*
   2551 				 * If the ack appears to be very old, only
   2552 				 * allow data that is in-sequence.  This
   2553 				 * makes it somewhat more difficult to insert
   2554 				 * forged data by guessing sequence numbers.
   2555 				 * Sent an ack to try to update the send
   2556 				 * sequence number on the other side.
   2557 				 */
   2558 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2559 				    SEQ_LT(th->th_ack,
   2560 				    tp->snd_una - tp->max_sndwnd))
   2561 					goto dropafterack;
   2562 			}
   2563 			break;
   2564 		}
   2565 		/*
   2566 		 * If the congestion window was inflated to account
   2567 		 * for the other side's cached packets, retract it.
   2568 		 */
   2569 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2570 
   2571 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2572 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2573 			goto dropafterack;
   2574 		}
   2575 		acked = th->th_ack - tp->snd_una;
   2576 		tcps = TCP_STAT_GETREF();
   2577 		tcps[TCP_STAT_RCVACKPACK]++;
   2578 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2579 		TCP_STAT_PUTREF();
   2580 
   2581 		/*
   2582 		 * If we have a timestamp reply, update smoothed
   2583 		 * round trip time.  If no timestamp is present but
   2584 		 * transmit timer is running and timed sequence
   2585 		 * number was acked, update smoothed round trip time.
   2586 		 * Since we now have an rtt measurement, cancel the
   2587 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2588 		 * Recompute the initial retransmit timer.
   2589 		 */
   2590 		if (ts_rtt)
   2591 			tcp_xmit_timer(tp, ts_rtt - 1);
   2592 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2593 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2594 
   2595 		/*
   2596 		 * If all outstanding data is acked, stop retransmit
   2597 		 * timer and remember to restart (more output or persist).
   2598 		 * If there is more data to be acked, restart retransmit
   2599 		 * timer, using current (possibly backed-off) value.
   2600 		 */
   2601 		if (th->th_ack == tp->snd_max) {
   2602 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2603 			needoutput = 1;
   2604 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2605 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2606 
   2607 		/*
   2608 		 * New data has been acked, adjust the congestion window.
   2609 		 */
   2610 		tp->t_congctl->newack(tp, th);
   2611 
   2612 		nd6_hint(tp);
   2613 		if (acked > so->so_snd.sb_cc) {
   2614 			tp->snd_wnd -= so->so_snd.sb_cc;
   2615 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2616 			ourfinisacked = 1;
   2617 		} else {
   2618 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2619 				tp->t_lastm = NULL;
   2620 			sbdrop(&so->so_snd, acked);
   2621 			tp->t_lastoff -= acked;
   2622 			if (tp->snd_wnd > acked)
   2623 				tp->snd_wnd -= acked;
   2624 			else
   2625 				tp->snd_wnd = 0;
   2626 			ourfinisacked = 0;
   2627 		}
   2628 		sowwakeup(so);
   2629 
   2630 		icmp_check(tp, th, acked);
   2631 
   2632 		tp->snd_una = th->th_ack;
   2633 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2634 			tp->snd_fack = tp->snd_una;
   2635 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2636 			tp->snd_nxt = tp->snd_una;
   2637 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2638 			tp->snd_high = tp->snd_una;
   2639 
   2640 		switch (tp->t_state) {
   2641 
   2642 		/*
   2643 		 * In FIN_WAIT_1 STATE in addition to the processing
   2644 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2645 		 * then enter FIN_WAIT_2.
   2646 		 */
   2647 		case TCPS_FIN_WAIT_1:
   2648 			if (ourfinisacked) {
   2649 				/*
   2650 				 * If we can't receive any more
   2651 				 * data, then closing user can proceed.
   2652 				 * Starting the timer is contrary to the
   2653 				 * specification, but if we don't get a FIN
   2654 				 * we'll hang forever.
   2655 				 */
   2656 				if (so->so_state & SS_CANTRCVMORE) {
   2657 					soisdisconnected(so);
   2658 					if (tp->t_maxidle > 0)
   2659 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2660 						    tp->t_maxidle);
   2661 				}
   2662 				tp->t_state = TCPS_FIN_WAIT_2;
   2663 			}
   2664 			break;
   2665 
   2666 	 	/*
   2667 		 * In CLOSING STATE in addition to the processing for
   2668 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2669 		 * then enter the TIME-WAIT state, otherwise ignore
   2670 		 * the segment.
   2671 		 */
   2672 		case TCPS_CLOSING:
   2673 			if (ourfinisacked) {
   2674 				tp->t_state = TCPS_TIME_WAIT;
   2675 				tcp_canceltimers(tp);
   2676 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2677 				soisdisconnected(so);
   2678 			}
   2679 			break;
   2680 
   2681 		/*
   2682 		 * In LAST_ACK, we may still be waiting for data to drain
   2683 		 * and/or to be acked, as well as for the ack of our FIN.
   2684 		 * If our FIN is now acknowledged, delete the TCB,
   2685 		 * enter the closed state and return.
   2686 		 */
   2687 		case TCPS_LAST_ACK:
   2688 			if (ourfinisacked) {
   2689 				tp = tcp_close(tp);
   2690 				goto drop;
   2691 			}
   2692 			break;
   2693 
   2694 		/*
   2695 		 * In TIME_WAIT state the only thing that should arrive
   2696 		 * is a retransmission of the remote FIN.  Acknowledge
   2697 		 * it and restart the finack timer.
   2698 		 */
   2699 		case TCPS_TIME_WAIT:
   2700 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2701 			goto dropafterack;
   2702 		}
   2703 	}
   2704 
   2705 step6:
   2706 	/*
   2707 	 * Update window information.
   2708 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2709 	 */
   2710 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2711 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2712 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2713 		/* keep track of pure window updates */
   2714 		if (tlen == 0 &&
   2715 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2716 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2717 		tp->snd_wnd = tiwin;
   2718 		tp->snd_wl1 = th->th_seq;
   2719 		tp->snd_wl2 = th->th_ack;
   2720 		if (tp->snd_wnd > tp->max_sndwnd)
   2721 			tp->max_sndwnd = tp->snd_wnd;
   2722 		needoutput = 1;
   2723 	}
   2724 
   2725 	/*
   2726 	 * Process segments with URG.
   2727 	 */
   2728 	if ((tiflags & TH_URG) && th->th_urp &&
   2729 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2730 		/*
   2731 		 * This is a kludge, but if we receive and accept
   2732 		 * random urgent pointers, we'll crash in
   2733 		 * soreceive.  It's hard to imagine someone
   2734 		 * actually wanting to send this much urgent data.
   2735 		 */
   2736 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2737 			th->th_urp = 0;			/* XXX */
   2738 			tiflags &= ~TH_URG;		/* XXX */
   2739 			goto dodata;			/* XXX */
   2740 		}
   2741 
   2742 		/*
   2743 		 * If this segment advances the known urgent pointer,
   2744 		 * then mark the data stream.  This should not happen
   2745 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2746 		 * a FIN has been received from the remote side.
   2747 		 * In these states we ignore the URG.
   2748 		 *
   2749 		 * According to RFC961 (Assigned Protocols),
   2750 		 * the urgent pointer points to the last octet
   2751 		 * of urgent data.  We continue, however,
   2752 		 * to consider it to indicate the first octet
   2753 		 * of data past the urgent section as the original
   2754 		 * spec states (in one of two places).
   2755 		 */
   2756 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2757 			tp->rcv_up = th->th_seq + th->th_urp;
   2758 			so->so_oobmark = so->so_rcv.sb_cc +
   2759 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2760 			if (so->so_oobmark == 0)
   2761 				so->so_state |= SS_RCVATMARK;
   2762 			sohasoutofband(so);
   2763 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2764 		}
   2765 
   2766 		/*
   2767 		 * Remove out of band data so doesn't get presented to user.
   2768 		 * This can happen independent of advancing the URG pointer,
   2769 		 * but if two URG's are pending at once, some out-of-band
   2770 		 * data may creep in... ick.
   2771 		 */
   2772 		if (th->th_urp <= (u_int16_t)tlen &&
   2773 		    (so->so_options & SO_OOBINLINE) == 0)
   2774 			tcp_pulloutofband(so, th, m, hdroptlen);
   2775 	} else {
   2776 		/*
   2777 		 * If no out of band data is expected,
   2778 		 * pull receive urgent pointer along
   2779 		 * with the receive window.
   2780 		 */
   2781 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2782 			tp->rcv_up = tp->rcv_nxt;
   2783 	}
   2784 dodata:
   2785 
   2786 	/*
   2787 	 * Process the segment text, merging it into the TCP sequencing queue,
   2788 	 * and arranging for acknowledgement of receipt if necessary.
   2789 	 * This process logically involves adjusting tp->rcv_wnd as data
   2790 	 * is presented to the user (this happens in tcp_usrreq.c,
   2791 	 * tcp_rcvd()).  If a FIN has already been received on this
   2792 	 * connection then we just ignore the text.
