Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.405
      1 /*	$NetBSD: tcp_input.c,v 1.405 2018/04/08 12:18:06 maxv Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.405 2018/04/08 12:18:06 maxv Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_inet.h"
    155 #include "opt_ipsec.h"
    156 #include "opt_inet_csum.h"
    157 #include "opt_tcp_debug.h"
    158 #endif
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 #include <sys/lwp.h> /* for lwp0 */
    176 #include <sys/cprng.h>
    177 
    178 #include <net/if.h>
    179 #include <net/if_types.h>
    180 
    181 #include <netinet/in.h>
    182 #include <netinet/in_systm.h>
    183 #include <netinet/ip.h>
    184 #include <netinet/in_pcb.h>
    185 #include <netinet/in_var.h>
    186 #include <netinet/ip_var.h>
    187 #include <netinet/in_offload.h>
    188 
    189 #ifdef INET6
    190 #include <netinet/ip6.h>
    191 #include <netinet6/ip6_var.h>
    192 #include <netinet6/in6_pcb.h>
    193 #include <netinet6/ip6_var.h>
    194 #include <netinet6/in6_var.h>
    195 #include <netinet/icmp6.h>
    196 #include <netinet6/nd6.h>
    197 #ifdef TCP_SIGNATURE
    198 #include <netinet6/scope6_var.h>
    199 #endif
    200 #endif
    201 
    202 #ifndef INET6
    203 /* always need ip6.h for IP6_EXTHDR_GET */
    204 #include <netinet/ip6.h>
    205 #endif
    206 
    207 #include <netinet/tcp.h>
    208 #include <netinet/tcp_fsm.h>
    209 #include <netinet/tcp_seq.h>
    210 #include <netinet/tcp_timer.h>
    211 #include <netinet/tcp_var.h>
    212 #include <netinet/tcp_private.h>
    213 #include <netinet/tcpip.h>
    214 #include <netinet/tcp_congctl.h>
    215 #include <netinet/tcp_debug.h>
    216 
    217 #ifdef INET6
    218 #include "faith.h"
    219 #if defined(NFAITH) && NFAITH > 0
    220 #include <net/if_faith.h>
    221 #endif
    222 #endif
    223 
    224 #ifdef IPSEC
    225 #include <netipsec/ipsec.h>
    226 #include <netipsec/ipsec_var.h>
    227 #include <netipsec/key.h>
    228 #ifdef INET6
    229 #include <netipsec/ipsec6.h>
    230 #endif
    231 #endif	/* IPSEC*/
    232 
    233 #include <netinet/tcp_vtw.h>
    234 
    235 int	tcprexmtthresh = 3;
    236 int	tcp_log_refused;
    237 
    238 int	tcp_do_autorcvbuf = 1;
    239 int	tcp_autorcvbuf_inc = 16 * 1024;
    240 int	tcp_autorcvbuf_max = 256 * 1024;
    241 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    242 
    243 static int tcp_rst_ppslim_count = 0;
    244 static struct timeval tcp_rst_ppslim_last;
    245 static int tcp_ackdrop_ppslim_count = 0;
    246 static struct timeval tcp_ackdrop_ppslim_last;
    247 
    248 static void syn_cache_timer(void *);
    249 
    250 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    251 
    252 /* for modulo comparisons of timestamps */
    253 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    254 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    255 
    256 /*
    257  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    258  */
    259 #ifdef INET6
    260 static inline void
    261 nd6_hint(struct tcpcb *tp)
    262 {
    263 	struct rtentry *rt = NULL;
    264 
    265 	if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
    266 	    (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
    267 		nd6_nud_hint(rt);
    268 	rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
    269 }
    270 #else
    271 static inline void
    272 nd6_hint(struct tcpcb *tp)
    273 {
    274 }
    275 #endif
    276 
    277 /*
    278  * Compute ACK transmission behavior.  Delay the ACK unless
    279  * we have already delayed an ACK (must send an ACK every two segments).
    280  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    281  * option is enabled.
    282  */
    283 static void
    284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    285 {
    286 
    287 	if (tp->t_flags & TF_DELACK ||
    288 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    289 		tp->t_flags |= TF_ACKNOW;
    290 	else
    291 		TCP_SET_DELACK(tp);
    292 }
    293 
    294 static void
    295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    296 {
    297 
    298 	/*
    299 	 * If we had a pending ICMP message that refers to data that have
    300 	 * just been acknowledged, disregard the recorded ICMP message.
    301 	 */
    302 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    303 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    304 		tp->t_flags &= ~TF_PMTUD_PEND;
    305 
    306 	/*
    307 	 * Keep track of the largest chunk of data
    308 	 * acknowledged since last PMTU update
    309 	 */
    310 	if (tp->t_pmtud_mss_acked < acked)
    311 		tp->t_pmtud_mss_acked = acked;
    312 }
    313 
    314 /*
    315  * Convert TCP protocol fields to host order for easier processing.
    316  */
    317 static void
    318 tcp_fields_to_host(struct tcphdr *th)
    319 {
    320 
    321 	NTOHL(th->th_seq);
    322 	NTOHL(th->th_ack);
    323 	NTOHS(th->th_win);
    324 	NTOHS(th->th_urp);
    325 }
    326 
    327 /*
    328  * ... and reverse the above.
    329  */
    330 static void
    331 tcp_fields_to_net(struct tcphdr *th)
    332 {
    333 
    334 	HTONL(th->th_seq);
    335 	HTONL(th->th_ack);
    336 	HTONS(th->th_win);
    337 	HTONS(th->th_urp);
    338 }
    339 
    340 static void
    341 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
    342 {
    343 	if (th->th_urp > todrop) {
    344 		th->th_urp -= todrop;
    345 	} else {
    346 		*tiflags &= ~TH_URG;
    347 		th->th_urp = 0;
    348 	}
    349 }
    350 
    351 #ifdef TCP_CSUM_COUNTERS
    352 #include <sys/device.h>
    353 
    354 extern struct evcnt tcp_hwcsum_ok;
    355 extern struct evcnt tcp_hwcsum_bad;
    356 extern struct evcnt tcp_hwcsum_data;
    357 extern struct evcnt tcp_swcsum;
    358 #if defined(INET6)
    359 extern struct evcnt tcp6_hwcsum_ok;
    360 extern struct evcnt tcp6_hwcsum_bad;
    361 extern struct evcnt tcp6_hwcsum_data;
    362 extern struct evcnt tcp6_swcsum;
    363 #endif /* defined(INET6) */
    364 
    365 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    366 
    367 #else
    368 
    369 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    370 
    371 #endif /* TCP_CSUM_COUNTERS */
    372 
    373 #ifdef TCP_REASS_COUNTERS
    374 #include <sys/device.h>
    375 
    376 extern struct evcnt tcp_reass_;
    377 extern struct evcnt tcp_reass_empty;
    378 extern struct evcnt tcp_reass_iteration[8];
    379 extern struct evcnt tcp_reass_prependfirst;
    380 extern struct evcnt tcp_reass_prepend;
    381 extern struct evcnt tcp_reass_insert;
    382 extern struct evcnt tcp_reass_inserttail;
    383 extern struct evcnt tcp_reass_append;
    384 extern struct evcnt tcp_reass_appendtail;
    385 extern struct evcnt tcp_reass_overlaptail;
    386 extern struct evcnt tcp_reass_overlapfront;
    387 extern struct evcnt tcp_reass_segdup;
    388 extern struct evcnt tcp_reass_fragdup;
    389 
    390 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    391 
    392 #else
    393 
    394 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    395 
    396 #endif /* TCP_REASS_COUNTERS */
    397 
    398 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    399     int);
    400 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    401     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    402 
    403 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    404 #ifdef INET6
    405 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    406 #endif
    407 
    408 #if defined(MBUFTRACE)
    409 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    410 #endif /* defined(MBUFTRACE) */
    411 
    412 static struct pool tcpipqent_pool;
    413 
    414 void
    415 tcpipqent_init(void)
    416 {
    417 
    418 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    419 	    NULL, IPL_VM);
    420 }
    421 
    422 struct ipqent *
    423 tcpipqent_alloc(void)
    424 {
    425 	struct ipqent *ipqe;
    426 	int s;
    427 
    428 	s = splvm();
    429 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    430 	splx(s);
    431 
    432 	return ipqe;
    433 }
    434 
    435 void
    436 tcpipqent_free(struct ipqent *ipqe)
    437 {
    438 	int s;
    439 
    440 	s = splvm();
    441 	pool_put(&tcpipqent_pool, ipqe);
    442 	splx(s);
    443 }
    444 
    445 /*
    446  * Insert segment ti into reassembly queue of tcp with
    447  * control block tp.  Return TH_FIN if reassembly now includes
    448  * a segment with FIN.
    449  */
    450 static int
    451 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
    452 {
    453 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    454 	struct socket *so = NULL;
    455 	int pkt_flags;
    456 	tcp_seq pkt_seq;
    457 	unsigned pkt_len;
    458 	u_long rcvpartdupbyte = 0;
    459 	u_long rcvoobyte;
    460 #ifdef TCP_REASS_COUNTERS
    461 	u_int count = 0;
    462 #endif
    463 	uint64_t *tcps;
    464 
    465 	if (tp->t_inpcb)
    466 		so = tp->t_inpcb->inp_socket;
    467 #ifdef INET6
    468 	else if (tp->t_in6pcb)
    469 		so = tp->t_in6pcb->in6p_socket;
    470 #endif
    471 
    472 	TCP_REASS_LOCK_CHECK(tp);
    473 
    474 	/*
    475 	 * Call with th==NULL after become established to
    476 	 * force pre-ESTABLISHED data up to user socket.
    477 	 */
    478 	if (th == NULL)
    479 		goto present;
    480 
    481 	m_claimm(m, &tcp_reass_mowner);
    482 
    483 	rcvoobyte = tlen;
    484 	/*
    485 	 * Copy these to local variables because the TCP header gets munged
    486 	 * while we are collapsing mbufs.
    487 	 */
    488 	pkt_seq = th->th_seq;
    489 	pkt_len = tlen;
    490 	pkt_flags = th->th_flags;
    491 
    492 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    493 
    494 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    495 		/*
    496 		 * When we miss a packet, the vast majority of time we get
    497 		 * packets that follow it in order.  So optimize for that.
    498 		 */
    499 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    500 			p->ipqe_len += pkt_len;
    501 			p->ipqe_flags |= pkt_flags;
    502 			m_cat(p->ipqe_m, m);
    503 			m = NULL;
    504 			tiqe = p;
    505 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    506 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    507 			goto skip_replacement;
    508 		}
    509 		/*
    510 		 * While we're here, if the pkt is completely beyond
    511 		 * anything we have, just insert it at the tail.
    512 		 */
    513 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    514 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    515 			goto insert_it;
    516 		}
    517 	}
    518 
    519 	q = TAILQ_FIRST(&tp->segq);
    520 
    521 	if (q != NULL) {
    522 		/*
    523 		 * If this segment immediately precedes the first out-of-order
    524 		 * block, simply slap the segment in front of it and (mostly)
    525 		 * skip the complicated logic.
    526 		 */
    527 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    528 			q->ipqe_seq = pkt_seq;
    529 			q->ipqe_len += pkt_len;
    530 			q->ipqe_flags |= pkt_flags;
    531 			m_cat(m, q->ipqe_m);
    532 			q->ipqe_m = m;
    533 			tiqe = q;
    534 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    535 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    536 			goto skip_replacement;
    537 		}
    538 	} else {
    539 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    540 	}
    541 
    542 	/*
    543 	 * Find a segment which begins after this one does.
    544 	 */
    545 	for (p = NULL; q != NULL; q = nq) {
    546 		nq = TAILQ_NEXT(q, ipqe_q);
    547 #ifdef TCP_REASS_COUNTERS
    548 		count++;
    549 #endif
    550 
    551 		/*
    552 		 * If the received segment is just right after this
    553 		 * fragment, merge the two together and then check
    554 		 * for further overlaps.
    555 		 */
    556 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    557 			pkt_len += q->ipqe_len;
    558 			pkt_flags |= q->ipqe_flags;
    559 			pkt_seq = q->ipqe_seq;
    560 			m_cat(q->ipqe_m, m);
    561 			m = q->ipqe_m;
    562 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    563 			goto free_ipqe;
    564 		}
    565 
    566 		/*
    567 		 * If the received segment is completely past this
    568 		 * fragment, we need to go to the next fragment.
    569 		 */
    570 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    571 			p = q;
    572 			continue;
    573 		}
    574 
    575 		/*
    576 		 * If the fragment is past the received segment,
    577 		 * it (or any following) can't be concatenated.
    578 		 */
    579 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    580 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    581 			break;
    582 		}
    583 
    584 		/*
    585 		 * We've received all the data in this segment before.
    586 		 * Mark it as a duplicate and return.
    587 		 */
    588 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    589 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    590 			tcps = TCP_STAT_GETREF();
    591 			tcps[TCP_STAT_RCVDUPPACK]++;
    592 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    593 			TCP_STAT_PUTREF();
    594 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    595 			m_freem(m);
    596 			if (tiqe != NULL) {
    597 				tcpipqent_free(tiqe);
    598 			}
    599 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    600 			goto out;
    601 		}
    602 
    603 		/*
    604 		 * Received segment completely overlaps this fragment
    605 		 * so we drop the fragment (this keeps the temporal
    606 		 * ordering of segments correct).
    607 		 */
    608 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    609 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    610 			rcvpartdupbyte += q->ipqe_len;
    611 			m_freem(q->ipqe_m);
    612 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    613 			goto free_ipqe;
    614 		}
    615 
    616 		/*
    617 		 * Received segment extends past the end of the fragment.
    618 		 * Drop the overlapping bytes, merge the fragment and
    619 		 * segment, and treat as a longer received packet.
    620 		 */
    621 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    622 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    623 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    624 			m_adj(m, overlap);
    625 			rcvpartdupbyte += overlap;
    626 			m_cat(q->ipqe_m, m);
    627 			m = q->ipqe_m;
    628 			pkt_seq = q->ipqe_seq;
    629 			pkt_len += q->ipqe_len - overlap;
    630 			rcvoobyte -= overlap;
    631 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    632 			goto free_ipqe;
    633 		}
    634 
    635 		/*
    636 		 * Received segment extends past the front of the fragment.
    637 		 * Drop the overlapping bytes on the received packet. The
    638 		 * packet will then be concatenated with this fragment a
    639 		 * bit later.
    640 		 */
    641 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    642 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    643 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    644 			m_adj(m, -overlap);
    645 			pkt_len -= overlap;
    646 			rcvpartdupbyte += overlap;
    647 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    648 			rcvoobyte -= overlap;
    649 		}
    650 
    651 		/*
    652 		 * If the received segment immediately precedes this
    653 		 * fragment then tack the fragment onto this segment
    654 		 * and reinsert the data.
    655 		 */
    656 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    657 			pkt_len += q->ipqe_len;
    658 			pkt_flags |= q->ipqe_flags;
    659 			m_cat(m, q->ipqe_m);
    660 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    661 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    662 			tp->t_segqlen--;
    663 			KASSERT(tp->t_segqlen >= 0);
    664 			KASSERT(tp->t_segqlen != 0 ||
    665 			    (TAILQ_EMPTY(&tp->segq) &&
    666 			    TAILQ_EMPTY(&tp->timeq)));
    667 			if (tiqe == NULL) {
    668 				tiqe = q;
    669 			} else {
    670 				tcpipqent_free(q);
    671 			}
    672 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    673 			break;
    674 		}
    675 
    676 		/*
    677 		 * If the fragment is before the segment, remember it.
    678 		 * When this loop is terminated, p will contain the
    679 		 * pointer to the fragment that is right before the
    680 		 * received segment.
    681 		 */
    682 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    683 			p = q;
    684 
    685 		continue;
    686 
    687 		/*
    688 		 * This is a common operation.  It also will allow
    689 		 * to save doing a malloc/free in most instances.
    690 		 */
    691 	  free_ipqe:
    692 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    693 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    694 		tp->t_segqlen--;
    695 		KASSERT(tp->t_segqlen >= 0);
    696 		KASSERT(tp->t_segqlen != 0 ||
    697 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    698 		if (tiqe == NULL) {
    699 			tiqe = q;
    700 		} else {
    701 			tcpipqent_free(q);
    702 		}
    703 	}
    704 
    705 #ifdef TCP_REASS_COUNTERS
    706 	if (count > 7)
    707 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    708 	else if (count > 0)
    709 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    710 #endif
    711 
    712 insert_it:
    713 	/*
    714 	 * Allocate a new queue entry (block) since the received segment
    715 	 * did not collapse onto any other out-of-order block. If it had
    716 	 * collapsed, tiqe would not be NULL and we would be reusing it.
    717 	 *
    718 	 * If the allocation fails, drop the packet.
    719 	 */
    720 	if (tiqe == NULL) {
    721 		tiqe = tcpipqent_alloc();
    722 		if (tiqe == NULL) {
    723 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    724 			m_freem(m);
    725 			goto out;
    726 		}
    727 	}
    728 
    729 	/*
    730 	 * Update the counters.
    731 	 */
    732 	tp->t_rcvoopack++;
    733 	tcps = TCP_STAT_GETREF();
    734 	tcps[TCP_STAT_RCVOOPACK]++;
    735 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    736 	if (rcvpartdupbyte) {
    737 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    738 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    739 	}
    740 	TCP_STAT_PUTREF();
    741 
    742 	/*
    743 	 * Insert the new fragment queue entry into both queues.
    744 	 */
    745 	tiqe->ipqe_m = m;
    746 	tiqe->ipqe_seq = pkt_seq;
    747 	tiqe->ipqe_len = pkt_len;
    748 	tiqe->ipqe_flags = pkt_flags;
    749 	if (p == NULL) {
    750 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    751 	} else {
    752 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    753 	}
    754 	tp->t_segqlen++;
    755 
    756 skip_replacement:
    757 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    758 
    759 present:
    760 	/*
    761 	 * Present data to user, advancing rcv_nxt through
    762 	 * completed sequence space.
