tcp_input.c revision 1.403 1 /* $NetBSD: tcp_input.c,v 1.403 2018/03/30 08:25:06 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.403 2018/03/30 08:25:06 maxv Exp $");
152
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177
178 #include <net/if.h>
179 #include <net/if_types.h>
180
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188
189 #ifdef INET6
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #ifdef TCP_SIGNATURE
198 #include <netinet6/scope6_var.h>
199 #endif
200 #endif
201
202 #ifndef INET6
203 /* always need ip6.h for IP6_EXTHDR_GET */
204 #include <netinet/ip6.h>
205 #endif
206
207 #include <netinet/tcp.h>
208 #include <netinet/tcp_fsm.h>
209 #include <netinet/tcp_seq.h>
210 #include <netinet/tcp_timer.h>
211 #include <netinet/tcp_var.h>
212 #include <netinet/tcp_private.h>
213 #include <netinet/tcpip.h>
214 #include <netinet/tcp_congctl.h>
215 #include <netinet/tcp_debug.h>
216
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif
223
224 #ifdef IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h>
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* IPSEC*/
232
233 #include <netinet/tcp_vtw.h>
234
235 int tcprexmtthresh = 3;
236 int tcp_log_refused;
237
238 int tcp_do_autorcvbuf = 1;
239 int tcp_autorcvbuf_inc = 16 * 1024;
240 int tcp_autorcvbuf_max = 256 * 1024;
241 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
242
243 static int tcp_rst_ppslim_count = 0;
244 static struct timeval tcp_rst_ppslim_last;
245 static int tcp_ackdrop_ppslim_count = 0;
246 static struct timeval tcp_ackdrop_ppslim_last;
247
248 static void syn_cache_timer(void *);
249
250 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
251
252 /* for modulo comparisons of timestamps */
253 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
254 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
255
256 /*
257 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
258 */
259 #ifdef INET6
260 static inline void
261 nd6_hint(struct tcpcb *tp)
262 {
263 struct rtentry *rt = NULL;
264
265 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
266 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
267 nd6_nud_hint(rt);
268 rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
269 }
270 #else
271 static inline void
272 nd6_hint(struct tcpcb *tp)
273 {
274 }
275 #endif
276
277 /*
278 * Compute ACK transmission behavior. Delay the ACK unless
279 * we have already delayed an ACK (must send an ACK every two segments).
280 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
281 * option is enabled.
282 */
283 static void
284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
285 {
286
287 if (tp->t_flags & TF_DELACK ||
288 (tcp_ack_on_push && th->th_flags & TH_PUSH))
289 tp->t_flags |= TF_ACKNOW;
290 else
291 TCP_SET_DELACK(tp);
292 }
293
294 static void
295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
296 {
297
298 /*
299 * If we had a pending ICMP message that refers to data that have
300 * just been acknowledged, disregard the recorded ICMP message.
301 */
302 if ((tp->t_flags & TF_PMTUD_PEND) &&
303 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
304 tp->t_flags &= ~TF_PMTUD_PEND;
305
306 /*
307 * Keep track of the largest chunk of data
308 * acknowledged since last PMTU update
309 */
310 if (tp->t_pmtud_mss_acked < acked)
311 tp->t_pmtud_mss_acked = acked;
312 }
313
314 /*
315 * Convert TCP protocol fields to host order for easier processing.
316 */
317 static void
318 tcp_fields_to_host(struct tcphdr *th)
319 {
320
321 NTOHL(th->th_seq);
322 NTOHL(th->th_ack);
323 NTOHS(th->th_win);
324 NTOHS(th->th_urp);
325 }
326
327 /*
328 * ... and reverse the above.
329 */
330 static void
331 tcp_fields_to_net(struct tcphdr *th)
332 {
333
334 HTONL(th->th_seq);
335 HTONL(th->th_ack);
336 HTONS(th->th_win);
337 HTONS(th->th_urp);
338 }
339
340 static void
341 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
342 {
343 if (th->th_urp > todrop) {
344 th->th_urp -= todrop;
345 } else {
346 *tiflags &= ~TH_URG;
347 th->th_urp = 0;
348 }
349 }
350
351 #ifdef TCP_CSUM_COUNTERS
352 #include <sys/device.h>
353
354 extern struct evcnt tcp_hwcsum_ok;
355 extern struct evcnt tcp_hwcsum_bad;
356 extern struct evcnt tcp_hwcsum_data;
357 extern struct evcnt tcp_swcsum;
358 #if defined(INET6)
359 extern struct evcnt tcp6_hwcsum_ok;
360 extern struct evcnt tcp6_hwcsum_bad;
361 extern struct evcnt tcp6_hwcsum_data;
362 extern struct evcnt tcp6_swcsum;
363 #endif /* defined(INET6) */
364
365 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
366
367 #else
368
369 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
370
371 #endif /* TCP_CSUM_COUNTERS */
372
373 #ifdef TCP_REASS_COUNTERS
374 #include <sys/device.h>
375
376 extern struct evcnt tcp_reass_;
377 extern struct evcnt tcp_reass_empty;
378 extern struct evcnt tcp_reass_iteration[8];
379 extern struct evcnt tcp_reass_prependfirst;
380 extern struct evcnt tcp_reass_prepend;
381 extern struct evcnt tcp_reass_insert;
382 extern struct evcnt tcp_reass_inserttail;
383 extern struct evcnt tcp_reass_append;
384 extern struct evcnt tcp_reass_appendtail;
385 extern struct evcnt tcp_reass_overlaptail;
386 extern struct evcnt tcp_reass_overlapfront;
387 extern struct evcnt tcp_reass_segdup;
388 extern struct evcnt tcp_reass_fragdup;
389
390 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
391
392 #else
393
394 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
395
396 #endif /* TCP_REASS_COUNTERS */
397
398 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
399 int);
400 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
401 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
402
403 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
404 #ifdef INET6
405 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
406 #endif
407
408 #define TRAVERSE(x) while ((x)->m_next) (x) = (x)->m_next
409
410 #if defined(MBUFTRACE)
411 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
412 #endif /* defined(MBUFTRACE) */
413
414 static struct pool tcpipqent_pool;
415
416 void
417 tcpipqent_init(void)
418 {
419
420 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
421 NULL, IPL_VM);
422 }
423
424 struct ipqent *
425 tcpipqent_alloc(void)
426 {
427 struct ipqent *ipqe;
428 int s;
429
430 s = splvm();
431 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
432 splx(s);
433
434 return ipqe;
435 }
436
437 void
438 tcpipqent_free(struct ipqent *ipqe)
439 {
440 int s;
441
442 s = splvm();
443 pool_put(&tcpipqent_pool, ipqe);
444 splx(s);
445 }
446
447 /*
448 * Insert segment ti into reassembly queue of tcp with
449 * control block tp. Return TH_FIN if reassembly now includes
450 * a segment with FIN.
451 */
452 static int
453 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
454 {
455 struct ipqent *p, *q, *nq, *tiqe = NULL;
456 struct socket *so = NULL;
457 int pkt_flags;
458 tcp_seq pkt_seq;
459 unsigned pkt_len;
460 u_long rcvpartdupbyte = 0;
461 u_long rcvoobyte;
462 #ifdef TCP_REASS_COUNTERS
463 u_int count = 0;
464 #endif
465 uint64_t *tcps;
466
467 if (tp->t_inpcb)
468 so = tp->t_inpcb->inp_socket;
469 #ifdef INET6
470 else if (tp->t_in6pcb)
471 so = tp->t_in6pcb->in6p_socket;
472 #endif
473
474 TCP_REASS_LOCK_CHECK(tp);
475
476 /*
477 * Call with th==NULL after become established to
478 * force pre-ESTABLISHED data up to user socket.
479 */
480 if (th == NULL)
481 goto present;
482
483 m_claimm(m, &tcp_reass_mowner);
484
485 rcvoobyte = tlen;
486 /*
487 * Copy these to local variables because the TCP header gets munged
488 * while we are collapsing mbufs.
489 */
490 pkt_seq = th->th_seq;
491 pkt_len = tlen;
492 pkt_flags = th->th_flags;
493
494 TCP_REASS_COUNTER_INCR(&tcp_reass_);
495
496 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
497 /*
498 * When we miss a packet, the vast majority of time we get
499 * packets that follow it in order. So optimize for that.
500 */
501 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
502 p->ipqe_len += pkt_len;
503 p->ipqe_flags |= pkt_flags;
504 m_cat(p->ipre_mlast, m);
505 TRAVERSE(p->ipre_mlast);
506 m = NULL;
507 tiqe = p;
508 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
509 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
510 goto skip_replacement;
511 }
512 /*
513 * While we're here, if the pkt is completely beyond
514 * anything we have, just insert it at the tail.
515 */
516 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
517 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
518 goto insert_it;
519 }
520 }
521
522 q = TAILQ_FIRST(&tp->segq);
523
524 if (q != NULL) {
525 /*
526 * If this segment immediately precedes the first out-of-order
527 * block, simply slap the segment in front of it and (mostly)
528 * skip the complicated logic.
529 */
530 if (pkt_seq + pkt_len == q->ipqe_seq) {
531 q->ipqe_seq = pkt_seq;
532 q->ipqe_len += pkt_len;
533 q->ipqe_flags |= pkt_flags;
534 m_cat(m, q->ipqe_m);
535 q->ipqe_m = m;
536 q->ipre_mlast = m; /* last mbuf may have changed */
537 TRAVERSE(q->ipre_mlast);
538 tiqe = q;
539 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
540 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
541 goto skip_replacement;
542 }
543 } else {
544 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
545 }
546
547 /*
548 * Find a segment which begins after this one does.
549 */
550 for (p = NULL; q != NULL; q = nq) {
551 nq = TAILQ_NEXT(q, ipqe_q);
552 #ifdef TCP_REASS_COUNTERS
553 count++;
554 #endif
555
556 /*
557 * If the received segment is just right after this
558 * fragment, merge the two together and then check
559 * for further overlaps.
560 */
561 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
562 pkt_len += q->ipqe_len;
563 pkt_flags |= q->ipqe_flags;
564 pkt_seq = q->ipqe_seq;
565 m_cat(q->ipre_mlast, m);
566 TRAVERSE(q->ipre_mlast);
567 m = q->ipqe_m;
568 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
569 goto free_ipqe;
570 }
571
572 /*
573 * If the received segment is completely past this
574 * fragment, we need to go to the next fragment.
575 */
576 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
577 p = q;
578 continue;
579 }
580
581 /*
582 * If the fragment is past the received segment,
583 * it (or any following) can't be concatenated.
584 */
585 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
586 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
587 break;
588 }
589
590 /*
591 * We've received all the data in this segment before.
592 * Mark it as a duplicate and return.
593 */
594 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
595 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
596 tcps = TCP_STAT_GETREF();
597 tcps[TCP_STAT_RCVDUPPACK]++;
598 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
599 TCP_STAT_PUTREF();
600 tcp_new_dsack(tp, pkt_seq, pkt_len);
601 m_freem(m);
602 if (tiqe != NULL) {
603 tcpipqent_free(tiqe);
604 }
605 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
606 goto out;
607 }
608
609 /*
610 * Received segment completely overlaps this fragment
611 * so we drop the fragment (this keeps the temporal
612 * ordering of segments correct).
613 */
614 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
615 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
616 rcvpartdupbyte += q->ipqe_len;
617 m_freem(q->ipqe_m);
618 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
619 goto free_ipqe;
620 }
621
622 /*
623 * Received segment extends past the end of the fragment.
624 * Drop the overlapping bytes, merge the fragment and
625 * segment, and treat as a longer received packet.
626 */
627 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
628 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
629 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
630 m_adj(m, overlap);
631 rcvpartdupbyte += overlap;
632 m_cat(q->ipre_mlast, m);
633 TRAVERSE(q->ipre_mlast);
634 m = q->ipqe_m;
635 pkt_seq = q->ipqe_seq;
636 pkt_len += q->ipqe_len - overlap;
637 rcvoobyte -= overlap;
638 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
639 goto free_ipqe;
640 }
641
642 /*
643 * Received segment extends past the front of the fragment.
644 * Drop the overlapping bytes on the received packet. The
645 * packet will then be concatenated with this fragment a
646 * bit later.
647 */
648 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
649 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
650 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
651 m_adj(m, -overlap);
652 pkt_len -= overlap;
653 rcvpartdupbyte += overlap;
654 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
655 rcvoobyte -= overlap;
656 }
657
658 /*
659 * If the received segment immediately precedes this
660 * fragment then tack the fragment onto this segment
661 * and reinsert the data.
662 */
663 if (q->ipqe_seq == pkt_seq + pkt_len) {
664 pkt_len += q->ipqe_len;
665 pkt_flags |= q->ipqe_flags;
666 m_cat(m, q->ipqe_m);
667 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
668 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
669 tp->t_segqlen--;
670 KASSERT(tp->t_segqlen >= 0);
671 KASSERT(tp->t_segqlen != 0 ||
672 (TAILQ_EMPTY(&tp->segq) &&
673 TAILQ_EMPTY(&tp->timeq)));
674 if (tiqe == NULL) {
675 tiqe = q;
676 } else {
677 tcpipqent_free(q);
678 }
679 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
680 break;
681 }
682
683 /*
684 * If the fragment is before the segment, remember it.
685 * When this loop is terminated, p will contain the
686 * pointer to the fragment that is right before the
687 * received segment.
688 */
689 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
690 p = q;
691
692 continue;
693
694 /*
695 * This is a common operation. It also will allow
696 * to save doing a malloc/free in most instances.
697 */
698 free_ipqe:
699 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
700 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
701 tp->t_segqlen--;
702 KASSERT(tp->t_segqlen >= 0);
703 KASSERT(tp->t_segqlen != 0 ||
704 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
705 if (tiqe == NULL) {
706 tiqe = q;
707 } else {
708 tcpipqent_free(q);
709 }
710 }
711
712 #ifdef TCP_REASS_COUNTERS
713 if (count > 7)
714 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
715 else if (count > 0)
716 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
717 #endif
718
719 insert_it:
720 /*
721 * Allocate a new queue entry (block) since the received segment
722 * did not collapse onto any other out-of-order block. If it had
723 * collapsed, tiqe would not be NULL and we would be reusing it.
724 *
725 * If the allocation fails, drop the packet.
726 */
727 if (tiqe == NULL) {
728 tiqe = tcpipqent_alloc();
729 if (tiqe == NULL) {
730 TCP_STATINC(TCP_STAT_RCVMEMDROP);
731 m_freem(m);
732 goto out;
733 }
734 }
735
736 /*
737 * Update the counters.
738 */
739 tp->t_rcvoopack++;
740 tcps = TCP_STAT_GETREF();
741 tcps[TCP_STAT_RCVOOPACK]++;
742 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
743 if (rcvpartdupbyte) {
744 tcps[TCP_STAT_RCVPARTDUPPACK]++;
745 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
746 }
747 TCP_STAT_PUTREF();
748
749 /*
750 * Insert the new fragment queue entry into both queues.
751 */
752 tiqe->ipqe_m = m;
753 tiqe->ipre_mlast = m;
754 tiqe->ipqe_seq = pkt_seq;
755 tiqe->ipqe_len = pkt_len;
756 tiqe->ipqe_flags = pkt_flags;
757 if (p == NULL) {
758 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
759 } else {
760 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
761 }
762 tp->t_segqlen++;
763
764 skip_replacement:
765 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
766
767 present:
768 /*
769 * Present data to user, advancing rcv_nxt through
770 * completed sequence space.
771 */
772 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
773 goto out;
774 q = TAILQ_FIRST(&tp->segq);
775 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
776 goto out;
777 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
778 goto out;
779
780 tp->rcv_nxt += q->ipqe_len;
781 pkt_flags = q->ipqe_flags & TH_FIN;
782 nd6_hint(tp);
783
784 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
785 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
786 tp->t_segqlen--;
787 KASSERT(tp->t_segqlen >= 0);
788 KASSERT(tp->t_segqlen != 0 ||
789 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
790 if (so->so_state & SS_CANTRCVMORE)
791 m_freem(q->ipqe_m);
792 else
793 sbappendstream(&so->so_rcv, q->ipqe_m);
794 tcpipqent_free(q);
795 TCP_REASS_UNLOCK(tp);
796 sorwakeup(so);
797 return pkt_flags;
798
799 out:
800 TCP_REASS_UNLOCK(tp);
801 return 0;
802 }
803
804 #ifdef INET6
805 int
806 tcp6_input(struct mbuf **mp, int *offp, int proto)
807 {
808 struct mbuf *m = *mp;
809
810 /*
811 * draft-itojun-ipv6-tcp-to-anycast
812 * better place to put this in?
