tcp_input.c revision 1.399 1 /* $NetBSD: tcp_input.c,v 1.399 2018/03/29 17:46:17 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.399 2018/03/29 17:46:17 maxv Exp $");
152
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177
178 #include <net/if.h>
179 #include <net/if_types.h>
180
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188
189 #ifdef INET6
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #ifdef TCP_SIGNATURE
198 #include <netinet6/scope6_var.h>
199 #endif
200 #endif
201
202 #ifndef INET6
203 /* always need ip6.h for IP6_EXTHDR_GET */
204 #include <netinet/ip6.h>
205 #endif
206
207 #include <netinet/tcp.h>
208 #include <netinet/tcp_fsm.h>
209 #include <netinet/tcp_seq.h>
210 #include <netinet/tcp_timer.h>
211 #include <netinet/tcp_var.h>
212 #include <netinet/tcp_private.h>
213 #include <netinet/tcpip.h>
214 #include <netinet/tcp_congctl.h>
215 #include <netinet/tcp_debug.h>
216
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif
223
224 #ifdef IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h>
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* IPSEC*/
232
233 #include <netinet/tcp_vtw.h>
234
235 int tcprexmtthresh = 3;
236 int tcp_log_refused;
237
238 int tcp_do_autorcvbuf = 1;
239 int tcp_autorcvbuf_inc = 16 * 1024;
240 int tcp_autorcvbuf_max = 256 * 1024;
241 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
242
243 static int tcp_rst_ppslim_count = 0;
244 static struct timeval tcp_rst_ppslim_last;
245 static int tcp_ackdrop_ppslim_count = 0;
246 static struct timeval tcp_ackdrop_ppslim_last;
247
248 static void syn_cache_timer(void *);
249
250 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
251
252 /* for modulo comparisons of timestamps */
253 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
254 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
255
256 /*
257 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
258 */
259 #ifdef INET6
260 static inline void
261 nd6_hint(struct tcpcb *tp)
262 {
263 struct rtentry *rt = NULL;
264
265 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
266 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
267 nd6_nud_hint(rt);
268 rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
269 }
270 #else
271 static inline void
272 nd6_hint(struct tcpcb *tp)
273 {
274 }
275 #endif
276
277 /*
278 * Compute ACK transmission behavior. Delay the ACK unless
279 * we have already delayed an ACK (must send an ACK every two segments).
280 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
281 * option is enabled.
282 */
283 static void
284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
285 {
286
287 if (tp->t_flags & TF_DELACK ||
288 (tcp_ack_on_push && th->th_flags & TH_PUSH))
289 tp->t_flags |= TF_ACKNOW;
290 else
291 TCP_SET_DELACK(tp);
292 }
293
294 static void
295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
296 {
297
298 /*
299 * If we had a pending ICMP message that refers to data that have
300 * just been acknowledged, disregard the recorded ICMP message.
301 */
302 if ((tp->t_flags & TF_PMTUD_PEND) &&
303 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
304 tp->t_flags &= ~TF_PMTUD_PEND;
305
306 /*
307 * Keep track of the largest chunk of data
308 * acknowledged since last PMTU update
309 */
310 if (tp->t_pmtud_mss_acked < acked)
311 tp->t_pmtud_mss_acked = acked;
312 }
313
314 /*
315 * Convert TCP protocol fields to host order for easier processing.
316 */
317 static void
318 tcp_fields_to_host(struct tcphdr *th)
319 {
320
321 NTOHL(th->th_seq);
322 NTOHL(th->th_ack);
323 NTOHS(th->th_win);
324 NTOHS(th->th_urp);
325 }
326
327 /*
328 * ... and reverse the above.
329 */
330 static void
331 tcp_fields_to_net(struct tcphdr *th)
332 {
333
334 HTONL(th->th_seq);
335 HTONL(th->th_ack);
336 HTONS(th->th_win);
337 HTONS(th->th_urp);
338 }
339
340 static void
341 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
342 {
343 if (th->th_urp > 1) {
344 th->th_urp -= todrop;
345 } else {
346 *tiflags &= ~TH_URG;
347 th->th_urp = 0;
348 }
349 }
350
351 #ifdef TCP_CSUM_COUNTERS
352 #include <sys/device.h>
353
354 extern struct evcnt tcp_hwcsum_ok;
355 extern struct evcnt tcp_hwcsum_bad;
356 extern struct evcnt tcp_hwcsum_data;
357 extern struct evcnt tcp_swcsum;
358 #if defined(INET6)
359 extern struct evcnt tcp6_hwcsum_ok;
360 extern struct evcnt tcp6_hwcsum_bad;
361 extern struct evcnt tcp6_hwcsum_data;
362 extern struct evcnt tcp6_swcsum;
363 #endif /* defined(INET6) */
364
365 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
366
367 #else
368
369 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
370
371 #endif /* TCP_CSUM_COUNTERS */
372
373 #ifdef TCP_REASS_COUNTERS
374 #include <sys/device.h>
375
376 extern struct evcnt tcp_reass_;
377 extern struct evcnt tcp_reass_empty;
378 extern struct evcnt tcp_reass_iteration[8];
379 extern struct evcnt tcp_reass_prependfirst;
380 extern struct evcnt tcp_reass_prepend;
381 extern struct evcnt tcp_reass_insert;
382 extern struct evcnt tcp_reass_inserttail;
383 extern struct evcnt tcp_reass_append;
384 extern struct evcnt tcp_reass_appendtail;
385 extern struct evcnt tcp_reass_overlaptail;
386 extern struct evcnt tcp_reass_overlapfront;
387 extern struct evcnt tcp_reass_segdup;
388 extern struct evcnt tcp_reass_fragdup;
389
390 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
391
392 #else
393
394 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
395
396 #endif /* TCP_REASS_COUNTERS */
397
398 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
399 int);
400 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
401 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
402
403 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
404 #ifdef INET6
405 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
406 #endif
407
408 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
409
410 #if defined(MBUFTRACE)
411 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
412 #endif /* defined(MBUFTRACE) */
413
414 static struct pool tcpipqent_pool;
415
416 void
417 tcpipqent_init(void)
418 {
419
420 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
421 NULL, IPL_VM);
422 }
423
424 struct ipqent *
425 tcpipqent_alloc(void)
426 {
427 struct ipqent *ipqe;
428 int s;
429
430 s = splvm();
431 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
432 splx(s);
433
434 return ipqe;
435 }
436
437 void
438 tcpipqent_free(struct ipqent *ipqe)
439 {
440 int s;
441
442 s = splvm();
443 pool_put(&tcpipqent_pool, ipqe);
444 splx(s);
445 }
446
447 /*
448 * Insert segment ti into reassembly queue of tcp with
449 * control block tp. Return TH_FIN if reassembly now includes
450 * a segment with FIN.
451 */
452 static int
453 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
454 {
455 struct ipqent *p, *q, *nq, *tiqe = NULL;
456 struct socket *so = NULL;
457 int pkt_flags;
458 tcp_seq pkt_seq;
459 unsigned pkt_len;
460 u_long rcvpartdupbyte = 0;
461 u_long rcvoobyte;
462 #ifdef TCP_REASS_COUNTERS
463 u_int count = 0;
464 #endif
465 uint64_t *tcps;
466
467 if (tp->t_inpcb)
468 so = tp->t_inpcb->inp_socket;
469 #ifdef INET6
470 else if (tp->t_in6pcb)
471 so = tp->t_in6pcb->in6p_socket;
472 #endif
473
474 TCP_REASS_LOCK_CHECK(tp);
475
476 /*
477 * Call with th==NULL after become established to
478 * force pre-ESTABLISHED data up to user socket.
479 */
480 if (th == NULL)
481 goto present;
482
483 m_claimm(m, &tcp_reass_mowner);
484
485 rcvoobyte = tlen;
486 /*
487 * Copy these to local variables because the TCP header gets munged
488 * while we are collapsing mbufs.
489 */
490 pkt_seq = th->th_seq;
491 pkt_len = tlen;
492 pkt_flags = th->th_flags;
493
494 TCP_REASS_COUNTER_INCR(&tcp_reass_);
495
496 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
497 /*
498 * When we miss a packet, the vast majority of time we get
499 * packets that follow it in order. So optimize for that.
500 */
501 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
502 p->ipqe_len += pkt_len;
503 p->ipqe_flags |= pkt_flags;
504 m_cat(p->ipre_mlast, m);
505 TRAVERSE(p->ipre_mlast);
506 m = NULL;
507 tiqe = p;
508 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
509 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
510 goto skip_replacement;
511 }
512 /*
513 * While we're here, if the pkt is completely beyond
514 * anything we have, just insert it at the tail.
515 */
516 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
517 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
518 goto insert_it;
519 }
520 }
521
522 q = TAILQ_FIRST(&tp->segq);
523
524 if (q != NULL) {
525 /*
526 * If this segment immediately precedes the first out-of-order
527 * block, simply slap the segment in front of it and (mostly)
528 * skip the complicated logic.
529 */
530 if (pkt_seq + pkt_len == q->ipqe_seq) {
531 q->ipqe_seq = pkt_seq;
532 q->ipqe_len += pkt_len;
533 q->ipqe_flags |= pkt_flags;
534 m_cat(m, q->ipqe_m);
535 q->ipqe_m = m;
536 q->ipre_mlast = m; /* last mbuf may have changed */
537 TRAVERSE(q->ipre_mlast);
538 tiqe = q;
539 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
540 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
541 goto skip_replacement;
542 }
543 } else {
544 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
545 }
546
547 /*
548 * Find a segment which begins after this one does.
549 */
550 for (p = NULL; q != NULL; q = nq) {
551 nq = TAILQ_NEXT(q, ipqe_q);
552 #ifdef TCP_REASS_COUNTERS
553 count++;
554 #endif
555
556 /*
557 * If the received segment is just right after this
558 * fragment, merge the two together and then check
559 * for further overlaps.
560 */
561 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
562 #ifdef TCPREASS_DEBUG
563 printf("tcp_reass[%p]: concat %u:%u(%u) to %u:%u(%u)\n",
564 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
565 q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len);
566 #endif
567 pkt_len += q->ipqe_len;
568 pkt_flags |= q->ipqe_flags;
569 pkt_seq = q->ipqe_seq;
570 m_cat(q->ipre_mlast, m);
571 TRAVERSE(q->ipre_mlast);
572 m = q->ipqe_m;
573 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
574 goto free_ipqe;
575 }
576
577 /*
578 * If the received segment is completely past this
579 * fragment, we need to go to the next fragment.
580 */
581 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
582 p = q;
583 continue;
584 }
585
586 /*
587 * If the fragment is past the received segment,
588 * it (or any following) can't be concatenated.
589 */
590 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
591 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
592 break;
593 }
594
595 /*
596 * We've received all the data in this segment before.
597 * Mark it as a duplicate and return.
598 */
599 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
600 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
601 tcps = TCP_STAT_GETREF();
602 tcps[TCP_STAT_RCVDUPPACK]++;
603 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
604 TCP_STAT_PUTREF();
605 tcp_new_dsack(tp, pkt_seq, pkt_len);
606 m_freem(m);
607 if (tiqe != NULL) {
608 tcpipqent_free(tiqe);
609 }
610 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
611 goto out;
612 }
613
614 /*
615 * Received segment completely overlaps this fragment
616 * so we drop the fragment (this keeps the temporal
617 * ordering of segments correct).
618 */
619 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
620 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
621 rcvpartdupbyte += q->ipqe_len;
622 m_freem(q->ipqe_m);
623 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
624 goto free_ipqe;
625 }
626
627 /*
628 * Received segment extends past the end of the fragment.
629 * Drop the overlapping bytes, merge the fragment and
630 * segment, and treat as a longer received packet.
631 */
632 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
633 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
634 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
635 #ifdef TCPREASS_DEBUG
636 printf("tcp_reass[%p]: trim starting %d bytes of %u:%u(%u)\n",
637 tp, overlap,
638 pkt_seq, pkt_seq + pkt_len, pkt_len);
639 #endif
640 m_adj(m, overlap);
641 rcvpartdupbyte += overlap;
642 m_cat(q->ipre_mlast, m);
643 TRAVERSE(q->ipre_mlast);
644 m = q->ipqe_m;
645 pkt_seq = q->ipqe_seq;
646 pkt_len += q->ipqe_len - overlap;
647 rcvoobyte -= overlap;
648 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
649 goto free_ipqe;
650 }
651
652 /*
653 * Received segment extends past the front of the fragment.
654 * Drop the overlapping bytes on the received packet. The
655 * packet will then be concatenated with this fragment a
656 * bit later.
657 */
658 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
659 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
660 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
661 #ifdef TCPREASS_DEBUG
662 printf("tcp_reass[%p]: trim trailing %d bytes of %u:%u(%u)\n",
663 tp, overlap,
664 pkt_seq, pkt_seq + pkt_len, pkt_len);
665 #endif
666 m_adj(m, -overlap);
667 pkt_len -= overlap;
668 rcvpartdupbyte += overlap;
669 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
670 rcvoobyte -= overlap;
671 }
672
673 /*
674 * If the received segment immediately precedes this
675 * fragment then tack the fragment onto this segment
676 * and reinsert the data.
677 */
678 if (q->ipqe_seq == pkt_seq + pkt_len) {
679 #ifdef TCPREASS_DEBUG
680 printf("tcp_reass[%p]: append %u:%u(%u) to %u:%u(%u)\n",
681 tp, q->ipqe_seq, q->ipqe_seq + q->ipqe_len, q->ipqe_len,
682 pkt_seq, pkt_seq + pkt_len, pkt_len);
683 #endif
684 pkt_len += q->ipqe_len;
685 pkt_flags |= q->ipqe_flags;
686 m_cat(m, q->ipqe_m);
687 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
688 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
689 tp->t_segqlen--;
690 KASSERT(tp->t_segqlen >= 0);
691 KASSERT(tp->t_segqlen != 0 ||
692 (TAILQ_EMPTY(&tp->segq) &&
693 TAILQ_EMPTY(&tp->timeq)));
694 if (tiqe == NULL) {
695 tiqe = q;
696 } else {
697 tcpipqent_free(q);
698 }
699 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
700 break;
701 }
702
703 /*
704 * If the fragment is before the segment, remember it.
705 * When this loop is terminated, p will contain the
706 * pointer to the fragment that is right before the
707 * received segment.
708 */
709 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
710 p = q;
711
712 continue;
713
714 /*
715 * This is a common operation. It also will allow
716 * to save doing a malloc/free in most instances.
717 */
718 free_ipqe:
719 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
720 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
721 tp->t_segqlen--;
722 KASSERT(tp->t_segqlen >= 0);
723 KASSERT(tp->t_segqlen != 0 ||
724 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
725 if (tiqe == NULL) {
726 tiqe = q;
727 } else {
728 tcpipqent_free(q);
729 }
730 }
731
732 #ifdef TCP_REASS_COUNTERS
733 if (count > 7)
734 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
735 else if (count > 0)
736 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
737 #endif
738
739 insert_it:
740 /*
741 * Allocate a new queue entry (block) since the received segment
742 * did not collapse onto any other out-of-order block. If it had
743 * collapsed, tiqe would not be NULL and we would be reusing it.
744 *
745 * If the allocation fails, drop the packet.
746 */
747 if (tiqe == NULL) {
748 tiqe = tcpipqent_alloc();
749 if (tiqe == NULL) {
750 TCP_STATINC(TCP_STAT_RCVMEMDROP);
751 m_freem(m);
752 goto out;
753 }
754 }
755
756 /*
757 * Update the counters.
758 */
759 tp->t_rcvoopack++;
760 tcps = TCP_STAT_GETREF();
761 tcps[TCP_STAT_RCVOOPACK]++;
762 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
763 if (rcvpartdupbyte) {
764 tcps[TCP_STAT_RCVPARTDUPPACK]++;
765 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
766 }
767 TCP_STAT_PUTREF();
768
769 /*
770 * Insert the new fragment queue entry into both queues.
771 */
772 tiqe->ipqe_m = m;
773 tiqe->ipre_mlast = m;
774 tiqe->ipqe_seq = pkt_seq;
775 tiqe->ipqe_len = pkt_len;
776 tiqe->ipqe_flags = pkt_flags;
777 if (p == NULL) {
778 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
779 #ifdef TCPREASS_DEBUG
780 if (tiqe->ipqe_seq != tp->rcv_nxt)
781 printf("tcp_reass[%p]: insert %u:%u(%u) at front\n",
782 tp, pkt_seq, pkt_seq + pkt_len, pkt_len);
783 #endif
784 } else {
785 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
786 #ifdef TCPREASS_DEBUG
787 printf("tcp_reass[%p]: insert %u:%u(%u) after %u:%u(%u)\n",
788 tp, pkt_seq, pkt_seq + pkt_len, pkt_len,
789 p->ipqe_seq, p->ipqe_seq + p->ipqe_len, p->ipqe_len);
790 #endif
791 }
792 tp->t_segqlen++;
793
794 skip_replacement:
795 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
796
797 present:
798 /*
799 * Present data to user, advancing rcv_nxt through
800 * completed sequence space.
