tcp_input.c revision 1.405 1 /* $NetBSD: tcp_input.c,v 1.405 2018/04/08 12:18:06 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.405 2018/04/08 12:18:06 maxv Exp $");
152
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177
178 #include <net/if.h>
179 #include <net/if_types.h>
180
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188
189 #ifdef INET6
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #ifdef TCP_SIGNATURE
198 #include <netinet6/scope6_var.h>
199 #endif
200 #endif
201
202 #ifndef INET6
203 /* always need ip6.h for IP6_EXTHDR_GET */
204 #include <netinet/ip6.h>
205 #endif
206
207 #include <netinet/tcp.h>
208 #include <netinet/tcp_fsm.h>
209 #include <netinet/tcp_seq.h>
210 #include <netinet/tcp_timer.h>
211 #include <netinet/tcp_var.h>
212 #include <netinet/tcp_private.h>
213 #include <netinet/tcpip.h>
214 #include <netinet/tcp_congctl.h>
215 #include <netinet/tcp_debug.h>
216
217 #ifdef INET6
218 #include "faith.h"
219 #if defined(NFAITH) && NFAITH > 0
220 #include <net/if_faith.h>
221 #endif
222 #endif
223
224 #ifdef IPSEC
225 #include <netipsec/ipsec.h>
226 #include <netipsec/ipsec_var.h>
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* IPSEC*/
232
233 #include <netinet/tcp_vtw.h>
234
235 int tcprexmtthresh = 3;
236 int tcp_log_refused;
237
238 int tcp_do_autorcvbuf = 1;
239 int tcp_autorcvbuf_inc = 16 * 1024;
240 int tcp_autorcvbuf_max = 256 * 1024;
241 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
242
243 static int tcp_rst_ppslim_count = 0;
244 static struct timeval tcp_rst_ppslim_last;
245 static int tcp_ackdrop_ppslim_count = 0;
246 static struct timeval tcp_ackdrop_ppslim_last;
247
248 static void syn_cache_timer(void *);
249
250 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
251
252 /* for modulo comparisons of timestamps */
253 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
254 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
255
256 /*
257 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
258 */
259 #ifdef INET6
260 static inline void
261 nd6_hint(struct tcpcb *tp)
262 {
263 struct rtentry *rt = NULL;
264
265 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
266 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
267 nd6_nud_hint(rt);
268 rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
269 }
270 #else
271 static inline void
272 nd6_hint(struct tcpcb *tp)
273 {
274 }
275 #endif
276
277 /*
278 * Compute ACK transmission behavior. Delay the ACK unless
279 * we have already delayed an ACK (must send an ACK every two segments).
280 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
281 * option is enabled.
282 */
283 static void
284 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
285 {
286
287 if (tp->t_flags & TF_DELACK ||
288 (tcp_ack_on_push && th->th_flags & TH_PUSH))
289 tp->t_flags |= TF_ACKNOW;
290 else
291 TCP_SET_DELACK(tp);
292 }
293
294 static void
295 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
296 {
297
298 /*
299 * If we had a pending ICMP message that refers to data that have
300 * just been acknowledged, disregard the recorded ICMP message.
301 */
302 if ((tp->t_flags & TF_PMTUD_PEND) &&
303 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
304 tp->t_flags &= ~TF_PMTUD_PEND;
305
306 /*
307 * Keep track of the largest chunk of data
308 * acknowledged since last PMTU update
309 */
310 if (tp->t_pmtud_mss_acked < acked)
311 tp->t_pmtud_mss_acked = acked;
312 }
313
314 /*
315 * Convert TCP protocol fields to host order for easier processing.
316 */
317 static void
318 tcp_fields_to_host(struct tcphdr *th)
319 {
320
321 NTOHL(th->th_seq);
322 NTOHL(th->th_ack);
323 NTOHS(th->th_win);
324 NTOHS(th->th_urp);
325 }
326
327 /*
328 * ... and reverse the above.
329 */
330 static void
331 tcp_fields_to_net(struct tcphdr *th)
332 {
333
334 HTONL(th->th_seq);
335 HTONL(th->th_ack);
336 HTONS(th->th_win);
337 HTONS(th->th_urp);
338 }
339
340 static void
341 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
342 {
343 if (th->th_urp > todrop) {
344 th->th_urp -= todrop;
345 } else {
346 *tiflags &= ~TH_URG;
347 th->th_urp = 0;
348 }
349 }
350
351 #ifdef TCP_CSUM_COUNTERS
352 #include <sys/device.h>
353
354 extern struct evcnt tcp_hwcsum_ok;
355 extern struct evcnt tcp_hwcsum_bad;
356 extern struct evcnt tcp_hwcsum_data;
357 extern struct evcnt tcp_swcsum;
358 #if defined(INET6)
359 extern struct evcnt tcp6_hwcsum_ok;
360 extern struct evcnt tcp6_hwcsum_bad;
361 extern struct evcnt tcp6_hwcsum_data;
362 extern struct evcnt tcp6_swcsum;
363 #endif /* defined(INET6) */
364
365 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
366
367 #else
368
369 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
370
371 #endif /* TCP_CSUM_COUNTERS */
372
373 #ifdef TCP_REASS_COUNTERS
374 #include <sys/device.h>
375
376 extern struct evcnt tcp_reass_;
377 extern struct evcnt tcp_reass_empty;
378 extern struct evcnt tcp_reass_iteration[8];
379 extern struct evcnt tcp_reass_prependfirst;
380 extern struct evcnt tcp_reass_prepend;
381 extern struct evcnt tcp_reass_insert;
382 extern struct evcnt tcp_reass_inserttail;
383 extern struct evcnt tcp_reass_append;
384 extern struct evcnt tcp_reass_appendtail;
385 extern struct evcnt tcp_reass_overlaptail;
386 extern struct evcnt tcp_reass_overlapfront;
387 extern struct evcnt tcp_reass_segdup;
388 extern struct evcnt tcp_reass_fragdup;
389
390 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
391
392 #else
393
394 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
395
396 #endif /* TCP_REASS_COUNTERS */
397
398 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
399 int);
400 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
401 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
402
403 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
404 #ifdef INET6
405 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
406 #endif
407
408 #if defined(MBUFTRACE)
409 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
410 #endif /* defined(MBUFTRACE) */
411
412 static struct pool tcpipqent_pool;
413
414 void
415 tcpipqent_init(void)
416 {
417
418 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
419 NULL, IPL_VM);
420 }
421
422 struct ipqent *
423 tcpipqent_alloc(void)
424 {
425 struct ipqent *ipqe;
426 int s;
427
428 s = splvm();
429 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
430 splx(s);
431
432 return ipqe;
433 }
434
435 void
436 tcpipqent_free(struct ipqent *ipqe)
437 {
438 int s;
439
440 s = splvm();
441 pool_put(&tcpipqent_pool, ipqe);
442 splx(s);
443 }
444
445 /*
446 * Insert segment ti into reassembly queue of tcp with
447 * control block tp. Return TH_FIN if reassembly now includes
448 * a segment with FIN.
449 */
450 static int
451 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
452 {
453 struct ipqent *p, *q, *nq, *tiqe = NULL;
454 struct socket *so = NULL;
455 int pkt_flags;
456 tcp_seq pkt_seq;
457 unsigned pkt_len;
458 u_long rcvpartdupbyte = 0;
459 u_long rcvoobyte;
460 #ifdef TCP_REASS_COUNTERS
461 u_int count = 0;
462 #endif
463 uint64_t *tcps;
464
465 if (tp->t_inpcb)
466 so = tp->t_inpcb->inp_socket;
467 #ifdef INET6
468 else if (tp->t_in6pcb)
469 so = tp->t_in6pcb->in6p_socket;
470 #endif
471
472 TCP_REASS_LOCK_CHECK(tp);
473
474 /*
475 * Call with th==NULL after become established to
476 * force pre-ESTABLISHED data up to user socket.
477 */
478 if (th == NULL)
479 goto present;
480
481 m_claimm(m, &tcp_reass_mowner);
482
483 rcvoobyte = tlen;
484 /*
485 * Copy these to local variables because the TCP header gets munged
486 * while we are collapsing mbufs.
487 */
488 pkt_seq = th->th_seq;
489 pkt_len = tlen;
490 pkt_flags = th->th_flags;
491
492 TCP_REASS_COUNTER_INCR(&tcp_reass_);
493
494 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
495 /*
496 * When we miss a packet, the vast majority of time we get
497 * packets that follow it in order. So optimize for that.
498 */
499 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
500 p->ipqe_len += pkt_len;
501 p->ipqe_flags |= pkt_flags;
502 m_cat(p->ipqe_m, m);
503 m = NULL;
504 tiqe = p;
505 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
506 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
507 goto skip_replacement;
508 }
509 /*
510 * While we're here, if the pkt is completely beyond
511 * anything we have, just insert it at the tail.
512 */
513 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
514 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
515 goto insert_it;
516 }
517 }
518
519 q = TAILQ_FIRST(&tp->segq);
520
521 if (q != NULL) {
522 /*
523 * If this segment immediately precedes the first out-of-order
524 * block, simply slap the segment in front of it and (mostly)
525 * skip the complicated logic.
526 */
527 if (pkt_seq + pkt_len == q->ipqe_seq) {
528 q->ipqe_seq = pkt_seq;
529 q->ipqe_len += pkt_len;
530 q->ipqe_flags |= pkt_flags;
531 m_cat(m, q->ipqe_m);
532 q->ipqe_m = m;
533 tiqe = q;
534 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
535 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
536 goto skip_replacement;
537 }
538 } else {
539 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
540 }
541
542 /*
543 * Find a segment which begins after this one does.
544 */
545 for (p = NULL; q != NULL; q = nq) {
546 nq = TAILQ_NEXT(q, ipqe_q);
547 #ifdef TCP_REASS_COUNTERS
548 count++;
549 #endif
550
551 /*
552 * If the received segment is just right after this
553 * fragment, merge the two together and then check
554 * for further overlaps.
555 */
556 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
557 pkt_len += q->ipqe_len;
558 pkt_flags |= q->ipqe_flags;
559 pkt_seq = q->ipqe_seq;
560 m_cat(q->ipqe_m, m);
561 m = q->ipqe_m;
562 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
563 goto free_ipqe;
564 }
565
566 /*
567 * If the received segment is completely past this
568 * fragment, we need to go to the next fragment.
569 */
570 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
571 p = q;
572 continue;
573 }
574
575 /*
576 * If the fragment is past the received segment,
577 * it (or any following) can't be concatenated.
578 */
579 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
580 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
581 break;
582 }
583
584 /*
585 * We've received all the data in this segment before.
586 * Mark it as a duplicate and return.
587 */
588 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
589 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
590 tcps = TCP_STAT_GETREF();
591 tcps[TCP_STAT_RCVDUPPACK]++;
592 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
593 TCP_STAT_PUTREF();
594 tcp_new_dsack(tp, pkt_seq, pkt_len);
595 m_freem(m);
596 if (tiqe != NULL) {
597 tcpipqent_free(tiqe);
598 }
599 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
600 goto out;
601 }
602
603 /*
604 * Received segment completely overlaps this fragment
605 * so we drop the fragment (this keeps the temporal
606 * ordering of segments correct).
607 */
608 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
609 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
610 rcvpartdupbyte += q->ipqe_len;
611 m_freem(q->ipqe_m);
612 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
613 goto free_ipqe;
614 }
615
616 /*
617 * Received segment extends past the end of the fragment.
618 * Drop the overlapping bytes, merge the fragment and
619 * segment, and treat as a longer received packet.
620 */
621 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
622 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
623 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
624 m_adj(m, overlap);
625 rcvpartdupbyte += overlap;
626 m_cat(q->ipqe_m, m);
627 m = q->ipqe_m;
628 pkt_seq = q->ipqe_seq;
629 pkt_len += q->ipqe_len - overlap;
630 rcvoobyte -= overlap;
631 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
632 goto free_ipqe;
633 }
634
635 /*
636 * Received segment extends past the front of the fragment.
637 * Drop the overlapping bytes on the received packet. The
638 * packet will then be concatenated with this fragment a
639 * bit later.
640 */
641 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
642 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
643 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
644 m_adj(m, -overlap);
645 pkt_len -= overlap;
646 rcvpartdupbyte += overlap;
647 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
648 rcvoobyte -= overlap;
649 }
650
651 /*
652 * If the received segment immediately precedes this
653 * fragment then tack the fragment onto this segment
654 * and reinsert the data.
655 */
656 if (q->ipqe_seq == pkt_seq + pkt_len) {
657 pkt_len += q->ipqe_len;
658 pkt_flags |= q->ipqe_flags;
659 m_cat(m, q->ipqe_m);
660 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
661 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
662 tp->t_segqlen--;
663 KASSERT(tp->t_segqlen >= 0);
664 KASSERT(tp->t_segqlen != 0 ||
665 (TAILQ_EMPTY(&tp->segq) &&
666 TAILQ_EMPTY(&tp->timeq)));
667 if (tiqe == NULL) {
668 tiqe = q;
669 } else {
670 tcpipqent_free(q);
671 }
672 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
673 break;
674 }
675
676 /*
677 * If the fragment is before the segment, remember it.
678 * When this loop is terminated, p will contain the
679 * pointer to the fragment that is right before the
680 * received segment.
681 */
682 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
683 p = q;
684
685 continue;
686
687 /*
688 * This is a common operation. It also will allow
689 * to save doing a malloc/free in most instances.
690 */
691 free_ipqe:
692 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
693 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
694 tp->t_segqlen--;
695 KASSERT(tp->t_segqlen >= 0);
696 KASSERT(tp->t_segqlen != 0 ||
697 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
698 if (tiqe == NULL) {
699 tiqe = q;
700 } else {
701 tcpipqent_free(q);
702 }
703 }
704
705 #ifdef TCP_REASS_COUNTERS
706 if (count > 7)
707 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
708 else if (count > 0)
709 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
710 #endif
711
712 insert_it:
713 /*
714 * Allocate a new queue entry (block) since the received segment
715 * did not collapse onto any other out-of-order block. If it had
716 * collapsed, tiqe would not be NULL and we would be reusing it.
717 *
718 * If the allocation fails, drop the packet.
719 */
720 if (tiqe == NULL) {
721 tiqe = tcpipqent_alloc();
722 if (tiqe == NULL) {
723 TCP_STATINC(TCP_STAT_RCVMEMDROP);
724 m_freem(m);
725 goto out;
726 }
727 }
728
729 /*
730 * Update the counters.
731 */
732 tp->t_rcvoopack++;
733 tcps = TCP_STAT_GETREF();
734 tcps[TCP_STAT_RCVOOPACK]++;
735 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
736 if (rcvpartdupbyte) {
737 tcps[TCP_STAT_RCVPARTDUPPACK]++;
738 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
739 }
740 TCP_STAT_PUTREF();
741
742 /*
743 * Insert the new fragment queue entry into both queues.
744 */
745 tiqe->ipqe_m = m;
746 tiqe->ipqe_seq = pkt_seq;
747 tiqe->ipqe_len = pkt_len;
748 tiqe->ipqe_flags = pkt_flags;
749 if (p == NULL) {
750 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
751 } else {
752 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
753 }
754 tp->t_segqlen++;
755
756 skip_replacement:
757 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
758
759 present:
760 /*
761 * Present data to user, advancing rcv_nxt through
762 * completed sequence space.
763 */
764 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
765 goto out;
766 q = TAILQ_FIRST(&tp->segq);
767 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
768 goto out;
769 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
770 goto out;
771
772 tp->rcv_nxt += q->ipqe_len;
773 pkt_flags = q->ipqe_flags & TH_FIN;
774 nd6_hint(tp);
775
776 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
777 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
778 tp->t_segqlen--;
779 KASSERT(tp->t_segqlen >= 0);
780 KASSERT(tp->t_segqlen != 0 ||
781 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
782 if (so->so_state & SS_CANTRCVMORE)
783 m_freem(q->ipqe_m);
784 else
785 sbappendstream(&so->so_rcv, q->ipqe_m);
786 tcpipqent_free(q);
787 TCP_REASS_UNLOCK(tp);
788 sorwakeup(so);
789 return pkt_flags;
790
791 out:
792 TCP_REASS_UNLOCK(tp);
793 return 0;
794 }
795
796 #ifdef INET6
797 int
798 tcp6_input(struct mbuf **mp, int *offp, int proto)
799 {
800 struct mbuf *m = *mp;
801
802 /*
803 * draft-itojun-ipv6-tcp-to-anycast
804 * better place to put this in?