   2793 	 */
   2794 	if ((tlen || (tiflags & TH_FIN)) &&
   2795 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2796 		/*
   2797 		 * Insert segment ti into reassembly queue of tcp with
   2798 		 * control block tp.  Return TH_FIN if reassembly now includes
   2799 		 * a segment with FIN.  The macro form does the common case
   2800 		 * inline (segment is the next to be received on an
   2801 		 * established connection, and the queue is empty),
   2802 		 * avoiding linkage into and removal from the queue and
   2803 		 * repetition of various conversions.
   2804 		 * Set DELACK for segments received in order, but ack
   2805 		 * immediately when segments are out of order
   2806 		 * (so fast retransmit can work).
   2807 		 */
   2808 		/* NOTE: this was TCP_REASS() macro, but used only once */
   2809 		TCP_REASS_LOCK(tp);
   2810 		if (th->th_seq == tp->rcv_nxt &&
   2811 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2812 		    tp->t_state == TCPS_ESTABLISHED) {
   2813 			tcp_setup_ack(tp, th);
   2814 			tp->rcv_nxt += tlen;
   2815 			tiflags = th->th_flags & TH_FIN;
   2816 			tcps = TCP_STAT_GETREF();
   2817 			tcps[TCP_STAT_RCVPACK]++;
   2818 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2819 			TCP_STAT_PUTREF();
   2820 			nd6_hint(tp);
   2821 			if (so->so_state & SS_CANTRCVMORE) {
   2822 				m_freem(m);
   2823 			} else {
   2824 				m_adj(m, hdroptlen);
   2825 				sbappendstream(&(so)->so_rcv, m);
   2826 			}
   2827 			TCP_REASS_UNLOCK(tp);
   2828 			sorwakeup(so);
   2829 		} else {
   2830 			m_adj(m, hdroptlen);
   2831 			tiflags = tcp_reass(tp, th, m, tlen);
   2832 			tp->t_flags |= TF_ACKNOW;
   2833 		}
   2834 
   2835 		/*
   2836 		 * Note the amount of data that peer has sent into
   2837 		 * our window, in order to estimate the sender's
   2838 		 * buffer size.
   2839 		 */
   2840 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2841 	} else {
   2842 		m_freem(m);
   2843 		m = NULL;
   2844 		tiflags &= ~TH_FIN;
   2845 	}
   2846 
   2847 	/*
   2848 	 * If FIN is received ACK the FIN and let the user know
   2849 	 * that the connection is closing.  Ignore a FIN received before
   2850 	 * the connection is fully established.
   2851 	 */
   2852 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2853 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2854 			socantrcvmore(so);
   2855 			tp->t_flags |= TF_ACKNOW;
   2856 			tp->rcv_nxt++;
   2857 		}
   2858 		switch (tp->t_state) {
   2859 
   2860 	 	/*
   2861 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2862 		 */
   2863 		case TCPS_ESTABLISHED:
   2864 			tp->t_state = TCPS_CLOSE_WAIT;
   2865 			break;
   2866 
   2867 	 	/*
   2868 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2869 		 * enter the CLOSING state.
   2870 		 */
   2871 		case TCPS_FIN_WAIT_1:
   2872 			tp->t_state = TCPS_CLOSING;
   2873 			break;
   2874 
   2875 	 	/*
   2876 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2877 		 * starting the time-wait timer, turning off the other
   2878 		 * standard timers.
   2879 		 */
   2880 		case TCPS_FIN_WAIT_2:
   2881 			tp->t_state = TCPS_TIME_WAIT;
   2882 			tcp_canceltimers(tp);
   2883 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2884 			soisdisconnected(so);
   2885 			break;
   2886 
   2887 		/*
   2888 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2889 		 */
   2890 		case TCPS_TIME_WAIT:
   2891 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2892 			break;
   2893 		}
   2894 	}
   2895 #ifdef TCP_DEBUG
   2896 	if (so->so_options & SO_DEBUG)
   2897 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2898 #endif
   2899 
   2900 	/*
   2901 	 * Return any desired output.
   2902 	 */
   2903 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2904 		KERNEL_LOCK(1, NULL);
   2905 		(void)tcp_output(tp);
   2906 		KERNEL_UNLOCK_ONE(NULL);
   2907 	}
   2908 	if (tcp_saveti)
   2909 		m_freem(tcp_saveti);
   2910 
   2911 	if (tp->t_state == TCPS_TIME_WAIT
   2912 	    && (so->so_state & SS_NOFDREF)
   2913 	    && (tp->t_inpcb || af != AF_INET)
   2914 	    && (tp->t_in6pcb || af != AF_INET6)
   2915 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   2916 	    && TAILQ_EMPTY(&tp->segq)
   2917 	    && vtw_add(af, tp)) {
   2918 		;
   2919 	}
   2920 	return;
   2921 
   2922 badsyn:
   2923 	/*
   2924 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2925 	 */
   2926 	TCP_STATINC(TCP_STAT_BADSYN);
   2927 	tp = NULL;
   2928 	goto dropwithreset;
   2929 
   2930 dropafterack:
   2931 	/*
   2932 	 * Generate an ACK dropping incoming segment if it occupies
   2933 	 * sequence space, where the ACK reflects our state.
   2934 	 */
   2935 	if (tiflags & TH_RST)
   2936 		goto drop;
   2937 	goto dropafterack2;
   2938 
   2939 dropafterack_ratelim:
   2940 	/*
   2941 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2942 	 */
   2943 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2944 	    tcp_ackdrop_ppslim) == 0) {
   2945 		/* XXX stat */
   2946 		goto drop;
   2947 	}
   2948 
   2949 dropafterack2:
   2950 	m_freem(m);
   2951 	tp->t_flags |= TF_ACKNOW;
   2952 	KERNEL_LOCK(1, NULL);
   2953 	(void)tcp_output(tp);
   2954 	KERNEL_UNLOCK_ONE(NULL);
   2955 	if (tcp_saveti)
   2956 		m_freem(tcp_saveti);
   2957 	return;
   2958 
   2959 dropwithreset_ratelim:
   2960 	/*
   2961 	 * We may want to rate-limit RSTs in certain situations,
   2962 	 * particularly if we are sending an RST in response to
   2963 	 * an attempt to connect to or otherwise communicate with
   2964 	 * a port for which we have no socket.
   2965 	 */
   2966 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2967 	    tcp_rst_ppslim) == 0) {
   2968 		/* XXX stat */
   2969 		goto drop;
   2970 	}
   2971 
   2972 dropwithreset:
   2973 	/*
   2974 	 * Generate a RST, dropping incoming segment.
   2975 	 * Make ACK acceptable to originator of segment.
   2976 	 */
   2977 	if (tiflags & TH_RST)
   2978 		goto drop;
   2979 	if (tiflags & TH_ACK) {
   2980 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2981 	} else {
   2982 		if (tiflags & TH_SYN)
   2983 			tlen++;
   2984 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2985 		    TH_RST|TH_ACK);
   2986 	}
   2987 	if (tcp_saveti)
   2988 		m_freem(tcp_saveti);
   2989 	return;
   2990 
   2991 badcsum:
   2992 drop:
   2993 	/*
   2994 	 * Drop space held by incoming segment and return.
   2995 	 */
   2996 	if (tp) {
   2997 		if (tp->t_inpcb)
   2998 			so = tp->t_inpcb->inp_socket;
   2999 #ifdef INET6
   3000 		else if (tp->t_in6pcb)
   3001 			so = tp->t_in6pcb->in6p_socket;
   3002 #endif
   3003 		else
   3004 			so = NULL;
   3005 #ifdef TCP_DEBUG
   3006 		if (so && (so->so_options & SO_DEBUG) != 0)
   3007 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3008 #endif
   3009 	}
   3010 	if (tcp_saveti)
   3011 		m_freem(tcp_saveti);
   3012 	m_freem(m);
   3013 	return;
   3014 }
   3015 
   3016 #ifdef TCP_SIGNATURE
   3017 int
   3018 tcp_signature_apply(void *fstate, void *data, u_int len)
   3019 {
   3020 
   3021 	MD5Update(fstate, (u_char *)data, len);
   3022 	return (0);
   3023 }
   3024 
   3025 struct secasvar *
   3026 tcp_signature_getsav(struct mbuf *m)
   3027 {
   3028 	struct ip *ip;
   3029 	struct ip6_hdr *ip6;
   3030 
   3031 	ip = mtod(m, struct ip *);
   3032 	switch (ip->ip_v) {
   3033 	case 4:
   3034 		ip = mtod(m, struct ip *);
   3035 		ip6 = NULL;
   3036 		break;
   3037 	case 6:
   3038 		ip = NULL;
   3039 		ip6 = mtod(m, struct ip6_hdr *);
   3040 		break;
   3041 	default:
   3042 		return (NULL);
   3043 	}
   3044 
   3045 #ifdef IPSEC
   3046 	union sockaddr_union dst;
   3047 
   3048 	/* Extract the destination from the IP header in the mbuf. */
   3049 	memset(&dst, 0, sizeof(union sockaddr_union));
   3050 	if (ip != NULL) {
   3051 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   3052 		dst.sa.sa_family = AF_INET;
   3053 		dst.sin.sin_addr = ip->ip_dst;
   3054 	} else {
   3055 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3056 		dst.sa.sa_family = AF_INET6;
   3057 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3058 	}
   3059 
   3060 	/*
   3061 	 * Look up an SADB entry which matches the address of the peer.