813 */
814 if (m->m_flags & M_ANYCAST6) {
815 struct ip6_hdr *ip6;
816 if (m->m_len < sizeof(struct ip6_hdr)) {
817 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
818 TCP_STATINC(TCP_STAT_RCVSHORT);
819 return IPPROTO_DONE;
820 }
821 }
822 ip6 = mtod(m, struct ip6_hdr *);
823 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
824 (char *)&ip6->ip6_dst - (char *)ip6);
825 return IPPROTO_DONE;
826 }
827
828 tcp_input(m, *offp, proto);
829 return IPPROTO_DONE;
830 }
831 #endif
832
833 static void
834 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
835 {
836 char src[INET_ADDRSTRLEN];
837 char dst[INET_ADDRSTRLEN];
838
839 if (ip) {
840 in_print(src, sizeof(src), &ip->ip_src);
841 in_print(dst, sizeof(dst), &ip->ip_dst);
842 } else {
843 strlcpy(src, "(unknown)", sizeof(src));
844 strlcpy(dst, "(unknown)", sizeof(dst));
845 }
846 log(LOG_INFO,
847 "Connection attempt to TCP %s:%d from %s:%d\n",
848 dst, ntohs(th->th_dport),
849 src, ntohs(th->th_sport));
850 }
851
852 #ifdef INET6
853 static void
854 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
855 {
856 char src[INET6_ADDRSTRLEN];
857 char dst[INET6_ADDRSTRLEN];
858
859 if (ip6) {
860 in6_print(src, sizeof(src), &ip6->ip6_src);
861 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
862 } else {
863 strlcpy(src, "(unknown v6)", sizeof(src));
864 strlcpy(dst, "(unknown v6)", sizeof(dst));
865 }
866 log(LOG_INFO,
867 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
868 dst, ntohs(th->th_dport),
869 src, ntohs(th->th_sport));
870 }
871 #endif
872
873 /*
874 * Checksum extended TCP header and data.
875 */
876 int
877 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
878 int toff, int off, int tlen)
879 {
880 struct ifnet *rcvif;
881 int s;
882
883 /*
884 * XXX it's better to record and check if this mbuf is
885 * already checked.
886 */
887
888 rcvif = m_get_rcvif(m, &s);
889 if (__predict_false(rcvif == NULL))
890 goto badcsum; /* XXX */
891
892 switch (af) {
893 case AF_INET:
894 switch (m->m_pkthdr.csum_flags &
895 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
896 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
897 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
898 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
899 goto badcsum;
900
901 case M_CSUM_TCPv4|M_CSUM_DATA: {
902 u_int32_t hw_csum = m->m_pkthdr.csum_data;
903
904 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
905 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
906 const struct ip *ip =
907 mtod(m, const struct ip *);
908
909 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
910 ip->ip_dst.s_addr,
911 htons(hw_csum + tlen + off + IPPROTO_TCP));
912 }
913 if ((hw_csum ^ 0xffff) != 0)
914 goto badcsum;
915 break;
916 }
917
918 case M_CSUM_TCPv4:
919 /* Checksum was okay. */
920 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
921 break;
922
923 default:
924 /*
925 * Must compute it ourselves. Maybe skip checksum
926 * on loopback interfaces.
927 */
928 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
929 tcp_do_loopback_cksum)) {
930 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
931 if (in4_cksum(m, IPPROTO_TCP, toff,
932 tlen + off) != 0)
933 goto badcsum;
934 }
935 break;
936 }
937 break;
938
939 #ifdef INET6
940 case AF_INET6:
941 switch (m->m_pkthdr.csum_flags &
942 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
943 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
944 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
945 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
946 goto badcsum;
947
948 #if 0 /* notyet */
949 case M_CSUM_TCPv6|M_CSUM_DATA:
950 #endif
951
952 case M_CSUM_TCPv6:
953 /* Checksum was okay. */
954 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
955 break;
956
957 default:
958 /*
959 * Must compute it ourselves. Maybe skip checksum
960 * on loopback interfaces.
961 */
962 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
963 tcp_do_loopback_cksum)) {
964 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
965 if (in6_cksum(m, IPPROTO_TCP, toff,
966 tlen + off) != 0)
967 goto badcsum;
968 }
969 }
970 break;
971 #endif /* INET6 */
972 }
973 m_put_rcvif(rcvif, &s);
974
975 return 0;
976
977 badcsum:
978 m_put_rcvif(rcvif, &s);
979 TCP_STATINC(TCP_STAT_RCVBADSUM);
980 return -1;
981 }
982
983 /*
984 * When a packet arrives addressed to a vestigial tcpbp, we
985 * nevertheless have to respond to it per the spec.
986 *
987 * This code is duplicated from the one in tcp_input().
988 */
989 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
990 struct mbuf *m, int tlen)
991 {
992 int tiflags;
993 int todrop;
994 uint32_t t_flags = 0;
995 uint64_t *tcps;
996
997 tiflags = th->th_flags;
998 todrop = vp->rcv_nxt - th->th_seq;
999
1000 if (todrop > 0) {
1001 if (tiflags & TH_SYN) {
1002 tiflags &= ~TH_SYN;
1003 th->th_seq++;
1004 tcp_urp_drop(th, 1, &tiflags);
1005 todrop--;
1006 }
1007 if (todrop > tlen ||
1008 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1009 /*
1010 * Any valid FIN or RST must be to the left of the
1011 * window. At this point the FIN or RST must be a
1012 * duplicate or out of sequence; drop it.
1013 */
1014 if (tiflags & TH_RST)
1015 goto drop;
1016 tiflags &= ~(TH_FIN|TH_RST);
1017
1018 /*
1019 * Send an ACK to resynchronize and drop any data.
1020 * But keep on processing for RST or ACK.
1021 */
1022 t_flags |= TF_ACKNOW;
1023 todrop = tlen;
1024 tcps = TCP_STAT_GETREF();
1025 tcps[TCP_STAT_RCVDUPPACK] += 1;
1026 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1027 TCP_STAT_PUTREF();
1028 } else if ((tiflags & TH_RST) &&
1029 th->th_seq != vp->rcv_nxt) {
1030 /*
1031 * Test for reset before adjusting the sequence
1032 * number for overlapping data.
1033 */
1034 goto dropafterack_ratelim;
1035 } else {
1036 tcps = TCP_STAT_GETREF();
1037 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1038 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1039 TCP_STAT_PUTREF();
1040 }
1041
1042 // tcp_new_dsack(tp, th->th_seq, todrop);
1043 // hdroptlen += todrop; /*drop from head afterwards*/
1044
1045 th->th_seq += todrop;
1046 tlen -= todrop;
1047 tcp_urp_drop(th, todrop, &tiflags);
1048 }
1049
1050 /*
1051 * If new data are received on a connection after the
1052 * user processes are gone, then RST the other end.
1053 */
1054 if (tlen) {
1055 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1056 goto dropwithreset;
1057 }
1058
1059 /*
1060 * If segment ends after window, drop trailing data
1061 * (and PUSH and FIN); if nothing left, just ACK.
1062 */
1063 todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1064
1065 if (todrop > 0) {
1066 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1067 if (todrop >= tlen) {
1068 /*
1069 * The segment actually starts after the window.
1070 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1071 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1072 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1073 */
1074 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1075
1076 /*
1077 * If a new connection request is received
1078 * while in TIME_WAIT, drop the old connection
1079 * and start over if the sequence numbers
1080 * are above the previous ones.
1081 */
1082 if ((tiflags & TH_SYN) &&
1083 SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1084 /*
1085 * We only support this in the !NOFDREF case, which
1086 * is to say: not here.
1087 */
1088 goto dropwithreset;
1089 }
1090
1091 /*
1092 * If window is closed can only take segments at
1093 * window edge, and have to drop data and PUSH from
1094 * incoming segments. Continue processing, but
1095 * remember to ack. Otherwise, drop segment
1096 * and (if not RST) ack.
1097 */
1098 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1099 t_flags |= TF_ACKNOW;
1100 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1101 } else {
1102 goto dropafterack;
1103 }
1104 } else {
1105 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1106 }
1107 m_adj(m, -todrop);
1108 tlen -= todrop;
1109 tiflags &= ~(TH_PUSH|TH_FIN);
1110 }
1111
1112 if (tiflags & TH_RST) {
1113 if (th->th_seq != vp->rcv_nxt)
1114 goto dropafterack_ratelim;
1115
1116 vtw_del(vp->ctl, vp->vtw);
1117 goto drop;
1118 }
1119
1120 /*
1121 * If the ACK bit is off we drop the segment and return.
1122 */
1123 if ((tiflags & TH_ACK) == 0) {
1124 if (t_flags & TF_ACKNOW)
1125 goto dropafterack;
1126 goto drop;
1127 }
1128
1129 /*
1130 * In TIME_WAIT state the only thing that should arrive
1131 * is a retransmission of the remote FIN. Acknowledge
1132 * it and restart the finack timer.
1133 */
1134 vtw_restart(vp);
1135 goto dropafterack;
1136
1137 dropafterack:
1138 /*
1139 * Generate an ACK dropping incoming segment if it occupies
1140 * sequence space, where the ACK reflects our state.
1141 */
1142 if (tiflags & TH_RST)
1143 goto drop;
1144 goto dropafterack2;
1145
1146 dropafterack_ratelim:
1147 /*
1148 * We may want to rate-limit ACKs against SYN/RST attack.
1149 */
1150 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1151 tcp_ackdrop_ppslim) == 0) {
1152 /* XXX stat */
1153 goto drop;
1154 }
1155 /* ...fall into dropafterack2... */
1156
1157 dropafterack2:
1158 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1159 return;
1160
1161 dropwithreset:
1162 /*
1163 * Generate a RST, dropping incoming segment.
1164 * Make ACK acceptable to originator of segment.
1165 */
1166 if (tiflags & TH_RST)
1167 goto drop;
1168
1169 if (tiflags & TH_ACK) {
1170 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1171 } else {
1172 if (tiflags & TH_SYN)
1173 ++tlen;
1174 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1175 TH_RST|TH_ACK);
1176 }
1177 return;
1178 drop:
1179 m_freem(m);
1180 }
1181
1182 /*
1183 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1184 */
1185 void
1186 tcp_input(struct mbuf *m, ...)
1187 {
1188 struct tcphdr *th;
1189 struct ip *ip;
1190 struct inpcb *inp;
1191 #ifdef INET6
1192 struct ip6_hdr *ip6;
1193 struct in6pcb *in6p;
1194 #endif
1195 u_int8_t *optp = NULL;
1196 int optlen = 0;
1197 int len, tlen, toff, hdroptlen = 0;
1198 struct tcpcb *tp = NULL;
1199 int tiflags;
1200 struct socket *so = NULL;
1201 int todrop, acked, ourfinisacked, needoutput = 0;
1202 bool dupseg;
1203 #ifdef TCP_DEBUG
1204 short ostate = 0;
1205 #endif
1206 u_long tiwin;
1207 struct tcp_opt_info opti;
1208 int off, iphlen;
1209 va_list ap;
1210 int af; /* af on the wire */
1211 struct mbuf *tcp_saveti = NULL;
1212 uint32_t ts_rtt;
1213 uint8_t iptos;
1214 uint64_t *tcps;
1215 vestigial_inpcb_t vestige;
1216
1217 vestige.valid = 0;
1218
1219 MCLAIM(m, &tcp_rx_mowner);
1220 va_start(ap, m);
1221 toff = va_arg(ap, int);
1222 (void)va_arg(ap, int); /* ignore value, advance ap */
1223 va_end(ap);
1224
1225 TCP_STATINC(TCP_STAT_RCVTOTAL);
1226
1227 memset(&opti, 0, sizeof(opti));
1228 opti.ts_present = 0;
1229 opti.maxseg = 0;
1230
1231 /*
1232 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1233 *
1234 * TCP is, by definition, unicast, so we reject all
1235 * multicast outright.
1236 *
1237 * Note, there are additional src/dst address checks in
1238 * the AF-specific code below.
1239 */
1240 if (m->m_flags & (M_BCAST|M_MCAST)) {
1241 /* XXX stat */
1242 goto drop;
1243 }
1244 #ifdef INET6
1245 if (m->m_flags & M_ANYCAST6) {
1246 /* XXX stat */
1247 goto drop;
1248 }
1249 #endif
1250
1251 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
1252 if (th == NULL) {
1253 TCP_STATINC(TCP_STAT_RCVSHORT);
1254 return;
1255 }
1256
1257 /*
1258 * Get IP and TCP header.
1259 * Note: IP leaves IP header in first mbuf.
1260 */
1261 ip = mtod(m, struct ip *);
1262 switch (ip->ip_v) {
1263 case 4:
1264 #ifdef INET6
1265 ip6 = NULL;
1266 #endif
1267 af = AF_INET;
1268 iphlen = sizeof(struct ip);
1269
1270 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1271 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1272 goto drop;
1273
1274 /* We do the checksum after PCB lookup... */
1275 len = ntohs(ip->ip_len);
1276 tlen = len - toff;
1277 iptos = ip->ip_tos;
1278 break;
1279 #ifdef INET6
1280 case 6:
1281 ip = NULL;
1282 iphlen = sizeof(struct ip6_hdr);
1283 af = AF_INET6;
1284 ip6 = mtod(m, struct ip6_hdr *);
1285
1286 /*
1287 * Be proactive about unspecified IPv6 address in source.
1288 * As we use all-zero to indicate unbounded/unconnected pcb,
1289 * unspecified IPv6 address can be used to confuse us.
1290 *
1291 * Note that packets with unspecified IPv6 destination is
1292 * already dropped in ip6_input.
1293 */
1294 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1295 /* XXX stat */
1296 goto drop;
1297 }
1298
1299 /*
1300 * Make sure destination address is not multicast.
1301 * Source address checked in ip6_input().
1302 */
1303 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1304 /* XXX stat */
1305 goto drop;
1306 }
1307
1308 /* We do the checksum after PCB lookup... */
1309 len = m->m_pkthdr.len;
1310 tlen = len - toff;
1311 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1312 break;
1313 #endif
1314 default:
1315 m_freem(m);
1316 return;
1317 }
1318
1319 /*
1320 * Enforce alignment requirements that are violated in
1321 * some cases, see kern/50766 for details.
1322 */
1323 if (TCP_HDR_ALIGNED_P(th) == 0) {
1324 m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1325 if (m == NULL) {
1326 TCP_STATINC(TCP_STAT_RCVSHORT);
1327 return;
1328 }
1329 ip = mtod(m, struct ip *);
1330 #ifdef INET6
1331 ip6 = mtod(m, struct ip6_hdr *);
1332 #endif
1333 th = (struct tcphdr *)(mtod(m, char *) + toff);
1334 }
1335 KASSERT(TCP_HDR_ALIGNED_P(th));
1336
1337 /*
1338 * Check that TCP offset makes sense, pull out TCP options and
1339 * adjust length.
1340 */
1341 off = th->th_off << 2;
1342 if (off < sizeof(struct tcphdr) || off > tlen) {
1343 TCP_STATINC(TCP_STAT_RCVBADOFF);
1344 goto drop;
1345 }
1346 tlen -= off;
1347
1348 if (off > sizeof(struct tcphdr)) {
1349 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1350 if (th == NULL) {
1351 TCP_STATINC(TCP_STAT_RCVSHORT);
1352 return;
1353 }
1354 KASSERT(TCP_HDR_ALIGNED_P(th));
1355 optlen = off - sizeof(struct tcphdr);
1356 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1357
1358 /*
1359 * Do quick retrieval of timestamp options.
1360 *
1361 * If timestamp is the only option and it's formatted as
1362 * recommended in RFC 1323 appendix A, we quickly get the
1363 * values now and don't bother calling tcp_dooptions(),
1364 * etc.
1365 */
1366 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1367 (optlen > TCPOLEN_TSTAMP_APPA &&
1368 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1369 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1370 (th->th_flags & TH_SYN) == 0) {
1371 opti.ts_present = 1;
1372 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1373 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1374 optp = NULL; /* we've parsed the options */
1375 }
1376 }
1377 tiflags = th->th_flags;
1378
1379 /*
1380 * Checksum extended TCP header and data
1381 */
1382 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1383 goto badcsum;
1384
1385 /*
1386 * Locate pcb for segment.
1387 */
1388 findpcb:
1389 inp = NULL;
1390 #ifdef INET6
1391 in6p = NULL;
1392 #endif
1393 switch (af) {
1394 case AF_INET:
1395 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1396 ip->ip_dst, th->th_dport, &vestige);
1397 if (inp == NULL && !vestige.valid) {
1398 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1399 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1400 th->th_dport);
1401 }
1402 #ifdef INET6
1403 if (inp == NULL && !vestige.valid) {
1404 struct in6_addr s, d;
1405
1406 /* mapped addr case */
1407 in6_in_2_v4mapin6(&ip->ip_src, &s);
1408 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1409 in6p = in6_pcblookup_connect(&tcbtable, &s,
1410 th->th_sport, &d, th->th_dport, 0, &vestige);
1411 if (in6p == 0 && !vestige.valid) {
1412 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1413 in6p = in6_pcblookup_bind(&tcbtable, &d,
1414 th->th_dport, 0);
1415 }
1416 }
1417 #endif
1418 #ifndef INET6
1419 if (inp == NULL && !vestige.valid)
1420 #else
1421 if (inp == NULL && in6p == NULL && !vestige.valid)
1422 #endif
1423 {
1424 TCP_STATINC(TCP_STAT_NOPORT);
1425 if (tcp_log_refused &&
1426 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1427 tcp4_log_refused(ip, th);
1428 }
1429 tcp_fields_to_host(th);
1430 goto dropwithreset_ratelim;
1431 }
1432 #if defined(IPSEC)
1433 if (ipsec_used) {
1434 if (inp && ipsec_in_reject(m, inp)) {
1435 goto drop;
1436 }
1437 #ifdef INET6
1438 else if (in6p && ipsec_in_reject(m, in6p)) {
1439 goto drop;
1440 }
1441 #endif
1442 }
1443 #endif /*IPSEC*/
1444 break;
1445 #ifdef INET6
1446 case AF_INET6:
1447 {
1448 int faith;
1449
1450 #if defined(NFAITH) && NFAITH > 0
1451 faith = faithprefix(&ip6->ip6_dst);
1452 #else
1453 faith = 0;
1454 #endif
1455 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1456 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1457 if (!in6p && !vestige.valid) {
1458 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1459 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1460 th->th_dport, faith);
1461 }
1462 if (!in6p && !vestige.valid) {
1463 TCP_STATINC(TCP_STAT_NOPORT);
1464 if (tcp_log_refused &&
1465 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1466 tcp6_log_refused(ip6, th);
1467 }
1468 tcp_fields_to_host(th);
1469 goto dropwithreset_ratelim;
1470 }
1471 #if defined(IPSEC)
1472 if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1473 goto drop;
1474 }
1475 #endif
1476 break;
1477 }
1478 #endif
1479 }
1480
1481 tcp_fields_to_host(th);
1482
1483 /*
1484 * If the state is CLOSED (i.e., TCB does not exist) then
1485 * all data in the incoming segment is discarded.
