tcp_input.c revision 1.408 1 /* $NetBSD: tcp_input.c,v 1.408 2018/05/18 18:58:51 maxv Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.408 2018/05/18 18:58:51 maxv Exp $");
152
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177
178 #include <net/if.h>
179 #include <net/if_types.h>
180
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188
189 #ifdef INET6
190 #include <netinet/ip6.h>
191 #include <netinet6/ip6_var.h>
192 #include <netinet6/in6_pcb.h>
193 #include <netinet6/ip6_var.h>
194 #include <netinet6/in6_var.h>
195 #include <netinet/icmp6.h>
196 #include <netinet6/nd6.h>
197 #ifdef TCP_SIGNATURE
198 #include <netinet6/scope6_var.h>
199 #endif
200 #endif
201
202 #ifndef INET6
203 #include <netinet/ip6.h>
204 #endif
205
206 #include <netinet/tcp.h>
207 #include <netinet/tcp_fsm.h>
208 #include <netinet/tcp_seq.h>
209 #include <netinet/tcp_timer.h>
210 #include <netinet/tcp_var.h>
211 #include <netinet/tcp_private.h>
212 #include <netinet/tcp_congctl.h>
213 #include <netinet/tcp_debug.h>
214
215 #ifdef INET6
216 #include "faith.h"
217 #if defined(NFAITH) && NFAITH > 0
218 #include <net/if_faith.h>
219 #endif
220 #endif
221
222 #ifdef IPSEC
223 #include <netipsec/ipsec.h>
224 #include <netipsec/key.h>
225 #ifdef INET6
226 #include <netipsec/ipsec6.h>
227 #endif
228 #endif /* IPSEC*/
229
230 #include <netinet/tcp_vtw.h>
231
232 int tcprexmtthresh = 3;
233 int tcp_log_refused;
234
235 int tcp_do_autorcvbuf = 1;
236 int tcp_autorcvbuf_inc = 16 * 1024;
237 int tcp_autorcvbuf_max = 256 * 1024;
238 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
239
240 static int tcp_rst_ppslim_count = 0;
241 static struct timeval tcp_rst_ppslim_last;
242 static int tcp_ackdrop_ppslim_count = 0;
243 static struct timeval tcp_ackdrop_ppslim_last;
244
245 static void syn_cache_timer(void *);
246
247 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
248
249 /* for modulo comparisons of timestamps */
250 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
251 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
252
253 /*
254 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
255 */
256 #ifdef INET6
257 static inline void
258 nd6_hint(struct tcpcb *tp)
259 {
260 struct rtentry *rt = NULL;
261
262 if (tp != NULL && tp->t_in6pcb != NULL && tp->t_family == AF_INET6 &&
263 (rt = rtcache_validate(&tp->t_in6pcb->in6p_route)) != NULL)
264 nd6_nud_hint(rt);
265 rtcache_unref(rt, &tp->t_in6pcb->in6p_route);
266 }
267 #else
268 static inline void
269 nd6_hint(struct tcpcb *tp)
270 {
271 }
272 #endif
273
274 /*
275 * Compute ACK transmission behavior. Delay the ACK unless
276 * we have already delayed an ACK (must send an ACK every two segments).
277 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
278 * option is enabled.
279 */
280 static void
281 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
282 {
283
284 if (tp->t_flags & TF_DELACK ||
285 (tcp_ack_on_push && th->th_flags & TH_PUSH))
286 tp->t_flags |= TF_ACKNOW;
287 else
288 TCP_SET_DELACK(tp);
289 }
290
291 static void
292 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
293 {
294
295 /*
296 * If we had a pending ICMP message that refers to data that have
297 * just been acknowledged, disregard the recorded ICMP message.
298 */
299 if ((tp->t_flags & TF_PMTUD_PEND) &&
300 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
301 tp->t_flags &= ~TF_PMTUD_PEND;
302
303 /*
304 * Keep track of the largest chunk of data
305 * acknowledged since last PMTU update
306 */
307 if (tp->t_pmtud_mss_acked < acked)
308 tp->t_pmtud_mss_acked = acked;
309 }
310
311 /*
312 * Convert TCP protocol fields to host order for easier processing.
313 */
314 static void
315 tcp_fields_to_host(struct tcphdr *th)
316 {
317
318 NTOHL(th->th_seq);
319 NTOHL(th->th_ack);
320 NTOHS(th->th_win);
321 NTOHS(th->th_urp);
322 }
323
324 /*
325 * ... and reverse the above.
326 */
327 static void
328 tcp_fields_to_net(struct tcphdr *th)
329 {
330
331 HTONL(th->th_seq);
332 HTONL(th->th_ack);
333 HTONS(th->th_win);
334 HTONS(th->th_urp);
335 }
336
337 static void
338 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
339 {
340 if (th->th_urp > todrop) {
341 th->th_urp -= todrop;
342 } else {
343 *tiflags &= ~TH_URG;
344 th->th_urp = 0;
345 }
346 }
347
348 #ifdef TCP_CSUM_COUNTERS
349 #include <sys/device.h>
350
351 extern struct evcnt tcp_hwcsum_ok;
352 extern struct evcnt tcp_hwcsum_bad;
353 extern struct evcnt tcp_hwcsum_data;
354 extern struct evcnt tcp_swcsum;
355 #if defined(INET6)
356 extern struct evcnt tcp6_hwcsum_ok;
357 extern struct evcnt tcp6_hwcsum_bad;
358 extern struct evcnt tcp6_hwcsum_data;
359 extern struct evcnt tcp6_swcsum;
360 #endif /* defined(INET6) */
361
362 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
363
364 #else
365
366 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
367
368 #endif /* TCP_CSUM_COUNTERS */
369
370 #ifdef TCP_REASS_COUNTERS
371 #include <sys/device.h>
372
373 extern struct evcnt tcp_reass_;
374 extern struct evcnt tcp_reass_empty;
375 extern struct evcnt tcp_reass_iteration[8];
376 extern struct evcnt tcp_reass_prependfirst;
377 extern struct evcnt tcp_reass_prepend;
378 extern struct evcnt tcp_reass_insert;
379 extern struct evcnt tcp_reass_inserttail;
380 extern struct evcnt tcp_reass_append;
381 extern struct evcnt tcp_reass_appendtail;
382 extern struct evcnt tcp_reass_overlaptail;
383 extern struct evcnt tcp_reass_overlapfront;
384 extern struct evcnt tcp_reass_segdup;
385 extern struct evcnt tcp_reass_fragdup;
386
387 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
388
389 #else
390
391 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
392
393 #endif /* TCP_REASS_COUNTERS */
394
395 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
396 int);
397 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
398 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
399
400 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
401 #ifdef INET6
402 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
403 #endif
404
405 #if defined(MBUFTRACE)
406 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
407 #endif /* defined(MBUFTRACE) */
408
409 static struct pool tcpipqent_pool;
410
411 void
412 tcpipqent_init(void)
413 {
414
415 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
416 NULL, IPL_VM);
417 }
418
419 struct ipqent *
420 tcpipqent_alloc(void)
421 {
422 struct ipqent *ipqe;
423 int s;
424
425 s = splvm();
426 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
427 splx(s);
428
429 return ipqe;
430 }
431
432 void
433 tcpipqent_free(struct ipqent *ipqe)
434 {
435 int s;
436
437 s = splvm();
438 pool_put(&tcpipqent_pool, ipqe);
439 splx(s);
440 }
441
442 /*
443 * Insert segment ti into reassembly queue of tcp with
444 * control block tp. Return TH_FIN if reassembly now includes
445 * a segment with FIN.
446 */
447 static int
448 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
449 {
450 struct ipqent *p, *q, *nq, *tiqe = NULL;
451 struct socket *so = NULL;
452 int pkt_flags;
453 tcp_seq pkt_seq;
454 unsigned pkt_len;
455 u_long rcvpartdupbyte = 0;
456 u_long rcvoobyte;
457 #ifdef TCP_REASS_COUNTERS
458 u_int count = 0;
459 #endif
460 uint64_t *tcps;
461
462 if (tp->t_inpcb)
463 so = tp->t_inpcb->inp_socket;
464 #ifdef INET6
465 else if (tp->t_in6pcb)
466 so = tp->t_in6pcb->in6p_socket;
467 #endif
468
469 TCP_REASS_LOCK_CHECK(tp);
470
471 /*
472 * Call with th==NULL after become established to
473 * force pre-ESTABLISHED data up to user socket.
474 */
475 if (th == NULL)
476 goto present;
477
478 m_claimm(m, &tcp_reass_mowner);
479
480 rcvoobyte = tlen;
481 /*
482 * Copy these to local variables because the TCP header gets munged
483 * while we are collapsing mbufs.
484 */
485 pkt_seq = th->th_seq;
486 pkt_len = tlen;
487 pkt_flags = th->th_flags;
488
489 TCP_REASS_COUNTER_INCR(&tcp_reass_);
490
491 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
492 /*
493 * When we miss a packet, the vast majority of time we get
494 * packets that follow it in order. So optimize for that.
495 */
496 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
497 p->ipqe_len += pkt_len;
498 p->ipqe_flags |= pkt_flags;
499 m_cat(p->ipqe_m, m);
500 m = NULL;
501 tiqe = p;
502 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
503 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
504 goto skip_replacement;
505 }
506 /*
507 * While we're here, if the pkt is completely beyond
508 * anything we have, just insert it at the tail.
509 */
510 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
511 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
512 goto insert_it;
513 }
514 }
515
516 q = TAILQ_FIRST(&tp->segq);
517
518 if (q != NULL) {
519 /*
520 * If this segment immediately precedes the first out-of-order
521 * block, simply slap the segment in front of it and (mostly)
522 * skip the complicated logic.
523 */
524 if (pkt_seq + pkt_len == q->ipqe_seq) {
525 q->ipqe_seq = pkt_seq;
526 q->ipqe_len += pkt_len;
527 q->ipqe_flags |= pkt_flags;
528 m_cat(m, q->ipqe_m);
529 q->ipqe_m = m;
530 tiqe = q;
531 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
532 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
533 goto skip_replacement;
534 }
535 } else {
536 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
537 }
538
539 /*
540 * Find a segment which begins after this one does.
541 */
542 for (p = NULL; q != NULL; q = nq) {
543 nq = TAILQ_NEXT(q, ipqe_q);
544 #ifdef TCP_REASS_COUNTERS
545 count++;
546 #endif
547
548 /*
549 * If the received segment is just right after this
550 * fragment, merge the two together and then check
551 * for further overlaps.
552 */
553 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
554 pkt_len += q->ipqe_len;
555 pkt_flags |= q->ipqe_flags;
556 pkt_seq = q->ipqe_seq;
557 m_cat(q->ipqe_m, m);
558 m = q->ipqe_m;
559 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
560 goto free_ipqe;
561 }
562
563 /*
564 * If the received segment is completely past this
565 * fragment, we need to go to the next fragment.
566 */
567 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
568 p = q;
569 continue;
570 }
571
572 /*
573 * If the fragment is past the received segment,
574 * it (or any following) can't be concatenated.
575 */
576 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
577 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
578 break;
579 }
580
581 /*
582 * We've received all the data in this segment before.
583 * Mark it as a duplicate and return.
584 */
585 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
586 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
587 tcps = TCP_STAT_GETREF();
588 tcps[TCP_STAT_RCVDUPPACK]++;
589 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
590 TCP_STAT_PUTREF();
591 tcp_new_dsack(tp, pkt_seq, pkt_len);
592 m_freem(m);
593 if (tiqe != NULL) {
594 tcpipqent_free(tiqe);
595 }
596 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
597 goto out;
598 }
599
600 /*
601 * Received segment completely overlaps this fragment
602 * so we drop the fragment (this keeps the temporal
603 * ordering of segments correct).
604 */
605 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
606 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
607 rcvpartdupbyte += q->ipqe_len;
608 m_freem(q->ipqe_m);
609 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
610 goto free_ipqe;
611 }
612
613 /*
614 * Received segment extends past the end of the fragment.
615 * Drop the overlapping bytes, merge the fragment and
616 * segment, and treat as a longer received packet.
617 */
618 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
619 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
620 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
621 m_adj(m, overlap);
622 rcvpartdupbyte += overlap;
623 m_cat(q->ipqe_m, m);
624 m = q->ipqe_m;
625 pkt_seq = q->ipqe_seq;
626 pkt_len += q->ipqe_len - overlap;
627 rcvoobyte -= overlap;
628 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
629 goto free_ipqe;
630 }
631
632 /*
633 * Received segment extends past the front of the fragment.
634 * Drop the overlapping bytes on the received packet. The
635 * packet will then be concatenated with this fragment a
636 * bit later.
637 */
638 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
639 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
640 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
641 m_adj(m, -overlap);
642 pkt_len -= overlap;
643 rcvpartdupbyte += overlap;
644 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
645 rcvoobyte -= overlap;
646 }
647
648 /*
649 * If the received segment immediately precedes this
650 * fragment then tack the fragment onto this segment
651 * and reinsert the data.
652 */
653 if (q->ipqe_seq == pkt_seq + pkt_len) {
654 pkt_len += q->ipqe_len;
655 pkt_flags |= q->ipqe_flags;
656 m_cat(m, q->ipqe_m);
657 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
658 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
659 tp->t_segqlen--;
660 KASSERT(tp->t_segqlen >= 0);
661 KASSERT(tp->t_segqlen != 0 ||
662 (TAILQ_EMPTY(&tp->segq) &&
663 TAILQ_EMPTY(&tp->timeq)));
664 if (tiqe == NULL) {
665 tiqe = q;
666 } else {
667 tcpipqent_free(q);
668 }
669 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
670 break;
671 }
672
673 /*
674 * If the fragment is before the segment, remember it.
675 * When this loop is terminated, p will contain the
676 * pointer to the fragment that is right before the
677 * received segment.
678 */
679 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
680 p = q;
681
682 continue;
683
684 /*
685 * This is a common operation. It also will allow
686 * to save doing a malloc/free in most instances.
687 */
688 free_ipqe:
689 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
690 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
691 tp->t_segqlen--;
692 KASSERT(tp->t_segqlen >= 0);
693 KASSERT(tp->t_segqlen != 0 ||
694 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
695 if (tiqe == NULL) {
696 tiqe = q;
697 } else {
698 tcpipqent_free(q);
699 }
700 }
701
702 #ifdef TCP_REASS_COUNTERS
703 if (count > 7)
704 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
705 else if (count > 0)
706 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
707 #endif
708
709 insert_it:
710 /*
711 * Allocate a new queue entry (block) since the received segment
712 * did not collapse onto any other out-of-order block. If it had
713 * collapsed, tiqe would not be NULL and we would be reusing it.
714 *
715 * If the allocation fails, drop the packet.
716 */
717 if (tiqe == NULL) {
718 tiqe = tcpipqent_alloc();
719 if (tiqe == NULL) {
720 TCP_STATINC(TCP_STAT_RCVMEMDROP);
721 m_freem(m);
722 goto out;
723 }
724 }
725
726 /*
727 * Update the counters.
728 */
729 tp->t_rcvoopack++;
730 tcps = TCP_STAT_GETREF();
731 tcps[TCP_STAT_RCVOOPACK]++;
732 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
733 if (rcvpartdupbyte) {
734 tcps[TCP_STAT_RCVPARTDUPPACK]++;
735 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
736 }
737 TCP_STAT_PUTREF();
738
739 /*
740 * Insert the new fragment queue entry into both queues.
741 */
742 tiqe->ipqe_m = m;
743 tiqe->ipqe_seq = pkt_seq;
744 tiqe->ipqe_len = pkt_len;
745 tiqe->ipqe_flags = pkt_flags;
746 if (p == NULL) {
747 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
748 } else {
749 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
750 }
751 tp->t_segqlen++;
752
753 skip_replacement:
754 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
755
756 present:
757 /*
758 * Present data to user, advancing rcv_nxt through
759 * completed sequence space.
760 */
761 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
762 goto out;
763 q = TAILQ_FIRST(&tp->segq);
764 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
765 goto out;
766 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
767 goto out;
768
769 tp->rcv_nxt += q->ipqe_len;
770 pkt_flags = q->ipqe_flags & TH_FIN;
771 nd6_hint(tp);
772
773 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
774 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
775 tp->t_segqlen--;
776 KASSERT(tp->t_segqlen >= 0);
777 KASSERT(tp->t_segqlen != 0 ||
778 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
779 if (so->so_state & SS_CANTRCVMORE)
780 m_freem(q->ipqe_m);
781 else
782 sbappendstream(&so->so_rcv, q->ipqe_m);
783 tcpipqent_free(q);
784 TCP_REASS_UNLOCK(tp);
785 sorwakeup(so);
786 return pkt_flags;
787
788 out:
789 TCP_REASS_UNLOCK(tp);
790 return 0;
791 }
792
793 #ifdef INET6
794 int
795 tcp6_input(struct mbuf **mp, int *offp, int proto)
796 {
797 struct mbuf *m = *mp;
798
799 /*
800 * draft-itojun-ipv6-tcp-to-anycast
801 * better place to put this in?