   3062 	 */
   3063 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3064 #else
   3065 	return NULL;
   3066 #endif
   3067 }
   3068 
   3069 int
   3070 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3071     struct secasvar *sav, char *sig)
   3072 {
   3073 	MD5_CTX ctx;
   3074 	struct ip *ip;
   3075 	struct ipovly *ipovly;
   3076 #ifdef INET6
   3077 	struct ip6_hdr *ip6;
   3078 	struct ip6_hdr_pseudo ip6pseudo;
   3079 #endif
   3080 	struct ippseudo ippseudo;
   3081 	struct tcphdr th0;
   3082 	int l, tcphdrlen;
   3083 
   3084 	if (sav == NULL)
   3085 		return (-1);
   3086 
   3087 	tcphdrlen = th->th_off * 4;
   3088 
   3089 	switch (mtod(m, struct ip *)->ip_v) {
   3090 	case 4:
   3091 		MD5Init(&ctx);
   3092 		ip = mtod(m, struct ip *);
   3093 		memset(&ippseudo, 0, sizeof(ippseudo));
   3094 		ipovly = (struct ipovly *)ip;
   3095 		ippseudo.ippseudo_src = ipovly->ih_src;
   3096 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3097 		ippseudo.ippseudo_pad = 0;
   3098 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3099 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3100 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3101 		break;
   3102 #if INET6
   3103 	case 6:
   3104 		MD5Init(&ctx);
   3105 		ip6 = mtod(m, struct ip6_hdr *);
   3106 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3107 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3108 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3109 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3110 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3111 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3112 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3113 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3114 		break;
   3115 #endif
   3116 	default:
   3117 		return (-1);
   3118 	}
   3119 
   3120 	th0 = *th;
   3121 	th0.th_sum = 0;
   3122 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3123 
   3124 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3125 	if (l > 0)
   3126 		m_apply(m, thoff + tcphdrlen,
   3127 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3128 		    tcp_signature_apply, &ctx);
   3129 
   3130 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3131 	MD5Final(sig, &ctx);
   3132 
   3133 	return (0);
   3134 }
   3135 #endif
   3136 
   3137 /*
   3138  * Parse and process tcp options.
   3139  *
   3140  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
   3141  * Otherwise returns 0.
   3142  */
   3143 static int
   3144 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
   3145     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3146 {
   3147 	u_int16_t mss;
   3148 	int opt, optlen = 0;
   3149 #ifdef TCP_SIGNATURE
   3150 	void *sigp = NULL;
   3151 	char sigbuf[TCP_SIGLEN];
   3152 	struct secasvar *sav = NULL;
   3153 #endif
   3154 
   3155 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3156 		opt = cp[0];
   3157 		if (opt == TCPOPT_EOL)
   3158 			break;
   3159 		if (opt == TCPOPT_NOP)
   3160 			optlen = 1;
   3161 		else {
   3162 			if (cnt < 2)
   3163 				break;
   3164 			optlen = cp[1];
   3165 			if (optlen < 2 || optlen > cnt)
   3166 				break;
   3167 		}
   3168 		switch (opt) {
   3169 
   3170 		default:
   3171 			continue;
   3172 
   3173 		case TCPOPT_MAXSEG:
   3174 			if (optlen != TCPOLEN_MAXSEG)
   3175 				continue;
   3176 			if (!(th->th_flags & TH_SYN))
   3177 				continue;
   3178 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3179 				continue;
   3180 			memcpy(&mss, cp + 2, sizeof(mss));
   3181 			oi->maxseg = ntohs(mss);
   3182 			break;
   3183 
   3184 		case TCPOPT_WINDOW:
   3185 			if (optlen != TCPOLEN_WINDOW)
   3186 				continue;
   3187 			if (!(th->th_flags & TH_SYN))
   3188 				continue;
   3189 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3190 				continue;
   3191 			tp->t_flags |= TF_RCVD_SCALE;
   3192 			tp->requested_s_scale = cp[2];
   3193 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3194 				char buf[INET6_ADDRSTRLEN];
   3195 				struct ip *ip = mtod(m, struct ip *);
   3196 #ifdef INET6
   3197 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3198 #endif
   3199 				if (ip)
   3200 					in_print(buf, sizeof(buf),
   3201 					    &ip->ip_src);
   3202 #ifdef INET6
   3203 				else if (ip6)
   3204 					in6_print(buf, sizeof(buf),
   3205 					    &ip6->ip6_src);
   3206 #endif
   3207 				else
   3208 					strlcpy(buf, "(unknown)", sizeof(buf));
   3209 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3210 				    "assuming %d\n",
   3211 				    tp->requested_s_scale, buf,
   3212 				    TCP_MAX_WINSHIFT);
   3213 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3214 			}
   3215 			break;
   3216 
   3217 		case TCPOPT_TIMESTAMP:
   3218 			if (optlen != TCPOLEN_TIMESTAMP)
   3219 				continue;
   3220 			oi->ts_present = 1;
   3221 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
   3222 			NTOHL(oi->ts_val);
   3223 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
   3224 			NTOHL(oi->ts_ecr);
   3225 
   3226 			if (!(th->th_flags & TH_SYN))
   3227 				continue;
   3228 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3229 				continue;
   3230 			/*
   3231 			 * A timestamp received in a SYN makes
   3232 			 * it ok to send timestamp requests and replies.
   3233 			 */
   3234 			tp->t_flags |= TF_RCVD_TSTMP;
   3235 			tp->ts_recent = oi->ts_val;
   3236 			tp->ts_recent_age = tcp_now;
   3237                         break;
   3238 
   3239 		case TCPOPT_SACK_PERMITTED:
   3240 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3241 				continue;
   3242 			if (!(th->th_flags & TH_SYN))
   3243 				continue;
   3244 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3245 				continue;
   3246 			if (tcp_do_sack) {
   3247 				tp->t_flags |= TF_SACK_PERMIT;
   3248 				tp->t_flags |= TF_WILL_SACK;
   3249 			}
   3250 			break;
   3251 
   3252 		case TCPOPT_SACK:
   3253 			tcp_sack_option(tp, th, cp, optlen);
   3254 			break;
   3255 #ifdef TCP_SIGNATURE
   3256 		case TCPOPT_SIGNATURE:
   3257 			if (optlen != TCPOLEN_SIGNATURE)
   3258 				continue;
   3259 			if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
   3260 				return (-1);
   3261 
   3262 			sigp = sigbuf;
   3263 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3264 			tp->t_flags |= TF_SIGNATURE;
   3265 			break;
   3266 #endif
   3267 		}
   3268 	}
   3269 
   3270 #ifndef TCP_SIGNATURE
   3271 	return 0;
   3272 #else
   3273 	if (tp->t_flags & TF_SIGNATURE) {
   3274 		sav = tcp_signature_getsav(m);
   3275 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3276 			return (-1);
   3277 	}
   3278 
   3279 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3280 		goto out;
   3281 
   3282 	if (sigp) {
   3283 		char sig[TCP_SIGLEN];
   3284 
   3285 		tcp_fields_to_net(th);
   3286 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3287 			tcp_fields_to_host(th);
   3288 			goto out;
   3289 		}
   3290 		tcp_fields_to_host(th);
   3291 
   3292 		if (memcmp(sig, sigp, TCP_SIGLEN)) {
   3293 			TCP_STATINC(TCP_STAT_BADSIG);
   3294 			goto out;
   3295 		} else
   3296 			TCP_STATINC(TCP_STAT_GOODSIG);
   3297 
   3298 		key_sa_recordxfer(sav, m);
   3299 		KEY_SA_UNREF(&sav);
   3300 	}
   3301 	return 0;
   3302 out:
   3303 	if (sav != NULL)
   3304 		KEY_SA_UNREF(&sav);
   3305 	return -1;
   3306 #endif
   3307 }
   3308 
   3309 /*
   3310  * Pull out of band byte out of a segment so
   3311  * it doesn't appear in the user's data queue.
   3312  * It is still reflected in the segment length for
   3313  * sequencing purposes.
   3314  */
   3315 void
   3316 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3317     struct mbuf *m, int off)
   3318 {
   3319 	int cnt = off + th->th_urp - 1;
   3320 
   3321 	while (cnt >= 0) {
   3322 		if (m->m_len > cnt) {
   3323 			char *cp = mtod(m, char *) + cnt;
   3324 			struct tcpcb *tp = sototcpcb(so);
   3325 
   3326 			tp->t_iobc = *cp;
   3327 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3328 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
   3329 			m->m_len--;
   3330 			return;
   3331 		}
   3332 		cnt -= m->m_len;
   3333 		m = m->m_next;
   3334 		if (m == NULL)
   3335 			break;
   3336 	}
   3337 	panic("tcp_pulloutofband");
   3338 }
   3339 
   3340 /*
   3341  * Collect new round-trip time estimate
   3342  * and update averages and current timeout.
