tcp_input.c revision 1.423 1 /* $NetBSD: tcp_input.c,v 1.423 2020/09/13 11:47:12 roy Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 /*
141 * TODO list for SYN cache stuff:
142 *
143 * Find room for a "state" field, which is needed to keep a
144 * compressed state for TIME_WAIT TCBs. It's been noted already
145 * that this is fairly important for very high-volume web and
146 * mail servers, which use a large number of short-lived
147 * connections.
148 */
149
150 #include <sys/cdefs.h>
151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.423 2020/09/13 11:47:12 roy Exp $");
152
153 #ifdef _KERNEL_OPT
154 #include "opt_inet.h"
155 #include "opt_ipsec.h"
156 #include "opt_inet_csum.h"
157 #include "opt_tcp_debug.h"
158 #endif
159
160 #include <sys/param.h>
161 #include <sys/systm.h>
162 #include <sys/malloc.h>
163 #include <sys/mbuf.h>
164 #include <sys/protosw.h>
165 #include <sys/socket.h>
166 #include <sys/socketvar.h>
167 #include <sys/errno.h>
168 #include <sys/syslog.h>
169 #include <sys/pool.h>
170 #include <sys/domain.h>
171 #include <sys/kernel.h>
172 #ifdef TCP_SIGNATURE
173 #include <sys/md5.h>
174 #endif
175 #include <sys/lwp.h> /* for lwp0 */
176 #include <sys/cprng.h>
177
178 #include <net/if.h>
179 #include <net/if_types.h>
180
181 #include <netinet/in.h>
182 #include <netinet/in_systm.h>
183 #include <netinet/ip.h>
184 #include <netinet/in_pcb.h>
185 #include <netinet/in_var.h>
186 #include <netinet/ip_var.h>
187 #include <netinet/in_offload.h>
188
189 #if NARP > 0
190 #include <netinet/if_inarp.h>
191 #endif
192 #ifdef INET6
193 #include <netinet/ip6.h>
194 #include <netinet6/ip6_var.h>
195 #include <netinet6/in6_pcb.h>
196 #include <netinet6/ip6_var.h>
197 #include <netinet6/in6_var.h>
198 #include <netinet/icmp6.h>
199 #include <netinet6/nd6.h>
200 #ifdef TCP_SIGNATURE
201 #include <netinet6/scope6_var.h>
202 #endif
203 #endif
204
205 #ifndef INET6
206 #include <netinet/ip6.h>
207 #endif
208
209 #include <netinet/tcp.h>
210 #include <netinet/tcp_fsm.h>
211 #include <netinet/tcp_seq.h>
212 #include <netinet/tcp_timer.h>
213 #include <netinet/tcp_var.h>
214 #include <netinet/tcp_private.h>
215 #include <netinet/tcp_congctl.h>
216 #include <netinet/tcp_debug.h>
217
218 #ifdef INET6
219 #include "faith.h"
220 #if defined(NFAITH) && NFAITH > 0
221 #include <net/if_faith.h>
222 #endif
223 #endif
224
225 #ifdef IPSEC
226 #include <netipsec/ipsec.h>
227 #include <netipsec/key.h>
228 #ifdef INET6
229 #include <netipsec/ipsec6.h>
230 #endif
231 #endif /* IPSEC*/
232
233 #include <netinet/tcp_vtw.h>
234
235 int tcprexmtthresh = 3;
236 int tcp_log_refused;
237
238 int tcp_do_autorcvbuf = 1;
239 int tcp_autorcvbuf_inc = 16 * 1024;
240 int tcp_autorcvbuf_max = 256 * 1024;
241 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
242
243 static int tcp_rst_ppslim_count = 0;
244 static struct timeval tcp_rst_ppslim_last;
245 static int tcp_ackdrop_ppslim_count = 0;
246 static struct timeval tcp_ackdrop_ppslim_last;
247
248 static void syn_cache_timer(void *);
249
250 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
251
252 /* for modulo comparisons of timestamps */
253 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
254 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
255
256 /*
257 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
258 */
259 static void
260 nd_hint(struct tcpcb *tp)
261 {
262 struct route *ro = NULL;
263 struct rtentry *rt;
264
265 if (tp == NULL)
266 return;
267
268 switch (tp->t_family) {
269 #if NARP > 0
270 case AF_INET:
271 if (tp->t_inpcb != NULL)
272 ro = &tp->t_inpcb->inp_route;
273 break;
274 #endif
275 #ifdef INET6
276 case AF_INET6:
277 if (tp->t_in6pcb != NULL)
278 ro = &tp->t_in6pcb->in6p_route;
279 break;
280 #endif
281 }
282
283 if (ro == NULL)
284 return;
285
286 rt = rtcache_validate(ro);
287 if (rt == NULL)
288 return;
289
290 switch (tp->t_family) {
291 #if NARP > 0
292 case AF_INET:
293 arp_nud_hint(rt);
294 break;
295 #endif
296 #ifdef INET6
297 case AF_INET6:
298 nd6_nud_hint(rt);
299 break;
300 #endif
301 }
302
303 rtcache_unref(rt, ro);
304 }
305
306 /*
307 * Compute ACK transmission behavior. Delay the ACK unless
308 * we have already delayed an ACK (must send an ACK every two segments).