802 */
803 if (m->m_flags & M_ANYCAST6) {
804 struct ip6_hdr *ip6;
805 if (m->m_len < sizeof(struct ip6_hdr)) {
806 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
807 TCP_STATINC(TCP_STAT_RCVSHORT);
808 return IPPROTO_DONE;
809 }
810 }
811 ip6 = mtod(m, struct ip6_hdr *);
812 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
813 (char *)&ip6->ip6_dst - (char *)ip6);
814 return IPPROTO_DONE;
815 }
816
817 tcp_input(m, *offp, proto);
818 return IPPROTO_DONE;
819 }
820 #endif
821
822 static void
823 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
824 {
825 char src[INET_ADDRSTRLEN];
826 char dst[INET_ADDRSTRLEN];
827
828 if (ip) {
829 in_print(src, sizeof(src), &ip->ip_src);
830 in_print(dst, sizeof(dst), &ip->ip_dst);
831 } else {
832 strlcpy(src, "(unknown)", sizeof(src));
833 strlcpy(dst, "(unknown)", sizeof(dst));
834 }
835 log(LOG_INFO,
836 "Connection attempt to TCP %s:%d from %s:%d\n",
837 dst, ntohs(th->th_dport),
838 src, ntohs(th->th_sport));
839 }
840
841 #ifdef INET6
842 static void
843 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
844 {
845 char src[INET6_ADDRSTRLEN];
846 char dst[INET6_ADDRSTRLEN];
847
848 if (ip6) {
849 in6_print(src, sizeof(src), &ip6->ip6_src);
850 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
851 } else {
852 strlcpy(src, "(unknown v6)", sizeof(src));
853 strlcpy(dst, "(unknown v6)", sizeof(dst));
854 }
855 log(LOG_INFO,
856 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
857 dst, ntohs(th->th_dport),
858 src, ntohs(th->th_sport));
859 }
860 #endif
861
862 /*
863 * Checksum extended TCP header and data.
864 */
865 int
866 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
867 int toff, int off, int tlen)
868 {
869 struct ifnet *rcvif;
870 int s;
871
872 /*
873 * XXX it's better to record and check if this mbuf is
874 * already checked.
875 */
876
877 rcvif = m_get_rcvif(m, &s);
878 if (__predict_false(rcvif == NULL))
879 goto badcsum; /* XXX */
880
881 switch (af) {
882 case AF_INET:
883 switch (m->m_pkthdr.csum_flags &
884 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
885 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
886 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
887 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
888 goto badcsum;
889
890 case M_CSUM_TCPv4|M_CSUM_DATA: {
891 u_int32_t hw_csum = m->m_pkthdr.csum_data;
892
893 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
894 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
895 const struct ip *ip =
896 mtod(m, const struct ip *);
897
898 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
899 ip->ip_dst.s_addr,
900 htons(hw_csum + tlen + off + IPPROTO_TCP));
901 }
902 if ((hw_csum ^ 0xffff) != 0)
903 goto badcsum;
904 break;
905 }
906
907 case M_CSUM_TCPv4:
908 /* Checksum was okay. */
909 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
910 break;
911
912 default:
913 /*
914 * Must compute it ourselves. Maybe skip checksum
915 * on loopback interfaces.
916 */
917 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
918 tcp_do_loopback_cksum)) {
919 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
920 if (in4_cksum(m, IPPROTO_TCP, toff,
921 tlen + off) != 0)
922 goto badcsum;
923 }
924 break;
925 }
926 break;
927
928 #ifdef INET6
929 case AF_INET6:
930 switch (m->m_pkthdr.csum_flags &
931 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
932 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
933 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
934 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
935 goto badcsum;
936
937 #if 0 /* notyet */
938 case M_CSUM_TCPv6|M_CSUM_DATA:
939 #endif
940
941 case M_CSUM_TCPv6:
942 /* Checksum was okay. */
943 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
944 break;
945
946 default:
947 /*
948 * Must compute it ourselves. Maybe skip checksum
949 * on loopback interfaces.
950 */
951 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
952 tcp_do_loopback_cksum)) {
953 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
954 if (in6_cksum(m, IPPROTO_TCP, toff,
955 tlen + off) != 0)
956 goto badcsum;
957 }
958 }
959 break;
960 #endif /* INET6 */
961 }
962 m_put_rcvif(rcvif, &s);
963
964 return 0;
965
966 badcsum:
967 m_put_rcvif(rcvif, &s);
968 TCP_STATINC(TCP_STAT_RCVBADSUM);
969 return -1;
970 }
971
972 /*
973 * When a packet arrives addressed to a vestigial tcpbp, we
974 * nevertheless have to respond to it per the spec.
975 *
976 * This code is duplicated from the one in tcp_input().
977 */
978 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
979 struct mbuf *m, int tlen)
980 {
981 int tiflags;
982 int todrop;
983 uint32_t t_flags = 0;
984 uint64_t *tcps;
985
986 tiflags = th->th_flags;
987 todrop = vp->rcv_nxt - th->th_seq;
988
989 if (todrop > 0) {
990 if (tiflags & TH_SYN) {
991 tiflags &= ~TH_SYN;
992 th->th_seq++;
993 tcp_urp_drop(th, 1, &tiflags);
994 todrop--;
995 }
996 if (todrop > tlen ||
997 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
998 /*
999 * Any valid FIN or RST must be to the left of the
1000 * window. At this point the FIN or RST must be a
1001 * duplicate or out of sequence; drop it.
1002 */
1003 if (tiflags & TH_RST)
1004 goto drop;
1005 tiflags &= ~(TH_FIN|TH_RST);
1006
1007 /*
1008 * Send an ACK to resynchronize and drop any data.
1009 * But keep on processing for RST or ACK.
1010 */
1011 t_flags |= TF_ACKNOW;
1012 todrop = tlen;
1013 tcps = TCP_STAT_GETREF();
1014 tcps[TCP_STAT_RCVDUPPACK] += 1;
1015 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1016 TCP_STAT_PUTREF();
1017 } else if ((tiflags & TH_RST) &&
1018 th->th_seq != vp->rcv_nxt) {
1019 /*
1020 * Test for reset before adjusting the sequence
1021 * number for overlapping data.
1022 */
1023 goto dropafterack_ratelim;
1024 } else {
1025 tcps = TCP_STAT_GETREF();
1026 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1027 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1028 TCP_STAT_PUTREF();
1029 }
1030
1031 // tcp_new_dsack(tp, th->th_seq, todrop);
1032 // hdroptlen += todrop; /*drop from head afterwards*/
1033
1034 th->th_seq += todrop;
1035 tlen -= todrop;
1036 tcp_urp_drop(th, todrop, &tiflags);
1037 }
1038
1039 /*
1040 * If new data are received on a connection after the
1041 * user processes are gone, then RST the other end.
1042 */
1043 if (tlen) {
1044 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1045 goto dropwithreset;
1046 }
1047
1048 /*
1049 * If segment ends after window, drop trailing data
1050 * (and PUSH and FIN); if nothing left, just ACK.
1051 */
1052 todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1053
1054 if (todrop > 0) {
1055 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1056 if (todrop >= tlen) {
1057 /*
1058 * The segment actually starts after the window.
1059 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1060 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1061 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1062 */
1063 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1064
1065 /*
1066 * If a new connection request is received
1067 * while in TIME_WAIT, drop the old connection
1068 * and start over if the sequence numbers
1069 * are above the previous ones.
1070 */
1071 if ((tiflags & TH_SYN) &&
1072 SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1073 /*
1074 * We only support this in the !NOFDREF case, which
1075 * is to say: not here.
1076 */
1077 goto dropwithreset;
1078 }
1079
1080 /*
1081 * If window is closed can only take segments at
1082 * window edge, and have to drop data and PUSH from
1083 * incoming segments. Continue processing, but
1084 * remember to ack. Otherwise, drop segment
1085 * and (if not RST) ack.
1086 */
1087 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1088 t_flags |= TF_ACKNOW;
1089 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1090 } else {
1091 goto dropafterack;
1092 }
1093 } else {
1094 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1095 }
1096 m_adj(m, -todrop);
1097 tlen -= todrop;
1098 tiflags &= ~(TH_PUSH|TH_FIN);
1099 }
1100
1101 if (tiflags & TH_RST) {
1102 if (th->th_seq != vp->rcv_nxt)
1103 goto dropafterack_ratelim;
1104
1105 vtw_del(vp->ctl, vp->vtw);
1106 goto drop;
1107 }
1108
1109 /*
1110 * If the ACK bit is off we drop the segment and return.
1111 */
1112 if ((tiflags & TH_ACK) == 0) {
1113 if (t_flags & TF_ACKNOW)
1114 goto dropafterack;
1115 goto drop;
1116 }
1117
1118 /*
1119 * In TIME_WAIT state the only thing that should arrive
1120 * is a retransmission of the remote FIN. Acknowledge
1121 * it and restart the finack timer.
1122 */
1123 vtw_restart(vp);
1124 goto dropafterack;
1125
1126 dropafterack:
1127 /*
1128 * Generate an ACK dropping incoming segment if it occupies
1129 * sequence space, where the ACK reflects our state.
1130 */
1131 if (tiflags & TH_RST)
1132 goto drop;
1133 goto dropafterack2;
1134
1135 dropafterack_ratelim:
1136 /*
1137 * We may want to rate-limit ACKs against SYN/RST attack.
1138 */
1139 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1140 tcp_ackdrop_ppslim) == 0) {
1141 /* XXX stat */
1142 goto drop;
1143 }
1144 /* ...fall into dropafterack2... */
1145
1146 dropafterack2:
1147 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1148 return;
1149
1150 dropwithreset:
1151 /*
1152 * Generate a RST, dropping incoming segment.
1153 * Make ACK acceptable to originator of segment.
1154 */
1155 if (tiflags & TH_RST)
1156 goto drop;
1157
1158 if (tiflags & TH_ACK) {
1159 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1160 } else {
1161 if (tiflags & TH_SYN)
1162 ++tlen;
1163 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1164 TH_RST|TH_ACK);
1165 }
1166 return;
1167 drop:
1168 m_freem(m);
1169 }
1170
1171 /*
1172 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1173 */
1174 void
1175 tcp_input(struct mbuf *m, ...)
1176 {
1177 struct tcphdr *th;
1178 struct ip *ip;
1179 struct inpcb *inp;
1180 #ifdef INET6
1181 struct ip6_hdr *ip6;
1182 struct in6pcb *in6p;
1183 #endif
1184 u_int8_t *optp = NULL;
1185 int optlen = 0;
1186 int len, tlen, toff, hdroptlen = 0;
1187 struct tcpcb *tp = NULL;
1188 int tiflags;
1189 struct socket *so = NULL;
1190 int todrop, acked, ourfinisacked, needoutput = 0;
1191 bool dupseg;
1192 #ifdef TCP_DEBUG
1193 short ostate = 0;
1194 #endif
1195 u_long tiwin;
1196 struct tcp_opt_info opti;
1197 int off, iphlen;
1198 va_list ap;
1199 int af; /* af on the wire */
1200 struct mbuf *tcp_saveti = NULL;
1201 uint32_t ts_rtt;
1202 uint8_t iptos;
1203 uint64_t *tcps;
1204 vestigial_inpcb_t vestige;
1205
1206 vestige.valid = 0;
1207
1208 MCLAIM(m, &tcp_rx_mowner);
1209 va_start(ap, m);
1210 toff = va_arg(ap, int);
1211 (void)va_arg(ap, int); /* ignore value, advance ap */
1212 va_end(ap);
1213
1214 TCP_STATINC(TCP_STAT_RCVTOTAL);
1215
1216 memset(&opti, 0, sizeof(opti));
1217 opti.ts_present = 0;
1218 opti.maxseg = 0;
1219
1220 /*
1221 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1222 *
1223 * TCP is, by definition, unicast, so we reject all
1224 * multicast outright.
1225 *
1226 * Note, there are additional src/dst address checks in
1227 * the AF-specific code below.
1228 */
1229 if (m->m_flags & (M_BCAST|M_MCAST)) {
1230 /* XXX stat */
1231 goto drop;
1232 }
1233 #ifdef INET6
1234 if (m->m_flags & M_ANYCAST6) {
1235 /* XXX stat */
1236 goto drop;
1237 }
1238 #endif
1239
1240 M_REGION_GET(th, struct tcphdr *, m, toff, sizeof(struct tcphdr));
1241 if (th == NULL) {
1242 TCP_STATINC(TCP_STAT_RCVSHORT);
1243 return;
1244 }
1245
1246 /*
1247 * Get IP and TCP header.
1248 * Note: IP leaves IP header in first mbuf.
1249 */
1250 ip = mtod(m, struct ip *);
1251 switch (ip->ip_v) {
1252 case 4:
1253 #ifdef INET6
1254 ip6 = NULL;
1255 #endif
1256 af = AF_INET;
1257 iphlen = sizeof(struct ip);
1258
1259 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1260 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1261 goto drop;
1262
1263 /* We do the checksum after PCB lookup... */
1264 len = ntohs(ip->ip_len);
1265 tlen = len - toff;
1266 iptos = ip->ip_tos;
1267 break;
1268 #ifdef INET6
1269 case 6:
1270 ip = NULL;
1271 iphlen = sizeof(struct ip6_hdr);
1272 af = AF_INET6;
1273 ip6 = mtod(m, struct ip6_hdr *);
1274
1275 /*
1276 * Be proactive about unspecified IPv6 address in source.
1277 * As we use all-zero to indicate unbounded/unconnected pcb,
1278 * unspecified IPv6 address can be used to confuse us.
1279 *
1280 * Note that packets with unspecified IPv6 destination is
1281 * already dropped in ip6_input.
1282 */
1283 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1284 /* XXX stat */
1285 goto drop;
1286 }
1287
1288 /*
1289 * Make sure destination address is not multicast.
1290 * Source address checked in ip6_input().
1291 */
1292 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1293 /* XXX stat */
1294 goto drop;
1295 }
1296
1297 /* We do the checksum after PCB lookup... */
1298 len = m->m_pkthdr.len;
1299 tlen = len - toff;
1300 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1301 break;
1302 #endif
1303 default:
1304 m_freem(m);
1305 return;
1306 }
1307
1308 /*
1309 * Enforce alignment requirements that are violated in
1310 * some cases, see kern/50766 for details.
1311 */
1312 if (TCP_HDR_ALIGNED_P(th) == 0) {
1313 m = m_copyup(m, toff + sizeof(struct tcphdr), 0);
1314 if (m == NULL) {
1315 TCP_STATINC(TCP_STAT_RCVSHORT);
1316 return;
1317 }
1318 ip = mtod(m, struct ip *);
1319 #ifdef INET6
1320 ip6 = mtod(m, struct ip6_hdr *);
1321 #endif
1322 th = (struct tcphdr *)(mtod(m, char *) + toff);
1323 }
1324 KASSERT(TCP_HDR_ALIGNED_P(th));
1325
1326 /*
1327 * Check that TCP offset makes sense, pull out TCP options and
1328 * adjust length.
1329 */
1330 off = th->th_off << 2;
1331 if (off < sizeof(struct tcphdr) || off > tlen) {
1332 TCP_STATINC(TCP_STAT_RCVBADOFF);
1333 goto drop;
1334 }
1335 tlen -= off;
1336
1337 if (off > sizeof(struct tcphdr)) {
1338 M_REGION_GET(th, struct tcphdr *, m, toff, off);
1339 if (th == NULL) {
1340 TCP_STATINC(TCP_STAT_RCVSHORT);
1341 return;
1342 }
1343 KASSERT(TCP_HDR_ALIGNED_P(th));
1344 optlen = off - sizeof(struct tcphdr);
1345 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1346
1347 /*
1348 * Do quick retrieval of timestamp options.
1349 *
1350 * If timestamp is the only option and it's formatted as
1351 * recommended in RFC 1323 appendix A, we quickly get the
1352 * values now and don't bother calling tcp_dooptions(),
1353 * etc.
1354 */
1355 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1356 (optlen > TCPOLEN_TSTAMP_APPA &&
1357 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1358 *(u_int32_t *)optp == htonl(TCPOPT_TSTAMP_HDR) &&
1359 (th->th_flags & TH_SYN) == 0) {
1360 opti.ts_present = 1;
1361 opti.ts_val = ntohl(*(u_int32_t *)(optp + 4));
1362 opti.ts_ecr = ntohl(*(u_int32_t *)(optp + 8));
1363 optp = NULL; /* we've parsed the options */
1364 }
1365 }
1366 tiflags = th->th_flags;
1367
1368 /*
1369 * Checksum extended TCP header and data
1370 */
1371 if (tcp_input_checksum(af, m, th, toff, off, tlen))
1372 goto badcsum;
1373
1374 /*
1375 * Locate pcb for segment.