805 */
806 if (m->m_flags & M_ANYCAST6) {
807 struct ip6_hdr *ip6;
808 if (m->m_len < sizeof(struct ip6_hdr)) {
809 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
810 TCP_STATINC(TCP_STAT_RCVSHORT);
811 return IPPROTO_DONE;
812 }
813 }
814 ip6 = mtod(m, struct ip6_hdr *);
815 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
816 (char *)&ip6->ip6_dst - (char *)ip6);
817 return IPPROTO_DONE;
818 }
819
820 tcp_input(m, *offp, proto);
821 return IPPROTO_DONE;
822 }
823 #endif
824
825 static void
826 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
827 {
828 char src[INET_ADDRSTRLEN];
829 char dst[INET_ADDRSTRLEN];
830
831 if (ip) {
832 in_print(src, sizeof(src), &ip->ip_src);
833 in_print(dst, sizeof(dst), &ip->ip_dst);
834 } else {
835 strlcpy(src, "(unknown)", sizeof(src));
836 strlcpy(dst, "(unknown)", sizeof(dst));
837 }
838 log(LOG_INFO,
839 "Connection attempt to TCP %s:%d from %s:%d\n",
840 dst, ntohs(th->th_dport),
841 src, ntohs(th->th_sport));
842 }
843
844 #ifdef INET6
845 static void
846 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
847 {
848 char src[INET6_ADDRSTRLEN];
849 char dst[INET6_ADDRSTRLEN];
850
851 if (ip6) {
852 in6_print(src, sizeof(src), &ip6->ip6_src);
853 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
854 } else {
855 strlcpy(src, "(unknown v6)", sizeof(src));
856 strlcpy(dst, "(unknown v6)", sizeof(dst));
857 }
858 log(LOG_INFO,
859 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
860 dst, ntohs(th->th_dport),
861 src, ntohs(th->th_sport));
862 }
863 #endif
864
865 /*
866 * Checksum extended TCP header and data.
867 */
868 int
869 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
870 int toff, int off, int tlen)
871 {
872 struct ifnet *rcvif;
873 int s;
874
875 /*
876 * XXX it's better to record and check if this mbuf is
877 * already checked.
878 */
879
880 rcvif = m_get_rcvif(m, &s);
881 if (__predict_false(rcvif == NULL))
882 goto badcsum; /* XXX */
883
884 switch (af) {
885 case AF_INET:
886 switch (m->m_pkthdr.csum_flags &
887 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
888 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
889 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
890 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
891 goto badcsum;
892
893 case M_CSUM_TCPv4|M_CSUM_DATA: {
894 u_int32_t hw_csum = m->m_pkthdr.csum_data;
895
896 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
897 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
898 const struct ip *ip =
899 mtod(m, const struct ip *);
900
901 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
902 ip->ip_dst.s_addr,
903 htons(hw_csum + tlen + off + IPPROTO_TCP));
904 }
905 if ((hw_csum ^ 0xffff) != 0)
906 goto badcsum;
907 break;
908 }
909
910 case M_CSUM_TCPv4:
911 /* Checksum was okay. */
912 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
913 break;
914
915 default:
916 /*
917 * Must compute it ourselves. Maybe skip checksum
918 * on loopback interfaces.
919 */
920 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
921 tcp_do_loopback_cksum)) {
922 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
923 if (in4_cksum(m, IPPROTO_TCP, toff,
924 tlen + off) != 0)
925 goto badcsum;
926 }
927 break;
928 }
929 break;
930
931 #ifdef INET6
932 case AF_INET6:
933 switch (m->m_pkthdr.csum_flags &
934 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
935 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
936 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
937 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
938 goto badcsum;
939
940 #if 0 /* notyet */
941 case M_CSUM_TCPv6|M_CSUM_DATA:
942 #endif
943
944 case M_CSUM_TCPv6:
945 /* Checksum was okay. */
946 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
947 break;
948
949 default:
950 /*
951 * Must compute it ourselves. Maybe skip checksum
952 * on loopback interfaces.
953 */
954 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
955 tcp_do_loopback_cksum)) {
956 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
957 if (in6_cksum(m, IPPROTO_TCP, toff,
958 tlen + off) != 0)
959 goto badcsum;
960 }
961 }
962 break;
963 #endif /* INET6 */
964 }
965 m_put_rcvif(rcvif, &s);
966
967 return 0;
968
969 badcsum:
970 m_put_rcvif(rcvif, &s);
971 TCP_STATINC(TCP_STAT_RCVBADSUM);
972 return -1;
973 }
974
975 /*
976 * When a packet arrives addressed to a vestigial tcpbp, we
977 * nevertheless have to respond to it per the spec.
978 *
979 * This code is duplicated from the one in tcp_input().
980 */
981 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
982 struct mbuf *m, int tlen)
983 {
984 int tiflags;
985 int todrop;
986 uint32_t t_flags = 0;
987 uint64_t *tcps;
988
989 tiflags = th->th_flags;
990 todrop = vp->rcv_nxt - th->th_seq;
991
992 if (todrop > 0) {
993 if (tiflags & TH_SYN) {
994 tiflags &= ~TH_SYN;
995 th->th_seq++;
996 tcp_urp_drop(th, 1, &tiflags);
997 todrop--;
998 }
999 if (todrop > tlen ||
1000 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1001 /*
1002 * Any valid FIN or RST must be to the left of the
1003 * window. At this point the FIN or RST must be a
1004 * duplicate or out of sequence; drop it.
1005 */
1006 if (tiflags & TH_RST)
1007 goto drop;
1008 tiflags &= ~(TH_FIN|TH_RST);
1009
1010 /*
1011 * Send an ACK to resynchronize and drop any data.
1012 * But keep on processing for RST or ACK.
1013 */
1014 t_flags |= TF_ACKNOW;
1015 todrop = tlen;
1016 tcps = TCP_STAT_GETREF();
1017 tcps[TCP_STAT_RCVDUPPACK] += 1;
1018 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1019 TCP_STAT_PUTREF();
1020 } else if ((tiflags & TH_RST) &&
1021 th->th_seq != vp->rcv_nxt) {
1022 /*
1023 * Test for reset before adjusting the sequence
1024 * number for overlapping data.
1025 */
1026 goto dropafterack_ratelim;
1027 } else {
1028 tcps = TCP_STAT_GETREF();
1029 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1030 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1031 TCP_STAT_PUTREF();
1032 }
1033
1034 // tcp_new_dsack(tp, th->th_seq, todrop);
1035 // hdroptlen += todrop; /*drop from head afterwards*/
1036
1037 th->th_seq += todrop;
1038 tlen -= todrop;
1039 tcp_urp_drop(th, todrop, &tiflags);
1040 }
1041
1042 /*
1043 * If new data are received on a connection after the
1044 * user processes are gone, then RST the other end.
1045 */
1046 if (tlen) {
1047 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1048 goto dropwithreset;
1049 }
1050
1051 /*
1052 * If segment ends after window, drop trailing data
1053 * (and PUSH and FIN); if nothing left, just ACK.
1054 */
1055 todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1056
1057 if (todrop > 0) {
1058 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1059 if (todrop >= tlen) {
1060 /*
1061 * The segment actually starts after the window.
1062 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1063 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1064 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1065 */
1066 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1067
1068 /*
1069 * If a new connection request is received
1070 * while in TIME_WAIT, drop the old connection
1071 * and start over if the sequence numbers
1072 * are above the previous ones.
1073 */
1074 if ((tiflags & TH_SYN) &&
1075 SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1076 /*
1077 * We only support this in the !NOFDREF case, which
1078 * is to say: not here.
1079 */
1080 goto dropwithreset;
1081 }
1082
1083 /*
1084 * If window is closed can only take segments at
1085 * window edge, and have to drop data and PUSH from
1086 * incoming segments. Continue processing, but
1087 * remember to ack. Otherwise, drop segment
1088 * and (if not RST) ack.
1089 */
1090 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1091 t_flags |= TF_ACKNOW;
1092 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1093 } else {
1094 goto dropafterack;
1095 }
1096 } else {
1097 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1098 }
1099 m_adj(m, -todrop);
1100 tlen -= todrop;
1101 tiflags &= ~(TH_PUSH|TH_FIN);
1102 }
1103
1104 if (tiflags & TH_RST) {
1105 if (th->th_seq != vp->rcv_nxt)
1106 goto dropafterack_ratelim;
1107
1108 vtw_del(vp->ctl, vp->vtw);
1109 goto drop;
1110 }
1111
1112 /*
1113 * If the ACK bit is off we drop the segment and return.
1114 */
1115 if ((tiflags & TH_ACK) == 0) {
1116 if (t_flags & TF_ACKNOW)
1117 goto dropafterack;
1118 goto drop;
1119 }
1120
1121 /*
1122 * In TIME_WAIT state the only thing that should arrive
1123 * is a retransmission of the remote FIN. Acknowledge
1124 * it and restart the finack timer.
1125 */
1126 vtw_restart(vp);
1127 goto dropafterack;
1128
1129 dropafterack:
1130 /*
1131 * Generate an ACK dropping incoming segment if it occupies
1132 * sequence space, where the ACK reflects our state.
1133 */
1134 if (tiflags & TH_RST)
1135 goto drop;
1136 goto dropafterack2;
1137
1138 dropafterack_ratelim:
1139 /*
1140 * We may want to rate-limit ACKs against SYN/RST attack.
1141 */
1142 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1143 tcp_ackdrop_ppslim) == 0) {
1144 /* XXX stat */
1145 goto drop;
1146 }
1147 /* ...fall into dropafterack2... */
1148
1149 dropafterack2:
1150 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1151 return;
1152
1153 dropwithreset:
1154 /*
1155 * Generate a RST, dropping incoming segment.
1156 * Make ACK acceptable to originator of segment.
1157 */
1158 if (tiflags & TH_RST)
1159 goto drop;
1160
1161 if (tiflags & TH_ACK) {
1162 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1163 } else {
1164 if (tiflags & TH_SYN)
1165 ++tlen;
1166 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1167 TH_RST|TH_ACK);
1168 }
1169 return;
1170 drop:
1171 m_freem(m);
1172 }
1173
1174 /*
1175 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1176 */
1177 void
1178 tcp_input(struct mbuf *m, ...)
1179 {
1180 struct tcphdr *th;
1181 struct ip *ip;
1182 struct inpcb *inp;
1183 #ifdef INET6
1184 struct ip6_hdr *ip6;
1185 struct in6pcb *in6p;
1186 #endif
1187 u_int8_t *optp = NULL;
1188 int optlen = 0;
1189 int len, tlen, toff, hdroptlen = 0;
1190 struct tcpcb *tp = NULL;
1191 int tiflags;
1192 struct socket *so = NULL;
1193 int todrop, acked, ourfinisacked, needoutput = 0;
1194 bool dupseg;
1195 #ifdef TCP_DEBUG
1196 short ostate = 0;
1197 #endif
1198 u_long tiwin;
1199 struct tcp_opt_info opti;
1200 int off, iphlen;
1201 va_list ap;
1202 int af; /* af on the wire */
1203 struct mbuf *tcp_saveti = NULL;
1204 uint32_t ts_rtt;
1205 uint8_t iptos;
1206 uint64_t *tcps;
1207 vestigial_inpcb_t vestige;
1208
1209 vestige.valid = 0;
1210
1211 MCLAIM(m, &tcp_rx_mowner);
1212 va_start(ap, m);
1213 toff = va_arg(ap, int);
1214 (void)va_arg(ap, int); /* ignore value, advance ap */
1215 va_end(ap);
1216
1217 TCP_STATINC(TCP_STAT_RCVTOTAL);
1218
1219 memset(&opti, 0, sizeof(opti));
1220 opti.ts_present = 0;
1221 opti.maxseg = 0;
1222
1223 /*
1224 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1225 *
1226 * TCP is, by definition, unicast, so we reject all
1227 * multicast outright.
1228 *
1229 * Note, there are additional src/dst address checks in
1230 * the AF-specific code below.
1231 */
1232 if (m->m_flags & (M_BCAST|M_MCAST)) {
1233 /* XXX stat */
1234 goto drop;
1235 }
1236 #ifdef INET6
1237 if (m->m_flags & M_ANYCAST6) {
1238 /* XXX stat */
1239 goto drop;
1240 }
1241 #endif
1242
1243 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
1244 if (th == NULL) {
1245 TCP_STATINC(TCP_STAT_RCVSHORT);
1246 return;
1247 }
1248
1249 /*
1250 * Get IP and TCP header.
1251 * Note: IP leaves IP header in first mbuf.
1252 */
1253 ip = mtod(m, struct ip *);
1254 switch (ip->ip_v) {
1255 case 4:
1256 #ifdef INET6
1257 ip6 = NULL;
1258 #endif
1259 af = AF_INET;
1260 iphlen = sizeof(struct ip);
1261
1262 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1263 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1264 goto drop;
1265
1266 /* We do the checksum after PCB lookup... */
1267 len = ntohs(ip->ip_len);
1268 tlen = len - toff;
1269 iptos = ip->ip_tos;
1270 break;
1271 #ifdef INET6
1272 case 6:
1273 ip = NULL;
1274 iphlen = sizeof(struct ip6_hdr);
1275 af = AF_INET6;
1276 ip6 = mtod(m, struct ip6_hdr *);
1277
1278 /*
1279 * Be proactive about unspecified IPv6 address in source.
1280 * As we use all-zero to indicate unbounded/unconnected pcb,
1281 * unspecified IPv6 address can be used to confuse us.
1282 *
1283 * Note that packets with unspecified IPv6 destination is
1284 * already dropped in ip6_input.
1285 */
1286 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1287 /* XXX stat */
1288 goto drop;
1289 }
1290
1291 /*
1292 * Make sure destination address is not multicast.
1293 * Source address checked in ip6_input().
1294 */
1295 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1296 /* XXX stat */
1297 goto drop;
1298 }
1299
1300 /* We do the checksum after PCB lookup... */
1301 len = m->m_pkthdr.len;
1302 tlen = len - toff;
1303 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1304 break;
1305 #endif
1306 default:
1307 m_freem(m);
1308 return;
1309 }
1310
1311 /*
1312 * Enforce alignment requirements that are violated in
1313 * some cases, see kern/50766 for details.
1314 */
1315 if (TCP_HDR_ALIGNED_P(th) == 0) {
1316 m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1317 if (m == NULL) {
1318 TCP_STATINC(TCP_STAT_RCVSHORT);
1319 return;
1320 }
1321 ip = mtod(m, struct ip *);
1322 #ifdef INET6
1323 ip6 = mtod(m, struct ip6_hdr *);
1324 #endif
1325 th = (struct tcphdr *)(mtod(m, char *) + toff);
1326 }
1327 KASSERT(TCP_HDR_ALIGNED_P(th));
1328
1329 /*
1330 * Check that TCP offset makes sense, pull out TCP options and
1331 * adjust length.
1332 */
1333 off = th->th_off << 2;
1334 if (off < sizeof(struct tcphdr) || off > tlen) {
1335 TCP_STATINC(TCP_STAT_RCVBADOFF);
1336 goto drop;
1337 }
1338 tlen -= off;
1339
1340 if (off > sizeof(struct tcphdr)) {
1341 IP6_EXTHDR_GET(th, struct tcphdr *, m, toff, off);
1342 if (th == NULL) {
1343 TCP_STATINC(TCP_STAT_RCVSHORT);
1344 return;
1345 }
1346 KASSERT(TCP_HDR_ALIGNED_P(th));
1347 optlen = off - sizeof(struct tcphdr);
1348 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1349
1350 /*
1351 * Do quick retrieval of timestamp options.
1352 *
1353 * If timestamp is the only option and it's formatted as
1354 * recommended in RFC 1323 appendix A, we quickly get the
1355 * values now and don't bother calling tcp_dooptions(),
1356 * etc.
1357 */
1358 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1359 (optlen > TCPOLEN_TSTAMP_APPA &&
1360 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1361 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1362 (th->th_flags & TH_SYN) == 0) {
1363 opti.ts_present = 1;
1364 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1365 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1366 optp = NULL; /* we've parsed the options */
1367 }
1368 }
1369 tiflags = th->th_flags;
1370
1371 /*
1372 * Checksum extended TCP header and data
1373 */
1374 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1375 goto badcsum;
1376
1377 /*
1378 * Locate pcb for segment.
1379 */
1380 findpcb:
1381 inp = NULL;
1382 #ifdef INET6
1383 in6p = NULL;
1384 #endif
1385 switch (af) {
1386 case AF_INET:
1387 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1388 ip->ip_dst, th->th_dport, &vestige);
1389 if (inp == NULL && !vestige.valid) {
1390 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1391 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1392 th->th_dport);
1393 }
1394 #ifdef INET6
1395 if (inp == NULL && !vestige.valid) {
1396 struct in6_addr s, d;
1397
1398 /* mapped addr case */
1399 in6_in_2_v4mapin6(&ip->ip_src, &s);
1400 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1401 in6p = in6_pcblookup_connect(&tcbtable, &s,
1402 th->th_sport, &d, th->th_dport, 0, &vestige);
1403 if (in6p == 0 && !vestige.valid) {
1404 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1405 in6p = in6_pcblookup_bind(&tcbtable, &d,
1406 th->th_dport, 0);
1407 }
1408 }
1409 #endif
1410 #ifndef INET6
1411 if (inp == NULL && !vestige.valid)
1412 #else
1413 if (inp == NULL && in6p == NULL && !vestige.valid)
1414 #endif
1415 {
1416 TCP_STATINC(TCP_STAT_NOPORT);
1417 if (tcp_log_refused &&
1418 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1419 tcp4_log_refused(ip, th);
1420 }
1421 tcp_fields_to_host(th);
1422 goto dropwithreset_ratelim;
1423 }
1424 #if defined(IPSEC)
1425 if (ipsec_used) {
1426 if (inp && ipsec_in_reject(m, inp)) {
1427 goto drop;
1428 }
1429 #ifdef INET6
1430 else if (in6p && ipsec_in_reject(m, in6p)) {
1431 goto drop;
1432 }
1433 #endif
1434 }
1435 #endif /*IPSEC*/
1436 break;
1437 #ifdef INET6
1438 case AF_INET6:
1439 {
1440 int faith;
1441
1442 #if defined(NFAITH) && NFAITH > 0
1443 faith = faithprefix(&ip6->ip6_dst);
1444 #else
1445 faith = 0;
1446 #endif
1447 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1448 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1449 if (!in6p && !vestige.valid) {
1450 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1451 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1452 th->th_dport, faith);
1453 }
1454 if (!in6p && !vestige.valid) {
1455 TCP_STATINC(TCP_STAT_NOPORT);
1456 if (tcp_log_refused &&
1457 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1458 tcp6_log_refused(ip6, th);
1459 }
1460 tcp_fields_to_host(th);
1461 goto dropwithreset_ratelim;
1462 }
1463 #if defined(IPSEC)
1464 if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1465 goto drop;
1466 }
1467 #endif
1468 break;
1469 }
1470 #endif
1471 }
1472
1473 tcp_fields_to_host(th);
1474
1475 /*
1476 * If the state is CLOSED (i.e., TCB does not exist) then
1477 * all data in the incoming segment is discarded.