    763 	 */
    764 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    765 		goto out;
    766 	q = TAILQ_FIRST(&tp->segq);
    767 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    768 		goto out;
    769 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    770 		goto out;
    771 
    772 	tp->rcv_nxt += q->ipqe_len;
    773 	pkt_flags = q->ipqe_flags & TH_FIN;
    774 	nd6_hint(tp);
    775 
    776 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    777 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    778 	tp->t_segqlen--;
    779 	KASSERT(tp->t_segqlen >= 0);
    780 	KASSERT(tp->t_segqlen != 0 ||
    781 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    782 	if (so->so_state & SS_CANTRCVMORE)
    783 		m_freem(q->ipqe_m);
    784 	else
    785 		sbappendstream(&so->so_rcv, q->ipqe_m);
    786 	tcpipqent_free(q);
    787 	TCP_REASS_UNLOCK(tp);
    788 	sorwakeup(so);
    789 	return pkt_flags;
    790 
    791 out:
    792 	TCP_REASS_UNLOCK(tp);
    793 	return 0;
    794 }
    795 
    796 #ifdef INET6
    797 int
    798 tcp6_input(struct mbuf **mp, int *offp, int proto)
    799 {
    800 	struct mbuf *m = *mp;
    801 
    802 	/*
    803 	 * draft-itojun-ipv6-tcp-to-anycast
    804 	 * better place to put this in?
    805 	 */
    806 	if (m->m_flags & M_ANYCAST6) {
    807 		struct ip6_hdr *ip6;
    808 		if (m->m_len < sizeof(struct ip6_hdr)) {
    809 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    810 				TCP_STATINC(TCP_STAT_RCVSHORT);
    811 				return IPPROTO_DONE;
    812 			}
    813 		}
    814 		ip6 = mtod(m, struct ip6_hdr *);
    815 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    816 		    (char *)&ip6->ip6_dst - (char *)ip6);
    817 		return IPPROTO_DONE;
    818 	}
    819 
    820 	tcp_input(m, *offp, proto);
    821 	return IPPROTO_DONE;
    822 }
    823 #endif
    824 
    825 static void
    826 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    827 {
    828 	char src[INET_ADDRSTRLEN];
    829 	char dst[INET_ADDRSTRLEN];
    830 
    831 	if (ip) {
    832 		in_print(src, sizeof(src), &ip->ip_src);
    833 		in_print(dst, sizeof(dst), &ip->ip_dst);
    834 	} else {
    835 		strlcpy(src, "(unknown)", sizeof(src));
    836 		strlcpy(dst, "(unknown)", sizeof(dst));
    837 	}
    838 	log(LOG_INFO,
    839 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    840 	    dst, ntohs(th->th_dport),
    841 	    src, ntohs(th->th_sport));
    842 }
    843 
    844 #ifdef INET6
    845 static void
    846 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    847 {
    848 	char src[INET6_ADDRSTRLEN];
    849 	char dst[INET6_ADDRSTRLEN];
    850 
    851 	if (ip6) {
    852 		in6_print(src, sizeof(src), &ip6->ip6_src);
    853 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    854 	} else {
    855 		strlcpy(src, "(unknown v6)", sizeof(src));
    856 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    857 	}
    858 	log(LOG_INFO,
    859 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    860 	    dst, ntohs(th->th_dport),
    861 	    src, ntohs(th->th_sport));
    862 }
    863 #endif
    864 
    865 /*
    866  * Checksum extended TCP header and data.
    867  */
    868 int
    869 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    870     int toff, int off, int tlen)
    871 {
    872 	struct ifnet *rcvif;
    873 	int s;
    874 
    875 	/*
    876 	 * XXX it's better to record and check if this mbuf is
    877 	 * already checked.
    878 	 */
    879 
    880 	rcvif = m_get_rcvif(m, &s);
    881 	if (__predict_false(rcvif == NULL))
    882 		goto badcsum; /* XXX */
    883 
    884 	switch (af) {
    885 	case AF_INET:
    886 		switch (m->m_pkthdr.csum_flags &
    887 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    888 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    889 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    890 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    891 			goto badcsum;
    892 
    893 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    894 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    895 
    896 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    897 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    898 				const struct ip *ip =
    899 				    mtod(m, const struct ip *);
    900 
    901 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    902 				    ip->ip_dst.s_addr,
    903 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    904 			}
    905 			if ((hw_csum ^ 0xffff) != 0)
    906 				goto badcsum;
    907 			break;
    908 		}
    909 
    910 		case M_CSUM_TCPv4:
    911 			/* Checksum was okay. */
    912 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    913 			break;
    914 
    915 		default:
    916 			/*
    917 			 * Must compute it ourselves.  Maybe skip checksum
    918 			 * on loopback interfaces.
    919 			 */
    920 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    921 					   tcp_do_loopback_cksum)) {
    922 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    923 				if (in4_cksum(m, IPPROTO_TCP, toff,
    924 					      tlen + off) != 0)
    925 					goto badcsum;
    926 			}
    927 			break;
    928 		}
    929 		break;
    930 
    931 #ifdef INET6
    932 	case AF_INET6:
    933 		switch (m->m_pkthdr.csum_flags &
    934 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    935 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    936 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    937 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    938 			goto badcsum;
    939 
    940 #if 0 /* notyet */
    941 		case M_CSUM_TCPv6|M_CSUM_DATA:
    942 #endif
    943 
    944 		case M_CSUM_TCPv6:
    945 			/* Checksum was okay. */
    946 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    947 			break;
    948 
    949 		default:
    950 			/*
    951 			 * Must compute it ourselves.  Maybe skip checksum
    952 			 * on loopback interfaces.
    953 			 */
    954 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    955 			    tcp_do_loopback_cksum)) {
    956 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    957 				if (in6_cksum(m, IPPROTO_TCP, toff,
    958 				    tlen + off) != 0)
    959 					goto badcsum;
    960 			}
    961 		}
    962 		break;
    963 #endif /* INET6 */
    964 	}
    965 	m_put_rcvif(rcvif, &s);
    966 
    967 	return 0;
    968 
    969 badcsum:
    970 	m_put_rcvif(rcvif, &s);
    971 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    972 	return -1;
    973 }
    974 
    975 /*
    976  * When a packet arrives addressed to a vestigial tcpbp, we
    977  * nevertheless have to respond to it per the spec.
    978  *
    979  * This code is duplicated from the one in tcp_input().
    980  */
    981 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
    982     struct mbuf *m, int tlen)
    983 {
    984 	int tiflags;
    985 	int todrop;
    986 	uint32_t t_flags = 0;
    987 	uint64_t *tcps;
    988 
    989 	tiflags = th->th_flags;
    990 	todrop  = vp->rcv_nxt - th->th_seq;
    991 
    992 	if (todrop > 0) {
    993 		if (tiflags & TH_SYN) {
    994 			tiflags &= ~TH_SYN;
    995 			th->th_seq++;
    996 			tcp_urp_drop(th, 1, &tiflags);
    997 			todrop--;
    998 		}
    999 		if (todrop > tlen ||
   1000 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1001 			/*
   1002 			 * Any valid FIN or RST must be to the left of the
   1003 			 * window.  At this point the FIN or RST must be a
   1004 			 * duplicate or out of sequence; drop it.
   1005 			 */
   1006 			if (tiflags & TH_RST)
   1007 				goto drop;
   1008 			tiflags &= ~(TH_FIN|TH_RST);
   1009 
   1010 			/*
   1011 			 * Send an ACK to resynchronize and drop any data.
   1012 			 * But keep on processing for RST or ACK.
   1013 			 */
   1014 			t_flags |= TF_ACKNOW;
   1015 			todrop = tlen;
   1016 			tcps = TCP_STAT_GETREF();
   1017 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1018 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1019 			TCP_STAT_PUTREF();
   1020 		} else if ((tiflags & TH_RST) &&
   1021 		    th->th_seq != vp->rcv_nxt) {
   1022 			/*
   1023 			 * Test for reset before adjusting the sequence
   1024 			 * number for overlapping data.
   1025 			 */
   1026 			goto dropafterack_ratelim;
   1027 		} else {
   1028 			tcps = TCP_STAT_GETREF();
   1029 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1030 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1031 			TCP_STAT_PUTREF();
   1032 		}
   1033 
   1034 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1035 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1036 
   1037 		th->th_seq += todrop;
   1038 		tlen -= todrop;
   1039 		tcp_urp_drop(th, todrop, &tiflags);
   1040 	}
   1041 
   1042 	/*
   1043 	 * If new data are received on a connection after the
   1044 	 * user processes are gone, then RST the other end.
   1045 	 */
   1046 	if (tlen) {
   1047 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1048 		goto dropwithreset;
   1049 	}
   1050 
   1051 	/*
   1052 	 * If segment ends after window, drop trailing data
   1053 	 * (and PUSH and FIN); if nothing left, just ACK.
   1054 	 */
   1055 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
   1056 
   1057 	if (todrop > 0) {
   1058 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1059 		if (todrop >= tlen) {
   1060 			/*
   1061 			 * The segment actually starts after the window.
   1062 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1063 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1064 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1065 			 */
   1066 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1067 
   1068 			/*
   1069 			 * If a new connection request is received
   1070 			 * while in TIME_WAIT, drop the old connection
   1071 			 * and start over if the sequence numbers
   1072 			 * are above the previous ones.
   1073 			 */
   1074 			if ((tiflags & TH_SYN) &&
   1075 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1076 				/*
   1077 				 * We only support this in the !NOFDREF case, which
   1078 				 * is to say: not here.
   1079 				 */
   1080 				goto dropwithreset;
   1081 			}
   1082 
   1083 			/*
   1084 			 * If window is closed can only take segments at
   1085 			 * window edge, and have to drop data and PUSH from
   1086 			 * incoming segments.  Continue processing, but
   1087 			 * remember to ack.  Otherwise, drop segment
   1088 			 * and (if not RST) ack.
   1089 			 */
   1090 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1091 				t_flags |= TF_ACKNOW;
   1092 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1093 			} else {
   1094 				goto dropafterack;
   1095 			}
   1096 		} else {
   1097 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1098 		}
   1099 		m_adj(m, -todrop);
   1100 		tlen -= todrop;
   1101 		tiflags &= ~(TH_PUSH|TH_FIN);
   1102 	}
   1103 
   1104 	if (tiflags & TH_RST) {
   1105 		if (th->th_seq != vp->rcv_nxt)
   1106 			goto dropafterack_ratelim;
   1107 
   1108 		vtw_del(vp->ctl, vp->vtw);
   1109 		goto drop;
   1110 	}
   1111 
   1112 	/*
   1113 	 * If the ACK bit is off we drop the segment and return.
   1114 	 */
   1115 	if ((tiflags & TH_ACK) == 0) {
   1116 		if (t_flags & TF_ACKNOW)
   1117 			goto dropafterack;
   1118 		goto drop;
   1119 	}
   1120 
   1121 	/*
   1122 	 * In TIME_WAIT state the only thing that should arrive
   1123 	 * is a retransmission of the remote FIN.  Acknowledge
   1124 	 * it and restart the finack timer.
   1125 	 */
   1126 	vtw_restart(vp);
   1127 	goto dropafterack;
   1128 
   1129 dropafterack:
   1130 	/*
   1131 	 * Generate an ACK dropping incoming segment if it occupies
   1132 	 * sequence space, where the ACK reflects our state.
   1133 	 */
   1134 	if (tiflags & TH_RST)
   1135 		goto drop;
   1136 	goto dropafterack2;
   1137 
   1138 dropafterack_ratelim:
   1139 	/*
   1140 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1141 	 */
   1142 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1143 	    tcp_ackdrop_ppslim) == 0) {
   1144 		/* XXX stat */
   1145 		goto drop;
   1146 	}
   1147 	/* ...fall into dropafterack2... */
   1148 
   1149 dropafterack2:
   1150 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
   1151 	return;
   1152 
   1153 dropwithreset:
   1154 	/*
   1155 	 * Generate a RST, dropping incoming segment.
   1156 	 * Make ACK acceptable to originator of segment.
   1157 	 */
   1158 	if (tiflags & TH_RST)
   1159 		goto drop;
   1160 
   1161 	if (tiflags & TH_ACK) {
   1162 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1163 	} else {
   1164 		if (tiflags & TH_SYN)
   1165 			++tlen;
   1166 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1167 		    TH_RST|TH_ACK);
   1168 	}
   1169 	return;
   1170 drop:
   1171 	m_freem(m);
   1172 }
   1173 
   1174 /*
   1175  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1176  */
   1177 void
   1178 tcp_input(struct mbuf *m, ...)
   1179 {
   1180 	struct tcphdr *th;
   1181 	struct ip *ip;
   1182 	struct inpcb *inp;
   1183 #ifdef INET6
   1184 	struct ip6_hdr *ip6;
   1185 	struct in6pcb *in6p;
   1186 #endif
   1187 	u_int8_t *optp = NULL;
   1188 	int optlen = 0;
   1189 	int len, tlen, toff, hdroptlen = 0;
   1190 	struct tcpcb *tp = NULL;
   1191 	int tiflags;
   1192 	struct socket *so = NULL;
   1193 	int todrop, acked, ourfinisacked, needoutput = 0;
   1194 	bool dupseg;
   1195 #ifdef TCP_DEBUG
   1196 	short ostate = 0;
   1197 #endif
   1198 	u_long tiwin;
   1199 	struct tcp_opt_info opti;
   1200 	int off, iphlen;
   1201 	va_list ap;
   1202 	int af;		/* af on the wire */
   1203 	struct mbuf *tcp_saveti = NULL;
   1204 	uint32_t ts_rtt;
   1205 	uint8_t iptos;
   1206 	uint64_t *tcps;
   1207 	vestigial_inpcb_t vestige;
   1208 
   1209 	vestige.valid = 0;
   1210 
   1211 	MCLAIM(m, &tcp_rx_mowner);
   1212 	va_start(ap, m);
   1213 	toff = va_arg(ap, int);
   1214 	(void)va_arg(ap, int);		/* ignore value, advance ap */
   1215 	va_end(ap);
   1216 
   1217 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1218 
   1219 	memset(&opti, 0, sizeof(opti));
   1220 	opti.ts_present = 0;
   1221 	opti.maxseg = 0;
   1222 
   1223 	/*
   1224 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1225 	 *
   1226 	 * TCP is, by definition, unicast, so we reject all
   1227 	 * multicast outright.
   1228 	 *
   1229 	 * Note, there are additional src/dst address checks in
   1230 	 * the AF-specific code below.
   1231 	 */
   1232 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1233 		/* XXX stat */
   1234 		goto drop;
   1235 	}
   1236 #ifdef INET6
   1237 	if (m->m_flags & M_ANYCAST6) {
   1238 		/* XXX stat */
   1239 		goto drop;
   1240 	}
   1241 #endif
   1242 
   1243 	IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
   1244 	if (th == NULL) {
   1245 		TCP_STATINC(TCP_STAT_RCVSHORT);
   1246 		return;
   1247 	}
   1248 
   1249 	/*
   1250 	 * Get IP and TCP header.
   1251 	 * Note: IP leaves IP header in first mbuf.
   1252 	 */
   1253 	ip = mtod(m, struct ip *);
   1254 	switch (ip->ip_v) {
   1255 	case 4:
   1256 #ifdef INET6
   1257 		ip6 = NULL;
   1258 #endif
   1259 		af = AF_INET;
   1260 		iphlen = sizeof(struct ip);
   1261 
   1262 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1263 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   1264 			goto drop;
   1265 
   1266 		/* We do the checksum after PCB lookup... */
   1267 		len = ntohs(ip->ip_len);
   1268 		tlen = len - toff;
   1269 		iptos = ip->ip_tos;
   1270 		break;
   1271 #ifdef INET6
   1272 	case 6:
   1273 		ip = NULL;
   1274 		iphlen = sizeof(struct ip6_hdr);
   1275 		af = AF_INET6;
   1276 		ip6 = mtod(m, struct ip6_hdr *);
   1277 
   1278 		/*
   1279 		 * Be proactive about unspecified IPv6 address in source.
   1280 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1281 		 * unspecified IPv6 address can be used to confuse us.
   1282 		 *
   1283 		 * Note that packets with unspecified IPv6 destination is
   1284 		 * already dropped in ip6_input.
   1285 		 */
   1286 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1287 			/* XXX stat */
   1288 			goto drop;
   1289 		}
   1290 
   1291 		/*
   1292 		 * Make sure destination address is not multicast.
   1293 		 * Source address checked in ip6_input().
   1294 		 */
   1295 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1296 			/* XXX stat */
   1297 			goto drop;
   1298 		}
   1299 
   1300 		/* We do the checksum after PCB lookup... */
   1301 		len = m->m_pkthdr.len;
   1302 		tlen = len - toff;
   1303 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1304 		break;
   1305 #endif
   1306 	default:
   1307 		m_freem(m);
   1308 		return;
   1309 	}
   1310 
   1311 	/*
   1312 	 * Enforce alignment requirements that are violated in
   1313 	 * some cases, see kern/50766 for details.
   1314 	 */
   1315 	if (TCP_HDR_ALIGNED_P(th) == 0) {
   1316 		m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
   1317 		if (m == NULL) {
   1318 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1319 			return;
   1320 		}
   1321 		ip = mtod(m, struct ip *);
   1322 #ifdef INET6
   1323 		ip6 = mtod(m, struct ip6_hdr *);
   1324 #endif
   1325 		th = (struct tcphdr *)(mtod(m, char *) + toff);
   1326 	}
   1327 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1328 
   1329 	/*
   1330 	 * Check that TCP offset makes sense, pull out TCP options and
   1331 	 * adjust length.
   1332 	 */
   1333 	off = th->th_off << 2;
   1334 	if (off < sizeof(struct tcphdr) || off > tlen) {
   1335 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1336 		goto drop;
   1337 	}
   1338 	tlen -= off;
   1339 
   1340 	if (off > sizeof(struct tcphdr)) {
   1341 		IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
   1342 		if (th == NULL) {
   1343 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1344 			return;
   1345 		}
   1346 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1347 		optlen = off - sizeof(struct tcphdr);
   1348 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1349 
   1350 		/*
   1351 		 * Do quick retrieval of timestamp options.
   1352 		 *
   1353 		 * If timestamp is the only option and it's formatted as
   1354 		 * recommended in RFC 1323 appendix A, we quickly get the
   1355 		 * values now and don't bother calling tcp_dooptions(),
   1356 		 * etc.
   1357 		 */
   1358 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1359 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1360 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1361 		    *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
   1362 		    (th->th_flags & TH_SYN) == 0) {
   1363 			opti.ts_present = 1;
   1364 			opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
   1365 			opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
   1366 			optp = NULL;	/* we've parsed the options */
   1367 		}
   1368 	}
   1369 	tiflags = th->th_flags;
   1370 
   1371 	/*
   1372 	 * Checksum extended TCP header and data
   1373 	 */
   1374 	if (tcp_input_checksum(af, m, th, toff, off, tlen))
   1375 		goto badcsum;
   1376 
   1377 	/*
   1378 	 * Locate pcb for segment.