   3343  *
   3344  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3345  * difference of two timestamps.
   3346  */
   3347 void
   3348 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3349 {
   3350 	int32_t delta;
   3351 
   3352 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3353 	if (tp->t_srtt != 0) {
   3354 		/*
   3355 		 * Compute the amount to add to srtt for smoothing,
   3356 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3357 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3358 		 * shift left 5 bits, subtract srtt to get the
   3359 		 * diference, and then shift right by TCP_RTT_SHIFT
   3360 		 * (3) to obtain 1/8 of the difference.
   3361 		 */
   3362 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3363 		/*
   3364 		 * This can never happen, because delta's lowest
   3365 		 * possible value is 1/8 of t_srtt.  But if it does,
   3366 		 * set srtt to some reasonable value, here chosen
   3367 		 * as 1/8 tick.
   3368 		 */
   3369 		if ((tp->t_srtt += delta) <= 0)
   3370 			tp->t_srtt = 1 << 2;
   3371 		/*
   3372 		 * RFC2988 requires that rttvar be updated first.
   3373 		 * This code is compliant because "delta" is the old
   3374 		 * srtt minus the new observation (scaled).
   3375 		 *
   3376 		 * RFC2988 says:
   3377 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3378 		 *
   3379 		 * delta is in units of 1/32 ticks, and has then been
   3380 		 * divided by 8.  This is equivalent to being in 1/16s
   3381 		 * units and divided by 4.  Subtract from it 1/4 of
   3382 		 * the existing rttvar to form the (signed) amount to
   3383 		 * adjust.
   3384 		 */
   3385 		if (delta < 0)
   3386 			delta = -delta;
   3387 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3388 		/*
   3389 		 * As with srtt, this should never happen.  There is
   3390 		 * no support in RFC2988 for this operation.  But 1/4s
   3391 		 * as rttvar when faced with something arguably wrong
   3392 		 * is ok.
   3393 		 */
   3394 		if ((tp->t_rttvar += delta) <= 0)
   3395 			tp->t_rttvar = 1 << 2;
   3396 
   3397 		/*
   3398 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3399 		 * Problem is: it doesn't work.  Disabled by defaulting
   3400 		 * tcp_rttlocal to 0; see corresponding code in
   3401 		 * tcp_subr that selects local vs remote in a different way.
   3402 		 *
   3403 		 * The static branch prediction hint here should be removed
   3404 		 * when the rtt estimator is fixed and the rtt_enable code
   3405 		 * is turned back on.
   3406 		 */
   3407 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3408 		    && tp->t_srtt > tcp_msl_remote_threshold
   3409 		    && tp->t_msl  < tcp_msl_remote) {
   3410 			tp->t_msl = tcp_msl_remote;
   3411 		}
   3412 	} else {
   3413 		/*
   3414 		 * This is the first measurement.  Per RFC2988, 2.2,
   3415 		 * set rtt=R and srtt=R/2.
   3416 		 * For srtt, storage representation is 1/32 ticks,
   3417 		 * so shift left by 5.
   3418 		 * For rttvar, storage representation is 1/16 ticks,
   3419 		 * So shift left by 4, but then right by 1 to halve.
   3420 		 */
   3421 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3422 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3423 	}
   3424 	tp->t_rtttime = 0;
   3425 	tp->t_rxtshift = 0;
   3426 
   3427 	/*
   3428 	 * the retransmit should happen at rtt + 4 * rttvar.
   3429 	 * Because of the way we do the smoothing, srtt and rttvar
   3430 	 * will each average +1/2 tick of bias.  When we compute
   3431 	 * the retransmit timer, we want 1/2 tick of rounding and
   3432 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3433 	 * firing of the timer.  The bias will give us exactly the
   3434 	 * 1.5 tick we need.  But, because the bias is
   3435 	 * statistical, we have to test that we don't drop below
   3436 	 * the minimum feasible timer (which is 2 ticks).
   3437 	 */
   3438 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3439 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3440 
   3441 	/*
   3442 	 * We received an ack for a packet that wasn't retransmitted;
   3443 	 * it is probably safe to discard any error indications we've
   3444 	 * received recently.  This isn't quite right, but close enough
   3445 	 * for now (a route might have failed after we sent a segment,
   3446 	 * and the return path might not be symmetrical).
   3447 	 */
   3448 	tp->t_softerror = 0;
   3449 }
   3450 
   3451 
   3452 /*
   3453  * TCP compressed state engine.  Currently used to hold compressed
   3454  * state for SYN_RECEIVED.
   3455  */
   3456 
   3457 u_long	syn_cache_count;
   3458 u_int32_t syn_hash1, syn_hash2;
   3459 
   3460 #define SYN_HASH(sa, sp, dp) \
   3461 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3462 				     ((u_int32_t)(sp)))^syn_hash2)))
   3463 #ifndef INET6
   3464 #define	SYN_HASHALL(hash, src, dst) \
   3465 do {									\
   3466 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3467 		((const struct sockaddr_in *)(src))->sin_port,		\
   3468 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3469 } while (/*CONSTCOND*/ 0)
   3470 #else
   3471 #define SYN_HASH6(sa, sp, dp) \
   3472 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3473 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3474 	 & 0x7fffffff)
   3475 
   3476 #define SYN_HASHALL(hash, src, dst) \
   3477 do {									\
   3478 	switch ((src)->sa_family) {					\
   3479 	case AF_INET:							\
   3480 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3481 			((const struct sockaddr_in *)(src))->sin_port,	\
   3482 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3483 		break;							\
   3484 	case AF_INET6:							\
   3485 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3486 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3487 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3488 		break;							\
   3489 	default:							\
   3490 		hash = 0;						\
   3491 	}								\
   3492 } while (/*CONSTCOND*/0)
   3493 #endif /* INET6 */
   3494 
   3495 static struct pool syn_cache_pool;
   3496 
   3497 /*
   3498  * We don't estimate RTT with SYNs, so each packet starts with the default
   3499  * RTT and each timer step has a fixed timeout value.
   3500  */
   3501 static inline void
   3502 syn_cache_timer_arm(struct syn_cache *sc)
   3503 {
   3504 
   3505 	TCPT_RANGESET(sc->sc_rxtcur,
   3506 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
   3507 	    TCPTV_REXMTMAX);
   3508 	callout_reset(&sc->sc_timer,
   3509 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
   3510 }
   3511 
   3512 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3513 
   3514 static inline void
   3515 syn_cache_rm(struct syn_cache *sc)
   3516 {
   3517 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3518 	    sc, sc_bucketq);
   3519 	sc->sc_tp = NULL;
   3520 	LIST_REMOVE(sc, sc_tpq);
   3521 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3522 	callout_stop(&sc->sc_timer);
   3523 	syn_cache_count--;
   3524 }
   3525 
   3526 static inline void
   3527 syn_cache_put(struct syn_cache *sc)
   3528 {
   3529 	if (sc->sc_ipopts)
   3530 		(void) m_free(sc->sc_ipopts);
   3531 	rtcache_free(&sc->sc_route);
   3532 	sc->sc_flags |= SCF_DEAD;
   3533 	if (!callout_invoking(&sc->sc_timer))
   3534 		callout_schedule(&(sc)->sc_timer, 1);
   3535 }
   3536 
   3537 void
   3538 syn_cache_init(void)
   3539 {
   3540 	int i;
   3541 
   3542 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3543 	    "synpl", NULL, IPL_SOFTNET);
   3544 
   3545 	/* Initialize the hash buckets. */
   3546 	for (i = 0; i < tcp_syn_cache_size; i++)
   3547 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3548 }
   3549 
   3550 void
   3551 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3552 {
   3553 	struct syn_cache_head *scp;
   3554 	struct syn_cache *sc2;
   3555 	int s;
   3556 
   3557 	/*
   3558 	 * If there are no entries in the hash table, reinitialize
   3559 	 * the hash secrets.
   3560 	 */
   3561 	if (syn_cache_count == 0) {
   3562 		syn_hash1 = cprng_fast32();
   3563 		syn_hash2 = cprng_fast32();
   3564 	}
   3565 
   3566 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3567 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3568 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3569 
   3570 	/*
   3571 	 * Make sure that we don't overflow the per-bucket
   3572 	 * limit or the total cache size limit.
   3573 	 */
   3574 	s = splsoftnet();
   3575 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3576 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3577 		/*
   3578 		 * The bucket is full.  Toss the oldest element in the
   3579 		 * bucket.  This will be the first entry in the bucket.
   3580 		 */
   3581 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3582 #ifdef DIAGNOSTIC
   3583 		/*
   3584 		 * This should never happen; we should always find an
   3585 		 * entry in our bucket.