1478 * If the TCB exists but is in CLOSED state, it is embryonic,
1479 * but should either do a listen or a connect soon.
1480 */
1481 tp = NULL;
1482 so = NULL;
1483 if (inp) {
1484 /* Check the minimum TTL for socket. */
1485 if (ip->ip_ttl < inp->inp_ip_minttl)
1486 goto drop;
1487
1488 tp = intotcpcb(inp);
1489 so = inp->inp_socket;
1490 }
1491 #ifdef INET6
1492 else if (in6p) {
1493 tp = in6totcpcb(in6p);
1494 so = in6p->in6p_socket;
1495 }
1496 #endif
1497 else if (vestige.valid) {
1498 /* We do not support the resurrection of vtw tcpcps. */
1499 tcp_vtw_input(th, &vestige, m, tlen);
1500 m = NULL;
1501 goto drop;
1502 }
1503
1504 if (tp == NULL)
1505 goto dropwithreset_ratelim;
1506 if (tp->t_state == TCPS_CLOSED)
1507 goto drop;
1508
1509 KASSERT(so->so_lock == softnet_lock);
1510 KASSERT(solocked(so));
1511
1512 /* Unscale the window into a 32-bit value. */
1513 if ((tiflags & TH_SYN) == 0)
1514 tiwin = th->th_win << tp->snd_scale;
1515 else
1516 tiwin = th->th_win;
1517
1518 #ifdef INET6
1519 /* save packet options if user wanted */
1520 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1521 if (in6p->in6p_options) {
1522 m_freem(in6p->in6p_options);
1523 in6p->in6p_options = NULL;
1524 }
1525 KASSERT(ip6 != NULL);
1526 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1527 }
1528 #endif
1529
1530 if (so->so_options & SO_DEBUG) {
1531 #ifdef TCP_DEBUG
1532 ostate = tp->t_state;
1533 #endif
1534
1535 tcp_saveti = NULL;
1536 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1537 goto nosave;
1538
1539 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1540 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1541 if (tcp_saveti == NULL)
1542 goto nosave;
1543 } else {
1544 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1545 if (tcp_saveti == NULL)
1546 goto nosave;
1547 MCLAIM(m, &tcp_mowner);
1548 tcp_saveti->m_len = iphlen;
1549 m_copydata(m, 0, iphlen,
1550 mtod(tcp_saveti, void *));
1551 }
1552
1553 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1554 m_freem(tcp_saveti);
1555 tcp_saveti = NULL;
1556 } else {
1557 tcp_saveti->m_len += sizeof(struct tcphdr);
1558 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1559 sizeof(struct tcphdr));
1560 }
1561 nosave:;
1562 }
1563
1564 if (so->so_options & SO_ACCEPTCONN) {
1565 union syn_cache_sa src;
1566 union syn_cache_sa dst;
1567
1568 KASSERT(tp->t_state == TCPS_LISTEN);
1569
1570 memset(&src, 0, sizeof(src));
1571 memset(&dst, 0, sizeof(dst));
1572 switch (af) {
1573 case AF_INET:
1574 src.sin.sin_len = sizeof(struct sockaddr_in);
1575 src.sin.sin_family = AF_INET;
1576 src.sin.sin_addr = ip->ip_src;
1577 src.sin.sin_port = th->th_sport;
1578
1579 dst.sin.sin_len = sizeof(struct sockaddr_in);
1580 dst.sin.sin_family = AF_INET;
1581 dst.sin.sin_addr = ip->ip_dst;
1582 dst.sin.sin_port = th->th_dport;
1583 break;
1584 #ifdef INET6
1585 case AF_INET6:
1586 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1587 src.sin6.sin6_family = AF_INET6;
1588 src.sin6.sin6_addr = ip6->ip6_src;
1589 src.sin6.sin6_port = th->th_sport;
1590
1591 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1592 dst.sin6.sin6_family = AF_INET6;
1593 dst.sin6.sin6_addr = ip6->ip6_dst;
1594 dst.sin6.sin6_port = th->th_dport;
1595 break;
1596 #endif
1597 }
1598
1599 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1600 if (tiflags & TH_RST) {
1601 syn_cache_reset(&src.sa, &dst.sa, th);
1602 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1603 (TH_ACK|TH_SYN)) {
1604 /*
1605 * Received a SYN,ACK. This should never
1606 * happen while we are in LISTEN. Send an RST.
1607 */
1608 goto badsyn;
1609 } else if (tiflags & TH_ACK) {
1610 so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1611 if (so == NULL) {
1612 /*
1613 * We don't have a SYN for this ACK;
1614 * send an RST.
1615 */
1616 goto badsyn;
1617 } else if (so == (struct socket *)(-1)) {
1618 /*
1619 * We were unable to create the
1620 * connection. If the 3-way handshake
1621 * was completed, and RST has been
1622 * sent to the peer. Since the mbuf
1623 * might be in use for the reply, do
1624 * not free it.
1625 */
1626 m = NULL;
1627 } else {
1628 /*
1629 * We have created a full-blown
1630 * connection.
1631 */
1632 tp = NULL;
1633 inp = NULL;
1634 #ifdef INET6
1635 in6p = NULL;
1636 #endif
1637 switch (so->so_proto->pr_domain->dom_family) {
1638 case AF_INET:
1639 inp = sotoinpcb(so);
1640 tp = intotcpcb(inp);
1641 break;
1642 #ifdef INET6
1643 case AF_INET6:
1644 in6p = sotoin6pcb(so);
1645 tp = in6totcpcb(in6p);
1646 break;
1647 #endif
1648 }
1649 if (tp == NULL)
1650 goto badsyn; /*XXX*/
1651 tiwin <<= tp->snd_scale;
1652 goto after_listen;
1653 }
1654 } else {
1655 /*
1656 * None of RST, SYN or ACK was set.
1657 * This is an invalid packet for a
1658 * TCB in LISTEN state. Send a RST.
1659 */
1660 goto badsyn;
1661 }
1662 } else {
1663 /*
1664 * Received a SYN.
1665 */
1666
1667 #ifdef INET6
1668 /*
1669 * If deprecated address is forbidden, we do
1670 * not accept SYN to deprecated interface
1671 * address to prevent any new inbound
1672 * connection from getting established.
1673 * When we do not accept SYN, we send a TCP
1674 * RST, with deprecated source address (instead
1675 * of dropping it). We compromise it as it is
1676 * much better for peer to send a RST, and
1677 * RST will be the final packet for the
1678 * exchange.
1679 *
1680 * If we do not forbid deprecated addresses, we
1681 * accept the SYN packet. RFC2462 does not
1682 * suggest dropping SYN in this case.
1683 * If we decipher RFC2462 5.5.4, it says like
1684 * this:
1685 * 1. use of deprecated addr with existing
1686 * communication is okay - "SHOULD continue
1687 * to be used"
1688 * 2. use of it with new communication:
1689 * (2a) "SHOULD NOT be used if alternate
1690 * address with sufficient scope is
1691 * available"
1692 * (2b) nothing mentioned otherwise.
1693 * Here we fall into (2b) case as we have no
1694 * choice in our source address selection - we
1695 * must obey the peer.
1696 *
1697 * The wording in RFC2462 is confusing, and
1698 * there are multiple description text for
1699 * deprecated address handling - worse, they
1700 * are not exactly the same. I believe 5.5.4
1701 * is the best one, so we follow 5.5.4.
1702 */
1703 if (af == AF_INET6 && !ip6_use_deprecated) {
1704 struct in6_ifaddr *ia6;
1705 int s;
1706 struct ifnet *rcvif = m_get_rcvif(m, &s);
1707 if (rcvif == NULL)
1708 goto dropwithreset; /* XXX */
1709 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1710 &ip6->ip6_dst)) &&
1711 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1712 tp = NULL;
1713 m_put_rcvif(rcvif, &s);
1714 goto dropwithreset;
1715 }
1716 m_put_rcvif(rcvif, &s);
1717 }
1718 #endif
1719
1720 /*
1721 * LISTEN socket received a SYN from itself? This
1722 * can't possibly be valid; drop the packet.
1723 */
1724 if (th->th_sport == th->th_dport) {
1725 int eq = 0;
1726
1727 switch (af) {
1728 case AF_INET:
1729 eq = in_hosteq(ip->ip_src, ip->ip_dst);
1730 break;
1731 #ifdef INET6
1732 case AF_INET6:
1733 eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1734 &ip6->ip6_dst);
1735 break;
1736 #endif
1737 }
1738 if (eq) {
1739 TCP_STATINC(TCP_STAT_BADSYN);
1740 goto drop;
1741 }
1742 }
1743
1744 /*
1745 * SYN looks ok; create compressed TCP
1746 * state for it.
1747 */
1748 if (so->so_qlen <= so->so_qlimit &&
1749 syn_cache_add(&src.sa, &dst.sa, th, toff,
1750 so, m, optp, optlen, &opti))
1751 m = NULL;
1752 }
1753
1754 goto drop;
1755 }
1756
1757 after_listen:
1758 /*
1759 * From here on, we're dealing with !LISTEN.
1760 */
1761 KASSERT(tp->t_state != TCPS_LISTEN);
1762
1763 /*
1764 * Segment received on connection.
1765 * Reset idle time and keep-alive timer.
1766 */
1767 tp->t_rcvtime = tcp_now;
1768 if (TCPS_HAVEESTABLISHED(tp->t_state))
1769 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1770
1771 /*
1772 * Process options.
1773 */
1774 #ifdef TCP_SIGNATURE
1775 if (optp || (tp->t_flags & TF_SIGNATURE))
1776 #else
1777 if (optp)
1778 #endif
1779 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1780 goto drop;
1781
1782 if (TCP_SACK_ENABLED(tp)) {
1783 tcp_del_sackholes(tp, th);
1784 }
1785
1786 if (TCP_ECN_ALLOWED(tp)) {
1787 if (tiflags & TH_CWR) {
1788 tp->t_flags &= ~TF_ECN_SND_ECE;
1789 }
1790 switch (iptos & IPTOS_ECN_MASK) {
1791 case IPTOS_ECN_CE:
1792 tp->t_flags |= TF_ECN_SND_ECE;
1793 TCP_STATINC(TCP_STAT_ECN_CE);
1794 break;
1795 case IPTOS_ECN_ECT0:
1796 TCP_STATINC(TCP_STAT_ECN_ECT);
1797 break;
1798 case IPTOS_ECN_ECT1:
1799 /* XXX: ignore for now -- rpaulo */
1800 break;
1801 }
1802 /*
1803 * Congestion experienced.
1804 * Ignore if we are already trying to recover.
1805 */
1806 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1807 tp->t_congctl->cong_exp(tp);
1808 }
1809
1810 if (opti.ts_present && opti.ts_ecr) {
1811 /*
1812 * Calculate the RTT from the returned time stamp and the
1813 * connection's time base. If the time stamp is later than
1814 * the current time, or is extremely old, fall back to non-1323
1815 * RTT calculation. Since ts_rtt is unsigned, we can test both
1816 * at the same time.
1817 *
1818 * Note that ts_rtt is in units of slow ticks (500
1819 * ms). Since most earthbound RTTs are < 500 ms,
1820 * observed values will have large quantization noise.
1821 * Our smoothed RTT is then the fraction of observed
1822 * samples that are 1 tick instead of 0 (times 500
1823 * ms).
1824 *
1825 * ts_rtt is increased by 1 to denote a valid sample,
1826 * with 0 indicating an invalid measurement. This
1827 * extra 1 must be removed when ts_rtt is used, or
1828 * else an an erroneous extra 500 ms will result.
1829 */
1830 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1831 if (ts_rtt > TCP_PAWS_IDLE)
1832 ts_rtt = 0;
1833 } else {
1834 ts_rtt = 0;
1835 }
1836
1837 /*
1838 * Fast path: check for the two common cases of a uni-directional
1839 * data transfer. If:
1840 * o We are in the ESTABLISHED state, and
1841 * o The packet has no control flags, and
1842 * o The packet is in-sequence, and
1843 * o The window didn't change, and
1844 * o We are not retransmitting
1845 * It's a candidate.
1846 *
1847 * If the length (tlen) is zero and the ack moved forward, we're
1848 * the sender side of the transfer. Just free the data acked and
1849 * wake any higher level process that was blocked waiting for
1850 * space.
1851 *
1852 * If the length is non-zero and the ack didn't move, we're the
1853 * receiver side. If we're getting packets in-order (the reassembly
1854 * queue is empty), add the data to the socket buffer and note
1855 * that we need a delayed ack.
1856 */
1857 if (tp->t_state == TCPS_ESTABLISHED &&
1858 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1859 == TH_ACK &&
1860 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1861 th->th_seq == tp->rcv_nxt &&
1862 tiwin && tiwin == tp->snd_wnd &&
1863 tp->snd_nxt == tp->snd_max) {
1864
1865 /*
1866 * If last ACK falls within this segment's sequence numbers,
1867 * record the timestamp.
1868 * NOTE that the test is modified according to the latest
1869 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1870 *
1871 * note that we already know
1872 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1873 */
1874 if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1875 tp->ts_recent_age = tcp_now;
1876 tp->ts_recent = opti.ts_val;
1877 }
1878
1879 if (tlen == 0) {
1880 /* Ack prediction. */
1881 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1882 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1883 tp->snd_cwnd >= tp->snd_wnd &&
1884 tp->t_partialacks < 0) {
1885 /*
1886 * this is a pure ack for outstanding data.
1887 */
1888 if (ts_rtt)
1889 tcp_xmit_timer(tp, ts_rtt - 1);
1890 else if (tp->t_rtttime &&
1891 SEQ_GT(th->th_ack, tp->t_rtseq))
1892 tcp_xmit_timer(tp,
1893 tcp_now - tp->t_rtttime);
1894 acked = th->th_ack - tp->snd_una;
1895 tcps = TCP_STAT_GETREF();
1896 tcps[TCP_STAT_PREDACK]++;
1897 tcps[TCP_STAT_RCVACKPACK]++;
1898 tcps[TCP_STAT_RCVACKBYTE] += acked;
1899 TCP_STAT_PUTREF();
1900 nd6_hint(tp);
1901
1902 if (acked > (tp->t_lastoff - tp->t_inoff))
1903 tp->t_lastm = NULL;
1904 sbdrop(&so->so_snd, acked);
1905 tp->t_lastoff -= acked;
1906
1907 icmp_check(tp, th, acked);
1908
1909 tp->snd_una = th->th_ack;
1910 tp->snd_fack = tp->snd_una;
1911 if (SEQ_LT(tp->snd_high, tp->snd_una))
1912 tp->snd_high = tp->snd_una;
1913 m_freem(m);
1914
1915 /*
1916 * If all outstanding data are acked, stop
1917 * retransmit timer, otherwise restart timer
1918 * using current (possibly backed-off) value.
1919 * If process is waiting for space,
1920 * wakeup/selnotify/signal. If data
1921 * are ready to send, let tcp_output
1922 * decide between more output or persist.
1923 */
1924 if (tp->snd_una == tp->snd_max)
1925 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1926 else if (TCP_TIMER_ISARMED(tp,
1927 TCPT_PERSIST) == 0)
1928 TCP_TIMER_ARM(tp, TCPT_REXMT,
1929 tp->t_rxtcur);
1930
1931 sowwakeup(so);
1932 if (so->so_snd.sb_cc) {
1933 KERNEL_LOCK(1, NULL);
1934 (void)tcp_output(tp);
1935 KERNEL_UNLOCK_ONE(NULL);
1936 }
1937 if (tcp_saveti)
1938 m_freem(tcp_saveti);
1939 return;
1940 }
1941 } else if (th->th_ack == tp->snd_una &&
1942 TAILQ_FIRST(&tp->segq) == NULL &&
1943 tlen <= sbspace(&so->so_rcv)) {
1944 int newsize = 0;
1945
1946 /*
1947 * this is a pure, in-sequence data packet
1948 * with nothing on the reassembly queue and
1949 * we have enough buffer space to take it.