309 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
310 * option is enabled.
311 */
312 static void
313 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
314 {
315
316 if (tp->t_flags & TF_DELACK ||
317 (tcp_ack_on_push && th->th_flags & TH_PUSH))
318 tp->t_flags |= TF_ACKNOW;
319 else
320 TCP_SET_DELACK(tp);
321 }
322
323 static void
324 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
325 {
326
327 /*
328 * If we had a pending ICMP message that refers to data that have
329 * just been acknowledged, disregard the recorded ICMP message.
330 */
331 if ((tp->t_flags & TF_PMTUD_PEND) &&
332 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
333 tp->t_flags &= ~TF_PMTUD_PEND;
334
335 /*
336 * Keep track of the largest chunk of data
337 * acknowledged since last PMTU update
338 */
339 if (tp->t_pmtud_mss_acked < acked)
340 tp->t_pmtud_mss_acked = acked;
341 }
342
343 /*
344 * Convert TCP protocol fields to host order for easier processing.
345 */
346 static void
347 tcp_fields_to_host(struct tcphdr *th)
348 {
349
350 NTOHL(th->th_seq);
351 NTOHL(th->th_ack);
352 NTOHS(th->th_win);
353 NTOHS(th->th_urp);
354 }
355
356 /*
357 * ... and reverse the above.
358 */
359 static void
360 tcp_fields_to_net(struct tcphdr *th)
361 {
362
363 HTONL(th->th_seq);
364 HTONL(th->th_ack);
365 HTONS(th->th_win);
366 HTONS(th->th_urp);
367 }
368
369 static void
370 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
371 {
372 if (th->th_urp > todrop) {
373 th->th_urp -= todrop;
374 } else {
375 *tiflags &= ~TH_URG;
376 th->th_urp = 0;
377 }
378 }
379
380 #ifdef TCP_CSUM_COUNTERS
381 #include <sys/device.h>
382
383 extern struct evcnt tcp_hwcsum_ok;
384 extern struct evcnt tcp_hwcsum_bad;
385 extern struct evcnt tcp_hwcsum_data;
386 extern struct evcnt tcp_swcsum;
387 #if defined(INET6)
388 extern struct evcnt tcp6_hwcsum_ok;
389 extern struct evcnt tcp6_hwcsum_bad;
390 extern struct evcnt tcp6_hwcsum_data;
391 extern struct evcnt tcp6_swcsum;
392 #endif /* defined(INET6) */
393
394 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
395
396 #else
397
398 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
399
400 #endif /* TCP_CSUM_COUNTERS */
401
402 #ifdef TCP_REASS_COUNTERS
403 #include <sys/device.h>
404
405 extern struct evcnt tcp_reass_;
406 extern struct evcnt tcp_reass_empty;
407 extern struct evcnt tcp_reass_iteration[8];
408 extern struct evcnt tcp_reass_prependfirst;
409 extern struct evcnt tcp_reass_prepend;
410 extern struct evcnt tcp_reass_insert;
411 extern struct evcnt tcp_reass_inserttail;
412 extern struct evcnt tcp_reass_append;
413 extern struct evcnt tcp_reass_appendtail;
414 extern struct evcnt tcp_reass_overlaptail;
415 extern struct evcnt tcp_reass_overlapfront;
416 extern struct evcnt tcp_reass_segdup;
417 extern struct evcnt tcp_reass_fragdup;
418
419 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
420
421 #else
422
423 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
424
425 #endif /* TCP_REASS_COUNTERS */
426
427 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
428 int);
429 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
430 struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
431
432 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
433 #ifdef INET6
434 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
435 #endif
436
437 #if defined(MBUFTRACE)
438 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
439 #endif /* defined(MBUFTRACE) */
440
441 static struct pool tcpipqent_pool;
442
443 void
444 tcpipqent_init(void)
445 {
446
447 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
448 NULL, IPL_VM);
449 }
450
451 struct ipqent *
452 tcpipqent_alloc(void)
453 {
454 struct ipqent *ipqe;
455 int s;
456
457 s = splvm();
458 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
459 splx(s);
460
461 return ipqe;
462 }
463
464 void
465 tcpipqent_free(struct ipqent *ipqe)
466 {
467 int s;
468
469 s = splvm();
470 pool_put(&tcpipqent_pool, ipqe);
471 splx(s);
472 }
473
474 /*
475 * Insert segment ti into reassembly queue of tcp with
476 * control block tp. Return TH_FIN if reassembly now includes
477 * a segment with FIN.