1376 */
1377 findpcb:
1378 inp = NULL;
1379 #ifdef INET6
1380 in6p = NULL;
1381 #endif
1382 switch (af) {
1383 case AF_INET:
1384 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1385 ip->ip_dst, th->th_dport, &vestige);
1386 if (inp == NULL && !vestige.valid) {
1387 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1388 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1389 th->th_dport);
1390 }
1391 #ifdef INET6
1392 if (inp == NULL && !vestige.valid) {
1393 struct in6_addr s, d;
1394
1395 /* mapped addr case */
1396 in6_in_2_v4mapin6(&ip->ip_src, &s);
1397 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1398 in6p = in6_pcblookup_connect(&tcbtable, &s,
1399 th->th_sport, &d, th->th_dport, 0, &vestige);
1400 if (in6p == 0 && !vestige.valid) {
1401 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1402 in6p = in6_pcblookup_bind(&tcbtable, &d,
1403 th->th_dport, 0);
1404 }
1405 }
1406 #endif
1407 #ifndef INET6
1408 if (inp == NULL && !vestige.valid)
1409 #else
1410 if (inp == NULL && in6p == NULL && !vestige.valid)
1411 #endif
1412 {
1413 TCP_STATINC(TCP_STAT_NOPORT);
1414 if (tcp_log_refused &&
1415 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1416 tcp4_log_refused(ip, th);
1417 }
1418 tcp_fields_to_host(th);
1419 goto dropwithreset_ratelim;
1420 }
1421 #if defined(IPSEC)
1422 if (ipsec_used) {
1423 if (inp && ipsec_in_reject(m, inp)) {
1424 goto drop;
1425 }
1426 #ifdef INET6
1427 else if (in6p && ipsec_in_reject(m, in6p)) {
1428 goto drop;
1429 }
1430 #endif
1431 }
1432 #endif /*IPSEC*/
1433 break;
1434 #ifdef INET6
1435 case AF_INET6:
1436 {
1437 int faith;
1438
1439 #if defined(NFAITH) && NFAITH > 0
1440 faith = faithprefix(&ip6->ip6_dst);
1441 #else
1442 faith = 0;
1443 #endif
1444 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1445 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1446 if (!in6p && !vestige.valid) {
1447 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1448 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1449 th->th_dport, faith);
1450 }
1451 if (!in6p && !vestige.valid) {
1452 TCP_STATINC(TCP_STAT_NOPORT);
1453 if (tcp_log_refused &&
1454 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1455 tcp6_log_refused(ip6, th);
1456 }
1457 tcp_fields_to_host(th);
1458 goto dropwithreset_ratelim;
1459 }
1460 #if defined(IPSEC)
1461 if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1462 goto drop;
1463 }
1464 #endif
1465 break;
1466 }
1467 #endif
1468 }
1469
1470 tcp_fields_to_host(th);
1471
1472 /*
1473 * If the state is CLOSED (i.e., TCB does not exist) then
1474 * all data in the incoming segment is discarded.
1475 * If the TCB exists but is in CLOSED state, it is embryonic,
1476 * but should either do a listen or a connect soon.
1477 */
1478 tp = NULL;
1479 so = NULL;
1480 if (inp) {
1481 /* Check the minimum TTL for socket. */
1482 if (ip->ip_ttl < inp->inp_ip_minttl)
1483 goto drop;
1484
1485 tp = intotcpcb(inp);
1486 so = inp->inp_socket;
1487 }
1488 #ifdef INET6
1489 else if (in6p) {
1490 tp = in6totcpcb(in6p);
1491 so = in6p->in6p_socket;
1492 }
1493 #endif
1494 else if (vestige.valid) {
1495 /* We do not support the resurrection of vtw tcpcps. */
1496 tcp_vtw_input(th, &vestige, m, tlen);
1497 m = NULL;
1498 goto drop;
1499 }
1500
1501 if (tp == NULL)
1502 goto dropwithreset_ratelim;
1503 if (tp->t_state == TCPS_CLOSED)
1504 goto drop;
1505
1506 KASSERT(so->so_lock == softnet_lock);
1507 KASSERT(solocked(so));
1508
1509 /* Unscale the window into a 32-bit value. */
1510 if ((tiflags & TH_SYN) == 0)
1511 tiwin = th->th_win << tp->snd_scale;
1512 else
1513 tiwin = th->th_win;
1514
1515 #ifdef INET6
1516 /* save packet options if user wanted */
1517 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1518 if (in6p->in6p_options) {
1519 m_freem(in6p->in6p_options);
1520 in6p->in6p_options = NULL;
1521 }
1522 KASSERT(ip6 != NULL);
1523 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1524 }
1525 #endif
1526
1527 if (so->so_options & SO_DEBUG) {
1528 #ifdef TCP_DEBUG
1529 ostate = tp->t_state;
1530 #endif
1531
1532 tcp_saveti = NULL;
1533 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1534 goto nosave;
1535
1536 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1537 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1538 if (tcp_saveti == NULL)
1539 goto nosave;
1540 } else {
1541 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1542 if (tcp_saveti == NULL)
1543 goto nosave;
1544 MCLAIM(m, &tcp_mowner);
1545 tcp_saveti->m_len = iphlen;
1546 m_copydata(m, 0, iphlen,
1547 mtod(tcp_saveti, void *));
1548 }
1549
1550 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1551 m_freem(tcp_saveti);
1552 tcp_saveti = NULL;
1553 } else {
1554 tcp_saveti->m_len += sizeof(struct tcphdr);
1555 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1556 sizeof(struct tcphdr));
1557 }
1558 nosave:;
1559 }
1560
1561 if (so->so_options & SO_ACCEPTCONN) {
1562 union syn_cache_sa src;
1563 union syn_cache_sa dst;
1564
1565 KASSERT(tp->t_state == TCPS_LISTEN);
1566
1567 memset(&src, 0, sizeof(src));
1568 memset(&dst, 0, sizeof(dst));
1569 switch (af) {
1570 case AF_INET:
1571 src.sin.sin_len = sizeof(struct sockaddr_in);
1572 src.sin.sin_family = AF_INET;
1573 src.sin.sin_addr = ip->ip_src;
1574 src.sin.sin_port = th->th_sport;
1575
1576 dst.sin.sin_len = sizeof(struct sockaddr_in);
1577 dst.sin.sin_family = AF_INET;
1578 dst.sin.sin_addr = ip->ip_dst;
1579 dst.sin.sin_port = th->th_dport;
1580 break;
1581 #ifdef INET6
1582 case AF_INET6:
1583 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1584 src.sin6.sin6_family = AF_INET6;
1585 src.sin6.sin6_addr = ip6->ip6_src;
1586 src.sin6.sin6_port = th->th_sport;
1587
1588 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1589 dst.sin6.sin6_family = AF_INET6;
1590 dst.sin6.sin6_addr = ip6->ip6_dst;
1591 dst.sin6.sin6_port = th->th_dport;
1592 break;
1593 #endif
1594 }
1595
1596 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1597 if (tiflags & TH_RST) {
1598 syn_cache_reset(&src.sa, &dst.sa, th);
1599 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1600 (TH_ACK|TH_SYN)) {
1601 /*
1602 * Received a SYN,ACK. This should never
1603 * happen while we are in LISTEN. Send an RST.
1604 */
1605 goto badsyn;
1606 } else if (tiflags & TH_ACK) {
1607 so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1608 if (so == NULL) {
1609 /*
1610 * We don't have a SYN for this ACK;
1611 * send an RST.
1612 */
1613 goto badsyn;
1614 } else if (so == (struct socket *)(-1)) {
1615 /*
1616 * We were unable to create the
1617 * connection. If the 3-way handshake
1618 * was completed, and RST has been
1619 * sent to the peer. Since the mbuf
1620 * might be in use for the reply, do
1621 * not free it.
1622 */
1623 m = NULL;
1624 } else {
1625 /*
1626 * We have created a full-blown
1627 * connection.
1628 */
1629 tp = NULL;
1630 inp = NULL;
1631 #ifdef INET6
1632 in6p = NULL;
1633 #endif
1634 switch (so->so_proto->pr_domain->dom_family) {
1635 case AF_INET:
1636 inp = sotoinpcb(so);
1637 tp = intotcpcb(inp);
1638 break;
1639 #ifdef INET6
1640 case AF_INET6:
1641 in6p = sotoin6pcb(so);
1642 tp = in6totcpcb(in6p);
1643 break;
1644 #endif
1645 }
1646 if (tp == NULL)
1647 goto badsyn; /*XXX*/
1648 tiwin <<= tp->snd_scale;
1649 goto after_listen;
1650 }
1651 } else {
1652 /*
1653 * None of RST, SYN or ACK was set.
1654 * This is an invalid packet for a
1655 * TCB in LISTEN state. Send a RST.
1656 */
1657 goto badsyn;
1658 }
1659 } else {
1660 /*
1661 * Received a SYN.
1662 */
1663
1664 #ifdef INET6
1665 /*
1666 * If deprecated address is forbidden, we do
1667 * not accept SYN to deprecated interface
1668 * address to prevent any new inbound
1669 * connection from getting established.
1670 * When we do not accept SYN, we send a TCP
1671 * RST, with deprecated source address (instead
1672 * of dropping it). We compromise it as it is
1673 * much better for peer to send a RST, and
1674 * RST will be the final packet for the
1675 * exchange.
1676 *
1677 * If we do not forbid deprecated addresses, we
1678 * accept the SYN packet. RFC2462 does not
1679 * suggest dropping SYN in this case.
1680 * If we decipher RFC2462 5.5.4, it says like
1681 * this:
1682 * 1. use of deprecated addr with existing
1683 * communication is okay - "SHOULD continue
1684 * to be used"
1685 * 2. use of it with new communication:
1686 * (2a) "SHOULD NOT be used if alternate
1687 * address with sufficient scope is
1688 * available"
1689 * (2b) nothing mentioned otherwise.
1690 * Here we fall into (2b) case as we have no
1691 * choice in our source address selection - we
1692 * must obey the peer.
1693 *
1694 * The wording in RFC2462 is confusing, and
1695 * there are multiple description text for
1696 * deprecated address handling - worse, they
1697 * are not exactly the same. I believe 5.5.4
1698 * is the best one, so we follow 5.5.4.
1699 */
1700 if (af == AF_INET6 && !ip6_use_deprecated) {
1701 struct in6_ifaddr *ia6;
1702 int s;
1703 struct ifnet *rcvif = m_get_rcvif(m, &s);
1704 if (rcvif == NULL)
1705 goto dropwithreset; /* XXX */
1706 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1707 &ip6->ip6_dst)) &&
1708 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1709 tp = NULL;
1710 m_put_rcvif(rcvif, &s);
1711 goto dropwithreset;
1712 }
1713 m_put_rcvif(rcvif, &s);
1714 }
1715 #endif
1716
1717 /*
1718 * LISTEN socket received a SYN from itself? This
1719 * can't possibly be valid; drop the packet.
1720 */
1721 if (th->th_sport == th->th_dport) {
1722 int eq = 0;
1723
1724 switch (af) {
1725 case AF_INET:
1726 eq = in_hosteq(ip->ip_src, ip->ip_dst);
1727 break;
1728 #ifdef INET6
1729 case AF_INET6:
1730 eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1731 &ip6->ip6_dst);
1732 break;
1733 #endif
1734 }
1735 if (eq) {
1736 TCP_STATINC(TCP_STAT_BADSYN);
1737 goto drop;
1738 }
1739 }
1740
1741 /*
1742 * SYN looks ok; create compressed TCP
1743 * state for it.
1744 */
1745 if (so->so_qlen <= so->so_qlimit &&
1746 syn_cache_add(&src.sa, &dst.sa, th, toff,
1747 so, m, optp, optlen, &opti))
1748 m = NULL;
1749 }
1750
1751 goto drop;
1752 }
1753
1754 after_listen:
1755 /*
1756 * From here on, we're dealing with !LISTEN.
1757 */
1758 KASSERT(tp->t_state != TCPS_LISTEN);
1759
1760 /*
1761 * Segment received on connection.
1762 * Reset idle time and keep-alive timer.
1763 */
1764 tp->t_rcvtime = tcp_now;
1765 if (TCPS_HAVEESTABLISHED(tp->t_state))
1766 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1767
1768 /*
1769 * Process options.
1770 */
1771 #ifdef TCP_SIGNATURE
1772 if (optp || (tp->t_flags & TF_SIGNATURE))
1773 #else
1774 if (optp)
1775 #endif
1776 if (tcp_dooptions(tp, optp, optlen, th, m, toff, &opti) < 0)
1777 goto drop;
1778
1779 if (TCP_SACK_ENABLED(tp)) {
1780 tcp_del_sackholes(tp, th);
1781 }
1782
1783 if (TCP_ECN_ALLOWED(tp)) {
1784 if (tiflags & TH_CWR) {
1785 tp->t_flags &= ~TF_ECN_SND_ECE;
1786 }
1787 switch (iptos & IPTOS_ECN_MASK) {
1788 case IPTOS_ECN_CE:
1789 tp->t_flags |= TF_ECN_SND_ECE;
1790 TCP_STATINC(TCP_STAT_ECN_CE);
1791 break;
1792 case IPTOS_ECN_ECT0:
1793 TCP_STATINC(TCP_STAT_ECN_ECT);
1794 break;
1795 case IPTOS_ECN_ECT1:
1796 /* XXX: ignore for now -- rpaulo */
1797 break;
1798 }
1799 /*
1800 * Congestion experienced.
1801 * Ignore if we are already trying to recover.
1802 */
1803 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1804 tp->t_congctl->cong_exp(tp);
1805 }
1806
1807 if (opti.ts_present && opti.ts_ecr) {
1808 /*
1809 * Calculate the RTT from the returned time stamp and the
1810 * connection's time base. If the time stamp is later than
1811 * the current time, or is extremely old, fall back to non-1323
1812 * RTT calculation. Since ts_rtt is unsigned, we can test both
1813 * at the same time.
1814 *
1815 * Note that ts_rtt is in units of slow ticks (500
1816 * ms). Since most earthbound RTTs are < 500 ms,
1817 * observed values will have large quantization noise.
1818 * Our smoothed RTT is then the fraction of observed
1819 * samples that are 1 tick instead of 0 (times 500
1820 * ms).
1821 *
1822 * ts_rtt is increased by 1 to denote a valid sample,
1823 * with 0 indicating an invalid measurement. This
1824 * extra 1 must be removed when ts_rtt is used, or
1825 * else an an erroneous extra 500 ms will result.
1826 */
1827 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1828 if (ts_rtt > TCP_PAWS_IDLE)
1829 ts_rtt = 0;
1830 } else {
1831 ts_rtt = 0;
1832 }
1833
1834 /*
1835 * Fast path: check for the two common cases of a uni-directional
1836 * data transfer. If:
1837 * o We are in the ESTABLISHED state, and
1838 * o The packet has no control flags, and
1839 * o The packet is in-sequence, and
1840 * o The window didn't change, and
1841 * o We are not retransmitting
1842 * It's a candidate.
1843 *
1844 * If the length (tlen) is zero and the ack moved forward, we're
1845 * the sender side of the transfer. Just free the data acked and
1846 * wake any higher level process that was blocked waiting for
1847 * space.
1848 *
1849 * If the length is non-zero and the ack didn't move, we're the
1850 * receiver side. If we're getting packets in-order (the reassembly
1851 * queue is empty), add the data to the socket buffer and note
1852 * that we need a delayed ack.
1853 */
1854 if (tp->t_state == TCPS_ESTABLISHED &&
1855 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1856 == TH_ACK &&
1857 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1858 th->th_seq == tp->rcv_nxt &&
1859 tiwin && tiwin == tp->snd_wnd &&
1860 tp->snd_nxt == tp->snd_max) {
1861
1862 /*
1863 * If last ACK falls within this segment's sequence numbers,
1864 * record the timestamp.
1865 * NOTE that the test is modified according to the latest
1866 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1867 *
1868 * note that we already know
1869 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1870 */
1871 if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1872 tp->ts_recent_age = tcp_now;
1873 tp->ts_recent = opti.ts_val;
1874 }
1875
1876 if (tlen == 0) {
1877 /* Ack prediction. */
1878 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1879 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1880 tp->snd_cwnd >= tp->snd_wnd &&
1881 tp->t_partialacks < 0) {
1882 /*
1883 * this is a pure ack for outstanding data.
1884 */
1885 if (ts_rtt)
1886 tcp_xmit_timer(tp, ts_rtt - 1);
1887 else if (tp->t_rtttime &&
1888 SEQ_GT(th->th_ack, tp->t_rtseq))
1889 tcp_xmit_timer(tp,
1890 tcp_now - tp->t_rtttime);
1891 acked = th->th_ack - tp->snd_una;
1892 tcps = TCP_STAT_GETREF();
1893 tcps[TCP_STAT_PREDACK]++;
1894 tcps[TCP_STAT_RCVACKPACK]++;
1895 tcps[TCP_STAT_RCVACKBYTE] += acked;
1896 TCP_STAT_PUTREF();
1897 nd6_hint(tp);
1898
1899 if (acked > (tp->t_lastoff - tp->t_inoff))
1900 tp->t_lastm = NULL;
1901 sbdrop(&so->so_snd, acked);
1902 tp->t_lastoff -= acked;
1903
1904 icmp_check(tp, th, acked);
1905
1906 tp->snd_una = th->th_ack;
1907 tp->snd_fack = tp->snd_una;
1908 if (SEQ_LT(tp->snd_high, tp->snd_una))
1909 tp->snd_high = tp->snd_una;
1910 m_freem(m);
1911
1912 /*
1913 * If all outstanding data are acked, stop
1914 * retransmit timer, otherwise restart timer
1915 * using current (possibly backed-off) value.
1916 * If process is waiting for space,
1917 * wakeup/selnotify/signal. If data
1918 * are ready to send, let tcp_output
1919 * decide between more output or persist.