1950 */
1951 tp->rcv_nxt += tlen;
1952 tcps = TCP_STAT_GETREF();
1953 tcps[TCP_STAT_PREDDAT]++;
1954 tcps[TCP_STAT_RCVPACK]++;
1955 tcps[TCP_STAT_RCVBYTE] += tlen;
1956 TCP_STAT_PUTREF();
1957 nd6_hint(tp);
1958
1959 /*
1960 * Automatic sizing enables the performance of large buffers
1961 * and most of the efficiency of small ones by only allocating
1962 * space when it is needed.
1963 *
1964 * On the receive side the socket buffer memory is only rarely
1965 * used to any significant extent. This allows us to be much
1966 * more aggressive in scaling the receive socket buffer. For
1967 * the case that the buffer space is actually used to a large
1968 * extent and we run out of kernel memory we can simply drop
1969 * the new segments; TCP on the sender will just retransmit it
1970 * later. Setting the buffer size too big may only consume too
1971 * much kernel memory if the application doesn't read() from
1972 * the socket or packet loss or reordering makes use of the
1973 * reassembly queue.
1974 *
1975 * The criteria to step up the receive buffer one notch are:
1976 * 1. the number of bytes received during the time it takes
1977 * one timestamp to be reflected back to us (the RTT);
1978 * 2. received bytes per RTT is within seven eighth of the
1979 * current socket buffer size;
1980 * 3. receive buffer size has not hit maximal automatic size;
1981 *
1982 * This algorithm does one step per RTT at most and only if
1983 * we receive a bulk stream w/o packet losses or reorderings.
1984 * Shrinking the buffer during idle times is not necessary as
1985 * it doesn't consume any memory when idle.
1986 *
1987 * TODO: Only step up if the application is actually serving
1988 * the buffer to better manage the socket buffer resources.
1989 */
1990 if (tcp_do_autorcvbuf &&
1991 opti.ts_ecr &&
1992 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1993 if (opti.ts_ecr > tp->rfbuf_ts &&
1994 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1995 if (tp->rfbuf_cnt >
1996 (so->so_rcv.sb_hiwat / 8 * 7) &&
1997 so->so_rcv.sb_hiwat <
1998 tcp_autorcvbuf_max) {
1999 newsize =
2000 min(so->so_rcv.sb_hiwat +
2001 tcp_autorcvbuf_inc,
2002 tcp_autorcvbuf_max);
2003 }
2004 /* Start over with next RTT. */
2005 tp->rfbuf_ts = 0;
2006 tp->rfbuf_cnt = 0;
2007 } else
2008 tp->rfbuf_cnt += tlen; /* add up */
2009 }
2010
2011 /*
2012 * Drop TCP, IP headers and TCP options then add data
2013 * to socket buffer.
2014 */
2015 if (so->so_state & SS_CANTRCVMORE) {
2016 m_freem(m);
2017 } else {
2018 /*
2019 * Set new socket buffer size.
2020 * Give up when limit is reached.
2021 */
2022 if (newsize)
2023 if (!sbreserve(&so->so_rcv,
2024 newsize, so))
2025 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2026 m_adj(m, toff + off);
2027 sbappendstream(&so->so_rcv, m);
2028 }
2029 sorwakeup(so);
2030 tcp_setup_ack(tp, th);
2031 if (tp->t_flags & TF_ACKNOW) {
2032 KERNEL_LOCK(1, NULL);
2033 (void)tcp_output(tp);
2034 KERNEL_UNLOCK_ONE(NULL);
2035 }
2036 if (tcp_saveti)
2037 m_freem(tcp_saveti);
2038 return;
2039 }
2040 }
2041
2042 /*
2043 * Compute mbuf offset to TCP data segment.
2044 */
2045 hdroptlen = toff + off;
2046
2047 /*
2048 * Calculate amount of space in receive window. Receive window is
2049 * amount of space in rcv queue, but not less than advertised
2050 * window.
2051 */
2052 {
2053 int win;
2054 win = sbspace(&so->so_rcv);
2055 if (win < 0)
2056 win = 0;
2057 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2058 }
2059
2060 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2061 tp->rfbuf_ts = 0;
2062 tp->rfbuf_cnt = 0;
2063
2064 switch (tp->t_state) {
2065 /*
2066 * If the state is SYN_SENT:
2067 * if seg contains an ACK, but not for our SYN, drop the input.
2068 * if seg contains a RST, then drop the connection.
2069 * if seg does not contain SYN, then drop it.
2070 * Otherwise this is an acceptable SYN segment
2071 * initialize tp->rcv_nxt and tp->irs
2072 * if seg contains ack then advance tp->snd_una
2073 * if seg contains a ECE and ECN support is enabled, the stream
2074 * is ECN capable.
2075 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2076 * arrange for segment to be acked (eventually)
2077 * continue processing rest of data/controls, beginning with URG
2078 */
2079 case TCPS_SYN_SENT:
2080 if ((tiflags & TH_ACK) &&
2081 (SEQ_LEQ(th->th_ack, tp->iss) ||
2082 SEQ_GT(th->th_ack, tp->snd_max)))
2083 goto dropwithreset;
2084 if (tiflags & TH_RST) {
2085 if (tiflags & TH_ACK)
2086 tp = tcp_drop(tp, ECONNREFUSED);
2087 goto drop;
2088 }
2089 if ((tiflags & TH_SYN) == 0)
2090 goto drop;
2091 if (tiflags & TH_ACK) {
2092 tp->snd_una = th->th_ack;
2093 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2094 tp->snd_nxt = tp->snd_una;
2095 if (SEQ_LT(tp->snd_high, tp->snd_una))
2096 tp->snd_high = tp->snd_una;
2097 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2098
2099 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2100 tp->t_flags |= TF_ECN_PERMIT;
2101 TCP_STATINC(TCP_STAT_ECN_SHS);
2102 }
2103 }
2104 tp->irs = th->th_seq;
2105 tcp_rcvseqinit(tp);
2106 tp->t_flags |= TF_ACKNOW;
2107 tcp_mss_from_peer(tp, opti.maxseg);
2108
2109 /*
2110 * Initialize the initial congestion window. If we
2111 * had to retransmit the SYN, we must initialize cwnd
2112 * to 1 segment (i.e. the Loss Window).
2113 */
2114 if (tp->t_flags & TF_SYN_REXMT)
2115 tp->snd_cwnd = tp->t_peermss;
2116 else {
2117 int ss = tcp_init_win;
2118 if (inp != NULL && in_localaddr(inp->inp_faddr))
2119 ss = tcp_init_win_local;
2120 #ifdef INET6
2121 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2122 ss = tcp_init_win_local;
2123 #endif
2124 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2125 }
2126
2127 tcp_rmx_rtt(tp);
2128 if (tiflags & TH_ACK) {
2129 TCP_STATINC(TCP_STAT_CONNECTS);
2130 /*
2131 * move tcp_established before soisconnected
2132 * because upcall handler can drive tcp_output
2133 * functionality.
2134 * XXX we might call soisconnected at the end of
2135 * all processing
2136 */
2137 tcp_established(tp);
2138 soisconnected(so);
2139 /* Do window scaling on this connection? */
2140 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2141 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2142 tp->snd_scale = tp->requested_s_scale;
2143 tp->rcv_scale = tp->request_r_scale;
2144 }
2145 TCP_REASS_LOCK(tp);
2146 (void)tcp_reass(tp, NULL, NULL, tlen);
2147 /*
2148 * if we didn't have to retransmit the SYN,
2149 * use its rtt as our initial srtt & rtt var.
2150 */
2151 if (tp->t_rtttime)
2152 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2153 } else {
2154 tp->t_state = TCPS_SYN_RECEIVED;
2155 }
2156
2157 /*
2158 * Advance th->th_seq to correspond to first data byte.
2159 * If data, trim to stay within window,
2160 * dropping FIN if necessary.
2161 */
2162 th->th_seq++;
2163 if (tlen > tp->rcv_wnd) {
2164 todrop = tlen - tp->rcv_wnd;
2165 m_adj(m, -todrop);
2166 tlen = tp->rcv_wnd;
2167 tiflags &= ~TH_FIN;
2168 tcps = TCP_STAT_GETREF();
2169 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2170 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2171 TCP_STAT_PUTREF();
2172 }
2173 tp->snd_wl1 = th->th_seq - 1;
2174 tp->rcv_up = th->th_seq;
2175 goto step6;
2176
2177 /*
2178 * If the state is SYN_RECEIVED:
2179 * If seg contains an ACK, but not for our SYN, drop the input
2180 * and generate an RST. See page 36, rfc793
2181 */
2182 case TCPS_SYN_RECEIVED:
2183 if ((tiflags & TH_ACK) &&
2184 (SEQ_LEQ(th->th_ack, tp->iss) ||
2185 SEQ_GT(th->th_ack, tp->snd_max)))
2186 goto dropwithreset;
2187 break;
2188 }
2189
2190 /*
2191 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2192 */
2193 KASSERT(tp->t_state != TCPS_LISTEN &&
2194 tp->t_state != TCPS_SYN_SENT);
2195
2196 /*
2197 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2198 * it's less than ts_recent, drop it.
2199 */
2200 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2201 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2202 /* Check to see if ts_recent is over 24 days old. */
2203 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2204 /*
2205 * Invalidate ts_recent. If this segment updates
2206 * ts_recent, the age will be reset later and ts_recent
2207 * will get a valid value. If it does not, setting
2208 * ts_recent to zero will at least satisfy the
2209 * requirement that zero be placed in the timestamp
2210 * echo reply when ts_recent isn't valid. The
2211 * age isn't reset until we get a valid ts_recent
2212 * because we don't want out-of-order segments to be
2213 * dropped when ts_recent is old.
2214 */
2215 tp->ts_recent = 0;
2216 } else {
2217 tcps = TCP_STAT_GETREF();
2218 tcps[TCP_STAT_RCVDUPPACK]++;
2219 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2220 tcps[TCP_STAT_PAWSDROP]++;
2221 TCP_STAT_PUTREF();
2222 tcp_new_dsack(tp, th->th_seq, tlen);
2223 goto dropafterack;
2224 }
2225 }
2226
2227 /*
2228 * Check that at least some bytes of the segment are within the
2229 * receive window. If segment begins before rcv_nxt, drop leading
2230 * data (and SYN); if nothing left, just ack.
2231 */
2232 todrop = tp->rcv_nxt - th->th_seq;
2233 dupseg = false;
2234 if (todrop > 0) {
2235 if (tiflags & TH_SYN) {
2236 tiflags &= ~TH_SYN;
2237 th->th_seq++;
2238 tcp_urp_drop(th, 1, &tiflags);
2239 todrop--;
2240 }
2241 if (todrop > tlen ||
2242 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2243 /*
2244 * Any valid FIN or RST must be to the left of the
2245 * window. At this point the FIN or RST must be a
2246 * duplicate or out of sequence; drop it.
2247 */
2248 if (tiflags & TH_RST)
2249 goto drop;
2250 tiflags &= ~(TH_FIN|TH_RST);
2251
2252 /*
2253 * Send an ACK to resynchronize and drop any data.
2254 * But keep on processing for RST or ACK.
2255 */
2256 tp->t_flags |= TF_ACKNOW;
2257 todrop = tlen;
2258 dupseg = true;
2259 tcps = TCP_STAT_GETREF();
2260 tcps[TCP_STAT_RCVDUPPACK]++;
2261 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2262 TCP_STAT_PUTREF();
2263 } else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2264 /*
2265 * Test for reset before adjusting the sequence
2266 * number for overlapping data.
2267 */
2268 goto dropafterack_ratelim;
2269 } else {
2270 tcps = TCP_STAT_GETREF();
2271 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2272 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2273 TCP_STAT_PUTREF();
2274 }
2275 tcp_new_dsack(tp, th->th_seq, todrop);
2276 hdroptlen += todrop; /* drop from head afterwards (m_adj) */
2277 th->th_seq += todrop;
2278 tlen -= todrop;
2279 tcp_urp_drop(th, todrop, &tiflags);
2280 }
2281
2282 /*
2283 * If new data is received on a connection after the user processes
2284 * are gone, then RST the other end.
2285 */
2286 if ((so->so_state & SS_NOFDREF) &&
2287 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2288 tp = tcp_close(tp);
2289 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2290 goto dropwithreset;
2291 }
2292
2293 /*
2294 * If the segment ends after the window, drop trailing data (and
2295 * PUSH and FIN); if nothing left, just ACK.
2296 */
2297 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2298 if (todrop > 0) {
2299 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2300 if (todrop >= tlen) {
2301 /*
2302 * The segment actually starts after the window.
2303 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2304 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2305 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2306 */
2307 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2308
2309 /*
2310 * If a new connection request is received while in
2311 * TIME_WAIT, drop the old connection and start over
2312 * if the sequence numbers are above the previous
2313 * ones.
2314 *
2315 * NOTE: We need to put the header fields back into
2316 * network order.
2317 */
2318 if ((tiflags & TH_SYN) &&
2319 tp->t_state == TCPS_TIME_WAIT &&
2320 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2321 tp = tcp_close(tp);
2322 tcp_fields_to_net(th);
2323 m_freem(tcp_saveti);
2324 tcp_saveti = NULL;
2325 goto findpcb;
2326 }
2327
2328 /*
2329 * If window is closed can only take segments at
2330 * window edge, and have to drop data and PUSH from
2331 * incoming segments. Continue processing, but
2332 * remember to ack. Otherwise, drop segment
2333 * and (if not RST) ack.
2334 */
2335 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2336 KASSERT(todrop == tlen);
2337 tp->t_flags |= TF_ACKNOW;
2338 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2339 } else {
2340 goto dropafterack;
2341 }
2342 } else {
2343 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2344 }
2345 m_adj(m, -todrop);
2346 tlen -= todrop;
2347 tiflags &= ~(TH_PUSH|TH_FIN);
2348 }
2349
2350 /*
2351 * If last ACK falls within this segment's sequence numbers,
2352 * record the timestamp.
2353 * NOTE:
2354 * 1) That the test incorporates suggestions from the latest
2355 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2356 * 2) That updating only on newer timestamps interferes with
2357 * our earlier PAWS tests, so this check should be solely
2358 * predicated on the sequence space of this segment.
2359 * 3) That we modify the segment boundary check to be
2360 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2361 * instead of RFC1323's
2362 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2363 * This modified check allows us to overcome RFC1323's
2364 * limitations as described in Stevens TCP/IP Illustrated
2365 * Vol. 2 p.869. In such cases, we can still calculate the
2366 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2367 */
2368 if (opti.ts_present &&
2369 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2370 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2371 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2372 tp->ts_recent_age = tcp_now;
2373 tp->ts_recent = opti.ts_val;
2374 }
2375
2376 /*
2377 * If the RST bit is set examine the state:
2378 * RECEIVED state:
2379 * If passive open, return to LISTEN state.
2380 * If active open, inform user that connection was refused.
2381 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2382 * Inform user that connection was reset, and close tcb.
2383 * CLOSING, LAST_ACK, TIME_WAIT states:
2384 * Close the tcb.
2385 */
2386 if (tiflags & TH_RST) {
2387 if (th->th_seq != tp->rcv_nxt)
2388 goto dropafterack_ratelim;
2389
2390 switch (tp->t_state) {
2391 case TCPS_SYN_RECEIVED:
2392 so->so_error = ECONNREFUSED;
2393 goto close;
2394
2395 case TCPS_ESTABLISHED:
2396 case TCPS_FIN_WAIT_1:
2397 case TCPS_FIN_WAIT_2:
2398 case TCPS_CLOSE_WAIT:
2399 so->so_error = ECONNRESET;
2400 close:
2401 tp->t_state = TCPS_CLOSED;
2402 TCP_STATINC(TCP_STAT_DROPS);
2403 tp = tcp_close(tp);
2404 goto drop;
2405
2406 case TCPS_CLOSING:
2407 case TCPS_LAST_ACK:
2408 case TCPS_TIME_WAIT:
2409 tp = tcp_close(tp);
2410 goto drop;
2411 }
2412 }
2413
2414 /*
2415 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2416 * we must be in a synchronized state. RFC791 states (under RST
2417 * generation) that any unacceptable segment (an out-of-order SYN
2418 * qualifies) received in a synchronized state must elicit only an
2419 * empty acknowledgment segment ... and the connection remains in
2420 * the same state.
2421 */
2422 if (tiflags & TH_SYN) {
2423 if (tp->rcv_nxt == th->th_seq) {
2424 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2425 TH_ACK);
2426 if (tcp_saveti)
2427 m_freem(tcp_saveti);
2428 return;
2429 }
2430
2431 goto dropafterack_ratelim;
2432 }
2433
2434 /*
2435 * If the ACK bit is off we drop the segment and return.
2436 */
2437 if ((tiflags & TH_ACK) == 0) {
2438 if (tp->t_flags & TF_ACKNOW)
2439 goto dropafterack;
2440 goto drop;
2441 }
2442
2443 /*
2444 * From here on, we're doing ACK processing.