1486 * If the TCB exists but is in CLOSED state, it is embryonic,
1487 * but should either do a listen or a connect soon.
1488 */
1489 tp = NULL;
1490 so = NULL;
1491 if (inp) {
1492 /* Check the minimum TTL for socket. */
1493 if (ip->ip_ttl < inp->inp_ip_minttl)
1494 goto drop;
1495
1496 tp = intotcpcb(inp);
1497 so = inp->inp_socket;
1498 }
1499 #ifdef INET6
1500 else if (in6p) {
1501 tp = in6totcpcb(in6p);
1502 so = in6p->in6p_socket;
1503 }
1504 #endif
1505 else if (vestige.valid) {
1506 /* We do not support the resurrection of vtw tcpcps. */
1507 tcp_vtw_input(th, &vestige, m, tlen);
1508 m = NULL;
1509 goto drop;
1510 }
1511
1512 if (tp == NULL)
1513 goto dropwithreset_ratelim;
1514 if (tp->t_state == TCPS_CLOSED)
1515 goto drop;
1516
1517 KASSERT(so->so_lock == softnet_lock);
1518 KASSERT(solocked(so));
1519
1520 /* Unscale the window into a 32-bit value. */
1521 if ((tiflags & TH_SYN) == 0)
1522 tiwin = th->th_win << tp->snd_scale;
1523 else
1524 tiwin = th->th_win;
1525
1526 #ifdef INET6
1527 /* save packet options if user wanted */
1528 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1529 if (in6p->in6p_options) {
1530 m_freem(in6p->in6p_options);
1531 in6p->in6p_options = NULL;
1532 }
1533 KASSERT(ip6 != NULL);
1534 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1535 }
1536 #endif
1537
1538 if (so->so_options & SO_DEBUG) {
1539 #ifdef TCP_DEBUG
1540 ostate = tp->t_state;
1541 #endif
1542
1543 tcp_saveti = NULL;
1544 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1545 goto nosave;
1546
1547 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1548 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1549 if (tcp_saveti == NULL)
1550 goto nosave;
1551 } else {
1552 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1553 if (tcp_saveti == NULL)
1554 goto nosave;
1555 MCLAIM(m, &tcp_mowner);
1556 tcp_saveti->m_len = iphlen;
1557 m_copydata(m, 0, iphlen,
1558 mtod(tcp_saveti, void *));
1559 }
1560
1561 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1562 m_freem(tcp_saveti);
1563 tcp_saveti = NULL;
1564 } else {
1565 tcp_saveti->m_len += sizeof(struct tcphdr);
1566 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1567 sizeof(struct tcphdr));
1568 }
1569 nosave:;
1570 }
1571
1572 if (so->so_options & SO_ACCEPTCONN) {
1573 union syn_cache_sa src;
1574 union syn_cache_sa dst;
1575
1576 KASSERT(tp->t_state == TCPS_LISTEN);
1577
1578 memset(&src, 0, sizeof(src));
1579 memset(&dst, 0, sizeof(dst));
1580 switch (af) {
1581 case AF_INET:
1582 src.sin.sin_len = sizeof(struct sockaddr_in);
1583 src.sin.sin_family = AF_INET;
1584 src.sin.sin_addr = ip->ip_src;
1585 src.sin.sin_port = th->th_sport;
1586
1587 dst.sin.sin_len = sizeof(struct sockaddr_in);
1588 dst.sin.sin_family = AF_INET;
1589 dst.sin.sin_addr = ip->ip_dst;
1590 dst.sin.sin_port = th->th_dport;
1591 break;
1592 #ifdef INET6
1593 case AF_INET6:
1594 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1595 src.sin6.sin6_family = AF_INET6;
1596 src.sin6.sin6_addr = ip6->ip6_src;
1597 src.sin6.sin6_port = th->th_sport;
1598
1599 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1600 dst.sin6.sin6_family = AF_INET6;
1601 dst.sin6.sin6_addr = ip6->ip6_dst;
1602 dst.sin6.sin6_port = th->th_dport;
1603 break;
1604 #endif
1605 }
1606
1607 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1608 if (tiflags & TH_RST) {
1609 syn_cache_reset(&src.sa, &dst.sa, th);
1610 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1611 (TH_ACK|TH_SYN)) {
1612 /*
1613 * Received a SYN,ACK. This should never
1614 * happen while we are in LISTEN. Send an RST.
1615 */
1616 goto badsyn;
1617 } else if (tiflags & TH_ACK) {
1618 so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1619 if (so == NULL) {
1620 /*
1621 * We don't have a SYN for this ACK;
1622 * send an RST.
1623 */
1624 goto badsyn;
1625 } else if (so == (struct socket *)(-1)) {
1626 /*
1627 * We were unable to create the
1628 * connection. If the 3-way handshake
1629 * was completed, and RST has been
1630 * sent to the peer. Since the mbuf
1631 * might be in use for the reply, do
1632 * not free it.
1633 */
1634 m = NULL;
1635 } else {
1636 /*
1637 * We have created a full-blown
1638 * connection.
1639 */
1640 tp = NULL;
1641 inp = NULL;
1642 #ifdef INET6
1643 in6p = NULL;
1644 #endif
1645 switch (so->so_proto->pr_domain->dom_family) {
1646 case AF_INET:
1647 inp = sotoinpcb(so);
1648 tp = intotcpcb(inp);
1649 break;
1650 #ifdef INET6
1651 case AF_INET6:
1652 in6p = sotoin6pcb(so);
1653 tp = in6totcpcb(in6p);
1654 break;
1655 #endif
1656 }
1657 if (tp == NULL)
1658 goto badsyn; /*XXX*/
1659 tiwin <<= tp->snd_scale;
1660 goto after_listen;
1661 }
1662 } else {
1663 /*
1664 * None of RST, SYN or ACK was set.
1665 * This is an invalid packet for a
1666 * TCB in LISTEN state. Send a RST.
1667 */
1668 goto badsyn;
1669 }
1670 } else {
1671 /*
1672 * Received a SYN.
1673 */
1674
1675 #ifdef INET6
1676 /*
1677 * If deprecated address is forbidden, we do
1678 * not accept SYN to deprecated interface
1679 * address to prevent any new inbound
1680 * connection from getting established.
1681 * When we do not accept SYN, we send a TCP
1682 * RST, with deprecated source address (instead
1683 * of dropping it). We compromise it as it is
1684 * much better for peer to send a RST, and
1685 * RST will be the final packet for the
1686 * exchange.
1687 *
1688 * If we do not forbid deprecated addresses, we
1689 * accept the SYN packet. RFC2462 does not
1690 * suggest dropping SYN in this case.
1691 * If we decipher RFC2462 5.5.4, it says like
1692 * this:
1693 * 1. use of deprecated addr with existing
1694 * communication is okay - "SHOULD continue
1695 * to be used"
1696 * 2. use of it with new communication:
1697 * (2a) "SHOULD NOT be used if alternate
1698 * address with sufficient scope is
1699 * available"
1700 * (2b) nothing mentioned otherwise.
1701 * Here we fall into (2b) case as we have no
1702 * choice in our source address selection - we
1703 * must obey the peer.
1704 *
1705 * The wording in RFC2462 is confusing, and
1706 * there are multiple description text for
1707 * deprecated address handling - worse, they
1708 * are not exactly the same. I believe 5.5.4
1709 * is the best one, so we follow 5.5.4.
1710 */
1711 if (af == AF_INET6 && !ip6_use_deprecated) {
1712 struct in6_ifaddr *ia6;
1713 int s;
1714 struct ifnet *rcvif = m_get_rcvif(m, &s);
1715 if (rcvif == NULL)
1716 goto dropwithreset; /* XXX */
1717 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1718 &ip6->ip6_dst)) &&
1719 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1720 tp = NULL;
1721 m_put_rcvif(rcvif, &s);
1722 goto dropwithreset;
1723 }
1724 m_put_rcvif(rcvif, &s);
1725 }
1726 #endif
1727
1728 /*
1729 * LISTEN socket received a SYN from itself? This
1730 * can't possibly be valid; drop the packet.
1731 */
1732 if (th->th_sport == th->th_dport) {
1733 int eq = 0;
1734
1735 switch (af) {
1736 case AF_INET:
1737 eq = in_hosteq(ip->ip_src, ip->ip_dst);
1738 break;
1739 #ifdef INET6
1740 case AF_INET6:
1741 eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1742 &ip6->ip6_dst);
1743 break;
1744 #endif
1745 }
1746 if (eq) {
1747 TCP_STATINC(TCP_STAT_BADSYN);
1748 goto drop;
1749 }
1750 }
1751
1752 /*
1753 * SYN looks ok; create compressed TCP
1754 * state for it.
1755 */
1756 if (so->so_qlen <= so->so_qlimit &&
1757 syn_cache_add(&src.sa, &dst.sa, th, toff,
1758 so, m, optp, optlen, &opti))
1759 m = NULL;
1760 }
1761
1762 goto drop;
1763 }
1764
1765 after_listen:
1766 /*
1767 * From here on, we're dealing with !LISTEN.
1768 */
1769 KASSERT(tp->t_state != TCPS_LISTEN);
1770
1771 /*
1772 * Segment received on connection.
1773 * Reset idle time and keep-alive timer.
1774 */
1775 tp->t_rcvtime = tcp_now;
1776 if (TCPS_HAVEESTABLISHED(tp->t_state))
1777 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1778
1779 /*
1780 * Process options.
1781 */
1782 #ifdef TCP_SIGNATURE
1783 if (optp || (tp->t_flags & TF_SIGNATURE))
1784 #else
1785 if (optp)
1786 #endif
1787 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1788 goto drop;
1789
1790 if (TCP_SACK_ENABLED(tp)) {
1791 tcp_del_sackholes(tp, th);
1792 }
1793
1794 if (TCP_ECN_ALLOWED(tp)) {
1795 if (tiflags & TH_CWR) {
1796 tp->t_flags &= ~TF_ECN_SND_ECE;
1797 }
1798 switch (iptos & IPTOS_ECN_MASK) {
1799 case IPTOS_ECN_CE:
1800 tp->t_flags |= TF_ECN_SND_ECE;
1801 TCP_STATINC(TCP_STAT_ECN_CE);
1802 break;
1803 case IPTOS_ECN_ECT0:
1804 TCP_STATINC(TCP_STAT_ECN_ECT);
1805 break;
1806 case IPTOS_ECN_ECT1:
1807 /* XXX: ignore for now -- rpaulo */
1808 break;
1809 }
1810 /*
1811 * Congestion experienced.
1812 * Ignore if we are already trying to recover.
1813 */
1814 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1815 tp->t_congctl->cong_exp(tp);
1816 }
1817
1818 if (opti.ts_present && opti.ts_ecr) {
1819 /*
1820 * Calculate the RTT from the returned time stamp and the
1821 * connection's time base. If the time stamp is later than
1822 * the current time, or is extremely old, fall back to non-1323
1823 * RTT calculation. Since ts_rtt is unsigned, we can test both
1824 * at the same time.
1825 *
1826 * Note that ts_rtt is in units of slow ticks (500
1827 * ms). Since most earthbound RTTs are < 500 ms,
1828 * observed values will have large quantization noise.
1829 * Our smoothed RTT is then the fraction of observed
1830 * samples that are 1 tick instead of 0 (times 500
1831 * ms).
1832 *
1833 * ts_rtt is increased by 1 to denote a valid sample,
1834 * with 0 indicating an invalid measurement. This
1835 * extra 1 must be removed when ts_rtt is used, or
1836 * else an an erroneous extra 500 ms will result.
1837 */
1838 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1839 if (ts_rtt > TCP_PAWS_IDLE)
1840 ts_rtt = 0;
1841 } else {
1842 ts_rtt = 0;
1843 }
1844
1845 /*
1846 * Fast path: check for the two common cases of a uni-directional
1847 * data transfer. If:
1848 * o We are in the ESTABLISHED state, and
1849 * o The packet has no control flags, and
1850 * o The packet is in-sequence, and
1851 * o The window didn't change, and
1852 * o We are not retransmitting
1853 * It's a candidate.
1854 *
1855 * If the length (tlen) is zero and the ack moved forward, we're
1856 * the sender side of the transfer. Just free the data acked and
1857 * wake any higher level process that was blocked waiting for
1858 * space.
1859 *
1860 * If the length is non-zero and the ack didn't move, we're the
1861 * receiver side. If we're getting packets in-order (the reassembly
1862 * queue is empty), add the data to the socket buffer and note
1863 * that we need a delayed ack.
1864 */
1865 if (tp->t_state == TCPS_ESTABLISHED &&
1866 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1867 == TH_ACK &&
1868 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1869 th->th_seq == tp->rcv_nxt &&
1870 tiwin && tiwin == tp->snd_wnd &&
1871 tp->snd_nxt == tp->snd_max) {
1872
1873 /*
1874 * If last ACK falls within this segment's sequence numbers,
1875 * record the timestamp.
1876 * NOTE that the test is modified according to the latest
1877 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1878 *
1879 * note that we already know
1880 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1881 */
1882 if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1883 tp->ts_recent_age = tcp_now;
1884 tp->ts_recent = opti.ts_val;
1885 }
1886
1887 if (tlen == 0) {
1888 /* Ack prediction. */
1889 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1890 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1891 tp->snd_cwnd >= tp->snd_wnd &&
1892 tp->t_partialacks < 0) {
1893 /*
1894 * this is a pure ack for outstanding data.
1895 */
1896 if (ts_rtt)
1897 tcp_xmit_timer(tp, ts_rtt - 1);
1898 else if (tp->t_rtttime &&
1899 SEQ_GT(th->th_ack, tp->t_rtseq))
1900 tcp_xmit_timer(tp,
1901 tcp_now - tp->t_rtttime);
1902 acked = th->th_ack - tp->snd_una;
1903 tcps = TCP_STAT_GETREF();
1904 tcps[TCP_STAT_PREDACK]++;
1905 tcps[TCP_STAT_RCVACKPACK]++;
1906 tcps[TCP_STAT_RCVACKBYTE] += acked;
1907 TCP_STAT_PUTREF();
1908 nd6_hint(tp);
1909
1910 if (acked > (tp->t_lastoff - tp->t_inoff))
1911 tp->t_lastm = NULL;
1912 sbdrop(&so->so_snd, acked);
1913 tp->t_lastoff -= acked;
1914
1915 icmp_check(tp, th, acked);
1916
1917 tp->snd_una = th->th_ack;
1918 tp->snd_fack = tp->snd_una;
1919 if (SEQ_LT(tp->snd_high, tp->snd_una))
1920 tp->snd_high = tp->snd_una;
1921 m_freem(m);
1922
1923 /*
1924 * If all outstanding data are acked, stop
1925 * retransmit timer, otherwise restart timer
1926 * using current (possibly backed-off) value.
1927 * If process is waiting for space,
1928 * wakeup/selnotify/signal. If data
1929 * are ready to send, let tcp_output
1930 * decide between more output or persist.
1931 */
1932 if (tp->snd_una == tp->snd_max)
1933 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1934 else if (TCP_TIMER_ISARMED(tp,
1935 TCPT_PERSIST) == 0)
1936 TCP_TIMER_ARM(tp, TCPT_REXMT,
1937 tp->t_rxtcur);
1938
1939 sowwakeup(so);
1940 if (so->so_snd.sb_cc) {
1941 KERNEL_LOCK(1, NULL);
1942 (void)tcp_output(tp);
1943 KERNEL_UNLOCK_ONE(NULL);
1944 }
1945 if (tcp_saveti)
1946 m_freem(tcp_saveti);
1947 return;
1948 }
1949 } else if (th->th_ack == tp->snd_una &&
1950 TAILQ_FIRST(&tp->segq) == NULL &&
1951 tlen <= sbspace(&so->so_rcv)) {
1952 int newsize = 0;
1953
1954 /*
1955 * this is a pure, in-sequence data packet
1956 * with nothing on the reassembly queue and
1957 * we have enough buffer space to take it.