1920 */
1921 if (tp->snd_una == tp->snd_max)
1922 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1923 else if (TCP_TIMER_ISARMED(tp,
1924 TCPT_PERSIST) == 0)
1925 TCP_TIMER_ARM(tp, TCPT_REXMT,
1926 tp->t_rxtcur);
1927
1928 sowwakeup(so);
1929 if (so->so_snd.sb_cc) {
1930 KERNEL_LOCK(1, NULL);
1931 (void)tcp_output(tp);
1932 KERNEL_UNLOCK_ONE(NULL);
1933 }
1934 if (tcp_saveti)
1935 m_freem(tcp_saveti);
1936 return;
1937 }
1938 } else if (th->th_ack == tp->snd_una &&
1939 TAILQ_FIRST(&tp->segq) == NULL &&
1940 tlen <= sbspace(&so->so_rcv)) {
1941 int newsize = 0;
1942
1943 /*
1944 * this is a pure, in-sequence data packet
1945 * with nothing on the reassembly queue and
1946 * we have enough buffer space to take it.
1947 */
1948 tp->rcv_nxt += tlen;
1949 tcps = TCP_STAT_GETREF();
1950 tcps[TCP_STAT_PREDDAT]++;
1951 tcps[TCP_STAT_RCVPACK]++;
1952 tcps[TCP_STAT_RCVBYTE] += tlen;
1953 TCP_STAT_PUTREF();
1954 nd6_hint(tp);
1955
1956 /*
1957 * Automatic sizing enables the performance of large buffers
1958 * and most of the efficiency of small ones by only allocating
1959 * space when it is needed.
1960 *
1961 * On the receive side the socket buffer memory is only rarely
1962 * used to any significant extent. This allows us to be much
1963 * more aggressive in scaling the receive socket buffer. For
1964 * the case that the buffer space is actually used to a large
1965 * extent and we run out of kernel memory we can simply drop
1966 * the new segments; TCP on the sender will just retransmit it
1967 * later. Setting the buffer size too big may only consume too
1968 * much kernel memory if the application doesn't read() from
1969 * the socket or packet loss or reordering makes use of the
1970 * reassembly queue.
1971 *
1972 * The criteria to step up the receive buffer one notch are:
1973 * 1. the number of bytes received during the time it takes
1974 * one timestamp to be reflected back to us (the RTT);
1975 * 2. received bytes per RTT is within seven eighth of the
1976 * current socket buffer size;
1977 * 3. receive buffer size has not hit maximal automatic size;
1978 *
1979 * This algorithm does one step per RTT at most and only if
1980 * we receive a bulk stream w/o packet losses or reorderings.
1981 * Shrinking the buffer during idle times is not necessary as
1982 * it doesn't consume any memory when idle.
1983 *
1984 * TODO: Only step up if the application is actually serving
1985 * the buffer to better manage the socket buffer resources.
1986 */
1987 if (tcp_do_autorcvbuf &&
1988 opti.ts_ecr &&
1989 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
1990 if (opti.ts_ecr > tp->rfbuf_ts &&
1991 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
1992 if (tp->rfbuf_cnt >
1993 (so->so_rcv.sb_hiwat / 8 * 7) &&
1994 so->so_rcv.sb_hiwat <
1995 tcp_autorcvbuf_max) {
1996 newsize =
1997 min(so->so_rcv.sb_hiwat +
1998 tcp_autorcvbuf_inc,
1999 tcp_autorcvbuf_max);
2000 }
2001 /* Start over with next RTT. */
2002 tp->rfbuf_ts = 0;
2003 tp->rfbuf_cnt = 0;
2004 } else
2005 tp->rfbuf_cnt += tlen; /* add up */
2006 }
2007
2008 /*
2009 * Drop TCP, IP headers and TCP options then add data
2010 * to socket buffer.
2011 */
2012 if (so->so_state & SS_CANTRCVMORE) {
2013 m_freem(m);
2014 } else {
2015 /*
2016 * Set new socket buffer size.
2017 * Give up when limit is reached.
2018 */
2019 if (newsize)
2020 if (!sbreserve(&so->so_rcv,
2021 newsize, so))
2022 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2023 m_adj(m, toff + off);
2024 sbappendstream(&so->so_rcv, m);
2025 }
2026 sorwakeup(so);
2027 tcp_setup_ack(tp, th);
2028 if (tp->t_flags & TF_ACKNOW) {
2029 KERNEL_LOCK(1, NULL);
2030 (void)tcp_output(tp);
2031 KERNEL_UNLOCK_ONE(NULL);
2032 }
2033 if (tcp_saveti)
2034 m_freem(tcp_saveti);
2035 return;
2036 }
2037 }
2038
2039 /*
2040 * Compute mbuf offset to TCP data segment.
2041 */
2042 hdroptlen = toff + off;
2043
2044 /*
2045 * Calculate amount of space in receive window. Receive window is
2046 * amount of space in rcv queue, but not less than advertised
2047 * window.
2048 */
2049 {
2050 int win;
2051 win = sbspace(&so->so_rcv);
2052 if (win < 0)
2053 win = 0;
2054 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2055 }
2056
2057 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2058 tp->rfbuf_ts = 0;
2059 tp->rfbuf_cnt = 0;
2060
2061 switch (tp->t_state) {
2062 /*
2063 * If the state is SYN_SENT:
2064 * if seg contains an ACK, but not for our SYN, drop the input.
2065 * if seg contains a RST, then drop the connection.
2066 * if seg does not contain SYN, then drop it.
2067 * Otherwise this is an acceptable SYN segment
2068 * initialize tp->rcv_nxt and tp->irs
2069 * if seg contains ack then advance tp->snd_una
2070 * if seg contains a ECE and ECN support is enabled, the stream
2071 * is ECN capable.
2072 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2073 * arrange for segment to be acked (eventually)
2074 * continue processing rest of data/controls, beginning with URG
2075 */
2076 case TCPS_SYN_SENT:
2077 if ((tiflags & TH_ACK) &&
2078 (SEQ_LEQ(th->th_ack, tp->iss) ||
2079 SEQ_GT(th->th_ack, tp->snd_max)))
2080 goto dropwithreset;
2081 if (tiflags & TH_RST) {
2082 if (tiflags & TH_ACK)
2083 tp = tcp_drop(tp, ECONNREFUSED);
2084 goto drop;
2085 }
2086 if ((tiflags & TH_SYN) == 0)
2087 goto drop;
2088 if (tiflags & TH_ACK) {
2089 tp->snd_una = th->th_ack;
2090 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2091 tp->snd_nxt = tp->snd_una;
2092 if (SEQ_LT(tp->snd_high, tp->snd_una))
2093 tp->snd_high = tp->snd_una;
2094 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2095
2096 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2097 tp->t_flags |= TF_ECN_PERMIT;
2098 TCP_STATINC(TCP_STAT_ECN_SHS);
2099 }
2100 }
2101 tp->irs = th->th_seq;
2102 tcp_rcvseqinit(tp);
2103 tp->t_flags |= TF_ACKNOW;
2104 tcp_mss_from_peer(tp, opti.maxseg);
2105
2106 /*
2107 * Initialize the initial congestion window. If we
2108 * had to retransmit the SYN, we must initialize cwnd
2109 * to 1 segment (i.e. the Loss Window).
2110 */
2111 if (tp->t_flags & TF_SYN_REXMT)
2112 tp->snd_cwnd = tp->t_peermss;
2113 else {
2114 int ss = tcp_init_win;
2115 if (inp != NULL && in_localaddr(inp->inp_faddr))
2116 ss = tcp_init_win_local;
2117 #ifdef INET6
2118 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2119 ss = tcp_init_win_local;
2120 #endif
2121 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2122 }
2123
2124 tcp_rmx_rtt(tp);
2125 if (tiflags & TH_ACK) {
2126 TCP_STATINC(TCP_STAT_CONNECTS);
2127 /*
2128 * move tcp_established before soisconnected
2129 * because upcall handler can drive tcp_output
2130 * functionality.
2131 * XXX we might call soisconnected at the end of
2132 * all processing
2133 */
2134 tcp_established(tp);
2135 soisconnected(so);
2136 /* Do window scaling on this connection? */
2137 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2138 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2139 tp->snd_scale = tp->requested_s_scale;
2140 tp->rcv_scale = tp->request_r_scale;
2141 }
2142 TCP_REASS_LOCK(tp);
2143 (void)tcp_reass(tp, NULL, NULL, tlen);
2144 /*
2145 * if we didn't have to retransmit the SYN,
2146 * use its rtt as our initial srtt & rtt var.
2147 */
2148 if (tp->t_rtttime)
2149 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2150 } else {
2151 tp->t_state = TCPS_SYN_RECEIVED;
2152 }
2153
2154 /*
2155 * Advance th->th_seq to correspond to first data byte.
2156 * If data, trim to stay within window,
2157 * dropping FIN if necessary.
2158 */
2159 th->th_seq++;
2160 if (tlen > tp->rcv_wnd) {
2161 todrop = tlen - tp->rcv_wnd;
2162 m_adj(m, -todrop);
2163 tlen = tp->rcv_wnd;
2164 tiflags &= ~TH_FIN;
2165 tcps = TCP_STAT_GETREF();
2166 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2167 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2168 TCP_STAT_PUTREF();
2169 }
2170 tp->snd_wl1 = th->th_seq - 1;
2171 tp->rcv_up = th->th_seq;
2172 goto step6;
2173
2174 /*
2175 * If the state is SYN_RECEIVED:
2176 * If seg contains an ACK, but not for our SYN, drop the input
2177 * and generate an RST. See page 36, rfc793
2178 */
2179 case TCPS_SYN_RECEIVED:
2180 if ((tiflags & TH_ACK) &&
2181 (SEQ_LEQ(th->th_ack, tp->iss) ||
2182 SEQ_GT(th->th_ack, tp->snd_max)))
2183 goto dropwithreset;
2184 break;
2185 }
2186
2187 /*
2188 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2189 */
2190 KASSERT(tp->t_state != TCPS_LISTEN &&
2191 tp->t_state != TCPS_SYN_SENT);
2192
2193 /*
2194 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2195 * it's less than ts_recent, drop it.
2196 */
2197 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2198 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2199 /* Check to see if ts_recent is over 24 days old. */
2200 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2201 /*
2202 * Invalidate ts_recent. If this segment updates
2203 * ts_recent, the age will be reset later and ts_recent
2204 * will get a valid value. If it does not, setting
2205 * ts_recent to zero will at least satisfy the
2206 * requirement that zero be placed in the timestamp
2207 * echo reply when ts_recent isn't valid. The
2208 * age isn't reset until we get a valid ts_recent
2209 * because we don't want out-of-order segments to be
2210 * dropped when ts_recent is old.
2211 */
2212 tp->ts_recent = 0;
2213 } else {
2214 tcps = TCP_STAT_GETREF();
2215 tcps[TCP_STAT_RCVDUPPACK]++;
2216 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2217 tcps[TCP_STAT_PAWSDROP]++;
2218 TCP_STAT_PUTREF();
2219 tcp_new_dsack(tp, th->th_seq, tlen);
2220 goto dropafterack;
2221 }
2222 }
2223
2224 /*
2225 * Check that at least some bytes of the segment are within the
2226 * receive window. If segment begins before rcv_nxt, drop leading
2227 * data (and SYN); if nothing left, just ack.
2228 */
2229 todrop = tp->rcv_nxt - th->th_seq;
2230 dupseg = false;
2231 if (todrop > 0) {
2232 if (tiflags & TH_SYN) {
2233 tiflags &= ~TH_SYN;
2234 th->th_seq++;
2235 tcp_urp_drop(th, 1, &tiflags);
2236 todrop--;
2237 }
2238 if (todrop > tlen ||
2239 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2240 /*
2241 * Any valid FIN or RST must be to the left of the
2242 * window. At this point the FIN or RST must be a
2243 * duplicate or out of sequence; drop it.
2244 */
2245 if (tiflags & TH_RST)
2246 goto drop;
2247 tiflags &= ~(TH_FIN|TH_RST);
2248
2249 /*
2250 * Send an ACK to resynchronize and drop any data.
2251 * But keep on processing for RST or ACK.
2252 */
2253 tp->t_flags |= TF_ACKNOW;
2254 todrop = tlen;
2255 dupseg = true;
2256 tcps = TCP_STAT_GETREF();
2257 tcps[TCP_STAT_RCVDUPPACK]++;
2258 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2259 TCP_STAT_PUTREF();
2260 } else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2261 /*
2262 * Test for reset before adjusting the sequence
2263 * number for overlapping data.
2264 */
2265 goto dropafterack_ratelim;
2266 } else {
2267 tcps = TCP_STAT_GETREF();
2268 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2269 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2270 TCP_STAT_PUTREF();
2271 }
2272 tcp_new_dsack(tp, th->th_seq, todrop);
2273 hdroptlen += todrop; /* drop from head afterwards (m_adj) */
2274 th->th_seq += todrop;
2275 tlen -= todrop;
2276 tcp_urp_drop(th, todrop, &tiflags);
2277 }
2278
2279 /*
2280 * If new data is received on a connection after the user processes
2281 * are gone, then RST the other end.
2282 */
2283 if ((so->so_state & SS_NOFDREF) &&
2284 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2285 tp = tcp_close(tp);
2286 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2287 goto dropwithreset;
2288 }
2289
2290 /*
2291 * If the segment ends after the window, drop trailing data (and
2292 * PUSH and FIN); if nothing left, just ACK.
2293 */
2294 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2295 if (todrop > 0) {
2296 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2297 if (todrop >= tlen) {
2298 /*
2299 * The segment actually starts after the window.
2300 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2301 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2302 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2303 */
2304 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2305
2306 /*
2307 * If a new connection request is received while in
2308 * TIME_WAIT, drop the old connection and start over
2309 * if the sequence numbers are above the previous
2310 * ones.
2311 *
2312 * NOTE: We need to put the header fields back into
2313 * network order.
2314 */
2315 if ((tiflags & TH_SYN) &&
2316 tp->t_state == TCPS_TIME_WAIT &&
2317 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2318 tp = tcp_close(tp);
2319 tcp_fields_to_net(th);
2320 m_freem(tcp_saveti);
2321 tcp_saveti = NULL;
2322 goto findpcb;
2323 }
2324
2325 /*
2326 * If window is closed can only take segments at
2327 * window edge, and have to drop data and PUSH from
2328 * incoming segments. Continue processing, but
2329 * remember to ack. Otherwise, drop segment
2330 * and (if not RST) ack.
2331 */
2332 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2333 KASSERT(todrop == tlen);
2334 tp->t_flags |= TF_ACKNOW;
2335 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2336 } else {
2337 goto dropafterack;
2338 }
2339 } else {
2340 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2341 }
2342 m_adj(m, -todrop);
2343 tlen -= todrop;
2344 tiflags &= ~(TH_PUSH|TH_FIN);
2345 }
2346
2347 /*
2348 * If last ACK falls within this segment's sequence numbers,
2349 * record the timestamp.
2350 * NOTE:
2351 * 1) That the test incorporates suggestions from the latest
2352 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2353 * 2) That updating only on newer timestamps interferes with
2354 * our earlier PAWS tests, so this check should be solely
2355 * predicated on the sequence space of this segment.
2356 * 3) That we modify the segment boundary check to be
2357 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2358 * instead of RFC1323's
2359 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2360 * This modified check allows us to overcome RFC1323's
2361 * limitations as described in Stevens TCP/IP Illustrated
2362 * Vol. 2 p.869. In such cases, we can still calculate the
2363 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2364 */
2365 if (opti.ts_present &&
2366 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2367 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2368 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2369 tp->ts_recent_age = tcp_now;
2370 tp->ts_recent = opti.ts_val;
2371 }
2372
2373 /*
2374 * If the RST bit is set examine the state:
2375 * RECEIVED state:
2376 * If passive open, return to LISTEN state.
2377 * If active open, inform user that connection was refused.
2378 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2379 * Inform user that connection was reset, and close tcb.
2380 * CLOSING, LAST_ACK, TIME_WAIT states:
2381 * Close the tcb.
2382 */
2383 if (tiflags & TH_RST) {
2384 if (th->th_seq != tp->rcv_nxt)
2385 goto dropafterack_ratelim;
2386
2387 switch (tp->t_state) {
2388 case TCPS_SYN_RECEIVED:
2389 so->so_error = ECONNREFUSED;
2390 goto close;
2391
2392 case TCPS_ESTABLISHED:
2393 case TCPS_FIN_WAIT_1:
2394 case TCPS_FIN_WAIT_2:
2395 case TCPS_CLOSE_WAIT:
2396 so->so_error = ECONNRESET;
2397 close:
2398 tp->t_state = TCPS_CLOSED;
2399 TCP_STATINC(TCP_STAT_DROPS);
2400 tp = tcp_close(tp);
2401 goto drop;
2402
2403 case TCPS_CLOSING:
2404 case TCPS_LAST_ACK:
2405 case TCPS_TIME_WAIT:
2406 tp = tcp_close(tp);
2407 goto drop;
2408 }
2409 }
2410
2411 /*
2412 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2413 * we must be in a synchronized state. RFC791 states (under RST
2414 * generation) that any unacceptable segment (an out-of-order SYN
2415 * qualifies) received in a synchronized state must elicit only an
2416 * empty acknowledgment segment ... and the connection remains in
2417 * the same state.