2445 */
2446
2447 switch (tp->t_state) {
2448 /*
2449 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2450 * ESTABLISHED state and continue processing, otherwise
2451 * send an RST.
2452 */
2453 case TCPS_SYN_RECEIVED:
2454 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2455 SEQ_GT(th->th_ack, tp->snd_max))
2456 goto dropwithreset;
2457 TCP_STATINC(TCP_STAT_CONNECTS);
2458 soisconnected(so);
2459 tcp_established(tp);
2460 /* Do window scaling? */
2461 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2462 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2463 tp->snd_scale = tp->requested_s_scale;
2464 tp->rcv_scale = tp->request_r_scale;
2465 }
2466 TCP_REASS_LOCK(tp);
2467 (void)tcp_reass(tp, NULL, NULL, tlen);
2468 tp->snd_wl1 = th->th_seq - 1;
2469 /* FALLTHROUGH */
2470
2471 /*
2472 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2473 * ACKs. If the ack is in the range
2474 * tp->snd_una < th->th_ack <= tp->snd_max
2475 * then advance tp->snd_una to th->th_ack and drop
2476 * data from the retransmission queue. If this ACK reflects
2477 * more up to date window information we update our window information.
2478 */
2479 case TCPS_ESTABLISHED:
2480 case TCPS_FIN_WAIT_1:
2481 case TCPS_FIN_WAIT_2:
2482 case TCPS_CLOSE_WAIT:
2483 case TCPS_CLOSING:
2484 case TCPS_LAST_ACK:
2485 case TCPS_TIME_WAIT:
2486 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2487 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2488 TCP_STATINC(TCP_STAT_RCVDUPACK);
2489 /*
2490 * If we have outstanding data (other than
2491 * a window probe), this is a completely
2492 * duplicate ack (ie, window info didn't
2493 * change), the ack is the biggest we've
2494 * seen and we've seen exactly our rexmt
2495 * threshhold of them, assume a packet
2496 * has been dropped and retransmit it.
2497 * Kludge snd_nxt & the congestion
2498 * window so we send only this one
2499 * packet.
2500 */
2501 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2502 th->th_ack != tp->snd_una)
2503 tp->t_dupacks = 0;
2504 else if (tp->t_partialacks < 0 &&
2505 (++tp->t_dupacks == tcprexmtthresh ||
2506 TCP_FACK_FASTRECOV(tp))) {
2507 /*
2508 * Do the fast retransmit, and adjust
2509 * congestion control paramenters.
2510 */
2511 if (tp->t_congctl->fast_retransmit(tp, th)) {
2512 /* False fast retransmit */
2513 break;
2514 }
2515 goto drop;
2516 } else if (tp->t_dupacks > tcprexmtthresh) {
2517 tp->snd_cwnd += tp->t_segsz;
2518 KERNEL_LOCK(1, NULL);
2519 (void)tcp_output(tp);
2520 KERNEL_UNLOCK_ONE(NULL);
2521 goto drop;
2522 }
2523 } else {
2524 /*
2525 * If the ack appears to be very old, only
2526 * allow data that is in-sequence. This
2527 * makes it somewhat more difficult to insert
2528 * forged data by guessing sequence numbers.
2529 * Sent an ack to try to update the send
2530 * sequence number on the other side.
2531 */
2532 if (tlen && th->th_seq != tp->rcv_nxt &&
2533 SEQ_LT(th->th_ack,
2534 tp->snd_una - tp->max_sndwnd))
2535 goto dropafterack;
2536 }
2537 break;
2538 }
2539 /*
2540 * If the congestion window was inflated to account
2541 * for the other side's cached packets, retract it.
2542 */
2543 tp->t_congctl->fast_retransmit_newack(tp, th);
2544
2545 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2546 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2547 goto dropafterack;
2548 }
2549 acked = th->th_ack - tp->snd_una;
2550 tcps = TCP_STAT_GETREF();
2551 tcps[TCP_STAT_RCVACKPACK]++;
2552 tcps[TCP_STAT_RCVACKBYTE] += acked;
2553 TCP_STAT_PUTREF();
2554
2555 /*
2556 * If we have a timestamp reply, update smoothed
2557 * round trip time. If no timestamp is present but
2558 * transmit timer is running and timed sequence
2559 * number was acked, update smoothed round trip time.
2560 * Since we now have an rtt measurement, cancel the
2561 * timer backoff (cf., Phil Karn's retransmit alg.).
2562 * Recompute the initial retransmit timer.
2563 */
2564 if (ts_rtt)
2565 tcp_xmit_timer(tp, ts_rtt - 1);
2566 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2567 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2568
2569 /*
2570 * If all outstanding data is acked, stop retransmit
2571 * timer and remember to restart (more output or persist).
2572 * If there is more data to be acked, restart retransmit
2573 * timer, using current (possibly backed-off) value.
2574 */
2575 if (th->th_ack == tp->snd_max) {
2576 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2577 needoutput = 1;
2578 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2579 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2580
2581 /*
2582 * New data has been acked, adjust the congestion window.
2583 */
2584 tp->t_congctl->newack(tp, th);
2585
2586 nd6_hint(tp);
2587 if (acked > so->so_snd.sb_cc) {
2588 tp->snd_wnd -= so->so_snd.sb_cc;
2589 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2590 ourfinisacked = 1;
2591 } else {
2592 if (acked > (tp->t_lastoff - tp->t_inoff))
2593 tp->t_lastm = NULL;
2594 sbdrop(&so->so_snd, acked);
2595 tp->t_lastoff -= acked;
2596 if (tp->snd_wnd > acked)
2597 tp->snd_wnd -= acked;
2598 else
2599 tp->snd_wnd = 0;
2600 ourfinisacked = 0;
2601 }
2602 sowwakeup(so);
2603
2604 icmp_check(tp, th, acked);
2605
2606 tp->snd_una = th->th_ack;
2607 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2608 tp->snd_fack = tp->snd_una;
2609 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2610 tp->snd_nxt = tp->snd_una;
2611 if (SEQ_LT(tp->snd_high, tp->snd_una))
2612 tp->snd_high = tp->snd_una;
2613
2614 switch (tp->t_state) {
2615
2616 /*
2617 * In FIN_WAIT_1 STATE in addition to the processing
2618 * for the ESTABLISHED state if our FIN is now acknowledged
2619 * then enter FIN_WAIT_2.
2620 */
2621 case TCPS_FIN_WAIT_1:
2622 if (ourfinisacked) {
2623 /*
2624 * If we can't receive any more
2625 * data, then closing user can proceed.
2626 * Starting the timer is contrary to the
2627 * specification, but if we don't get a FIN
2628 * we'll hang forever.
2629 */
2630 if (so->so_state & SS_CANTRCVMORE) {
2631 soisdisconnected(so);
2632 if (tp->t_maxidle > 0)
2633 TCP_TIMER_ARM(tp, TCPT_2MSL,
2634 tp->t_maxidle);
2635 }
2636 tp->t_state = TCPS_FIN_WAIT_2;
2637 }
2638 break;
2639
2640 /*
2641 * In CLOSING STATE in addition to the processing for
2642 * the ESTABLISHED state if the ACK acknowledges our FIN
2643 * then enter the TIME-WAIT state, otherwise ignore
2644 * the segment.
2645 */
2646 case TCPS_CLOSING:
2647 if (ourfinisacked) {
2648 tp->t_state = TCPS_TIME_WAIT;
2649 tcp_canceltimers(tp);
2650 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2651 soisdisconnected(so);
2652 }
2653 break;
2654
2655 /*
2656 * In LAST_ACK, we may still be waiting for data to drain
2657 * and/or to be acked, as well as for the ack of our FIN.
2658 * If our FIN is now acknowledged, delete the TCB,
2659 * enter the closed state and return.
2660 */
2661 case TCPS_LAST_ACK:
2662 if (ourfinisacked) {
2663 tp = tcp_close(tp);
2664 goto drop;
2665 }
2666 break;
2667
2668 /*
2669 * In TIME_WAIT state the only thing that should arrive
2670 * is a retransmission of the remote FIN. Acknowledge
2671 * it and restart the finack timer.
2672 */
2673 case TCPS_TIME_WAIT:
2674 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2675 goto dropafterack;
2676 }
2677 }
2678
2679 step6:
2680 /*
2681 * Update window information.
2682 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2683 */
2684 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2685 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2686 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2687 /* keep track of pure window updates */
2688 if (tlen == 0 &&
2689 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2690 TCP_STATINC(TCP_STAT_RCVWINUPD);
2691 tp->snd_wnd = tiwin;
2692 tp->snd_wl1 = th->th_seq;
2693 tp->snd_wl2 = th->th_ack;
2694 if (tp->snd_wnd > tp->max_sndwnd)
2695 tp->max_sndwnd = tp->snd_wnd;
2696 needoutput = 1;
2697 }
2698
2699 /*
2700 * Process segments with URG.
2701 */
2702 if ((tiflags & TH_URG) && th->th_urp &&
2703 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2704 /*
2705 * This is a kludge, but if we receive and accept
2706 * random urgent pointers, we'll crash in
2707 * soreceive. It's hard to imagine someone
2708 * actually wanting to send this much urgent data.
2709 */
2710 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2711 th->th_urp = 0; /* XXX */
2712 tiflags &= ~TH_URG; /* XXX */
2713 goto dodata; /* XXX */
2714 }
2715
2716 /*
2717 * If this segment advances the known urgent pointer,
2718 * then mark the data stream. This should not happen
2719 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2720 * a FIN has been received from the remote side.
2721 * In these states we ignore the URG.
2722 *
2723 * According to RFC961 (Assigned Protocols),
2724 * the urgent pointer points to the last octet
2725 * of urgent data. We continue, however,
2726 * to consider it to indicate the first octet
2727 * of data past the urgent section as the original
2728 * spec states (in one of two places).
2729 */
2730 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2731 tp->rcv_up = th->th_seq + th->th_urp;
2732 so->so_oobmark = so->so_rcv.sb_cc +
2733 (tp->rcv_up - tp->rcv_nxt) - 1;
2734 if (so->so_oobmark == 0)
2735 so->so_state |= SS_RCVATMARK;
2736 sohasoutofband(so);
2737 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2738 }
2739
2740 /*
2741 * Remove out of band data so doesn't get presented to user.
2742 * This can happen independent of advancing the URG pointer,
2743 * but if two URG's are pending at once, some out-of-band
2744 * data may creep in... ick.
2745 */
2746 if (th->th_urp <= (u_int16_t)tlen &&
2747 (so->so_options & SO_OOBINLINE) == 0)
2748 tcp_pulloutofband(so, th, m, hdroptlen);
2749 } else {
2750 /*
2751 * If no out of band data is expected,
2752 * pull receive urgent pointer along
2753 * with the receive window.
2754 */
2755 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2756 tp->rcv_up = tp->rcv_nxt;
2757 }
2758 dodata:
2759
2760 /*
2761 * Process the segment text, merging it into the TCP sequencing queue,
2762 * and arranging for acknowledgement of receipt if necessary.
2763 * This process logically involves adjusting tp->rcv_wnd as data
2764 * is presented to the user (this happens in tcp_usrreq.c,
2765 * tcp_rcvd()). If a FIN has already been received on this
2766 * connection then we just ignore the text.
2767 */
2768 if ((tlen || (tiflags & TH_FIN)) &&
2769 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2770 /*
2771 * Handle the common case:
2772 * o Segment is the next to be received, and
2773 * o The queue is empty, and
2774 * o The connection is established
2775 * In this case, we avoid calling tcp_reass.
2776 *
2777 * tcp_setup_ack: set DELACK for segments received in order,
2778 * but ack immediately when segments are out of order (so that
2779 * fast retransmit can work).
2780 */
2781 TCP_REASS_LOCK(tp);
2782 if (th->th_seq == tp->rcv_nxt &&
2783 TAILQ_FIRST(&tp->segq) == NULL &&
2784 tp->t_state == TCPS_ESTABLISHED) {
2785 tcp_setup_ack(tp, th);
2786 tp->rcv_nxt += tlen;
2787 tiflags = th->th_flags & TH_FIN;
2788 tcps = TCP_STAT_GETREF();
2789 tcps[TCP_STAT_RCVPACK]++;
2790 tcps[TCP_STAT_RCVBYTE] += tlen;
2791 TCP_STAT_PUTREF();
2792 nd6_hint(tp);
2793 if (so->so_state & SS_CANTRCVMORE) {
2794 m_freem(m);
2795 } else {
2796 m_adj(m, hdroptlen);
2797 sbappendstream(&(so)->so_rcv, m);
2798 }
2799 TCP_REASS_UNLOCK(tp);
2800 sorwakeup(so);
2801 } else {
2802 m_adj(m, hdroptlen);
2803 tiflags = tcp_reass(tp, th, m, tlen);
2804 tp->t_flags |= TF_ACKNOW;
2805 }
2806
2807 /*
2808 * Note the amount of data that peer has sent into
2809 * our window, in order to estimate the sender's
2810 * buffer size.
2811 */
2812 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2813 } else {
2814 m_freem(m);
2815 m = NULL;
2816 tiflags &= ~TH_FIN;
2817 }
2818
2819 /*
2820 * If FIN is received ACK the FIN and let the user know
2821 * that the connection is closing. Ignore a FIN received before
2822 * the connection is fully established.
2823 */
2824 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2825 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2826 socantrcvmore(so);
2827 tp->t_flags |= TF_ACKNOW;
2828 tp->rcv_nxt++;
2829 }
2830 switch (tp->t_state) {
2831
2832 /*
2833 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2834 */
2835 case TCPS_ESTABLISHED:
2836 tp->t_state = TCPS_CLOSE_WAIT;
2837 break;
2838
2839 /*
2840 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2841 * enter the CLOSING state.
2842 */
2843 case TCPS_FIN_WAIT_1:
2844 tp->t_state = TCPS_CLOSING;
2845 break;
2846
2847 /*
2848 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2849 * starting the time-wait timer, turning off the other
2850 * standard timers.
2851 */
2852 case TCPS_FIN_WAIT_2:
2853 tp->t_state = TCPS_TIME_WAIT;
2854 tcp_canceltimers(tp);
2855 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2856 soisdisconnected(so);
2857 break;
2858
2859 /*
2860 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2861 */
2862 case TCPS_TIME_WAIT:
2863 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2864 break;
2865 }
2866 }
2867 #ifdef TCP_DEBUG
2868 if (so->so_options & SO_DEBUG)
2869 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2870 #endif
2871
2872 /*
2873 * Return any desired output.
2874 */
2875 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2876 KERNEL_LOCK(1, NULL);
2877 (void)tcp_output(tp);
2878 KERNEL_UNLOCK_ONE(NULL);
2879 }
2880 if (tcp_saveti)
2881 m_freem(tcp_saveti);
2882
2883 if (tp->t_state == TCPS_TIME_WAIT
2884 && (so->so_state & SS_NOFDREF)
2885 && (tp->t_inpcb || af != AF_INET)
2886 && (tp->t_in6pcb || af != AF_INET6)
2887 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2888 && TAILQ_EMPTY(&tp->segq)
2889 && vtw_add(af, tp)) {
2890 ;
2891 }
2892 return;
2893
2894 badsyn:
2895 /*
2896 * Received a bad SYN. Increment counters and dropwithreset.
2897 */
2898 TCP_STATINC(TCP_STAT_BADSYN);
2899 tp = NULL;
2900 goto dropwithreset;
2901
2902 dropafterack:
2903 /*
2904 * Generate an ACK dropping incoming segment if it occupies
2905 * sequence space, where the ACK reflects our state.
2906 */
2907 if (tiflags & TH_RST)
2908 goto drop;
2909 goto dropafterack2;
2910
2911 dropafterack_ratelim:
2912 /*
2913 * We may want to rate-limit ACKs against SYN/RST attack.
2914 */
2915 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2916 tcp_ackdrop_ppslim) == 0) {
2917 /* XXX stat */
2918 goto drop;
2919 }
2920
2921 dropafterack2:
2922 m_freem(m);
2923 tp->t_flags |= TF_ACKNOW;
2924 KERNEL_LOCK(1, NULL);
2925 (void)tcp_output(tp);
2926 KERNEL_UNLOCK_ONE(NULL);
2927 if (tcp_saveti)
2928 m_freem(tcp_saveti);
2929 return;
2930
2931 dropwithreset_ratelim:
2932 /*
2933 * We may want to rate-limit RSTs in certain situations,
2934 * particularly if we are sending an RST in response to
2935 * an attempt to connect to or otherwise communicate with
2936 * a port for which we have no socket.
2937 */
2938 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2939 tcp_rst_ppslim) == 0) {
2940 /* XXX stat */
2941 goto drop;
2942 }
2943
2944 dropwithreset:
2945 /*
2946 * Generate a RST, dropping incoming segment.
2947 * Make ACK acceptable to originator of segment.
2948 */
2949 if (tiflags & TH_RST)
2950 goto drop;
2951 if (tiflags & TH_ACK) {
2952 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2953 } else {
2954 if (tiflags & TH_SYN)
2955 tlen++;
2956 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2957 TH_RST|TH_ACK);
2958 }
2959 if (tcp_saveti)
2960 m_freem(tcp_saveti);
2961 return;
2962
2963 badcsum:
2964 drop:
2965 /*
2966 * Drop space held by incoming segment and return.