   1379 	 */
   1380 findpcb:
   1381 	inp = NULL;
   1382 #ifdef INET6
   1383 	in6p = NULL;
   1384 #endif
   1385 	switch (af) {
   1386 	case AF_INET:
   1387 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1388 		    ip->ip_dst, th->th_dport, &vestige);
   1389 		if (inp == NULL && !vestige.valid) {
   1390 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1391 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
   1392 			    th->th_dport);
   1393 		}
   1394 #ifdef INET6
   1395 		if (inp == NULL && !vestige.valid) {
   1396 			struct in6_addr s, d;
   1397 
   1398 			/* mapped addr case */
   1399 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1400 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1401 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1402 			    th->th_sport, &d, th->th_dport, 0, &vestige);
   1403 			if (in6p == 0 && !vestige.valid) {
   1404 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1405 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1406 				    th->th_dport, 0);
   1407 			}
   1408 		}
   1409 #endif
   1410 #ifndef INET6
   1411 		if (inp == NULL && !vestige.valid)
   1412 #else
   1413 		if (inp == NULL && in6p == NULL && !vestige.valid)
   1414 #endif
   1415 		{
   1416 			TCP_STATINC(TCP_STAT_NOPORT);
   1417 			if (tcp_log_refused &&
   1418 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1419 				tcp4_log_refused(ip, th);
   1420 			}
   1421 			tcp_fields_to_host(th);
   1422 			goto dropwithreset_ratelim;
   1423 		}
   1424 #if defined(IPSEC)
   1425 		if (ipsec_used) {
   1426 			if (inp && ipsec_in_reject(m, inp)) {
   1427 				goto drop;
   1428 			}
   1429 #ifdef INET6
   1430 			else if (in6p && ipsec_in_reject(m, in6p)) {
   1431 				goto drop;
   1432 			}
   1433 #endif
   1434 		}
   1435 #endif /*IPSEC*/
   1436 		break;
   1437 #ifdef INET6
   1438 	case AF_INET6:
   1439 	    {
   1440 		int faith;
   1441 
   1442 #if defined(NFAITH) && NFAITH > 0
   1443 		faith = faithprefix(&ip6->ip6_dst);
   1444 #else
   1445 		faith = 0;
   1446 #endif
   1447 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1448 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1449 		if (!in6p && !vestige.valid) {
   1450 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1451 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1452 			    th->th_dport, faith);
   1453 		}
   1454 		if (!in6p && !vestige.valid) {
   1455 			TCP_STATINC(TCP_STAT_NOPORT);
   1456 			if (tcp_log_refused &&
   1457 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1458 				tcp6_log_refused(ip6, th);
   1459 			}
   1460 			tcp_fields_to_host(th);
   1461 			goto dropwithreset_ratelim;
   1462 		}
   1463 #if defined(IPSEC)
   1464 		if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
   1465 			goto drop;
   1466 		}
   1467 #endif
   1468 		break;
   1469 	    }
   1470 #endif
   1471 	}
   1472 
   1473 	tcp_fields_to_host(th);
   1474 
   1475 	/*
   1476 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1477 	 * all data in the incoming segment is discarded.
   1478 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1479 	 * but should either do a listen or a connect soon.
   1480 	 */
   1481 	tp = NULL;
   1482 	so = NULL;
   1483 	if (inp) {
   1484 		/* Check the minimum TTL for socket. */
   1485 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1486 			goto drop;
   1487 
   1488 		tp = intotcpcb(inp);
   1489 		so = inp->inp_socket;
   1490 	}
   1491 #ifdef INET6
   1492 	else if (in6p) {
   1493 		tp = in6totcpcb(in6p);
   1494 		so = in6p->in6p_socket;
   1495 	}
   1496 #endif
   1497 	else if (vestige.valid) {
   1498 		/* We do not support the resurrection of vtw tcpcps. */
   1499 		tcp_vtw_input(th, &vestige, m, tlen);
   1500 		m = NULL;
   1501 		goto drop;
   1502 	}
   1503 
   1504 	if (tp == NULL)
   1505 		goto dropwithreset_ratelim;
   1506 	if (tp->t_state == TCPS_CLOSED)
   1507 		goto drop;
   1508 
   1509 	KASSERT(so->so_lock == softnet_lock);
   1510 	KASSERT(solocked(so));
   1511 
   1512 	/* Unscale the window into a 32-bit value. */
   1513 	if ((tiflags & TH_SYN) == 0)
   1514 		tiwin = th->th_win << tp->snd_scale;
   1515 	else
   1516 		tiwin = th->th_win;
   1517 
   1518 #ifdef INET6
   1519 	/* save packet options if user wanted */
   1520 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1521 		if (in6p->in6p_options) {
   1522 			m_freem(in6p->in6p_options);
   1523 			in6p->in6p_options = NULL;
   1524 		}
   1525 		KASSERT(ip6 != NULL);
   1526 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1527 	}
   1528 #endif
   1529 
   1530 	if (so->so_options & SO_DEBUG) {
   1531 #ifdef TCP_DEBUG
   1532 		ostate = tp->t_state;
   1533 #endif
   1534 
   1535 		tcp_saveti = NULL;
   1536 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1537 			goto nosave;
   1538 
   1539 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1540 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1541 			if (tcp_saveti == NULL)
   1542 				goto nosave;
   1543 		} else {
   1544 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1545 			if (tcp_saveti == NULL)
   1546 				goto nosave;
   1547 			MCLAIM(m, &tcp_mowner);
   1548 			tcp_saveti->m_len = iphlen;
   1549 			m_copydata(m, 0, iphlen,
   1550 			    mtod(tcp_saveti, void *));
   1551 		}
   1552 
   1553 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1554 			m_freem(tcp_saveti);
   1555 			tcp_saveti = NULL;
   1556 		} else {
   1557 			tcp_saveti->m_len += sizeof(struct tcphdr);
   1558 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1559 			    sizeof(struct tcphdr));
   1560 		}
   1561 nosave:;
   1562 	}
   1563 
   1564 	if (so->so_options & SO_ACCEPTCONN) {
   1565 		union syn_cache_sa src;
   1566 		union syn_cache_sa dst;
   1567 
   1568 		KASSERT(tp->t_state == TCPS_LISTEN);
   1569 
   1570 		memset(&src, 0, sizeof(src));
   1571 		memset(&dst, 0, sizeof(dst));
   1572 		switch (af) {
   1573 		case AF_INET:
   1574 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1575 			src.sin.sin_family = AF_INET;
   1576 			src.sin.sin_addr = ip->ip_src;
   1577 			src.sin.sin_port = th->th_sport;
   1578 
   1579 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1580 			dst.sin.sin_family = AF_INET;
   1581 			dst.sin.sin_addr = ip->ip_dst;
   1582 			dst.sin.sin_port = th->th_dport;
   1583 			break;
   1584 #ifdef INET6
   1585 		case AF_INET6:
   1586 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1587 			src.sin6.sin6_family = AF_INET6;
   1588 			src.sin6.sin6_addr = ip6->ip6_src;
   1589 			src.sin6.sin6_port = th->th_sport;
   1590 
   1591 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1592 			dst.sin6.sin6_family = AF_INET6;
   1593 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1594 			dst.sin6.sin6_port = th->th_dport;
   1595 			break;
   1596 #endif
   1597 		}
   1598 
   1599 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1600 			if (tiflags & TH_RST) {
   1601 				syn_cache_reset(&src.sa, &dst.sa, th);
   1602 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1603 			    (TH_ACK|TH_SYN)) {
   1604 				/*
   1605 				 * Received a SYN,ACK. This should never
   1606 				 * happen while we are in LISTEN. Send an RST.
   1607 				 */
   1608 				goto badsyn;
   1609 			} else if (tiflags & TH_ACK) {
   1610 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
   1611 				if (so == NULL) {
   1612 					/*
   1613 					 * We don't have a SYN for this ACK;
   1614 					 * send an RST.
   1615 					 */
   1616 					goto badsyn;
   1617 				} else if (so == (struct socket *)(-1)) {
   1618 					/*
   1619 					 * We were unable to create the
   1620 					 * connection. If the 3-way handshake
   1621 					 * was completed, and RST has been
   1622 					 * sent to the peer. Since the mbuf
   1623 					 * might be in use for the reply, do
   1624 					 * not free it.
   1625 					 */
   1626 					m = NULL;
   1627 				} else {
   1628 					/*
   1629 					 * We have created a full-blown
   1630 					 * connection.
   1631 					 */
   1632 					tp = NULL;
   1633 					inp = NULL;
   1634 #ifdef INET6
   1635 					in6p = NULL;
   1636 #endif
   1637 					switch (so->so_proto->pr_domain->dom_family) {
   1638 					case AF_INET:
   1639 						inp = sotoinpcb(so);
   1640 						tp = intotcpcb(inp);
   1641 						break;
   1642 #ifdef INET6
   1643 					case AF_INET6:
   1644 						in6p = sotoin6pcb(so);
   1645 						tp = in6totcpcb(in6p);
   1646 						break;
   1647 #endif
   1648 					}
   1649 					if (tp == NULL)
   1650 						goto badsyn;	/*XXX*/
   1651 					tiwin <<= tp->snd_scale;
   1652 					goto after_listen;
   1653 				}
   1654 			} else {
   1655 				/*
   1656 				 * None of RST, SYN or ACK was set.
   1657 				 * This is an invalid packet for a
   1658 				 * TCB in LISTEN state.  Send a RST.
   1659 				 */
   1660 				goto badsyn;
   1661 			}
   1662 		} else {
   1663 			/*
   1664 			 * Received a SYN.
   1665 			 */
   1666 
   1667 #ifdef INET6
   1668 			/*
   1669 			 * If deprecated address is forbidden, we do
   1670 			 * not accept SYN to deprecated interface
   1671 			 * address to prevent any new inbound
   1672 			 * connection from getting established.
   1673 			 * When we do not accept SYN, we send a TCP
   1674 			 * RST, with deprecated source address (instead
   1675 			 * of dropping it).  We compromise it as it is
   1676 			 * much better for peer to send a RST, and
   1677 			 * RST will be the final packet for the
   1678 			 * exchange.
   1679 			 *
   1680 			 * If we do not forbid deprecated addresses, we
   1681 			 * accept the SYN packet.  RFC2462 does not
   1682 			 * suggest dropping SYN in this case.
   1683 			 * If we decipher RFC2462 5.5.4, it says like
   1684 			 * this:
   1685 			 * 1. use of deprecated addr with existing
   1686 			 *    communication is okay - "SHOULD continue
   1687 			 *    to be used"
   1688 			 * 2. use of it with new communication:
   1689 			 *   (2a) "SHOULD NOT be used if alternate
   1690 			 *        address with sufficient scope is
   1691 			 *        available"
   1692 			 *   (2b) nothing mentioned otherwise.
   1693 			 * Here we fall into (2b) case as we have no
   1694 			 * choice in our source address selection - we
   1695 			 * must obey the peer.
   1696 			 *
   1697 			 * The wording in RFC2462 is confusing, and
   1698 			 * there are multiple description text for
   1699 			 * deprecated address handling - worse, they
   1700 			 * are not exactly the same.  I believe 5.5.4
   1701 			 * is the best one, so we follow 5.5.4.
   1702 			 */
   1703 			if (af == AF_INET6 && !ip6_use_deprecated) {
   1704 				struct in6_ifaddr *ia6;
   1705 				int s;
   1706 				struct ifnet *rcvif = m_get_rcvif(m, &s);
   1707 				if (rcvif == NULL)
   1708 					goto dropwithreset; /* XXX */
   1709 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1710 				    &ip6->ip6_dst)) &&
   1711 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1712 					tp = NULL;
   1713 					m_put_rcvif(rcvif, &s);
   1714 					goto dropwithreset;
   1715 				}
   1716 				m_put_rcvif(rcvif, &s);
   1717 			}
   1718 #endif
   1719 
   1720 			/*
   1721 			 * LISTEN socket received a SYN from itself? This
   1722 			 * can't possibly be valid; drop the packet.
   1723 			 */
   1724 			if (th->th_sport == th->th_dport) {
   1725 				int eq = 0;
   1726 
   1727 				switch (af) {
   1728 				case AF_INET:
   1729 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
   1730 					break;
   1731 #ifdef INET6
   1732 				case AF_INET6:
   1733 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
   1734 					    &ip6->ip6_dst);
   1735 					break;
   1736 #endif
   1737 				}
   1738 				if (eq) {
   1739 					TCP_STATINC(TCP_STAT_BADSYN);
   1740 					goto drop;
   1741 				}
   1742 			}
   1743 
   1744 			/*
   1745 			 * SYN looks ok; create compressed TCP
   1746 			 * state for it.
   1747 			 */
   1748 			if (so->so_qlen <= so->so_qlimit &&
   1749 			    syn_cache_add(&src.sa, &dst.sa, th, toff,
   1750 			    so, m, optp, optlen, &opti))
   1751 				m = NULL;
   1752 		}
   1753 
   1754 		goto drop;
   1755 	}
   1756 
   1757 after_listen:
   1758 	/*
   1759 	 * From here on, we're dealing with !LISTEN.
   1760 	 */
   1761 	KASSERT(tp->t_state != TCPS_LISTEN);
   1762 
   1763 	/*
   1764 	 * Segment received on connection.
   1765 	 * Reset idle time and keep-alive timer.
   1766 	 */
   1767 	tp->t_rcvtime = tcp_now;
   1768 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1769 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1770 
   1771 	/*
   1772 	 * Process options.
   1773 	 */
   1774 #ifdef TCP_SIGNATURE
   1775 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1776 #else
   1777 	if (optp)
   1778 #endif
   1779 		if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
   1780 			goto drop;
   1781 
   1782 	if (TCP_SACK_ENABLED(tp)) {
   1783 		tcp_del_sackholes(tp, th);
   1784 	}
   1785 
   1786 	if (TCP_ECN_ALLOWED(tp)) {
   1787 		if (tiflags & TH_CWR) {
   1788 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1789 		}
   1790 		switch (iptos & IPTOS_ECN_MASK) {
   1791 		case IPTOS_ECN_CE:
   1792 			tp->t_flags |= TF_ECN_SND_ECE;
   1793 			TCP_STATINC(TCP_STAT_ECN_CE);
   1794 			break;
   1795 		case IPTOS_ECN_ECT0:
   1796 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1797 			break;
   1798 		case IPTOS_ECN_ECT1:
   1799 			/* XXX: ignore for now -- rpaulo */
   1800 			break;
   1801 		}
   1802 		/*
   1803 		 * Congestion experienced.
   1804 		 * Ignore if we are already trying to recover.
   1805 		 */
   1806 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1807 			tp->t_congctl->cong_exp(tp);
   1808 	}
   1809 
   1810 	if (opti.ts_present && opti.ts_ecr) {
   1811 		/*
   1812 		 * Calculate the RTT from the returned time stamp and the
   1813 		 * connection's time base.  If the time stamp is later than
   1814 		 * the current time, or is extremely old, fall back to non-1323
   1815 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1816 		 * at the same time.
   1817 		 *
   1818 		 * Note that ts_rtt is in units of slow ticks (500
   1819 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1820 		 * observed values will have large quantization noise.
   1821 		 * Our smoothed RTT is then the fraction of observed
   1822 		 * samples that are 1 tick instead of 0 (times 500
   1823 		 * ms).
   1824 		 *
   1825 		 * ts_rtt is increased by 1 to denote a valid sample,
   1826 		 * with 0 indicating an invalid measurement.  This
   1827 		 * extra 1 must be removed when ts_rtt is used, or
   1828 		 * else an an erroneous extra 500 ms will result.
   1829 		 */
   1830 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1831 		if (ts_rtt > TCP_PAWS_IDLE)
   1832 			ts_rtt = 0;
   1833 	} else {
   1834 		ts_rtt = 0;
   1835 	}
   1836 
   1837 	/*
   1838 	 * Fast path: check for the two common cases of a uni-directional
   1839 	 * data transfer. If:
   1840 	 *    o We are in the ESTABLISHED state, and
   1841 	 *    o The packet has no control flags, and
   1842 	 *    o The packet is in-sequence, and
   1843 	 *    o The window didn't change, and
   1844 	 *    o We are not retransmitting
   1845 	 * It's a candidate.
   1846 	 *
   1847 	 * If the length (tlen) is zero and the ack moved forward, we're
   1848 	 * the sender side of the transfer. Just free the data acked and
   1849 	 * wake any higher level process that was blocked waiting for
   1850 	 * space.
   1851 	 *
   1852 	 * If the length is non-zero and the ack didn't move, we're the
   1853 	 * receiver side. If we're getting packets in-order (the reassembly
   1854 	 * queue is empty), add the data to the socket buffer and note
   1855 	 * that we need a delayed ack.
   1856 	 */
   1857 	if (tp->t_state == TCPS_ESTABLISHED &&
   1858 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1859 	        == TH_ACK &&
   1860 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1861 	    th->th_seq == tp->rcv_nxt &&
   1862 	    tiwin && tiwin == tp->snd_wnd &&
   1863 	    tp->snd_nxt == tp->snd_max) {
   1864 
   1865 		/*
   1866 		 * If last ACK falls within this segment's sequence numbers,
   1867 		 * record the timestamp.
   1868 		 * NOTE that the test is modified according to the latest
   1869 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1870 		 *
   1871 		 * note that we already know
   1872 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1873 		 */
   1874 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1875 			tp->ts_recent_age = tcp_now;
   1876 			tp->ts_recent = opti.ts_val;
   1877 		}
   1878 
   1879 		if (tlen == 0) {
   1880 			/* Ack prediction. */
   1881 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1882 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1883 			    tp->snd_cwnd >= tp->snd_wnd &&
   1884 			    tp->t_partialacks < 0) {
   1885 				/*
   1886 				 * this is a pure ack for outstanding data.
   1887 				 */
   1888 				if (ts_rtt)
   1889 					tcp_xmit_timer(tp, ts_rtt - 1);
   1890 				else if (tp->t_rtttime &&
   1891 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1892 					tcp_xmit_timer(tp,
   1893 					  tcp_now - tp->t_rtttime);
   1894 				acked = th->th_ack - tp->snd_una;
   1895 				tcps = TCP_STAT_GETREF();
   1896 				tcps[TCP_STAT_PREDACK]++;
   1897 				tcps[TCP_STAT_RCVACKPACK]++;
   1898 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   1899 				TCP_STAT_PUTREF();
   1900 				nd6_hint(tp);
   1901 
   1902 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1903 					tp->t_lastm = NULL;
   1904 				sbdrop(&so->so_snd, acked);
   1905 				tp->t_lastoff -= acked;
   1906 
   1907 				icmp_check(tp, th, acked);
   1908 
   1909 				tp->snd_una = th->th_ack;
   1910 				tp->snd_fack = tp->snd_una;
   1911 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1912 					tp->snd_high = tp->snd_una;
   1913 				m_freem(m);
   1914 
   1915 				/*
   1916 				 * If all outstanding data are acked, stop
   1917 				 * retransmit timer, otherwise restart timer
   1918 				 * using current (possibly backed-off) value.