2418 */
2419 if (tiflags & TH_SYN) {
2420 if (tp->rcv_nxt == th->th_seq) {
2421 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2422 TH_ACK);
2423 if (tcp_saveti)
2424 m_freem(tcp_saveti);
2425 return;
2426 }
2427
2428 goto dropafterack_ratelim;
2429 }
2430
2431 /*
2432 * If the ACK bit is off we drop the segment and return.
2433 */
2434 if ((tiflags & TH_ACK) == 0) {
2435 if (tp->t_flags & TF_ACKNOW)
2436 goto dropafterack;
2437 goto drop;
2438 }
2439
2440 /*
2441 * From here on, we're doing ACK processing.
2442 */
2443
2444 switch (tp->t_state) {
2445 /*
2446 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2447 * ESTABLISHED state and continue processing, otherwise
2448 * send an RST.
2449 */
2450 case TCPS_SYN_RECEIVED:
2451 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2452 SEQ_GT(th->th_ack, tp->snd_max))
2453 goto dropwithreset;
2454 TCP_STATINC(TCP_STAT_CONNECTS);
2455 soisconnected(so);
2456 tcp_established(tp);
2457 /* Do window scaling? */
2458 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2459 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2460 tp->snd_scale = tp->requested_s_scale;
2461 tp->rcv_scale = tp->request_r_scale;
2462 }
2463 TCP_REASS_LOCK(tp);
2464 (void)tcp_reass(tp, NULL, NULL, tlen);
2465 tp->snd_wl1 = th->th_seq - 1;
2466 /* FALLTHROUGH */
2467
2468 /*
2469 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2470 * ACKs. If the ack is in the range
2471 * tp->snd_una < th->th_ack <= tp->snd_max
2472 * then advance tp->snd_una to th->th_ack and drop
2473 * data from the retransmission queue. If this ACK reflects
2474 * more up to date window information we update our window information.
2475 */
2476 case TCPS_ESTABLISHED:
2477 case TCPS_FIN_WAIT_1:
2478 case TCPS_FIN_WAIT_2:
2479 case TCPS_CLOSE_WAIT:
2480 case TCPS_CLOSING:
2481 case TCPS_LAST_ACK:
2482 case TCPS_TIME_WAIT:
2483 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2484 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2485 TCP_STATINC(TCP_STAT_RCVDUPACK);
2486 /*
2487 * If we have outstanding data (other than
2488 * a window probe), this is a completely
2489 * duplicate ack (ie, window info didn't
2490 * change), the ack is the biggest we've
2491 * seen and we've seen exactly our rexmt
2492 * threshhold of them, assume a packet
2493 * has been dropped and retransmit it.
2494 * Kludge snd_nxt & the congestion
2495 * window so we send only this one
2496 * packet.
2497 */
2498 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2499 th->th_ack != tp->snd_una)
2500 tp->t_dupacks = 0;
2501 else if (tp->t_partialacks < 0 &&
2502 (++tp->t_dupacks == tcprexmtthresh ||
2503 TCP_FACK_FASTRECOV(tp))) {
2504 /*
2505 * Do the fast retransmit, and adjust
2506 * congestion control paramenters.
2507 */
2508 if (tp->t_congctl->fast_retransmit(tp, th)) {
2509 /* False fast retransmit */
2510 break;
2511 }
2512 goto drop;
2513 } else if (tp->t_dupacks > tcprexmtthresh) {
2514 tp->snd_cwnd += tp->t_segsz;
2515 KERNEL_LOCK(1, NULL);
2516 (void)tcp_output(tp);
2517 KERNEL_UNLOCK_ONE(NULL);
2518 goto drop;
2519 }
2520 } else {
2521 /*
2522 * If the ack appears to be very old, only
2523 * allow data that is in-sequence. This
2524 * makes it somewhat more difficult to insert
2525 * forged data by guessing sequence numbers.
2526 * Sent an ack to try to update the send
2527 * sequence number on the other side.
2528 */
2529 if (tlen && th->th_seq != tp->rcv_nxt &&
2530 SEQ_LT(th->th_ack,
2531 tp->snd_una - tp->max_sndwnd))
2532 goto dropafterack;
2533 }
2534 break;
2535 }
2536 /*
2537 * If the congestion window was inflated to account
2538 * for the other side's cached packets, retract it.
2539 */
2540 tp->t_congctl->fast_retransmit_newack(tp, th);
2541
2542 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2543 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2544 goto dropafterack;
2545 }
2546 acked = th->th_ack - tp->snd_una;
2547 tcps = TCP_STAT_GETREF();
2548 tcps[TCP_STAT_RCVACKPACK]++;
2549 tcps[TCP_STAT_RCVACKBYTE] += acked;
2550 TCP_STAT_PUTREF();
2551
2552 /*
2553 * If we have a timestamp reply, update smoothed
2554 * round trip time. If no timestamp is present but
2555 * transmit timer is running and timed sequence
2556 * number was acked, update smoothed round trip time.
2557 * Since we now have an rtt measurement, cancel the
2558 * timer backoff (cf., Phil Karn's retransmit alg.).
2559 * Recompute the initial retransmit timer.
2560 */
2561 if (ts_rtt)
2562 tcp_xmit_timer(tp, ts_rtt - 1);
2563 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2564 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2565
2566 /*
2567 * If all outstanding data is acked, stop retransmit
2568 * timer and remember to restart (more output or persist).
2569 * If there is more data to be acked, restart retransmit
2570 * timer, using current (possibly backed-off) value.
2571 */
2572 if (th->th_ack == tp->snd_max) {
2573 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2574 needoutput = 1;
2575 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2576 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2577
2578 /*
2579 * New data has been acked, adjust the congestion window.
2580 */
2581 tp->t_congctl->newack(tp, th);
2582
2583 nd6_hint(tp);
2584 if (acked > so->so_snd.sb_cc) {
2585 tp->snd_wnd -= so->so_snd.sb_cc;
2586 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2587 ourfinisacked = 1;
2588 } else {
2589 if (acked > (tp->t_lastoff - tp->t_inoff))
2590 tp->t_lastm = NULL;
2591 sbdrop(&so->so_snd, acked);
2592 tp->t_lastoff -= acked;
2593 if (tp->snd_wnd > acked)
2594 tp->snd_wnd -= acked;
2595 else
2596 tp->snd_wnd = 0;
2597 ourfinisacked = 0;
2598 }
2599 sowwakeup(so);
2600
2601 icmp_check(tp, th, acked);
2602
2603 tp->snd_una = th->th_ack;
2604 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2605 tp->snd_fack = tp->snd_una;
2606 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2607 tp->snd_nxt = tp->snd_una;
2608 if (SEQ_LT(tp->snd_high, tp->snd_una))
2609 tp->snd_high = tp->snd_una;
2610
2611 switch (tp->t_state) {
2612
2613 /*
2614 * In FIN_WAIT_1 STATE in addition to the processing
2615 * for the ESTABLISHED state if our FIN is now acknowledged
2616 * then enter FIN_WAIT_2.
2617 */
2618 case TCPS_FIN_WAIT_1:
2619 if (ourfinisacked) {
2620 /*
2621 * If we can't receive any more
2622 * data, then closing user can proceed.
2623 * Starting the timer is contrary to the
2624 * specification, but if we don't get a FIN
2625 * we'll hang forever.
2626 */
2627 if (so->so_state & SS_CANTRCVMORE) {
2628 soisdisconnected(so);
2629 if (tp->t_maxidle > 0)
2630 TCP_TIMER_ARM(tp, TCPT_2MSL,
2631 tp->t_maxidle);
2632 }
2633 tp->t_state = TCPS_FIN_WAIT_2;
2634 }
2635 break;
2636
2637 /*
2638 * In CLOSING STATE in addition to the processing for
2639 * the ESTABLISHED state if the ACK acknowledges our FIN
2640 * then enter the TIME-WAIT state, otherwise ignore
2641 * the segment.
2642 */
2643 case TCPS_CLOSING:
2644 if (ourfinisacked) {
2645 tp->t_state = TCPS_TIME_WAIT;
2646 tcp_canceltimers(tp);
2647 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2648 soisdisconnected(so);
2649 }
2650 break;
2651
2652 /*
2653 * In LAST_ACK, we may still be waiting for data to drain
2654 * and/or to be acked, as well as for the ack of our FIN.
2655 * If our FIN is now acknowledged, delete the TCB,
2656 * enter the closed state and return.
2657 */
2658 case TCPS_LAST_ACK:
2659 if (ourfinisacked) {
2660 tp = tcp_close(tp);
2661 goto drop;
2662 }
2663 break;
2664
2665 /*
2666 * In TIME_WAIT state the only thing that should arrive
2667 * is a retransmission of the remote FIN. Acknowledge
2668 * it and restart the finack timer.
2669 */
2670 case TCPS_TIME_WAIT:
2671 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2672 goto dropafterack;
2673 }
2674 }
2675
2676 step6:
2677 /*
2678 * Update window information.
2679 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2680 */
2681 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2682 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2683 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2684 /* keep track of pure window updates */
2685 if (tlen == 0 &&
2686 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2687 TCP_STATINC(TCP_STAT_RCVWINUPD);
2688 tp->snd_wnd = tiwin;
2689 tp->snd_wl1 = th->th_seq;
2690 tp->snd_wl2 = th->th_ack;
2691 if (tp->snd_wnd > tp->max_sndwnd)
2692 tp->max_sndwnd = tp->snd_wnd;
2693 needoutput = 1;
2694 }
2695
2696 /*
2697 * Process segments with URG.
2698 */
2699 if ((tiflags & TH_URG) && th->th_urp &&
2700 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2701 /*
2702 * This is a kludge, but if we receive and accept
2703 * random urgent pointers, we'll crash in
2704 * soreceive. It's hard to imagine someone
2705 * actually wanting to send this much urgent data.
2706 */
2707 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2708 th->th_urp = 0; /* XXX */
2709 tiflags &= ~TH_URG; /* XXX */
2710 goto dodata; /* XXX */
2711 }
2712
2713 /*
2714 * If this segment advances the known urgent pointer,
2715 * then mark the data stream. This should not happen
2716 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2717 * a FIN has been received from the remote side.
2718 * In these states we ignore the URG.
2719 *
2720 * According to RFC961 (Assigned Protocols),
2721 * the urgent pointer points to the last octet
2722 * of urgent data. We continue, however,
2723 * to consider it to indicate the first octet
2724 * of data past the urgent section as the original
2725 * spec states (in one of two places).
2726 */
2727 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2728 tp->rcv_up = th->th_seq + th->th_urp;
2729 so->so_oobmark = so->so_rcv.sb_cc +
2730 (tp->rcv_up - tp->rcv_nxt) - 1;
2731 if (so->so_oobmark == 0)
2732 so->so_state |= SS_RCVATMARK;
2733 sohasoutofband(so);
2734 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2735 }
2736
2737 /*
2738 * Remove out of band data so doesn't get presented to user.
2739 * This can happen independent of advancing the URG pointer,
2740 * but if two URG's are pending at once, some out-of-band
2741 * data may creep in... ick.
2742 */
2743 if (th->th_urp <= (u_int16_t)tlen &&
2744 (so->so_options & SO_OOBINLINE) == 0)
2745 tcp_pulloutofband(so, th, m, hdroptlen);
2746 } else {
2747 /*
2748 * If no out of band data is expected,
2749 * pull receive urgent pointer along
2750 * with the receive window.
2751 */
2752 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2753 tp->rcv_up = tp->rcv_nxt;
2754 }
2755 dodata:
2756
2757 /*
2758 * Process the segment text, merging it into the TCP sequencing queue,
2759 * and arranging for acknowledgement of receipt if necessary.
2760 * This process logically involves adjusting tp->rcv_wnd as data
2761 * is presented to the user (this happens in tcp_usrreq.c,
2762 * tcp_rcvd()). If a FIN has already been received on this
2763 * connection then we just ignore the text.
2764 */
2765 if ((tlen || (tiflags & TH_FIN)) &&
2766 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2767 /*
2768 * Handle the common case:
2769 * o Segment is the next to be received, and
2770 * o The queue is empty, and
2771 * o The connection is established
2772 * In this case, we avoid calling tcp_reass.
2773 *
2774 * tcp_setup_ack: set DELACK for segments received in order,
2775 * but ack immediately when segments are out of order (so that
2776 * fast retransmit can work).
2777 */
2778 TCP_REASS_LOCK(tp);
2779 if (th->th_seq == tp->rcv_nxt &&
2780 TAILQ_FIRST(&tp->segq) == NULL &&
2781 tp->t_state == TCPS_ESTABLISHED) {
2782 tcp_setup_ack(tp, th);
2783 tp->rcv_nxt += tlen;
2784 tiflags = th->th_flags & TH_FIN;
2785 tcps = TCP_STAT_GETREF();
2786 tcps[TCP_STAT_RCVPACK]++;
2787 tcps[TCP_STAT_RCVBYTE] += tlen;
2788 TCP_STAT_PUTREF();
2789 nd6_hint(tp);
2790 if (so->so_state & SS_CANTRCVMORE) {
2791 m_freem(m);
2792 } else {
2793 m_adj(m, hdroptlen);
2794 sbappendstream(&(so)->so_rcv, m);
2795 }
2796 TCP_REASS_UNLOCK(tp);
2797 sorwakeup(so);
2798 } else {
2799 m_adj(m, hdroptlen);
2800 tiflags = tcp_reass(tp, th, m, tlen);
2801 tp->t_flags |= TF_ACKNOW;
2802 }
2803
2804 /*
2805 * Note the amount of data that peer has sent into
2806 * our window, in order to estimate the sender's
2807 * buffer size.
2808 */
2809 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2810 } else {
2811 m_freem(m);
2812 m = NULL;
2813 tiflags &= ~TH_FIN;
2814 }
2815
2816 /*
2817 * If FIN is received ACK the FIN and let the user know
2818 * that the connection is closing. Ignore a FIN received before
2819 * the connection is fully established.
2820 */
2821 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2822 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2823 socantrcvmore(so);
2824 tp->t_flags |= TF_ACKNOW;
2825 tp->rcv_nxt++;
2826 }
2827 switch (tp->t_state) {
2828
2829 /*
2830 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2831 */
2832 case TCPS_ESTABLISHED:
2833 tp->t_state = TCPS_CLOSE_WAIT;
2834 break;
2835
2836 /*
2837 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2838 * enter the CLOSING state.
2839 */
2840 case TCPS_FIN_WAIT_1:
2841 tp->t_state = TCPS_CLOSING;
2842 break;
2843
2844 /*
2845 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2846 * starting the time-wait timer, turning off the other
2847 * standard timers.
2848 */
2849 case TCPS_FIN_WAIT_2:
2850 tp->t_state = TCPS_TIME_WAIT;
2851 tcp_canceltimers(tp);
2852 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2853 soisdisconnected(so);
2854 break;
2855
2856 /*
2857 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2858 */
2859 case TCPS_TIME_WAIT:
2860 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2861 break;
2862 }
2863 }
2864 #ifdef TCP_DEBUG
2865 if (so->so_options & SO_DEBUG)
2866 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2867 #endif
2868
2869 /*
2870 * Return any desired output.
2871 */
2872 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2873 KERNEL_LOCK(1, NULL);
2874 (void)tcp_output(tp);
2875 KERNEL_UNLOCK_ONE(NULL);
2876 }
2877 if (tcp_saveti)
2878 m_freem(tcp_saveti);
2879
2880 if (tp->t_state == TCPS_TIME_WAIT
2881 && (so->so_state & SS_NOFDREF)
2882 && (tp->t_inpcb || af != AF_INET)
2883 && (tp->t_in6pcb || af != AF_INET6)
2884 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2885 && TAILQ_EMPTY(&tp->segq)
2886 && vtw_add(af, tp)) {
2887 ;
2888 }
2889 return;
2890
2891 badsyn:
2892 /*
2893 * Received a bad SYN. Increment counters and dropwithreset.
2894 */
2895 TCP_STATINC(TCP_STAT_BADSYN);
2896 tp = NULL;
2897 goto dropwithreset;
2898
2899 dropafterack:
2900 /*
2901 * Generate an ACK dropping incoming segment if it occupies
2902 * sequence space, where the ACK reflects our state.
2903 */
2904 if (tiflags & TH_RST)
2905 goto drop;
2906 goto dropafterack2;
2907
2908 dropafterack_ratelim:
2909 /*
2910 * We may want to rate-limit ACKs against SYN/RST attack.
2911 */
2912 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2913 tcp_ackdrop_ppslim) == 0) {
2914 /* XXX stat */
2915 goto drop;
2916 }
2917
2918 dropafterack2:
2919 m_freem(m);
2920 tp->t_flags |= TF_ACKNOW;
2921 KERNEL_LOCK(1, NULL);
2922 (void)tcp_output(tp);
2923 KERNEL_UNLOCK_ONE(NULL);
2924 if (tcp_saveti)
2925 m_freem(tcp_saveti);
2926 return;
2927
2928 dropwithreset_ratelim:
2929 /*
2930 * We may want to rate-limit RSTs in certain situations,
2931 * particularly if we are sending an RST in response to
2932 * an attempt to connect to or otherwise communicate with
2933 * a port for which we have no socket.
2934 */
2935 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2936 tcp_rst_ppslim) == 0) {
2937 /* XXX stat */
2938 goto drop;
2939 }
2940
2941 dropwithreset:
2942 /*
2943 * Generate a RST, dropping incoming segment.