2967 */
2968 if (tp) {
2969 if (tp->t_inpcb)
2970 so = tp->t_inpcb->inp_socket;
2971 #ifdef INET6
2972 else if (tp->t_in6pcb)
2973 so = tp->t_in6pcb->in6p_socket;
2974 #endif
2975 else
2976 so = NULL;
2977 #ifdef TCP_DEBUG
2978 if (so && (so->so_options & SO_DEBUG) != 0)
2979 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2980 #endif
2981 }
2982 if (tcp_saveti)
2983 m_freem(tcp_saveti);
2984 m_freem(m);
2985 return;
2986 }
2987
2988 #ifdef TCP_SIGNATURE
2989 int
2990 tcp_signature_apply(void *fstate, void *data, u_int len)
2991 {
2992
2993 MD5Update(fstate, (u_char *)data, len);
2994 return (0);
2995 }
2996
2997 struct secasvar *
2998 tcp_signature_getsav(struct mbuf *m)
2999 {
3000 struct ip *ip;
3001 struct ip6_hdr *ip6;
3002
3003 ip = mtod(m, struct ip *);
3004 switch (ip->ip_v) {
3005 case 4:
3006 ip = mtod(m, struct ip *);
3007 ip6 = NULL;
3008 break;
3009 case 6:
3010 ip = NULL;
3011 ip6 = mtod(m, struct ip6_hdr *);
3012 break;
3013 default:
3014 return (NULL);
3015 }
3016
3017 #ifdef IPSEC
3018 union sockaddr_union dst;
3019
3020 /* Extract the destination from the IP header in the mbuf. */
3021 memset(&dst, 0, sizeof(union sockaddr_union));
3022 if (ip != NULL) {
3023 dst.sa.sa_len = sizeof(struct sockaddr_in);
3024 dst.sa.sa_family = AF_INET;
3025 dst.sin.sin_addr = ip->ip_dst;
3026 } else {
3027 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3028 dst.sa.sa_family = AF_INET6;
3029 dst.sin6.sin6_addr = ip6->ip6_dst;
3030 }
3031
3032 /*
3033 * Look up an SADB entry which matches the address of the peer.
3034 */
3035 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3036 #else
3037 return NULL;
3038 #endif
3039 }
3040
3041 int
3042 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3043 struct secasvar *sav, char *sig)
3044 {
3045 MD5_CTX ctx;
3046 struct ip *ip;
3047 struct ipovly *ipovly;
3048 #ifdef INET6
3049 struct ip6_hdr *ip6;
3050 struct ip6_hdr_pseudo ip6pseudo;
3051 #endif
3052 struct ippseudo ippseudo;
3053 struct tcphdr th0;
3054 int l, tcphdrlen;
3055
3056 if (sav == NULL)
3057 return (-1);
3058
3059 tcphdrlen = th->th_off * 4;
3060
3061 switch (mtod(m, struct ip *)->ip_v) {
3062 case 4:
3063 MD5Init(&ctx);
3064 ip = mtod(m, struct ip *);
3065 memset(&ippseudo, 0, sizeof(ippseudo));
3066 ipovly = (struct ipovly *)ip;
3067 ippseudo.ippseudo_src = ipovly->ih_src;
3068 ippseudo.ippseudo_dst = ipovly->ih_dst;
3069 ippseudo.ippseudo_pad = 0;
3070 ippseudo.ippseudo_p = IPPROTO_TCP;
3071 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3072 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3073 break;
3074 #if INET6
3075 case 6:
3076 MD5Init(&ctx);
3077 ip6 = mtod(m, struct ip6_hdr *);
3078 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3079 ip6pseudo.ip6ph_src = ip6->ip6_src;
3080 in6_clearscope(&ip6pseudo.ip6ph_src);
3081 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3082 in6_clearscope(&ip6pseudo.ip6ph_dst);
3083 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3084 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3085 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3086 break;
3087 #endif
3088 default:
3089 return (-1);
3090 }
3091
3092 th0 = *th;
3093 th0.th_sum = 0;
3094 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3095
3096 l = m->m_pkthdr.len - thoff - tcphdrlen;
3097 if (l > 0)
3098 m_apply(m, thoff + tcphdrlen,
3099 m->m_pkthdr.len - thoff - tcphdrlen,
3100 tcp_signature_apply, &ctx);
3101
3102 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3103 MD5Final(sig, &ctx);
3104
3105 return (0);
3106 }
3107 #endif
3108
3109 /*
3110 * Parse and process tcp options.
3111 *
3112 * Returns -1 if this segment should be dropped. (eg. wrong signature)
3113 * Otherwise returns 0.
3114 */
3115 static int
3116 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3117 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3118 {
3119 u_int16_t mss;
3120 int opt, optlen = 0;
3121 #ifdef TCP_SIGNATURE
3122 void *sigp = NULL;
3123 char sigbuf[TCP_SIGLEN];
3124 struct secasvar *sav = NULL;
3125 #endif
3126
3127 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3128 opt = cp[0];
3129 if (opt == TCPOPT_EOL)
3130 break;
3131 if (opt == TCPOPT_NOP)
3132 optlen = 1;
3133 else {
3134 if (cnt < 2)
3135 break;
3136 optlen = cp[1];
3137 if (optlen < 2 || optlen > cnt)
3138 break;
3139 }
3140 switch (opt) {
3141
3142 default:
3143 continue;
3144
3145 case TCPOPT_MAXSEG:
3146 if (optlen != TCPOLEN_MAXSEG)
3147 continue;
3148 if (!(th->th_flags & TH_SYN))
3149 continue;
3150 if (TCPS_HAVERCVDSYN(tp->t_state))
3151 continue;
3152 memcpy(&mss, cp + 2, sizeof(mss));
3153 oi->maxseg = ntohs(mss);
3154 break;
3155
3156 case TCPOPT_WINDOW:
3157 if (optlen != TCPOLEN_WINDOW)
3158 continue;
3159 if (!(th->th_flags & TH_SYN))
3160 continue;
3161 if (TCPS_HAVERCVDSYN(tp->t_state))
3162 continue;
3163 tp->t_flags |= TF_RCVD_SCALE;
3164 tp->requested_s_scale = cp[2];
3165 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3166 char buf[INET6_ADDRSTRLEN];
3167 struct ip *ip = mtod(m, struct ip *);
3168 #ifdef INET6
3169 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3170 #endif
3171
3172 switch (ip->ip_v) {
3173 case 4:
3174 in_print(buf, sizeof(buf),
3175 &ip->ip_src);
3176 break;
3177 #ifdef INET6
3178 case 6:
3179 in6_print(buf, sizeof(buf),
3180 &ip6->ip6_src);
3181 break;
3182 #endif
3183 default:
3184 strlcpy(buf, "(unknown)", sizeof(buf));
3185 break;
3186 }
3187
3188 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3189 "assuming %d\n",
3190 tp->requested_s_scale, buf,
3191 TCP_MAX_WINSHIFT);
3192 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3193 }
3194 break;
3195
3196 case TCPOPT_TIMESTAMP:
3197 if (optlen != TCPOLEN_TIMESTAMP)
3198 continue;
3199 oi->ts_present = 1;
3200 memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3201 NTOHL(oi->ts_val);
3202 memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3203 NTOHL(oi->ts_ecr);
3204
3205 if (!(th->th_flags & TH_SYN))
3206 continue;
3207 if (TCPS_HAVERCVDSYN(tp->t_state))
3208 continue;
3209 /*
3210 * A timestamp received in a SYN makes
3211 * it ok to send timestamp requests and replies.
3212 */
3213 tp->t_flags |= TF_RCVD_TSTMP;
3214 tp->ts_recent = oi->ts_val;
3215 tp->ts_recent_age = tcp_now;
3216 break;
3217
3218 case TCPOPT_SACK_PERMITTED:
3219 if (optlen != TCPOLEN_SACK_PERMITTED)
3220 continue;
3221 if (!(th->th_flags & TH_SYN))
3222 continue;
3223 if (TCPS_HAVERCVDSYN(tp->t_state))
3224 continue;
3225 if (tcp_do_sack) {
3226 tp->t_flags |= TF_SACK_PERMIT;
3227 tp->t_flags |= TF_WILL_SACK;
3228 }
3229 break;
3230
3231 case TCPOPT_SACK:
3232 tcp_sack_option(tp, th, cp, optlen);
3233 break;
3234 #ifdef TCP_SIGNATURE
3235 case TCPOPT_SIGNATURE:
3236 if (optlen != TCPOLEN_SIGNATURE)
3237 continue;
3238 if (sigp &&
3239 !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3240 return (-1);
3241
3242 sigp = sigbuf;
3243 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3244 tp->t_flags |= TF_SIGNATURE;
3245 break;
3246 #endif
3247 }
3248 }
3249
3250 #ifndef TCP_SIGNATURE
3251 return 0;
3252 #else
3253 if (tp->t_flags & TF_SIGNATURE) {
3254 sav = tcp_signature_getsav(m);
3255 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3256 return (-1);
3257 }
3258
3259 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3260 goto out;
3261
3262 if (sigp) {
3263 char sig[TCP_SIGLEN];
3264
3265 tcp_fields_to_net(th);
3266 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3267 tcp_fields_to_host(th);
3268 goto out;
3269 }
3270 tcp_fields_to_host(th);
3271
3272 if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3273 TCP_STATINC(TCP_STAT_BADSIG);
3274 goto out;
3275 } else
3276 TCP_STATINC(TCP_STAT_GOODSIG);
3277
3278 key_sa_recordxfer(sav, m);
3279 KEY_SA_UNREF(&sav);
3280 }
3281 return 0;
3282 out:
3283 if (sav != NULL)
3284 KEY_SA_UNREF(&sav);
3285 return -1;
3286 #endif
3287 }
3288
3289 /*
3290 * Pull out of band byte out of a segment so
3291 * it doesn't appear in the user's data queue.
3292 * It is still reflected in the segment length for
3293 * sequencing purposes.
3294 */
3295 void
3296 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3297 struct mbuf *m, int off)
3298 {
3299 int cnt = off + th->th_urp - 1;
3300
3301 while (cnt >= 0) {
3302 if (m->m_len > cnt) {
3303 char *cp = mtod(m, char *) + cnt;
3304 struct tcpcb *tp = sototcpcb(so);
3305
3306 tp->t_iobc = *cp;
3307 tp->t_oobflags |= TCPOOB_HAVEDATA;
3308 memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3309 m->m_len--;
3310 return;
3311 }
3312 cnt -= m->m_len;
3313 m = m->m_next;
3314 if (m == NULL)
3315 break;
3316 }
3317 panic("tcp_pulloutofband");
3318 }
3319
3320 /*
3321 * Collect new round-trip time estimate
3322 * and update averages and current timeout.
3323 *
3324 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3325 * difference of two timestamps.
3326 */
3327 void
3328 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3329 {
3330 int32_t delta;
3331
3332 TCP_STATINC(TCP_STAT_RTTUPDATED);
3333 if (tp->t_srtt != 0) {
3334 /*
3335 * Compute the amount to add to srtt for smoothing,
3336 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3337 * srtt is stored in 1/32 slow ticks, we conceptually
3338 * shift left 5 bits, subtract srtt to get the
3339 * diference, and then shift right by TCP_RTT_SHIFT
3340 * (3) to obtain 1/8 of the difference.
3341 */
3342 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3343 /*
3344 * This can never happen, because delta's lowest
3345 * possible value is 1/8 of t_srtt. But if it does,
3346 * set srtt to some reasonable value, here chosen
3347 * as 1/8 tick.
3348 */
3349 if ((tp->t_srtt += delta) <= 0)
3350 tp->t_srtt = 1 << 2;
3351 /*
3352 * RFC2988 requires that rttvar be updated first.
3353 * This code is compliant because "delta" is the old
3354 * srtt minus the new observation (scaled).
3355 *
3356 * RFC2988 says:
3357 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3358 *
3359 * delta is in units of 1/32 ticks, and has then been
3360 * divided by 8. This is equivalent to being in 1/16s
3361 * units and divided by 4. Subtract from it 1/4 of
3362 * the existing rttvar to form the (signed) amount to
3363 * adjust.
3364 */
3365 if (delta < 0)
3366 delta = -delta;
3367 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3368 /*
3369 * As with srtt, this should never happen. There is
3370 * no support in RFC2988 for this operation. But 1/4s
3371 * as rttvar when faced with something arguably wrong
3372 * is ok.
3373 */
3374 if ((tp->t_rttvar += delta) <= 0)
3375 tp->t_rttvar = 1 << 2;
3376
3377 /*
3378 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3379 * Problem is: it doesn't work. Disabled by defaulting
3380 * tcp_rttlocal to 0; see corresponding code in
3381 * tcp_subr that selects local vs remote in a different way.
3382 *
3383 * The static branch prediction hint here should be removed
3384 * when the rtt estimator is fixed and the rtt_enable code
3385 * is turned back on.
3386 */
3387 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3388 && tp->t_srtt > tcp_msl_remote_threshold
3389 && tp->t_msl < tcp_msl_remote) {
3390 tp->t_msl = tcp_msl_remote;
3391 }
3392 } else {
3393 /*
3394 * This is the first measurement. Per RFC2988, 2.2,
3395 * set rtt=R and srtt=R/2.
3396 * For srtt, storage representation is 1/32 ticks,
3397 * so shift left by 5.
3398 * For rttvar, storage representation is 1/16 ticks,
3399 * So shift left by 4, but then right by 1 to halve.
3400 */
3401 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3402 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3403 }
3404 tp->t_rtttime = 0;
3405 tp->t_rxtshift = 0;
3406
3407 /*
3408 * the retransmit should happen at rtt + 4 * rttvar.
3409 * Because of the way we do the smoothing, srtt and rttvar
3410 * will each average +1/2 tick of bias. When we compute
3411 * the retransmit timer, we want 1/2 tick of rounding and
3412 * 1 extra tick because of +-1/2 tick uncertainty in the
3413 * firing of the timer. The bias will give us exactly the
3414 * 1.5 tick we need. But, because the bias is
3415 * statistical, we have to test that we don't drop below
3416 * the minimum feasible timer (which is 2 ticks).
3417 */
3418 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3419 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3420
3421 /*
3422 * We received an ack for a packet that wasn't retransmitted;
3423 * it is probably safe to discard any error indications we've
3424 * received recently. This isn't quite right, but close enough
3425 * for now (a route might have failed after we sent a segment,
3426 * and the return path might not be symmetrical).
3427 */
3428 tp->t_softerror = 0;
3429 }
3430
3431
3432 /*
3433 * TCP compressed state engine. Currently used to hold compressed
3434 * state for SYN_RECEIVED.
3435 */
3436
3437 u_long syn_cache_count;
3438 u_int32_t syn_hash1, syn_hash2;
3439
3440 #define SYN_HASH(sa, sp, dp) \
3441 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3442 ((u_int32_t)(sp)))^syn_hash2)))
3443 #ifndef INET6
3444 #define SYN_HASHALL(hash, src, dst) \
3445 do { \
3446 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3447 ((const struct sockaddr_in *)(src))->sin_port, \
3448 ((const struct sockaddr_in *)(dst))->sin_port); \
3449 } while (/*CONSTCOND*/ 0)
3450 #else
3451 #define SYN_HASH6(sa, sp, dp) \
3452 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3453 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3454 & 0x7fffffff)
3455
3456 #define SYN_HASHALL(hash, src, dst) \
3457 do { \
3458 switch ((src)->sa_family) { \
3459 case AF_INET: \
3460 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3461 ((const struct sockaddr_in *)(src))->sin_port, \
3462 ((const struct sockaddr_in *)(dst))->sin_port); \
3463 break; \
3464 case AF_INET6: \
3465 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3466 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3467 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3468 break; \
3469 default: \
3470 hash = 0; \
3471 } \
3472 } while (/*CONSTCOND*/0)
3473 #endif /* INET6 */
3474
3475 static struct pool syn_cache_pool;
3476
3477 /*
3478 * We don't estimate RTT with SYNs, so each packet starts with the default
3479 * RTT and each timer step has a fixed timeout value.
3480 */
3481 static inline void
3482 syn_cache_timer_arm(struct syn_cache *sc)
3483 {
3484
3485 TCPT_RANGESET(sc->sc_rxtcur,
3486 TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3487 TCPTV_REXMTMAX);
3488 callout_reset(&sc->sc_timer,
3489 sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3490 }
3491
3492 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3493
3494 static inline void
3495 syn_cache_rm(struct syn_cache *sc)
3496 {
3497 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3498 sc, sc_bucketq);
3499 sc->sc_tp = NULL;
3500 LIST_REMOVE(sc, sc_tpq);
3501 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3502 callout_stop(&sc->sc_timer);
3503 syn_cache_count--;
3504 }
3505
3506 static inline void
3507 syn_cache_put(struct syn_cache *sc)
3508 {
3509 if (sc->sc_ipopts)
3510 (void) m_free(sc->sc_ipopts);
3511 rtcache_free(&sc->sc_route);
3512 sc->sc_flags |= SCF_DEAD;
3513 if (!callout_invoking(&sc->sc_timer))
3514 callout_schedule(&(sc)->sc_timer, 1);
3515 }
3516
3517 void
3518 syn_cache_init(void)
3519 {
3520 int i;
3521
3522 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3523 "synpl", NULL, IPL_SOFTNET);
3524
3525 /* Initialize the hash buckets. */
3526 for (i = 0; i < tcp_syn_cache_size; i++)
3527 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3528 }
3529
3530 void
3531 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3532 {
3533 struct syn_cache_head *scp;
3534 struct syn_cache *sc2;
3535 int s;
3536
3537 /*
3538 * If there are no entries in the hash table, reinitialize
3539 * the hash secrets.