   1919 				 * If process is waiting for space,
   1920 				 * wakeup/selnotify/signal.  If data
   1921 				 * are ready to send, let tcp_output
   1922 				 * decide between more output or persist.
   1923 				 */
   1924 				if (tp->snd_una == tp->snd_max)
   1925 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1926 				else if (TCP_TIMER_ISARMED(tp,
   1927 				    TCPT_PERSIST) == 0)
   1928 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1929 					    tp->t_rxtcur);
   1930 
   1931 				sowwakeup(so);
   1932 				if (so->so_snd.sb_cc) {
   1933 					KERNEL_LOCK(1, NULL);
   1934 					(void)tcp_output(tp);
   1935 					KERNEL_UNLOCK_ONE(NULL);
   1936 				}
   1937 				if (tcp_saveti)
   1938 					m_freem(tcp_saveti);
   1939 				return;
   1940 			}
   1941 		} else if (th->th_ack == tp->snd_una &&
   1942 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1943 		    tlen <= sbspace(&so->so_rcv)) {
   1944 			int newsize = 0;
   1945 
   1946 			/*
   1947 			 * this is a pure, in-sequence data packet
   1948 			 * with nothing on the reassembly queue and
   1949 			 * we have enough buffer space to take it.
   1950 			 */
   1951 			tp->rcv_nxt += tlen;
   1952 			tcps = TCP_STAT_GETREF();
   1953 			tcps[TCP_STAT_PREDDAT]++;
   1954 			tcps[TCP_STAT_RCVPACK]++;
   1955 			tcps[TCP_STAT_RCVBYTE] += tlen;
   1956 			TCP_STAT_PUTREF();
   1957 			nd6_hint(tp);
   1958 
   1959 		/*
   1960 		 * Automatic sizing enables the performance of large buffers
   1961 		 * and most of the efficiency of small ones by only allocating
   1962 		 * space when it is needed.
   1963 		 *
   1964 		 * On the receive side the socket buffer memory is only rarely
   1965 		 * used to any significant extent.  This allows us to be much
   1966 		 * more aggressive in scaling the receive socket buffer.  For
   1967 		 * the case that the buffer space is actually used to a large
   1968 		 * extent and we run out of kernel memory we can simply drop
   1969 		 * the new segments; TCP on the sender will just retransmit it
   1970 		 * later.  Setting the buffer size too big may only consume too
   1971 		 * much kernel memory if the application doesn't read() from
   1972 		 * the socket or packet loss or reordering makes use of the
   1973 		 * reassembly queue.
   1974 		 *
   1975 		 * The criteria to step up the receive buffer one notch are:
   1976 		 *  1. the number of bytes received during the time it takes
   1977 		 *     one timestamp to be reflected back to us (the RTT);
   1978 		 *  2. received bytes per RTT is within seven eighth of the
   1979 		 *     current socket buffer size;
   1980 		 *  3. receive buffer size has not hit maximal automatic size;
   1981 		 *
   1982 		 * This algorithm does one step per RTT at most and only if
   1983 		 * we receive a bulk stream w/o packet losses or reorderings.
   1984 		 * Shrinking the buffer during idle times is not necessary as
   1985 		 * it doesn't consume any memory when idle.
   1986 		 *
   1987 		 * TODO: Only step up if the application is actually serving
   1988 		 * the buffer to better manage the socket buffer resources.
   1989 		 */
   1990 			if (tcp_do_autorcvbuf &&
   1991 			    opti.ts_ecr &&
   1992 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   1993 				if (opti.ts_ecr > tp->rfbuf_ts &&
   1994 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   1995 					if (tp->rfbuf_cnt >
   1996 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   1997 					    so->so_rcv.sb_hiwat <
   1998 					    tcp_autorcvbuf_max) {
   1999 						newsize =
   2000 						    min(so->so_rcv.sb_hiwat +
   2001 						    tcp_autorcvbuf_inc,
   2002 						    tcp_autorcvbuf_max);
   2003 					}
   2004 					/* Start over with next RTT. */
   2005 					tp->rfbuf_ts = 0;
   2006 					tp->rfbuf_cnt = 0;
   2007 				} else
   2008 					tp->rfbuf_cnt += tlen;	/* add up */
   2009 			}
   2010 
   2011 			/*
   2012 			 * Drop TCP, IP headers and TCP options then add data
   2013 			 * to socket buffer.
   2014 			 */
   2015 			if (so->so_state & SS_CANTRCVMORE) {
   2016 				m_freem(m);
   2017 			} else {
   2018 				/*
   2019 				 * Set new socket buffer size.
   2020 				 * Give up when limit is reached.
   2021 				 */
   2022 				if (newsize)
   2023 					if (!sbreserve(&so->so_rcv,
   2024 					    newsize, so))
   2025 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2026 				m_adj(m, toff + off);
   2027 				sbappendstream(&so->so_rcv, m);
   2028 			}
   2029 			sorwakeup(so);
   2030 			tcp_setup_ack(tp, th);
   2031 			if (tp->t_flags & TF_ACKNOW) {
   2032 				KERNEL_LOCK(1, NULL);
   2033 				(void)tcp_output(tp);
   2034 				KERNEL_UNLOCK_ONE(NULL);
   2035 			}
   2036 			if (tcp_saveti)
   2037 				m_freem(tcp_saveti);
   2038 			return;
   2039 		}
   2040 	}
   2041 
   2042 	/*
   2043 	 * Compute mbuf offset to TCP data segment.
   2044 	 */
   2045 	hdroptlen = toff + off;
   2046 
   2047 	/*
   2048 	 * Calculate amount of space in receive window. Receive window is
   2049 	 * amount of space in rcv queue, but not less than advertised
   2050 	 * window.
   2051 	 */
   2052 	{
   2053 		int win;
   2054 		win = sbspace(&so->so_rcv);
   2055 		if (win < 0)
   2056 			win = 0;
   2057 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2058 	}
   2059 
   2060 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2061 	tp->rfbuf_ts = 0;
   2062 	tp->rfbuf_cnt = 0;
   2063 
   2064 	switch (tp->t_state) {
   2065 	/*
   2066 	 * If the state is SYN_SENT:
   2067 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2068 	 *	if seg contains a RST, then drop the connection.
   2069 	 *	if seg does not contain SYN, then drop it.
   2070 	 * Otherwise this is an acceptable SYN segment
   2071 	 *	initialize tp->rcv_nxt and tp->irs
   2072 	 *	if seg contains ack then advance tp->snd_una
   2073 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2074 	 *	    is ECN capable.
   2075 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2076 	 *	arrange for segment to be acked (eventually)
   2077 	 *	continue processing rest of data/controls, beginning with URG
   2078 	 */
   2079 	case TCPS_SYN_SENT:
   2080 		if ((tiflags & TH_ACK) &&
   2081 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2082 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2083 			goto dropwithreset;
   2084 		if (tiflags & TH_RST) {
   2085 			if (tiflags & TH_ACK)
   2086 				tp = tcp_drop(tp, ECONNREFUSED);
   2087 			goto drop;
   2088 		}
   2089 		if ((tiflags & TH_SYN) == 0)
   2090 			goto drop;
   2091 		if (tiflags & TH_ACK) {
   2092 			tp->snd_una = th->th_ack;
   2093 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2094 				tp->snd_nxt = tp->snd_una;
   2095 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2096 				tp->snd_high = tp->snd_una;
   2097 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2098 
   2099 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2100 				tp->t_flags |= TF_ECN_PERMIT;
   2101 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2102 			}
   2103 		}
   2104 		tp->irs = th->th_seq;
   2105 		tcp_rcvseqinit(tp);
   2106 		tp->t_flags |= TF_ACKNOW;
   2107 		tcp_mss_from_peer(tp, opti.maxseg);
   2108 
   2109 		/*
   2110 		 * Initialize the initial congestion window.  If we
   2111 		 * had to retransmit the SYN, we must initialize cwnd
   2112 		 * to 1 segment (i.e. the Loss Window).
   2113 		 */
   2114 		if (tp->t_flags & TF_SYN_REXMT)
   2115 			tp->snd_cwnd = tp->t_peermss;
   2116 		else {
   2117 			int ss = tcp_init_win;
   2118 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2119 				ss = tcp_init_win_local;
   2120 #ifdef INET6
   2121 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2122 				ss = tcp_init_win_local;
   2123 #endif
   2124 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2125 		}
   2126 
   2127 		tcp_rmx_rtt(tp);
   2128 		if (tiflags & TH_ACK) {
   2129 			TCP_STATINC(TCP_STAT_CONNECTS);
   2130 			/*
   2131 			 * move tcp_established before soisconnected
   2132 			 * because upcall handler can drive tcp_output
   2133 			 * functionality.
   2134 			 * XXX we might call soisconnected at the end of
   2135 			 * all processing
   2136 			 */
   2137 			tcp_established(tp);
   2138 			soisconnected(so);
   2139 			/* Do window scaling on this connection? */
   2140 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2141 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2142 				tp->snd_scale = tp->requested_s_scale;
   2143 				tp->rcv_scale = tp->request_r_scale;
   2144 			}
   2145 			TCP_REASS_LOCK(tp);
   2146 			(void)tcp_reass(tp, NULL, NULL, tlen);
   2147 			/*
   2148 			 * if we didn't have to retransmit the SYN,
   2149 			 * use its rtt as our initial srtt & rtt var.
   2150 			 */
   2151 			if (tp->t_rtttime)
   2152 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2153 		} else {
   2154 			tp->t_state = TCPS_SYN_RECEIVED;
   2155 		}
   2156 
   2157 		/*
   2158 		 * Advance th->th_seq to correspond to first data byte.
   2159 		 * If data, trim to stay within window,
   2160 		 * dropping FIN if necessary.
   2161 		 */
   2162 		th->th_seq++;
   2163 		if (tlen > tp->rcv_wnd) {
   2164 			todrop = tlen - tp->rcv_wnd;
   2165 			m_adj(m, -todrop);
   2166 			tlen = tp->rcv_wnd;
   2167 			tiflags &= ~TH_FIN;
   2168 			tcps = TCP_STAT_GETREF();
   2169 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2170 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2171 			TCP_STAT_PUTREF();
   2172 		}
   2173 		tp->snd_wl1 = th->th_seq - 1;
   2174 		tp->rcv_up = th->th_seq;
   2175 		goto step6;
   2176 
   2177 	/*
   2178 	 * If the state is SYN_RECEIVED:
   2179 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2180 	 *	and generate an RST.  See page 36, rfc793
   2181 	 */
   2182 	case TCPS_SYN_RECEIVED:
   2183 		if ((tiflags & TH_ACK) &&
   2184 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2185 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2186 			goto dropwithreset;
   2187 		break;
   2188 	}
   2189 
   2190 	/*
   2191 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
   2192 	 */
   2193 	KASSERT(tp->t_state != TCPS_LISTEN &&
   2194 	    tp->t_state != TCPS_SYN_SENT);
   2195 
   2196 	/*
   2197 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
   2198 	 * it's less than ts_recent, drop it.
   2199 	 */
   2200 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2201 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2202 		/* Check to see if ts_recent is over 24 days old.  */
   2203 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2204 			/*
   2205 			 * Invalidate ts_recent.  If this segment updates
   2206 			 * ts_recent, the age will be reset later and ts_recent
   2207 			 * will get a valid value.  If it does not, setting
   2208 			 * ts_recent to zero will at least satisfy the
   2209 			 * requirement that zero be placed in the timestamp
   2210 			 * echo reply when ts_recent isn't valid.  The
   2211 			 * age isn't reset until we get a valid ts_recent
   2212 			 * because we don't want out-of-order segments to be
   2213 			 * dropped when ts_recent is old.
   2214 			 */
   2215 			tp->ts_recent = 0;
   2216 		} else {
   2217 			tcps = TCP_STAT_GETREF();
   2218 			tcps[TCP_STAT_RCVDUPPACK]++;
   2219 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2220 			tcps[TCP_STAT_PAWSDROP]++;
   2221 			TCP_STAT_PUTREF();
   2222 			tcp_new_dsack(tp, th->th_seq, tlen);
   2223 			goto dropafterack;
   2224 		}
   2225 	}
   2226 
   2227 	/*
   2228 	 * Check that at least some bytes of the segment are within the
   2229 	 * receive window. If segment begins before rcv_nxt, drop leading
   2230 	 * data (and SYN); if nothing left, just ack.
   2231 	 */
   2232 	todrop = tp->rcv_nxt - th->th_seq;
   2233 	dupseg = false;
   2234 	if (todrop > 0) {
   2235 		if (tiflags & TH_SYN) {
   2236 			tiflags &= ~TH_SYN;
   2237 			th->th_seq++;
   2238 			tcp_urp_drop(th, 1, &tiflags);
   2239 			todrop--;
   2240 		}
   2241 		if (todrop > tlen ||
   2242 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2243 			/*
   2244 			 * Any valid FIN or RST must be to the left of the
   2245 			 * window.  At this point the FIN or RST must be a
   2246 			 * duplicate or out of sequence; drop it.
   2247 			 */
   2248 			if (tiflags & TH_RST)
   2249 				goto drop;
   2250 			tiflags &= ~(TH_FIN|TH_RST);
   2251 
   2252 			/*
   2253 			 * Send an ACK to resynchronize and drop any data.
   2254 			 * But keep on processing for RST or ACK.
   2255 			 */
   2256 			tp->t_flags |= TF_ACKNOW;
   2257 			todrop = tlen;
   2258 			dupseg = true;
   2259 			tcps = TCP_STAT_GETREF();
   2260 			tcps[TCP_STAT_RCVDUPPACK]++;
   2261 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2262 			TCP_STAT_PUTREF();
   2263 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
   2264 			/*
   2265 			 * Test for reset before adjusting the sequence
   2266 			 * number for overlapping data.
   2267 			 */
   2268 			goto dropafterack_ratelim;
   2269 		} else {
   2270 			tcps = TCP_STAT_GETREF();
   2271 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2272 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2273 			TCP_STAT_PUTREF();
   2274 		}
   2275 		tcp_new_dsack(tp, th->th_seq, todrop);
   2276 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
   2277 		th->th_seq += todrop;
   2278 		tlen -= todrop;
   2279 		tcp_urp_drop(th, todrop, &tiflags);
   2280 	}
   2281 
   2282 	/*
   2283 	 * If new data is received on a connection after the user processes
   2284 	 * are gone, then RST the other end.
   2285 	 */
   2286 	if ((so->so_state & SS_NOFDREF) &&
   2287 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2288 		tp = tcp_close(tp);
   2289 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2290 		goto dropwithreset;
   2291 	}
   2292 
   2293 	/*
   2294 	 * If the segment ends after the window, drop trailing data (and
   2295 	 * PUSH and FIN); if nothing left, just ACK.
   2296 	 */
   2297 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
   2298 	if (todrop > 0) {
   2299 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2300 		if (todrop >= tlen) {
   2301 			/*
   2302 			 * The segment actually starts after the window.
   2303 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2304 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2305 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2306 			 */
   2307 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2308 
   2309 			/*
   2310 			 * If a new connection request is received while in
   2311 			 * TIME_WAIT, drop the old connection and start over
   2312 			 * if the sequence numbers are above the previous
   2313 			 * ones.
   2314 			 *
   2315 			 * NOTE: We need to put the header fields back into
   2316 			 * network order.
   2317 			 */
   2318 			if ((tiflags & TH_SYN) &&
   2319 			    tp->t_state == TCPS_TIME_WAIT &&
   2320 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2321 				tp = tcp_close(tp);
   2322 				tcp_fields_to_net(th);
   2323 				m_freem(tcp_saveti);
   2324 				tcp_saveti = NULL;
   2325 				goto findpcb;
   2326 			}
   2327 
   2328 			/*
   2329 			 * If window is closed can only take segments at
   2330 			 * window edge, and have to drop data and PUSH from
   2331 			 * incoming segments.  Continue processing, but
   2332 			 * remember to ack.  Otherwise, drop segment
   2333 			 * and (if not RST) ack.
   2334 			 */
   2335 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2336 				KASSERT(todrop == tlen);
   2337 				tp->t_flags |= TF_ACKNOW;
   2338 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2339 			} else {
   2340 				goto dropafterack;
   2341 			}
   2342 		} else {
   2343 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2344 		}
   2345 		m_adj(m, -todrop);
   2346 		tlen -= todrop;
   2347 		tiflags &= ~(TH_PUSH|TH_FIN);
   2348 	}
   2349 
   2350 	/*
   2351 	 * If last ACK falls within this segment's sequence numbers,
   2352 	 *  record the timestamp.
   2353 	 * NOTE:
   2354 	 * 1) That the test incorporates suggestions from the latest
   2355 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2356 	 * 2) That updating only on newer timestamps interferes with
   2357 	 *    our earlier PAWS tests, so this check should be solely
   2358 	 *    predicated on the sequence space of this segment.
   2359 	 * 3) That we modify the segment boundary check to be
   2360 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2361 	 *    instead of RFC1323's
   2362 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2363 	 *    This modified check allows us to overcome RFC1323's
   2364 	 *    limitations as described in Stevens TCP/IP Illustrated
   2365 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2366 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2367 	 */
   2368 	if (opti.ts_present &&
   2369 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2370 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2371 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2372 		tp->ts_recent_age = tcp_now;
   2373 		tp->ts_recent = opti.ts_val;
   2374 	}
   2375 
   2376 	/*
   2377 	 * If the RST bit is set examine the state:
   2378 	 *    RECEIVED state:
   2379 	 *        If passive open, return to LISTEN state.
   2380 	 *        If active open, inform user that connection was refused.
   2381 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
   2382 	 *        Inform user that connection was reset, and close tcb.
   2383 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
   2384 	 *        Close the tcb.