801 */
802 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
803 goto out;
804 q = TAILQ_FIRST(&tp->segq);
805 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
806 goto out;
807 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
808 goto out;
809
810 tp->rcv_nxt += q->ipqe_len;
811 pkt_flags = q->ipqe_flags & TH_FIN;
812 nd6_hint(tp);
813
814 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
815 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
816 tp->t_segqlen--;
817 KASSERT(tp->t_segqlen >= 0);
818 KASSERT(tp->t_segqlen != 0 ||
819 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
820 if (so->so_state & SS_CANTRCVMORE)
821 m_freem(q->ipqe_m);
822 else
823 sbappendstream(&so->so_rcv, q->ipqe_m);
824 tcpipqent_free(q);
825 TCP_REASS_UNLOCK(tp);
826 sorwakeup(so);
827 return pkt_flags;
828
829 out:
830 TCP_REASS_UNLOCK(tp);
831 return 0;
832 }
833
834 #ifdef INET6
835 int
836 tcp6_input(struct mbuf **mp, int *offp, int proto)
837 {
838 struct mbuf *m = *mp;
839
840 /*
841 * draft-itojun-ipv6-tcp-to-anycast
842 * better place to put this in?
843 */
844 if (m->m_flags & M_ANYCAST6) {
845 struct ip6_hdr *ip6;
846 if (m->m_len < sizeof(struct ip6_hdr)) {
847 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
848 TCP_STATINC(TCP_STAT_RCVSHORT);
849 return IPPROTO_DONE;
850 }
851 }
852 ip6 = mtod(m, struct ip6_hdr *);
853 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
854 (char *)&ip6->ip6_dst - (char *)ip6);
855 return IPPROTO_DONE;
856 }
857
858 tcp_input(m, *offp, proto);
859 return IPPROTO_DONE;
860 }
861 #endif
862
863 static void
864 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
865 {
866 char src[INET_ADDRSTRLEN];
867 char dst[INET_ADDRSTRLEN];
868
869 if (ip) {
870 in_print(src, sizeof(src), &ip->ip_src);
871 in_print(dst, sizeof(dst), &ip->ip_dst);
872 } else {
873 strlcpy(src, "(unknown)", sizeof(src));
874 strlcpy(dst, "(unknown)", sizeof(dst));
875 }
876 log(LOG_INFO,
877 "Connection attempt to TCP %s:%d from %s:%d\n",
878 dst, ntohs(th->th_dport),
879 src, ntohs(th->th_sport));
880 }
881
882 #ifdef INET6
883 static void
884 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
885 {
886 char src[INET6_ADDRSTRLEN];
887 char dst[INET6_ADDRSTRLEN];
888
889 if (ip6) {
890 in6_print(src, sizeof(src), &ip6->ip6_src);
891 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
892 } else {
893 strlcpy(src, "(unknown v6)", sizeof(src));
894 strlcpy(dst, "(unknown v6)", sizeof(dst));
895 }
896 log(LOG_INFO,
897 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
898 dst, ntohs(th->th_dport),
899 src, ntohs(th->th_sport));
900 }
901 #endif
902
903 /*
904 * Checksum extended TCP header and data.
905 */
906 int
907 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
908 int toff, int off, int tlen)
909 {
910 struct ifnet *rcvif;
911 int s;
912
913 /*
914 * XXX it's better to record and check if this mbuf is
915 * already checked.
916 */
917
918 rcvif = m_get_rcvif(m, &s);
919 if (__predict_false(rcvif == NULL))
920 goto badcsum; /* XXX */
921
922 switch (af) {
923 case AF_INET:
924 switch (m->m_pkthdr.csum_flags &
925 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
926 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
927 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
928 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
929 goto badcsum;
930
931 case M_CSUM_TCPv4|M_CSUM_DATA: {
932 u_int32_t hw_csum = m->m_pkthdr.csum_data;
933
934 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
935 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
936 const struct ip *ip =
937 mtod(m, const struct ip *);
938
939 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
940 ip->ip_dst.s_addr,
941 htons(hw_csum + tlen + off + IPPROTO_TCP));
942 }
943 if ((hw_csum ^ 0xffff) != 0)
944 goto badcsum;
945 break;
946 }
947
948 case M_CSUM_TCPv4:
949 /* Checksum was okay. */
950 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
951 break;
952
953 default:
954 /*
955 * Must compute it ourselves. Maybe skip checksum
956 * on loopback interfaces.
957 */
958 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
959 tcp_do_loopback_cksum)) {
960 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
961 if (in4_cksum(m, IPPROTO_TCP, toff,
962 tlen + off) != 0)
963 goto badcsum;
964 }
965 break;
966 }
967 break;
968
969 #ifdef INET6
970 case AF_INET6:
971 switch (m->m_pkthdr.csum_flags &
972 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
973 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
974 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
975 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
976 goto badcsum;
977
978 #if 0 /* notyet */
979 case M_CSUM_TCPv6|M_CSUM_DATA:
980 #endif
981
982 case M_CSUM_TCPv6:
983 /* Checksum was okay. */
984 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
985 break;
986
987 default:
988 /*
989 * Must compute it ourselves. Maybe skip checksum
990 * on loopback interfaces.
991 */
992 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
993 tcp_do_loopback_cksum)) {
994 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
995 if (in6_cksum(m, IPPROTO_TCP, toff,
996 tlen + off) != 0)
997 goto badcsum;
998 }
999 }
1000 break;
1001 #endif /* INET6 */
1002 }
1003 m_put_rcvif(rcvif, &s);
1004
1005 return 0;
1006
1007 badcsum:
1008 m_put_rcvif(rcvif, &s);
1009 TCP_STATINC(TCP_STAT_RCVBADSUM);
1010 return -1;
1011 }
1012
1013 /*
1014 * When a packet arrives addressed to a vestigial tcpbp, we
1015 * nevertheless have to respond to it per the spec.
1016 *
1017 * This code is duplicated from the one in tcp_input().
1018 */
1019 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1020 struct mbuf *m, int tlen)
1021 {
1022 int tiflags;
1023 int todrop;
1024 uint32_t t_flags = 0;
1025 uint64_t *tcps;
1026
1027 tiflags = th->th_flags;
1028 todrop = vp->rcv_nxt - th->th_seq;
1029
1030 if (todrop > 0) {
1031 if (tiflags & TH_SYN) {
1032 tiflags &= ~TH_SYN;
1033 th->th_seq++;
1034 tcp_urp_drop(th, 1, &tiflags);
1035 todrop--;
1036 }
1037 if (todrop > tlen ||
1038 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1039 /*
1040 * Any valid FIN or RST must be to the left of the
1041 * window. At this point the FIN or RST must be a
1042 * duplicate or out of sequence; drop it.
1043 */
1044 if (tiflags & TH_RST)
1045 goto drop;
1046 tiflags &= ~(TH_FIN|TH_RST);
1047
1048 /*
1049 * Send an ACK to resynchronize and drop any data.
1050 * But keep on processing for RST or ACK.
1051 */
1052 t_flags |= TF_ACKNOW;
1053 todrop = tlen;
1054 tcps = TCP_STAT_GETREF();
1055 tcps[TCP_STAT_RCVDUPPACK] += 1;
1056 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1057 TCP_STAT_PUTREF();
1058 } else if ((tiflags & TH_RST) &&
1059 th->th_seq != vp->rcv_nxt) {
1060 /*
1061 * Test for reset before adjusting the sequence
1062 * number for overlapping data.
1063 */
1064 goto dropafterack_ratelim;
1065 } else {
1066 tcps = TCP_STAT_GETREF();
1067 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1068 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1069 TCP_STAT_PUTREF();
1070 }
1071
1072 // tcp_new_dsack(tp, th->th_seq, todrop);
1073 // hdroptlen += todrop; /*drop from head afterwards*/
1074
1075 th->th_seq += todrop;
1076 tlen -= todrop;
1077 tcp_urp_drop(th, todrop, &tiflags);
1078 }
1079
1080 /*
1081 * If new data are received on a connection after the
1082 * user processes are gone, then RST the other end.
1083 */
1084 if (tlen) {
1085 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1086 goto dropwithreset;
1087 }
1088
1089 /*
1090 * If segment ends after window, drop trailing data
1091 * (and PUSH and FIN); if nothing left, just ACK.
1092 */
1093 todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1094
1095 if (todrop > 0) {
1096 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1097 if (todrop >= tlen) {
1098 /*
1099 * The segment actually starts after the window.
1100 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1101 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1102 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1103 */
1104 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1105
1106 /*
1107 * If a new connection request is received
1108 * while in TIME_WAIT, drop the old connection
1109 * and start over if the sequence numbers
1110 * are above the previous ones.
1111 */
1112 if ((tiflags & TH_SYN) &&
1113 SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1114 /*
1115 * We only support this in the !NOFDREF case, which
1116 * is to say: not here.
1117 */
1118 goto dropwithreset;
1119 }
1120
1121 /*
1122 * If window is closed can only take segments at
1123 * window edge, and have to drop data and PUSH from
1124 * incoming segments. Continue processing, but
1125 * remember to ack. Otherwise, drop segment
1126 * and (if not RST) ack.
1127 */
1128 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1129 t_flags |= TF_ACKNOW;
1130 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1131 } else {
1132 goto dropafterack;
1133 }
1134 } else {
1135 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1136 }
1137 m_adj(m, -todrop);
1138 tlen -= todrop;
1139 tiflags &= ~(TH_PUSH|TH_FIN);
1140 }
1141
1142 if (tiflags & TH_RST) {
1143 if (th->th_seq != vp->rcv_nxt)
1144 goto dropafterack_ratelim;
1145
1146 vtw_del(vp->ctl, vp->vtw);
1147 goto drop;
1148 }
1149
1150 /*
1151 * If the ACK bit is off we drop the segment and return.
1152 */
1153 if ((tiflags & TH_ACK) == 0) {
1154 if (t_flags & TF_ACKNOW)
1155 goto dropafterack;
1156 goto drop;
1157 }
1158
1159 /*
1160 * In TIME_WAIT state the only thing that should arrive
1161 * is a retransmission of the remote FIN. Acknowledge
1162 * it and restart the finack timer.
1163 */
1164 vtw_restart(vp);
1165 goto dropafterack;
1166
1167 dropafterack:
1168 /*
1169 * Generate an ACK dropping incoming segment if it occupies
1170 * sequence space, where the ACK reflects our state.
1171 */
1172 if (tiflags & TH_RST)
1173 goto drop;
1174 goto dropafterack2;
1175
1176 dropafterack_ratelim:
1177 /*
1178 * We may want to rate-limit ACKs against SYN/RST attack.
1179 */
1180 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1181 tcp_ackdrop_ppslim) == 0) {
1182 /* XXX stat */
1183 goto drop;
1184 }
1185 /* ...fall into dropafterack2... */
1186
1187 dropafterack2:
1188 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1189 return;
1190
1191 dropwithreset:
1192 /*
1193 * Generate a RST, dropping incoming segment.
1194 * Make ACK acceptable to originator of segment.
1195 */
1196 if (tiflags & TH_RST)
1197 goto drop;
1198
1199 if (tiflags & TH_ACK) {
1200 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1201 } else {
1202 if (tiflags & TH_SYN)
1203 ++tlen;
1204 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1205 TH_RST|TH_ACK);
1206 }
1207 return;
1208 drop:
1209 m_freem(m);
1210 }
1211
1212 /*
1213 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1214 */
1215 void
1216 tcp_input(struct mbuf *m, ...)
1217 {
1218 struct tcphdr *th;
1219 struct ip *ip;
1220 struct inpcb *inp;
1221 #ifdef INET6
1222 struct ip6_hdr *ip6;
1223 struct in6pcb *in6p;
1224 #endif
1225 u_int8_t *optp = NULL;
1226 int optlen = 0;
1227 int len, tlen, toff, hdroptlen = 0;
1228 struct tcpcb *tp = NULL;
1229 int tiflags;
1230 struct socket *so = NULL;
1231 int todrop, acked, ourfinisacked, needoutput = 0;
1232 bool dupseg;
1233 #ifdef TCP_DEBUG
1234 short ostate = 0;
1235 #endif
1236 u_long tiwin;
1237 struct tcp_opt_info opti;
1238 int off, iphlen;
1239 va_list ap;
1240 int af; /* af on the wire */
1241 struct mbuf *tcp_saveti = NULL;
1242 uint32_t ts_rtt;
1243 uint8_t iptos;
1244 uint64_t *tcps;
1245 vestigial_inpcb_t vestige;
1246
1247 vestige.valid = 0;
1248
1249 MCLAIM(m, &tcp_rx_mowner);
1250 va_start(ap, m);
1251 toff = va_arg(ap, int);
1252 (void)va_arg(ap, int); /* ignore value, advance ap */
1253 va_end(ap);
1254
1255 TCP_STATINC(TCP_STAT_RCVTOTAL);
1256
1257 memset(&opti, 0, sizeof(opti));
1258 opti.ts_present = 0;
1259 opti.maxseg = 0;
1260
1261 /*
1262 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1263 *
1264 * TCP is, by definition, unicast, so we reject all
1265 * multicast outright.
1266 *
1267 * Note, there are additional src/dst address checks in
1268 * the AF-specific code below.
1269 */
1270 if (m->m_flags & (M_BCAST|M_MCAST)) {
1271 /* XXX stat */
1272 goto drop;
1273 }
1274 #ifdef INET6
1275 if (m->m_flags & M_ANYCAST6) {
1276 /* XXX stat */
1277 goto drop;
1278 }
1279 #endif
1280
1281 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
1282 if (th == NULL) {
1283 TCP_STATINC(TCP_STAT_RCVSHORT);
1284 return;
1285 }
1286
1287 /*
1288 * Get IP and TCP header.
1289 * Note: IP leaves IP header in first mbuf.
1290 */
1291 ip = mtod(m, struct ip *);
1292 switch (ip->ip_v) {
1293 case 4:
1294 #ifdef INET6
1295 ip6 = NULL;
1296 #endif
1297 af = AF_INET;
1298 iphlen = sizeof(struct ip);
1299
1300 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1301 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1302 goto drop;
1303
1304 /* We do the checksum after PCB lookup... */
1305 len = ntohs(ip->ip_len);
1306 tlen = len - toff;
1307 iptos = ip->ip_tos;
1308 break;
1309 #ifdef INET6
1310 case 6:
1311 ip = NULL;
1312 iphlen = sizeof(struct ip6_hdr);
1313 af = AF_INET6;
1314 ip6 = mtod(m, struct ip6_hdr *);
1315
1316 /*
1317 * Be proactive about unspecified IPv6 address in source.
1318 * As we use all-zero to indicate unbounded/unconnected pcb,
1319 * unspecified IPv6 address can be used to confuse us.
1320 *
1321 * Note that packets with unspecified IPv6 destination is
1322 * already dropped in ip6_input.
1323 */
1324 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1325 /* XXX stat */
1326 goto drop;
1327 }
1328
1329 /*
1330 * Make sure destination address is not multicast.
1331 * Source address checked in ip6_input().
1332 */
1333 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1334 /* XXX stat */
1335 goto drop;
1336 }
1337
1338 /* We do the checksum after PCB lookup... */
1339 len = m->m_pkthdr.len;
1340 tlen = len - toff;
1341 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1342 break;
1343 #endif
1344 default:
1345 m_freem(m);
1346 return;
1347 }
1348
1349 /*
1350 * Enforce alignment requirements that are violated in
1351 * some cases, see kern/50766 for details.
1352 */
1353 if (TCP_HDR_ALIGNED_P(th) == 0) {
1354 m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1355 if (m == NULL) {
1356 TCP_STATINC(TCP_STAT_RCVSHORT);
1357 return;
1358 }
1359 ip = mtod(m, struct ip *);
1360 #ifdef INET6
1361 ip6 = mtod(m, struct ip6_hdr *);
1362 #endif
1363 th = (struct tcphdr *)(mtod(m, char *) + toff);
1364 }
1365 KASSERT(TCP_HDR_ALIGNED_P(th));
1366
1367 /*
1368 * Check that TCP offset makes sense, pull out TCP options and
1369 * adjust length.
1370 */
1371 off = th->th_off << 2;
1372 if (off < sizeof(struct tcphdr) || off > tlen) {
1373 TCP_STATINC(TCP_STAT_RCVBADOFF);
1374 goto drop;
1375 }
1376 tlen -= off;
1377
1378 if (off > sizeof(struct tcphdr)) {
1379 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1380 if (th == NULL) {
1381 TCP_STATINC(TCP_STAT_RCVSHORT);
1382 return;
1383 }
1384 KASSERT(TCP_HDR_ALIGNED_P(th));
1385 optlen = off - sizeof(struct tcphdr);
1386 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1387
1388 /*
1389 * Do quick retrieval of timestamp options.
1390 *
1391 * If timestamp is the only option and it's formatted as
1392 * recommended in RFC 1323 appendix A, we quickly get the
1393 * values now and don't bother calling tcp_dooptions(),
1394 * etc.
1395 */
1396 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1397 (optlen > TCPOLEN_TSTAMP_APPA &&
1398 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1399 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1400 (th->th_flags & TH_SYN) == 0) {
1401 opti.ts_present = 1;
1402 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1403 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1404 optp = NULL; /* we've parsed the options */
1405 }
1406 }
1407 tiflags = th->th_flags;
1408
1409 /*
1410 * Checksum extended TCP header and data
1411 */
1412 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1413 goto badcsum;
1414
1415 /*
1416 * Locate pcb for segment.