1958 */
1959 tp->rcv_nxt += tlen;
1960 tcps = TCP_STAT_GETREF();
1961 tcps[TCP_STAT_PREDDAT]++;
1962 tcps[TCP_STAT_RCVPACK]++;
1963 tcps[TCP_STAT_RCVBYTE] += tlen;
1964 TCP_STAT_PUTREF();
1965 nd6_hint(tp);
1966
1967 /*
1968 * Automatic sizing enables the performance of large buffers
1969 * and most of the efficiency of small ones by only allocating
1970 * space when it is needed.
1971 *
1972 * On the receive side the socket buffer memory is only rarely
1973 * used to any significant extent. This allows us to be much
1974 * more aggressive in scaling the receive socket buffer. For
1975 * the case that the buffer space is actually used to a large
1976 * extent and we run out of kernel memory we can simply drop
1977 * the new segments; TCP on the sender will just retransmit it
1978 * later. Setting the buffer size too big may only consume too
1979 * much kernel memory if the application doesn't read() from
1980 * the socket or packet loss or reordering makes use of the
1981 * reassembly queue.
1982 *
1983 * The criteria to step up the receive buffer one notch are:
1984 * 1. the number of bytes received during the time it takes
1985 * one timestamp to be reflected back to us (the RTT);
1986 * 2. received bytes per RTT is within seven eighth of the
1987 * current socket buffer size;
1988 * 3. receive buffer size has not hit maximal automatic size;
1989 *
1990 * This algorithm does one step per RTT at most and only if
1991 * we receive a bulk stream w/o packet losses or reorderings.
1992 * Shrinking the buffer during idle times is not necessary as
1993 * it doesn't consume any memory when idle.
1994 *
1995 * TODO: Only step up if the application is actually serving
1996 * the buffer to better manage the socket buffer resources.
1997 */
1998 if (tcp_do_autorcvbuf &&
1999 opti.ts_ecr &&
2000 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2001 if (opti.ts_ecr > tp->rfbuf_ts &&
2002 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2003 if (tp->rfbuf_cnt >
2004 (so->so_rcv.sb_hiwat / 8 * 7) &&
2005 so->so_rcv.sb_hiwat <
2006 tcp_autorcvbuf_max) {
2007 newsize =
2008 min(so->so_rcv.sb_hiwat +
2009 tcp_autorcvbuf_inc,
2010 tcp_autorcvbuf_max);
2011 }
2012 /* Start over with next RTT. */
2013 tp->rfbuf_ts = 0;
2014 tp->rfbuf_cnt = 0;
2015 } else
2016 tp->rfbuf_cnt += tlen; /* add up */
2017 }
2018
2019 /*
2020 * Drop TCP, IP headers and TCP options then add data
2021 * to socket buffer.
2022 */
2023 if (so->so_state & SS_CANTRCVMORE) {
2024 m_freem(m);
2025 } else {
2026 /*
2027 * Set new socket buffer size.
2028 * Give up when limit is reached.
2029 */
2030 if (newsize)
2031 if (!sbreserve(&so->so_rcv,
2032 newsize, so))
2033 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2034 m_adj(m, toff + off);
2035 sbappendstream(&so->so_rcv, m);
2036 }
2037 sorwakeup(so);
2038 tcp_setup_ack(tp, th);
2039 if (tp->t_flags & TF_ACKNOW) {
2040 KERNEL_LOCK(1, NULL);
2041 (void)tcp_output(tp);
2042 KERNEL_UNLOCK_ONE(NULL);
2043 }
2044 if (tcp_saveti)
2045 m_freem(tcp_saveti);
2046 return;
2047 }
2048 }
2049
2050 /*
2051 * Compute mbuf offset to TCP data segment.
2052 */
2053 hdroptlen = toff + off;
2054
2055 /*
2056 * Calculate amount of space in receive window. Receive window is
2057 * amount of space in rcv queue, but not less than advertised
2058 * window.
2059 */
2060 {
2061 int win;
2062 win = sbspace(&so->so_rcv);
2063 if (win < 0)
2064 win = 0;
2065 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2066 }
2067
2068 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2069 tp->rfbuf_ts = 0;
2070 tp->rfbuf_cnt = 0;
2071
2072 switch (tp->t_state) {
2073 /*
2074 * If the state is SYN_SENT:
2075 * if seg contains an ACK, but not for our SYN, drop the input.
2076 * if seg contains a RST, then drop the connection.
2077 * if seg does not contain SYN, then drop it.
2078 * Otherwise this is an acceptable SYN segment
2079 * initialize tp->rcv_nxt and tp->irs
2080 * if seg contains ack then advance tp->snd_una
2081 * if seg contains a ECE and ECN support is enabled, the stream
2082 * is ECN capable.
2083 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2084 * arrange for segment to be acked (eventually)
2085 * continue processing rest of data/controls, beginning with URG
2086 */
2087 case TCPS_SYN_SENT:
2088 if ((tiflags & TH_ACK) &&
2089 (SEQ_LEQ(th->th_ack, tp->iss) ||
2090 SEQ_GT(th->th_ack, tp->snd_max)))
2091 goto dropwithreset;
2092 if (tiflags & TH_RST) {
2093 if (tiflags & TH_ACK)
2094 tp = tcp_drop(tp, ECONNREFUSED);
2095 goto drop;
2096 }
2097 if ((tiflags & TH_SYN) == 0)
2098 goto drop;
2099 if (tiflags & TH_ACK) {
2100 tp->snd_una = th->th_ack;
2101 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2102 tp->snd_nxt = tp->snd_una;
2103 if (SEQ_LT(tp->snd_high, tp->snd_una))
2104 tp->snd_high = tp->snd_una;
2105 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2106
2107 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2108 tp->t_flags |= TF_ECN_PERMIT;
2109 TCP_STATINC(TCP_STAT_ECN_SHS);
2110 }
2111 }
2112 tp->irs = th->th_seq;
2113 tcp_rcvseqinit(tp);
2114 tp->t_flags |= TF_ACKNOW;
2115 tcp_mss_from_peer(tp, opti.maxseg);
2116
2117 /*
2118 * Initialize the initial congestion window. If we
2119 * had to retransmit the SYN, we must initialize cwnd
2120 * to 1 segment (i.e. the Loss Window).
2121 */
2122 if (tp->t_flags & TF_SYN_REXMT)
2123 tp->snd_cwnd = tp->t_peermss;
2124 else {
2125 int ss = tcp_init_win;
2126 if (inp != NULL && in_localaddr(inp->inp_faddr))
2127 ss = tcp_init_win_local;
2128 #ifdef INET6
2129 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2130 ss = tcp_init_win_local;
2131 #endif
2132 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2133 }
2134
2135 tcp_rmx_rtt(tp);
2136 if (tiflags & TH_ACK) {
2137 TCP_STATINC(TCP_STAT_CONNECTS);
2138 /*
2139 * move tcp_established before soisconnected
2140 * because upcall handler can drive tcp_output
2141 * functionality.
2142 * XXX we might call soisconnected at the end of
2143 * all processing
2144 */
2145 tcp_established(tp);
2146 soisconnected(so);
2147 /* Do window scaling on this connection? */
2148 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2149 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2150 tp->snd_scale = tp->requested_s_scale;
2151 tp->rcv_scale = tp->request_r_scale;
2152 }
2153 TCP_REASS_LOCK(tp);
2154 (void)tcp_reass(tp, NULL, NULL, tlen);
2155 /*
2156 * if we didn't have to retransmit the SYN,
2157 * use its rtt as our initial srtt & rtt var.
2158 */
2159 if (tp->t_rtttime)
2160 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2161 } else {
2162 tp->t_state = TCPS_SYN_RECEIVED;
2163 }
2164
2165 /*
2166 * Advance th->th_seq to correspond to first data byte.
2167 * If data, trim to stay within window,
2168 * dropping FIN if necessary.
2169 */
2170 th->th_seq++;
2171 if (tlen > tp->rcv_wnd) {
2172 todrop = tlen - tp->rcv_wnd;
2173 m_adj(m, -todrop);
2174 tlen = tp->rcv_wnd;
2175 tiflags &= ~TH_FIN;
2176 tcps = TCP_STAT_GETREF();
2177 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2178 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2179 TCP_STAT_PUTREF();
2180 }
2181 tp->snd_wl1 = th->th_seq - 1;
2182 tp->rcv_up = th->th_seq;
2183 goto step6;
2184
2185 /*
2186 * If the state is SYN_RECEIVED:
2187 * If seg contains an ACK, but not for our SYN, drop the input
2188 * and generate an RST. See page 36, rfc793
2189 */
2190 case TCPS_SYN_RECEIVED:
2191 if ((tiflags & TH_ACK) &&
2192 (SEQ_LEQ(th->th_ack, tp->iss) ||
2193 SEQ_GT(th->th_ack, tp->snd_max)))
2194 goto dropwithreset;
2195 break;
2196 }
2197
2198 /*
2199 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2200 */
2201 KASSERT(tp->t_state != TCPS_LISTEN &&
2202 tp->t_state != TCPS_SYN_SENT);
2203
2204 /*
2205 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2206 * it's less than ts_recent, drop it.
2207 */
2208 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2209 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2210 /* Check to see if ts_recent is over 24 days old. */
2211 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2212 /*
2213 * Invalidate ts_recent. If this segment updates
2214 * ts_recent, the age will be reset later and ts_recent
2215 * will get a valid value. If it does not, setting
2216 * ts_recent to zero will at least satisfy the
2217 * requirement that zero be placed in the timestamp
2218 * echo reply when ts_recent isn't valid. The
2219 * age isn't reset until we get a valid ts_recent
2220 * because we don't want out-of-order segments to be
2221 * dropped when ts_recent is old.
2222 */
2223 tp->ts_recent = 0;
2224 } else {
2225 tcps = TCP_STAT_GETREF();
2226 tcps[TCP_STAT_RCVDUPPACK]++;
2227 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2228 tcps[TCP_STAT_PAWSDROP]++;
2229 TCP_STAT_PUTREF();
2230 tcp_new_dsack(tp, th->th_seq, tlen);
2231 goto dropafterack;
2232 }
2233 }
2234
2235 /*
2236 * Check that at least some bytes of the segment are within the
2237 * receive window. If segment begins before rcv_nxt, drop leading
2238 * data (and SYN); if nothing left, just ack.
2239 */
2240 todrop = tp->rcv_nxt - th->th_seq;
2241 dupseg = false;
2242 if (todrop > 0) {
2243 if (tiflags & TH_SYN) {
2244 tiflags &= ~TH_SYN;
2245 th->th_seq++;
2246 tcp_urp_drop(th, 1, &tiflags);
2247 todrop--;
2248 }
2249 if (todrop > tlen ||
2250 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2251 /*
2252 * Any valid FIN or RST must be to the left of the
2253 * window. At this point the FIN or RST must be a
2254 * duplicate or out of sequence; drop it.
2255 */
2256 if (tiflags & TH_RST)
2257 goto drop;
2258 tiflags &= ~(TH_FIN|TH_RST);
2259
2260 /*
2261 * Send an ACK to resynchronize and drop any data.
2262 * But keep on processing for RST or ACK.
2263 */
2264 tp->t_flags |= TF_ACKNOW;
2265 todrop = tlen;
2266 dupseg = true;
2267 tcps = TCP_STAT_GETREF();
2268 tcps[TCP_STAT_RCVDUPPACK]++;
2269 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2270 TCP_STAT_PUTREF();
2271 } else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2272 /*
2273 * Test for reset before adjusting the sequence
2274 * number for overlapping data.
2275 */
2276 goto dropafterack_ratelim;
2277 } else {
2278 tcps = TCP_STAT_GETREF();
2279 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2280 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2281 TCP_STAT_PUTREF();
2282 }
2283 tcp_new_dsack(tp, th->th_seq, todrop);
2284 hdroptlen += todrop; /* drop from head afterwards (m_adj) */
2285 th->th_seq += todrop;
2286 tlen -= todrop;
2287 tcp_urp_drop(th, todrop, &tiflags);
2288 }
2289
2290 /*
2291 * If new data is received on a connection after the user processes
2292 * are gone, then RST the other end.
2293 */
2294 if ((so->so_state & SS_NOFDREF) &&
2295 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2296 tp = tcp_close(tp);
2297 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2298 goto dropwithreset;
2299 }
2300
2301 /*
2302 * If the segment ends after the window, drop trailing data (and
2303 * PUSH and FIN); if nothing left, just ACK.
2304 */
2305 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2306 if (todrop > 0) {
2307 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2308 if (todrop >= tlen) {
2309 /*
2310 * The segment actually starts after the window.
2311 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2312 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2313 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2314 */
2315 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2316
2317 /*
2318 * If a new connection request is received while in
2319 * TIME_WAIT, drop the old connection and start over
2320 * if the sequence numbers are above the previous
2321 * ones.
2322 *
2323 * NOTE: We need to put the header fields back into
2324 * network order.
2325 */
2326 if ((tiflags & TH_SYN) &&
2327 tp->t_state == TCPS_TIME_WAIT &&
2328 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2329 tp = tcp_close(tp);
2330 tcp_fields_to_net(th);
2331 m_freem(tcp_saveti);
2332 tcp_saveti = NULL;
2333 goto findpcb;
2334 }
2335
2336 /*
2337 * If window is closed can only take segments at
2338 * window edge, and have to drop data and PUSH from
2339 * incoming segments. Continue processing, but
2340 * remember to ack. Otherwise, drop segment
2341 * and (if not RST) ack.
2342 */
2343 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2344 KASSERT(todrop == tlen);
2345 tp->t_flags |= TF_ACKNOW;
2346 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2347 } else {
2348 goto dropafterack;
2349 }
2350 } else {
2351 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2352 }
2353 m_adj(m, -todrop);
2354 tlen -= todrop;
2355 tiflags &= ~(TH_PUSH|TH_FIN);
2356 }
2357
2358 /*
2359 * If last ACK falls within this segment's sequence numbers,
2360 * record the timestamp.
2361 * NOTE:
2362 * 1) That the test incorporates suggestions from the latest
2363 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2364 * 2) That updating only on newer timestamps interferes with
2365 * our earlier PAWS tests, so this check should be solely
2366 * predicated on the sequence space of this segment.
2367 * 3) That we modify the segment boundary check to be
2368 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2369 * instead of RFC1323's
2370 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2371 * This modified check allows us to overcome RFC1323's
2372 * limitations as described in Stevens TCP/IP Illustrated
2373 * Vol. 2 p.869. In such cases, we can still calculate the
2374 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2375 */
2376 if (opti.ts_present &&
2377 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2378 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2379 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2380 tp->ts_recent_age = tcp_now;
2381 tp->ts_recent = opti.ts_val;
2382 }
2383
2384 /*
2385 * If the RST bit is set examine the state:
2386 * RECEIVED state:
2387 * If passive open, return to LISTEN state.
2388 * If active open, inform user that connection was refused.
2389 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2390 * Inform user that connection was reset, and close tcb.
2391 * CLOSING, LAST_ACK, TIME_WAIT states:
2392 * Close the tcb.
2393 */
2394 if (tiflags & TH_RST) {
2395 if (th->th_seq != tp->rcv_nxt)
2396 goto dropafterack_ratelim;
2397
2398 switch (tp->t_state) {
2399 case TCPS_SYN_RECEIVED:
2400 so->so_error = ECONNREFUSED;
2401 goto close;
2402
2403 case TCPS_ESTABLISHED:
2404 case TCPS_FIN_WAIT_1:
2405 case TCPS_FIN_WAIT_2:
2406 case TCPS_CLOSE_WAIT:
2407 so->so_error = ECONNRESET;
2408 close:
2409 tp->t_state = TCPS_CLOSED;
2410 TCP_STATINC(TCP_STAT_DROPS);
2411 tp = tcp_close(tp);
2412 goto drop;
2413
2414 case TCPS_CLOSING:
2415 case TCPS_LAST_ACK:
2416 case TCPS_TIME_WAIT:
2417 tp = tcp_close(tp);
2418 goto drop;
2419 }
2420 }
2421
2422 /*
2423 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2424 * we must be in a synchronized state. RFC791 states (under RST
2425 * generation) that any unacceptable segment (an out-of-order SYN
2426 * qualifies) received in a synchronized state must elicit only an
2427 * empty acknowledgment segment ... and the connection remains in
2428 * the same state.
2429 */
2430 if (tiflags & TH_SYN) {
2431 if (tp->rcv_nxt == th->th_seq) {
2432 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2433 TH_ACK);
2434 if (tcp_saveti)
2435 m_freem(tcp_saveti);
2436 return;
2437 }
2438
2439 goto dropafterack_ratelim;
2440 }
2441
2442 /*
2443 * If the ACK bit is off we drop the segment and return.
2444 */
2445 if ((tiflags & TH_ACK) == 0) {
2446 if (tp->t_flags & TF_ACKNOW)
2447 goto dropafterack;
2448 goto drop;
2449 }
2450
2451 /*
2452 * From here on, we're doing ACK processing.
2453 */
2454
2455 switch (tp->t_state) {
2456 /*
2457 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2458 * ESTABLISHED state and continue processing, otherwise
2459 * send an RST.