   2385 	 */
   2386 	if (tiflags & TH_RST) {
   2387 		if (th->th_seq != tp->rcv_nxt)
   2388 			goto dropafterack_ratelim;
   2389 
   2390 		switch (tp->t_state) {
   2391 		case TCPS_SYN_RECEIVED:
   2392 			so->so_error = ECONNREFUSED;
   2393 			goto close;
   2394 
   2395 		case TCPS_ESTABLISHED:
   2396 		case TCPS_FIN_WAIT_1:
   2397 		case TCPS_FIN_WAIT_2:
   2398 		case TCPS_CLOSE_WAIT:
   2399 			so->so_error = ECONNRESET;
   2400 		close:
   2401 			tp->t_state = TCPS_CLOSED;
   2402 			TCP_STATINC(TCP_STAT_DROPS);
   2403 			tp = tcp_close(tp);
   2404 			goto drop;
   2405 
   2406 		case TCPS_CLOSING:
   2407 		case TCPS_LAST_ACK:
   2408 		case TCPS_TIME_WAIT:
   2409 			tp = tcp_close(tp);
   2410 			goto drop;
   2411 		}
   2412 	}
   2413 
   2414 	/*
   2415 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2416 	 * we must be in a synchronized state.  RFC791 states (under RST
   2417 	 * generation) that any unacceptable segment (an out-of-order SYN
   2418 	 * qualifies) received in a synchronized state must elicit only an
   2419 	 * empty acknowledgment segment ... and the connection remains in
   2420 	 * the same state.
   2421 	 */
   2422 	if (tiflags & TH_SYN) {
   2423 		if (tp->rcv_nxt == th->th_seq) {
   2424 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2425 			    TH_ACK);
   2426 			if (tcp_saveti)
   2427 				m_freem(tcp_saveti);
   2428 			return;
   2429 		}
   2430 
   2431 		goto dropafterack_ratelim;
   2432 	}
   2433 
   2434 	/*
   2435 	 * If the ACK bit is off we drop the segment and return.
   2436 	 */
   2437 	if ((tiflags & TH_ACK) == 0) {
   2438 		if (tp->t_flags & TF_ACKNOW)
   2439 			goto dropafterack;
   2440 		goto drop;
   2441 	}
   2442 
   2443 	/*
   2444 	 * From here on, we're doing ACK processing.
   2445 	 */
   2446 
   2447 	switch (tp->t_state) {
   2448 	/*
   2449 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2450 	 * ESTABLISHED state and continue processing, otherwise
   2451 	 * send an RST.
   2452 	 */
   2453 	case TCPS_SYN_RECEIVED:
   2454 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2455 		    SEQ_GT(th->th_ack, tp->snd_max))
   2456 			goto dropwithreset;
   2457 		TCP_STATINC(TCP_STAT_CONNECTS);
   2458 		soisconnected(so);
   2459 		tcp_established(tp);
   2460 		/* Do window scaling? */
   2461 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2462 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2463 			tp->snd_scale = tp->requested_s_scale;
   2464 			tp->rcv_scale = tp->request_r_scale;
   2465 		}
   2466 		TCP_REASS_LOCK(tp);
   2467 		(void)tcp_reass(tp, NULL, NULL, tlen);
   2468 		tp->snd_wl1 = th->th_seq - 1;
   2469 		/* FALLTHROUGH */
   2470 
   2471 	/*
   2472 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2473 	 * ACKs.  If the ack is in the range
   2474 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2475 	 * then advance tp->snd_una to th->th_ack and drop
   2476 	 * data from the retransmission queue.  If this ACK reflects
   2477 	 * more up to date window information we update our window information.
   2478 	 */
   2479 	case TCPS_ESTABLISHED:
   2480 	case TCPS_FIN_WAIT_1:
   2481 	case TCPS_FIN_WAIT_2:
   2482 	case TCPS_CLOSE_WAIT:
   2483 	case TCPS_CLOSING:
   2484 	case TCPS_LAST_ACK:
   2485 	case TCPS_TIME_WAIT:
   2486 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2487 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2488 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2489 				/*
   2490 				 * If we have outstanding data (other than
   2491 				 * a window probe), this is a completely
   2492 				 * duplicate ack (ie, window info didn't
   2493 				 * change), the ack is the biggest we've
   2494 				 * seen and we've seen exactly our rexmt
   2495 				 * threshhold of them, assume a packet
   2496 				 * has been dropped and retransmit it.
   2497 				 * Kludge snd_nxt & the congestion
   2498 				 * window so we send only this one
   2499 				 * packet.
   2500 				 */
   2501 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2502 				    th->th_ack != tp->snd_una)
   2503 					tp->t_dupacks = 0;
   2504 				else if (tp->t_partialacks < 0 &&
   2505 				    (++tp->t_dupacks == tcprexmtthresh ||
   2506 				     TCP_FACK_FASTRECOV(tp))) {
   2507 					/*
   2508 					 * Do the fast retransmit, and adjust
   2509 					 * congestion control paramenters.
   2510 					 */
   2511 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2512 						/* False fast retransmit */
   2513 						break;
   2514 					}
   2515 					goto drop;
   2516 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2517 					tp->snd_cwnd += tp->t_segsz;
   2518 					KERNEL_LOCK(1, NULL);
   2519 					(void)tcp_output(tp);
   2520 					KERNEL_UNLOCK_ONE(NULL);
   2521 					goto drop;
   2522 				}
   2523 			} else {
   2524 				/*
   2525 				 * If the ack appears to be very old, only
   2526 				 * allow data that is in-sequence.  This
   2527 				 * makes it somewhat more difficult to insert
   2528 				 * forged data by guessing sequence numbers.
   2529 				 * Sent an ack to try to update the send
   2530 				 * sequence number on the other side.
   2531 				 */
   2532 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2533 				    SEQ_LT(th->th_ack,
   2534 				    tp->snd_una - tp->max_sndwnd))
   2535 					goto dropafterack;
   2536 			}
   2537 			break;
   2538 		}
   2539 		/*
   2540 		 * If the congestion window was inflated to account
   2541 		 * for the other side's cached packets, retract it.
   2542 		 */
   2543 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2544 
   2545 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2546 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2547 			goto dropafterack;
   2548 		}
   2549 		acked = th->th_ack - tp->snd_una;
   2550 		tcps = TCP_STAT_GETREF();
   2551 		tcps[TCP_STAT_RCVACKPACK]++;
   2552 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2553 		TCP_STAT_PUTREF();
   2554 
   2555 		/*
   2556 		 * If we have a timestamp reply, update smoothed
   2557 		 * round trip time.  If no timestamp is present but
   2558 		 * transmit timer is running and timed sequence
   2559 		 * number was acked, update smoothed round trip time.
   2560 		 * Since we now have an rtt measurement, cancel the
   2561 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2562 		 * Recompute the initial retransmit timer.
   2563 		 */
   2564 		if (ts_rtt)
   2565 			tcp_xmit_timer(tp, ts_rtt - 1);
   2566 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2567 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2568 
   2569 		/*
   2570 		 * If all outstanding data is acked, stop retransmit
   2571 		 * timer and remember to restart (more output or persist).
   2572 		 * If there is more data to be acked, restart retransmit
   2573 		 * timer, using current (possibly backed-off) value.
   2574 		 */
   2575 		if (th->th_ack == tp->snd_max) {
   2576 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2577 			needoutput = 1;
   2578 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2579 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2580 
   2581 		/*
   2582 		 * New data has been acked, adjust the congestion window.
   2583 		 */
   2584 		tp->t_congctl->newack(tp, th);
   2585 
   2586 		nd6_hint(tp);
   2587 		if (acked > so->so_snd.sb_cc) {
   2588 			tp->snd_wnd -= so->so_snd.sb_cc;
   2589 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2590 			ourfinisacked = 1;
   2591 		} else {
   2592 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2593 				tp->t_lastm = NULL;
   2594 			sbdrop(&so->so_snd, acked);
   2595 			tp->t_lastoff -= acked;
   2596 			if (tp->snd_wnd > acked)
   2597 				tp->snd_wnd -= acked;
   2598 			else
   2599 				tp->snd_wnd = 0;
   2600 			ourfinisacked = 0;
   2601 		}
   2602 		sowwakeup(so);
   2603 
   2604 		icmp_check(tp, th, acked);
   2605 
   2606 		tp->snd_una = th->th_ack;
   2607 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2608 			tp->snd_fack = tp->snd_una;
   2609 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2610 			tp->snd_nxt = tp->snd_una;
   2611 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2612 			tp->snd_high = tp->snd_una;
   2613 
   2614 		switch (tp->t_state) {
   2615 
   2616 		/*
   2617 		 * In FIN_WAIT_1 STATE in addition to the processing
   2618 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2619 		 * then enter FIN_WAIT_2.
   2620 		 */
   2621 		case TCPS_FIN_WAIT_1:
   2622 			if (ourfinisacked) {
   2623 				/*
   2624 				 * If we can't receive any more
   2625 				 * data, then closing user can proceed.
   2626 				 * Starting the timer is contrary to the
   2627 				 * specification, but if we don't get a FIN
   2628 				 * we'll hang forever.
   2629 				 */
   2630 				if (so->so_state & SS_CANTRCVMORE) {
   2631 					soisdisconnected(so);
   2632 					if (tp->t_maxidle > 0)
   2633 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2634 						    tp->t_maxidle);
   2635 				}
   2636 				tp->t_state = TCPS_FIN_WAIT_2;
   2637 			}
   2638 			break;
   2639 
   2640 	 	/*
   2641 		 * In CLOSING STATE in addition to the processing for
   2642 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2643 		 * then enter the TIME-WAIT state, otherwise ignore
   2644 		 * the segment.
   2645 		 */
   2646 		case TCPS_CLOSING:
   2647 			if (ourfinisacked) {
   2648 				tp->t_state = TCPS_TIME_WAIT;
   2649 				tcp_canceltimers(tp);
   2650 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2651 				soisdisconnected(so);
   2652 			}
   2653 			break;
   2654 
   2655 		/*
   2656 		 * In LAST_ACK, we may still be waiting for data to drain
   2657 		 * and/or to be acked, as well as for the ack of our FIN.
   2658 		 * If our FIN is now acknowledged, delete the TCB,
   2659 		 * enter the closed state and return.
   2660 		 */
   2661 		case TCPS_LAST_ACK:
   2662 			if (ourfinisacked) {
   2663 				tp = tcp_close(tp);
   2664 				goto drop;
   2665 			}
   2666 			break;
   2667 
   2668 		/*
   2669 		 * In TIME_WAIT state the only thing that should arrive
   2670 		 * is a retransmission of the remote FIN.  Acknowledge
   2671 		 * it and restart the finack timer.
   2672 		 */
   2673 		case TCPS_TIME_WAIT:
   2674 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2675 			goto dropafterack;
   2676 		}
   2677 	}
   2678 
   2679 step6:
   2680 	/*
   2681 	 * Update window information.
   2682 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2683 	 */
   2684 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2685 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2686 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2687 		/* keep track of pure window updates */
   2688 		if (tlen == 0 &&
   2689 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2690 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2691 		tp->snd_wnd = tiwin;
   2692 		tp->snd_wl1 = th->th_seq;
   2693 		tp->snd_wl2 = th->th_ack;
   2694 		if (tp->snd_wnd > tp->max_sndwnd)
   2695 			tp->max_sndwnd = tp->snd_wnd;
   2696 		needoutput = 1;
   2697 	}
   2698 
   2699 	/*
   2700 	 * Process segments with URG.
   2701 	 */
   2702 	if ((tiflags & TH_URG) && th->th_urp &&
   2703 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2704 		/*
   2705 		 * This is a kludge, but if we receive and accept
   2706 		 * random urgent pointers, we'll crash in
   2707 		 * soreceive.  It's hard to imagine someone
   2708 		 * actually wanting to send this much urgent data.
   2709 		 */
   2710 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2711 			th->th_urp = 0;			/* XXX */
   2712 			tiflags &= ~TH_URG;		/* XXX */
   2713 			goto dodata;			/* XXX */
   2714 		}
   2715 
   2716 		/*
   2717 		 * If this segment advances the known urgent pointer,
   2718 		 * then mark the data stream.  This should not happen
   2719 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2720 		 * a FIN has been received from the remote side.
   2721 		 * In these states we ignore the URG.
   2722 		 *
   2723 		 * According to RFC961 (Assigned Protocols),
   2724 		 * the urgent pointer points to the last octet
   2725 		 * of urgent data.  We continue, however,
   2726 		 * to consider it to indicate the first octet
   2727 		 * of data past the urgent section as the original
   2728 		 * spec states (in one of two places).
   2729 		 */
   2730 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2731 			tp->rcv_up = th->th_seq + th->th_urp;
   2732 			so->so_oobmark = so->so_rcv.sb_cc +
   2733 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2734 			if (so->so_oobmark == 0)
   2735 				so->so_state |= SS_RCVATMARK;
   2736 			sohasoutofband(so);
   2737 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2738 		}
   2739 
   2740 		/*
   2741 		 * Remove out of band data so doesn't get presented to user.
   2742 		 * This can happen independent of advancing the URG pointer,
   2743 		 * but if two URG's are pending at once, some out-of-band
   2744 		 * data may creep in... ick.
   2745 		 */
   2746 		if (th->th_urp <= (u_int16_t)tlen &&
   2747 		    (so->so_options & SO_OOBINLINE) == 0)
   2748 			tcp_pulloutofband(so, th, m, hdroptlen);
   2749 	} else {
   2750 		/*
   2751 		 * If no out of band data is expected,
   2752 		 * pull receive urgent pointer along
   2753 		 * with the receive window.
   2754 		 */
   2755 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2756 			tp->rcv_up = tp->rcv_nxt;
   2757 	}
   2758 dodata:
   2759 
   2760 	/*
   2761 	 * Process the segment text, merging it into the TCP sequencing queue,
   2762 	 * and arranging for acknowledgement of receipt if necessary.
   2763 	 * This process logically involves adjusting tp->rcv_wnd as data
   2764 	 * is presented to the user (this happens in tcp_usrreq.c,
   2765 	 * tcp_rcvd()).  If a FIN has already been received on this
   2766 	 * connection then we just ignore the text.
   2767 	 */
   2768 	if ((tlen || (tiflags & TH_FIN)) &&
   2769 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2770 		/*
   2771 		 * Handle the common case:
   2772 		 *  o Segment is the next to be received, and
   2773 		 *  o The queue is empty, and
   2774 		 *  o The connection is established
   2775 		 * In this case, we avoid calling tcp_reass.
   2776 		 *
   2777 		 * tcp_setup_ack: set DELACK for segments received in order,
   2778 		 * but ack immediately when segments are out of order (so that
   2779 		 * fast retransmit can work).
   2780 		 */
   2781 		TCP_REASS_LOCK(tp);
   2782 		if (th->th_seq == tp->rcv_nxt &&
   2783 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2784 		    tp->t_state == TCPS_ESTABLISHED) {
   2785 			tcp_setup_ack(tp, th);
   2786 			tp->rcv_nxt += tlen;
   2787 			tiflags = th->th_flags & TH_FIN;
   2788 			tcps = TCP_STAT_GETREF();
   2789 			tcps[TCP_STAT_RCVPACK]++;
   2790 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2791 			TCP_STAT_PUTREF();
   2792 			nd6_hint(tp);
   2793 			if (so->so_state & SS_CANTRCVMORE) {
   2794 				m_freem(m);
   2795 			} else {
   2796 				m_adj(m, hdroptlen);
   2797 				sbappendstream(&(so)->so_rcv, m);
   2798 			}
   2799 			TCP_REASS_UNLOCK(tp);
   2800 			sorwakeup(so);
   2801 		} else {
   2802 			m_adj(m, hdroptlen);
   2803 			tiflags = tcp_reass(tp, th, m, tlen);
   2804 			tp->t_flags |= TF_ACKNOW;
   2805 		}
   2806 
   2807 		/*
   2808 		 * Note the amount of data that peer has sent into
   2809 		 * our window, in order to estimate the sender's
   2810 		 * buffer size.
   2811 		 */
   2812 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2813 	} else {
   2814 		m_freem(m);
   2815 		m = NULL;
   2816 		tiflags &= ~TH_FIN;
   2817 	}
   2818 
   2819 	/*
   2820 	 * If FIN is received ACK the FIN and let the user know
   2821 	 * that the connection is closing.  Ignore a FIN received before
   2822 	 * the connection is fully established.
   2823 	 */
   2824 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2825 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2826 			socantrcvmore(so);
   2827 			tp->t_flags |= TF_ACKNOW;
   2828 			tp->rcv_nxt++;
   2829 		}
   2830 		switch (tp->t_state) {
   2831 
   2832 	 	/*
   2833 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2834 		 */
   2835 		case TCPS_ESTABLISHED:
   2836 			tp->t_state = TCPS_CLOSE_WAIT;
   2837 			break;
   2838 
   2839 	 	/*
   2840 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2841 		 * enter the CLOSING state.
   2842 		 */
   2843 		case TCPS_FIN_WAIT_1:
   2844 			tp->t_state = TCPS_CLOSING;
   2845 			break;
   2846 
   2847 	 	/*
   2848 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2849 		 * starting the time-wait timer, turning off the other
   2850 		 * standard timers.
   2851 		 */
   2852 		case TCPS_FIN_WAIT_2:
   2853 			tp->t_state = TCPS_TIME_WAIT;
   2854 			tcp_canceltimers(tp);
   2855 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2856 			soisdisconnected(so);
   2857 			break;
   2858 
   2859 		/*
   2860 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2861 		 */
   2862 		case TCPS_TIME_WAIT:
   2863 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2864 			break;
   2865 		}
   2866 	}
   2867 #ifdef TCP_DEBUG
   2868 	if (so->so_options & SO_DEBUG)
   2869 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2870 #endif
   2871 
   2872 	/*
   2873 	 * Return any desired output.
   2874 	 */
   2875 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2876 		KERNEL_LOCK(1, NULL);
   2877 		(void)tcp_output(tp);
   2878 		KERNEL_UNLOCK_ONE(NULL);
   2879 	}
   2880 	if (tcp_saveti)
   2881 		m_freem(tcp_saveti);
   2882 
   2883 	if (tp->t_state == TCPS_TIME_WAIT
   2884 	    && (so->so_state & SS_NOFDREF)
   2885 	    && (tp->t_inpcb || af != AF_INET)
   2886 	    && (tp->t_in6pcb || af != AF_INET6)
   2887 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   2888 	    && TAILQ_EMPTY(&tp->segq)
   2889 	    && vtw_add(af, tp)) {
   2890 		;
   2891 	}
   2892 	return;
   2893 
   2894 badsyn:
   2895 	/*
   2896 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2897 	 */
   2898 	TCP_STATINC(TCP_STAT_BADSYN);
   2899 	tp = NULL;
   2900 	goto dropwithreset;
   2901 
   2902 dropafterack:
   2903 	/*
   2904 	 * Generate an ACK dropping incoming segment if it occupies
   2905 	 * sequence space, where the ACK reflects our state.