   3586 		 */
   3587 		if (sc2 == NULL)
   3588 			panic("syn_cache_insert: bucketoverflow: impossible");
   3589 #endif
   3590 		syn_cache_rm(sc2);
   3591 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3592 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3593 		struct syn_cache_head *scp2, *sce;
   3594 
   3595 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3596 		/*
   3597 		 * The cache is full.  Toss the oldest entry in the
   3598 		 * first non-empty bucket we can find.
   3599 		 *
   3600 		 * XXX We would really like to toss the oldest
   3601 		 * entry in the cache, but we hope that this
   3602 		 * condition doesn't happen very often.
   3603 		 */
   3604 		scp2 = scp;
   3605 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3606 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3607 			for (++scp2; scp2 != scp; scp2++) {
   3608 				if (scp2 >= sce)
   3609 					scp2 = &tcp_syn_cache[0];
   3610 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3611 					break;
   3612 			}
   3613 #ifdef DIAGNOSTIC
   3614 			/*
   3615 			 * This should never happen; we should always find a
   3616 			 * non-empty bucket.
   3617 			 */
   3618 			if (scp2 == scp)
   3619 				panic("syn_cache_insert: cacheoverflow: "
   3620 				    "impossible");
   3621 #endif
   3622 		}
   3623 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3624 		syn_cache_rm(sc2);
   3625 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3626 	}
   3627 
   3628 	/*
   3629 	 * Initialize the entry's timer.
   3630 	 */
   3631 	sc->sc_rxttot = 0;
   3632 	sc->sc_rxtshift = 0;
   3633 	syn_cache_timer_arm(sc);
   3634 
   3635 	/* Link it from tcpcb entry */
   3636 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3637 
   3638 	/* Put it into the bucket. */
   3639 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3640 	scp->sch_length++;
   3641 	syn_cache_count++;
   3642 
   3643 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3644 	splx(s);
   3645 }
   3646 
   3647 /*
   3648  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3649  * If we have retransmitted an entry the maximum number of times, expire
   3650  * that entry.
   3651  */
   3652 static void
   3653 syn_cache_timer(void *arg)
   3654 {
   3655 	struct syn_cache *sc = arg;
   3656 
   3657 	mutex_enter(softnet_lock);
   3658 	KERNEL_LOCK(1, NULL);
   3659 
   3660 	callout_ack(&sc->sc_timer);
   3661 
   3662 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3663 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3664 		goto free;
   3665 	}
   3666 
   3667 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3668 		/* Drop it -- too many retransmissions. */
   3669 		goto dropit;
   3670 	}
   3671 
   3672 	/*
   3673 	 * Compute the total amount of time this entry has
   3674 	 * been on a queue.  If this entry has been on longer
   3675 	 * than the keep alive timer would allow, expire it.
   3676 	 */
   3677 	sc->sc_rxttot += sc->sc_rxtcur;
   3678 	if (sc->sc_rxttot >= tcp_keepinit)
   3679 		goto dropit;
   3680 
   3681 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3682 	(void)syn_cache_respond(sc);
   3683 
   3684 	/* Advance the timer back-off. */
   3685 	sc->sc_rxtshift++;
   3686 	syn_cache_timer_arm(sc);
   3687 
   3688 	goto out;
   3689 
   3690  dropit:
   3691 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3692 	syn_cache_rm(sc);
   3693 	if (sc->sc_ipopts)
   3694 		(void) m_free(sc->sc_ipopts);
   3695 	rtcache_free(&sc->sc_route);
   3696 
   3697  free:
   3698 	callout_destroy(&sc->sc_timer);
   3699 	pool_put(&syn_cache_pool, sc);
   3700 
   3701  out:
   3702 	KERNEL_UNLOCK_ONE(NULL);
   3703 	mutex_exit(softnet_lock);
   3704 }
   3705 
   3706 /*
   3707  * Remove syn cache created by the specified tcb entry,
   3708  * because this does not make sense to keep them
   3709  * (if there's no tcb entry, syn cache entry will never be used)
   3710  */
   3711 void
   3712 syn_cache_cleanup(struct tcpcb *tp)
   3713 {
   3714 	struct syn_cache *sc, *nsc;
   3715 	int s;
   3716 
   3717 	s = splsoftnet();
   3718 
   3719 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3720 		nsc = LIST_NEXT(sc, sc_tpq);
   3721 
   3722 #ifdef DIAGNOSTIC
   3723 		if (sc->sc_tp != tp)
   3724 			panic("invalid sc_tp in syn_cache_cleanup");
   3725 #endif
   3726 		syn_cache_rm(sc);
   3727 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3728 	}
   3729 	/* just for safety */
   3730 	LIST_INIT(&tp->t_sc);
   3731 
   3732 	splx(s);
   3733 }
   3734 
   3735 /*
   3736  * Find an entry in the syn cache.
   3737  */
   3738 struct syn_cache *
   3739 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3740     struct syn_cache_head **headp)
   3741 {
   3742 	struct syn_cache *sc;
   3743 	struct syn_cache_head *scp;
   3744 	u_int32_t hash;
   3745 	int s;
   3746 
   3747 	SYN_HASHALL(hash, src, dst);
   3748 
   3749 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3750 	*headp = scp;
   3751 	s = splsoftnet();
   3752 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3753 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3754 		if (sc->sc_hash != hash)
   3755 			continue;
   3756 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3757 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3758 			splx(s);
   3759 			return (sc);
   3760 		}
   3761 	}
   3762 	splx(s);
   3763 	return (NULL);
   3764 }
   3765 
   3766 /*
   3767  * This function gets called when we receive an ACK for a socket in the
   3768  * LISTEN state. We look up the connection in the syn cache, and if it's
   3769  * there, we pull it out of the cache and turn it into a full-blown
   3770  * connection in the SYN-RECEIVED state.
   3771  *
   3772  * The return values may not be immediately obvious, and their effects
   3773  * can be subtle, so here they are:
   3774  *
   3775  *	NULL	SYN was not found in cache; caller should drop the
   3776  *		packet and send an RST.
   3777  *
   3778  *	-1	We were unable to create the new connection, and are
   3779  *		aborting it.  An ACK,RST is being sent to the peer
   3780  *		(unless we got screwey sequence numbers; see below),
   3781  *		because the 3-way handshake has been completed.  Caller
   3782  *		should not free the mbuf, since we may be using it.  If
   3783  *		we are not, we will free it.
   3784  *
   3785  *	Otherwise, the return value is a pointer to the new socket
   3786  *	associated with the connection.
   3787  */
   3788 struct socket *
   3789 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3790     struct tcphdr *th, struct socket *so, struct mbuf *m)
   3791 {
   3792 	struct syn_cache *sc;
   3793 	struct syn_cache_head *scp;
   3794 	struct inpcb *inp = NULL;
   3795 #ifdef INET6
   3796 	struct in6pcb *in6p = NULL;
   3797 #endif
   3798 	struct tcpcb *tp;
   3799 	int s;
   3800 	struct socket *oso;
   3801 
   3802 	s = splsoftnet();
   3803 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3804 		splx(s);
   3805 		return NULL;
   3806 	}
   3807 
   3808 	/*
   3809 	 * Verify the sequence and ack numbers.  Try getting the correct
   3810 	 * response again.
   3811 	 */
   3812 	if ((th->th_ack != sc->sc_iss + 1) ||
   3813 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3814 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3815 		m_freem(m);
   3816 		(void)syn_cache_respond(sc);
   3817 		splx(s);
   3818 		return ((struct socket *)(-1));
   3819 	}
   3820 
   3821 	/* Remove this cache entry */
   3822 	syn_cache_rm(sc);
   3823 	splx(s);
   3824 
   3825 	/*
   3826 	 * Ok, create the full blown connection, and set things up
   3827 	 * as they would have been set up if we had created the
   3828 	 * connection when the SYN arrived.  If we can't create
   3829 	 * the connection, abort it.
   3830 	 */
   3831 	/*
   3832 	 * inp still has the OLD in_pcb stuff, set the
   3833 	 * v6-related flags on the new guy, too.   This is
   3834 	 * done particularly for the case where an AF_INET6
   3835 	 * socket is bound only to a port, and a v4 connection
   3836 	 * comes in on that port.
   3837 	 * we also copy the flowinfo from the original pcb
   3838 	 * to the new one.