1417 */
1418 findpcb:
1419 inp = NULL;
1420 #ifdef INET6
1421 in6p = NULL;
1422 #endif
1423 switch (af) {
1424 case AF_INET:
1425 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1426 ip->ip_dst, th->th_dport, &vestige);
1427 if (inp == NULL && !vestige.valid) {
1428 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1429 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1430 th->th_dport);
1431 }
1432 #ifdef INET6
1433 if (inp == NULL && !vestige.valid) {
1434 struct in6_addr s, d;
1435
1436 /* mapped addr case */
1437 in6_in_2_v4mapin6(&ip->ip_src, &s);
1438 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1439 in6p = in6_pcblookup_connect(&tcbtable, &s,
1440 th->th_sport, &d, th->th_dport, 0, &vestige);
1441 if (in6p == 0 && !vestige.valid) {
1442 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1443 in6p = in6_pcblookup_bind(&tcbtable, &d,
1444 th->th_dport, 0);
1445 }
1446 }
1447 #endif
1448 #ifndef INET6
1449 if (inp == NULL && !vestige.valid)
1450 #else
1451 if (inp == NULL && in6p == NULL && !vestige.valid)
1452 #endif
1453 {
1454 TCP_STATINC(TCP_STAT_NOPORT);
1455 if (tcp_log_refused &&
1456 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1457 tcp4_log_refused(ip, th);
1458 }
1459 tcp_fields_to_host(th);
1460 goto dropwithreset_ratelim;
1461 }
1462 #if defined(IPSEC)
1463 if (ipsec_used) {
1464 if (inp && ipsec_in_reject(m, inp)) {
1465 goto drop;
1466 }
1467 #ifdef INET6
1468 else if (in6p && ipsec_in_reject(m, in6p)) {
1469 goto drop;
1470 }
1471 #endif
1472 }
1473 #endif /*IPSEC*/
1474 break;
1475 #ifdef INET6
1476 case AF_INET6:
1477 {
1478 int faith;
1479
1480 #if defined(NFAITH) && NFAITH > 0
1481 faith = faithprefix(&ip6->ip6_dst);
1482 #else
1483 faith = 0;
1484 #endif
1485 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1486 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1487 if (!in6p && !vestige.valid) {
1488 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1489 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1490 th->th_dport, faith);
1491 }
1492 if (!in6p && !vestige.valid) {
1493 TCP_STATINC(TCP_STAT_NOPORT);
1494 if (tcp_log_refused &&
1495 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1496 tcp6_log_refused(ip6, th);
1497 }
1498 tcp_fields_to_host(th);
1499 goto dropwithreset_ratelim;
1500 }
1501 #if defined(IPSEC)
1502 if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1503 goto drop;
1504 }
1505 #endif
1506 break;
1507 }
1508 #endif
1509 }
1510
1511 tcp_fields_to_host(th);
1512
1513 /*
1514 * If the state is CLOSED (i.e., TCB does not exist) then
1515 * all data in the incoming segment is discarded.
1516 * If the TCB exists but is in CLOSED state, it is embryonic,
1517 * but should either do a listen or a connect soon.
1518 */
1519 tp = NULL;
1520 so = NULL;
1521 if (inp) {
1522 /* Check the minimum TTL for socket. */
1523 if (ip->ip_ttl < inp->inp_ip_minttl)
1524 goto drop;
1525
1526 tp = intotcpcb(inp);
1527 so = inp->inp_socket;
1528 }
1529 #ifdef INET6
1530 else if (in6p) {
1531 tp = in6totcpcb(in6p);
1532 so = in6p->in6p_socket;
1533 }
1534 #endif
1535 else if (vestige.valid) {
1536 /* We do not support the resurrection of vtw tcpcps. */
1537 tcp_vtw_input(th, &vestige, m, tlen);
1538 m = NULL;
1539 goto drop;
1540 }
1541
1542 if (tp == NULL)
1543 goto dropwithreset_ratelim;
1544 if (tp->t_state == TCPS_CLOSED)
1545 goto drop;
1546
1547 KASSERT(so->so_lock == softnet_lock);
1548 KASSERT(solocked(so));
1549
1550 /* Unscale the window into a 32-bit value. */
1551 if ((tiflags & TH_SYN) == 0)
1552 tiwin = th->th_win << tp->snd_scale;
1553 else
1554 tiwin = th->th_win;
1555
1556 #ifdef INET6
1557 /* save packet options if user wanted */
1558 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1559 if (in6p->in6p_options) {
1560 m_freem(in6p->in6p_options);
1561 in6p->in6p_options = NULL;
1562 }
1563 KASSERT(ip6 != NULL);
1564 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1565 }
1566 #endif
1567
1568 if (so->so_options & SO_DEBUG) {
1569 #ifdef TCP_DEBUG
1570 ostate = tp->t_state;
1571 #endif
1572
1573 tcp_saveti = NULL;
1574 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1575 goto nosave;
1576
1577 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1578 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1579 if (tcp_saveti == NULL)
1580 goto nosave;
1581 } else {
1582 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1583 if (tcp_saveti == NULL)
1584 goto nosave;
1585 MCLAIM(m, &tcp_mowner);
1586 tcp_saveti->m_len = iphlen;
1587 m_copydata(m, 0, iphlen,
1588 mtod(tcp_saveti, void *));
1589 }
1590
1591 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1592 m_freem(tcp_saveti);
1593 tcp_saveti = NULL;
1594 } else {
1595 tcp_saveti->m_len += sizeof(struct tcphdr);
1596 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1597 sizeof(struct tcphdr));
1598 }
1599 nosave:;
1600 }
1601
1602 if (so->so_options & SO_ACCEPTCONN) {
1603 union syn_cache_sa src;
1604 union syn_cache_sa dst;
1605
1606 KASSERT(tp->t_state == TCPS_LISTEN);
1607
1608 memset(&src, 0, sizeof(src));
1609 memset(&dst, 0, sizeof(dst));
1610 switch (af) {
1611 case AF_INET:
1612 src.sin.sin_len = sizeof(struct sockaddr_in);
1613 src.sin.sin_family = AF_INET;
1614 src.sin.sin_addr = ip->ip_src;
1615 src.sin.sin_port = th->th_sport;
1616
1617 dst.sin.sin_len = sizeof(struct sockaddr_in);
1618 dst.sin.sin_family = AF_INET;
1619 dst.sin.sin_addr = ip->ip_dst;
1620 dst.sin.sin_port = th->th_dport;
1621 break;
1622 #ifdef INET6
1623 case AF_INET6:
1624 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1625 src.sin6.sin6_family = AF_INET6;
1626 src.sin6.sin6_addr = ip6->ip6_src;
1627 src.sin6.sin6_port = th->th_sport;
1628
1629 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1630 dst.sin6.sin6_family = AF_INET6;
1631 dst.sin6.sin6_addr = ip6->ip6_dst;
1632 dst.sin6.sin6_port = th->th_dport;
1633 break;
1634 #endif
1635 }
1636
1637 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1638 if (tiflags & TH_RST) {
1639 syn_cache_reset(&src.sa, &dst.sa, th);
1640 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1641 (TH_ACK|TH_SYN)) {
1642 /*
1643 * Received a SYN,ACK. This should never
1644 * happen while we are in LISTEN. Send an RST.
1645 */
1646 goto badsyn;
1647 } else if (tiflags & TH_ACK) {
1648 so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1649 if (so == NULL) {
1650 /*
1651 * We don't have a SYN for this ACK;
1652 * send an RST.
1653 */
1654 goto badsyn;
1655 } else if (so == (struct socket *)(-1)) {
1656 /*
1657 * We were unable to create the
1658 * connection. If the 3-way handshake
1659 * was completed, and RST has been
1660 * sent to the peer. Since the mbuf
1661 * might be in use for the reply, do
1662 * not free it.
1663 */
1664 m = NULL;
1665 } else {
1666 /*
1667 * We have created a full-blown
1668 * connection.
1669 */
1670 tp = NULL;
1671 inp = NULL;
1672 #ifdef INET6
1673 in6p = NULL;
1674 #endif
1675 switch (so->so_proto->pr_domain->dom_family) {
1676 case AF_INET:
1677 inp = sotoinpcb(so);
1678 tp = intotcpcb(inp);
1679 break;
1680 #ifdef INET6
1681 case AF_INET6:
1682 in6p = sotoin6pcb(so);
1683 tp = in6totcpcb(in6p);
1684 break;
1685 #endif
1686 }
1687 if (tp == NULL)
1688 goto badsyn; /*XXX*/
1689 tiwin <<= tp->snd_scale;
1690 goto after_listen;
1691 }
1692 } else {
1693 /*
1694 * None of RST, SYN or ACK was set.
1695 * This is an invalid packet for a
1696 * TCB in LISTEN state. Send a RST.
1697 */
1698 goto badsyn;
1699 }
1700 } else {
1701 /*
1702 * Received a SYN.
1703 */
1704
1705 #ifdef INET6
1706 /*
1707 * If deprecated address is forbidden, we do
1708 * not accept SYN to deprecated interface
1709 * address to prevent any new inbound
1710 * connection from getting established.
1711 * When we do not accept SYN, we send a TCP
1712 * RST, with deprecated source address (instead
1713 * of dropping it). We compromise it as it is
1714 * much better for peer to send a RST, and
1715 * RST will be the final packet for the
1716 * exchange.
1717 *
1718 * If we do not forbid deprecated addresses, we
1719 * accept the SYN packet. RFC2462 does not
1720 * suggest dropping SYN in this case.
1721 * If we decipher RFC2462 5.5.4, it says like
1722 * this:
1723 * 1. use of deprecated addr with existing
1724 * communication is okay - "SHOULD continue
1725 * to be used"
1726 * 2. use of it with new communication:
1727 * (2a) "SHOULD NOT be used if alternate
1728 * address with sufficient scope is
1729 * available"
1730 * (2b) nothing mentioned otherwise.
1731 * Here we fall into (2b) case as we have no
1732 * choice in our source address selection - we
1733 * must obey the peer.
1734 *
1735 * The wording in RFC2462 is confusing, and
1736 * there are multiple description text for
1737 * deprecated address handling - worse, they
1738 * are not exactly the same. I believe 5.5.4
1739 * is the best one, so we follow 5.5.4.
1740 */
1741 if (af == AF_INET6 && !ip6_use_deprecated) {
1742 struct in6_ifaddr *ia6;
1743 int s;
1744 struct ifnet *rcvif = m_get_rcvif(m, &s);
1745 if (rcvif == NULL)
1746 goto dropwithreset; /* XXX */
1747 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1748 &ip6->ip6_dst)) &&
1749 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1750 tp = NULL;
1751 m_put_rcvif(rcvif, &s);
1752 goto dropwithreset;
1753 }
1754 m_put_rcvif(rcvif, &s);
1755 }
1756 #endif
1757
1758 /*
1759 * LISTEN socket received a SYN from itself? This
1760 * can't possibly be valid; drop the packet.
1761 */
1762 if (th->th_sport == th->th_dport) {
1763 int eq = 0;
1764
1765 switch (af) {
1766 case AF_INET:
1767 eq = in_hosteq(ip->ip_src, ip->ip_dst);
1768 break;
1769 #ifdef INET6
1770 case AF_INET6:
1771 eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1772 &ip6->ip6_dst);
1773 break;
1774 #endif
1775 }
1776 if (eq) {
1777 TCP_STATINC(TCP_STAT_BADSYN);
1778 goto drop;
1779 }
1780 }
1781
1782 /*
1783 * SYN looks ok; create compressed TCP
1784 * state for it.
1785 */
1786 if (so->so_qlen <= so->so_qlimit &&
1787 syn_cache_add(&src.sa, &dst.sa, th, toff,
1788 so, m, optp, optlen, &opti))
1789 m = NULL;
1790 }
1791
1792 goto drop;
1793 }
1794
1795 after_listen:
1796 /*
1797 * From here on, we're dealing with !LISTEN.
1798 */
1799 KASSERT(tp->t_state != TCPS_LISTEN);
1800
1801 /*
1802 * Segment received on connection.
1803 * Reset idle time and keep-alive timer.
1804 */
1805 tp->t_rcvtime = tcp_now;
1806 if (TCPS_HAVEESTABLISHED(tp->t_state))
1807 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1808
1809 /*
1810 * Process options.
1811 */
1812 #ifdef TCP_SIGNATURE
1813 if (optp || (tp->t_flags & TF_SIGNATURE))
1814 #else
1815 if (optp)
1816 #endif
1817 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1818 goto drop;
1819
1820 if (TCP_SACK_ENABLED(tp)) {
1821 tcp_del_sackholes(tp, th);
1822 }
1823
1824 if (TCP_ECN_ALLOWED(tp)) {
1825 if (tiflags & TH_CWR) {
1826 tp->t_flags &= ~TF_ECN_SND_ECE;
1827 }
1828 switch (iptos & IPTOS_ECN_MASK) {
1829 case IPTOS_ECN_CE:
1830 tp->t_flags |= TF_ECN_SND_ECE;
1831 TCP_STATINC(TCP_STAT_ECN_CE);
1832 break;
1833 case IPTOS_ECN_ECT0:
1834 TCP_STATINC(TCP_STAT_ECN_ECT);
1835 break;
1836 case IPTOS_ECN_ECT1:
1837 /* XXX: ignore for now -- rpaulo */
1838 break;
1839 }
1840 /*
1841 * Congestion experienced.
1842 * Ignore if we are already trying to recover.
1843 */
1844 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1845 tp->t_congctl->cong_exp(tp);
1846 }
1847
1848 if (opti.ts_present && opti.ts_ecr) {
1849 /*
1850 * Calculate the RTT from the returned time stamp and the
1851 * connection's time base. If the time stamp is later than
1852 * the current time, or is extremely old, fall back to non-1323
1853 * RTT calculation. Since ts_rtt is unsigned, we can test both
1854 * at the same time.
1855 *
1856 * Note that ts_rtt is in units of slow ticks (500
1857 * ms). Since most earthbound RTTs are < 500 ms,
1858 * observed values will have large quantization noise.
1859 * Our smoothed RTT is then the fraction of observed
1860 * samples that are 1 tick instead of 0 (times 500
1861 * ms).
1862 *
1863 * ts_rtt is increased by 1 to denote a valid sample,
1864 * with 0 indicating an invalid measurement. This
1865 * extra 1 must be removed when ts_rtt is used, or
1866 * else an an erroneous extra 500 ms will result.
1867 */
1868 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1869 if (ts_rtt > TCP_PAWS_IDLE)
1870 ts_rtt = 0;
1871 } else {
1872 ts_rtt = 0;
1873 }
1874
1875 /*
1876 * Fast path: check for the two common cases of a uni-directional
1877 * data transfer. If:
1878 * o We are in the ESTABLISHED state, and
1879 * o The packet has no control flags, and
1880 * o The packet is in-sequence, and
1881 * o The window didn't change, and
1882 * o We are not retransmitting
1883 * It's a candidate.
1884 *
1885 * If the length (tlen) is zero and the ack moved forward, we're
1886 * the sender side of the transfer. Just free the data acked and
1887 * wake any higher level process that was blocked waiting for
1888 * space.
1889 *
1890 * If the length is non-zero and the ack didn't move, we're the
1891 * receiver side. If we're getting packets in-order (the reassembly
1892 * queue is empty), add the data to the socket buffer and note
1893 * that we need a delayed ack.
1894 */
1895 if (tp->t_state == TCPS_ESTABLISHED &&
1896 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1897 == TH_ACK &&
1898 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1899 th->th_seq == tp->rcv_nxt &&
1900 tiwin && tiwin == tp->snd_wnd &&
1901 tp->snd_nxt == tp->snd_max) {
1902
1903 /*
1904 * If last ACK falls within this segment's sequence numbers,
1905 * record the timestamp.
1906 * NOTE that the test is modified according to the latest
1907 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1908 *
1909 * note that we already know
1910 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1911 */
1912 if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1913 tp->ts_recent_age = tcp_now;
1914 tp->ts_recent = opti.ts_val;
1915 }
1916
1917 if (tlen == 0) {
1918 /* Ack prediction. */
1919 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1920 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1921 tp->snd_cwnd >= tp->snd_wnd &&
1922 tp->t_partialacks < 0) {
1923 /*
1924 * this is a pure ack for outstanding data.
1925 */
1926 if (ts_rtt)
1927 tcp_xmit_timer(tp, ts_rtt - 1);
1928 else if (tp->t_rtttime &&
1929 SEQ_GT(th->th_ack, tp->t_rtseq))
1930 tcp_xmit_timer(tp,
1931 tcp_now - tp->t_rtttime);
1932 acked = th->th_ack - tp->snd_una;
1933 tcps = TCP_STAT_GETREF();
1934 tcps[TCP_STAT_PREDACK]++;
1935 tcps[TCP_STAT_RCVACKPACK]++;
1936 tcps[TCP_STAT_RCVACKBYTE] += acked;
1937 TCP_STAT_PUTREF();
1938 nd6_hint(tp);
1939
1940 if (acked > (tp->t_lastoff - tp->t_inoff))
1941 tp->t_lastm = NULL;
1942 sbdrop(&so->so_snd, acked);
1943 tp->t_lastoff -= acked;
1944
1945 icmp_check(tp, th, acked);
1946
1947 tp->snd_una = th->th_ack;
1948 tp->snd_fack = tp->snd_una;
1949 if (SEQ_LT(tp->snd_high, tp->snd_una))
1950 tp->snd_high = tp->snd_una;
1951 m_freem(m);
1952
1953 /*
1954 * If all outstanding data are acked, stop
1955 * retransmit timer, otherwise restart timer
1956 * using current (possibly backed-off) value.
1957 * If process is waiting for space,
1958 * wakeup/selnotify/signal. If data
1959 * are ready to send, let tcp_output
1960 * decide between more output or persist.