2944 * Make ACK acceptable to originator of segment.
2945 */
2946 if (tiflags & TH_RST)
2947 goto drop;
2948 if (tiflags & TH_ACK) {
2949 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2950 } else {
2951 if (tiflags & TH_SYN)
2952 tlen++;
2953 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2954 TH_RST|TH_ACK);
2955 }
2956 if (tcp_saveti)
2957 m_freem(tcp_saveti);
2958 return;
2959
2960 badcsum:
2961 drop:
2962 /*
2963 * Drop space held by incoming segment and return.
2964 */
2965 if (tp) {
2966 if (tp->t_inpcb)
2967 so = tp->t_inpcb->inp_socket;
2968 #ifdef INET6
2969 else if (tp->t_in6pcb)
2970 so = tp->t_in6pcb->in6p_socket;
2971 #endif
2972 else
2973 so = NULL;
2974 #ifdef TCP_DEBUG
2975 if (so && (so->so_options & SO_DEBUG) != 0)
2976 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
2977 #endif
2978 }
2979 if (tcp_saveti)
2980 m_freem(tcp_saveti);
2981 m_freem(m);
2982 return;
2983 }
2984
2985 #ifdef TCP_SIGNATURE
2986 int
2987 tcp_signature_apply(void *fstate, void *data, u_int len)
2988 {
2989
2990 MD5Update(fstate, (u_char *)data, len);
2991 return (0);
2992 }
2993
2994 struct secasvar *
2995 tcp_signature_getsav(struct mbuf *m)
2996 {
2997 struct ip *ip;
2998 struct ip6_hdr *ip6;
2999
3000 ip = mtod(m, struct ip *);
3001 switch (ip->ip_v) {
3002 case 4:
3003 ip = mtod(m, struct ip *);
3004 ip6 = NULL;
3005 break;
3006 case 6:
3007 ip = NULL;
3008 ip6 = mtod(m, struct ip6_hdr *);
3009 break;
3010 default:
3011 return (NULL);
3012 }
3013
3014 #ifdef IPSEC
3015 union sockaddr_union dst;
3016
3017 /* Extract the destination from the IP header in the mbuf. */
3018 memset(&dst, 0, sizeof(union sockaddr_union));
3019 if (ip != NULL) {
3020 dst.sa.sa_len = sizeof(struct sockaddr_in);
3021 dst.sa.sa_family = AF_INET;
3022 dst.sin.sin_addr = ip->ip_dst;
3023 } else {
3024 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3025 dst.sa.sa_family = AF_INET6;
3026 dst.sin6.sin6_addr = ip6->ip6_dst;
3027 }
3028
3029 /*
3030 * Look up an SADB entry which matches the address of the peer.
3031 */
3032 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3033 #else
3034 return NULL;
3035 #endif
3036 }
3037
3038 int
3039 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3040 struct secasvar *sav, char *sig)
3041 {
3042 MD5_CTX ctx;
3043 struct ip *ip;
3044 struct ipovly *ipovly;
3045 #ifdef INET6
3046 struct ip6_hdr *ip6;
3047 struct ip6_hdr_pseudo ip6pseudo;
3048 #endif
3049 struct ippseudo ippseudo;
3050 struct tcphdr th0;
3051 int l, tcphdrlen;
3052
3053 if (sav == NULL)
3054 return (-1);
3055
3056 tcphdrlen = th->th_off * 4;
3057
3058 switch (mtod(m, struct ip *)->ip_v) {
3059 case 4:
3060 MD5Init(&ctx);
3061 ip = mtod(m, struct ip *);
3062 memset(&ippseudo, 0, sizeof(ippseudo));
3063 ipovly = (struct ipovly *)ip;
3064 ippseudo.ippseudo_src = ipovly->ih_src;
3065 ippseudo.ippseudo_dst = ipovly->ih_dst;
3066 ippseudo.ippseudo_pad = 0;
3067 ippseudo.ippseudo_p = IPPROTO_TCP;
3068 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3069 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3070 break;
3071 #if INET6
3072 case 6:
3073 MD5Init(&ctx);
3074 ip6 = mtod(m, struct ip6_hdr *);
3075 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3076 ip6pseudo.ip6ph_src = ip6->ip6_src;
3077 in6_clearscope(&ip6pseudo.ip6ph_src);
3078 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3079 in6_clearscope(&ip6pseudo.ip6ph_dst);
3080 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3081 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3082 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3083 break;
3084 #endif
3085 default:
3086 return (-1);
3087 }
3088
3089 th0 = *th;
3090 th0.th_sum = 0;
3091 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3092
3093 l = m->m_pkthdr.len - thoff - tcphdrlen;
3094 if (l > 0)
3095 m_apply(m, thoff + tcphdrlen,
3096 m->m_pkthdr.len - thoff - tcphdrlen,
3097 tcp_signature_apply, &ctx);
3098
3099 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3100 MD5Final(sig, &ctx);
3101
3102 return (0);
3103 }
3104 #endif
3105
3106 /*
3107 * Parse and process tcp options.
3108 *
3109 * Returns -1 if this segment should be dropped. (eg. wrong signature)
3110 * Otherwise returns 0.
3111 */
3112 static int
3113 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3114 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3115 {
3116 u_int16_t mss;
3117 int opt, optlen = 0;
3118 #ifdef TCP_SIGNATURE
3119 void *sigp = NULL;
3120 char sigbuf[TCP_SIGLEN];
3121 struct secasvar *sav = NULL;
3122 #endif
3123
3124 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3125 opt = cp[0];
3126 if (opt == TCPOPT_EOL)
3127 break;
3128 if (opt == TCPOPT_NOP)
3129 optlen = 1;
3130 else {
3131 if (cnt < 2)
3132 break;
3133 optlen = cp[1];
3134 if (optlen < 2 || optlen > cnt)
3135 break;
3136 }
3137 switch (opt) {
3138
3139 default:
3140 continue;
3141
3142 case TCPOPT_MAXSEG:
3143 if (optlen != TCPOLEN_MAXSEG)
3144 continue;
3145 if (!(th->th_flags & TH_SYN))
3146 continue;
3147 if (TCPS_HAVERCVDSYN(tp->t_state))
3148 continue;
3149 memcpy(&mss, cp + 2, sizeof(mss));
3150 oi->maxseg = ntohs(mss);
3151 break;
3152
3153 case TCPOPT_WINDOW:
3154 if (optlen != TCPOLEN_WINDOW)
3155 continue;
3156 if (!(th->th_flags & TH_SYN))
3157 continue;
3158 if (TCPS_HAVERCVDSYN(tp->t_state))
3159 continue;
3160 tp->t_flags |= TF_RCVD_SCALE;
3161 tp->requested_s_scale = cp[2];
3162 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3163 char buf[INET6_ADDRSTRLEN];
3164 struct ip *ip = mtod(m, struct ip *);
3165 #ifdef INET6
3166 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3167 #endif
3168
3169 switch (ip->ip_v) {
3170 case 4:
3171 in_print(buf, sizeof(buf),
3172 &ip->ip_src);
3173 break;
3174 #ifdef INET6
3175 case 6:
3176 in6_print(buf, sizeof(buf),
3177 &ip6->ip6_src);
3178 break;
3179 #endif
3180 default:
3181 strlcpy(buf, "(unknown)", sizeof(buf));
3182 break;
3183 }
3184
3185 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3186 "assuming %d\n",
3187 tp->requested_s_scale, buf,
3188 TCP_MAX_WINSHIFT);
3189 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3190 }
3191 break;
3192
3193 case TCPOPT_TIMESTAMP:
3194 if (optlen != TCPOLEN_TIMESTAMP)
3195 continue;
3196 oi->ts_present = 1;
3197 memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3198 NTOHL(oi->ts_val);
3199 memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3200 NTOHL(oi->ts_ecr);
3201
3202 if (!(th->th_flags & TH_SYN))
3203 continue;
3204 if (TCPS_HAVERCVDSYN(tp->t_state))
3205 continue;
3206 /*
3207 * A timestamp received in a SYN makes
3208 * it ok to send timestamp requests and replies.
3209 */
3210 tp->t_flags |= TF_RCVD_TSTMP;
3211 tp->ts_recent = oi->ts_val;
3212 tp->ts_recent_age = tcp_now;
3213 break;
3214
3215 case TCPOPT_SACK_PERMITTED:
3216 if (optlen != TCPOLEN_SACK_PERMITTED)
3217 continue;
3218 if (!(th->th_flags & TH_SYN))
3219 continue;
3220 if (TCPS_HAVERCVDSYN(tp->t_state))
3221 continue;
3222 if (tcp_do_sack) {
3223 tp->t_flags |= TF_SACK_PERMIT;
3224 tp->t_flags |= TF_WILL_SACK;
3225 }
3226 break;
3227
3228 case TCPOPT_SACK:
3229 tcp_sack_option(tp, th, cp, optlen);
3230 break;
3231 #ifdef TCP_SIGNATURE
3232 case TCPOPT_SIGNATURE:
3233 if (optlen != TCPOLEN_SIGNATURE)
3234 continue;
3235 if (sigp &&
3236 !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3237 return (-1);
3238
3239 sigp = sigbuf;
3240 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3241 tp->t_flags |= TF_SIGNATURE;
3242 break;
3243 #endif
3244 }
3245 }
3246
3247 #ifndef TCP_SIGNATURE
3248 return 0;
3249 #else
3250 if (tp->t_flags & TF_SIGNATURE) {
3251 sav = tcp_signature_getsav(m);
3252 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3253 return (-1);
3254 }
3255
3256 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3257 goto out;
3258
3259 if (sigp) {
3260 char sig[TCP_SIGLEN];
3261
3262 tcp_fields_to_net(th);
3263 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3264 tcp_fields_to_host(th);
3265 goto out;
3266 }
3267 tcp_fields_to_host(th);
3268
3269 if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3270 TCP_STATINC(TCP_STAT_BADSIG);
3271 goto out;
3272 } else
3273 TCP_STATINC(TCP_STAT_GOODSIG);
3274
3275 key_sa_recordxfer(sav, m);
3276 KEY_SA_UNREF(&sav);
3277 }
3278 return 0;
3279 out:
3280 if (sav != NULL)
3281 KEY_SA_UNREF(&sav);
3282 return -1;
3283 #endif
3284 }
3285
3286 /*
3287 * Pull out of band byte out of a segment so
3288 * it doesn't appear in the user's data queue.
3289 * It is still reflected in the segment length for
3290 * sequencing purposes.
3291 */
3292 void
3293 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3294 struct mbuf *m, int off)
3295 {
3296 int cnt = off + th->th_urp - 1;
3297
3298 while (cnt >= 0) {
3299 if (m->m_len > cnt) {
3300 char *cp = mtod(m, char *) + cnt;
3301 struct tcpcb *tp = sototcpcb(so);
3302
3303 tp->t_iobc = *cp;
3304 tp->t_oobflags |= TCPOOB_HAVEDATA;
3305 memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3306 m->m_len--;
3307 return;
3308 }
3309 cnt -= m->m_len;
3310 m = m->m_next;
3311 if (m == NULL)
3312 break;
3313 }
3314 panic("tcp_pulloutofband");
3315 }
3316
3317 /*
3318 * Collect new round-trip time estimate
3319 * and update averages and current timeout.
3320 *
3321 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3322 * difference of two timestamps.
3323 */
3324 void
3325 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3326 {
3327 int32_t delta;
3328
3329 TCP_STATINC(TCP_STAT_RTTUPDATED);
3330 if (tp->t_srtt != 0) {
3331 /*
3332 * Compute the amount to add to srtt for smoothing,
3333 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3334 * srtt is stored in 1/32 slow ticks, we conceptually
3335 * shift left 5 bits, subtract srtt to get the
3336 * diference, and then shift right by TCP_RTT_SHIFT
3337 * (3) to obtain 1/8 of the difference.
3338 */
3339 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3340 /*
3341 * This can never happen, because delta's lowest
3342 * possible value is 1/8 of t_srtt. But if it does,
3343 * set srtt to some reasonable value, here chosen
3344 * as 1/8 tick.
3345 */
3346 if ((tp->t_srtt += delta) <= 0)
3347 tp->t_srtt = 1 << 2;
3348 /*
3349 * RFC2988 requires that rttvar be updated first.
3350 * This code is compliant because "delta" is the old
3351 * srtt minus the new observation (scaled).
3352 *
3353 * RFC2988 says:
3354 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3355 *
3356 * delta is in units of 1/32 ticks, and has then been
3357 * divided by 8. This is equivalent to being in 1/16s
3358 * units and divided by 4. Subtract from it 1/4 of
3359 * the existing rttvar to form the (signed) amount to
3360 * adjust.
3361 */
3362 if (delta < 0)
3363 delta = -delta;
3364 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3365 /*
3366 * As with srtt, this should never happen. There is
3367 * no support in RFC2988 for this operation. But 1/4s
3368 * as rttvar when faced with something arguably wrong
3369 * is ok.
3370 */
3371 if ((tp->t_rttvar += delta) <= 0)
3372 tp->t_rttvar = 1 << 2;
3373
3374 /*
3375 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3376 * Problem is: it doesn't work. Disabled by defaulting
3377 * tcp_rttlocal to 0; see corresponding code in
3378 * tcp_subr that selects local vs remote in a different way.
3379 *
3380 * The static branch prediction hint here should be removed
3381 * when the rtt estimator is fixed and the rtt_enable code
3382 * is turned back on.
3383 */
3384 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3385 && tp->t_srtt > tcp_msl_remote_threshold
3386 && tp->t_msl < tcp_msl_remote) {
3387 tp->t_msl = tcp_msl_remote;
3388 }
3389 } else {
3390 /*
3391 * This is the first measurement. Per RFC2988, 2.2,
3392 * set rtt=R and srtt=R/2.
3393 * For srtt, storage representation is 1/32 ticks,
3394 * so shift left by 5.
3395 * For rttvar, storage representation is 1/16 ticks,
3396 * So shift left by 4, but then right by 1 to halve.
3397 */
3398 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3399 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3400 }
3401 tp->t_rtttime = 0;
3402 tp->t_rxtshift = 0;
3403
3404 /*
3405 * the retransmit should happen at rtt + 4 * rttvar.
3406 * Because of the way we do the smoothing, srtt and rttvar
3407 * will each average +1/2 tick of bias. When we compute
3408 * the retransmit timer, we want 1/2 tick of rounding and
3409 * 1 extra tick because of +-1/2 tick uncertainty in the
3410 * firing of the timer. The bias will give us exactly the
3411 * 1.5 tick we need. But, because the bias is
3412 * statistical, we have to test that we don't drop below
3413 * the minimum feasible timer (which is 2 ticks).
3414 */
3415 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3416 max(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3417
3418 /*
3419 * We received an ack for a packet that wasn't retransmitted;
3420 * it is probably safe to discard any error indications we've
3421 * received recently. This isn't quite right, but close enough
3422 * for now (a route might have failed after we sent a segment,
3423 * and the return path might not be symmetrical).
3424 */
3425 tp->t_softerror = 0;
3426 }
3427
3428
3429 /*
3430 * TCP compressed state engine. Currently used to hold compressed
3431 * state for SYN_RECEIVED.
3432 */
3433
3434 u_long syn_cache_count;
3435 u_int32_t syn_hash1, syn_hash2;
3436
3437 #define SYN_HASH(sa, sp, dp) \
3438 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3439 ((u_int32_t)(sp)))^syn_hash2)))
3440 #ifndef INET6
3441 #define SYN_HASHALL(hash, src, dst) \
3442 do { \
3443 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3444 ((const struct sockaddr_in *)(src))->sin_port, \
3445 ((const struct sockaddr_in *)(dst))->sin_port); \
3446 } while (/*CONSTCOND*/ 0)
3447 #else
3448 #define SYN_HASH6(sa, sp, dp) \
3449 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3450 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3451 & 0x7fffffff)
3452
3453 #define SYN_HASHALL(hash, src, dst) \
3454 do { \
3455 switch ((src)->sa_family) { \
3456 case AF_INET: \
3457 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3458 ((const struct sockaddr_in *)(src))->sin_port, \
3459 ((const struct sockaddr_in *)(dst))->sin_port); \
3460 break; \
3461 case AF_INET6: \
3462 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3463 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3464 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3465 break; \
3466 default: \
3467 hash = 0; \
3468 } \
3469 } while (/*CONSTCOND*/0)
3470 #endif /* INET6 */
3471
3472 static struct pool syn_cache_pool;
3473
3474 /*
3475 * We don't estimate RTT with SYNs, so each packet starts with the default
3476 * RTT and each timer step has a fixed timeout value.