   3839 	 */
   3840 	oso = so;
   3841 	so = sonewconn(so, true);
   3842 	if (so == NULL)
   3843 		goto resetandabort;
   3844 
   3845 	switch (so->so_proto->pr_domain->dom_family) {
   3846 	case AF_INET:
   3847 		inp = sotoinpcb(so);
   3848 		break;
   3849 #ifdef INET6
   3850 	case AF_INET6:
   3851 		in6p = sotoin6pcb(so);
   3852 		break;
   3853 #endif
   3854 	}
   3855 
   3856 	switch (src->sa_family) {
   3857 	case AF_INET:
   3858 		if (inp) {
   3859 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3860 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3861 			inp->inp_options = ip_srcroute(m);
   3862 			in_pcbstate(inp, INP_BOUND);
   3863 			if (inp->inp_options == NULL) {
   3864 				inp->inp_options = sc->sc_ipopts;
   3865 				sc->sc_ipopts = NULL;
   3866 			}
   3867 		}
   3868 #ifdef INET6
   3869 		else if (in6p) {
   3870 			/* IPv4 packet to AF_INET6 socket */
   3871 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   3872 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3873 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3874 				&in6p->in6p_laddr.s6_addr32[3],
   3875 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3876 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3877 			in6totcpcb(in6p)->t_family = AF_INET;
   3878 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3879 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3880 			else
   3881 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3882 			in6_pcbstate(in6p, IN6P_BOUND);
   3883 		}
   3884 #endif
   3885 		break;
   3886 #ifdef INET6
   3887 	case AF_INET6:
   3888 		if (in6p) {
   3889 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3890 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3891 			in6_pcbstate(in6p, IN6P_BOUND);
   3892 		}
   3893 		break;
   3894 #endif
   3895 	}
   3896 
   3897 #ifdef INET6
   3898 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3899 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3900 		/* inherit socket options from the listening socket */
   3901 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3902 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3903 			m_freem(in6p->in6p_options);
   3904 			in6p->in6p_options = NULL;
   3905 		}
   3906 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3907 		    mtod(m, struct ip6_hdr *), m);
   3908 	}
   3909 #endif
   3910 
   3911 #if defined(IPSEC)
   3912 	if (ipsec_used) {
   3913 		/*
   3914 		 * we make a copy of policy, instead of sharing the policy, for
   3915 		 * better behavior in terms of SA lookup and dead SA removal.
   3916 		 */
   3917 		if (inp) {
   3918 			/* copy old policy into new socket's */
   3919 			if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
   3920 			    inp->inp_sp))
   3921 				printf("tcp_input: could not copy policy\n");
   3922 		}
   3923 #ifdef INET6
   3924 		else if (in6p) {
   3925 			/* copy old policy into new socket's */
   3926 			if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
   3927 			    in6p->in6p_sp))
   3928 				printf("tcp_input: could not copy policy\n");
   3929 		}
   3930 #endif
   3931 	}
   3932 #endif
   3933 
   3934 	/*
   3935 	 * Give the new socket our cached route reference.
   3936 	 */
   3937 	if (inp) {
   3938 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   3939 		rtcache_free(&sc->sc_route);
   3940 	}
   3941 #ifdef INET6
   3942 	else {
   3943 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   3944 		rtcache_free(&sc->sc_route);
   3945 	}
   3946 #endif
   3947 
   3948 	if (inp) {
   3949 		struct sockaddr_in sin;
   3950 		memcpy(&sin, src, src->sa_len);
   3951 		if (in_pcbconnect(inp, &sin, &lwp0)) {
   3952 			goto resetandabort;
   3953 		}
   3954 	}
   3955 #ifdef INET6
   3956 	else if (in6p) {
   3957 		struct sockaddr_in6 sin6;
   3958 		memcpy(&sin6, src, src->sa_len);
   3959 		if (src->sa_family == AF_INET) {
   3960 			/* IPv4 packet to AF_INET6 socket */
   3961 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
   3962 		}
   3963 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
   3964 			goto resetandabort;
   3965 		}
   3966 	}
   3967 #endif
   3968 	else {
   3969 		goto resetandabort;
   3970 	}
   3971 
   3972 	if (inp)
   3973 		tp = intotcpcb(inp);
   3974 #ifdef INET6
   3975 	else if (in6p)
   3976 		tp = in6totcpcb(in6p);
   3977 #endif
   3978 	else
   3979 		tp = NULL;
   3980 
   3981 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3982 	if (sc->sc_request_r_scale != 15) {
   3983 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3984 		tp->request_r_scale = sc->sc_request_r_scale;
   3985 		tp->snd_scale = sc->sc_requested_s_scale;
   3986 		tp->rcv_scale = sc->sc_request_r_scale;
   3987 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3988 	}
   3989 	if (sc->sc_flags & SCF_TIMESTAMP)
   3990 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3991 	tp->ts_timebase = sc->sc_timebase;
   3992 
   3993 	tp->t_template = tcp_template(tp);
   3994 	if (tp->t_template == 0) {
   3995 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3996 		so = NULL;
   3997 		m_freem(m);
   3998 		goto abort;
   3999 	}
   4000 
   4001 	tp->iss = sc->sc_iss;
   4002 	tp->irs = sc->sc_irs;
   4003 	tcp_sendseqinit(tp);
   4004 	tcp_rcvseqinit(tp);
   4005 	tp->t_state = TCPS_SYN_RECEIVED;
   4006 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4007 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4008 
   4009 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4010 		tp->t_flags |= TF_WILL_SACK;
   4011 
   4012 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4013 		tp->t_flags |= TF_ECN_PERMIT;
   4014 
   4015 #ifdef TCP_SIGNATURE
   4016 	if (sc->sc_flags & SCF_SIGNATURE)
   4017 		tp->t_flags |= TF_SIGNATURE;
   4018 #endif
   4019 
   4020 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4021 	tp->t_ourmss = sc->sc_ourmaxseg;
   4022 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4023 
   4024 	/*
   4025 	 * Initialize the initial congestion window.  If we
   4026 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4027 	 * to 1 segment (i.e. the Loss Window).
   4028 	 */
   4029 	if (sc->sc_rxtshift)
   4030 		tp->snd_cwnd = tp->t_peermss;
   4031 	else {
   4032 		int ss = tcp_init_win;
   4033 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4034 			ss = tcp_init_win_local;
   4035 #ifdef INET6
   4036 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4037 			ss = tcp_init_win_local;
   4038 #endif
   4039 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4040 	}
   4041 
   4042 	tcp_rmx_rtt(tp);
   4043 	tp->snd_wl1 = sc->sc_irs;
   4044 	tp->rcv_up = sc->sc_irs + 1;
   4045 
   4046 	/*
   4047 	 * This is what whould have happened in tcp_output() when
   4048 	 * the SYN,ACK was sent.
   4049 	 */
   4050 	tp->snd_up = tp->snd_una;
   4051 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4052 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4053 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4054 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4055 	tp->last_ack_sent = tp->rcv_nxt;
   4056 	tp->t_partialacks = -1;
   4057 	tp->t_dupacks = 0;
   4058 
   4059 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4060 	s = splsoftnet();
   4061 	syn_cache_put(sc);
   4062 	splx(s);
   4063 	return so;
   4064 
   4065 resetandabort:
   4066 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4067 abort:
   4068 	if (so != NULL) {
   4069 		(void) soqremque(so, 1);
   4070 		(void) soabort(so);
   4071 		mutex_enter(softnet_lock);
   4072 	}
   4073 	s = splsoftnet();
   4074 	syn_cache_put(sc);
   4075 	splx(s);
   4076 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4077 	return ((struct socket *)(-1));
   4078 }
   4079 
   4080 /*
   4081  * This function is called when we get a RST for a
   4082  * non-existent connection, so that we can see if the
   4083  * connection is in the syn cache.  If it is, zap it.
   4084  */
   4085 
   4086 void
   4087 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4088 {
   4089 	struct syn_cache *sc;
   4090 	struct syn_cache_head *scp;
   4091 	int s = splsoftnet();
   4092 
   4093 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4094 		splx(s);
   4095 		return;
   4096 	}
   4097 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4098 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4099 		splx(s);
   4100 		return;
   4101 	}
   4102 	syn_cache_rm(sc);
   4103 	TCP_STATINC(TCP_STAT_SC_RESET);
   4104 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4105 	splx(s);
   4106 }
   4107 
   4108 void
   4109 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4110     struct tcphdr *th)
   4111 {
   4112 	struct syn_cache *sc;
   4113 	struct syn_cache_head *scp;
   4114 	int s;
   4115 
   4116 	s = splsoftnet();
   4117 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4118 		splx(s);
   4119 		return;
   4120 	}
   4121 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4122 	if (ntohl(th->th_seq) != sc->sc_iss) {
   4123 		splx(s);
   4124 		return;
   4125 	}
   4126 
   4127 	/*
   4128 	 * If we've retransmitted 3 times and this is our second error,
   4129 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4130 	 * This prevents us from incorrectly nuking an entry during a
   4131 	 * spurious network outage.
   4132 	 *
   4133 	 * See tcp_notify().
   4134 	 */
   4135 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4136 		sc->sc_flags |= SCF_UNREACH;
   4137 		splx(s);
   4138 		return;
   4139 	}
   4140 
   4141 	syn_cache_rm(sc);
   4142 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4143 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4144 	splx(s);
   4145 }
   4146 
   4147 /*
   4148  * Given a LISTEN socket and an inbound SYN request, add this to the syn
   4149  * cache, and send back a segment:
   4150  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4151  * to the source.