1961 */
1962 if (tp->snd_una == tp->snd_max)
1963 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1964 else if (TCP_TIMER_ISARMED(tp,
1965 TCPT_PERSIST) == 0)
1966 TCP_TIMER_ARM(tp, TCPT_REXMT,
1967 tp->t_rxtcur);
1968
1969 sowwakeup(so);
1970 if (so->so_snd.sb_cc) {
1971 KERNEL_LOCK(1, NULL);
1972 (void)tcp_output(tp);
1973 KERNEL_UNLOCK_ONE(NULL);
1974 }
1975 if (tcp_saveti)
1976 m_freem(tcp_saveti);
1977 return;
1978 }
1979 } else if (th->th_ack == tp->snd_una &&
1980 TAILQ_FIRST(&tp->segq) == NULL &&
1981 tlen <= sbspace(&so->so_rcv)) {
1982 int newsize = 0;
1983
1984 /*
1985 * this is a pure, in-sequence data packet
1986 * with nothing on the reassembly queue and
1987 * we have enough buffer space to take it.
1988 */
1989 tp->rcv_nxt += tlen;
1990 tcps = TCP_STAT_GETREF();
1991 tcps[TCP_STAT_PREDDAT]++;
1992 tcps[TCP_STAT_RCVPACK]++;
1993 tcps[TCP_STAT_RCVBYTE] += tlen;
1994 TCP_STAT_PUTREF();
1995 nd6_hint(tp);
1996
1997 /*
1998 * Automatic sizing enables the performance of large buffers
1999 * and most of the efficiency of small ones by only allocating
2000 * space when it is needed.
2001 *
2002 * On the receive side the socket buffer memory is only rarely
2003 * used to any significant extent. This allows us to be much
2004 * more aggressive in scaling the receive socket buffer. For
2005 * the case that the buffer space is actually used to a large
2006 * extent and we run out of kernel memory we can simply drop
2007 * the new segments; TCP on the sender will just retransmit it
2008 * later. Setting the buffer size too big may only consume too
2009 * much kernel memory if the application doesn't read() from
2010 * the socket or packet loss or reordering makes use of the
2011 * reassembly queue.
2012 *
2013 * The criteria to step up the receive buffer one notch are:
2014 * 1. the number of bytes received during the time it takes
2015 * one timestamp to be reflected back to us (the RTT);
2016 * 2. received bytes per RTT is within seven eighth of the
2017 * current socket buffer size;
2018 * 3. receive buffer size has not hit maximal automatic size;
2019 *
2020 * This algorithm does one step per RTT at most and only if
2021 * we receive a bulk stream w/o packet losses or reorderings.
2022 * Shrinking the buffer during idle times is not necessary as
2023 * it doesn't consume any memory when idle.
2024 *
2025 * TODO: Only step up if the application is actually serving
2026 * the buffer to better manage the socket buffer resources.
2027 */
2028 if (tcp_do_autorcvbuf &&
2029 opti.ts_ecr &&
2030 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2031 if (opti.ts_ecr > tp->rfbuf_ts &&
2032 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2033 if (tp->rfbuf_cnt >
2034 (so->so_rcv.sb_hiwat / 8 * 7) &&
2035 so->so_rcv.sb_hiwat <
2036 tcp_autorcvbuf_max) {
2037 newsize =
2038 min(so->so_rcv.sb_hiwat +
2039 tcp_autorcvbuf_inc,
2040 tcp_autorcvbuf_max);
2041 }
2042 /* Start over with next RTT. */
2043 tp->rfbuf_ts = 0;
2044 tp->rfbuf_cnt = 0;
2045 } else
2046 tp->rfbuf_cnt += tlen; /* add up */
2047 }
2048
2049 /*
2050 * Drop TCP, IP headers and TCP options then add data
2051 * to socket buffer.
2052 */
2053 if (so->so_state & SS_CANTRCVMORE) {
2054 m_freem(m);
2055 } else {
2056 /*
2057 * Set new socket buffer size.
2058 * Give up when limit is reached.
2059 */
2060 if (newsize)
2061 if (!sbreserve(&so->so_rcv,
2062 newsize, so))
2063 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2064 m_adj(m, toff + off);
2065 sbappendstream(&so->so_rcv, m);
2066 }
2067 sorwakeup(so);
2068 tcp_setup_ack(tp, th);
2069 if (tp->t_flags & TF_ACKNOW) {
2070 KERNEL_LOCK(1, NULL);
2071 (void)tcp_output(tp);
2072 KERNEL_UNLOCK_ONE(NULL);
2073 }
2074 if (tcp_saveti)
2075 m_freem(tcp_saveti);
2076 return;
2077 }
2078 }
2079
2080 /*
2081 * Compute mbuf offset to TCP data segment.
2082 */
2083 hdroptlen = toff + off;
2084
2085 /*
2086 * Calculate amount of space in receive window. Receive window is
2087 * amount of space in rcv queue, but not less than advertised
2088 * window.
2089 */
2090 {
2091 int win;
2092 win = sbspace(&so->so_rcv);
2093 if (win < 0)
2094 win = 0;
2095 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2096 }
2097
2098 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2099 tp->rfbuf_ts = 0;
2100 tp->rfbuf_cnt = 0;
2101
2102 switch (tp->t_state) {
2103 /*
2104 * If the state is SYN_SENT:
2105 * if seg contains an ACK, but not for our SYN, drop the input.
2106 * if seg contains a RST, then drop the connection.
2107 * if seg does not contain SYN, then drop it.
2108 * Otherwise this is an acceptable SYN segment
2109 * initialize tp->rcv_nxt and tp->irs
2110 * if seg contains ack then advance tp->snd_una
2111 * if seg contains a ECE and ECN support is enabled, the stream
2112 * is ECN capable.
2113 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2114 * arrange for segment to be acked (eventually)
2115 * continue processing rest of data/controls, beginning with URG
2116 */
2117 case TCPS_SYN_SENT:
2118 if ((tiflags & TH_ACK) &&
2119 (SEQ_LEQ(th->th_ack, tp->iss) ||
2120 SEQ_GT(th->th_ack, tp->snd_max)))
2121 goto dropwithreset;
2122 if (tiflags & TH_RST) {
2123 if (tiflags & TH_ACK)
2124 tp = tcp_drop(tp, ECONNREFUSED);
2125 goto drop;
2126 }
2127 if ((tiflags & TH_SYN) == 0)
2128 goto drop;
2129 if (tiflags & TH_ACK) {
2130 tp->snd_una = th->th_ack;
2131 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2132 tp->snd_nxt = tp->snd_una;
2133 if (SEQ_LT(tp->snd_high, tp->snd_una))
2134 tp->snd_high = tp->snd_una;
2135 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2136
2137 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2138 tp->t_flags |= TF_ECN_PERMIT;
2139 TCP_STATINC(TCP_STAT_ECN_SHS);
2140 }
2141 }
2142 tp->irs = th->th_seq;
2143 tcp_rcvseqinit(tp);
2144 tp->t_flags |= TF_ACKNOW;
2145 tcp_mss_from_peer(tp, opti.maxseg);
2146
2147 /*
2148 * Initialize the initial congestion window. If we
2149 * had to retransmit the SYN, we must initialize cwnd
2150 * to 1 segment (i.e. the Loss Window).
2151 */
2152 if (tp->t_flags & TF_SYN_REXMT)
2153 tp->snd_cwnd = tp->t_peermss;
2154 else {
2155 int ss = tcp_init_win;
2156 if (inp != NULL && in_localaddr(inp->inp_faddr))
2157 ss = tcp_init_win_local;
2158 #ifdef INET6
2159 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2160 ss = tcp_init_win_local;
2161 #endif
2162 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2163 }
2164
2165 tcp_rmx_rtt(tp);
2166 if (tiflags & TH_ACK) {
2167 TCP_STATINC(TCP_STAT_CONNECTS);
2168 /*
2169 * move tcp_established before soisconnected
2170 * because upcall handler can drive tcp_output
2171 * functionality.
2172 * XXX we might call soisconnected at the end of
2173 * all processing
2174 */
2175 tcp_established(tp);
2176 soisconnected(so);
2177 /* Do window scaling on this connection? */
2178 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2179 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2180 tp->snd_scale = tp->requested_s_scale;
2181 tp->rcv_scale = tp->request_r_scale;
2182 }
2183 TCP_REASS_LOCK(tp);
2184 (void)tcp_reass(tp, NULL, NULL, tlen);
2185 /*
2186 * if we didn't have to retransmit the SYN,
2187 * use its rtt as our initial srtt & rtt var.
2188 */
2189 if (tp->t_rtttime)
2190 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2191 } else {
2192 tp->t_state = TCPS_SYN_RECEIVED;
2193 }
2194
2195 /*
2196 * Advance th->th_seq to correspond to first data byte.
2197 * If data, trim to stay within window,
2198 * dropping FIN if necessary.
2199 */
2200 th->th_seq++;
2201 if (tlen > tp->rcv_wnd) {
2202 todrop = tlen - tp->rcv_wnd;
2203 m_adj(m, -todrop);
2204 tlen = tp->rcv_wnd;
2205 tiflags &= ~TH_FIN;
2206 tcps = TCP_STAT_GETREF();
2207 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2208 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2209 TCP_STAT_PUTREF();
2210 }
2211 tp->snd_wl1 = th->th_seq - 1;
2212 tp->rcv_up = th->th_seq;
2213 goto step6;
2214
2215 /*
2216 * If the state is SYN_RECEIVED:
2217 * If seg contains an ACK, but not for our SYN, drop the input
2218 * and generate an RST. See page 36, rfc793
2219 */
2220 case TCPS_SYN_RECEIVED:
2221 if ((tiflags & TH_ACK) &&
2222 (SEQ_LEQ(th->th_ack, tp->iss) ||
2223 SEQ_GT(th->th_ack, tp->snd_max)))
2224 goto dropwithreset;
2225 break;
2226 }
2227
2228 /*
2229 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2230 */
2231 KASSERT(tp->t_state != TCPS_LISTEN &&
2232 tp->t_state != TCPS_SYN_SENT);
2233
2234 /*
2235 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2236 * it's less than ts_recent, drop it.
2237 */
2238 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2239 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2240 /* Check to see if ts_recent is over 24 days old. */
2241 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2242 /*
2243 * Invalidate ts_recent. If this segment updates
2244 * ts_recent, the age will be reset later and ts_recent
2245 * will get a valid value. If it does not, setting
2246 * ts_recent to zero will at least satisfy the
2247 * requirement that zero be placed in the timestamp
2248 * echo reply when ts_recent isn't valid. The
2249 * age isn't reset until we get a valid ts_recent
2250 * because we don't want out-of-order segments to be
2251 * dropped when ts_recent is old.
2252 */
2253 tp->ts_recent = 0;
2254 } else {
2255 tcps = TCP_STAT_GETREF();
2256 tcps[TCP_STAT_RCVDUPPACK]++;
2257 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2258 tcps[TCP_STAT_PAWSDROP]++;
2259 TCP_STAT_PUTREF();
2260 tcp_new_dsack(tp, th->th_seq, tlen);
2261 goto dropafterack;
2262 }
2263 }
2264
2265 /*
2266 * Check that at least some bytes of the segment are within the
2267 * receive window. If segment begins before rcv_nxt, drop leading
2268 * data (and SYN); if nothing left, just ack.
2269 */
2270 todrop = tp->rcv_nxt - th->th_seq;
2271 dupseg = false;
2272 if (todrop > 0) {
2273 if (tiflags & TH_SYN) {
2274 tiflags &= ~TH_SYN;
2275 th->th_seq++;
2276 tcp_urp_drop(th, 1, &tiflags);
2277 todrop--;
2278 }
2279 if (todrop > tlen ||
2280 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2281 /*
2282 * Any valid FIN or RST must be to the left of the
2283 * window. At this point the FIN or RST must be a
2284 * duplicate or out of sequence; drop it.
2285 */
2286 if (tiflags & TH_RST)
2287 goto drop;
2288 tiflags &= ~(TH_FIN|TH_RST);
2289
2290 /*
2291 * Send an ACK to resynchronize and drop any data.
2292 * But keep on processing for RST or ACK.
2293 */
2294 tp->t_flags |= TF_ACKNOW;
2295 todrop = tlen;
2296 dupseg = true;
2297 tcps = TCP_STAT_GETREF();
2298 tcps[TCP_STAT_RCVDUPPACK]++;
2299 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2300 TCP_STAT_PUTREF();
2301 } else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2302 /*
2303 * Test for reset before adjusting the sequence
2304 * number for overlapping data.
2305 */
2306 goto dropafterack_ratelim;
2307 } else {
2308 tcps = TCP_STAT_GETREF();
2309 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2310 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2311 TCP_STAT_PUTREF();
2312 }
2313 tcp_new_dsack(tp, th->th_seq, todrop);
2314 hdroptlen += todrop; /* drop from head afterwards (m_adj) */
2315 th->th_seq += todrop;
2316 tlen -= todrop;
2317 tcp_urp_drop(th, todrop, &tiflags);
2318 }
2319
2320 /*
2321 * If new data is received on a connection after the user processes
2322 * are gone, then RST the other end.
2323 */
2324 if ((so->so_state & SS_NOFDREF) &&
2325 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2326 tp = tcp_close(tp);
2327 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2328 goto dropwithreset;
2329 }
2330
2331 /*
2332 * If the segment ends after the window, drop trailing data (and
2333 * PUSH and FIN); if nothing left, just ACK.
2334 */
2335 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2336 if (todrop > 0) {
2337 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2338 if (todrop >= tlen) {
2339 /*
2340 * The segment actually starts after the window.
2341 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2342 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2343 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2344 */
2345 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2346
2347 /*
2348 * If a new connection request is received while in
2349 * TIME_WAIT, drop the old connection and start over
2350 * if the sequence numbers are above the previous
2351 * ones.
2352 *
2353 * NOTE: We need to put the header fields back into
2354 * network order.
2355 */
2356 if ((tiflags & TH_SYN) &&
2357 tp->t_state == TCPS_TIME_WAIT &&
2358 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2359 tp = tcp_close(tp);
2360 tcp_fields_to_net(th);
2361 m_freem(tcp_saveti);
2362 tcp_saveti = NULL;
2363 goto findpcb;
2364 }
2365
2366 /*
2367 * If window is closed can only take segments at
2368 * window edge, and have to drop data and PUSH from
2369 * incoming segments. Continue processing, but
2370 * remember to ack. Otherwise, drop segment
2371 * and (if not RST) ack.
2372 */
2373 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2374 KASSERT(todrop == tlen);
2375 tp->t_flags |= TF_ACKNOW;
2376 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2377 } else {
2378 goto dropafterack;
2379 }
2380 } else {
2381 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2382 }
2383 m_adj(m, -todrop);
2384 tlen -= todrop;
2385 tiflags &= ~(TH_PUSH|TH_FIN);
2386 }
2387
2388 /*
2389 * If last ACK falls within this segment's sequence numbers,
2390 * record the timestamp.
2391 * NOTE:
2392 * 1) That the test incorporates suggestions from the latest
2393 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2394 * 2) That updating only on newer timestamps interferes with
2395 * our earlier PAWS tests, so this check should be solely
2396 * predicated on the sequence space of this segment.
2397 * 3) That we modify the segment boundary check to be
2398 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2399 * instead of RFC1323's
2400 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2401 * This modified check allows us to overcome RFC1323's
2402 * limitations as described in Stevens TCP/IP Illustrated
2403 * Vol. 2 p.869. In such cases, we can still calculate the
2404 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2405 */
2406 if (opti.ts_present &&
2407 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2408 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2409 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2410 tp->ts_recent_age = tcp_now;
2411 tp->ts_recent = opti.ts_val;
2412 }
2413
2414 /*
2415 * If the RST bit is set examine the state:
2416 * RECEIVED state:
2417 * If passive open, return to LISTEN state.
2418 * If active open, inform user that connection was refused.
2419 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2420 * Inform user that connection was reset, and close tcb.
2421 * CLOSING, LAST_ACK, TIME_WAIT states:
2422 * Close the tcb.
2423 */
2424 if (tiflags & TH_RST) {
2425 if (th->th_seq != tp->rcv_nxt)
2426 goto dropafterack_ratelim;
2427
2428 switch (tp->t_state) {
2429 case TCPS_SYN_RECEIVED:
2430 so->so_error = ECONNREFUSED;
2431 goto close;
2432
2433 case TCPS_ESTABLISHED:
2434 case TCPS_FIN_WAIT_1:
2435 case TCPS_FIN_WAIT_2:
2436 case TCPS_CLOSE_WAIT:
2437 so->so_error = ECONNRESET;
2438 close:
2439 tp->t_state = TCPS_CLOSED;
2440 TCP_STATINC(TCP_STAT_DROPS);
2441 tp = tcp_close(tp);
2442 goto drop;
2443
2444 case TCPS_CLOSING:
2445 case TCPS_LAST_ACK:
2446 case TCPS_TIME_WAIT:
2447 tp = tcp_close(tp);
2448 goto drop;
2449 }
2450 }
2451
2452 /*
2453 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2454 * we must be in a synchronized state. RFC791 states (under RST
2455 * generation) that any unacceptable segment (an out-of-order SYN
2456 * qualifies) received in a synchronized state must elicit only an
2457 * empty acknowledgment segment ... and the connection remains in
2458 * the same state.