3540 */
3541 if (syn_cache_count == 0) {
3542 syn_hash1 = cprng_fast32();
3543 syn_hash2 = cprng_fast32();
3544 }
3545
3546 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3547 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3548 scp = &tcp_syn_cache[sc->sc_bucketidx];
3549
3550 /*
3551 * Make sure that we don't overflow the per-bucket
3552 * limit or the total cache size limit.
3553 */
3554 s = splsoftnet();
3555 if (scp->sch_length >= tcp_syn_bucket_limit) {
3556 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3557 /*
3558 * The bucket is full. Toss the oldest element in the
3559 * bucket. This will be the first entry in the bucket.
3560 */
3561 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3562 #ifdef DIAGNOSTIC
3563 /*
3564 * This should never happen; we should always find an
3565 * entry in our bucket.
3566 */
3567 if (sc2 == NULL)
3568 panic("syn_cache_insert: bucketoverflow: impossible");
3569 #endif
3570 syn_cache_rm(sc2);
3571 syn_cache_put(sc2); /* calls pool_put but see spl above */
3572 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3573 struct syn_cache_head *scp2, *sce;
3574
3575 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3576 /*
3577 * The cache is full. Toss the oldest entry in the
3578 * first non-empty bucket we can find.
3579 *
3580 * XXX We would really like to toss the oldest
3581 * entry in the cache, but we hope that this
3582 * condition doesn't happen very often.
3583 */
3584 scp2 = scp;
3585 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3586 sce = &tcp_syn_cache[tcp_syn_cache_size];
3587 for (++scp2; scp2 != scp; scp2++) {
3588 if (scp2 >= sce)
3589 scp2 = &tcp_syn_cache[0];
3590 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3591 break;
3592 }
3593 #ifdef DIAGNOSTIC
3594 /*
3595 * This should never happen; we should always find a
3596 * non-empty bucket.
3597 */
3598 if (scp2 == scp)
3599 panic("syn_cache_insert: cacheoverflow: "
3600 "impossible");
3601 #endif
3602 }
3603 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3604 syn_cache_rm(sc2);
3605 syn_cache_put(sc2); /* calls pool_put but see spl above */
3606 }
3607
3608 /*
3609 * Initialize the entry's timer.
3610 */
3611 sc->sc_rxttot = 0;
3612 sc->sc_rxtshift = 0;
3613 syn_cache_timer_arm(sc);
3614
3615 /* Link it from tcpcb entry */
3616 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3617
3618 /* Put it into the bucket. */
3619 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3620 scp->sch_length++;
3621 syn_cache_count++;
3622
3623 TCP_STATINC(TCP_STAT_SC_ADDED);
3624 splx(s);
3625 }
3626
3627 /*
3628 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3629 * If we have retransmitted an entry the maximum number of times, expire
3630 * that entry.
3631 */
3632 static void
3633 syn_cache_timer(void *arg)
3634 {
3635 struct syn_cache *sc = arg;
3636
3637 mutex_enter(softnet_lock);
3638 KERNEL_LOCK(1, NULL);
3639
3640 callout_ack(&sc->sc_timer);
3641
3642 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3643 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3644 goto free;
3645 }
3646
3647 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3648 /* Drop it -- too many retransmissions. */
3649 goto dropit;
3650 }
3651
3652 /*
3653 * Compute the total amount of time this entry has
3654 * been on a queue. If this entry has been on longer
3655 * than the keep alive timer would allow, expire it.
3656 */
3657 sc->sc_rxttot += sc->sc_rxtcur;
3658 if (sc->sc_rxttot >= tcp_keepinit)
3659 goto dropit;
3660
3661 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3662 (void)syn_cache_respond(sc);
3663
3664 /* Advance the timer back-off. */
3665 sc->sc_rxtshift++;
3666 syn_cache_timer_arm(sc);
3667
3668 goto out;
3669
3670 dropit:
3671 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3672 syn_cache_rm(sc);
3673 if (sc->sc_ipopts)
3674 (void) m_free(sc->sc_ipopts);
3675 rtcache_free(&sc->sc_route);
3676
3677 free:
3678 callout_destroy(&sc->sc_timer);
3679 pool_put(&syn_cache_pool, sc);
3680
3681 out:
3682 KERNEL_UNLOCK_ONE(NULL);
3683 mutex_exit(softnet_lock);
3684 }
3685
3686 /*
3687 * Remove syn cache created by the specified tcb entry,
3688 * because this does not make sense to keep them
3689 * (if there's no tcb entry, syn cache entry will never be used)
3690 */
3691 void
3692 syn_cache_cleanup(struct tcpcb *tp)
3693 {
3694 struct syn_cache *sc, *nsc;
3695 int s;
3696
3697 s = splsoftnet();
3698
3699 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3700 nsc = LIST_NEXT(sc, sc_tpq);
3701
3702 #ifdef DIAGNOSTIC
3703 if (sc->sc_tp != tp)
3704 panic("invalid sc_tp in syn_cache_cleanup");
3705 #endif
3706 syn_cache_rm(sc);
3707 syn_cache_put(sc); /* calls pool_put but see spl above */
3708 }
3709 /* just for safety */
3710 LIST_INIT(&tp->t_sc);
3711
3712 splx(s);
3713 }
3714
3715 /*
3716 * Find an entry in the syn cache.
3717 */
3718 struct syn_cache *
3719 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3720 struct syn_cache_head **headp)
3721 {
3722 struct syn_cache *sc;
3723 struct syn_cache_head *scp;
3724 u_int32_t hash;
3725 int s;
3726
3727 SYN_HASHALL(hash, src, dst);
3728
3729 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3730 *headp = scp;
3731 s = splsoftnet();
3732 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3733 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3734 if (sc->sc_hash != hash)
3735 continue;
3736 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3737 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3738 splx(s);
3739 return (sc);
3740 }
3741 }
3742 splx(s);
3743 return (NULL);
3744 }
3745
3746 /*
3747 * This function gets called when we receive an ACK for a socket in the
3748 * LISTEN state. We look up the connection in the syn cache, and if it's
3749 * there, we pull it out of the cache and turn it into a full-blown
3750 * connection in the SYN-RECEIVED state.
3751 *
3752 * The return values may not be immediately obvious, and their effects
3753 * can be subtle, so here they are:
3754 *
3755 * NULL SYN was not found in cache; caller should drop the
3756 * packet and send an RST.
3757 *
3758 * -1 We were unable to create the new connection, and are
3759 * aborting it. An ACK,RST is being sent to the peer
3760 * (unless we got screwey sequence numbers; see below),
3761 * because the 3-way handshake has been completed. Caller
3762 * should not free the mbuf, since we may be using it. If
3763 * we are not, we will free it.
3764 *
3765 * Otherwise, the return value is a pointer to the new socket
3766 * associated with the connection.
3767 */
3768 struct socket *
3769 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3770 struct tcphdr *th, struct socket *so, struct mbuf *m)
3771 {
3772 struct syn_cache *sc;
3773 struct syn_cache_head *scp;
3774 struct inpcb *inp = NULL;
3775 #ifdef INET6
3776 struct in6pcb *in6p = NULL;
3777 #endif
3778 struct tcpcb *tp;
3779 int s;
3780 struct socket *oso;
3781
3782 s = splsoftnet();
3783 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3784 splx(s);
3785 return NULL;
3786 }
3787
3788 /*
3789 * Verify the sequence and ack numbers. Try getting the correct
3790 * response again.
3791 */
3792 if ((th->th_ack != sc->sc_iss + 1) ||
3793 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3794 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3795 m_freem(m);
3796 (void)syn_cache_respond(sc);
3797 splx(s);
3798 return ((struct socket *)(-1));
3799 }
3800
3801 /* Remove this cache entry */
3802 syn_cache_rm(sc);
3803 splx(s);
3804
3805 /*
3806 * Ok, create the full blown connection, and set things up
3807 * as they would have been set up if we had created the
3808 * connection when the SYN arrived. If we can't create
3809 * the connection, abort it.
3810 */
3811 /*
3812 * inp still has the OLD in_pcb stuff, set the
3813 * v6-related flags on the new guy, too. This is
3814 * done particularly for the case where an AF_INET6
3815 * socket is bound only to a port, and a v4 connection
3816 * comes in on that port.
3817 * we also copy the flowinfo from the original pcb
3818 * to the new one.
3819 */
3820 oso = so;
3821 so = sonewconn(so, true);
3822 if (so == NULL)
3823 goto resetandabort;
3824
3825 switch (so->so_proto->pr_domain->dom_family) {
3826 case AF_INET:
3827 inp = sotoinpcb(so);
3828 break;
3829 #ifdef INET6
3830 case AF_INET6:
3831 in6p = sotoin6pcb(so);
3832 break;
3833 #endif
3834 }
3835
3836 switch (src->sa_family) {
3837 case AF_INET:
3838 if (inp) {
3839 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3840 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3841 inp->inp_options = ip_srcroute(m);
3842 in_pcbstate(inp, INP_BOUND);
3843 if (inp->inp_options == NULL) {
3844 inp->inp_options = sc->sc_ipopts;
3845 sc->sc_ipopts = NULL;
3846 }
3847 }
3848 #ifdef INET6
3849 else if (in6p) {
3850 /* IPv4 packet to AF_INET6 socket */
3851 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3852 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3853 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3854 &in6p->in6p_laddr.s6_addr32[3],
3855 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3856 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3857 in6totcpcb(in6p)->t_family = AF_INET;
3858 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3859 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3860 else
3861 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3862 in6_pcbstate(in6p, IN6P_BOUND);
3863 }
3864 #endif
3865 break;
3866 #ifdef INET6
3867 case AF_INET6:
3868 if (in6p) {
3869 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3870 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3871 in6_pcbstate(in6p, IN6P_BOUND);
3872 }
3873 break;
3874 #endif
3875 }
3876
3877 #ifdef INET6
3878 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3879 struct in6pcb *oin6p = sotoin6pcb(oso);
3880 /* inherit socket options from the listening socket */
3881 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3882 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3883 m_freem(in6p->in6p_options);
3884 in6p->in6p_options = NULL;
3885 }
3886 ip6_savecontrol(in6p, &in6p->in6p_options,
3887 mtod(m, struct ip6_hdr *), m);
3888 }
3889 #endif
3890
3891 /*
3892 * Give the new socket our cached route reference.
3893 */
3894 if (inp) {
3895 rtcache_copy(&inp->inp_route, &sc->sc_route);
3896 rtcache_free(&sc->sc_route);
3897 }
3898 #ifdef INET6
3899 else {
3900 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3901 rtcache_free(&sc->sc_route);
3902 }
3903 #endif
3904
3905 if (inp) {
3906 struct sockaddr_in sin;
3907 memcpy(&sin, src, src->sa_len);
3908 if (in_pcbconnect(inp, &sin, &lwp0)) {
3909 goto resetandabort;
3910 }
3911 }
3912 #ifdef INET6
3913 else if (in6p) {
3914 struct sockaddr_in6 sin6;
3915 memcpy(&sin6, src, src->sa_len);
3916 if (src->sa_family == AF_INET) {
3917 /* IPv4 packet to AF_INET6 socket */
3918 in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3919 }
3920 if (in6_pcbconnect(in6p, &sin6, NULL)) {
3921 goto resetandabort;
3922 }
3923 }
3924 #endif
3925 else {
3926 goto resetandabort;
3927 }
3928
3929 if (inp)
3930 tp = intotcpcb(inp);
3931 #ifdef INET6
3932 else if (in6p)
3933 tp = in6totcpcb(in6p);
3934 #endif
3935 else
3936 tp = NULL;
3937
3938 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3939 if (sc->sc_request_r_scale != 15) {
3940 tp->requested_s_scale = sc->sc_requested_s_scale;
3941 tp->request_r_scale = sc->sc_request_r_scale;
3942 tp->snd_scale = sc->sc_requested_s_scale;
3943 tp->rcv_scale = sc->sc_request_r_scale;
3944 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3945 }
3946 if (sc->sc_flags & SCF_TIMESTAMP)
3947 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3948 tp->ts_timebase = sc->sc_timebase;
3949
3950 tp->t_template = tcp_template(tp);
3951 if (tp->t_template == 0) {
3952 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3953 so = NULL;
3954 m_freem(m);
3955 goto abort;
3956 }
3957
3958 tp->iss = sc->sc_iss;
3959 tp->irs = sc->sc_irs;
3960 tcp_sendseqinit(tp);
3961 tcp_rcvseqinit(tp);
3962 tp->t_state = TCPS_SYN_RECEIVED;
3963 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3964 TCP_STATINC(TCP_STAT_ACCEPTS);
3965
3966 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3967 tp->t_flags |= TF_WILL_SACK;
3968
3969 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3970 tp->t_flags |= TF_ECN_PERMIT;
3971
3972 #ifdef TCP_SIGNATURE
3973 if (sc->sc_flags & SCF_SIGNATURE)
3974 tp->t_flags |= TF_SIGNATURE;
3975 #endif
3976
3977 /* Initialize tp->t_ourmss before we deal with the peer's! */
3978 tp->t_ourmss = sc->sc_ourmaxseg;
3979 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3980
3981 /*
3982 * Initialize the initial congestion window. If we
3983 * had to retransmit the SYN,ACK, we must initialize cwnd
3984 * to 1 segment (i.e. the Loss Window).
3985 */
3986 if (sc->sc_rxtshift)
3987 tp->snd_cwnd = tp->t_peermss;
3988 else {
3989 int ss = tcp_init_win;
3990 if (inp != NULL && in_localaddr(inp->inp_faddr))
3991 ss = tcp_init_win_local;
3992 #ifdef INET6
3993 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3994 ss = tcp_init_win_local;
3995 #endif
3996 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3997 }
3998
3999 tcp_rmx_rtt(tp);
4000 tp->snd_wl1 = sc->sc_irs;
4001 tp->rcv_up = sc->sc_irs + 1;
4002
4003 /*
4004 * This is what whould have happened in tcp_output() when
4005 * the SYN,ACK was sent.
4006 */
4007 tp->snd_up = tp->snd_una;
4008 tp->snd_max = tp->snd_nxt = tp->iss+1;
4009 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4010 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4011 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4012 tp->last_ack_sent = tp->rcv_nxt;
4013 tp->t_partialacks = -1;
4014 tp->t_dupacks = 0;
4015
4016 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4017 s = splsoftnet();
4018 syn_cache_put(sc);
4019 splx(s);
4020 return so;
4021
4022 resetandabort:
4023 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4024 abort:
4025 if (so != NULL) {
4026 (void) soqremque(so, 1);
4027 (void) soabort(so);
4028 mutex_enter(softnet_lock);
4029 }
4030 s = splsoftnet();
4031 syn_cache_put(sc);
4032 splx(s);
4033 TCP_STATINC(TCP_STAT_SC_ABORTED);
4034 return ((struct socket *)(-1));
4035 }
4036
4037 /*
4038 * This function is called when we get a RST for a
4039 * non-existent connection, so that we can see if the
4040 * connection is in the syn cache. If it is, zap it.
4041 */
4042
4043 void
4044 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4045 {
4046 struct syn_cache *sc;
4047 struct syn_cache_head *scp;
4048 int s = splsoftnet();
4049
4050 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4051 splx(s);
4052 return;
4053 }
4054 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4055 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4056 splx(s);
4057 return;
4058 }
4059 syn_cache_rm(sc);
4060 TCP_STATINC(TCP_STAT_SC_RESET);
4061 syn_cache_put(sc); /* calls pool_put but see spl above */
4062 splx(s);
4063 }
4064
4065 void
4066 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4067 struct tcphdr *th)
4068 {
4069 struct syn_cache *sc;
4070 struct syn_cache_head *scp;
4071 int s;
4072
4073 s = splsoftnet();
4074 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4075 splx(s);
4076 return;
4077 }
4078 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4079 if (ntohl(th->th_seq) != sc->sc_iss) {
4080 splx(s);
4081 return;
4082 }
4083
4084 /*
4085 * If we've retransmitted 3 times and this is our second error,
4086 * we remove the entry. Otherwise, we allow it to continue on.
4087 * This prevents us from incorrectly nuking an entry during a
4088 * spurious network outage.
4089 *
4090 * See tcp_notify().
4091 */
4092 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4093 sc->sc_flags |= SCF_UNREACH;
4094 splx(s);
4095 return;
4096 }
4097
4098 syn_cache_rm(sc);
4099 TCP_STATINC(TCP_STAT_SC_UNREACH);
4100 syn_cache_put(sc); /* calls pool_put but see spl above */
4101 splx(s);
4102 }
4103
4104 /*
4105 * Given a LISTEN socket and an inbound SYN request, add this to the syn
4106 * cache, and send back a segment:
4107 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4108 * to the source.