   2906 	 */
   2907 	if (tiflags & TH_RST)
   2908 		goto drop;
   2909 	goto dropafterack2;
   2910 
   2911 dropafterack_ratelim:
   2912 	/*
   2913 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2914 	 */
   2915 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2916 	    tcp_ackdrop_ppslim) == 0) {
   2917 		/* XXX stat */
   2918 		goto drop;
   2919 	}
   2920 
   2921 dropafterack2:
   2922 	m_freem(m);
   2923 	tp->t_flags |= TF_ACKNOW;
   2924 	KERNEL_LOCK(1, NULL);
   2925 	(void)tcp_output(tp);
   2926 	KERNEL_UNLOCK_ONE(NULL);
   2927 	if (tcp_saveti)
   2928 		m_freem(tcp_saveti);
   2929 	return;
   2930 
   2931 dropwithreset_ratelim:
   2932 	/*
   2933 	 * We may want to rate-limit RSTs in certain situations,
   2934 	 * particularly if we are sending an RST in response to
   2935 	 * an attempt to connect to or otherwise communicate with
   2936 	 * a port for which we have no socket.
   2937 	 */
   2938 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2939 	    tcp_rst_ppslim) == 0) {
   2940 		/* XXX stat */
   2941 		goto drop;
   2942 	}
   2943 
   2944 dropwithreset:
   2945 	/*
   2946 	 * Generate a RST, dropping incoming segment.
   2947 	 * Make ACK acceptable to originator of segment.
   2948 	 */
   2949 	if (tiflags & TH_RST)
   2950 		goto drop;
   2951 	if (tiflags & TH_ACK) {
   2952 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2953 	} else {
   2954 		if (tiflags & TH_SYN)
   2955 			tlen++;
   2956 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2957 		    TH_RST|TH_ACK);
   2958 	}
   2959 	if (tcp_saveti)
   2960 		m_freem(tcp_saveti);
   2961 	return;
   2962 
   2963 badcsum:
   2964 drop:
   2965 	/*
   2966 	 * Drop space held by incoming segment and return.
   2967 	 */
   2968 	if (tp) {
   2969 		if (tp->t_inpcb)
   2970 			so = tp->t_inpcb->inp_socket;
   2971 #ifdef INET6
   2972 		else if (tp->t_in6pcb)
   2973 			so = tp->t_in6pcb->in6p_socket;
   2974 #endif
   2975 		else
   2976 			so = NULL;
   2977 #ifdef TCP_DEBUG
   2978 		if (so && (so->so_options & SO_DEBUG) != 0)
   2979 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   2980 #endif
   2981 	}
   2982 	if (tcp_saveti)
   2983 		m_freem(tcp_saveti);
   2984 	m_freem(m);
   2985 	return;
   2986 }
   2987 
   2988 #ifdef TCP_SIGNATURE
   2989 int
   2990 tcp_signature_apply(void *fstate, void *data, u_int len)
   2991 {
   2992 
   2993 	MD5Update(fstate, (u_char *)data, len);
   2994 	return (0);
   2995 }
   2996 
   2997 struct secasvar *
   2998 tcp_signature_getsav(struct mbuf *m)
   2999 {
   3000 	struct ip *ip;
   3001 	struct ip6_hdr *ip6;
   3002 
   3003 	ip = mtod(m, struct ip *);
   3004 	switch (ip->ip_v) {
   3005 	case 4:
   3006 		ip = mtod(m, struct ip *);
   3007 		ip6 = NULL;
   3008 		break;
   3009 	case 6:
   3010 		ip = NULL;
   3011 		ip6 = mtod(m, struct ip6_hdr *);
   3012 		break;
   3013 	default:
   3014 		return (NULL);
   3015 	}
   3016 
   3017 #ifdef IPSEC
   3018 	union sockaddr_union dst;
   3019 
   3020 	/* Extract the destination from the IP header in the mbuf. */
   3021 	memset(&dst, 0, sizeof(union sockaddr_union));
   3022 	if (ip != NULL) {
   3023 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   3024 		dst.sa.sa_family = AF_INET;
   3025 		dst.sin.sin_addr = ip->ip_dst;
   3026 	} else {
   3027 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3028 		dst.sa.sa_family = AF_INET6;
   3029 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3030 	}
   3031 
   3032 	/*
   3033 	 * Look up an SADB entry which matches the address of the peer.
   3034 	 */
   3035 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3036 #else
   3037 	return NULL;
   3038 #endif
   3039 }
   3040 
   3041 int
   3042 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3043     struct secasvar *sav, char *sig)
   3044 {
   3045 	MD5_CTX ctx;
   3046 	struct ip *ip;
   3047 	struct ipovly *ipovly;
   3048 #ifdef INET6
   3049 	struct ip6_hdr *ip6;
   3050 	struct ip6_hdr_pseudo ip6pseudo;
   3051 #endif
   3052 	struct ippseudo ippseudo;
   3053 	struct tcphdr th0;
   3054 	int l, tcphdrlen;
   3055 
   3056 	if (sav == NULL)
   3057 		return (-1);
   3058 
   3059 	tcphdrlen = th->th_off * 4;
   3060 
   3061 	switch (mtod(m, struct ip *)->ip_v) {
   3062 	case 4:
   3063 		MD5Init(&ctx);
   3064 		ip = mtod(m, struct ip *);
   3065 		memset(&ippseudo, 0, sizeof(ippseudo));
   3066 		ipovly = (struct ipovly *)ip;
   3067 		ippseudo.ippseudo_src = ipovly->ih_src;
   3068 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3069 		ippseudo.ippseudo_pad = 0;
   3070 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3071 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3072 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3073 		break;
   3074 #if INET6
   3075 	case 6:
   3076 		MD5Init(&ctx);
   3077 		ip6 = mtod(m, struct ip6_hdr *);
   3078 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3079 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3080 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3081 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3082 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3083 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3084 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3085 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3086 		break;
   3087 #endif
   3088 	default:
   3089 		return (-1);
   3090 	}
   3091 
   3092 	th0 = *th;
   3093 	th0.th_sum = 0;
   3094 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3095 
   3096 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3097 	if (l > 0)
   3098 		m_apply(m, thoff + tcphdrlen,
   3099 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3100 		    tcp_signature_apply, &ctx);
   3101 
   3102 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3103 	MD5Final(sig, &ctx);
   3104 
   3105 	return (0);
   3106 }
   3107 #endif
   3108 
   3109 /*
   3110  * Parse and process tcp options.
   3111  *
   3112  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
   3113  * Otherwise returns 0.
   3114  */
   3115 static int
   3116 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
   3117     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3118 {
   3119 	u_int16_t mss;
   3120 	int opt, optlen = 0;
   3121 #ifdef TCP_SIGNATURE
   3122 	void *sigp = NULL;
   3123 	char sigbuf[TCP_SIGLEN];
   3124 	struct secasvar *sav = NULL;
   3125 #endif
   3126 
   3127 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3128 		opt = cp[0];
   3129 		if (opt == TCPOPT_EOL)
   3130 			break;
   3131 		if (opt == TCPOPT_NOP)
   3132 			optlen = 1;
   3133 		else {
   3134 			if (cnt < 2)
   3135 				break;
   3136 			optlen = cp[1];
   3137 			if (optlen < 2 || optlen > cnt)
   3138 				break;
   3139 		}
   3140 		switch (opt) {
   3141 
   3142 		default:
   3143 			continue;
   3144 
   3145 		case TCPOPT_MAXSEG:
   3146 			if (optlen != TCPOLEN_MAXSEG)
   3147 				continue;
   3148 			if (!(th->th_flags & TH_SYN))
   3149 				continue;
   3150 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3151 				continue;
   3152 			memcpy(&mss, cp + 2, sizeof(mss));
   3153 			oi->maxseg = ntohs(mss);
   3154 			break;
   3155 
   3156 		case TCPOPT_WINDOW:
   3157 			if (optlen != TCPOLEN_WINDOW)
   3158 				continue;
   3159 			if (!(th->th_flags & TH_SYN))
   3160 				continue;
   3161 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3162 				continue;
   3163 			tp->t_flags |= TF_RCVD_SCALE;
   3164 			tp->requested_s_scale = cp[2];
   3165 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3166 				char buf[INET6_ADDRSTRLEN];
   3167 				struct ip *ip = mtod(m, struct ip *);
   3168 #ifdef INET6
   3169 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3170 #endif
   3171 
   3172 				switch (ip->ip_v) {
   3173 				case 4:
   3174 					in_print(buf, sizeof(buf),
   3175 					    &ip->ip_src);
   3176 					break;
   3177 #ifdef INET6
   3178 				case 6:
   3179 					in6_print(buf, sizeof(buf),
   3180 					    &ip6->ip6_src);
   3181 					break;
   3182 #endif
   3183 				default:
   3184 					strlcpy(buf, "(unknown)", sizeof(buf));
   3185 					break;
   3186 				}
   3187 
   3188 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3189 				    "assuming %d\n",
   3190 				    tp->requested_s_scale, buf,
   3191 				    TCP_MAX_WINSHIFT);
   3192 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3193 			}
   3194 			break;
   3195 
   3196 		case TCPOPT_TIMESTAMP:
   3197 			if (optlen != TCPOLEN_TIMESTAMP)
   3198 				continue;
   3199 			oi->ts_present = 1;
   3200 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
   3201 			NTOHL(oi->ts_val);
   3202 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
   3203 			NTOHL(oi->ts_ecr);
   3204 
   3205 			if (!(th->th_flags & TH_SYN))
   3206 				continue;
   3207 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3208 				continue;
   3209 			/*
   3210 			 * A timestamp received in a SYN makes
   3211 			 * it ok to send timestamp requests and replies.
   3212 			 */
   3213 			tp->t_flags |= TF_RCVD_TSTMP;
   3214 			tp->ts_recent = oi->ts_val;
   3215 			tp->ts_recent_age = tcp_now;
   3216                         break;
   3217 
   3218 		case TCPOPT_SACK_PERMITTED:
   3219 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3220 				continue;
   3221 			if (!(th->th_flags & TH_SYN))
   3222 				continue;
   3223 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3224 				continue;
   3225 			if (tcp_do_sack) {
   3226 				tp->t_flags |= TF_SACK_PERMIT;
   3227 				tp->t_flags |= TF_WILL_SACK;
   3228 			}
   3229 			break;
   3230 
   3231 		case TCPOPT_SACK:
   3232 			tcp_sack_option(tp, th, cp, optlen);
   3233 			break;
   3234 #ifdef TCP_SIGNATURE
   3235 		case TCPOPT_SIGNATURE:
   3236 			if (optlen != TCPOLEN_SIGNATURE)
   3237 				continue;
   3238 			if (sigp &&
   3239 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
   3240 				return (-1);
   3241 
   3242 			sigp = sigbuf;
   3243 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3244 			tp->t_flags |= TF_SIGNATURE;
   3245 			break;
   3246 #endif
   3247 		}
   3248 	}
   3249 
   3250 #ifndef TCP_SIGNATURE
   3251 	return 0;
   3252 #else
   3253 	if (tp->t_flags & TF_SIGNATURE) {
   3254 		sav = tcp_signature_getsav(m);
   3255 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3256 			return (-1);
   3257 	}
   3258 
   3259 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3260 		goto out;
   3261 
   3262 	if (sigp) {
   3263 		char sig[TCP_SIGLEN];
   3264 
   3265 		tcp_fields_to_net(th);
   3266 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3267 			tcp_fields_to_host(th);
   3268 			goto out;
   3269 		}
   3270 		tcp_fields_to_host(th);
   3271 
   3272 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
   3273 			TCP_STATINC(TCP_STAT_BADSIG);
   3274 			goto out;
   3275 		} else
   3276 			TCP_STATINC(TCP_STAT_GOODSIG);
   3277 
   3278 		key_sa_recordxfer(sav, m);
   3279 		KEY_SA_UNREF(&sav);
   3280 	}
   3281 	return 0;
   3282 out:
   3283 	if (sav != NULL)
   3284 		KEY_SA_UNREF(&sav);
   3285 	return -1;
   3286 #endif
   3287 }
   3288 
   3289 /*
   3290  * Pull out of band byte out of a segment so
   3291  * it doesn't appear in the user's data queue.
   3292  * It is still reflected in the segment length for
   3293  * sequencing purposes.
   3294  */
   3295 void
   3296 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3297     struct mbuf *m, int off)
   3298 {
   3299 	int cnt = off + th->th_urp - 1;
   3300 
   3301 	while (cnt >= 0) {
   3302 		if (m->m_len > cnt) {
   3303 			char *cp = mtod(m, char *) + cnt;
   3304 			struct tcpcb *tp = sototcpcb(so);
   3305 
   3306 			tp->t_iobc = *cp;
   3307 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3308 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
   3309 			m->m_len--;
   3310 			return;
   3311 		}
   3312 		cnt -= m->m_len;
   3313 		m = m->m_next;
   3314 		if (m == NULL)
   3315 			break;
   3316 	}
   3317 	panic("tcp_pulloutofband");
   3318 }
   3319 
   3320 /*
   3321  * Collect new round-trip time estimate
   3322  * and update averages and current timeout.
   3323  *
   3324  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3325  * difference of two timestamps.
   3326  */
   3327 void
   3328 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3329 {
   3330 	int32_t delta;
   3331 
   3332 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3333 	if (tp->t_srtt != 0) {
   3334 		/*
   3335 		 * Compute the amount to add to srtt for smoothing,
   3336 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3337 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3338 		 * shift left 5 bits, subtract srtt to get the
   3339 		 * diference, and then shift right by TCP_RTT_SHIFT
   3340 		 * (3) to obtain 1/8 of the difference.
   3341 		 */
   3342 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3343 		/*
   3344 		 * This can never happen, because delta's lowest
   3345 		 * possible value is 1/8 of t_srtt.  But if it does,
   3346 		 * set srtt to some reasonable value, here chosen
   3347 		 * as 1/8 tick.
   3348 		 */
   3349 		if ((tp->t_srtt += delta) <= 0)
   3350 			tp->t_srtt = 1 << 2;
   3351 		/*
   3352 		 * RFC2988 requires that rttvar be updated first.
   3353 		 * This code is compliant because "delta" is the old
   3354 		 * srtt minus the new observation (scaled).
   3355 		 *
   3356 		 * RFC2988 says:
   3357 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3358 		 *
   3359 		 * delta is in units of 1/32 ticks, and has then been
   3360 		 * divided by 8.  This is equivalent to being in 1/16s
   3361 		 * units and divided by 4.  Subtract from it 1/4 of
   3362 		 * the existing rttvar to form the (signed) amount to
   3363 		 * adjust.
   3364 		 */
   3365 		if (delta < 0)
   3366 			delta = -delta;
   3367 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3368 		/*
   3369 		 * As with srtt, this should never happen.  There is
   3370 		 * no support in RFC2988 for this operation.  But 1/4s
   3371 		 * as rttvar when faced with something arguably wrong
   3372 		 * is ok.
   3373 		 */
   3374 		if ((tp->t_rttvar += delta) <= 0)
   3375 			tp->t_rttvar = 1 << 2;
   3376 
   3377 		/*
   3378 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3379 		 * Problem is: it doesn't work.  Disabled by defaulting
   3380 		 * tcp_rttlocal to 0; see corresponding code in
   3381 		 * tcp_subr that selects local vs remote in a different way.
   3382 		 *
   3383 		 * The static branch prediction hint here should be removed
   3384 		 * when the rtt estimator is fixed and the rtt_enable code
   3385 		 * is turned back on.
   3386 		 */
   3387 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3388 		    && tp->t_srtt > tcp_msl_remote_threshold
   3389 		    && tp->t_msl  < tcp_msl_remote) {
   3390 			tp->t_msl = tcp_msl_remote;
   3391 		}
   3392 	} else {
   3393 		/*
   3394 		 * This is the first measurement.  Per RFC2988, 2.2,
   3395 		 * set rtt=R and srtt=R/2.
   3396 		 * For srtt, storage representation is 1/32 ticks,
   3397 		 * so shift left by 5.
   3398 		 * For rttvar, storage representation is 1/16 ticks,
   3399 		 * So shift left by 4, but then right by 1 to halve.
   3400 		 */
   3401 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3402 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3403 	}
   3404 	tp->t_rtttime = 0;
   3405 	tp->t_rxtshift = 0;
   3406 
   3407 	/*
   3408 	 * the retransmit should happen at rtt + 4 * rttvar.
   3409 	 * Because of the way we do the smoothing, srtt and rttvar
   3410 	 * will each average +1/2 tick of bias.  When we compute
   3411 	 * the retransmit timer, we want 1/2 tick of rounding and
   3412 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3413 	 * firing of the timer.  The bias will give us exactly the
   3414 	 * 1.5 tick we need.  But, because the bias is
   3415 	 * statistical, we have to test that we don't drop below
   3416 	 * the minimum feasible timer (which is 2 ticks).
   3417 	 */
   3418 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3419 	    max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3420 
   3421 	/*
   3422 	 * We received an ack for a packet that wasn't retransmitted;
   3423 	 * it is probably safe to discard any error indications we've
   3424 	 * received recently.  This isn't quite right, but close enough
   3425 	 * for now (a route might have failed after we sent a segment,
   3426 	 * and the return path might not be symmetrical).
   3427 	 */
   3428 	tp->t_softerror = 0;
   3429 }
   3430 
   3431 
   3432 /*
   3433  * TCP compressed state engine.  Currently used to hold compressed
   3434  * state for SYN_RECEIVED.
   3435  */
   3436 
   3437 u_long	syn_cache_count;
   3438 u_int32_t syn_hash1, syn_hash2;
   3439 
   3440 #define SYN_HASH(sa, sp, dp) \
   3441 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3442 				     ((u_int32_t)(sp)))^syn_hash2)))
   3443 #ifndef INET6
   3444 #define	SYN_HASHALL(hash, src, dst) \
   3445 do {									\
   3446 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3447 		((const struct sockaddr_in *)(src))->sin_port,		\
   3448 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3449 } while (/*CONSTCOND*/ 0)
   3450 #else
   3451 #define SYN_HASH6(sa, sp, dp) \
   3452 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3453 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3454 	 & 0x7fffffff)
   3455 
   3456 #define SYN_HASHALL(hash, src, dst) \
   3457 do {									\
   3458 	switch ((src)->sa_family) {					\
   3459 	case AF_INET:							\
   3460 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3461 			((const struct sockaddr_in *)(src))->sin_port,	\
   3462 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3463 		break;							\
   3464 	case AF_INET6:							\
   3465 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3466 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3467 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3468 		break;							\
   3469 	default:							\
   3470 		hash = 0;						\
   3471 	}								\
   3472 } while (/*CONSTCOND*/0)
   3473 #endif /* INET6 */
   3474 
   3475 static struct pool syn_cache_pool;
   3476 
   3477 /*
   3478  * We don't estimate RTT with SYNs, so each packet starts with the default
   3479  * RTT and each timer step has a fixed timeout value.