2460 */
2461 case TCPS_SYN_RECEIVED:
2462 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2463 SEQ_GT(th->th_ack, tp->snd_max))
2464 goto dropwithreset;
2465 TCP_STATINC(TCP_STAT_CONNECTS);
2466 soisconnected(so);
2467 tcp_established(tp);
2468 /* Do window scaling? */
2469 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2470 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2471 tp->snd_scale = tp->requested_s_scale;
2472 tp->rcv_scale = tp->request_r_scale;
2473 }
2474 TCP_REASS_LOCK(tp);
2475 (void)tcp_reass(tp, NULL, NULL, tlen);
2476 tp->snd_wl1 = th->th_seq - 1;
2477 /* FALLTHROUGH */
2478
2479 /*
2480 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2481 * ACKs. If the ack is in the range
2482 * tp->snd_una < th->th_ack <= tp->snd_max
2483 * then advance tp->snd_una to th->th_ack and drop
2484 * data from the retransmission queue. If this ACK reflects
2485 * more up to date window information we update our window information.
2486 */
2487 case TCPS_ESTABLISHED:
2488 case TCPS_FIN_WAIT_1:
2489 case TCPS_FIN_WAIT_2:
2490 case TCPS_CLOSE_WAIT:
2491 case TCPS_CLOSING:
2492 case TCPS_LAST_ACK:
2493 case TCPS_TIME_WAIT:
2494 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2495 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2496 TCP_STATINC(TCP_STAT_RCVDUPACK);
2497 /*
2498 * If we have outstanding data (other than
2499 * a window probe), this is a completely
2500 * duplicate ack (ie, window info didn't
2501 * change), the ack is the biggest we've
2502 * seen and we've seen exactly our rexmt
2503 * threshhold of them, assume a packet
2504 * has been dropped and retransmit it.
2505 * Kludge snd_nxt & the congestion
2506 * window so we send only this one
2507 * packet.
2508 */
2509 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2510 th->th_ack != tp->snd_una)
2511 tp->t_dupacks = 0;
2512 else if (tp->t_partialacks < 0 &&
2513 (++tp->t_dupacks == tcprexmtthresh ||
2514 TCP_FACK_FASTRECOV(tp))) {
2515 /*
2516 * Do the fast retransmit, and adjust
2517 * congestion control paramenters.
2518 */
2519 if (tp->t_congctl->fast_retransmit(tp, th)) {
2520 /* False fast retransmit */
2521 break;
2522 }
2523 goto drop;
2524 } else if (tp->t_dupacks > tcprexmtthresh) {
2525 tp->snd_cwnd += tp->t_segsz;
2526 KERNEL_LOCK(1, NULL);
2527 (void)tcp_output(tp);
2528 KERNEL_UNLOCK_ONE(NULL);
2529 goto drop;
2530 }
2531 } else {
2532 /*
2533 * If the ack appears to be very old, only
2534 * allow data that is in-sequence. This
2535 * makes it somewhat more difficult to insert
2536 * forged data by guessing sequence numbers.
2537 * Sent an ack to try to update the send
2538 * sequence number on the other side.
2539 */
2540 if (tlen && th->th_seq != tp->rcv_nxt &&
2541 SEQ_LT(th->th_ack,
2542 tp->snd_una - tp->max_sndwnd))
2543 goto dropafterack;
2544 }
2545 break;
2546 }
2547 /*
2548 * If the congestion window was inflated to account
2549 * for the other side's cached packets, retract it.
2550 */
2551 tp->t_congctl->fast_retransmit_newack(tp, th);
2552
2553 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2554 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2555 goto dropafterack;
2556 }
2557 acked = th->th_ack - tp->snd_una;
2558 tcps = TCP_STAT_GETREF();
2559 tcps[TCP_STAT_RCVACKPACK]++;
2560 tcps[TCP_STAT_RCVACKBYTE] += acked;
2561 TCP_STAT_PUTREF();
2562
2563 /*
2564 * If we have a timestamp reply, update smoothed
2565 * round trip time. If no timestamp is present but
2566 * transmit timer is running and timed sequence
2567 * number was acked, update smoothed round trip time.
2568 * Since we now have an rtt measurement, cancel the
2569 * timer backoff (cf., Phil Karn's retransmit alg.).
2570 * Recompute the initial retransmit timer.
2571 */
2572 if (ts_rtt)
2573 tcp_xmit_timer(tp, ts_rtt - 1);
2574 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2575 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2576
2577 /*
2578 * If all outstanding data is acked, stop retransmit
2579 * timer and remember to restart (more output or persist).
2580 * If there is more data to be acked, restart retransmit
2581 * timer, using current (possibly backed-off) value.
2582 */
2583 if (th->th_ack == tp->snd_max) {
2584 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2585 needoutput = 1;
2586 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2587 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2588
2589 /*
2590 * New data has been acked, adjust the congestion window.
2591 */
2592 tp->t_congctl->newack(tp, th);
2593
2594 nd6_hint(tp);
2595 if (acked > so->so_snd.sb_cc) {
2596 tp->snd_wnd -= so->so_snd.sb_cc;
2597 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2598 ourfinisacked = 1;
2599 } else {
2600 if (acked > (tp->t_lastoff - tp->t_inoff))
2601 tp->t_lastm = NULL;
2602 sbdrop(&so->so_snd, acked);
2603 tp->t_lastoff -= acked;
2604 if (tp->snd_wnd > acked)
2605 tp->snd_wnd -= acked;
2606 else
2607 tp->snd_wnd = 0;
2608 ourfinisacked = 0;
2609 }
2610 sowwakeup(so);
2611
2612 icmp_check(tp, th, acked);
2613
2614 tp->snd_una = th->th_ack;
2615 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2616 tp->snd_fack = tp->snd_una;
2617 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2618 tp->snd_nxt = tp->snd_una;
2619 if (SEQ_LT(tp->snd_high, tp->snd_una))
2620 tp->snd_high = tp->snd_una;
2621
2622 switch (tp->t_state) {
2623
2624 /*
2625 * In FIN_WAIT_1 STATE in addition to the processing
2626 * for the ESTABLISHED state if our FIN is now acknowledged
2627 * then enter FIN_WAIT_2.
2628 */
2629 case TCPS_FIN_WAIT_1:
2630 if (ourfinisacked) {
2631 /*
2632 * If we can't receive any more
2633 * data, then closing user can proceed.
2634 * Starting the timer is contrary to the
2635 * specification, but if we don't get a FIN
2636 * we'll hang forever.
2637 */
2638 if (so->so_state & SS_CANTRCVMORE) {
2639 soisdisconnected(so);
2640 if (tp->t_maxidle > 0)
2641 TCP_TIMER_ARM(tp, TCPT_2MSL,
2642 tp->t_maxidle);
2643 }
2644 tp->t_state = TCPS_FIN_WAIT_2;
2645 }
2646 break;
2647
2648 /*
2649 * In CLOSING STATE in addition to the processing for
2650 * the ESTABLISHED state if the ACK acknowledges our FIN
2651 * then enter the TIME-WAIT state, otherwise ignore
2652 * the segment.
2653 */
2654 case TCPS_CLOSING:
2655 if (ourfinisacked) {
2656 tp->t_state = TCPS_TIME_WAIT;
2657 tcp_canceltimers(tp);
2658 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2659 soisdisconnected(so);
2660 }
2661 break;
2662
2663 /*
2664 * In LAST_ACK, we may still be waiting for data to drain
2665 * and/or to be acked, as well as for the ack of our FIN.
2666 * If our FIN is now acknowledged, delete the TCB,
2667 * enter the closed state and return.
2668 */
2669 case TCPS_LAST_ACK:
2670 if (ourfinisacked) {
2671 tp = tcp_close(tp);
2672 goto drop;
2673 }
2674 break;
2675
2676 /*
2677 * In TIME_WAIT state the only thing that should arrive
2678 * is a retransmission of the remote FIN. Acknowledge
2679 * it and restart the finack timer.
2680 */
2681 case TCPS_TIME_WAIT:
2682 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2683 goto dropafterack;
2684 }
2685 }
2686
2687 step6:
2688 /*
2689 * Update window information.
2690 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2691 */
2692 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2693 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2694 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2695 /* keep track of pure window updates */
2696 if (tlen == 0 &&
2697 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2698 TCP_STATINC(TCP_STAT_RCVWINUPD);
2699 tp->snd_wnd = tiwin;
2700 tp->snd_wl1 = th->th_seq;
2701 tp->snd_wl2 = th->th_ack;
2702 if (tp->snd_wnd > tp->max_sndwnd)
2703 tp->max_sndwnd = tp->snd_wnd;
2704 needoutput = 1;
2705 }
2706
2707 /*
2708 * Process segments with URG.
2709 */
2710 if ((tiflags & TH_URG) && th->th_urp &&
2711 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2712 /*
2713 * This is a kludge, but if we receive and accept
2714 * random urgent pointers, we'll crash in
2715 * soreceive. It's hard to imagine someone
2716 * actually wanting to send this much urgent data.
2717 */
2718 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2719 th->th_urp = 0; /* XXX */
2720 tiflags &= ~TH_URG; /* XXX */
2721 goto dodata; /* XXX */
2722 }
2723
2724 /*
2725 * If this segment advances the known urgent pointer,
2726 * then mark the data stream. This should not happen
2727 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2728 * a FIN has been received from the remote side.
2729 * In these states we ignore the URG.
2730 *
2731 * According to RFC961 (Assigned Protocols),
2732 * the urgent pointer points to the last octet
2733 * of urgent data. We continue, however,
2734 * to consider it to indicate the first octet
2735 * of data past the urgent section as the original
2736 * spec states (in one of two places).
2737 */
2738 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2739 tp->rcv_up = th->th_seq + th->th_urp;
2740 so->so_oobmark = so->so_rcv.sb_cc +
2741 (tp->rcv_up - tp->rcv_nxt) - 1;
2742 if (so->so_oobmark == 0)
2743 so->so_state |= SS_RCVATMARK;
2744 sohasoutofband(so);
2745 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2746 }
2747
2748 /*
2749 * Remove out of band data so doesn't get presented to user.
2750 * This can happen independent of advancing the URG pointer,
2751 * but if two URG's are pending at once, some out-of-band
2752 * data may creep in... ick.
2753 */
2754 if (th->th_urp <= (u_int16_t)tlen &&
2755 (so->so_options & SO_OOBINLINE) == 0)
2756 tcp_pulloutofband(so, th, m, hdroptlen);
2757 } else {
2758 /*
2759 * If no out of band data is expected,
2760 * pull receive urgent pointer along
2761 * with the receive window.
2762 */
2763 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2764 tp->rcv_up = tp->rcv_nxt;
2765 }
2766 dodata:
2767
2768 /*
2769 * Process the segment text, merging it into the TCP sequencing queue,
2770 * and arranging for acknowledgement of receipt if necessary.
2771 * This process logically involves adjusting tp->rcv_wnd as data
2772 * is presented to the user (this happens in tcp_usrreq.c,
2773 * tcp_rcvd()). If a FIN has already been received on this
2774 * connection then we just ignore the text.
2775 */
2776 if ((tlen || (tiflags & TH_FIN)) &&
2777 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2778 /*
2779 * Handle the common case:
2780 * o Segment is the next to be received, and
2781 * o The queue is empty, and
2782 * o The connection is established
2783 * In this case, we avoid calling tcp_reass.
2784 *
2785 * tcp_setup_ack: set DELACK for segments received in order,
2786 * but ack immediately when segments are out of order (so that
2787 * fast retransmit can work).
2788 */
2789 TCP_REASS_LOCK(tp);
2790 if (th->th_seq == tp->rcv_nxt &&
2791 TAILQ_FIRST(&tp->segq) == NULL &&
2792 tp->t_state == TCPS_ESTABLISHED) {
2793 tcp_setup_ack(tp, th);
2794 tp->rcv_nxt += tlen;
2795 tiflags = th->th_flags & TH_FIN;
2796 tcps = TCP_STAT_GETREF();
2797 tcps[TCP_STAT_RCVPACK]++;
2798 tcps[TCP_STAT_RCVBYTE] += tlen;
2799 TCP_STAT_PUTREF();
2800 nd6_hint(tp);
2801 if (so->so_state & SS_CANTRCVMORE) {
2802 m_freem(m);
2803 } else {
2804 m_adj(m, hdroptlen);
2805 sbappendstream(&(so)->so_rcv, m);
2806 }
2807 TCP_REASS_UNLOCK(tp);
2808 sorwakeup(so);
2809 } else {
2810 m_adj(m, hdroptlen);
2811 tiflags = tcp_reass(tp, th, m, tlen);
2812 tp->t_flags |= TF_ACKNOW;
2813 }
2814
2815 /*
2816 * Note the amount of data that peer has sent into
2817 * our window, in order to estimate the sender's
2818 * buffer size.
2819 */
2820 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2821 } else {
2822 m_freem(m);
2823 m = NULL;
2824 tiflags &= ~TH_FIN;
2825 }
2826
2827 /*
2828 * If FIN is received ACK the FIN and let the user know
2829 * that the connection is closing. Ignore a FIN received before
2830 * the connection is fully established.
2831 */
2832 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2833 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2834 socantrcvmore(so);
2835 tp->t_flags |= TF_ACKNOW;
2836 tp->rcv_nxt++;
2837 }
2838 switch (tp->t_state) {
2839
2840 /*
2841 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2842 */
2843 case TCPS_ESTABLISHED:
2844 tp->t_state = TCPS_CLOSE_WAIT;
2845 break;
2846
2847 /*
2848 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2849 * enter the CLOSING state.
2850 */
2851 case TCPS_FIN_WAIT_1:
2852 tp->t_state = TCPS_CLOSING;
2853 break;
2854
2855 /*
2856 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2857 * starting the time-wait timer, turning off the other
2858 * standard timers.
2859 */
2860 case TCPS_FIN_WAIT_2:
2861 tp->t_state = TCPS_TIME_WAIT;
2862 tcp_canceltimers(tp);
2863 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2864 soisdisconnected(so);
2865 break;
2866
2867 /*
2868 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2869 */
2870 case TCPS_TIME_WAIT:
2871 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2872 break;
2873 }
2874 }
2875 #ifdef TCP_DEBUG
2876 if (so->so_options & SO_DEBUG)
2877 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2878 #endif
2879
2880 /*
2881 * Return any desired output.
2882 */
2883 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2884 KERNEL_LOCK(1, NULL);
2885 (void)tcp_output(tp);
2886 KERNEL_UNLOCK_ONE(NULL);
2887 }
2888 if (tcp_saveti)
2889 m_freem(tcp_saveti);
2890
2891 if (tp->t_state == TCPS_TIME_WAIT
2892 && (so->so_state & SS_NOFDREF)
2893 && (tp->t_inpcb || af != AF_INET)
2894 && (tp->t_in6pcb || af != AF_INET6)
2895 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2896 && TAILQ_EMPTY(&tp->segq)
2897 && vtw_add(af, tp)) {
2898 ;
2899 }
2900 return;
2901
2902 badsyn:
2903 /*
2904 * Received a bad SYN. Increment counters and dropwithreset.
2905 */
2906 TCP_STATINC(TCP_STAT_BADSYN);
2907 tp = NULL;
2908 goto dropwithreset;
2909
2910 dropafterack:
2911 /*
2912 * Generate an ACK dropping incoming segment if it occupies
2913 * sequence space, where the ACK reflects our state.
2914 */
2915 if (tiflags & TH_RST)
2916 goto drop;
2917 goto dropafterack2;
2918
2919 dropafterack_ratelim:
2920 /*
2921 * We may want to rate-limit ACKs against SYN/RST attack.
2922 */
2923 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2924 tcp_ackdrop_ppslim) == 0) {
2925 /* XXX stat */
2926 goto drop;
2927 }
2928
2929 dropafterack2:
2930 m_freem(m);
2931 tp->t_flags |= TF_ACKNOW;
2932 KERNEL_LOCK(1, NULL);
2933 (void)tcp_output(tp);
2934 KERNEL_UNLOCK_ONE(NULL);
2935 if (tcp_saveti)
2936 m_freem(tcp_saveti);
2937 return;
2938
2939 dropwithreset_ratelim:
2940 /*
2941 * We may want to rate-limit RSTs in certain situations,
2942 * particularly if we are sending an RST in response to
2943 * an attempt to connect to or otherwise communicate with
2944 * a port for which we have no socket.
2945 */
2946 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2947 tcp_rst_ppslim) == 0) {
2948 /* XXX stat */
2949 goto drop;
2950 }
2951
2952 dropwithreset:
2953 /*
2954 * Generate a RST, dropping incoming segment.
2955 * Make ACK acceptable to originator of segment.
2956 */
2957 if (tiflags & TH_RST)
2958 goto drop;
2959 if (tiflags & TH_ACK) {
2960 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2961 } else {
2962 if (tiflags & TH_SYN)
2963 tlen++;
2964 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2965 TH_RST|TH_ACK);
2966 }
2967 if (tcp_saveti)
2968 m_freem(tcp_saveti);
2969 return;
2970
2971 badcsum:
2972 drop:
2973 /*
2974 * Drop space held by incoming segment and return.