2459 */
2460 if (tiflags & TH_SYN) {
2461 if (tp->rcv_nxt == th->th_seq) {
2462 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2463 TH_ACK);
2464 if (tcp_saveti)
2465 m_freem(tcp_saveti);
2466 return;
2467 }
2468
2469 goto dropafterack_ratelim;
2470 }
2471
2472 /*
2473 * If the ACK bit is off we drop the segment and return.
2474 */
2475 if ((tiflags & TH_ACK) == 0) {
2476 if (tp->t_flags & TF_ACKNOW)
2477 goto dropafterack;
2478 goto drop;
2479 }
2480
2481 /*
2482 * From here on, we're doing ACK processing.
2483 */
2484
2485 switch (tp->t_state) {
2486 /*
2487 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2488 * ESTABLISHED state and continue processing, otherwise
2489 * send an RST.
2490 */
2491 case TCPS_SYN_RECEIVED:
2492 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2493 SEQ_GT(th->th_ack, tp->snd_max))
2494 goto dropwithreset;
2495 TCP_STATINC(TCP_STAT_CONNECTS);
2496 soisconnected(so);
2497 tcp_established(tp);
2498 /* Do window scaling? */
2499 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2500 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2501 tp->snd_scale = tp->requested_s_scale;
2502 tp->rcv_scale = tp->request_r_scale;
2503 }
2504 TCP_REASS_LOCK(tp);
2505 (void)tcp_reass(tp, NULL, NULL, tlen);
2506 tp->snd_wl1 = th->th_seq - 1;
2507 /* FALLTHROUGH */
2508
2509 /*
2510 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2511 * ACKs. If the ack is in the range
2512 * tp->snd_una < th->th_ack <= tp->snd_max
2513 * then advance tp->snd_una to th->th_ack and drop
2514 * data from the retransmission queue. If this ACK reflects
2515 * more up to date window information we update our window information.
2516 */
2517 case TCPS_ESTABLISHED:
2518 case TCPS_FIN_WAIT_1:
2519 case TCPS_FIN_WAIT_2:
2520 case TCPS_CLOSE_WAIT:
2521 case TCPS_CLOSING:
2522 case TCPS_LAST_ACK:
2523 case TCPS_TIME_WAIT:
2524 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2525 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2526 TCP_STATINC(TCP_STAT_RCVDUPACK);
2527 /*
2528 * If we have outstanding data (other than
2529 * a window probe), this is a completely
2530 * duplicate ack (ie, window info didn't
2531 * change), the ack is the biggest we've
2532 * seen and we've seen exactly our rexmt
2533 * threshhold of them, assume a packet
2534 * has been dropped and retransmit it.
2535 * Kludge snd_nxt & the congestion
2536 * window so we send only this one
2537 * packet.
2538 */
2539 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2540 th->th_ack != tp->snd_una)
2541 tp->t_dupacks = 0;
2542 else if (tp->t_partialacks < 0 &&
2543 (++tp->t_dupacks == tcprexmtthresh ||
2544 TCP_FACK_FASTRECOV(tp))) {
2545 /*
2546 * Do the fast retransmit, and adjust
2547 * congestion control paramenters.
2548 */
2549 if (tp->t_congctl->fast_retransmit(tp, th)) {
2550 /* False fast retransmit */
2551 break;
2552 }
2553 goto drop;
2554 } else if (tp->t_dupacks > tcprexmtthresh) {
2555 tp->snd_cwnd += tp->t_segsz;
2556 KERNEL_LOCK(1, NULL);
2557 (void)tcp_output(tp);
2558 KERNEL_UNLOCK_ONE(NULL);
2559 goto drop;
2560 }
2561 } else {
2562 /*
2563 * If the ack appears to be very old, only
2564 * allow data that is in-sequence. This
2565 * makes it somewhat more difficult to insert
2566 * forged data by guessing sequence numbers.
2567 * Sent an ack to try to update the send
2568 * sequence number on the other side.
2569 */
2570 if (tlen && th->th_seq != tp->rcv_nxt &&
2571 SEQ_LT(th->th_ack,
2572 tp->snd_una - tp->max_sndwnd))
2573 goto dropafterack;
2574 }
2575 break;
2576 }
2577 /*
2578 * If the congestion window was inflated to account
2579 * for the other side's cached packets, retract it.
2580 */
2581 tp->t_congctl->fast_retransmit_newack(tp, th);
2582
2583 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2584 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2585 goto dropafterack;
2586 }
2587 acked = th->th_ack - tp->snd_una;
2588 tcps = TCP_STAT_GETREF();
2589 tcps[TCP_STAT_RCVACKPACK]++;
2590 tcps[TCP_STAT_RCVACKBYTE] += acked;
2591 TCP_STAT_PUTREF();
2592
2593 /*
2594 * If we have a timestamp reply, update smoothed
2595 * round trip time. If no timestamp is present but
2596 * transmit timer is running and timed sequence
2597 * number was acked, update smoothed round trip time.
2598 * Since we now have an rtt measurement, cancel the
2599 * timer backoff (cf., Phil Karn's retransmit alg.).
2600 * Recompute the initial retransmit timer.
2601 */
2602 if (ts_rtt)
2603 tcp_xmit_timer(tp, ts_rtt - 1);
2604 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2605 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2606
2607 /*
2608 * If all outstanding data is acked, stop retransmit
2609 * timer and remember to restart (more output or persist).
2610 * If there is more data to be acked, restart retransmit
2611 * timer, using current (possibly backed-off) value.
2612 */
2613 if (th->th_ack == tp->snd_max) {
2614 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2615 needoutput = 1;
2616 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2617 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2618
2619 /*
2620 * New data has been acked, adjust the congestion window.
2621 */
2622 tp->t_congctl->newack(tp, th);
2623
2624 nd6_hint(tp);
2625 if (acked > so->so_snd.sb_cc) {
2626 tp->snd_wnd -= so->so_snd.sb_cc;
2627 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2628 ourfinisacked = 1;
2629 } else {
2630 if (acked > (tp->t_lastoff - tp->t_inoff))
2631 tp->t_lastm = NULL;
2632 sbdrop(&so->so_snd, acked);
2633 tp->t_lastoff -= acked;
2634 if (tp->snd_wnd > acked)
2635 tp->snd_wnd -= acked;
2636 else
2637 tp->snd_wnd = 0;
2638 ourfinisacked = 0;
2639 }
2640 sowwakeup(so);
2641
2642 icmp_check(tp, th, acked);
2643
2644 tp->snd_una = th->th_ack;
2645 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2646 tp->snd_fack = tp->snd_una;
2647 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2648 tp->snd_nxt = tp->snd_una;
2649 if (SEQ_LT(tp->snd_high, tp->snd_una))
2650 tp->snd_high = tp->snd_una;
2651
2652 switch (tp->t_state) {
2653
2654 /*
2655 * In FIN_WAIT_1 STATE in addition to the processing
2656 * for the ESTABLISHED state if our FIN is now acknowledged
2657 * then enter FIN_WAIT_2.
2658 */
2659 case TCPS_FIN_WAIT_1:
2660 if (ourfinisacked) {
2661 /*
2662 * If we can't receive any more
2663 * data, then closing user can proceed.
2664 * Starting the timer is contrary to the
2665 * specification, but if we don't get a FIN
2666 * we'll hang forever.
2667 */
2668 if (so->so_state & SS_CANTRCVMORE) {
2669 soisdisconnected(so);
2670 if (tp->t_maxidle > 0)
2671 TCP_TIMER_ARM(tp, TCPT_2MSL,
2672 tp->t_maxidle);
2673 }
2674 tp->t_state = TCPS_FIN_WAIT_2;
2675 }
2676 break;
2677
2678 /*
2679 * In CLOSING STATE in addition to the processing for
2680 * the ESTABLISHED state if the ACK acknowledges our FIN
2681 * then enter the TIME-WAIT state, otherwise ignore
2682 * the segment.
2683 */
2684 case TCPS_CLOSING:
2685 if (ourfinisacked) {
2686 tp->t_state = TCPS_TIME_WAIT;
2687 tcp_canceltimers(tp);
2688 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2689 soisdisconnected(so);
2690 }
2691 break;
2692
2693 /*
2694 * In LAST_ACK, we may still be waiting for data to drain
2695 * and/or to be acked, as well as for the ack of our FIN.
2696 * If our FIN is now acknowledged, delete the TCB,
2697 * enter the closed state and return.
2698 */
2699 case TCPS_LAST_ACK:
2700 if (ourfinisacked) {
2701 tp = tcp_close(tp);
2702 goto drop;
2703 }
2704 break;
2705
2706 /*
2707 * In TIME_WAIT state the only thing that should arrive
2708 * is a retransmission of the remote FIN. Acknowledge
2709 * it and restart the finack timer.
2710 */
2711 case TCPS_TIME_WAIT:
2712 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2713 goto dropafterack;
2714 }
2715 }
2716
2717 step6:
2718 /*
2719 * Update window information.
2720 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2721 */
2722 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2723 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2724 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2725 /* keep track of pure window updates */
2726 if (tlen == 0 &&
2727 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2728 TCP_STATINC(TCP_STAT_RCVWINUPD);
2729 tp->snd_wnd = tiwin;
2730 tp->snd_wl1 = th->th_seq;
2731 tp->snd_wl2 = th->th_ack;
2732 if (tp->snd_wnd > tp->max_sndwnd)
2733 tp->max_sndwnd = tp->snd_wnd;
2734 needoutput = 1;
2735 }
2736
2737 /*
2738 * Process segments with URG.
2739 */
2740 if ((tiflags & TH_URG) && th->th_urp &&
2741 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2742 /*
2743 * This is a kludge, but if we receive and accept
2744 * random urgent pointers, we'll crash in
2745 * soreceive. It's hard to imagine someone
2746 * actually wanting to send this much urgent data.
2747 */
2748 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2749 th->th_urp = 0; /* XXX */
2750 tiflags &= ~TH_URG; /* XXX */
2751 goto dodata; /* XXX */
2752 }
2753
2754 /*
2755 * If this segment advances the known urgent pointer,
2756 * then mark the data stream. This should not happen
2757 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2758 * a FIN has been received from the remote side.
2759 * In these states we ignore the URG.
2760 *
2761 * According to RFC961 (Assigned Protocols),
2762 * the urgent pointer points to the last octet
2763 * of urgent data. We continue, however,
2764 * to consider it to indicate the first octet
2765 * of data past the urgent section as the original
2766 * spec states (in one of two places).
2767 */
2768 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2769 tp->rcv_up = th->th_seq + th->th_urp;
2770 so->so_oobmark = so->so_rcv.sb_cc +
2771 (tp->rcv_up - tp->rcv_nxt) - 1;
2772 if (so->so_oobmark == 0)
2773 so->so_state |= SS_RCVATMARK;
2774 sohasoutofband(so);
2775 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2776 }
2777
2778 /*
2779 * Remove out of band data so doesn't get presented to user.
2780 * This can happen independent of advancing the URG pointer,
2781 * but if two URG's are pending at once, some out-of-band
2782 * data may creep in... ick.
2783 */
2784 if (th->th_urp <= (u_int16_t)tlen &&
2785 (so->so_options & SO_OOBINLINE) == 0)
2786 tcp_pulloutofband(so, th, m, hdroptlen);
2787 } else {
2788 /*
2789 * If no out of band data is expected,
2790 * pull receive urgent pointer along
2791 * with the receive window.
2792 */
2793 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2794 tp->rcv_up = tp->rcv_nxt;
2795 }
2796 dodata:
2797
2798 /*
2799 * Process the segment text, merging it into the TCP sequencing queue,
2800 * and arranging for acknowledgement of receipt if necessary.
2801 * This process logically involves adjusting tp->rcv_wnd as data
2802 * is presented to the user (this happens in tcp_usrreq.c,
2803 * tcp_rcvd()). If a FIN has already been received on this
2804 * connection then we just ignore the text.
2805 */
2806 if ((tlen || (tiflags & TH_FIN)) &&
2807 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2808 /*
2809 * Handle the common case:
2810 * o Segment is the next to be received, and
2811 * o The queue is empty, and
2812 * o The connection is established
2813 * In this case, we avoid calling tcp_reass.
2814 *
2815 * tcp_setup_ack: set DELACK for segments received in order,
2816 * but ack immediately when segments are out of order (so that
2817 * fast retransmit can work).
2818 */
2819 TCP_REASS_LOCK(tp);
2820 if (th->th_seq == tp->rcv_nxt &&
2821 TAILQ_FIRST(&tp->segq) == NULL &&
2822 tp->t_state == TCPS_ESTABLISHED) {
2823 tcp_setup_ack(tp, th);
2824 tp->rcv_nxt += tlen;
2825 tiflags = th->th_flags & TH_FIN;
2826 tcps = TCP_STAT_GETREF();
2827 tcps[TCP_STAT_RCVPACK]++;
2828 tcps[TCP_STAT_RCVBYTE] += tlen;
2829 TCP_STAT_PUTREF();
2830 nd6_hint(tp);
2831 if (so->so_state & SS_CANTRCVMORE) {
2832 m_freem(m);
2833 } else {
2834 m_adj(m, hdroptlen);
2835 sbappendstream(&(so)->so_rcv, m);
2836 }
2837 TCP_REASS_UNLOCK(tp);
2838 sorwakeup(so);
2839 } else {
2840 m_adj(m, hdroptlen);
2841 tiflags = tcp_reass(tp, th, m, tlen);
2842 tp->t_flags |= TF_ACKNOW;
2843 }
2844
2845 /*
2846 * Note the amount of data that peer has sent into
2847 * our window, in order to estimate the sender's
2848 * buffer size.
2849 */
2850 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2851 } else {
2852 m_freem(m);
2853 m = NULL;
2854 tiflags &= ~TH_FIN;
2855 }
2856
2857 /*
2858 * If FIN is received ACK the FIN and let the user know
2859 * that the connection is closing. Ignore a FIN received before
2860 * the connection is fully established.
2861 */
2862 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2863 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2864 socantrcvmore(so);
2865 tp->t_flags |= TF_ACKNOW;
2866 tp->rcv_nxt++;
2867 }
2868 switch (tp->t_state) {
2869
2870 /*
2871 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2872 */
2873 case TCPS_ESTABLISHED:
2874 tp->t_state = TCPS_CLOSE_WAIT;
2875 break;
2876
2877 /*
2878 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2879 * enter the CLOSING state.
2880 */
2881 case TCPS_FIN_WAIT_1:
2882 tp->t_state = TCPS_CLOSING;
2883 break;
2884
2885 /*
2886 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2887 * starting the time-wait timer, turning off the other
2888 * standard timers.
2889 */
2890 case TCPS_FIN_WAIT_2:
2891 tp->t_state = TCPS_TIME_WAIT;
2892 tcp_canceltimers(tp);
2893 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2894 soisdisconnected(so);
2895 break;
2896
2897 /*
2898 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2899 */
2900 case TCPS_TIME_WAIT:
2901 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2902 break;
2903 }
2904 }
2905 #ifdef TCP_DEBUG
2906 if (so->so_options & SO_DEBUG)
2907 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2908 #endif
2909
2910 /*
2911 * Return any desired output.
2912 */
2913 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2914 KERNEL_LOCK(1, NULL);
2915 (void)tcp_output(tp);
2916 KERNEL_UNLOCK_ONE(NULL);
2917 }
2918 if (tcp_saveti)
2919 m_freem(tcp_saveti);
2920
2921 if (tp->t_state == TCPS_TIME_WAIT
2922 && (so->so_state & SS_NOFDREF)
2923 && (tp->t_inpcb || af != AF_INET)
2924 && (tp->t_in6pcb || af != AF_INET6)
2925 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2926 && TAILQ_EMPTY(&tp->segq)
2927 && vtw_add(af, tp)) {
2928 ;
2929 }
2930 return;
2931
2932 badsyn:
2933 /*
2934 * Received a bad SYN. Increment counters and dropwithreset.
2935 */
2936 TCP_STATINC(TCP_STAT_BADSYN);
2937 tp = NULL;
2938 goto dropwithreset;
2939
2940 dropafterack:
2941 /*
2942 * Generate an ACK dropping incoming segment if it occupies
2943 * sequence space, where the ACK reflects our state.
2944 */
2945 if (tiflags & TH_RST)
2946 goto drop;
2947 goto dropafterack2;
2948
2949 dropafterack_ratelim:
2950 /*
2951 * We may want to rate-limit ACKs against SYN/RST attack.
2952 */
2953 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2954 tcp_ackdrop_ppslim) == 0) {
2955 /* XXX stat */
2956 goto drop;
2957 }
2958
2959 dropafterack2:
2960 m_freem(m);
2961 tp->t_flags |= TF_ACKNOW;
2962 KERNEL_LOCK(1, NULL);
2963 (void)tcp_output(tp);
2964 KERNEL_UNLOCK_ONE(NULL);
2965 if (tcp_saveti)
2966 m_freem(tcp_saveti);
2967 return;
2968
2969 dropwithreset_ratelim:
2970 /*
2971 * We may want to rate-limit RSTs in certain situations,
2972 * particularly if we are sending an RST in response to
2973 * an attempt to connect to or otherwise communicate with
2974 * a port for which we have no socket.
2975 */
2976 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2977 tcp_rst_ppslim) == 0) {
2978 /* XXX stat */
2979 goto drop;
2980 }
2981
2982 dropwithreset:
2983 /*
2984 * Generate a RST, dropping incoming segment.
2985 * Make ACK acceptable to originator of segment.