4109 *
4110 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4111 * Doing so would require that we hold onto the data and deliver it
4112 * to the application. However, if we are the target of a SYN-flood
4113 * DoS attack, an attacker could send data which would eventually
4114 * consume all available buffer space if it were ACKed. By not ACKing
4115 * the data, we avoid this DoS scenario.
4116 */
4117 int
4118 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4119 unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
4120 int optlen, struct tcp_opt_info *oi)
4121 {
4122 struct tcpcb tb, *tp;
4123 long win;
4124 struct syn_cache *sc;
4125 struct syn_cache_head *scp;
4126 struct mbuf *ipopts;
4127 int s;
4128
4129 tp = sototcpcb(so);
4130
4131 /*
4132 * Initialize some local state.
4133 */
4134 win = sbspace(&so->so_rcv);
4135 if (win > TCP_MAXWIN)
4136 win = TCP_MAXWIN;
4137
4138 #ifdef TCP_SIGNATURE
4139 if (optp || (tp->t_flags & TF_SIGNATURE))
4140 #else
4141 if (optp)
4142 #endif
4143 {
4144 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4145 #ifdef TCP_SIGNATURE
4146 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4147 #endif
4148 tb.t_state = TCPS_LISTEN;
4149 if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
4150 return 0;
4151 } else
4152 tb.t_flags = 0;
4153
4154 switch (src->sa_family) {
4155 case AF_INET:
4156 /* Remember the IP options, if any. */
4157 ipopts = ip_srcroute(m);
4158 break;
4159 default:
4160 ipopts = NULL;
4161 }
4162
4163 /*
4164 * See if we already have an entry for this connection.
4165 * If we do, resend the SYN,ACK. We do not count this
4166 * as a retransmission (XXX though maybe we should).
4167 */
4168 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4169 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4170 if (ipopts) {
4171 /*
4172 * If we were remembering a previous source route,
4173 * forget it and use the new one we've been given.
4174 */
4175 if (sc->sc_ipopts)
4176 (void)m_free(sc->sc_ipopts);
4177 sc->sc_ipopts = ipopts;
4178 }
4179 sc->sc_timestamp = tb.ts_recent;
4180 m_freem(m);
4181 if (syn_cache_respond(sc) == 0) {
4182 uint64_t *tcps = TCP_STAT_GETREF();
4183 tcps[TCP_STAT_SNDACKS]++;
4184 tcps[TCP_STAT_SNDTOTAL]++;
4185 TCP_STAT_PUTREF();
4186 }
4187 return 1;
4188 }
4189
4190 s = splsoftnet();
4191 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4192 splx(s);
4193 if (sc == NULL) {
4194 if (ipopts)
4195 (void)m_free(ipopts);
4196 return 0;
4197 }
4198
4199 /*
4200 * Fill in the cache, and put the necessary IP and TCP
4201 * options into the reply.
4202 */
4203 memset(sc, 0, sizeof(struct syn_cache));
4204 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4205 memcpy(&sc->sc_src, src, src->sa_len);
4206 memcpy(&sc->sc_dst, dst, dst->sa_len);
4207 sc->sc_flags = 0;
4208 sc->sc_ipopts = ipopts;
4209 sc->sc_irs = th->th_seq;
4210 switch (src->sa_family) {
4211 case AF_INET:
4212 {
4213 struct sockaddr_in *srcin = (void *)src;
4214 struct sockaddr_in *dstin = (void *)dst;
4215
4216 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4217 &srcin->sin_addr, dstin->sin_port,
4218 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4219 break;
4220 }
4221 #ifdef INET6
4222 case AF_INET6:
4223 {
4224 struct sockaddr_in6 *srcin6 = (void *)src;
4225 struct sockaddr_in6 *dstin6 = (void *)dst;
4226
4227 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4228 &srcin6->sin6_addr, dstin6->sin6_port,
4229 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4230 break;
4231 }
4232 #endif
4233 }
4234 sc->sc_peermaxseg = oi->maxseg;
4235 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4236 m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4237 sc->sc_win = win;
4238 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4239 sc->sc_timestamp = tb.ts_recent;
4240 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4241 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4242 sc->sc_flags |= SCF_TIMESTAMP;
4243 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4244 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4245 sc->sc_requested_s_scale = tb.requested_s_scale;
4246 sc->sc_request_r_scale = 0;
4247 /*
4248 * Pick the smallest possible scaling factor that
4249 * will still allow us to scale up to sb_max.
4250 *
4251 * We do this because there are broken firewalls that
4252 * will corrupt the window scale option, leading to
4253 * the other endpoint believing that our advertised
4254 * window is unscaled. At scale factors larger than
4255 * 5 the unscaled window will drop below 1500 bytes,
4256 * leading to serious problems when traversing these
4257 * broken firewalls.
4258 *
4259 * With the default sbmax of 256K, a scale factor
4260 * of 3 will be chosen by this algorithm. Those who
4261 * choose a larger sbmax should watch out
4262 * for the compatiblity problems mentioned above.
4263 *
4264 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4265 * or <SYN,ACK>) segment itself is never scaled.
4266 */
4267 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4268 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4269 sc->sc_request_r_scale++;
4270 } else {
4271 sc->sc_requested_s_scale = 15;
4272 sc->sc_request_r_scale = 15;
4273 }
4274 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4275 sc->sc_flags |= SCF_SACK_PERMIT;
4276
4277 /*
4278 * ECN setup packet received.
4279 */
4280 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4281 sc->sc_flags |= SCF_ECN_PERMIT;
4282
4283 #ifdef TCP_SIGNATURE
4284 if (tb.t_flags & TF_SIGNATURE)
4285 sc->sc_flags |= SCF_SIGNATURE;
4286 #endif
4287 sc->sc_tp = tp;
4288 m_freem(m);
4289 if (syn_cache_respond(sc) == 0) {
4290 uint64_t *tcps = TCP_STAT_GETREF();
4291 tcps[TCP_STAT_SNDACKS]++;
4292 tcps[TCP_STAT_SNDTOTAL]++;
4293 TCP_STAT_PUTREF();
4294 syn_cache_insert(sc, tp);
4295 } else {
4296 s = splsoftnet();
4297 /*
4298 * syn_cache_put() will try to schedule the timer, so
4299 * we need to initialize it
4300 */
4301 syn_cache_timer_arm(sc);
4302 syn_cache_put(sc);
4303 splx(s);
4304 TCP_STATINC(TCP_STAT_SC_DROPPED);
4305 }
4306 return 1;
4307 }
4308
4309 /*
4310 * syn_cache_respond: (re)send SYN+ACK.
4311 *
4312 * Returns 0 on success.
4313 */
4314
4315 int
4316 syn_cache_respond(struct syn_cache *sc)
4317 {
4318 #ifdef INET6
4319 struct rtentry *rt = NULL;
4320 #endif
4321 struct route *ro;
4322 u_int8_t *optp;
4323 int optlen, error;
4324 u_int16_t tlen;
4325 struct ip *ip = NULL;
4326 #ifdef INET6
4327 struct ip6_hdr *ip6 = NULL;
4328 #endif
4329 struct tcpcb *tp;
4330 struct tcphdr *th;
4331 struct mbuf *m;
4332 u_int hlen;
4333 #ifdef TCP_SIGNATURE
4334 struct secasvar *sav = NULL;
4335 u_int8_t *sigp = NULL;
4336 #endif
4337
4338 ro = &sc->sc_route;
4339 switch (sc->sc_src.sa.sa_family) {
4340 case AF_INET:
4341 hlen = sizeof(struct ip);
4342 break;
4343 #ifdef INET6
4344 case AF_INET6:
4345 hlen = sizeof(struct ip6_hdr);
4346 break;
4347 #endif
4348 default:
4349 return EAFNOSUPPORT;
4350 }
4351
4352 /* Worst case scanario, since we don't know the option size yet. */
4353 tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4354 KASSERT(max_linkhdr + tlen <= MCLBYTES);
4355
4356 /*
4357 * Create the IP+TCP header from scratch.
4358 */
4359 MGETHDR(m, M_DONTWAIT, MT_DATA);
4360 if (m && (max_linkhdr + tlen) > MHLEN) {
4361 MCLGET(m, M_DONTWAIT);
4362 if ((m->m_flags & M_EXT) == 0) {
4363 m_freem(m);
4364 m = NULL;
4365 }
4366 }
4367 if (m == NULL)
4368 return ENOBUFS;
4369 MCLAIM(m, &tcp_tx_mowner);
4370
4371 tp = sc->sc_tp;
4372
4373 /* Fixup the mbuf. */
4374 m->m_data += max_linkhdr;
4375 m_reset_rcvif(m);
4376 memset(mtod(m, void *), 0, tlen);
4377
4378 switch (sc->sc_src.sa.sa_family) {
4379 case AF_INET:
4380 ip = mtod(m, struct ip *);
4381 ip->ip_v = 4;
4382 ip->ip_dst = sc->sc_src.sin.sin_addr;
4383 ip->ip_src = sc->sc_dst.sin.sin_addr;
4384 ip->ip_p = IPPROTO_TCP;
4385 th = (struct tcphdr *)(ip + 1);
4386 th->th_dport = sc->sc_src.sin.sin_port;
4387 th->th_sport = sc->sc_dst.sin.sin_port;
4388 break;
4389 #ifdef INET6
4390 case AF_INET6:
4391 ip6 = mtod(m, struct ip6_hdr *);
4392 ip6->ip6_vfc = IPV6_VERSION;
4393 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4394 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4395 ip6->ip6_nxt = IPPROTO_TCP;
4396 /* ip6_plen will be updated in ip6_output() */
4397 th = (struct tcphdr *)(ip6 + 1);
4398 th->th_dport = sc->sc_src.sin6.sin6_port;
4399 th->th_sport = sc->sc_dst.sin6.sin6_port;
4400 break;
4401 #endif
4402 default:
4403 panic("%s: impossible (1)", __func__);
4404 }
4405
4406 th->th_seq = htonl(sc->sc_iss);
4407 th->th_ack = htonl(sc->sc_irs + 1);
4408 th->th_flags = TH_SYN|TH_ACK;
4409 th->th_win = htons(sc->sc_win);
4410 /* th_x2, th_sum, th_urp already 0 from memset */
4411
4412 /* Tack on the TCP options. */
4413 optp = (u_int8_t *)(th + 1);
4414 optlen = 0;
4415 *optp++ = TCPOPT_MAXSEG;
4416 *optp++ = TCPOLEN_MAXSEG;
4417 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4418 *optp++ = sc->sc_ourmaxseg & 0xff;
4419 optlen += TCPOLEN_MAXSEG;
4420
4421 if (sc->sc_request_r_scale != 15) {
4422 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4423 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4424 sc->sc_request_r_scale);
4425 optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4426 optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4427 }
4428
4429 if (sc->sc_flags & SCF_SACK_PERMIT) {
4430 /* Let the peer know that we will SACK. */
4431 *optp++ = TCPOPT_SACK_PERMITTED;
4432 *optp++ = TCPOLEN_SACK_PERMITTED;
4433 optlen += TCPOLEN_SACK_PERMITTED;
4434 }
4435
4436 if (sc->sc_flags & SCF_TIMESTAMP) {
4437 while (optlen % 4 != 2) {
4438 optlen += TCPOLEN_NOP;
4439 *optp++ = TCPOPT_NOP;
4440 }
4441 *optp++ = TCPOPT_TIMESTAMP;
4442 *optp++ = TCPOLEN_TIMESTAMP;
4443 u_int32_t *lp = (u_int32_t *)(optp);
4444 /* Form timestamp option as shown in appendix A of RFC 1323. */
4445 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4446 *lp = htonl(sc->sc_timestamp);
4447 optp += TCPOLEN_TIMESTAMP - 2;
4448 optlen += TCPOLEN_TIMESTAMP;
4449 }
4450
4451 #ifdef TCP_SIGNATURE
4452 if (sc->sc_flags & SCF_SIGNATURE) {
4453 sav = tcp_signature_getsav(m);
4454 if (sav == NULL) {
4455 m_freem(m);
4456 return EPERM;
4457 }
4458
4459 *optp++ = TCPOPT_SIGNATURE;
4460 *optp++ = TCPOLEN_SIGNATURE;
4461 sigp = optp;
4462 memset(optp, 0, TCP_SIGLEN);
4463 optp += TCP_SIGLEN;
4464 optlen += TCPOLEN_SIGNATURE;
4465 }
4466 #endif
4467
4468 /*
4469 * Terminate and pad TCP options to a 4 byte boundary.
4470 *
4471 * According to RFC793: "The content of the header beyond the
4472 * End-of-Option option must be header padding (i.e., zero)."
4473 * And later: "The padding is composed of zeros."
4474 */
4475 if (optlen % 4) {
4476 optlen += TCPOLEN_EOL;
4477 *optp++ = TCPOPT_EOL;
4478 }
4479 while (optlen % 4) {
4480 optlen += TCPOLEN_PAD;
4481 *optp++ = TCPOPT_PAD;
4482 }
4483
4484 /* Compute the actual values now that we've added the options. */
4485 tlen = hlen + sizeof(struct tcphdr) + optlen;
4486 m->m_len = m->m_pkthdr.len = tlen;
4487 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4488
4489 #ifdef TCP_SIGNATURE
4490 if (sav) {
4491 (void)tcp_signature(m, th, hlen, sav, sigp);
4492 key_sa_recordxfer(sav, m);
4493 KEY_SA_UNREF(&sav);
4494 }
4495 #endif
4496
4497 /*
4498 * Send ECN SYN-ACK setup packet.
4499 * Routes can be asymetric, so, even if we receive a packet
4500 * with ECE and CWR set, we must not assume no one will block
4501 * the ECE packet we are about to send.
4502 */
4503 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4504 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4505 th->th_flags |= TH_ECE;
4506 TCP_STATINC(TCP_STAT_ECN_SHS);
4507
4508 /*
4509 * draft-ietf-tcpm-ecnsyn-00.txt
4510 *
4511 * "[...] a TCP node MAY respond to an ECN-setup
4512 * SYN packet by setting ECT in the responding
4513 * ECN-setup SYN/ACK packet, indicating to routers
4514 * that the SYN/ACK packet is ECN-Capable.
4515 * This allows a congested router along the path
4516 * to mark the packet instead of dropping the
4517 * packet as an indication of congestion."
4518 *
4519 * "[...] There can be a great benefit in setting
4520 * an ECN-capable codepoint in SYN/ACK packets [...]
4521 * Congestion is most likely to occur in
4522 * the server-to-client direction. As a result,
4523 * setting an ECN-capable codepoint in SYN/ACK
4524 * packets can reduce the occurence of three-second
4525 * retransmit timeouts resulting from the drop
4526 * of SYN/ACK packets."
4527 *
4528 * Page 4 and 6, January 2006.
4529 */
4530
4531 switch (sc->sc_src.sa.sa_family) {
4532 case AF_INET:
4533 ip->ip_tos |= IPTOS_ECN_ECT0;
4534 break;
4535 #ifdef INET6
4536 case AF_INET6:
4537 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4538 break;
4539 #endif
4540 }
4541 TCP_STATINC(TCP_STAT_ECN_ECT);
4542 }
4543
4544
4545 /*
4546 * Compute the packet's checksum.
4547 *
4548 * Fill in some straggling IP bits. Note the stack expects
4549 * ip_len to be in host order, for convenience.
4550 */
4551 switch (sc->sc_src.sa.sa_family) {
4552 case AF_INET:
4553 ip->ip_len = htons(tlen - hlen);
4554 th->th_sum = 0;
4555 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4556 ip->ip_len = htons(tlen);
4557 ip->ip_ttl = ip_defttl;
4558 /* XXX tos? */
4559 break;
4560 #ifdef INET6
4561 case AF_INET6:
4562 ip6->ip6_plen = htons(tlen - hlen);
4563 th->th_sum = 0;
4564 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4565 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4566 ip6->ip6_vfc |= IPV6_VERSION;
4567 ip6->ip6_plen = htons(tlen - hlen);
4568 /* ip6_hlim will be initialized afterwards */
4569 /* XXX flowlabel? */
4570 break;
4571 #endif
4572 }
4573
4574 /* XXX use IPsec policy on listening socket, on SYN ACK */
4575 tp = sc->sc_tp;
4576
4577 switch (sc->sc_src.sa.sa_family) {
4578 case AF_INET:
4579 error = ip_output(m, sc->sc_ipopts, ro,
4580 (ip_mtudisc ? IP_MTUDISC : 0),
4581 NULL, tp ? tp->t_inpcb : NULL);
4582 break;
4583 #ifdef INET6
4584 case AF_INET6:
4585 ip6->ip6_hlim = in6_selecthlim(NULL,
4586 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4587 rtcache_unref(rt, ro);
4588
4589 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4590 tp ? tp->t_in6pcb : NULL, NULL);
4591 break;
4592 #endif
4593 default:
4594 panic("%s: impossible (2)", __func__);
4595 }
4596
4597 return error;
4598 }
4599