2975 */
2976 if (tp) {
2977 if (tp->t_inpcb)
2978 so = tp->t_inpcb->inp_socket;
2979 #ifdef INET6
2980 else if (tp->t_in6pcb)
2981 so = tp->t_in6pcb->in6p_socket;
2982 #endif
2983 else
2984 so = NULL;
2985 #ifdef TCP_DEBUG
2986 if (so && (so->so_options & SO_DEBUG) != 0)
2987 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2988 #endif
2989 }
2990 if (tcp_saveti)
2991 m_freem(tcp_saveti);
2992 m_freem(m);
2993 return;
2994 }
2995
2996 #ifdef TCP_SIGNATURE
2997 int
2998 tcp_signature_apply(void *fstate, void *data, u_int len)
2999 {
3000
3001 MD5Update(fstate, (u_char *)data, len);
3002 return (0);
3003 }
3004
3005 struct secasvar *
3006 tcp_signature_getsav(struct mbuf *m)
3007 {
3008 struct ip *ip;
3009 struct ip6_hdr *ip6;
3010
3011 ip = mtod(m, struct ip *);
3012 switch (ip->ip_v) {
3013 case 4:
3014 ip = mtod(m, struct ip *);
3015 ip6 = NULL;
3016 break;
3017 case 6:
3018 ip = NULL;
3019 ip6 = mtod(m, struct ip6_hdr *);
3020 break;
3021 default:
3022 return (NULL);
3023 }
3024
3025 #ifdef IPSEC
3026 union sockaddr_union dst;
3027
3028 /* Extract the destination from the IP header in the mbuf. */
3029 memset(&dst, 0, sizeof(union sockaddr_union));
3030 if (ip != NULL) {
3031 dst.sa.sa_len = sizeof(struct sockaddr_in);
3032 dst.sa.sa_family = AF_INET;
3033 dst.sin.sin_addr = ip->ip_dst;
3034 } else {
3035 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3036 dst.sa.sa_family = AF_INET6;
3037 dst.sin6.sin6_addr = ip6->ip6_dst;
3038 }
3039
3040 /*
3041 * Look up an SADB entry which matches the address of the peer.
3042 */
3043 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3044 #else
3045 return NULL;
3046 #endif
3047 }
3048
3049 int
3050 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3051 struct secasvar *sav, char *sig)
3052 {
3053 MD5_CTX ctx;
3054 struct ip *ip;
3055 struct ipovly *ipovly;
3056 #ifdef INET6
3057 struct ip6_hdr *ip6;
3058 struct ip6_hdr_pseudo ip6pseudo;
3059 #endif
3060 struct ippseudo ippseudo;
3061 struct tcphdr th0;
3062 int l, tcphdrlen;
3063
3064 if (sav == NULL)
3065 return (-1);
3066
3067 tcphdrlen = th->th_off * 4;
3068
3069 switch (mtod(m, struct ip *)->ip_v) {
3070 case 4:
3071 MD5Init(&ctx);
3072 ip = mtod(m, struct ip *);
3073 memset(&ippseudo, 0, sizeof(ippseudo));
3074 ipovly = (struct ipovly *)ip;
3075 ippseudo.ippseudo_src = ipovly->ih_src;
3076 ippseudo.ippseudo_dst = ipovly->ih_dst;
3077 ippseudo.ippseudo_pad = 0;
3078 ippseudo.ippseudo_p = IPPROTO_TCP;
3079 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3080 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3081 break;
3082 #if INET6
3083 case 6:
3084 MD5Init(&ctx);
3085 ip6 = mtod(m, struct ip6_hdr *);
3086 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3087 ip6pseudo.ip6ph_src = ip6->ip6_src;
3088 in6_clearscope(&ip6pseudo.ip6ph_src);
3089 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3090 in6_clearscope(&ip6pseudo.ip6ph_dst);
3091 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3092 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3093 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3094 break;
3095 #endif
3096 default:
3097 return (-1);
3098 }
3099
3100 th0 = *th;
3101 th0.th_sum = 0;
3102 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3103
3104 l = m->m_pkthdr.len - thoff - tcphdrlen;
3105 if (l > 0)
3106 m_apply(m, thoff + tcphdrlen,
3107 m->m_pkthdr.len - thoff - tcphdrlen,
3108 tcp_signature_apply, &ctx);
3109
3110 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3111 MD5Final(sig, &ctx);
3112
3113 return (0);
3114 }
3115 #endif
3116
3117 /*
3118 * Parse and process tcp options.
3119 *
3120 * Returns -1 if this segment should be dropped. (eg. wrong signature)
3121 * Otherwise returns 0.
3122 */
3123 static int
3124 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3125 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3126 {
3127 u_int16_t mss;
3128 int opt, optlen = 0;
3129 #ifdef TCP_SIGNATURE
3130 void *sigp = NULL;
3131 char sigbuf[TCP_SIGLEN];
3132 struct secasvar *sav = NULL;
3133 #endif
3134
3135 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3136 opt = cp[0];
3137 if (opt == TCPOPT_EOL)
3138 break;
3139 if (opt == TCPOPT_NOP)
3140 optlen = 1;
3141 else {
3142 if (cnt < 2)
3143 break;
3144 optlen = cp[1];
3145 if (optlen < 2 || optlen > cnt)
3146 break;
3147 }
3148 switch (opt) {
3149
3150 default:
3151 continue;
3152
3153 case TCPOPT_MAXSEG:
3154 if (optlen != TCPOLEN_MAXSEG)
3155 continue;
3156 if (!(th->th_flags & TH_SYN))
3157 continue;
3158 if (TCPS_HAVERCVDSYN(tp->t_state))
3159 continue;
3160 memcpy(&mss, cp + 2, sizeof(mss));
3161 oi->maxseg = ntohs(mss);
3162 break;
3163
3164 case TCPOPT_WINDOW:
3165 if (optlen != TCPOLEN_WINDOW)
3166 continue;
3167 if (!(th->th_flags & TH_SYN))
3168 continue;
3169 if (TCPS_HAVERCVDSYN(tp->t_state))
3170 continue;
3171 tp->t_flags |= TF_RCVD_SCALE;
3172 tp->requested_s_scale = cp[2];
3173 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3174 char buf[INET6_ADDRSTRLEN];
3175 struct ip *ip = mtod(m, struct ip *);
3176 #ifdef INET6
3177 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3178 #endif
3179
3180 switch (ip->ip_v) {
3181 case 4:
3182 in_print(buf, sizeof(buf),
3183 &ip->ip_src);
3184 break;
3185 #ifdef INET6
3186 case 6:
3187 in6_print(buf, sizeof(buf),
3188 &ip6->ip6_src);
3189 break;
3190 #endif
3191 default:
3192 strlcpy(buf, "(unknown)", sizeof(buf));
3193 break;
3194 }
3195
3196 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3197 "assuming %d\n",
3198 tp->requested_s_scale, buf,
3199 TCP_MAX_WINSHIFT);
3200 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3201 }
3202 break;
3203
3204 case TCPOPT_TIMESTAMP:
3205 if (optlen != TCPOLEN_TIMESTAMP)
3206 continue;
3207 oi->ts_present = 1;
3208 memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3209 NTOHL(oi->ts_val);
3210 memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3211 NTOHL(oi->ts_ecr);
3212
3213 if (!(th->th_flags & TH_SYN))
3214 continue;
3215 if (TCPS_HAVERCVDSYN(tp->t_state))
3216 continue;
3217 /*
3218 * A timestamp received in a SYN makes
3219 * it ok to send timestamp requests and replies.
3220 */
3221 tp->t_flags |= TF_RCVD_TSTMP;
3222 tp->ts_recent = oi->ts_val;
3223 tp->ts_recent_age = tcp_now;
3224 break;
3225
3226 case TCPOPT_SACK_PERMITTED:
3227 if (optlen != TCPOLEN_SACK_PERMITTED)
3228 continue;
3229 if (!(th->th_flags & TH_SYN))
3230 continue;
3231 if (TCPS_HAVERCVDSYN(tp->t_state))
3232 continue;
3233 if (tcp_do_sack) {
3234 tp->t_flags |= TF_SACK_PERMIT;
3235 tp->t_flags |= TF_WILL_SACK;
3236 }
3237 break;
3238
3239 case TCPOPT_SACK:
3240 tcp_sack_option(tp, th, cp, optlen);
3241 break;
3242 #ifdef TCP_SIGNATURE
3243 case TCPOPT_SIGNATURE:
3244 if (optlen != TCPOLEN_SIGNATURE)
3245 continue;
3246 if (sigp &&
3247 !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3248 return (-1);
3249
3250 sigp = sigbuf;
3251 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3252 tp->t_flags |= TF_SIGNATURE;
3253 break;
3254 #endif
3255 }
3256 }
3257
3258 #ifndef TCP_SIGNATURE
3259 return 0;
3260 #else
3261 if (tp->t_flags & TF_SIGNATURE) {
3262 sav = tcp_signature_getsav(m);
3263 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3264 return (-1);
3265 }
3266
3267 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3268 goto out;
3269
3270 if (sigp) {
3271 char sig[TCP_SIGLEN];
3272
3273 tcp_fields_to_net(th);
3274 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3275 tcp_fields_to_host(th);
3276 goto out;
3277 }
3278 tcp_fields_to_host(th);
3279
3280 if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3281 TCP_STATINC(TCP_STAT_BADSIG);
3282 goto out;
3283 } else
3284 TCP_STATINC(TCP_STAT_GOODSIG);
3285
3286 key_sa_recordxfer(sav, m);
3287 KEY_SA_UNREF(&sav);
3288 }
3289 return 0;
3290 out:
3291 if (sav != NULL)
3292 KEY_SA_UNREF(&sav);
3293 return -1;
3294 #endif
3295 }
3296
3297 /*
3298 * Pull out of band byte out of a segment so
3299 * it doesn't appear in the user's data queue.
3300 * It is still reflected in the segment length for
3301 * sequencing purposes.
3302 */
3303 void
3304 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3305 struct mbuf *m, int off)
3306 {
3307 int cnt = off + th->th_urp - 1;
3308
3309 while (cnt >= 0) {
3310 if (m->m_len > cnt) {
3311 char *cp = mtod(m, char *) + cnt;
3312 struct tcpcb *tp = sototcpcb(so);
3313
3314 tp->t_iobc = *cp;
3315 tp->t_oobflags |= TCPOOB_HAVEDATA;
3316 memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3317 m->m_len--;
3318 return;
3319 }
3320 cnt -= m->m_len;
3321 m = m->m_next;
3322 if (m == NULL)
3323 break;
3324 }
3325 panic("tcp_pulloutofband");
3326 }
3327
3328 /*
3329 * Collect new round-trip time estimate
3330 * and update averages and current timeout.
3331 *
3332 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3333 * difference of two timestamps.
3334 */
3335 void
3336 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3337 {
3338 int32_t delta;
3339
3340 TCP_STATINC(TCP_STAT_RTTUPDATED);
3341 if (tp->t_srtt != 0) {
3342 /*
3343 * Compute the amount to add to srtt for smoothing,
3344 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3345 * srtt is stored in 1/32 slow ticks, we conceptually
3346 * shift left 5 bits, subtract srtt to get the
3347 * diference, and then shift right by TCP_RTT_SHIFT
3348 * (3) to obtain 1/8 of the difference.
3349 */
3350 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3351 /*
3352 * This can never happen, because delta's lowest
3353 * possible value is 1/8 of t_srtt. But if it does,
3354 * set srtt to some reasonable value, here chosen
3355 * as 1/8 tick.
3356 */
3357 if ((tp->t_srtt += delta) <= 0)
3358 tp->t_srtt = 1 << 2;
3359 /*
3360 * RFC2988 requires that rttvar be updated first.
3361 * This code is compliant because "delta" is the old
3362 * srtt minus the new observation (scaled).
3363 *
3364 * RFC2988 says:
3365 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3366 *
3367 * delta is in units of 1/32 ticks, and has then been
3368 * divided by 8. This is equivalent to being in 1/16s
3369 * units and divided by 4. Subtract from it 1/4 of
3370 * the existing rttvar to form the (signed) amount to
3371 * adjust.
3372 */
3373 if (delta < 0)
3374 delta = -delta;
3375 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3376 /*
3377 * As with srtt, this should never happen. There is
3378 * no support in RFC2988 for this operation. But 1/4s
3379 * as rttvar when faced with something arguably wrong
3380 * is ok.
3381 */
3382 if ((tp->t_rttvar += delta) <= 0)
3383 tp->t_rttvar = 1 << 2;
3384
3385 /*
3386 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3387 * Problem is: it doesn't work. Disabled by defaulting
3388 * tcp_rttlocal to 0; see corresponding code in
3389 * tcp_subr that selects local vs remote in a different way.
3390 *
3391 * The static branch prediction hint here should be removed
3392 * when the rtt estimator is fixed and the rtt_enable code
3393 * is turned back on.
3394 */
3395 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3396 && tp->t_srtt > tcp_msl_remote_threshold
3397 && tp->t_msl < tcp_msl_remote) {
3398 tp->t_msl = tcp_msl_remote;
3399 }
3400 } else {
3401 /*
3402 * This is the first measurement. Per RFC2988, 2.2,
3403 * set rtt=R and srtt=R/2.
3404 * For srtt, storage representation is 1/32 ticks,
3405 * so shift left by 5.
3406 * For rttvar, storage representation is 1/16 ticks,
3407 * So shift left by 4, but then right by 1 to halve.
3408 */
3409 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3410 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3411 }
3412 tp->t_rtttime = 0;
3413 tp->t_rxtshift = 0;
3414
3415 /*
3416 * the retransmit should happen at rtt + 4 * rttvar.
3417 * Because of the way we do the smoothing, srtt and rttvar
3418 * will each average +1/2 tick of bias. When we compute
3419 * the retransmit timer, we want 1/2 tick of rounding and
3420 * 1 extra tick because of +-1/2 tick uncertainty in the
3421 * firing of the timer. The bias will give us exactly the
3422 * 1.5 tick we need. But, because the bias is
3423 * statistical, we have to test that we don't drop below
3424 * the minimum feasible timer (which is 2 ticks).
3425 */
3426 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3427 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3428
3429 /*
3430 * We received an ack for a packet that wasn't retransmitted;
3431 * it is probably safe to discard any error indications we've
3432 * received recently. This isn't quite right, but close enough
3433 * for now (a route might have failed after we sent a segment,
3434 * and the return path might not be symmetrical).
3435 */
3436 tp->t_softerror = 0;
3437 }
3438
3439
3440 /*
3441 * TCP compressed state engine. Currently used to hold compressed
3442 * state for SYN_RECEIVED.
3443 */
3444
3445 u_long syn_cache_count;
3446 u_int32_t syn_hash1, syn_hash2;
3447
3448 #define SYN_HASH(sa, sp, dp) \
3449 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3450 ((u_int32_t)(sp)))^syn_hash2)))
3451 #ifndef INET6
3452 #define SYN_HASHALL(hash, src, dst) \
3453 do { \
3454 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3455 ((const struct sockaddr_in *)(src))->sin_port, \
3456 ((const struct sockaddr_in *)(dst))->sin_port); \
3457 } while (/*CONSTCOND*/ 0)
3458 #else
3459 #define SYN_HASH6(sa, sp, dp) \
3460 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3461 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3462 & 0x7fffffff)
3463
3464 #define SYN_HASHALL(hash, src, dst) \
3465 do { \
3466 switch ((src)->sa_family) { \
3467 case AF_INET: \
3468 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3469 ((const struct sockaddr_in *)(src))->sin_port, \
3470 ((const struct sockaddr_in *)(dst))->sin_port); \
3471 break; \
3472 case AF_INET6: \
3473 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3474 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3475 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3476 break; \
3477 default: \
3478 hash = 0; \
3479 } \
3480 } while (/*CONSTCOND*/0)
3481 #endif /* INET6 */
3482
3483 static struct pool syn_cache_pool;
3484
3485 /*
3486 * We don't estimate RTT with SYNs, so each packet starts with the default
3487 * RTT and each timer step has a fixed timeout value.
3488 */
3489 static inline void
3490 syn_cache_timer_arm(struct syn_cache *sc)
3491 {
3492
3493 TCPT_RANGESET(sc->sc_rxtcur,
3494 TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3495 TCPTV_REXMTMAX);
3496 callout_reset(&sc->sc_timer,
3497 sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3498 }
3499
3500 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3501
3502 static inline void
3503 syn_cache_rm(struct syn_cache *sc)
3504 {
3505 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3506 sc, sc_bucketq);
3507 sc->sc_tp = NULL;
3508 LIST_REMOVE(sc, sc_tpq);
3509 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3510 callout_stop(&sc->sc_timer);
3511 syn_cache_count--;
3512 }
3513
3514 static inline void
3515 syn_cache_put(struct syn_cache *sc)
3516 {
3517 if (sc->sc_ipopts)
3518 (void) m_free(sc->sc_ipopts);
3519 rtcache_free(&sc->sc_route);
3520 sc->sc_flags |= SCF_DEAD;
3521 if (!callout_invoking(&sc->sc_timer))
3522 callout_schedule(&(sc)->sc_timer, 1);
3523 }
3524
3525 void
3526 syn_cache_init(void)
3527 {
3528 int i;
3529
3530 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3531 "synpl", NULL, IPL_SOFTNET);
3532
3533 /* Initialize the hash buckets. */
3534 for (i = 0; i < tcp_syn_cache_size; i++)
3535 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3536 }
3537
3538 void
3539 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3540 {
3541 struct syn_cache_head *scp;
3542 struct syn_cache *sc2;
3543 int s;
3544
3545 /*
3546 * If there are no entries in the hash table, reinitialize
3547 * the hash secrets.