   4152  *
   4153  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4154  * Doing so would require that we hold onto the data and deliver it
   4155  * to the application.  However, if we are the target of a SYN-flood
   4156  * DoS attack, an attacker could send data which would eventually
   4157  * consume all available buffer space if it were ACKed.  By not ACKing
   4158  * the data, we avoid this DoS scenario.
   4159  */
   4160 int
   4161 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4162     unsigned int hlen, struct socket *so, struct mbuf *m, u_char *optp,
   4163     int optlen, struct tcp_opt_info *oi)
   4164 {
   4165 	struct tcpcb tb, *tp;
   4166 	long win;
   4167 	struct syn_cache *sc;
   4168 	struct syn_cache_head *scp;
   4169 	struct mbuf *ipopts;
   4170 	int s;
   4171 
   4172 	tp = sototcpcb(so);
   4173 
   4174 	/*
   4175 	 * Initialize some local state.
   4176 	 */
   4177 	win = sbspace(&so->so_rcv);
   4178 	if (win > TCP_MAXWIN)
   4179 		win = TCP_MAXWIN;
   4180 
   4181 #ifdef TCP_SIGNATURE
   4182 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4183 #else
   4184 	if (optp)
   4185 #endif
   4186 	{
   4187 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4188 #ifdef TCP_SIGNATURE
   4189 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4190 #endif
   4191 		tb.t_state = TCPS_LISTEN;
   4192 		if (tcp_dooptions(&tb, optp, optlen, th, m, m->m_pkthdr.len -
   4193 		    sizeof(struct tcphdr) - optlen - hlen, oi) < 0)
   4194 			return 0;
   4195 	} else
   4196 		tb.t_flags = 0;
   4197 
   4198 	switch (src->sa_family) {
   4199 	case AF_INET:
   4200 		/* Remember the IP options, if any. */
   4201 		ipopts = ip_srcroute(m);
   4202 		break;
   4203 	default:
   4204 		ipopts = NULL;
   4205 	}
   4206 
   4207 	/*
   4208 	 * See if we already have an entry for this connection.
   4209 	 * If we do, resend the SYN,ACK.  We do not count this
   4210 	 * as a retransmission (XXX though maybe we should).
   4211 	 */
   4212 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4213 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4214 		if (ipopts) {
   4215 			/*
   4216 			 * If we were remembering a previous source route,
   4217 			 * forget it and use the new one we've been given.
   4218 			 */
   4219 			if (sc->sc_ipopts)
   4220 				(void)m_free(sc->sc_ipopts);
   4221 			sc->sc_ipopts = ipopts;
   4222 		}
   4223 		sc->sc_timestamp = tb.ts_recent;
   4224 		m_freem(m);
   4225 		if (syn_cache_respond(sc) == 0) {
   4226 			uint64_t *tcps = TCP_STAT_GETREF();
   4227 			tcps[TCP_STAT_SNDACKS]++;
   4228 			tcps[TCP_STAT_SNDTOTAL]++;
   4229 			TCP_STAT_PUTREF();
   4230 		}
   4231 		return 1;
   4232 	}
   4233 
   4234 	s = splsoftnet();
   4235 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4236 	splx(s);
   4237 	if (sc == NULL) {
   4238 		if (ipopts)
   4239 			(void)m_free(ipopts);
   4240 		return 0;
   4241 	}
   4242 
   4243 	/*
   4244 	 * Fill in the cache, and put the necessary IP and TCP
   4245 	 * options into the reply.
   4246 	 */
   4247 	memset(sc, 0, sizeof(struct syn_cache));
   4248 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4249 	memcpy(&sc->sc_src, src, src->sa_len);
   4250 	memcpy(&sc->sc_dst, dst, dst->sa_len);
   4251 	sc->sc_flags = 0;
   4252 	sc->sc_ipopts = ipopts;
   4253 	sc->sc_irs = th->th_seq;
   4254 	switch (src->sa_family) {
   4255 	case AF_INET:
   4256 	    {
   4257 		struct sockaddr_in *srcin = (void *)src;
   4258 		struct sockaddr_in *dstin = (void *)dst;
   4259 
   4260 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4261 		    &srcin->sin_addr, dstin->sin_port,
   4262 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4263 		break;
   4264 	    }
   4265 #ifdef INET6
   4266 	case AF_INET6:
   4267 	    {
   4268 		struct sockaddr_in6 *srcin6 = (void *)src;
   4269 		struct sockaddr_in6 *dstin6 = (void *)dst;
   4270 
   4271 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4272 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4273 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4274 		break;
   4275 	    }
   4276 #endif
   4277 	}
   4278 	sc->sc_peermaxseg = oi->maxseg;
   4279 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4280 	    m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
   4281 	sc->sc_win = win;
   4282 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4283 	sc->sc_timestamp = tb.ts_recent;
   4284 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4285 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4286 		sc->sc_flags |= SCF_TIMESTAMP;
   4287 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4288 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4289 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4290 		sc->sc_request_r_scale = 0;
   4291 		/*
   4292 		 * Pick the smallest possible scaling factor that
   4293 		 * will still allow us to scale up to sb_max.
   4294 		 *
   4295 		 * We do this because there are broken firewalls that
   4296 		 * will corrupt the window scale option, leading to
   4297 		 * the other endpoint believing that our advertised
   4298 		 * window is unscaled.  At scale factors larger than
   4299 		 * 5 the unscaled window will drop below 1500 bytes,
   4300 		 * leading to serious problems when traversing these
   4301 		 * broken firewalls.
   4302 		 *
   4303 		 * With the default sbmax of 256K, a scale factor
   4304 		 * of 3 will be chosen by this algorithm.  Those who
   4305 		 * choose a larger sbmax should watch out
   4306 		 * for the compatiblity problems mentioned above.
   4307 		 *
   4308 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4309 		 * or <SYN,ACK>) segment itself is never scaled.
   4310 		 */
   4311 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4312 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4313 			sc->sc_request_r_scale++;
   4314 	} else {
   4315 		sc->sc_requested_s_scale = 15;
   4316 		sc->sc_request_r_scale = 15;
   4317 	}
   4318 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4319 		sc->sc_flags |= SCF_SACK_PERMIT;
   4320 
   4321 	/*
   4322 	 * ECN setup packet received.
   4323 	 */
   4324 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4325 		sc->sc_flags |= SCF_ECN_PERMIT;
   4326 
   4327 #ifdef TCP_SIGNATURE
   4328 	if (tb.t_flags & TF_SIGNATURE)
   4329 		sc->sc_flags |= SCF_SIGNATURE;
   4330 #endif
   4331 	sc->sc_tp = tp;
   4332 	m_freem(m);
   4333 	if (syn_cache_respond(sc) == 0) {
   4334 		uint64_t *tcps = TCP_STAT_GETREF();
   4335 		tcps[TCP_STAT_SNDACKS]++;
   4336 		tcps[TCP_STAT_SNDTOTAL]++;
   4337 		TCP_STAT_PUTREF();
   4338 		syn_cache_insert(sc, tp);
   4339 	} else {
   4340 		s = splsoftnet();
   4341 		/*
   4342 		 * syn_cache_put() will try to schedule the timer, so
   4343 		 * we need to initialize it
   4344 		 */
   4345 		syn_cache_timer_arm(sc);
   4346 		syn_cache_put(sc);
   4347 		splx(s);
   4348 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4349 	}
   4350 	return 1;
   4351 }
   4352 
   4353 /*
   4354  * syn_cache_respond: (re)send SYN+ACK.
   4355  *
   4356  * Returns 0 on success.
   4357  */
   4358 
   4359 int
   4360 syn_cache_respond(struct syn_cache *sc)
   4361 {
   4362 #ifdef INET6
   4363 	struct rtentry *rt = NULL;
   4364 #endif
   4365 	struct route *ro;
   4366 	u_int8_t *optp;
   4367 	int optlen, error;
   4368 	u_int16_t tlen;
   4369 	struct ip *ip = NULL;
   4370 #ifdef INET6
   4371 	struct ip6_hdr *ip6 = NULL;
   4372 #endif
   4373 	struct tcpcb *tp;
   4374 	struct tcphdr *th;
   4375 	struct mbuf *m;
   4376 	u_int hlen;
   4377 #ifdef TCP_SIGNATURE
   4378 	struct secasvar *sav = NULL;
   4379 	u_int8_t *sigp = NULL;
   4380 #endif
   4381 
   4382 	ro = &sc->sc_route;
   4383 	switch (sc->sc_src.sa.sa_family) {
   4384 	case AF_INET:
   4385 		hlen = sizeof(struct ip);
   4386 		break;
   4387 #ifdef INET6
   4388 	case AF_INET6:
   4389 		hlen = sizeof(struct ip6_hdr);
   4390 		break;
   4391 #endif
   4392 	default:
   4393 		return EAFNOSUPPORT;
   4394 	}
   4395 
   4396 	/* Worst case scanario, since we don't know the option size yet. */
   4397 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
   4398 	KASSERT(max_linkhdr + tlen <= MCLBYTES);
   4399 
   4400 	/*
   4401 	 * Create the IP+TCP header from scratch.