   3480  */
   3481 static inline void
   3482 syn_cache_timer_arm(struct syn_cache *sc)
   3483 {
   3484 
   3485 	TCPT_RANGESET(sc->sc_rxtcur,
   3486 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
   3487 	    TCPTV_REXMTMAX);
   3488 	callout_reset(&sc->sc_timer,
   3489 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
   3490 }
   3491 
   3492 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3493 
   3494 static inline void
   3495 syn_cache_rm(struct syn_cache *sc)
   3496 {
   3497 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3498 	    sc, sc_bucketq);
   3499 	sc->sc_tp = NULL;
   3500 	LIST_REMOVE(sc, sc_tpq);
   3501 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3502 	callout_stop(&sc->sc_timer);
   3503 	syn_cache_count--;
   3504 }
   3505 
   3506 static inline void
   3507 syn_cache_put(struct syn_cache *sc)
   3508 {
   3509 	if (sc->sc_ipopts)
   3510 		(void) m_free(sc->sc_ipopts);
   3511 	rtcache_free(&sc->sc_route);
   3512 	sc->sc_flags |= SCF_DEAD;
   3513 	if (!callout_invoking(&sc->sc_timer))
   3514 		callout_schedule(&(sc)->sc_timer, 1);
   3515 }
   3516 
   3517 void
   3518 syn_cache_init(void)
   3519 {
   3520 	int i;
   3521 
   3522 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3523 	    "synpl", NULL, IPL_SOFTNET);
   3524 
   3525 	/* Initialize the hash buckets. */
   3526 	for (i = 0; i < tcp_syn_cache_size; i++)
   3527 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3528 }
   3529 
   3530 void
   3531 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3532 {
   3533 	struct syn_cache_head *scp;
   3534 	struct syn_cache *sc2;
   3535 	int s;
   3536 
   3537 	/*
   3538 	 * If there are no entries in the hash table, reinitialize
   3539 	 * the hash secrets.
   3540 	 */
   3541 	if (syn_cache_count == 0) {
   3542 		syn_hash1 = cprng_fast32();
   3543 		syn_hash2 = cprng_fast32();
   3544 	}
   3545 
   3546 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3547 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3548 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3549 
   3550 	/*
   3551 	 * Make sure that we don't overflow the per-bucket
   3552 	 * limit or the total cache size limit.
   3553 	 */
   3554 	s = splsoftnet();
   3555 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3556 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3557 		/*
   3558 		 * The bucket is full.  Toss the oldest element in the
   3559 		 * bucket.  This will be the first entry in the bucket.
   3560 		 */
   3561 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3562 #ifdef DIAGNOSTIC
   3563 		/*
   3564 		 * This should never happen; we should always find an
   3565 		 * entry in our bucket.
   3566 		 */
   3567 		if (sc2 == NULL)
   3568 			panic("syn_cache_insert: bucketoverflow: impossible");
   3569 #endif
   3570 		syn_cache_rm(sc2);
   3571 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3572 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3573 		struct syn_cache_head *scp2, *sce;
   3574 
   3575 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3576 		/*
   3577 		 * The cache is full.  Toss the oldest entry in the
   3578 		 * first non-empty bucket we can find.
   3579 		 *
   3580 		 * XXX We would really like to toss the oldest
   3581 		 * entry in the cache, but we hope that this
   3582 		 * condition doesn't happen very often.
   3583 		 */
   3584 		scp2 = scp;
   3585 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3586 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3587 			for (++scp2; scp2 != scp; scp2++) {
   3588 				if (scp2 >= sce)
   3589 					scp2 = &tcp_syn_cache[0];
   3590 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3591 					break;
   3592 			}
   3593 #ifdef DIAGNOSTIC
   3594 			/*
   3595 			 * This should never happen; we should always find a
   3596 			 * non-empty bucket.
   3597 			 */
   3598 			if (scp2 == scp)
   3599 				panic("syn_cache_insert: cacheoverflow: "
   3600 				    "impossible");
   3601 #endif
   3602 		}
   3603 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3604 		syn_cache_rm(sc2);
   3605 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3606 	}
   3607 
   3608 	/*
   3609 	 * Initialize the entry's timer.
   3610 	 */
   3611 	sc->sc_rxttot = 0;
   3612 	sc->sc_rxtshift = 0;
   3613 	syn_cache_timer_arm(sc);
   3614 
   3615 	/* Link it from tcpcb entry */
   3616 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3617 
   3618 	/* Put it into the bucket. */
   3619 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3620 	scp->sch_length++;
   3621 	syn_cache_count++;
   3622 
   3623 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3624 	splx(s);
   3625 }
   3626 
   3627 /*
   3628  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3629  * If we have retransmitted an entry the maximum number of times, expire
   3630  * that entry.
   3631  */
   3632 static void
   3633 syn_cache_timer(void *arg)
   3634 {
   3635 	struct syn_cache *sc = arg;
   3636 
   3637 	mutex_enter(softnet_lock);
   3638 	KERNEL_LOCK(1, NULL);
   3639 
   3640 	callout_ack(&sc->sc_timer);
   3641 
   3642 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3643 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3644 		goto free;
   3645 	}
   3646 
   3647 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3648 		/* Drop it -- too many retransmissions. */
   3649 		goto dropit;
   3650 	}
   3651 
   3652 	/*
   3653 	 * Compute the total amount of time this entry has
   3654 	 * been on a queue.  If this entry has been on longer
   3655 	 * than the keep alive timer would allow, expire it.
   3656 	 */
   3657 	sc->sc_rxttot += sc->sc_rxtcur;
   3658 	if (sc->sc_rxttot >= tcp_keepinit)
   3659 		goto dropit;
   3660 
   3661 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3662 	(void)syn_cache_respond(sc);
   3663 
   3664 	/* Advance the timer back-off. */
   3665 	sc->sc_rxtshift++;
   3666 	syn_cache_timer_arm(sc);
   3667 
   3668 	goto out;
   3669 
   3670  dropit:
   3671 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3672 	syn_cache_rm(sc);
   3673 	if (sc->sc_ipopts)
   3674 		(void) m_free(sc->sc_ipopts);
   3675 	rtcache_free(&sc->sc_route);
   3676 
   3677  free:
   3678 	callout_destroy(&sc->sc_timer);
   3679 	pool_put(&syn_cache_pool, sc);
   3680 
   3681  out:
   3682 	KERNEL_UNLOCK_ONE(NULL);
   3683 	mutex_exit(softnet_lock);
   3684 }
   3685 
   3686 /*
   3687  * Remove syn cache created by the specified tcb entry,
   3688  * because this does not make sense to keep them
   3689  * (if there's no tcb entry, syn cache entry will never be used)
   3690  */
   3691 void
   3692 syn_cache_cleanup(struct tcpcb *tp)
   3693 {
   3694 	struct syn_cache *sc, *nsc;
   3695 	int s;
   3696 
   3697 	s = splsoftnet();
   3698 
   3699 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3700 		nsc = LIST_NEXT(sc, sc_tpq);
   3701 
   3702 #ifdef DIAGNOSTIC
   3703 		if (sc->sc_tp != tp)
   3704 			panic("invalid sc_tp in syn_cache_cleanup");
   3705 #endif
   3706 		syn_cache_rm(sc);
   3707 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3708 	}
   3709 	/* just for safety */
   3710 	LIST_INIT(&tp->t_sc);
   3711 
   3712 	splx(s);
   3713 }
   3714 
   3715 /*
   3716  * Find an entry in the syn cache.
   3717  */
   3718 struct syn_cache *
   3719 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3720     struct syn_cache_head **headp)
   3721 {
   3722 	struct syn_cache *sc;
   3723 	struct syn_cache_head *scp;
   3724 	u_int32_t hash;
   3725 	int s;
   3726 
   3727 	SYN_HASHALL(hash, src, dst);
   3728 
   3729 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3730 	*headp = scp;
   3731 	s = splsoftnet();
   3732 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3733 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3734 		if (sc->sc_hash != hash)
   3735 			continue;
   3736 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3737 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3738 			splx(s);
   3739 			return (sc);
   3740 		}
   3741 	}
   3742 	splx(s);
   3743 	return (NULL);
   3744 }
   3745 
   3746 /*
   3747  * This function gets called when we receive an ACK for a socket in the
   3748  * LISTEN state. We look up the connection in the syn cache, and if it's
   3749  * there, we pull it out of the cache and turn it into a full-blown
   3750  * connection in the SYN-RECEIVED state.
   3751  *
   3752  * The return values may not be immediately obvious, and their effects
   3753  * can be subtle, so here they are:
   3754  *
   3755  *	NULL	SYN was not found in cache; caller should drop the
   3756  *		packet and send an RST.
   3757  *
   3758  *	-1	We were unable to create the new connection, and are
   3759  *		aborting it.  An ACK,RST is being sent to the peer
   3760  *		(unless we got screwey sequence numbers; see below),
   3761  *		because the 3-way handshake has been completed.  Caller
   3762  *		should not free the mbuf, since we may be using it.  If
   3763  *		we are not, we will free it.
   3764  *
   3765  *	Otherwise, the return value is a pointer to the new socket
   3766  *	associated with the connection.
   3767  */
   3768 struct socket *
   3769 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3770     struct tcphdr *th, struct socket *so, struct mbuf *m)
   3771 {
   3772 	struct syn_cache *sc;
   3773 	struct syn_cache_head *scp;
   3774 	struct inpcb *inp = NULL;
   3775 #ifdef INET6
   3776 	struct in6pcb *in6p = NULL;
   3777 #endif
   3778 	struct tcpcb *tp;
   3779 	int s;
   3780 	struct socket *oso;
   3781 
   3782 	s = splsoftnet();
   3783 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3784 		splx(s);
   3785 		return NULL;
   3786 	}
   3787 
   3788 	/*
   3789 	 * Verify the sequence and ack numbers.  Try getting the correct
   3790 	 * response again.
   3791 	 */
   3792 	if ((th->th_ack != sc->sc_iss + 1) ||
   3793 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3794 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3795 		m_freem(m);
   3796 		(void)syn_cache_respond(sc);
   3797 		splx(s);
   3798 		return ((struct socket *)(-1));
   3799 	}
   3800 
   3801 	/* Remove this cache entry */
   3802 	syn_cache_rm(sc);
   3803 	splx(s);
   3804 
   3805 	/*
   3806 	 * Ok, create the full blown connection, and set things up
   3807 	 * as they would have been set up if we had created the
   3808 	 * connection when the SYN arrived.  If we can't create
   3809 	 * the connection, abort it.
   3810 	 */
   3811 	/*
   3812 	 * inp still has the OLD in_pcb stuff, set the
   3813 	 * v6-related flags on the new guy, too.   This is
   3814 	 * done particularly for the case where an AF_INET6
   3815 	 * socket is bound only to a port, and a v4 connection
   3816 	 * comes in on that port.
   3817 	 * we also copy the flowinfo from the original pcb
   3818 	 * to the new one.
   3819 	 */
   3820 	oso = so;
   3821 	so = sonewconn(so, true);
   3822 	if (so == NULL)
   3823 		goto resetandabort;
   3824 
   3825 	switch (so->so_proto->pr_domain->dom_family) {
   3826 	case AF_INET:
   3827 		inp = sotoinpcb(so);
   3828 		break;
   3829 #ifdef INET6
   3830 	case AF_INET6:
   3831 		in6p = sotoin6pcb(so);
   3832 		break;
   3833 #endif
   3834 	}
   3835 
   3836 	switch (src->sa_family) {
   3837 	case AF_INET:
   3838 		if (inp) {
   3839 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3840 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3841 			inp->inp_options = ip_srcroute(m);
   3842 			in_pcbstate(inp, INP_BOUND);
   3843 			if (inp->inp_options == NULL) {
   3844 				inp->inp_options = sc->sc_ipopts;
   3845 				sc->sc_ipopts = NULL;
   3846 			}
   3847 		}
   3848 #ifdef INET6
   3849 		else if (in6p) {
   3850 			/* IPv4 packet to AF_INET6 socket */
   3851 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   3852 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3853 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3854 				&in6p->in6p_laddr.s6_addr32[3],
   3855 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3856 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3857 			in6totcpcb(in6p)->t_family = AF_INET;
   3858 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3859 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3860 			else
   3861 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3862 			in6_pcbstate(in6p, IN6P_BOUND);
   3863 		}
   3864 #endif
   3865 		break;
   3866 #ifdef INET6
   3867 	case AF_INET6:
   3868 		if (in6p) {
   3869 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3870 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3871 			in6_pcbstate(in6p, IN6P_BOUND);
   3872 		}
   3873 		break;
   3874 #endif
   3875 	}
   3876 
   3877 #ifdef INET6
   3878 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3879 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3880 		/* inherit socket options from the listening socket */
   3881 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3882 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3883 			m_freem(in6p->in6p_options);
   3884 			in6p->in6p_options = NULL;
   3885 		}
   3886 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3887 		    mtod(m, struct ip6_hdr *), m);
   3888 	}
   3889 #endif
   3890 
   3891 	/*
   3892 	 * Give the new socket our cached route reference.
   3893 	 */
   3894 	if (inp) {
   3895 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   3896 		rtcache_free(&sc->sc_route);
   3897 	}
   3898 #ifdef INET6
   3899 	else {
   3900 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   3901 		rtcache_free(&sc->sc_route);
   3902 	}
   3903 #endif
   3904 
   3905 	if (inp) {
   3906 		struct sockaddr_in sin;
   3907 		memcpy(&sin, src, src->sa_len);
   3908 		if (in_pcbconnect(inp, &sin, &lwp0)) {
   3909 			goto resetandabort;
   3910 		}
   3911 	}
   3912 #ifdef INET6
   3913 	else if (in6p) {
   3914 		struct sockaddr_in6 sin6;
   3915 		memcpy(&sin6, src, src->sa_len);
   3916 		if (src->sa_family == AF_INET) {
   3917 			/* IPv4 packet to AF_INET6 socket */
   3918 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
   3919 		}
   3920 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
   3921 			goto resetandabort;
   3922 		}
   3923 	}
   3924 #endif
   3925 	else {
   3926 		goto resetandabort;
   3927 	}
   3928 
   3929 	if (inp)
   3930 		tp = intotcpcb(inp);
   3931 #ifdef INET6
   3932 	else if (in6p)
   3933 		tp = in6totcpcb(in6p);
   3934 #endif
   3935 	else
   3936 		tp = NULL;
   3937 
   3938 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3939 	if (sc->sc_request_r_scale != 15) {
   3940 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3941 		tp->request_r_scale = sc->sc_request_r_scale;
   3942 		tp->snd_scale = sc->sc_requested_s_scale;
   3943 		tp->rcv_scale = sc->sc_request_r_scale;
   3944 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3945 	}
   3946 	if (sc->sc_flags & SCF_TIMESTAMP)
   3947 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3948 	tp->ts_timebase = sc->sc_timebase;
   3949 
   3950 	tp->t_template = tcp_template(tp);
   3951 	if (tp->t_template == 0) {
   3952 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3953 		so = NULL;
   3954 		m_freem(m);
   3955 		goto abort;
   3956 	}
   3957 
   3958 	tp->iss = sc->sc_iss;
   3959 	tp->irs = sc->sc_irs;
   3960 	tcp_sendseqinit(tp);
   3961 	tcp_rcvseqinit(tp);
   3962 	tp->t_state = TCPS_SYN_RECEIVED;
   3963 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   3964 	TCP_STATINC(TCP_STAT_ACCEPTS);
   3965 
   3966 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   3967 		tp->t_flags |= TF_WILL_SACK;
   3968 
   3969 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   3970 		tp->t_flags |= TF_ECN_PERMIT;
   3971 
   3972 #ifdef TCP_SIGNATURE
   3973 	if (sc->sc_flags & SCF_SIGNATURE)
   3974 		tp->t_flags |= TF_SIGNATURE;
   3975 #endif
   3976 
   3977 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   3978 	tp->t_ourmss = sc->sc_ourmaxseg;
   3979 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   3980 
   3981 	/*
   3982 	 * Initialize the initial congestion window.  If we
   3983 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   3984 	 * to 1 segment (i.e. the Loss Window).
   3985 	 */
   3986 	if (sc->sc_rxtshift)
   3987 		tp->snd_cwnd = tp->t_peermss;
   3988 	else {
   3989 		int ss = tcp_init_win;
   3990 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   3991 			ss = tcp_init_win_local;
   3992 #ifdef INET6
   3993 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   3994 			ss = tcp_init_win_local;
   3995 #endif
   3996 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   3997 	}
   3998 
   3999 	tcp_rmx_rtt(tp);
   4000 	tp->snd_wl1 = sc->sc_irs;
   4001 	tp->rcv_up = sc->sc_irs + 1;
   4002 
   4003 	/*
   4004 	 * This is what whould have happened in tcp_output() when
   4005 	 * the SYN,ACK was sent.
   4006 	 */
   4007 	tp->snd_up = tp->snd_una;
   4008 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4009 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4010 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4011 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4012 	tp->last_ack_sent = tp->rcv_nxt;
   4013 	tp->t_partialacks = -1;
   4014 	tp->t_dupacks = 0;
   4015 
   4016 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4017 	s = splsoftnet();
   4018 	syn_cache_put(sc);
   4019 	splx(s);
   4020 	return so;
   4021 
   4022 resetandabort:
   4023 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4024 abort:
   4025 	if (so != NULL) {
   4026 		(void) soqremque(so, 1);
   4027 		(void) soabort(so);
   4028 		mutex_enter(softnet_lock);
   4029 	}
   4030 	s = splsoftnet();
   4031 	syn_cache_put(sc);
   4032 	splx(s);
   4033 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4034 	return ((struct socket *)(-1));
   4035 }
   4036 
   4037 /*
   4038  * This function is called when we get a RST for a
   4039  * non-existent connection, so that we can see if the
   4040  * connection is in the syn cache.  If it is, zap it.
   4041  */
   4042 
   4043 void
   4044 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4045 {
   4046 	struct syn_cache *sc;
   4047 	struct syn_cache_head *scp;
   4048 	int s = splsoftnet();
   4049 
   4050 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4051 		splx(s);
   4052 		return;
   4053 	}
   4054 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4055 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4056 		splx(s);
   4057 		return;
   4058 	}
   4059 	syn_cache_rm(sc);
   4060 	TCP_STATINC(TCP_STAT_SC_RESET);
   4061 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4062 	splx(s);
   4063 }
   4064 
   4065 void
   4066 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4067     struct tcphdr *th)
   4068 {
   4069 	struct syn_cache *sc;
   4070 	struct syn_cache_head *scp;
   4071 	int s;
   4072 
   4073 	s = splsoftnet();
   4074 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4075 		splx(s);
   4076 		return;
   4077 	}
   4078 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4079 	if (ntohl(th->th_seq) != sc->sc_iss) {
   4080 		splx(s);
   4081 		return;
   4082 	}
   4083 
   4084 	/*
   4085 	 * If we've retransmitted 3 times and this is our second error,
   4086 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4087 	 * This prevents us from incorrectly nuking an entry during a
   4088 	 * spurious network outage.