2986 */
2987 if (tiflags & TH_RST)
2988 goto drop;
2989 if (tiflags & TH_ACK) {
2990 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2991 } else {
2992 if (tiflags & TH_SYN)
2993 tlen++;
2994 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2995 TH_RST|TH_ACK);
2996 }
2997 if (tcp_saveti)
2998 m_freem(tcp_saveti);
2999 return;
3000
3001 badcsum:
3002 drop:
3003 /*
3004 * Drop space held by incoming segment and return.
3005 */
3006 if (tp) {
3007 if (tp->t_inpcb)
3008 so = tp->t_inpcb->inp_socket;
3009 #ifdef INET6
3010 else if (tp->t_in6pcb)
3011 so = tp->t_in6pcb->in6p_socket;
3012 #endif
3013 else
3014 so = NULL;
3015 #ifdef TCP_DEBUG
3016 if (so && (so->so_options & SO_DEBUG) != 0)
3017 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3018 #endif
3019 }
3020 if (tcp_saveti)
3021 m_freem(tcp_saveti);
3022 m_freem(m);
3023 return;
3024 }
3025
3026 #ifdef TCP_SIGNATURE
3027 int
3028 tcp_signature_apply(void *fstate, void *data, u_int len)
3029 {
3030
3031 MD5Update(fstate, (u_char *)data, len);
3032 return (0);
3033 }
3034
3035 struct secasvar *
3036 tcp_signature_getsav(struct mbuf *m)
3037 {
3038 struct ip *ip;
3039 struct ip6_hdr *ip6;
3040
3041 ip = mtod(m, struct ip *);
3042 switch (ip->ip_v) {
3043 case 4:
3044 ip = mtod(m, struct ip *);
3045 ip6 = NULL;
3046 break;
3047 case 6:
3048 ip = NULL;
3049 ip6 = mtod(m, struct ip6_hdr *);
3050 break;
3051 default:
3052 return (NULL);
3053 }
3054
3055 #ifdef IPSEC
3056 union sockaddr_union dst;
3057
3058 /* Extract the destination from the IP header in the mbuf. */
3059 memset(&dst, 0, sizeof(union sockaddr_union));
3060 if (ip != NULL) {
3061 dst.sa.sa_len = sizeof(struct sockaddr_in);
3062 dst.sa.sa_family = AF_INET;
3063 dst.sin.sin_addr = ip->ip_dst;
3064 } else {
3065 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3066 dst.sa.sa_family = AF_INET6;
3067 dst.sin6.sin6_addr = ip6->ip6_dst;
3068 }
3069
3070 /*
3071 * Look up an SADB entry which matches the address of the peer.
3072 */
3073 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3074 #else
3075 return NULL;
3076 #endif
3077 }
3078
3079 int
3080 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3081 struct secasvar *sav, char *sig)
3082 {
3083 MD5_CTX ctx;
3084 struct ip *ip;
3085 struct ipovly *ipovly;
3086 #ifdef INET6
3087 struct ip6_hdr *ip6;
3088 struct ip6_hdr_pseudo ip6pseudo;
3089 #endif
3090 struct ippseudo ippseudo;
3091 struct tcphdr th0;
3092 int l, tcphdrlen;
3093
3094 if (sav == NULL)
3095 return (-1);
3096
3097 tcphdrlen = th->th_off * 4;
3098
3099 switch (mtod(m, struct ip *)->ip_v) {
3100 case 4:
3101 MD5Init(&ctx);
3102 ip = mtod(m, struct ip *);
3103 memset(&ippseudo, 0, sizeof(ippseudo));
3104 ipovly = (struct ipovly *)ip;
3105 ippseudo.ippseudo_src = ipovly->ih_src;
3106 ippseudo.ippseudo_dst = ipovly->ih_dst;
3107 ippseudo.ippseudo_pad = 0;
3108 ippseudo.ippseudo_p = IPPROTO_TCP;
3109 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3110 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3111 break;
3112 #if INET6
3113 case 6:
3114 MD5Init(&ctx);
3115 ip6 = mtod(m, struct ip6_hdr *);
3116 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3117 ip6pseudo.ip6ph_src = ip6->ip6_src;
3118 in6_clearscope(&ip6pseudo.ip6ph_src);
3119 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3120 in6_clearscope(&ip6pseudo.ip6ph_dst);
3121 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3122 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3123 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3124 break;
3125 #endif
3126 default:
3127 return (-1);
3128 }
3129
3130 th0 = *th;
3131 th0.th_sum = 0;
3132 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3133
3134 l = m->m_pkthdr.len - thoff - tcphdrlen;
3135 if (l > 0)
3136 m_apply(m, thoff + tcphdrlen,
3137 m->m_pkthdr.len - thoff - tcphdrlen,
3138 tcp_signature_apply, &ctx);
3139
3140 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3141 MD5Final(sig, &ctx);
3142
3143 return (0);
3144 }
3145 #endif
3146
3147 /*
3148 * Parse and process tcp options.
3149 *
3150 * Returns -1 if this segment should be dropped. (eg. wrong signature)
3151 * Otherwise returns 0.
3152 */
3153 static int
3154 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3155 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3156 {
3157 u_int16_t mss;
3158 int opt, optlen = 0;
3159 #ifdef TCP_SIGNATURE
3160 void *sigp = NULL;
3161 char sigbuf[TCP_SIGLEN];
3162 struct secasvar *sav = NULL;
3163 #endif
3164
3165 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3166 opt = cp[0];
3167 if (opt == TCPOPT_EOL)
3168 break;
3169 if (opt == TCPOPT_NOP)
3170 optlen = 1;
3171 else {
3172 if (cnt < 2)
3173 break;
3174 optlen = cp[1];
3175 if (optlen < 2 || optlen > cnt)
3176 break;
3177 }
3178 switch (opt) {
3179
3180 default:
3181 continue;
3182
3183 case TCPOPT_MAXSEG:
3184 if (optlen != TCPOLEN_MAXSEG)
3185 continue;
3186 if (!(th->th_flags & TH_SYN))
3187 continue;
3188 if (TCPS_HAVERCVDSYN(tp->t_state))
3189 continue;
3190 memcpy(&mss, cp + 2, sizeof(mss));
3191 oi->maxseg = ntohs(mss);
3192 break;
3193
3194 case TCPOPT_WINDOW:
3195 if (optlen != TCPOLEN_WINDOW)
3196 continue;
3197 if (!(th->th_flags & TH_SYN))
3198 continue;
3199 if (TCPS_HAVERCVDSYN(tp->t_state))
3200 continue;
3201 tp->t_flags |= TF_RCVD_SCALE;
3202 tp->requested_s_scale = cp[2];
3203 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3204 char buf[INET6_ADDRSTRLEN];
3205 struct ip *ip = mtod(m, struct ip *);
3206 #ifdef INET6
3207 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3208 #endif
3209 if (ip)
3210 in_print(buf, sizeof(buf),
3211 &ip->ip_src);
3212 #ifdef INET6
3213 else if (ip6)
3214 in6_print(buf, sizeof(buf),
3215 &ip6->ip6_src);
3216 #endif
3217 else
3218 strlcpy(buf, "(unknown)", sizeof(buf));
3219 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3220 "assuming %d\n",
3221 tp->requested_s_scale, buf,
3222 TCP_MAX_WINSHIFT);
3223 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3224 }
3225 break;
3226
3227 case TCPOPT_TIMESTAMP:
3228 if (optlen != TCPOLEN_TIMESTAMP)
3229 continue;
3230 oi->ts_present = 1;
3231 memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3232 NTOHL(oi->ts_val);
3233 memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3234 NTOHL(oi->ts_ecr);
3235
3236 if (!(th->th_flags & TH_SYN))
3237 continue;
3238 if (TCPS_HAVERCVDSYN(tp->t_state))
3239 continue;
3240 /*
3241 * A timestamp received in a SYN makes
3242 * it ok to send timestamp requests and replies.
3243 */
3244 tp->t_flags |= TF_RCVD_TSTMP;
3245 tp->ts_recent = oi->ts_val;
3246 tp->ts_recent_age = tcp_now;
3247 break;
3248
3249 case TCPOPT_SACK_PERMITTED:
3250 if (optlen != TCPOLEN_SACK_PERMITTED)
3251 continue;
3252 if (!(th->th_flags & TH_SYN))
3253 continue;
3254 if (TCPS_HAVERCVDSYN(tp->t_state))
3255 continue;
3256 if (tcp_do_sack) {
3257 tp->t_flags |= TF_SACK_PERMIT;
3258 tp->t_flags |= TF_WILL_SACK;
3259 }
3260 break;
3261
3262 case TCPOPT_SACK:
3263 tcp_sack_option(tp, th, cp, optlen);
3264 break;
3265 #ifdef TCP_SIGNATURE
3266 case TCPOPT_SIGNATURE:
3267 if (optlen != TCPOLEN_SIGNATURE)
3268 continue;
3269 if (sigp && memcmp(sigp, cp + 2, TCP_SIGLEN))
3270 return (-1);
3271
3272 sigp = sigbuf;
3273 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3274 tp->t_flags |= TF_SIGNATURE;
3275 break;
3276 #endif
3277 }
3278 }
3279
3280 #ifndef TCP_SIGNATURE
3281 return 0;
3282 #else
3283 if (tp->t_flags & TF_SIGNATURE) {
3284 sav = tcp_signature_getsav(m);
3285 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3286 return (-1);
3287 }
3288
3289 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3290 goto out;
3291
3292 if (sigp) {
3293 char sig[TCP_SIGLEN];
3294
3295 tcp_fields_to_net(th);
3296 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3297 tcp_fields_to_host(th);
3298 goto out;
3299 }
3300 tcp_fields_to_host(th);
3301
3302 if (memcmp(sig, sigp, TCP_SIGLEN)) {
3303 TCP_STATINC(TCP_STAT_BADSIG);
3304 goto out;
3305 } else
3306 TCP_STATINC(TCP_STAT_GOODSIG);
3307
3308 key_sa_recordxfer(sav, m);
3309 KEY_SA_UNREF(&sav);
3310 }
3311 return 0;
3312 out:
3313 if (sav != NULL)
3314 KEY_SA_UNREF(&sav);
3315 return -1;
3316 #endif
3317 }
3318
3319 /*
3320 * Pull out of band byte out of a segment so
3321 * it doesn't appear in the user's data queue.
3322 * It is still reflected in the segment length for
3323 * sequencing purposes.
3324 */
3325 void
3326 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3327 struct mbuf *m, int off)
3328 {
3329 int cnt = off + th->th_urp - 1;
3330
3331 while (cnt >= 0) {
3332 if (m->m_len > cnt) {
3333 char *cp = mtod(m, char *) + cnt;
3334 struct tcpcb *tp = sototcpcb(so);
3335
3336 tp->t_iobc = *cp;
3337 tp->t_oobflags |= TCPOOB_HAVEDATA;
3338 memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3339 m->m_len--;
3340 return;
3341 }
3342 cnt -= m->m_len;
3343 m = m->m_next;
3344 if (m == NULL)
3345 break;
3346 }
3347 panic("tcp_pulloutofband");
3348 }
3349
3350 /*
3351 * Collect new round-trip time estimate
3352 * and update averages and current timeout.
3353 *
3354 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3355 * difference of two timestamps.
3356 */
3357 void
3358 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3359 {
3360 int32_t delta;
3361
3362 TCP_STATINC(TCP_STAT_RTTUPDATED);
3363 if (tp->t_srtt != 0) {
3364 /*
3365 * Compute the amount to add to srtt for smoothing,
3366 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3367 * srtt is stored in 1/32 slow ticks, we conceptually
3368 * shift left 5 bits, subtract srtt to get the
3369 * diference, and then shift right by TCP_RTT_SHIFT
3370 * (3) to obtain 1/8 of the difference.
3371 */
3372 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3373 /*
3374 * This can never happen, because delta's lowest
3375 * possible value is 1/8 of t_srtt. But if it does,
3376 * set srtt to some reasonable value, here chosen
3377 * as 1/8 tick.
3378 */
3379 if ((tp->t_srtt += delta) <= 0)
3380 tp->t_srtt = 1 << 2;
3381 /*
3382 * RFC2988 requires that rttvar be updated first.
3383 * This code is compliant because "delta" is the old
3384 * srtt minus the new observation (scaled).
3385 *
3386 * RFC2988 says:
3387 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3388 *
3389 * delta is in units of 1/32 ticks, and has then been
3390 * divided by 8. This is equivalent to being in 1/16s
3391 * units and divided by 4. Subtract from it 1/4 of
3392 * the existing rttvar to form the (signed) amount to
3393 * adjust.
3394 */
3395 if (delta < 0)
3396 delta = -delta;
3397 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3398 /*
3399 * As with srtt, this should never happen. There is
3400 * no support in RFC2988 for this operation. But 1/4s
3401 * as rttvar when faced with something arguably wrong
3402 * is ok.
3403 */
3404 if ((tp->t_rttvar += delta) <= 0)
3405 tp->t_rttvar = 1 << 2;
3406
3407 /*
3408 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3409 * Problem is: it doesn't work. Disabled by defaulting
3410 * tcp_rttlocal to 0; see corresponding code in
3411 * tcp_subr that selects local vs remote in a different way.
3412 *
3413 * The static branch prediction hint here should be removed
3414 * when the rtt estimator is fixed and the rtt_enable code
3415 * is turned back on.
3416 */
3417 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3418 && tp->t_srtt > tcp_msl_remote_threshold
3419 && tp->t_msl < tcp_msl_remote) {
3420 tp->t_msl = tcp_msl_remote;
3421 }
3422 } else {
3423 /*
3424 * This is the first measurement. Per RFC2988, 2.2,
3425 * set rtt=R and srtt=R/2.
3426 * For srtt, storage representation is 1/32 ticks,
3427 * so shift left by 5.
3428 * For rttvar, storage representation is 1/16 ticks,
3429 * So shift left by 4, but then right by 1 to halve.
3430 */
3431 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3432 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3433 }
3434 tp->t_rtttime = 0;
3435 tp->t_rxtshift = 0;
3436
3437 /*
3438 * the retransmit should happen at rtt + 4 * rttvar.
3439 * Because of the way we do the smoothing, srtt and rttvar
3440 * will each average +1/2 tick of bias. When we compute
3441 * the retransmit timer, we want 1/2 tick of rounding and
3442 * 1 extra tick because of +-1/2 tick uncertainty in the
3443 * firing of the timer. The bias will give us exactly the
3444 * 1.5 tick we need. But, because the bias is
3445 * statistical, we have to test that we don't drop below
3446 * the minimum feasible timer (which is 2 ticks).
3447 */
3448 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3449 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3450
3451 /*
3452 * We received an ack for a packet that wasn't retransmitted;
3453 * it is probably safe to discard any error indications we've
3454 * received recently. This isn't quite right, but close enough
3455 * for now (a route might have failed after we sent a segment,
3456 * and the return path might not be symmetrical).
3457 */
3458 tp->t_softerror = 0;
3459 }
3460
3461
3462 /*
3463 * TCP compressed state engine. Currently used to hold compressed
3464 * state for SYN_RECEIVED.
3465 */
3466
3467 u_long syn_cache_count;
3468 u_int32_t syn_hash1, syn_hash2;
3469
3470 #define SYN_HASH(sa, sp, dp) \
3471 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3472 ((u_int32_t)(sp)))^syn_hash2)))
3473 #ifndef INET6
3474 #define SYN_HASHALL(hash, src, dst) \
3475 do { \
3476 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3477 ((const struct sockaddr_in *)(src))->sin_port, \
3478 ((const struct sockaddr_in *)(dst))->sin_port); \
3479 } while (/*CONSTCOND*/ 0)
3480 #else
3481 #define SYN_HASH6(sa, sp, dp) \
3482 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3483 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3484 & 0x7fffffff)
3485
3486 #define SYN_HASHALL(hash, src, dst) \
3487 do { \
3488 switch ((src)->sa_family) { \
3489 case AF_INET: \
3490 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3491 ((const struct sockaddr_in *)(src))->sin_port, \
3492 ((const struct sockaddr_in *)(dst))->sin_port); \
3493 break; \
3494 case AF_INET6: \
3495 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3496 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3497 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3498 break; \
3499 default: \
3500 hash = 0; \
3501 } \
3502 } while (/*CONSTCOND*/0)
3503 #endif /* INET6 */
3504
3505 static struct pool syn_cache_pool;
3506
3507 /*
3508 * We don't estimate RTT with SYNs, so each packet starts with the default
3509 * RTT and each timer step has a fixed timeout value.
3510 */
3511 static inline void
3512 syn_cache_timer_arm(struct syn_cache *sc)
3513 {
3514
3515 TCPT_RANGESET(sc->sc_rxtcur,
3516 TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3517 TCPTV_REXMTMAX);
3518 callout_reset(&sc->sc_timer,
3519 sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3520 }
3521
3522 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3523
3524 static inline void
3525 syn_cache_rm(struct syn_cache *sc)
3526 {
3527 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3528 sc, sc_bucketq);
3529 sc->sc_tp = NULL;
3530 LIST_REMOVE(sc, sc_tpq);
3531 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3532 callout_stop(&sc->sc_timer);
3533 syn_cache_count--;
3534 }
3535
3536 static inline void
3537 syn_cache_put(struct syn_cache *sc)
3538 {
3539 if (sc->sc_ipopts)
3540 (void) m_free(sc->sc_ipopts);
3541 rtcache_free(&sc->sc_route);
3542 sc->sc_flags |= SCF_DEAD;
3543 if (!callout_invoking(&sc->sc_timer))
3544 callout_schedule(&(sc)->sc_timer, 1);
3545 }
3546
3547 void
3548 syn_cache_init(void)
3549 {
3550 int i;
3551
3552 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3553 "synpl", NULL, IPL_SOFTNET);
3554
3555 /* Initialize the hash buckets. */
3556 for (i = 0; i < tcp_syn_cache_size; i++)
3557 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3558 }
3559
3560 void
3561 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3562 {
3563 struct syn_cache_head *scp;
3564 struct syn_cache *sc2;
3565 int s;
3566
3567 /*
3568 * If there are no entries in the hash table, reinitialize
3569 * the hash secrets.