   4402 	 */
   4403 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4404 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4405 		MCLGET(m, M_DONTWAIT);
   4406 		if ((m->m_flags & M_EXT) == 0) {
   4407 			m_freem(m);
   4408 			m = NULL;
   4409 		}
   4410 	}
   4411 	if (m == NULL)
   4412 		return ENOBUFS;
   4413 	MCLAIM(m, &tcp_tx_mowner);
   4414 
   4415 	tp = sc->sc_tp;
   4416 
   4417 	/* Fixup the mbuf. */
   4418 	m->m_data += max_linkhdr;
   4419 	m_reset_rcvif(m);
   4420 	memset(mtod(m, void *), 0, tlen);
   4421 
   4422 	switch (sc->sc_src.sa.sa_family) {
   4423 	case AF_INET:
   4424 		ip = mtod(m, struct ip *);
   4425 		ip->ip_v = 4;
   4426 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4427 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4428 		ip->ip_p = IPPROTO_TCP;
   4429 		th = (struct tcphdr *)(ip + 1);
   4430 		th->th_dport = sc->sc_src.sin.sin_port;
   4431 		th->th_sport = sc->sc_dst.sin.sin_port;
   4432 		break;
   4433 #ifdef INET6
   4434 	case AF_INET6:
   4435 		ip6 = mtod(m, struct ip6_hdr *);
   4436 		ip6->ip6_vfc = IPV6_VERSION;
   4437 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4438 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4439 		ip6->ip6_nxt = IPPROTO_TCP;
   4440 		/* ip6_plen will be updated in ip6_output() */
   4441 		th = (struct tcphdr *)(ip6 + 1);
   4442 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4443 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4444 		break;
   4445 #endif
   4446 	default:
   4447 		panic("%s: impossible (1)", __func__);
   4448 	}
   4449 
   4450 	th->th_seq = htonl(sc->sc_iss);
   4451 	th->th_ack = htonl(sc->sc_irs + 1);
   4452 	th->th_flags = TH_SYN|TH_ACK;
   4453 	th->th_win = htons(sc->sc_win);
   4454 	/* th_x2, th_sum, th_urp already 0 from memset */
   4455 
   4456 	/* Tack on the TCP options. */
   4457 	optp = (u_int8_t *)(th + 1);
   4458 	optlen = 0;
   4459 	*optp++ = TCPOPT_MAXSEG;
   4460 	*optp++ = TCPOLEN_MAXSEG;
   4461 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4462 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4463 	optlen += TCPOLEN_MAXSEG;
   4464 
   4465 	if (sc->sc_request_r_scale != 15) {
   4466 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4467 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4468 		    sc->sc_request_r_scale);
   4469 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4470 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4471 	}
   4472 
   4473 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4474 		/* Let the peer know that we will SACK. */
   4475 		*optp++ = TCPOPT_SACK_PERMITTED;
   4476 		*optp++ = TCPOLEN_SACK_PERMITTED;
   4477 		optlen += TCPOLEN_SACK_PERMITTED;
   4478 	}
   4479 
   4480 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4481 		while (optlen % 4 != 2) {
   4482 			optlen += TCPOLEN_NOP;
   4483 			*optp++ = TCPOPT_NOP;
   4484 		}
   4485 		*optp++ = TCPOPT_TIMESTAMP;
   4486 		*optp++ = TCPOLEN_TIMESTAMP;
   4487 		u_int32_t *lp = (u_int32_t *)(optp);
   4488 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4489 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4490 		*lp   = htonl(sc->sc_timestamp);
   4491 		optp += TCPOLEN_TIMESTAMP - 2;
   4492 		optlen += TCPOLEN_TIMESTAMP;
   4493 	}
   4494 
   4495 #ifdef TCP_SIGNATURE
   4496 	if (sc->sc_flags & SCF_SIGNATURE) {
   4497 		sav = tcp_signature_getsav(m);
   4498 		if (sav == NULL) {
   4499 			m_freem(m);
   4500 			return EPERM;
   4501 		}
   4502 
   4503 		*optp++ = TCPOPT_SIGNATURE;
   4504 		*optp++ = TCPOLEN_SIGNATURE;
   4505 		sigp = optp;
   4506 		memset(optp, 0, TCP_SIGLEN);
   4507 		optp += TCP_SIGLEN;
   4508 		optlen += TCPOLEN_SIGNATURE;
   4509 	}
   4510 #endif
   4511 
   4512 	/*
   4513 	 * Terminate and pad TCP options to a 4 byte boundary.
   4514 	 *
   4515 	 * According to RFC793: "The content of the header beyond the
   4516 	 * End-of-Option option must be header padding (i.e., zero)."
   4517 	 * And later: "The padding is composed of zeros."
   4518 	 */
   4519 	if (optlen % 4) {
   4520 		optlen += TCPOLEN_EOL;
   4521 		*optp++ = TCPOPT_EOL;
   4522 	}
   4523 	while (optlen % 4) {
   4524 		optlen += TCPOLEN_PAD;
   4525 		*optp++ = TCPOPT_PAD;
   4526 	}
   4527 
   4528 	/* Compute the actual values now that we've added the options. */
   4529 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4530 	m->m_len = m->m_pkthdr.len = tlen;
   4531 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4532 
   4533 #ifdef TCP_SIGNATURE
   4534 	if (sav) {
   4535 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4536 		key_sa_recordxfer(sav, m);
   4537 		KEY_SA_UNREF(&sav);
   4538 	}
   4539 #endif
   4540 
   4541 	/*
   4542 	 * Send ECN SYN-ACK setup packet.
   4543 	 * Routes can be asymetric, so, even if we receive a packet
   4544 	 * with ECE and CWR set, we must not assume no one will block
   4545 	 * the ECE packet we are about to send.
   4546 	 */
   4547 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4548 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4549 		th->th_flags |= TH_ECE;
   4550 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4551 
   4552 		/*
   4553 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4554 		 *
   4555 		 * "[...] a TCP node MAY respond to an ECN-setup
   4556 		 * SYN packet by setting ECT in the responding
   4557 		 * ECN-setup SYN/ACK packet, indicating to routers
   4558 		 * that the SYN/ACK packet is ECN-Capable.
   4559 		 * This allows a congested router along the path
   4560 		 * to mark the packet instead of dropping the
   4561 		 * packet as an indication of congestion."
   4562 		 *
   4563 		 * "[...] There can be a great benefit in setting
   4564 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4565 		 * Congestion is  most likely to occur in
   4566 		 * the server-to-client direction.  As a result,
   4567 		 * setting an ECN-capable codepoint in SYN/ACK
   4568 		 * packets can reduce the occurence of three-second
   4569 		 * retransmit timeouts resulting from the drop
   4570 		 * of SYN/ACK packets."
   4571 		 *
   4572 		 * Page 4 and 6, January 2006.
   4573 		 */
   4574 
   4575 		switch (sc->sc_src.sa.sa_family) {
   4576 		case AF_INET:
   4577 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4578 			break;
   4579 #ifdef INET6
   4580 		case AF_INET6:
   4581 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4582 			break;
   4583 #endif
   4584 		}
   4585 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4586 	}
   4587 
   4588 
   4589 	/*
   4590 	 * Compute the packet's checksum.
   4591 	 *
   4592 	 * Fill in some straggling IP bits.  Note the stack expects
   4593 	 * ip_len to be in host order, for convenience.
   4594 	 */
   4595 	switch (sc->sc_src.sa.sa_family) {
   4596 	case AF_INET:
   4597 		ip->ip_len = htons(tlen - hlen);
   4598 		th->th_sum = 0;
   4599 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4600 		ip->ip_len = htons(tlen);
   4601 		ip->ip_ttl = ip_defttl;
   4602 		/* XXX tos? */
   4603 		break;
   4604 #ifdef INET6
   4605 	case AF_INET6:
   4606 		ip6->ip6_plen = htons(tlen - hlen);
   4607 		th->th_sum = 0;
   4608 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4609 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4610 		ip6->ip6_vfc |= IPV6_VERSION;
   4611 		ip6->ip6_plen = htons(tlen - hlen);
   4612 		/* ip6_hlim will be initialized afterwards */
   4613 		/* XXX flowlabel? */
   4614 		break;
   4615 #endif
   4616 	}
   4617 
   4618 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4619 	tp = sc->sc_tp;
   4620 
   4621 	switch (sc->sc_src.sa.sa_family) {
   4622 	case AF_INET:
   4623 		error = ip_output(m, sc->sc_ipopts, ro,
   4624 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4625 		    NULL, tp ? tp->t_inpcb : NULL);
   4626 		break;
   4627 #ifdef INET6
   4628 	case AF_INET6:
   4629 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4630 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
   4631 		rtcache_unref(rt, ro);
   4632 
   4633 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
   4634 		    tp ? tp->t_in6pcb : NULL, NULL);
   4635 		break;
   4636 #endif
   4637 	default:
   4638 		panic("%s: impossible (2)", __func__);
   4639 	}
   4640 
   4641 	return error;
   4642 }
   4643