   4089 	 *
   4090 	 * See tcp_notify().
   4091 	 */
   4092 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4093 		sc->sc_flags |= SCF_UNREACH;
   4094 		splx(s);
   4095 		return;
   4096 	}
   4097 
   4098 	syn_cache_rm(sc);
   4099 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4100 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4101 	splx(s);
   4102 }
   4103 
   4104 /*
   4105  * Given a LISTEN socket and an inbound SYN request, add this to the syn
   4106  * cache, and send back a segment:
   4107  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4108  * to the source.
   4109  *
   4110  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4111  * Doing so would require that we hold onto the data and deliver it
   4112  * to the application.  However, if we are the target of a SYN-flood
   4113  * DoS attack, an attacker could send data which would eventually
   4114  * consume all available buffer space if it were ACKed.  By not ACKing
   4115  * the data, we avoid this DoS scenario.
   4116  */
   4117 int
   4118 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4119     unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
   4120     int optlen, struct tcp_opt_info *oi)
   4121 {
   4122 	struct tcpcb tb, *tp;
   4123 	long win;
   4124 	struct syn_cache *sc;
   4125 	struct syn_cache_head *scp;
   4126 	struct mbuf *ipopts;
   4127 	int s;
   4128 
   4129 	tp = sototcpcb(so);
   4130 
   4131 	/*
   4132 	 * Initialize some local state.
   4133 	 */
   4134 	win = sbspace(&so->so_rcv);
   4135 	if (win > TCP_MAXWIN)
   4136 		win = TCP_MAXWIN;
   4137 
   4138 #ifdef TCP_SIGNATURE
   4139 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4140 #else
   4141 	if (optp)
   4142 #endif
   4143 	{
   4144 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4145 #ifdef TCP_SIGNATURE
   4146 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4147 #endif
   4148 		tb.t_state = TCPS_LISTEN;
   4149 		if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
   4150 			return 0;
   4151 	} else
   4152 		tb.t_flags = 0;
   4153 
   4154 	switch (src->sa_family) {
   4155 	case AF_INET:
   4156 		/* Remember the IP options, if any. */
   4157 		ipopts = ip_srcroute(m);
   4158 		break;
   4159 	default:
   4160 		ipopts = NULL;
   4161 	}
   4162 
   4163 	/*
   4164 	 * See if we already have an entry for this connection.
   4165 	 * If we do, resend the SYN,ACK.  We do not count this
   4166 	 * as a retransmission (XXX though maybe we should).
   4167 	 */
   4168 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4169 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4170 		if (ipopts) {
   4171 			/*
   4172 			 * If we were remembering a previous source route,
   4173 			 * forget it and use the new one we've been given.
   4174 			 */
   4175 			if (sc->sc_ipopts)
   4176 				(void)m_free(sc->sc_ipopts);
   4177 			sc->sc_ipopts = ipopts;
   4178 		}
   4179 		sc->sc_timestamp = tb.ts_recent;
   4180 		m_freem(m);
   4181 		if (syn_cache_respond(sc) == 0) {
   4182 			uint64_t *tcps = TCP_STAT_GETREF();
   4183 			tcps[TCP_STAT_SNDACKS]++;
   4184 			tcps[TCP_STAT_SNDTOTAL]++;
   4185 			TCP_STAT_PUTREF();
   4186 		}
   4187 		return 1;
   4188 	}
   4189 
   4190 	s = splsoftnet();
   4191 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4192 	splx(s);
   4193 	if (sc == NULL) {
   4194 		if (ipopts)
   4195 			(void)m_free(ipopts);
   4196 		return 0;
   4197 	}
   4198 
   4199 	/*
   4200 	 * Fill in the cache, and put the necessary IP and TCP
   4201 	 * options into the reply.
   4202 	 */
   4203 	memset(sc, 0, sizeof(struct syn_cache));
   4204 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4205 	memcpy(&sc->sc_src, src, src->sa_len);
   4206 	memcpy(&sc->sc_dst, dst, dst->sa_len);
   4207 	sc->sc_flags = 0;
   4208 	sc->sc_ipopts = ipopts;
   4209 	sc->sc_irs = th->th_seq;
   4210 	switch (src->sa_family) {
   4211 	case AF_INET:
   4212 	    {
   4213 		struct sockaddr_in *srcin = (void *)src;
   4214 		struct sockaddr_in *dstin = (void *)dst;
   4215 
   4216 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4217 		    &srcin->sin_addr, dstin->sin_port,
   4218 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4219 		break;
   4220 	    }
   4221 #ifdef INET6
   4222 	case AF_INET6:
   4223 	    {
   4224 		struct sockaddr_in6 *srcin6 = (void *)src;
   4225 		struct sockaddr_in6 *dstin6 = (void *)dst;
   4226 
   4227 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4228 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4229 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4230 		break;
   4231 	    }
   4232 #endif
   4233 	}
   4234 	sc->sc_peermaxseg = oi->maxseg;
   4235 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4236 	    m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
   4237 	sc->sc_win = win;
   4238 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4239 	sc->sc_timestamp = tb.ts_recent;
   4240 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4241 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4242 		sc->sc_flags |= SCF_TIMESTAMP;
   4243 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4244 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4245 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4246 		sc->sc_request_r_scale = 0;
   4247 		/*
   4248 		 * Pick the smallest possible scaling factor that
   4249 		 * will still allow us to scale up to sb_max.
   4250 		 *
   4251 		 * We do this because there are broken firewalls that
   4252 		 * will corrupt the window scale option, leading to
   4253 		 * the other endpoint believing that our advertised
   4254 		 * window is unscaled.  At scale factors larger than
   4255 		 * 5 the unscaled window will drop below 1500 bytes,
   4256 		 * leading to serious problems when traversing these
   4257 		 * broken firewalls.
   4258 		 *
   4259 		 * With the default sbmax of 256K, a scale factor
   4260 		 * of 3 will be chosen by this algorithm.  Those who
   4261 		 * choose a larger sbmax should watch out
   4262 		 * for the compatiblity problems mentioned above.
   4263 		 *
   4264 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4265 		 * or <SYN,ACK>) segment itself is never scaled.
   4266 		 */
   4267 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4268 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4269 			sc->sc_request_r_scale++;
   4270 	} else {
   4271 		sc->sc_requested_s_scale = 15;
   4272 		sc->sc_request_r_scale = 15;
   4273 	}
   4274 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4275 		sc->sc_flags |= SCF_SACK_PERMIT;
   4276 
   4277 	/*
   4278 	 * ECN setup packet received.
   4279 	 */
   4280 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4281 		sc->sc_flags |= SCF_ECN_PERMIT;
   4282 
   4283 #ifdef TCP_SIGNATURE
   4284 	if (tb.t_flags & TF_SIGNATURE)
   4285 		sc->sc_flags |= SCF_SIGNATURE;
   4286 #endif
   4287 	sc->sc_tp = tp;
   4288 	m_freem(m);
   4289 	if (syn_cache_respond(sc) == 0) {
   4290 		uint64_t *tcps = TCP_STAT_GETREF();
   4291 		tcps[TCP_STAT_SNDACKS]++;
   4292 		tcps[TCP_STAT_SNDTOTAL]++;
   4293 		TCP_STAT_PUTREF();
   4294 		syn_cache_insert(sc, tp);
   4295 	} else {
   4296 		s = splsoftnet();
   4297 		/*
   4298 		 * syn_cache_put() will try to schedule the timer, so
   4299 		 * we need to initialize it
   4300 		 */
   4301 		syn_cache_timer_arm(sc);
   4302 		syn_cache_put(sc);
   4303 		splx(s);
   4304 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4305 	}
   4306 	return 1;
   4307 }
   4308 
   4309 /*
   4310  * syn_cache_respond: (re)send SYN+ACK.
   4311  *
   4312  * Returns 0 on success.
   4313  */
   4314 
   4315 int
   4316 syn_cache_respond(struct syn_cache *sc)
   4317 {
   4318 #ifdef INET6
   4319 	struct rtentry *rt = NULL;
   4320 #endif
   4321 	struct route *ro;
   4322 	u_int8_t *optp;
   4323 	int optlen, error;
   4324 	u_int16_t tlen;
   4325 	struct ip *ip = NULL;
   4326 #ifdef INET6
   4327 	struct ip6_hdr *ip6 = NULL;
   4328 #endif
   4329 	struct tcpcb *tp;
   4330 	struct tcphdr *th;
   4331 	struct mbuf *m;
   4332 	u_int hlen;
   4333 #ifdef TCP_SIGNATURE
   4334 	struct secasvar *sav = NULL;
   4335 	u_int8_t *sigp = NULL;
   4336 #endif
   4337 
   4338 	ro = &sc->sc_route;
   4339 	switch (sc->sc_src.sa.sa_family) {
   4340 	case AF_INET:
   4341 		hlen = sizeof(struct ip);
   4342 		break;
   4343 #ifdef INET6
   4344 	case AF_INET6:
   4345 		hlen = sizeof(struct ip6_hdr);
   4346 		break;
   4347 #endif
   4348 	default:
   4349 		return EAFNOSUPPORT;
   4350 	}
   4351 
   4352 	/* Worst case scanario, since we don't know the option size yet. */
   4353 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
   4354 	KASSERT(max_linkhdr + tlen <= MCLBYTES);
   4355 
   4356 	/*
   4357 	 * Create the IP+TCP header from scratch.
   4358 	 */
   4359 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4360 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4361 		MCLGET(m, M_DONTWAIT);
   4362 		if ((m->m_flags & M_EXT) == 0) {
   4363 			m_freem(m);
   4364 			m = NULL;
   4365 		}
   4366 	}
   4367 	if (m == NULL)
   4368 		return ENOBUFS;
   4369 	MCLAIM(m, &tcp_tx_mowner);
   4370 
   4371 	tp = sc->sc_tp;
   4372 
   4373 	/* Fixup the mbuf. */
   4374 	m->m_data += max_linkhdr;
   4375 	m_reset_rcvif(m);
   4376 	memset(mtod(m, void *), 0, tlen);
   4377 
   4378 	switch (sc->sc_src.sa.sa_family) {
   4379 	case AF_INET:
   4380 		ip = mtod(m, struct ip *);
   4381 		ip->ip_v = 4;
   4382 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4383 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4384 		ip->ip_p = IPPROTO_TCP;
   4385 		th = (struct tcphdr *)(ip + 1);
   4386 		th->th_dport = sc->sc_src.sin.sin_port;
   4387 		th->th_sport = sc->sc_dst.sin.sin_port;
   4388 		break;
   4389 #ifdef INET6
   4390 	case AF_INET6:
   4391 		ip6 = mtod(m, struct ip6_hdr *);
   4392 		ip6->ip6_vfc = IPV6_VERSION;
   4393 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4394 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4395 		ip6->ip6_nxt = IPPROTO_TCP;
   4396 		/* ip6_plen will be updated in ip6_output() */
   4397 		th = (struct tcphdr *)(ip6 + 1);
   4398 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4399 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4400 		break;
   4401 #endif
   4402 	default:
   4403 		panic("%s: impossible (1)", __func__);
   4404 	}
   4405 
   4406 	th->th_seq = htonl(sc->sc_iss);
   4407 	th->th_ack = htonl(sc->sc_irs + 1);
   4408 	th->th_flags = TH_SYN|TH_ACK;
   4409 	th->th_win = htons(sc->sc_win);
   4410 	/* th_x2, th_sum, th_urp already 0 from memset */
   4411 
   4412 	/* Tack on the TCP options. */
   4413 	optp = (u_int8_t *)(th + 1);
   4414 	optlen = 0;
   4415 	*optp++ = TCPOPT_MAXSEG;
   4416 	*optp++ = TCPOLEN_MAXSEG;
   4417 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4418 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4419 	optlen += TCPOLEN_MAXSEG;
   4420 
   4421 	if (sc->sc_request_r_scale != 15) {
   4422 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4423 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4424 		    sc->sc_request_r_scale);
   4425 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4426 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4427 	}
   4428 
   4429 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4430 		/* Let the peer know that we will SACK. */
   4431 		*optp++ = TCPOPT_SACK_PERMITTED;
   4432 		*optp++ = TCPOLEN_SACK_PERMITTED;
   4433 		optlen += TCPOLEN_SACK_PERMITTED;
   4434 	}
   4435 
   4436 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4437 		while (optlen % 4 != 2) {
   4438 			optlen += TCPOLEN_NOP;
   4439 			*optp++ = TCPOPT_NOP;
   4440 		}
   4441 		*optp++ = TCPOPT_TIMESTAMP;
   4442 		*optp++ = TCPOLEN_TIMESTAMP;
   4443 		u_int32_t *lp = (u_int32_t *)(optp);
   4444 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4445 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4446 		*lp   = htonl(sc->sc_timestamp);
   4447 		optp += TCPOLEN_TIMESTAMP - 2;
   4448 		optlen += TCPOLEN_TIMESTAMP;
   4449 	}
   4450 
   4451 #ifdef TCP_SIGNATURE
   4452 	if (sc->sc_flags & SCF_SIGNATURE) {
   4453 		sav = tcp_signature_getsav(m);
   4454 		if (sav == NULL) {
   4455 			m_freem(m);
   4456 			return EPERM;
   4457 		}
   4458 
   4459 		*optp++ = TCPOPT_SIGNATURE;
   4460 		*optp++ = TCPOLEN_SIGNATURE;
   4461 		sigp = optp;
   4462 		memset(optp, 0, TCP_SIGLEN);
   4463 		optp += TCP_SIGLEN;
   4464 		optlen += TCPOLEN_SIGNATURE;
   4465 	}
   4466 #endif
   4467 
   4468 	/*
   4469 	 * Terminate and pad TCP options to a 4 byte boundary.
   4470 	 *
   4471 	 * According to RFC793: "The content of the header beyond the
   4472 	 * End-of-Option option must be header padding (i.e., zero)."
   4473 	 * And later: "The padding is composed of zeros."
   4474 	 */
   4475 	if (optlen % 4) {
   4476 		optlen += TCPOLEN_EOL;
   4477 		*optp++ = TCPOPT_EOL;
   4478 	}
   4479 	while (optlen % 4) {
   4480 		optlen += TCPOLEN_PAD;
   4481 		*optp++ = TCPOPT_PAD;
   4482 	}
   4483 
   4484 	/* Compute the actual values now that we've added the options. */
   4485 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4486 	m->m_len = m->m_pkthdr.len = tlen;
   4487 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4488 
   4489 #ifdef TCP_SIGNATURE
   4490 	if (sav) {
   4491 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4492 		key_sa_recordxfer(sav, m);
   4493 		KEY_SA_UNREF(&sav);
   4494 	}
   4495 #endif
   4496 
   4497 	/*
   4498 	 * Send ECN SYN-ACK setup packet.
   4499 	 * Routes can be asymetric, so, even if we receive a packet
   4500 	 * with ECE and CWR set, we must not assume no one will block
   4501 	 * the ECE packet we are about to send.
   4502 	 */
   4503 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4504 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4505 		th->th_flags |= TH_ECE;
   4506 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4507 
   4508 		/*
   4509 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4510 		 *
   4511 		 * "[...] a TCP node MAY respond to an ECN-setup
   4512 		 * SYN packet by setting ECT in the responding
   4513 		 * ECN-setup SYN/ACK packet, indicating to routers
   4514 		 * that the SYN/ACK packet is ECN-Capable.
   4515 		 * This allows a congested router along the path
   4516 		 * to mark the packet instead of dropping the
   4517 		 * packet as an indication of congestion."
   4518 		 *
   4519 		 * "[...] There can be a great benefit in setting
   4520 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4521 		 * Congestion is  most likely to occur in
   4522 		 * the server-to-client direction.  As a result,
   4523 		 * setting an ECN-capable codepoint in SYN/ACK
   4524 		 * packets can reduce the occurence of three-second
   4525 		 * retransmit timeouts resulting from the drop
   4526 		 * of SYN/ACK packets."
   4527 		 *
   4528 		 * Page 4 and 6, January 2006.
   4529 		 */
   4530 
   4531 		switch (sc->sc_src.sa.sa_family) {
   4532 		case AF_INET:
   4533 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4534 			break;
   4535 #ifdef INET6
   4536 		case AF_INET6:
   4537 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4538 			break;
   4539 #endif
   4540 		}
   4541 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4542 	}
   4543 
   4544 
   4545 	/*
   4546 	 * Compute the packet's checksum.
   4547 	 *
   4548 	 * Fill in some straggling IP bits.  Note the stack expects
   4549 	 * ip_len to be in host order, for convenience.
   4550 	 */
   4551 	switch (sc->sc_src.sa.sa_family) {
   4552 	case AF_INET:
   4553 		ip->ip_len = htons(tlen - hlen);
   4554 		th->th_sum = 0;
   4555 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4556 		ip->ip_len = htons(tlen);
   4557 		ip->ip_ttl = ip_defttl;
   4558 		/* XXX tos? */
   4559 		break;
   4560 #ifdef INET6
   4561 	case AF_INET6:
   4562 		ip6->ip6_plen = htons(tlen - hlen);
   4563 		th->th_sum = 0;
   4564 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4565 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4566 		ip6->ip6_vfc |= IPV6_VERSION;
   4567 		ip6->ip6_plen = htons(tlen - hlen);
   4568 		/* ip6_hlim will be initialized afterwards */
   4569 		/* XXX flowlabel? */
   4570 		break;
   4571 #endif
   4572 	}
   4573 
   4574 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4575 	tp = sc->sc_tp;
   4576 
   4577 	switch (sc->sc_src.sa.sa_family) {
   4578 	case AF_INET:
   4579 		error = ip_output(m, sc->sc_ipopts, ro,
   4580 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4581 		    NULL, tp ? tp->t_inpcb : NULL);
   4582 		break;
   4583 #ifdef INET6
   4584 	case AF_INET6:
   4585 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4586 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
   4587 		rtcache_unref(rt, ro);
   4588 
   4589 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
   4590 		    tp ? tp->t_in6pcb : NULL, NULL);
   4591 		break;
   4592 #endif
   4593 	default:
   4594 		panic("%s: impossible (2)", __func__);
   4595 	}
   4596 
   4597 	return error;
   4598 }
   4599