3570 */
3571 if (syn_cache_count == 0) {
3572 syn_hash1 = cprng_fast32();
3573 syn_hash2 = cprng_fast32();
3574 }
3575
3576 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3577 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3578 scp = &tcp_syn_cache[sc->sc_bucketidx];
3579
3580 /*
3581 * Make sure that we don't overflow the per-bucket
3582 * limit or the total cache size limit.
3583 */
3584 s = splsoftnet();
3585 if (scp->sch_length >= tcp_syn_bucket_limit) {
3586 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3587 /*
3588 * The bucket is full. Toss the oldest element in the
3589 * bucket. This will be the first entry in the bucket.
3590 */
3591 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3592 #ifdef DIAGNOSTIC
3593 /*
3594 * This should never happen; we should always find an
3595 * entry in our bucket.
3596 */
3597 if (sc2 == NULL)
3598 panic("syn_cache_insert: bucketoverflow: impossible");
3599 #endif
3600 syn_cache_rm(sc2);
3601 syn_cache_put(sc2); /* calls pool_put but see spl above */
3602 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3603 struct syn_cache_head *scp2, *sce;
3604
3605 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3606 /*
3607 * The cache is full. Toss the oldest entry in the
3608 * first non-empty bucket we can find.
3609 *
3610 * XXX We would really like to toss the oldest
3611 * entry in the cache, but we hope that this
3612 * condition doesn't happen very often.
3613 */
3614 scp2 = scp;
3615 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3616 sce = &tcp_syn_cache[tcp_syn_cache_size];
3617 for (++scp2; scp2 != scp; scp2++) {
3618 if (scp2 >= sce)
3619 scp2 = &tcp_syn_cache[0];
3620 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3621 break;
3622 }
3623 #ifdef DIAGNOSTIC
3624 /*
3625 * This should never happen; we should always find a
3626 * non-empty bucket.
3627 */
3628 if (scp2 == scp)
3629 panic("syn_cache_insert: cacheoverflow: "
3630 "impossible");
3631 #endif
3632 }
3633 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3634 syn_cache_rm(sc2);
3635 syn_cache_put(sc2); /* calls pool_put but see spl above */
3636 }
3637
3638 /*
3639 * Initialize the entry's timer.
3640 */
3641 sc->sc_rxttot = 0;
3642 sc->sc_rxtshift = 0;
3643 syn_cache_timer_arm(sc);
3644
3645 /* Link it from tcpcb entry */
3646 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3647
3648 /* Put it into the bucket. */
3649 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3650 scp->sch_length++;
3651 syn_cache_count++;
3652
3653 TCP_STATINC(TCP_STAT_SC_ADDED);
3654 splx(s);
3655 }
3656
3657 /*
3658 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3659 * If we have retransmitted an entry the maximum number of times, expire
3660 * that entry.
3661 */
3662 static void
3663 syn_cache_timer(void *arg)
3664 {
3665 struct syn_cache *sc = arg;
3666
3667 mutex_enter(softnet_lock);
3668 KERNEL_LOCK(1, NULL);
3669
3670 callout_ack(&sc->sc_timer);
3671
3672 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3673 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3674 goto free;
3675 }
3676
3677 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3678 /* Drop it -- too many retransmissions. */
3679 goto dropit;
3680 }
3681
3682 /*
3683 * Compute the total amount of time this entry has
3684 * been on a queue. If this entry has been on longer
3685 * than the keep alive timer would allow, expire it.
3686 */
3687 sc->sc_rxttot += sc->sc_rxtcur;
3688 if (sc->sc_rxttot >= tcp_keepinit)
3689 goto dropit;
3690
3691 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3692 (void)syn_cache_respond(sc);
3693
3694 /* Advance the timer back-off. */
3695 sc->sc_rxtshift++;
3696 syn_cache_timer_arm(sc);
3697
3698 goto out;
3699
3700 dropit:
3701 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3702 syn_cache_rm(sc);
3703 if (sc->sc_ipopts)
3704 (void) m_free(sc->sc_ipopts);
3705 rtcache_free(&sc->sc_route);
3706
3707 free:
3708 callout_destroy(&sc->sc_timer);
3709 pool_put(&syn_cache_pool, sc);
3710
3711 out:
3712 KERNEL_UNLOCK_ONE(NULL);
3713 mutex_exit(softnet_lock);
3714 }
3715
3716 /*
3717 * Remove syn cache created by the specified tcb entry,
3718 * because this does not make sense to keep them
3719 * (if there's no tcb entry, syn cache entry will never be used)
3720 */
3721 void
3722 syn_cache_cleanup(struct tcpcb *tp)
3723 {
3724 struct syn_cache *sc, *nsc;
3725 int s;
3726
3727 s = splsoftnet();
3728
3729 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3730 nsc = LIST_NEXT(sc, sc_tpq);
3731
3732 #ifdef DIAGNOSTIC
3733 if (sc->sc_tp != tp)
3734 panic("invalid sc_tp in syn_cache_cleanup");
3735 #endif
3736 syn_cache_rm(sc);
3737 syn_cache_put(sc); /* calls pool_put but see spl above */
3738 }
3739 /* just for safety */
3740 LIST_INIT(&tp->t_sc);
3741
3742 splx(s);
3743 }
3744
3745 /*
3746 * Find an entry in the syn cache.
3747 */
3748 struct syn_cache *
3749 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3750 struct syn_cache_head **headp)
3751 {
3752 struct syn_cache *sc;
3753 struct syn_cache_head *scp;
3754 u_int32_t hash;
3755 int s;
3756
3757 SYN_HASHALL(hash, src, dst);
3758
3759 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3760 *headp = scp;
3761 s = splsoftnet();
3762 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3763 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3764 if (sc->sc_hash != hash)
3765 continue;
3766 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3767 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3768 splx(s);
3769 return (sc);
3770 }
3771 }
3772 splx(s);
3773 return (NULL);
3774 }
3775
3776 /*
3777 * This function gets called when we receive an ACK for a socket in the
3778 * LISTEN state. We look up the connection in the syn cache, and if it's
3779 * there, we pull it out of the cache and turn it into a full-blown
3780 * connection in the SYN-RECEIVED state.
3781 *
3782 * The return values may not be immediately obvious, and their effects
3783 * can be subtle, so here they are:
3784 *
3785 * NULL SYN was not found in cache; caller should drop the
3786 * packet and send an RST.
3787 *
3788 * -1 We were unable to create the new connection, and are
3789 * aborting it. An ACK,RST is being sent to the peer
3790 * (unless we got screwey sequence numbers; see below),
3791 * because the 3-way handshake has been completed. Caller
3792 * should not free the mbuf, since we may be using it. If
3793 * we are not, we will free it.
3794 *
3795 * Otherwise, the return value is a pointer to the new socket
3796 * associated with the connection.
3797 */
3798 struct socket *
3799 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3800 struct tcphdr *th, struct socket *so, struct mbuf *m)
3801 {
3802 struct syn_cache *sc;
3803 struct syn_cache_head *scp;
3804 struct inpcb *inp = NULL;
3805 #ifdef INET6
3806 struct in6pcb *in6p = NULL;
3807 #endif
3808 struct tcpcb *tp;
3809 int s;
3810 struct socket *oso;
3811
3812 s = splsoftnet();
3813 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3814 splx(s);
3815 return NULL;
3816 }
3817
3818 /*
3819 * Verify the sequence and ack numbers. Try getting the correct
3820 * response again.
3821 */
3822 if ((th->th_ack != sc->sc_iss + 1) ||
3823 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3824 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3825 m_freem(m);
3826 (void)syn_cache_respond(sc);
3827 splx(s);
3828 return ((struct socket *)(-1));
3829 }
3830
3831 /* Remove this cache entry */
3832 syn_cache_rm(sc);
3833 splx(s);
3834
3835 /*
3836 * Ok, create the full blown connection, and set things up
3837 * as they would have been set up if we had created the
3838 * connection when the SYN arrived. If we can't create
3839 * the connection, abort it.
3840 */
3841 /*
3842 * inp still has the OLD in_pcb stuff, set the
3843 * v6-related flags on the new guy, too. This is
3844 * done particularly for the case where an AF_INET6
3845 * socket is bound only to a port, and a v4 connection
3846 * comes in on that port.
3847 * we also copy the flowinfo from the original pcb
3848 * to the new one.
3849 */
3850 oso = so;
3851 so = sonewconn(so, true);
3852 if (so == NULL)
3853 goto resetandabort;
3854
3855 switch (so->so_proto->pr_domain->dom_family) {
3856 case AF_INET:
3857 inp = sotoinpcb(so);
3858 break;
3859 #ifdef INET6
3860 case AF_INET6:
3861 in6p = sotoin6pcb(so);
3862 break;
3863 #endif
3864 }
3865
3866 switch (src->sa_family) {
3867 case AF_INET:
3868 if (inp) {
3869 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3870 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3871 inp->inp_options = ip_srcroute(m);
3872 in_pcbstate(inp, INP_BOUND);
3873 if (inp->inp_options == NULL) {
3874 inp->inp_options = sc->sc_ipopts;
3875 sc->sc_ipopts = NULL;
3876 }
3877 }
3878 #ifdef INET6
3879 else if (in6p) {
3880 /* IPv4 packet to AF_INET6 socket */
3881 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3882 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3883 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3884 &in6p->in6p_laddr.s6_addr32[3],
3885 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3886 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3887 in6totcpcb(in6p)->t_family = AF_INET;
3888 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3889 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3890 else
3891 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3892 in6_pcbstate(in6p, IN6P_BOUND);
3893 }
3894 #endif
3895 break;
3896 #ifdef INET6
3897 case AF_INET6:
3898 if (in6p) {
3899 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3900 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3901 in6_pcbstate(in6p, IN6P_BOUND);
3902 }
3903 break;
3904 #endif
3905 }
3906
3907 #ifdef INET6
3908 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3909 struct in6pcb *oin6p = sotoin6pcb(oso);
3910 /* inherit socket options from the listening socket */
3911 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3912 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3913 m_freem(in6p->in6p_options);
3914 in6p->in6p_options = NULL;
3915 }
3916 ip6_savecontrol(in6p, &in6p->in6p_options,
3917 mtod(m, struct ip6_hdr *), m);
3918 }
3919 #endif
3920
3921 #if defined(IPSEC)
3922 if (ipsec_used) {
3923 /*
3924 * we make a copy of policy, instead of sharing the policy, for
3925 * better behavior in terms of SA lookup and dead SA removal.
3926 */
3927 if (inp) {
3928 /* copy old policy into new socket's */
3929 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
3930 inp->inp_sp))
3931 printf("tcp_input: could not copy policy\n");
3932 }
3933 #ifdef INET6
3934 else if (in6p) {
3935 /* copy old policy into new socket's */
3936 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3937 in6p->in6p_sp))
3938 printf("tcp_input: could not copy policy\n");
3939 }
3940 #endif
3941 }
3942 #endif
3943
3944 /*
3945 * Give the new socket our cached route reference.
3946 */
3947 if (inp) {
3948 rtcache_copy(&inp->inp_route, &sc->sc_route);
3949 rtcache_free(&sc->sc_route);
3950 }
3951 #ifdef INET6
3952 else {
3953 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3954 rtcache_free(&sc->sc_route);
3955 }
3956 #endif
3957
3958 if (inp) {
3959 struct sockaddr_in sin;
3960 memcpy(&sin, src, src->sa_len);
3961 if (in_pcbconnect(inp, &sin, &lwp0)) {
3962 goto resetandabort;
3963 }
3964 }
3965 #ifdef INET6
3966 else if (in6p) {
3967 struct sockaddr_in6 sin6;
3968 memcpy(&sin6, src, src->sa_len);
3969 if (src->sa_family == AF_INET) {
3970 /* IPv4 packet to AF_INET6 socket */
3971 in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3972 }
3973 if (in6_pcbconnect(in6p, &sin6, NULL)) {
3974 goto resetandabort;
3975 }
3976 }
3977 #endif
3978 else {
3979 goto resetandabort;
3980 }
3981
3982 if (inp)
3983 tp = intotcpcb(inp);
3984 #ifdef INET6
3985 else if (in6p)
3986 tp = in6totcpcb(in6p);
3987 #endif
3988 else
3989 tp = NULL;
3990
3991 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3992 if (sc->sc_request_r_scale != 15) {
3993 tp->requested_s_scale = sc->sc_requested_s_scale;
3994 tp->request_r_scale = sc->sc_request_r_scale;
3995 tp->snd_scale = sc->sc_requested_s_scale;
3996 tp->rcv_scale = sc->sc_request_r_scale;
3997 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3998 }
3999 if (sc->sc_flags & SCF_TIMESTAMP)
4000 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
4001 tp->ts_timebase = sc->sc_timebase;
4002
4003 tp->t_template = tcp_template(tp);
4004 if (tp->t_template == 0) {
4005 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
4006 so = NULL;
4007 m_freem(m);
4008 goto abort;
4009 }
4010
4011 tp->iss = sc->sc_iss;
4012 tp->irs = sc->sc_irs;
4013 tcp_sendseqinit(tp);
4014 tcp_rcvseqinit(tp);
4015 tp->t_state = TCPS_SYN_RECEIVED;
4016 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4017 TCP_STATINC(TCP_STAT_ACCEPTS);
4018
4019 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4020 tp->t_flags |= TF_WILL_SACK;
4021
4022 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4023 tp->t_flags |= TF_ECN_PERMIT;
4024
4025 #ifdef TCP_SIGNATURE
4026 if (sc->sc_flags & SCF_SIGNATURE)
4027 tp->t_flags |= TF_SIGNATURE;
4028 #endif
4029
4030 /* Initialize tp->t_ourmss before we deal with the peer's! */
4031 tp->t_ourmss = sc->sc_ourmaxseg;
4032 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4033
4034 /*
4035 * Initialize the initial congestion window. If we
4036 * had to retransmit the SYN,ACK, we must initialize cwnd
4037 * to 1 segment (i.e. the Loss Window).
4038 */
4039 if (sc->sc_rxtshift)
4040 tp->snd_cwnd = tp->t_peermss;
4041 else {
4042 int ss = tcp_init_win;
4043 if (inp != NULL && in_localaddr(inp->inp_faddr))
4044 ss = tcp_init_win_local;
4045 #ifdef INET6
4046 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4047 ss = tcp_init_win_local;
4048 #endif
4049 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4050 }
4051
4052 tcp_rmx_rtt(tp);
4053 tp->snd_wl1 = sc->sc_irs;
4054 tp->rcv_up = sc->sc_irs + 1;
4055
4056 /*
4057 * This is what whould have happened in tcp_output() when
4058 * the SYN,ACK was sent.
4059 */
4060 tp->snd_up = tp->snd_una;
4061 tp->snd_max = tp->snd_nxt = tp->iss+1;
4062 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4063 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4064 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4065 tp->last_ack_sent = tp->rcv_nxt;
4066 tp->t_partialacks = -1;
4067 tp->t_dupacks = 0;
4068
4069 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4070 s = splsoftnet();
4071 syn_cache_put(sc);
4072 splx(s);
4073 return so;
4074
4075 resetandabort:
4076 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4077 abort:
4078 if (so != NULL) {
4079 (void) soqremque(so, 1);
4080 (void) soabort(so);
4081 mutex_enter(softnet_lock);
4082 }
4083 s = splsoftnet();
4084 syn_cache_put(sc);
4085 splx(s);
4086 TCP_STATINC(TCP_STAT_SC_ABORTED);
4087 return ((struct socket *)(-1));
4088 }
4089
4090 /*
4091 * This function is called when we get a RST for a
4092 * non-existent connection, so that we can see if the
4093 * connection is in the syn cache. If it is, zap it.
4094 */
4095
4096 void
4097 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4098 {
4099 struct syn_cache *sc;
4100 struct syn_cache_head *scp;
4101 int s = splsoftnet();
4102
4103 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4104 splx(s);
4105 return;
4106 }
4107 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4108 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4109 splx(s);
4110 return;
4111 }
4112 syn_cache_rm(sc);
4113 TCP_STATINC(TCP_STAT_SC_RESET);
4114 syn_cache_put(sc); /* calls pool_put but see spl above */
4115 splx(s);
4116 }
4117
4118 void
4119 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4120 struct tcphdr *th)
4121 {
4122 struct syn_cache *sc;
4123 struct syn_cache_head *scp;
4124 int s;
4125
4126 s = splsoftnet();
4127 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4128 splx(s);
4129 return;
4130 }
4131 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4132 if (ntohl(th->th_seq) != sc->sc_iss) {
4133 splx(s);
4134 return;
4135 }
4136
4137 /*
4138 * If we've retransmitted 3 times and this is our second error,
4139 * we remove the entry. Otherwise, we allow it to continue on.
4140 * This prevents us from incorrectly nuking an entry during a
4141 * spurious network outage.
4142 *
4143 * See tcp_notify().