3477 */
3478 static inline void
3479 syn_cache_timer_arm(struct syn_cache *sc)
3480 {
3481
3482 TCPT_RANGESET(sc->sc_rxtcur,
3483 TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3484 TCPTV_REXMTMAX);
3485 callout_reset(&sc->sc_timer,
3486 sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3487 }
3488
3489 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3490
3491 static inline void
3492 syn_cache_rm(struct syn_cache *sc)
3493 {
3494 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3495 sc, sc_bucketq);
3496 sc->sc_tp = NULL;
3497 LIST_REMOVE(sc, sc_tpq);
3498 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3499 callout_stop(&sc->sc_timer);
3500 syn_cache_count--;
3501 }
3502
3503 static inline void
3504 syn_cache_put(struct syn_cache *sc)
3505 {
3506 if (sc->sc_ipopts)
3507 (void) m_free(sc->sc_ipopts);
3508 rtcache_free(&sc->sc_route);
3509 sc->sc_flags |= SCF_DEAD;
3510 if (!callout_invoking(&sc->sc_timer))
3511 callout_schedule(&(sc)->sc_timer, 1);
3512 }
3513
3514 void
3515 syn_cache_init(void)
3516 {
3517 int i;
3518
3519 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3520 "synpl", NULL, IPL_SOFTNET);
3521
3522 /* Initialize the hash buckets. */
3523 for (i = 0; i < tcp_syn_cache_size; i++)
3524 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3525 }
3526
3527 void
3528 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3529 {
3530 struct syn_cache_head *scp;
3531 struct syn_cache *sc2;
3532 int s;
3533
3534 /*
3535 * If there are no entries in the hash table, reinitialize
3536 * the hash secrets.
3537 */
3538 if (syn_cache_count == 0) {
3539 syn_hash1 = cprng_fast32();
3540 syn_hash2 = cprng_fast32();
3541 }
3542
3543 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3544 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3545 scp = &tcp_syn_cache[sc->sc_bucketidx];
3546
3547 /*
3548 * Make sure that we don't overflow the per-bucket
3549 * limit or the total cache size limit.
3550 */
3551 s = splsoftnet();
3552 if (scp->sch_length >= tcp_syn_bucket_limit) {
3553 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3554 /*
3555 * The bucket is full. Toss the oldest element in the
3556 * bucket. This will be the first entry in the bucket.
3557 */
3558 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3559 #ifdef DIAGNOSTIC
3560 /*
3561 * This should never happen; we should always find an
3562 * entry in our bucket.
3563 */
3564 if (sc2 == NULL)
3565 panic("syn_cache_insert: bucketoverflow: impossible");
3566 #endif
3567 syn_cache_rm(sc2);
3568 syn_cache_put(sc2); /* calls pool_put but see spl above */
3569 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3570 struct syn_cache_head *scp2, *sce;
3571
3572 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3573 /*
3574 * The cache is full. Toss the oldest entry in the
3575 * first non-empty bucket we can find.
3576 *
3577 * XXX We would really like to toss the oldest
3578 * entry in the cache, but we hope that this
3579 * condition doesn't happen very often.
3580 */
3581 scp2 = scp;
3582 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3583 sce = &tcp_syn_cache[tcp_syn_cache_size];
3584 for (++scp2; scp2 != scp; scp2++) {
3585 if (scp2 >= sce)
3586 scp2 = &tcp_syn_cache[0];
3587 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3588 break;
3589 }
3590 #ifdef DIAGNOSTIC
3591 /*
3592 * This should never happen; we should always find a
3593 * non-empty bucket.
3594 */
3595 if (scp2 == scp)
3596 panic("syn_cache_insert: cacheoverflow: "
3597 "impossible");
3598 #endif
3599 }
3600 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3601 syn_cache_rm(sc2);
3602 syn_cache_put(sc2); /* calls pool_put but see spl above */
3603 }
3604
3605 /*
3606 * Initialize the entry's timer.
3607 */
3608 sc->sc_rxttot = 0;
3609 sc->sc_rxtshift = 0;
3610 syn_cache_timer_arm(sc);
3611
3612 /* Link it from tcpcb entry */
3613 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3614
3615 /* Put it into the bucket. */
3616 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3617 scp->sch_length++;
3618 syn_cache_count++;
3619
3620 TCP_STATINC(TCP_STAT_SC_ADDED);
3621 splx(s);
3622 }
3623
3624 /*
3625 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3626 * If we have retransmitted an entry the maximum number of times, expire
3627 * that entry.
3628 */
3629 static void
3630 syn_cache_timer(void *arg)
3631 {
3632 struct syn_cache *sc = arg;
3633
3634 mutex_enter(softnet_lock);
3635 KERNEL_LOCK(1, NULL);
3636
3637 callout_ack(&sc->sc_timer);
3638
3639 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3640 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3641 goto free;
3642 }
3643
3644 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3645 /* Drop it -- too many retransmissions. */
3646 goto dropit;
3647 }
3648
3649 /*
3650 * Compute the total amount of time this entry has
3651 * been on a queue. If this entry has been on longer
3652 * than the keep alive timer would allow, expire it.
3653 */
3654 sc->sc_rxttot += sc->sc_rxtcur;
3655 if (sc->sc_rxttot >= tcp_keepinit)
3656 goto dropit;
3657
3658 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3659 (void)syn_cache_respond(sc);
3660
3661 /* Advance the timer back-off. */
3662 sc->sc_rxtshift++;
3663 syn_cache_timer_arm(sc);
3664
3665 goto out;
3666
3667 dropit:
3668 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3669 syn_cache_rm(sc);
3670 if (sc->sc_ipopts)
3671 (void) m_free(sc->sc_ipopts);
3672 rtcache_free(&sc->sc_route);
3673
3674 free:
3675 callout_destroy(&sc->sc_timer);
3676 pool_put(&syn_cache_pool, sc);
3677
3678 out:
3679 KERNEL_UNLOCK_ONE(NULL);
3680 mutex_exit(softnet_lock);
3681 }
3682
3683 /*
3684 * Remove syn cache created by the specified tcb entry,
3685 * because this does not make sense to keep them
3686 * (if there's no tcb entry, syn cache entry will never be used)
3687 */
3688 void
3689 syn_cache_cleanup(struct tcpcb *tp)
3690 {
3691 struct syn_cache *sc, *nsc;
3692 int s;
3693
3694 s = splsoftnet();
3695
3696 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3697 nsc = LIST_NEXT(sc, sc_tpq);
3698
3699 #ifdef DIAGNOSTIC
3700 if (sc->sc_tp != tp)
3701 panic("invalid sc_tp in syn_cache_cleanup");
3702 #endif
3703 syn_cache_rm(sc);
3704 syn_cache_put(sc); /* calls pool_put but see spl above */
3705 }
3706 /* just for safety */
3707 LIST_INIT(&tp->t_sc);
3708
3709 splx(s);
3710 }
3711
3712 /*
3713 * Find an entry in the syn cache.
3714 */
3715 struct syn_cache *
3716 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3717 struct syn_cache_head **headp)
3718 {
3719 struct syn_cache *sc;
3720 struct syn_cache_head *scp;
3721 u_int32_t hash;
3722 int s;
3723
3724 SYN_HASHALL(hash, src, dst);
3725
3726 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3727 *headp = scp;
3728 s = splsoftnet();
3729 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3730 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3731 if (sc->sc_hash != hash)
3732 continue;
3733 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3734 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3735 splx(s);
3736 return (sc);
3737 }
3738 }
3739 splx(s);
3740 return (NULL);
3741 }
3742
3743 /*
3744 * This function gets called when we receive an ACK for a socket in the
3745 * LISTEN state. We look up the connection in the syn cache, and if it's
3746 * there, we pull it out of the cache and turn it into a full-blown
3747 * connection in the SYN-RECEIVED state.
3748 *
3749 * The return values may not be immediately obvious, and their effects
3750 * can be subtle, so here they are:
3751 *
3752 * NULL SYN was not found in cache; caller should drop the
3753 * packet and send an RST.
3754 *
3755 * -1 We were unable to create the new connection, and are
3756 * aborting it. An ACK,RST is being sent to the peer
3757 * (unless we got screwey sequence numbers; see below),
3758 * because the 3-way handshake has been completed. Caller
3759 * should not free the mbuf, since we may be using it. If
3760 * we are not, we will free it.
3761 *
3762 * Otherwise, the return value is a pointer to the new socket
3763 * associated with the connection.
3764 */
3765 struct socket *
3766 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3767 struct tcphdr *th, struct socket *so, struct mbuf *m)
3768 {
3769 struct syn_cache *sc;
3770 struct syn_cache_head *scp;
3771 struct inpcb *inp = NULL;
3772 #ifdef INET6
3773 struct in6pcb *in6p = NULL;
3774 #endif
3775 struct tcpcb *tp;
3776 int s;
3777 struct socket *oso;
3778
3779 s = splsoftnet();
3780 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3781 splx(s);
3782 return NULL;
3783 }
3784
3785 /*
3786 * Verify the sequence and ack numbers. Try getting the correct
3787 * response again.
3788 */
3789 if ((th->th_ack != sc->sc_iss + 1) ||
3790 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3791 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3792 m_freem(m);
3793 (void)syn_cache_respond(sc);
3794 splx(s);
3795 return ((struct socket *)(-1));
3796 }
3797
3798 /* Remove this cache entry */
3799 syn_cache_rm(sc);
3800 splx(s);
3801
3802 /*
3803 * Ok, create the full blown connection, and set things up
3804 * as they would have been set up if we had created the
3805 * connection when the SYN arrived. If we can't create
3806 * the connection, abort it.
3807 */
3808 /*
3809 * inp still has the OLD in_pcb stuff, set the
3810 * v6-related flags on the new guy, too. This is
3811 * done particularly for the case where an AF_INET6
3812 * socket is bound only to a port, and a v4 connection
3813 * comes in on that port.
3814 * we also copy the flowinfo from the original pcb
3815 * to the new one.
3816 */
3817 oso = so;
3818 so = sonewconn(so, true);
3819 if (so == NULL)
3820 goto resetandabort;
3821
3822 switch (so->so_proto->pr_domain->dom_family) {
3823 case AF_INET:
3824 inp = sotoinpcb(so);
3825 break;
3826 #ifdef INET6
3827 case AF_INET6:
3828 in6p = sotoin6pcb(so);
3829 break;
3830 #endif
3831 }
3832
3833 switch (src->sa_family) {
3834 case AF_INET:
3835 if (inp) {
3836 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3837 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3838 inp->inp_options = ip_srcroute(m);
3839 in_pcbstate(inp, INP_BOUND);
3840 if (inp->inp_options == NULL) {
3841 inp->inp_options = sc->sc_ipopts;
3842 sc->sc_ipopts = NULL;
3843 }
3844 }
3845 #ifdef INET6
3846 else if (in6p) {
3847 /* IPv4 packet to AF_INET6 socket */
3848 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3849 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3850 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3851 &in6p->in6p_laddr.s6_addr32[3],
3852 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3853 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3854 in6totcpcb(in6p)->t_family = AF_INET;
3855 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3856 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3857 else
3858 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3859 in6_pcbstate(in6p, IN6P_BOUND);
3860 }
3861 #endif
3862 break;
3863 #ifdef INET6
3864 case AF_INET6:
3865 if (in6p) {
3866 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3867 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3868 in6_pcbstate(in6p, IN6P_BOUND);
3869 }
3870 break;
3871 #endif
3872 }
3873
3874 #ifdef INET6
3875 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3876 struct in6pcb *oin6p = sotoin6pcb(oso);
3877 /* inherit socket options from the listening socket */
3878 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3879 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3880 m_freem(in6p->in6p_options);
3881 in6p->in6p_options = NULL;
3882 }
3883 ip6_savecontrol(in6p, &in6p->in6p_options,
3884 mtod(m, struct ip6_hdr *), m);
3885 }
3886 #endif
3887
3888 /*
3889 * Give the new socket our cached route reference.
3890 */
3891 if (inp) {
3892 rtcache_copy(&inp->inp_route, &sc->sc_route);
3893 rtcache_free(&sc->sc_route);
3894 }
3895 #ifdef INET6
3896 else {
3897 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3898 rtcache_free(&sc->sc_route);
3899 }
3900 #endif
3901
3902 if (inp) {
3903 struct sockaddr_in sin;
3904 memcpy(&sin, src, src->sa_len);
3905 if (in_pcbconnect(inp, &sin, &lwp0)) {
3906 goto resetandabort;
3907 }
3908 }
3909 #ifdef INET6
3910 else if (in6p) {
3911 struct sockaddr_in6 sin6;
3912 memcpy(&sin6, src, src->sa_len);
3913 if (src->sa_family == AF_INET) {
3914 /* IPv4 packet to AF_INET6 socket */
3915 in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3916 }
3917 if (in6_pcbconnect(in6p, &sin6, NULL)) {
3918 goto resetandabort;
3919 }
3920 }
3921 #endif
3922 else {
3923 goto resetandabort;
3924 }
3925
3926 if (inp)
3927 tp = intotcpcb(inp);
3928 #ifdef INET6
3929 else if (in6p)
3930 tp = in6totcpcb(in6p);
3931 #endif
3932 else
3933 tp = NULL;
3934
3935 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3936 if (sc->sc_request_r_scale != 15) {
3937 tp->requested_s_scale = sc->sc_requested_s_scale;
3938 tp->request_r_scale = sc->sc_request_r_scale;
3939 tp->snd_scale = sc->sc_requested_s_scale;
3940 tp->rcv_scale = sc->sc_request_r_scale;
3941 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3942 }
3943 if (sc->sc_flags & SCF_TIMESTAMP)
3944 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3945 tp->ts_timebase = sc->sc_timebase;
3946
3947 tp->t_template = tcp_template(tp);
3948 if (tp->t_template == 0) {
3949 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3950 so = NULL;
3951 m_freem(m);
3952 goto abort;
3953 }
3954
3955 tp->iss = sc->sc_iss;
3956 tp->irs = sc->sc_irs;
3957 tcp_sendseqinit(tp);
3958 tcp_rcvseqinit(tp);
3959 tp->t_state = TCPS_SYN_RECEIVED;
3960 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
3961 TCP_STATINC(TCP_STAT_ACCEPTS);
3962
3963 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
3964 tp->t_flags |= TF_WILL_SACK;
3965
3966 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
3967 tp->t_flags |= TF_ECN_PERMIT;
3968
3969 #ifdef TCP_SIGNATURE
3970 if (sc->sc_flags & SCF_SIGNATURE)
3971 tp->t_flags |= TF_SIGNATURE;
3972 #endif
3973
3974 /* Initialize tp->t_ourmss before we deal with the peer's! */
3975 tp->t_ourmss = sc->sc_ourmaxseg;
3976 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
3977
3978 /*
3979 * Initialize the initial congestion window. If we
3980 * had to retransmit the SYN,ACK, we must initialize cwnd
3981 * to 1 segment (i.e. the Loss Window).
3982 */
3983 if (sc->sc_rxtshift)
3984 tp->snd_cwnd = tp->t_peermss;
3985 else {
3986 int ss = tcp_init_win;
3987 if (inp != NULL && in_localaddr(inp->inp_faddr))
3988 ss = tcp_init_win_local;
3989 #ifdef INET6
3990 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
3991 ss = tcp_init_win_local;
3992 #endif
3993 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
3994 }
3995
3996 tcp_rmx_rtt(tp);
3997 tp->snd_wl1 = sc->sc_irs;
3998 tp->rcv_up = sc->sc_irs + 1;
3999
4000 /*
4001 * This is what whould have happened in tcp_output() when
4002 * the SYN,ACK was sent.
4003 */
4004 tp->snd_up = tp->snd_una;
4005 tp->snd_max = tp->snd_nxt = tp->iss+1;
4006 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4007 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4008 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4009 tp->last_ack_sent = tp->rcv_nxt;
4010 tp->t_partialacks = -1;
4011 tp->t_dupacks = 0;
4012
4013 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4014 s = splsoftnet();
4015 syn_cache_put(sc);
4016 splx(s);
4017 return so;
4018
4019 resetandabort:
4020 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4021 abort:
4022 if (so != NULL) {
4023 (void) soqremque(so, 1);
4024 (void) soabort(so);
4025 mutex_enter(softnet_lock);
4026 }
4027 s = splsoftnet();
4028 syn_cache_put(sc);
4029 splx(s);
4030 TCP_STATINC(TCP_STAT_SC_ABORTED);
4031 return ((struct socket *)(-1));
4032 }
4033
4034 /*
4035 * This function is called when we get a RST for a
4036 * non-existent connection, so that we can see if the
4037 * connection is in the syn cache. If it is, zap it.
4038 */
4039
4040 void
4041 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4042 {
4043 struct syn_cache *sc;
4044 struct syn_cache_head *scp;
4045 int s = splsoftnet();
4046
4047 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4048 splx(s);
4049 return;
4050 }
4051 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4052 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4053 splx(s);
4054 return;
4055 }
4056 syn_cache_rm(sc);
4057 TCP_STATINC(TCP_STAT_SC_RESET);
4058 syn_cache_put(sc); /* calls pool_put but see spl above */
4059 splx(s);
4060 }
4061
4062 void
4063 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4064 struct tcphdr *th)
4065 {
4066 struct syn_cache *sc;
4067 struct syn_cache_head *scp;
4068 int s;
4069
4070 s = splsoftnet();
4071 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4072 splx(s);
4073 return;
4074 }
4075 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4076 if (ntohl(th->th_seq) != sc->sc_iss) {
4077 splx(s);
4078 return;
4079 }
4080
4081 /*
4082 * If we've retransmitted 3 times and this is our second error,
4083 * we remove the entry. Otherwise, we allow it to continue on.
4084 * This prevents us from incorrectly nuking an entry during a
4085 * spurious network outage.
4086 *
4087 * See tcp_notify().