3548 */
3549 if (syn_cache_count == 0) {
3550 syn_hash1 = cprng_fast32();
3551 syn_hash2 = cprng_fast32();
3552 }
3553
3554 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3555 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3556 scp = &tcp_syn_cache[sc->sc_bucketidx];
3557
3558 /*
3559 * Make sure that we don't overflow the per-bucket
3560 * limit or the total cache size limit.
3561 */
3562 s = splsoftnet();
3563 if (scp->sch_length >= tcp_syn_bucket_limit) {
3564 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3565 /*
3566 * The bucket is full. Toss the oldest element in the
3567 * bucket. This will be the first entry in the bucket.
3568 */
3569 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3570 #ifdef DIAGNOSTIC
3571 /*
3572 * This should never happen; we should always find an
3573 * entry in our bucket.
3574 */
3575 if (sc2 == NULL)
3576 panic("syn_cache_insert: bucketoverflow: impossible");
3577 #endif
3578 syn_cache_rm(sc2);
3579 syn_cache_put(sc2); /* calls pool_put but see spl above */
3580 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3581 struct syn_cache_head *scp2, *sce;
3582
3583 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3584 /*
3585 * The cache is full. Toss the oldest entry in the
3586 * first non-empty bucket we can find.
3587 *
3588 * XXX We would really like to toss the oldest
3589 * entry in the cache, but we hope that this
3590 * condition doesn't happen very often.
3591 */
3592 scp2 = scp;
3593 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3594 sce = &tcp_syn_cache[tcp_syn_cache_size];
3595 for (++scp2; scp2 != scp; scp2++) {
3596 if (scp2 >= sce)
3597 scp2 = &tcp_syn_cache[0];
3598 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3599 break;
3600 }
3601 #ifdef DIAGNOSTIC
3602 /*
3603 * This should never happen; we should always find a
3604 * non-empty bucket.
3605 */
3606 if (scp2 == scp)
3607 panic("syn_cache_insert: cacheoverflow: "
3608 "impossible");
3609 #endif
3610 }
3611 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3612 syn_cache_rm(sc2);
3613 syn_cache_put(sc2); /* calls pool_put but see spl above */
3614 }
3615
3616 /*
3617 * Initialize the entry's timer.
3618 */
3619 sc->sc_rxttot = 0;
3620 sc->sc_rxtshift = 0;
3621 syn_cache_timer_arm(sc);
3622
3623 /* Link it from tcpcb entry */
3624 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3625
3626 /* Put it into the bucket. */
3627 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3628 scp->sch_length++;
3629 syn_cache_count++;
3630
3631 TCP_STATINC(TCP_STAT_SC_ADDED);
3632 splx(s);
3633 }
3634
3635 /*
3636 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3637 * If we have retransmitted an entry the maximum number of times, expire
3638 * that entry.
3639 */
3640 static void
3641 syn_cache_timer(void *arg)
3642 {
3643 struct syn_cache *sc = arg;
3644
3645 mutex_enter(softnet_lock);
3646 KERNEL_LOCK(1, NULL);
3647
3648 callout_ack(&sc->sc_timer);
3649
3650 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3651 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3652 goto free;
3653 }
3654
3655 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3656 /* Drop it -- too many retransmissions. */
3657 goto dropit;
3658 }
3659
3660 /*
3661 * Compute the total amount of time this entry has
3662 * been on a queue. If this entry has been on longer
3663 * than the keep alive timer would allow, expire it.
3664 */
3665 sc->sc_rxttot += sc->sc_rxtcur;
3666 if (sc->sc_rxttot >= tcp_keepinit)
3667 goto dropit;
3668
3669 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3670 (void)syn_cache_respond(sc);
3671
3672 /* Advance the timer back-off. */
3673 sc->sc_rxtshift++;
3674 syn_cache_timer_arm(sc);
3675
3676 goto out;
3677
3678 dropit:
3679 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3680 syn_cache_rm(sc);
3681 if (sc->sc_ipopts)
3682 (void) m_free(sc->sc_ipopts);
3683 rtcache_free(&sc->sc_route);
3684
3685 free:
3686 callout_destroy(&sc->sc_timer);
3687 pool_put(&syn_cache_pool, sc);
3688
3689 out:
3690 KERNEL_UNLOCK_ONE(NULL);
3691 mutex_exit(softnet_lock);
3692 }
3693
3694 /*
3695 * Remove syn cache created by the specified tcb entry,
3696 * because this does not make sense to keep them
3697 * (if there's no tcb entry, syn cache entry will never be used)
3698 */
3699 void
3700 syn_cache_cleanup(struct tcpcb *tp)
3701 {
3702 struct syn_cache *sc, *nsc;
3703 int s;
3704
3705 s = splsoftnet();
3706
3707 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3708 nsc = LIST_NEXT(sc, sc_tpq);
3709
3710 #ifdef DIAGNOSTIC
3711 if (sc->sc_tp != tp)
3712 panic("invalid sc_tp in syn_cache_cleanup");
3713 #endif
3714 syn_cache_rm(sc);
3715 syn_cache_put(sc); /* calls pool_put but see spl above */
3716 }
3717 /* just for safety */
3718 LIST_INIT(&tp->t_sc);
3719
3720 splx(s);
3721 }
3722
3723 /*
3724 * Find an entry in the syn cache.
3725 */
3726 struct syn_cache *
3727 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3728 struct syn_cache_head **headp)
3729 {
3730 struct syn_cache *sc;
3731 struct syn_cache_head *scp;
3732 u_int32_t hash;
3733 int s;
3734
3735 SYN_HASHALL(hash, src, dst);
3736
3737 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3738 *headp = scp;
3739 s = splsoftnet();
3740 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3741 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3742 if (sc->sc_hash != hash)
3743 continue;
3744 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3745 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3746 splx(s);
3747 return (sc);
3748 }
3749 }
3750 splx(s);
3751 return (NULL);
3752 }
3753
3754 /*
3755 * This function gets called when we receive an ACK for a socket in the
3756 * LISTEN state. We look up the connection in the syn cache, and if it's
3757 * there, we pull it out of the cache and turn it into a full-blown
3758 * connection in the SYN-RECEIVED state.
3759 *
3760 * The return values may not be immediately obvious, and their effects
3761 * can be subtle, so here they are:
3762 *
3763 * NULL SYN was not found in cache; caller should drop the
3764 * packet and send an RST.
3765 *
3766 * -1 We were unable to create the new connection, and are
3767 * aborting it. An ACK,RST is being sent to the peer
3768 * (unless we got screwey sequence numbers; see below),
3769 * because the 3-way handshake has been completed. Caller
3770 * should not free the mbuf, since we may be using it. If
3771 * we are not, we will free it.
3772 *
3773 * Otherwise, the return value is a pointer to the new socket
3774 * associated with the connection.
3775 */
3776 struct socket *
3777 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3778 struct tcphdr *th, struct socket *so, struct mbuf *m)
3779 {
3780 struct syn_cache *sc;
3781 struct syn_cache_head *scp;
3782 struct inpcb *inp = NULL;
3783 #ifdef INET6
3784 struct in6pcb *in6p = NULL;
3785 #endif
3786 struct tcpcb *tp;
3787 int s;
3788 struct socket *oso;
3789
3790 s = splsoftnet();
3791 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3792 splx(s);
3793 return NULL;
3794 }
3795
3796 /*
3797 * Verify the sequence and ack numbers. Try getting the correct
3798 * response again.
3799 */
3800 if ((th->th_ack != sc->sc_iss + 1) ||
3801 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3802 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3803 m_freem(m);
3804 (void)syn_cache_respond(sc);
3805 splx(s);
3806 return ((struct socket *)(-1));
3807 }
3808
3809 /* Remove this cache entry */
3810 syn_cache_rm(sc);
3811 splx(s);
3812
3813 /*
3814 * Ok, create the full blown connection, and set things up
3815 * as they would have been set up if we had created the
3816 * connection when the SYN arrived. If we can't create
3817 * the connection, abort it.
3818 */
3819 /*
3820 * inp still has the OLD in_pcb stuff, set the
3821 * v6-related flags on the new guy, too. This is
3822 * done particularly for the case where an AF_INET6
3823 * socket is bound only to a port, and a v4 connection
3824 * comes in on that port.
3825 * we also copy the flowinfo from the original pcb
3826 * to the new one.
3827 */
3828 oso = so;
3829 so = sonewconn(so, true);
3830 if (so == NULL)
3831 goto resetandabort;
3832
3833 switch (so->so_proto->pr_domain->dom_family) {
3834 case AF_INET:
3835 inp = sotoinpcb(so);
3836 break;
3837 #ifdef INET6
3838 case AF_INET6:
3839 in6p = sotoin6pcb(so);
3840 break;
3841 #endif
3842 }
3843
3844 switch (src->sa_family) {
3845 case AF_INET:
3846 if (inp) {
3847 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3848 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3849 inp->inp_options = ip_srcroute(m);
3850 in_pcbstate(inp, INP_BOUND);
3851 if (inp->inp_options == NULL) {
3852 inp->inp_options = sc->sc_ipopts;
3853 sc->sc_ipopts = NULL;
3854 }
3855 }
3856 #ifdef INET6
3857 else if (in6p) {
3858 /* IPv4 packet to AF_INET6 socket */
3859 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3860 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3861 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3862 &in6p->in6p_laddr.s6_addr32[3],
3863 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3864 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3865 in6totcpcb(in6p)->t_family = AF_INET;
3866 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3867 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3868 else
3869 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3870 in6_pcbstate(in6p, IN6P_BOUND);
3871 }
3872 #endif
3873 break;
3874 #ifdef INET6
3875 case AF_INET6:
3876 if (in6p) {
3877 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3878 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3879 in6_pcbstate(in6p, IN6P_BOUND);
3880 }
3881 break;
3882 #endif
3883 }
3884
3885 #ifdef INET6
3886 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3887 struct in6pcb *oin6p = sotoin6pcb(oso);
3888 /* inherit socket options from the listening socket */
3889 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3890 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3891 m_freem(in6p->in6p_options);
3892 in6p->in6p_options = NULL;
3893 }
3894 ip6_savecontrol(in6p, &in6p->in6p_options,
3895 mtod(m, struct ip6_hdr *), m);
3896 }
3897 #endif
3898
3899 #if defined(IPSEC)
3900 if (ipsec_used) {
3901 /*
3902 * we make a copy of policy, instead of sharing the policy, for
3903 * better behavior in terms of SA lookup and dead SA removal.
3904 */
3905 if (inp) {
3906 /* copy old policy into new socket's */
3907 if (ipsec_copy_pcbpolicy(sotoinpcb(oso)->inp_sp,
3908 inp->inp_sp))
3909 printf("tcp_input: could not copy policy\n");
3910 }
3911 #ifdef INET6
3912 else if (in6p) {
3913 /* copy old policy into new socket's */
3914 if (ipsec_copy_pcbpolicy(sotoin6pcb(oso)->in6p_sp,
3915 in6p->in6p_sp))
3916 printf("tcp_input: could not copy policy\n");
3917 }
3918 #endif
3919 }
3920 #endif
3921
3922 /*
3923 * Give the new socket our cached route reference.
3924 */
3925 if (inp) {
3926 rtcache_copy(&inp->inp_route, &sc->sc_route);
3927 rtcache_free(&sc->sc_route);
3928 }
3929 #ifdef INET6
3930 else {
3931 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3932 rtcache_free(&sc->sc_route);
3933 }
3934 #endif
3935
3936 if (inp) {
3937 struct sockaddr_in sin;
3938 memcpy(&sin, src, src->sa_len);
3939 if (in_pcbconnect(inp, &sin, &lwp0)) {
3940 goto resetandabort;
3941 }
3942 }
3943 #ifdef INET6
3944 else if (in6p) {
3945 struct sockaddr_in6 sin6;
3946 memcpy(&sin6, src, src->sa_len);
3947 if (src->sa_family == AF_INET) {
3948 /* IPv4 packet to AF_INET6 socket */
3949 in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3950 }
3951 if (in6_pcbconnect(in6p, &sin6, NULL)) {
3952 goto resetandabort;
3953 }
3954 }
3955 #endif
3956 else {
3957 goto resetandabort;
3958 }
3959
3960 if (inp)
3961 tp = intotcpcb(inp);
3962 #ifdef INET6
3963 else if (in6p)
3964 tp = in6totcpcb(in6p);
3965 #endif
3966 else
3967 tp = NULL;
3968
3969 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3970 if (sc->sc_request_r_scale != 15) {
3971 tp->requested_s_scale = sc->sc_requested_s_scale;
3972 tp->request_r_scale = sc->sc_request_r_scale;
3973 tp->snd_scale = sc->sc_requested_s_scale;
3974 tp->rcv_scale = sc->sc_request_r_scale;
3975 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3976 }
3977 if (sc->sc_flags & SCF_TIMESTAMP)
3978 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3979 tp->ts_timebase = sc->sc_timebase;
3980
3981 tp->t_template = tcp_template(tp);
3982 if (tp->t_template == 0) {
3983 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3984 so = NULL;
3985 m_freem(m);
3986 goto abort;
3987 }
3988
3989 tp->iss = sc->sc_iss;
3990 tp->irs = sc->sc_irs;
3991 tcp_sendseqinit(tp);
3992 tcp_rcvseqinit(tp);
3993 tp->t_state = TCPS_SYN_RECEIVED;
3994 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3995 TCP_STATINC(TCP_STAT_ACCEPTS);
3996
3997 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3998 tp->t_flags |= TF_WILL_SACK;
3999
4000 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4001 tp->t_flags |= TF_ECN_PERMIT;
4002
4003 #ifdef TCP_SIGNATURE
4004 if (sc->sc_flags & SCF_SIGNATURE)
4005 tp->t_flags |= TF_SIGNATURE;
4006 #endif
4007
4008 /* Initialize tp->t_ourmss before we deal with the peer's! */
4009 tp->t_ourmss = sc->sc_ourmaxseg;
4010 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4011
4012 /*
4013 * Initialize the initial congestion window. If we
4014 * had to retransmit the SYN,ACK, we must initialize cwnd
4015 * to 1 segment (i.e. the Loss Window).
4016 */
4017 if (sc->sc_rxtshift)
4018 tp->snd_cwnd = tp->t_peermss;
4019 else {
4020 int ss = tcp_init_win;
4021 if (inp != NULL && in_localaddr(inp->inp_faddr))
4022 ss = tcp_init_win_local;
4023 #ifdef INET6
4024 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4025 ss = tcp_init_win_local;
4026 #endif
4027 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4028 }
4029
4030 tcp_rmx_rtt(tp);
4031 tp->snd_wl1 = sc->sc_irs;
4032 tp->rcv_up = sc->sc_irs + 1;
4033
4034 /*
4035 * This is what whould have happened in tcp_output() when
4036 * the SYN,ACK was sent.
4037 */
4038 tp->snd_up = tp->snd_una;
4039 tp->snd_max = tp->snd_nxt = tp->iss+1;
4040 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4041 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4042 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4043 tp->last_ack_sent = tp->rcv_nxt;
4044 tp->t_partialacks = -1;
4045 tp->t_dupacks = 0;
4046
4047 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4048 s = splsoftnet();
4049 syn_cache_put(sc);
4050 splx(s);
4051 return so;
4052
4053 resetandabort:
4054 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4055 abort:
4056 if (so != NULL) {
4057 (void) soqremque(so, 1);
4058 (void) soabort(so);
4059 mutex_enter(softnet_lock);
4060 }
4061 s = splsoftnet();
4062 syn_cache_put(sc);
4063 splx(s);
4064 TCP_STATINC(TCP_STAT_SC_ABORTED);
4065 return ((struct socket *)(-1));
4066 }
4067
4068 /*
4069 * This function is called when we get a RST for a
4070 * non-existent connection, so that we can see if the
4071 * connection is in the syn cache. If it is, zap it.
4072 */
4073
4074 void
4075 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4076 {
4077 struct syn_cache *sc;
4078 struct syn_cache_head *scp;
4079 int s = splsoftnet();
4080
4081 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4082 splx(s);
4083 return;
4084 }
4085 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4086 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4087 splx(s);
4088 return;
4089 }
4090 syn_cache_rm(sc);
4091 TCP_STATINC(TCP_STAT_SC_RESET);
4092 syn_cache_put(sc); /* calls pool_put but see spl above */
4093 splx(s);
4094 }
4095
4096 void
4097 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4098 struct tcphdr *th)
4099 {
4100 struct syn_cache *sc;
4101 struct syn_cache_head *scp;
4102 int s;
4103
4104 s = splsoftnet();
4105 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4106 splx(s);
4107 return;
4108 }
4109 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4110 if (ntohl(th->th_seq) != sc->sc_iss) {
4111 splx(s);
4112 return;
4113 }
4114
4115 /*
4116 * If we've retransmitted 3 times and this is our second error,
4117 * we remove the entry. Otherwise, we allow it to continue on.
4118 * This prevents us from incorrectly nuking an entry during a
4119 * spurious network outage.
4120 *
4121 * See tcp_notify().