4144 */
4145 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4146 sc->sc_flags |= SCF_UNREACH;
4147 splx(s);
4148 return;
4149 }
4150
4151 syn_cache_rm(sc);
4152 TCP_STATINC(TCP_STAT_SC_UNREACH);
4153 syn_cache_put(sc); /* calls pool_put but see spl above */
4154 splx(s);
4155 }
4156
4157 /*
4158 * Given a LISTEN socket and an inbound SYN request, add this to the syn
4159 * cache, and send back a segment:
4160 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4161 * to the source.
4162 *
4163 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4164 * Doing so would require that we hold onto the data and deliver it
4165 * to the application. However, if we are the target of a SYN-flood
4166 * DoS attack, an attacker could send data which would eventually
4167 * consume all available buffer space if it were ACKed. By not ACKing
4168 * the data, we avoid this DoS scenario.
4169 */
4170 int
4171 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4172 unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
4173 int optlen, struct tcp_opt_info *oi)
4174 {
4175 struct tcpcb tb, *tp;
4176 long win;
4177 struct syn_cache *sc;
4178 struct syn_cache_head *scp;
4179 struct mbuf *ipopts;
4180 int s;
4181
4182 tp = sototcpcb(so);
4183
4184 /*
4185 * Initialize some local state.
4186 */
4187 win = sbspace(&so->so_rcv);
4188 if (win > TCP_MAXWIN)
4189 win = TCP_MAXWIN;
4190
4191 #ifdef TCP_SIGNATURE
4192 if (optp || (tp->t_flags & TF_SIGNATURE))
4193 #else
4194 if (optp)
4195 #endif
4196 {
4197 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4198 #ifdef TCP_SIGNATURE
4199 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4200 #endif
4201 tb.t_state = TCPS_LISTEN;
4202 if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
4203 return 0;
4204 } else
4205 tb.t_flags = 0;
4206
4207 switch (src->sa_family) {
4208 case AF_INET:
4209 /* Remember the IP options, if any. */
4210 ipopts = ip_srcroute(m);
4211 break;
4212 default:
4213 ipopts = NULL;
4214 }
4215
4216 /*
4217 * See if we already have an entry for this connection.
4218 * If we do, resend the SYN,ACK. We do not count this
4219 * as a retransmission (XXX though maybe we should).
4220 */
4221 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4222 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4223 if (ipopts) {
4224 /*
4225 * If we were remembering a previous source route,
4226 * forget it and use the new one we've been given.
4227 */
4228 if (sc->sc_ipopts)
4229 (void)m_free(sc->sc_ipopts);
4230 sc->sc_ipopts = ipopts;
4231 }
4232 sc->sc_timestamp = tb.ts_recent;
4233 m_freem(m);
4234 if (syn_cache_respond(sc) == 0) {
4235 uint64_t *tcps = TCP_STAT_GETREF();
4236 tcps[TCP_STAT_SNDACKS]++;
4237 tcps[TCP_STAT_SNDTOTAL]++;
4238 TCP_STAT_PUTREF();
4239 }
4240 return 1;
4241 }
4242
4243 s = splsoftnet();
4244 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4245 splx(s);
4246 if (sc == NULL) {
4247 if (ipopts)
4248 (void)m_free(ipopts);
4249 return 0;
4250 }
4251
4252 /*
4253 * Fill in the cache, and put the necessary IP and TCP
4254 * options into the reply.
4255 */
4256 memset(sc, 0, sizeof(struct syn_cache));
4257 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4258 memcpy(&sc->sc_src, src, src->sa_len);
4259 memcpy(&sc->sc_dst, dst, dst->sa_len);
4260 sc->sc_flags = 0;
4261 sc->sc_ipopts = ipopts;
4262 sc->sc_irs = th->th_seq;
4263 switch (src->sa_family) {
4264 case AF_INET:
4265 {
4266 struct sockaddr_in *srcin = (void *)src;
4267 struct sockaddr_in *dstin = (void *)dst;
4268
4269 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4270 &srcin->sin_addr, dstin->sin_port,
4271 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4272 break;
4273 }
4274 #ifdef INET6
4275 case AF_INET6:
4276 {
4277 struct sockaddr_in6 *srcin6 = (void *)src;
4278 struct sockaddr_in6 *dstin6 = (void *)dst;
4279
4280 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4281 &srcin6->sin6_addr, dstin6->sin6_port,
4282 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4283 break;
4284 }
4285 #endif
4286 }
4287 sc->sc_peermaxseg = oi->maxseg;
4288 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4289 m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4290 sc->sc_win = win;
4291 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4292 sc->sc_timestamp = tb.ts_recent;
4293 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4294 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4295 sc->sc_flags |= SCF_TIMESTAMP;
4296 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4297 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4298 sc->sc_requested_s_scale = tb.requested_s_scale;
4299 sc->sc_request_r_scale = 0;
4300 /*
4301 * Pick the smallest possible scaling factor that
4302 * will still allow us to scale up to sb_max.
4303 *
4304 * We do this because there are broken firewalls that
4305 * will corrupt the window scale option, leading to
4306 * the other endpoint believing that our advertised
4307 * window is unscaled. At scale factors larger than
4308 * 5 the unscaled window will drop below 1500 bytes,
4309 * leading to serious problems when traversing these
4310 * broken firewalls.
4311 *
4312 * With the default sbmax of 256K, a scale factor
4313 * of 3 will be chosen by this algorithm. Those who
4314 * choose a larger sbmax should watch out
4315 * for the compatiblity problems mentioned above.
4316 *
4317 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4318 * or <SYN,ACK>) segment itself is never scaled.
4319 */
4320 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4321 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4322 sc->sc_request_r_scale++;
4323 } else {
4324 sc->sc_requested_s_scale = 15;
4325 sc->sc_request_r_scale = 15;
4326 }
4327 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4328 sc->sc_flags |= SCF_SACK_PERMIT;
4329
4330 /*
4331 * ECN setup packet received.
4332 */
4333 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4334 sc->sc_flags |= SCF_ECN_PERMIT;
4335
4336 #ifdef TCP_SIGNATURE
4337 if (tb.t_flags & TF_SIGNATURE)
4338 sc->sc_flags |= SCF_SIGNATURE;
4339 #endif
4340 sc->sc_tp = tp;
4341 m_freem(m);
4342 if (syn_cache_respond(sc) == 0) {
4343 uint64_t *tcps = TCP_STAT_GETREF();
4344 tcps[TCP_STAT_SNDACKS]++;
4345 tcps[TCP_STAT_SNDTOTAL]++;
4346 TCP_STAT_PUTREF();
4347 syn_cache_insert(sc, tp);
4348 } else {
4349 s = splsoftnet();
4350 /*
4351 * syn_cache_put() will try to schedule the timer, so
4352 * we need to initialize it
4353 */
4354 syn_cache_timer_arm(sc);
4355 syn_cache_put(sc);
4356 splx(s);
4357 TCP_STATINC(TCP_STAT_SC_DROPPED);
4358 }
4359 return 1;
4360 }
4361
4362 /*
4363 * syn_cache_respond: (re)send SYN+ACK.
4364 *
4365 * Returns 0 on success.
4366 */
4367
4368 int
4369 syn_cache_respond(struct syn_cache *sc)
4370 {
4371 #ifdef INET6
4372 struct rtentry *rt = NULL;
4373 #endif
4374 struct route *ro;
4375 u_int8_t *optp;
4376 int optlen, error;
4377 u_int16_t tlen;
4378 struct ip *ip = NULL;
4379 #ifdef INET6
4380 struct ip6_hdr *ip6 = NULL;
4381 #endif
4382 struct tcpcb *tp;
4383 struct tcphdr *th;
4384 struct mbuf *m;
4385 u_int hlen;
4386 #ifdef TCP_SIGNATURE
4387 struct secasvar *sav = NULL;
4388 u_int8_t *sigp = NULL;
4389 #endif
4390
4391 ro = &sc->sc_route;
4392 switch (sc->sc_src.sa.sa_family) {
4393 case AF_INET:
4394 hlen = sizeof(struct ip);
4395 break;
4396 #ifdef INET6
4397 case AF_INET6:
4398 hlen = sizeof(struct ip6_hdr);
4399 break;
4400 #endif
4401 default:
4402 return EAFNOSUPPORT;
4403 }
4404
4405 /* Worst case scanario, since we don't know the option size yet. */
4406 tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4407 KASSERT(max_linkhdr + tlen <= MCLBYTES);
4408
4409 /*
4410 * Create the IP+TCP header from scratch.
4411 */
4412 MGETHDR(m, M_DONTWAIT, MT_DATA);
4413 if (m && (max_linkhdr + tlen) > MHLEN) {
4414 MCLGET(m, M_DONTWAIT);
4415 if ((m->m_flags & M_EXT) == 0) {
4416 m_freem(m);
4417 m = NULL;
4418 }
4419 }
4420 if (m == NULL)
4421 return ENOBUFS;
4422 MCLAIM(m, &tcp_tx_mowner);
4423
4424 tp = sc->sc_tp;
4425
4426 /* Fixup the mbuf. */
4427 m->m_data += max_linkhdr;
4428 m_reset_rcvif(m);
4429 memset(mtod(m, void *), 0, tlen);
4430
4431 switch (sc->sc_src.sa.sa_family) {
4432 case AF_INET:
4433 ip = mtod(m, struct ip *);
4434 ip->ip_v = 4;
4435 ip->ip_dst = sc->sc_src.sin.sin_addr;
4436 ip->ip_src = sc->sc_dst.sin.sin_addr;
4437 ip->ip_p = IPPROTO_TCP;
4438 th = (struct tcphdr *)(ip + 1);
4439 th->th_dport = sc->sc_src.sin.sin_port;
4440 th->th_sport = sc->sc_dst.sin.sin_port;
4441 break;
4442 #ifdef INET6
4443 case AF_INET6:
4444 ip6 = mtod(m, struct ip6_hdr *);
4445 ip6->ip6_vfc = IPV6_VERSION;
4446 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4447 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4448 ip6->ip6_nxt = IPPROTO_TCP;
4449 /* ip6_plen will be updated in ip6_output() */
4450 th = (struct tcphdr *)(ip6 + 1);
4451 th->th_dport = sc->sc_src.sin6.sin6_port;
4452 th->th_sport = sc->sc_dst.sin6.sin6_port;
4453 break;
4454 #endif
4455 default:
4456 panic("%s: impossible (1)", __func__);
4457 }
4458
4459 th->th_seq = htonl(sc->sc_iss);
4460 th->th_ack = htonl(sc->sc_irs + 1);
4461 th->th_flags = TH_SYN|TH_ACK;
4462 th->th_win = htons(sc->sc_win);
4463 /* th_x2, th_sum, th_urp already 0 from memset */
4464
4465 /* Tack on the TCP options. */
4466 optp = (u_int8_t *)(th + 1);
4467 optlen = 0;
4468 *optp++ = TCPOPT_MAXSEG;
4469 *optp++ = TCPOLEN_MAXSEG;
4470 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4471 *optp++ = sc->sc_ourmaxseg & 0xff;
4472 optlen += TCPOLEN_MAXSEG;
4473
4474 if (sc->sc_request_r_scale != 15) {
4475 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4476 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4477 sc->sc_request_r_scale);
4478 optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4479 optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4480 }
4481
4482 if (sc->sc_flags & SCF_SACK_PERMIT) {
4483 /* Let the peer know that we will SACK. */
4484 *optp++ = TCPOPT_SACK_PERMITTED;
4485 *optp++ = TCPOLEN_SACK_PERMITTED;
4486 optlen += TCPOLEN_SACK_PERMITTED;
4487 }
4488
4489 if (sc->sc_flags & SCF_TIMESTAMP) {
4490 while (optlen % 4 != 2) {
4491 optlen += TCPOLEN_NOP;
4492 *optp++ = TCPOPT_NOP;
4493 }
4494 *optp++ = TCPOPT_TIMESTAMP;
4495 *optp++ = TCPOLEN_TIMESTAMP;
4496 u_int32_t *lp = (u_int32_t *)(optp);
4497 /* Form timestamp option as shown in appendix A of RFC 1323. */
4498 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4499 *lp = htonl(sc->sc_timestamp);
4500 optp += TCPOLEN_TIMESTAMP - 2;
4501 optlen += TCPOLEN_TIMESTAMP;
4502 }
4503
4504 #ifdef TCP_SIGNATURE
4505 if (sc->sc_flags & SCF_SIGNATURE) {
4506 sav = tcp_signature_getsav(m);
4507 if (sav == NULL) {
4508 m_freem(m);
4509 return EPERM;
4510 }
4511
4512 *optp++ = TCPOPT_SIGNATURE;
4513 *optp++ = TCPOLEN_SIGNATURE;
4514 sigp = optp;
4515 memset(optp, 0, TCP_SIGLEN);
4516 optp += TCP_SIGLEN;
4517 optlen += TCPOLEN_SIGNATURE;
4518 }
4519 #endif
4520
4521 /*
4522 * Terminate and pad TCP options to a 4 byte boundary.
4523 *
4524 * According to RFC793: "The content of the header beyond the
4525 * End-of-Option option must be header padding (i.e., zero)."
4526 * And later: "The padding is composed of zeros."
4527 */
4528 if (optlen % 4) {
4529 optlen += TCPOLEN_EOL;
4530 *optp++ = TCPOPT_EOL;
4531 }
4532 while (optlen % 4) {
4533 optlen += TCPOLEN_PAD;
4534 *optp++ = TCPOPT_PAD;
4535 }
4536
4537 /* Compute the actual values now that we've added the options. */
4538 tlen = hlen + sizeof(struct tcphdr) + optlen;
4539 m->m_len = m->m_pkthdr.len = tlen;
4540 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4541
4542 #ifdef TCP_SIGNATURE
4543 if (sav) {
4544 (void)tcp_signature(m, th, hlen, sav, sigp);
4545 key_sa_recordxfer(sav, m);
4546 KEY_SA_UNREF(&sav);
4547 }
4548 #endif
4549
4550 /*
4551 * Send ECN SYN-ACK setup packet.
4552 * Routes can be asymetric, so, even if we receive a packet
4553 * with ECE and CWR set, we must not assume no one will block
4554 * the ECE packet we are about to send.
4555 */
4556 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4557 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4558 th->th_flags |= TH_ECE;
4559 TCP_STATINC(TCP_STAT_ECN_SHS);
4560
4561 /*
4562 * draft-ietf-tcpm-ecnsyn-00.txt
4563 *
4564 * "[...] a TCP node MAY respond to an ECN-setup
4565 * SYN packet by setting ECT in the responding
4566 * ECN-setup SYN/ACK packet, indicating to routers
4567 * that the SYN/ACK packet is ECN-Capable.
4568 * This allows a congested router along the path
4569 * to mark the packet instead of dropping the
4570 * packet as an indication of congestion."
4571 *
4572 * "[...] There can be a great benefit in setting
4573 * an ECN-capable codepoint in SYN/ACK packets [...]
4574 * Congestion is most likely to occur in
4575 * the server-to-client direction. As a result,
4576 * setting an ECN-capable codepoint in SYN/ACK
4577 * packets can reduce the occurence of three-second
4578 * retransmit timeouts resulting from the drop
4579 * of SYN/ACK packets."
4580 *
4581 * Page 4 and 6, January 2006.
4582 */
4583
4584 switch (sc->sc_src.sa.sa_family) {
4585 case AF_INET:
4586 ip->ip_tos |= IPTOS_ECN_ECT0;
4587 break;
4588 #ifdef INET6
4589 case AF_INET6:
4590 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4591 break;
4592 #endif
4593 }
4594 TCP_STATINC(TCP_STAT_ECN_ECT);
4595 }
4596
4597
4598 /*
4599 * Compute the packet's checksum.
4600 *
4601 * Fill in some straggling IP bits. Note the stack expects
4602 * ip_len to be in host order, for convenience.
4603 */
4604 switch (sc->sc_src.sa.sa_family) {
4605 case AF_INET:
4606 ip->ip_len = htons(tlen - hlen);
4607 th->th_sum = 0;
4608 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4609 ip->ip_len = htons(tlen);
4610 ip->ip_ttl = ip_defttl;
4611 /* XXX tos? */
4612 break;
4613 #ifdef INET6
4614 case AF_INET6:
4615 ip6->ip6_plen = htons(tlen - hlen);
4616 th->th_sum = 0;
4617 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4618 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4619 ip6->ip6_vfc |= IPV6_VERSION;
4620 ip6->ip6_plen = htons(tlen - hlen);
4621 /* ip6_hlim will be initialized afterwards */
4622 /* XXX flowlabel? */
4623 break;
4624 #endif
4625 }
4626
4627 /* XXX use IPsec policy on listening socket, on SYN ACK */
4628 tp = sc->sc_tp;
4629
4630 switch (sc->sc_src.sa.sa_family) {
4631 case AF_INET:
4632 error = ip_output(m, sc->sc_ipopts, ro,
4633 (ip_mtudisc ? IP_MTUDISC : 0),
4634 NULL, tp ? tp->t_inpcb : NULL);
4635 break;
4636 #ifdef INET6
4637 case AF_INET6:
4638 ip6->ip6_hlim = in6_selecthlim(NULL,
4639 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4640 rtcache_unref(rt, ro);
4641
4642 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4643 tp ? tp->t_in6pcb : NULL, NULL);
4644 break;
4645 #endif
4646 default:
4647 panic("%s: impossible (2)", __func__);
4648 }
4649
4650 return error;
4651 }
4652