4088 */
4089 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4090 sc->sc_flags |= SCF_UNREACH;
4091 splx(s);
4092 return;
4093 }
4094
4095 syn_cache_rm(sc);
4096 TCP_STATINC(TCP_STAT_SC_UNREACH);
4097 syn_cache_put(sc); /* calls pool_put but see spl above */
4098 splx(s);
4099 }
4100
4101 /*
4102 * Given a LISTEN socket and an inbound SYN request, add this to the syn
4103 * cache, and send back a segment:
4104 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4105 * to the source.
4106 *
4107 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4108 * Doing so would require that we hold onto the data and deliver it
4109 * to the application. However, if we are the target of a SYN-flood
4110 * DoS attack, an attacker could send data which would eventually
4111 * consume all available buffer space if it were ACKed. By not ACKing
4112 * the data, we avoid this DoS scenario.
4113 */
4114 int
4115 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4116 unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
4117 int optlen, struct tcp_opt_info *oi)
4118 {
4119 struct tcpcb tb, *tp;
4120 long win;
4121 struct syn_cache *sc;
4122 struct syn_cache_head *scp;
4123 struct mbuf *ipopts;
4124 int s;
4125
4126 tp = sototcpcb(so);
4127
4128 /*
4129 * Initialize some local state.
4130 */
4131 win = sbspace(&so->so_rcv);
4132 if (win > TCP_MAXWIN)
4133 win = TCP_MAXWIN;
4134
4135 #ifdef TCP_SIGNATURE
4136 if (optp || (tp->t_flags & TF_SIGNATURE))
4137 #else
4138 if (optp)
4139 #endif
4140 {
4141 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4142 #ifdef TCP_SIGNATURE
4143 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4144 #endif
4145 tb.t_state = TCPS_LISTEN;
4146 if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
4147 return 0;
4148 } else
4149 tb.t_flags = 0;
4150
4151 switch (src->sa_family) {
4152 case AF_INET:
4153 /* Remember the IP options, if any. */
4154 ipopts = ip_srcroute(m);
4155 break;
4156 default:
4157 ipopts = NULL;
4158 }
4159
4160 /*
4161 * See if we already have an entry for this connection.
4162 * If we do, resend the SYN,ACK. We do not count this
4163 * as a retransmission (XXX though maybe we should).
4164 */
4165 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4166 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4167 if (ipopts) {
4168 /*
4169 * If we were remembering a previous source route,
4170 * forget it and use the new one we've been given.
4171 */
4172 if (sc->sc_ipopts)
4173 (void)m_free(sc->sc_ipopts);
4174 sc->sc_ipopts = ipopts;
4175 }
4176 sc->sc_timestamp = tb.ts_recent;
4177 m_freem(m);
4178 if (syn_cache_respond(sc) == 0) {
4179 uint64_t *tcps = TCP_STAT_GETREF();
4180 tcps[TCP_STAT_SNDACKS]++;
4181 tcps[TCP_STAT_SNDTOTAL]++;
4182 TCP_STAT_PUTREF();
4183 }
4184 return 1;
4185 }
4186
4187 s = splsoftnet();
4188 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4189 splx(s);
4190 if (sc == NULL) {
4191 if (ipopts)
4192 (void)m_free(ipopts);
4193 return 0;
4194 }
4195
4196 /*
4197 * Fill in the cache, and put the necessary IP and TCP
4198 * options into the reply.
4199 */
4200 memset(sc, 0, sizeof(struct syn_cache));
4201 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4202 memcpy(&sc->sc_src, src, src->sa_len);
4203 memcpy(&sc->sc_dst, dst, dst->sa_len);
4204 sc->sc_flags = 0;
4205 sc->sc_ipopts = ipopts;
4206 sc->sc_irs = th->th_seq;
4207 switch (src->sa_family) {
4208 case AF_INET:
4209 {
4210 struct sockaddr_in *srcin = (void *)src;
4211 struct sockaddr_in *dstin = (void *)dst;
4212
4213 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4214 &srcin->sin_addr, dstin->sin_port,
4215 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4216 break;
4217 }
4218 #ifdef INET6
4219 case AF_INET6:
4220 {
4221 struct sockaddr_in6 *srcin6 = (void *)src;
4222 struct sockaddr_in6 *dstin6 = (void *)dst;
4223
4224 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4225 &srcin6->sin6_addr, dstin6->sin6_port,
4226 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4227 break;
4228 }
4229 #endif
4230 }
4231 sc->sc_peermaxseg = oi->maxseg;
4232 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4233 m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4234 sc->sc_win = win;
4235 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4236 sc->sc_timestamp = tb.ts_recent;
4237 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4238 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4239 sc->sc_flags |= SCF_TIMESTAMP;
4240 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4241 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4242 sc->sc_requested_s_scale = tb.requested_s_scale;
4243 sc->sc_request_r_scale = 0;
4244 /*
4245 * Pick the smallest possible scaling factor that
4246 * will still allow us to scale up to sb_max.
4247 *
4248 * We do this because there are broken firewalls that
4249 * will corrupt the window scale option, leading to
4250 * the other endpoint believing that our advertised
4251 * window is unscaled. At scale factors larger than
4252 * 5 the unscaled window will drop below 1500 bytes,
4253 * leading to serious problems when traversing these
4254 * broken firewalls.
4255 *
4256 * With the default sbmax of 256K, a scale factor
4257 * of 3 will be chosen by this algorithm. Those who
4258 * choose a larger sbmax should watch out
4259 * for the compatiblity problems mentioned above.
4260 *
4261 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4262 * or <SYN,ACK>) segment itself is never scaled.
4263 */
4264 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4265 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4266 sc->sc_request_r_scale++;
4267 } else {
4268 sc->sc_requested_s_scale = 15;
4269 sc->sc_request_r_scale = 15;
4270 }
4271 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4272 sc->sc_flags |= SCF_SACK_PERMIT;
4273
4274 /*
4275 * ECN setup packet received.
4276 */
4277 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4278 sc->sc_flags |= SCF_ECN_PERMIT;
4279
4280 #ifdef TCP_SIGNATURE
4281 if (tb.t_flags & TF_SIGNATURE)
4282 sc->sc_flags |= SCF_SIGNATURE;
4283 #endif
4284 sc->sc_tp = tp;
4285 m_freem(m);
4286 if (syn_cache_respond(sc) == 0) {
4287 uint64_t *tcps = TCP_STAT_GETREF();
4288 tcps[TCP_STAT_SNDACKS]++;
4289 tcps[TCP_STAT_SNDTOTAL]++;
4290 TCP_STAT_PUTREF();
4291 syn_cache_insert(sc, tp);
4292 } else {
4293 s = splsoftnet();
4294 /*
4295 * syn_cache_put() will try to schedule the timer, so
4296 * we need to initialize it
4297 */
4298 syn_cache_timer_arm(sc);
4299 syn_cache_put(sc);
4300 splx(s);
4301 TCP_STATINC(TCP_STAT_SC_DROPPED);
4302 }
4303 return 1;
4304 }
4305
4306 /*
4307 * syn_cache_respond: (re)send SYN+ACK.
4308 *
4309 * Returns 0 on success.
4310 */
4311
4312 int
4313 syn_cache_respond(struct syn_cache *sc)
4314 {
4315 #ifdef INET6
4316 struct rtentry *rt = NULL;
4317 #endif
4318 struct route *ro;
4319 u_int8_t *optp;
4320 int optlen, error;
4321 u_int16_t tlen;
4322 struct ip *ip = NULL;
4323 #ifdef INET6
4324 struct ip6_hdr *ip6 = NULL;
4325 #endif
4326 struct tcpcb *tp;
4327 struct tcphdr *th;
4328 struct mbuf *m;
4329 u_int hlen;
4330 #ifdef TCP_SIGNATURE
4331 struct secasvar *sav = NULL;
4332 u_int8_t *sigp = NULL;
4333 #endif
4334
4335 ro = &sc->sc_route;
4336 switch (sc->sc_src.sa.sa_family) {
4337 case AF_INET:
4338 hlen = sizeof(struct ip);
4339 break;
4340 #ifdef INET6
4341 case AF_INET6:
4342 hlen = sizeof(struct ip6_hdr);
4343 break;
4344 #endif
4345 default:
4346 return EAFNOSUPPORT;
4347 }
4348
4349 /* Worst case scanario, since we don't know the option size yet. */
4350 tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4351 KASSERT(max_linkhdr + tlen <= MCLBYTES);
4352
4353 /*
4354 * Create the IP+TCP header from scratch.
4355 */
4356 MGETHDR(m, M_DONTWAIT, MT_DATA);
4357 if (m && (max_linkhdr + tlen) > MHLEN) {
4358 MCLGET(m, M_DONTWAIT);
4359 if ((m->m_flags & M_EXT) == 0) {
4360 m_freem(m);
4361 m = NULL;
4362 }
4363 }
4364 if (m == NULL)
4365 return ENOBUFS;
4366 MCLAIM(m, &tcp_tx_mowner);
4367
4368 tp = sc->sc_tp;
4369
4370 /* Fixup the mbuf. */
4371 m->m_data += max_linkhdr;
4372 m_reset_rcvif(m);
4373 memset(mtod(m, void *), 0, tlen);
4374
4375 switch (sc->sc_src.sa.sa_family) {
4376 case AF_INET:
4377 ip = mtod(m, struct ip *);
4378 ip->ip_v = 4;
4379 ip->ip_dst = sc->sc_src.sin.sin_addr;
4380 ip->ip_src = sc->sc_dst.sin.sin_addr;
4381 ip->ip_p = IPPROTO_TCP;
4382 th = (struct tcphdr *)(ip + 1);
4383 th->th_dport = sc->sc_src.sin.sin_port;
4384 th->th_sport = sc->sc_dst.sin.sin_port;
4385 break;
4386 #ifdef INET6
4387 case AF_INET6:
4388 ip6 = mtod(m, struct ip6_hdr *);
4389 ip6->ip6_vfc = IPV6_VERSION;
4390 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4391 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4392 ip6->ip6_nxt = IPPROTO_TCP;
4393 /* ip6_plen will be updated in ip6_output() */
4394 th = (struct tcphdr *)(ip6 + 1);
4395 th->th_dport = sc->sc_src.sin6.sin6_port;
4396 th->th_sport = sc->sc_dst.sin6.sin6_port;
4397 break;
4398 #endif
4399 default:
4400 panic("%s: impossible (1)", __func__);
4401 }
4402
4403 th->th_seq = htonl(sc->sc_iss);
4404 th->th_ack = htonl(sc->sc_irs + 1);
4405 th->th_flags = TH_SYN|TH_ACK;
4406 th->th_win = htons(sc->sc_win);
4407 /* th_x2, th_sum, th_urp already 0 from memset */
4408
4409 /* Tack on the TCP options. */
4410 optp = (u_int8_t *)(th + 1);
4411 optlen = 0;
4412 *optp++ = TCPOPT_MAXSEG;
4413 *optp++ = TCPOLEN_MAXSEG;
4414 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4415 *optp++ = sc->sc_ourmaxseg & 0xff;
4416 optlen += TCPOLEN_MAXSEG;
4417
4418 if (sc->sc_request_r_scale != 15) {
4419 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4420 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4421 sc->sc_request_r_scale);
4422 optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4423 optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4424 }
4425
4426 if (sc->sc_flags & SCF_SACK_PERMIT) {
4427 /* Let the peer know that we will SACK. */
4428 *optp++ = TCPOPT_SACK_PERMITTED;
4429 *optp++ = TCPOLEN_SACK_PERMITTED;
4430 optlen += TCPOLEN_SACK_PERMITTED;
4431 }
4432
4433 if (sc->sc_flags & SCF_TIMESTAMP) {
4434 while (optlen % 4 != 2) {
4435 optlen += TCPOLEN_NOP;
4436 *optp++ = TCPOPT_NOP;
4437 }
4438 *optp++ = TCPOPT_TIMESTAMP;
4439 *optp++ = TCPOLEN_TIMESTAMP;
4440 u_int32_t *lp = (u_int32_t *)(optp);
4441 /* Form timestamp option as shown in appendix A of RFC 1323. */
4442 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4443 *lp = htonl(sc->sc_timestamp);
4444 optp += TCPOLEN_TIMESTAMP - 2;
4445 optlen += TCPOLEN_TIMESTAMP;
4446 }
4447
4448 #ifdef TCP_SIGNATURE
4449 if (sc->sc_flags & SCF_SIGNATURE) {
4450 sav = tcp_signature_getsav(m);
4451 if (sav == NULL) {
4452 m_freem(m);
4453 return EPERM;
4454 }
4455
4456 *optp++ = TCPOPT_SIGNATURE;
4457 *optp++ = TCPOLEN_SIGNATURE;
4458 sigp = optp;
4459 memset(optp, 0, TCP_SIGLEN);
4460 optp += TCP_SIGLEN;
4461 optlen += TCPOLEN_SIGNATURE;
4462 }
4463 #endif
4464
4465 /*
4466 * Terminate and pad TCP options to a 4 byte boundary.
4467 *
4468 * According to RFC793: "The content of the header beyond the
4469 * End-of-Option option must be header padding (i.e., zero)."
4470 * And later: "The padding is composed of zeros."
4471 */
4472 if (optlen % 4) {
4473 optlen += TCPOLEN_EOL;
4474 *optp++ = TCPOPT_EOL;
4475 }
4476 while (optlen % 4) {
4477 optlen += TCPOLEN_PAD;
4478 *optp++ = TCPOPT_PAD;
4479 }
4480
4481 /* Compute the actual values now that we've added the options. */
4482 tlen = hlen + sizeof(struct tcphdr) + optlen;
4483 m->m_len = m->m_pkthdr.len = tlen;
4484 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4485
4486 #ifdef TCP_SIGNATURE
4487 if (sav) {
4488 (void)tcp_signature(m, th, hlen, sav, sigp);
4489 key_sa_recordxfer(sav, m);
4490 KEY_SA_UNREF(&sav);
4491 }
4492 #endif
4493
4494 /*
4495 * Send ECN SYN-ACK setup packet.
4496 * Routes can be asymetric, so, even if we receive a packet
4497 * with ECE and CWR set, we must not assume no one will block
4498 * the ECE packet we are about to send.
4499 */
4500 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4501 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4502 th->th_flags |= TH_ECE;
4503 TCP_STATINC(TCP_STAT_ECN_SHS);
4504
4505 /*
4506 * draft-ietf-tcpm-ecnsyn-00.txt
4507 *
4508 * "[...] a TCP node MAY respond to an ECN-setup
4509 * SYN packet by setting ECT in the responding
4510 * ECN-setup SYN/ACK packet, indicating to routers
4511 * that the SYN/ACK packet is ECN-Capable.
4512 * This allows a congested router along the path
4513 * to mark the packet instead of dropping the
4514 * packet as an indication of congestion."
4515 *
4516 * "[...] There can be a great benefit in setting
4517 * an ECN-capable codepoint in SYN/ACK packets [...]
4518 * Congestion is most likely to occur in
4519 * the server-to-client direction. As a result,
4520 * setting an ECN-capable codepoint in SYN/ACK
4521 * packets can reduce the occurence of three-second
4522 * retransmit timeouts resulting from the drop
4523 * of SYN/ACK packets."
4524 *
4525 * Page 4 and 6, January 2006.
4526 */
4527
4528 switch (sc->sc_src.sa.sa_family) {
4529 case AF_INET:
4530 ip->ip_tos |= IPTOS_ECN_ECT0;
4531 break;
4532 #ifdef INET6
4533 case AF_INET6:
4534 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4535 break;
4536 #endif
4537 }
4538 TCP_STATINC(TCP_STAT_ECN_ECT);
4539 }
4540
4541
4542 /*
4543 * Compute the packet's checksum.
4544 *
4545 * Fill in some straggling IP bits. Note the stack expects
4546 * ip_len to be in host order, for convenience.
4547 */
4548 switch (sc->sc_src.sa.sa_family) {
4549 case AF_INET:
4550 ip->ip_len = htons(tlen - hlen);
4551 th->th_sum = 0;
4552 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4553 ip->ip_len = htons(tlen);
4554 ip->ip_ttl = ip_defttl;
4555 /* XXX tos? */
4556 break;
4557 #ifdef INET6
4558 case AF_INET6:
4559 ip6->ip6_plen = htons(tlen - hlen);
4560 th->th_sum = 0;
4561 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4562 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4563 ip6->ip6_vfc |= IPV6_VERSION;
4564 ip6->ip6_plen = htons(tlen - hlen);
4565 /* ip6_hlim will be initialized afterwards */
4566 /* XXX flowlabel? */
4567 break;
4568 #endif
4569 }
4570
4571 /* XXX use IPsec policy on listening socket, on SYN ACK */
4572 tp = sc->sc_tp;
4573
4574 switch (sc->sc_src.sa.sa_family) {
4575 case AF_INET:
4576 error = ip_output(m, sc->sc_ipopts, ro,
4577 (ip_mtudisc ? IP_MTUDISC : 0),
4578 NULL, tp ? tp->t_inpcb : NULL);
4579 break;
4580 #ifdef INET6
4581 case AF_INET6:
4582 ip6->ip6_hlim = in6_selecthlim(NULL,
4583 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4584 rtcache_unref(rt, ro);
4585
4586 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4587 tp ? tp->t_in6pcb : NULL, NULL);
4588 break;
4589 #endif
4590 default:
4591 panic("%s: impossible (2)", __func__);
4592 }
4593
4594 return error;
4595 }
4596