4122 */
4123 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4124 sc->sc_flags |= SCF_UNREACH;
4125 splx(s);
4126 return;
4127 }
4128
4129 syn_cache_rm(sc);
4130 TCP_STATINC(TCP_STAT_SC_UNREACH);
4131 syn_cache_put(sc); /* calls pool_put but see spl above */
4132 splx(s);
4133 }
4134
4135 /*
4136 * Given a LISTEN socket and an inbound SYN request, add this to the syn
4137 * cache, and send back a segment:
4138 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4139 * to the source.
4140 *
4141 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4142 * Doing so would require that we hold onto the data and deliver it
4143 * to the application. However, if we are the target of a SYN-flood
4144 * DoS attack, an attacker could send data which would eventually
4145 * consume all available buffer space if it were ACKed. By not ACKing
4146 * the data, we avoid this DoS scenario.
4147 */
4148 int
4149 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4150 unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
4151 int optlen, struct tcp_opt_info *oi)
4152 {
4153 struct tcpcb tb, *tp;
4154 long win;
4155 struct syn_cache *sc;
4156 struct syn_cache_head *scp;
4157 struct mbuf *ipopts;
4158 int s;
4159
4160 tp = sototcpcb(so);
4161
4162 /*
4163 * Initialize some local state.
4164 */
4165 win = sbspace(&so->so_rcv);
4166 if (win > TCP_MAXWIN)
4167 win = TCP_MAXWIN;
4168
4169 #ifdef TCP_SIGNATURE
4170 if (optp || (tp->t_flags & TF_SIGNATURE))
4171 #else
4172 if (optp)
4173 #endif
4174 {
4175 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4176 #ifdef TCP_SIGNATURE
4177 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4178 #endif
4179 tb.t_state = TCPS_LISTEN;
4180 if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
4181 return 0;
4182 } else
4183 tb.t_flags = 0;
4184
4185 switch (src->sa_family) {
4186 case AF_INET:
4187 /* Remember the IP options, if any. */
4188 ipopts = ip_srcroute(m);
4189 break;
4190 default:
4191 ipopts = NULL;
4192 }
4193
4194 /*
4195 * See if we already have an entry for this connection.
4196 * If we do, resend the SYN,ACK. We do not count this
4197 * as a retransmission (XXX though maybe we should).
4198 */
4199 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4200 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4201 if (ipopts) {
4202 /*
4203 * If we were remembering a previous source route,
4204 * forget it and use the new one we've been given.
4205 */
4206 if (sc->sc_ipopts)
4207 (void)m_free(sc->sc_ipopts);
4208 sc->sc_ipopts = ipopts;
4209 }
4210 sc->sc_timestamp = tb.ts_recent;
4211 m_freem(m);
4212 if (syn_cache_respond(sc) == 0) {
4213 uint64_t *tcps = TCP_STAT_GETREF();
4214 tcps[TCP_STAT_SNDACKS]++;
4215 tcps[TCP_STAT_SNDTOTAL]++;
4216 TCP_STAT_PUTREF();
4217 }
4218 return 1;
4219 }
4220
4221 s = splsoftnet();
4222 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4223 splx(s);
4224 if (sc == NULL) {
4225 if (ipopts)
4226 (void)m_free(ipopts);
4227 return 0;
4228 }
4229
4230 /*
4231 * Fill in the cache, and put the necessary IP and TCP
4232 * options into the reply.
4233 */
4234 memset(sc, 0, sizeof(struct syn_cache));
4235 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4236 memcpy(&sc->sc_src, src, src->sa_len);
4237 memcpy(&sc->sc_dst, dst, dst->sa_len);
4238 sc->sc_flags = 0;
4239 sc->sc_ipopts = ipopts;
4240 sc->sc_irs = th->th_seq;
4241 switch (src->sa_family) {
4242 case AF_INET:
4243 {
4244 struct sockaddr_in *srcin = (void *)src;
4245 struct sockaddr_in *dstin = (void *)dst;
4246
4247 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4248 &srcin->sin_addr, dstin->sin_port,
4249 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4250 break;
4251 }
4252 #ifdef INET6
4253 case AF_INET6:
4254 {
4255 struct sockaddr_in6 *srcin6 = (void *)src;
4256 struct sockaddr_in6 *dstin6 = (void *)dst;
4257
4258 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4259 &srcin6->sin6_addr, dstin6->sin6_port,
4260 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4261 break;
4262 }
4263 #endif
4264 }
4265 sc->sc_peermaxseg = oi->maxseg;
4266 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4267 m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4268 sc->sc_win = win;
4269 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4270 sc->sc_timestamp = tb.ts_recent;
4271 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4272 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4273 sc->sc_flags |= SCF_TIMESTAMP;
4274 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4275 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4276 sc->sc_requested_s_scale = tb.requested_s_scale;
4277 sc->sc_request_r_scale = 0;
4278 /*
4279 * Pick the smallest possible scaling factor that
4280 * will still allow us to scale up to sb_max.
4281 *
4282 * We do this because there are broken firewalls that
4283 * will corrupt the window scale option, leading to
4284 * the other endpoint believing that our advertised
4285 * window is unscaled. At scale factors larger than
4286 * 5 the unscaled window will drop below 1500 bytes,
4287 * leading to serious problems when traversing these
4288 * broken firewalls.
4289 *
4290 * With the default sbmax of 256K, a scale factor
4291 * of 3 will be chosen by this algorithm. Those who
4292 * choose a larger sbmax should watch out
4293 * for the compatiblity problems mentioned above.
4294 *
4295 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4296 * or <SYN,ACK>) segment itself is never scaled.
4297 */
4298 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4299 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4300 sc->sc_request_r_scale++;
4301 } else {
4302 sc->sc_requested_s_scale = 15;
4303 sc->sc_request_r_scale = 15;
4304 }
4305 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4306 sc->sc_flags |= SCF_SACK_PERMIT;
4307
4308 /*
4309 * ECN setup packet received.
4310 */
4311 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4312 sc->sc_flags |= SCF_ECN_PERMIT;
4313
4314 #ifdef TCP_SIGNATURE
4315 if (tb.t_flags & TF_SIGNATURE)
4316 sc->sc_flags |= SCF_SIGNATURE;
4317 #endif
4318 sc->sc_tp = tp;
4319 m_freem(m);
4320 if (syn_cache_respond(sc) == 0) {
4321 uint64_t *tcps = TCP_STAT_GETREF();
4322 tcps[TCP_STAT_SNDACKS]++;
4323 tcps[TCP_STAT_SNDTOTAL]++;
4324 TCP_STAT_PUTREF();
4325 syn_cache_insert(sc, tp);
4326 } else {
4327 s = splsoftnet();
4328 /*
4329 * syn_cache_put() will try to schedule the timer, so
4330 * we need to initialize it
4331 */
4332 syn_cache_timer_arm(sc);
4333 syn_cache_put(sc);
4334 splx(s);
4335 TCP_STATINC(TCP_STAT_SC_DROPPED);
4336 }
4337 return 1;
4338 }
4339
4340 /*
4341 * syn_cache_respond: (re)send SYN+ACK.
4342 *
4343 * Returns 0 on success.
4344 */
4345
4346 int
4347 syn_cache_respond(struct syn_cache *sc)
4348 {
4349 #ifdef INET6
4350 struct rtentry *rt = NULL;
4351 #endif
4352 struct route *ro;
4353 u_int8_t *optp;
4354 int optlen, error;
4355 u_int16_t tlen;
4356 struct ip *ip = NULL;
4357 #ifdef INET6
4358 struct ip6_hdr *ip6 = NULL;
4359 #endif
4360 struct tcpcb *tp;
4361 struct tcphdr *th;
4362 struct mbuf *m;
4363 u_int hlen;
4364 #ifdef TCP_SIGNATURE
4365 struct secasvar *sav = NULL;
4366 u_int8_t *sigp = NULL;
4367 #endif
4368
4369 ro = &sc->sc_route;
4370 switch (sc->sc_src.sa.sa_family) {
4371 case AF_INET:
4372 hlen = sizeof(struct ip);
4373 break;
4374 #ifdef INET6
4375 case AF_INET6:
4376 hlen = sizeof(struct ip6_hdr);
4377 break;
4378 #endif
4379 default:
4380 return EAFNOSUPPORT;
4381 }
4382
4383 /* Worst case scanario, since we don't know the option size yet. */
4384 tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4385 KASSERT(max_linkhdr + tlen <= MCLBYTES);
4386
4387 /*
4388 * Create the IP+TCP header from scratch.
4389 */
4390 MGETHDR(m, M_DONTWAIT, MT_DATA);
4391 if (m && (max_linkhdr + tlen) > MHLEN) {
4392 MCLGET(m, M_DONTWAIT);
4393 if ((m->m_flags & M_EXT) == 0) {
4394 m_freem(m);
4395 m = NULL;
4396 }
4397 }
4398 if (m == NULL)
4399 return ENOBUFS;
4400 MCLAIM(m, &tcp_tx_mowner);
4401
4402 tp = sc->sc_tp;
4403
4404 /* Fixup the mbuf. */
4405 m->m_data += max_linkhdr;
4406 m_reset_rcvif(m);
4407 memset(mtod(m, void *), 0, tlen);
4408
4409 switch (sc->sc_src.sa.sa_family) {
4410 case AF_INET:
4411 ip = mtod(m, struct ip *);
4412 ip->ip_v = 4;
4413 ip->ip_dst = sc->sc_src.sin.sin_addr;
4414 ip->ip_src = sc->sc_dst.sin.sin_addr;
4415 ip->ip_p = IPPROTO_TCP;
4416 th = (struct tcphdr *)(ip + 1);
4417 th->th_dport = sc->sc_src.sin.sin_port;
4418 th->th_sport = sc->sc_dst.sin.sin_port;
4419 break;
4420 #ifdef INET6
4421 case AF_INET6:
4422 ip6 = mtod(m, struct ip6_hdr *);
4423 ip6->ip6_vfc = IPV6_VERSION;
4424 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4425 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4426 ip6->ip6_nxt = IPPROTO_TCP;
4427 /* ip6_plen will be updated in ip6_output() */
4428 th = (struct tcphdr *)(ip6 + 1);
4429 th->th_dport = sc->sc_src.sin6.sin6_port;
4430 th->th_sport = sc->sc_dst.sin6.sin6_port;
4431 break;
4432 #endif
4433 default:
4434 panic("%s: impossible (1)", __func__);
4435 }
4436
4437 th->th_seq = htonl(sc->sc_iss);
4438 th->th_ack = htonl(sc->sc_irs + 1);
4439 th->th_flags = TH_SYN|TH_ACK;
4440 th->th_win = htons(sc->sc_win);
4441 /* th_x2, th_sum, th_urp already 0 from memset */
4442
4443 /* Tack on the TCP options. */
4444 optp = (u_int8_t *)(th + 1);
4445 optlen = 0;
4446 *optp++ = TCPOPT_MAXSEG;
4447 *optp++ = TCPOLEN_MAXSEG;
4448 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4449 *optp++ = sc->sc_ourmaxseg & 0xff;
4450 optlen += TCPOLEN_MAXSEG;
4451
4452 if (sc->sc_request_r_scale != 15) {
4453 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4454 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4455 sc->sc_request_r_scale);
4456 optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4457 optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4458 }
4459
4460 if (sc->sc_flags & SCF_SACK_PERMIT) {
4461 /* Let the peer know that we will SACK. */
4462 *optp++ = TCPOPT_SACK_PERMITTED;
4463 *optp++ = TCPOLEN_SACK_PERMITTED;
4464 optlen += TCPOLEN_SACK_PERMITTED;
4465 }
4466
4467 if (sc->sc_flags & SCF_TIMESTAMP) {
4468 while (optlen % 4 != 2) {
4469 optlen += TCPOLEN_NOP;
4470 *optp++ = TCPOPT_NOP;
4471 }
4472 *optp++ = TCPOPT_TIMESTAMP;
4473 *optp++ = TCPOLEN_TIMESTAMP;
4474 u_int32_t *lp = (u_int32_t *)(optp);
4475 /* Form timestamp option as shown in appendix A of RFC 1323. */
4476 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4477 *lp = htonl(sc->sc_timestamp);
4478 optp += TCPOLEN_TIMESTAMP - 2;
4479 optlen += TCPOLEN_TIMESTAMP;
4480 }
4481
4482 #ifdef TCP_SIGNATURE
4483 if (sc->sc_flags & SCF_SIGNATURE) {
4484 sav = tcp_signature_getsav(m);
4485 if (sav == NULL) {
4486 m_freem(m);
4487 return EPERM;
4488 }
4489
4490 *optp++ = TCPOPT_SIGNATURE;
4491 *optp++ = TCPOLEN_SIGNATURE;
4492 sigp = optp;
4493 memset(optp, 0, TCP_SIGLEN);
4494 optp += TCP_SIGLEN;
4495 optlen += TCPOLEN_SIGNATURE;
4496 }
4497 #endif
4498
4499 /*
4500 * Terminate and pad TCP options to a 4 byte boundary.
4501 *
4502 * According to RFC793: "The content of the header beyond the
4503 * End-of-Option option must be header padding (i.e., zero)."
4504 * And later: "The padding is composed of zeros."
4505 */
4506 if (optlen % 4) {
4507 optlen += TCPOLEN_EOL;
4508 *optp++ = TCPOPT_EOL;
4509 }
4510 while (optlen % 4) {
4511 optlen += TCPOLEN_PAD;
4512 *optp++ = TCPOPT_PAD;
4513 }
4514
4515 /* Compute the actual values now that we've added the options. */
4516 tlen = hlen + sizeof(struct tcphdr) + optlen;
4517 m->m_len = m->m_pkthdr.len = tlen;
4518 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4519
4520 #ifdef TCP_SIGNATURE
4521 if (sav) {
4522 (void)tcp_signature(m, th, hlen, sav, sigp);
4523 key_sa_recordxfer(sav, m);
4524 KEY_SA_UNREF(&sav);
4525 }
4526 #endif
4527
4528 /*
4529 * Send ECN SYN-ACK setup packet.
4530 * Routes can be asymetric, so, even if we receive a packet
4531 * with ECE and CWR set, we must not assume no one will block
4532 * the ECE packet we are about to send.
4533 */
4534 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4535 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4536 th->th_flags |= TH_ECE;
4537 TCP_STATINC(TCP_STAT_ECN_SHS);
4538
4539 /*
4540 * draft-ietf-tcpm-ecnsyn-00.txt
4541 *
4542 * "[...] a TCP node MAY respond to an ECN-setup
4543 * SYN packet by setting ECT in the responding
4544 * ECN-setup SYN/ACK packet, indicating to routers
4545 * that the SYN/ACK packet is ECN-Capable.
4546 * This allows a congested router along the path
4547 * to mark the packet instead of dropping the
4548 * packet as an indication of congestion."
4549 *
4550 * "[...] There can be a great benefit in setting
4551 * an ECN-capable codepoint in SYN/ACK packets [...]
4552 * Congestion is most likely to occur in
4553 * the server-to-client direction. As a result,
4554 * setting an ECN-capable codepoint in SYN/ACK
4555 * packets can reduce the occurence of three-second
4556 * retransmit timeouts resulting from the drop
4557 * of SYN/ACK packets."
4558 *
4559 * Page 4 and 6, January 2006.
4560 */
4561
4562 switch (sc->sc_src.sa.sa_family) {
4563 case AF_INET:
4564 ip->ip_tos |= IPTOS_ECN_ECT0;
4565 break;
4566 #ifdef INET6
4567 case AF_INET6:
4568 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4569 break;
4570 #endif
4571 }
4572 TCP_STATINC(TCP_STAT_ECN_ECT);
4573 }
4574
4575
4576 /*
4577 * Compute the packet's checksum.
4578 *
4579 * Fill in some straggling IP bits. Note the stack expects
4580 * ip_len to be in host order, for convenience.
4581 */
4582 switch (sc->sc_src.sa.sa_family) {
4583 case AF_INET:
4584 ip->ip_len = htons(tlen - hlen);
4585 th->th_sum = 0;
4586 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4587 ip->ip_len = htons(tlen);
4588 ip->ip_ttl = ip_defttl;
4589 /* XXX tos? */
4590 break;
4591 #ifdef INET6
4592 case AF_INET6:
4593 ip6->ip6_plen = htons(tlen - hlen);
4594 th->th_sum = 0;
4595 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4596 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4597 ip6->ip6_vfc |= IPV6_VERSION;
4598 ip6->ip6_plen = htons(tlen - hlen);
4599 /* ip6_hlim will be initialized afterwards */
4600 /* XXX flowlabel? */
4601 break;
4602 #endif
4603 }
4604
4605 /* XXX use IPsec policy on listening socket, on SYN ACK */
4606 tp = sc->sc_tp;
4607
4608 switch (sc->sc_src.sa.sa_family) {
4609 case AF_INET:
4610 error = ip_output(m, sc->sc_ipopts, ro,
4611 (ip_mtudisc ? IP_MTUDISC : 0),
4612 NULL, tp ? tp->t_inpcb : NULL);
4613 break;
4614 #ifdef INET6
4615 case AF_INET6:
4616 ip6->ip6_hlim = in6_selecthlim(NULL,
4617 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4618 rtcache_unref(rt, ro);
4619
4620 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4621 tp ? tp->t_in6pcb : NULL, NULL);
4622 break;
4623 #endif
4624 default:
4625 panic("%s: impossible (2)", __func__);
4626 }
4627
4628 return error;
4629 }
4630