478 */
479 static int
480 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
481 {
482 struct ipqent *p, *q, *nq, *tiqe = NULL;
483 struct socket *so = NULL;
484 int pkt_flags;
485 tcp_seq pkt_seq;
486 unsigned pkt_len;
487 u_long rcvpartdupbyte = 0;
488 u_long rcvoobyte;
489 #ifdef TCP_REASS_COUNTERS
490 u_int count = 0;
491 #endif
492 uint64_t *tcps;
493
494 if (tp->t_inpcb)
495 so = tp->t_inpcb->inp_socket;
496 #ifdef INET6
497 else if (tp->t_in6pcb)
498 so = tp->t_in6pcb->in6p_socket;
499 #endif
500
501 TCP_REASS_LOCK_CHECK(tp);
502
503 /*
504 * Call with th==NULL after become established to
505 * force pre-ESTABLISHED data up to user socket.
506 */
507 if (th == NULL)
508 goto present;
509
510 m_claimm(m, &tcp_reass_mowner);
511
512 rcvoobyte = tlen;
513 /*
514 * Copy these to local variables because the TCP header gets munged
515 * while we are collapsing mbufs.
516 */
517 pkt_seq = th->th_seq;
518 pkt_len = tlen;
519 pkt_flags = th->th_flags;
520
521 TCP_REASS_COUNTER_INCR(&tcp_reass_);
522
523 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
524 /*
525 * When we miss a packet, the vast majority of time we get
526 * packets that follow it in order. So optimize for that.
527 */
528 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
529 p->ipqe_len += pkt_len;
530 p->ipqe_flags |= pkt_flags;
531 m_cat(p->ipqe_m, m);
532 m = NULL;
533 tiqe = p;
534 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
535 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
536 goto skip_replacement;
537 }
538 /*
539 * While we're here, if the pkt is completely beyond
540 * anything we have, just insert it at the tail.
541 */
542 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
543 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
544 goto insert_it;
545 }
546 }
547
548 q = TAILQ_FIRST(&tp->segq);
549
550 if (q != NULL) {
551 /*
552 * If this segment immediately precedes the first out-of-order
553 * block, simply slap the segment in front of it and (mostly)
554 * skip the complicated logic.
555 */
556 if (pkt_seq + pkt_len == q->ipqe_seq) {
557 q->ipqe_seq = pkt_seq;
558 q->ipqe_len += pkt_len;
559 q->ipqe_flags |= pkt_flags;
560 m_cat(m, q->ipqe_m);
561 q->ipqe_m = m;
562 tiqe = q;
563 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
564 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
565 goto skip_replacement;
566 }
567 } else {
568 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
569 }
570
571 /*
572 * Find a segment which begins after this one does.
573 */
574 for (p = NULL; q != NULL; q = nq) {
575 nq = TAILQ_NEXT(q, ipqe_q);
576 #ifdef TCP_REASS_COUNTERS
577 count++;
578 #endif
579
580 /*
581 * If the received segment is just right after this
582 * fragment, merge the two together and then check
583 * for further overlaps.
584 */
585 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
586 pkt_len += q->ipqe_len;
587 pkt_flags |= q->ipqe_flags;
588 pkt_seq = q->ipqe_seq;
589 m_cat(q->ipqe_m, m);
590 m = q->ipqe_m;
591 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
592 goto free_ipqe;
593 }
594
595 /*
596 * If the received segment is completely past this
597 * fragment, we need to go to the next fragment.
598 */
599 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
600 p = q;
601 continue;
602 }
603
604 /*
605 * If the fragment is past the received segment,
606 * it (or any following) can't be concatenated.
607 */
608 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
609 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
610 break;
611 }
612
613 /*
614 * We've received all the data in this segment before.
615 * Mark it as a duplicate and return.
616 */
617 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
618 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
619 tcps = TCP_STAT_GETREF();
620 tcps[TCP_STAT_RCVDUPPACK]++;
621 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
622 TCP_STAT_PUTREF();
623 tcp_new_dsack(tp, pkt_seq, pkt_len);
624 m_freem(m);
625 if (tiqe != NULL) {
626 tcpipqent_free(tiqe);
627 }
628 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
629 goto out;
630 }
631
632 /*
633 * Received segment completely overlaps this fragment
634 * so we drop the fragment (this keeps the temporal
635 * ordering of segments correct).
636 */
637 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
638 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
639 rcvpartdupbyte += q->ipqe_len;
640 m_freem(q->ipqe_m);
641 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
642 goto free_ipqe;
643 }
644
645 /*
646 * Received segment extends past the end of the fragment.
647 * Drop the overlapping bytes, merge the fragment and
648 * segment, and treat as a longer received packet.
649 */
650 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
651 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
652 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
653 m_adj(m, overlap);
654 rcvpartdupbyte += overlap;
655 m_cat(q->ipqe_m, m);
656 m = q->ipqe_m;
657 pkt_seq = q->ipqe_seq;
658 pkt_len += q->ipqe_len - overlap;
659 rcvoobyte -= overlap;
660 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
661 goto free_ipqe;
662 }
663
664 /*
665 * Received segment extends past the front of the fragment.
666 * Drop the overlapping bytes on the received packet. The
667 * packet will then be concatenated with this fragment a
668 * bit later.
669 */
670 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
671 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
672 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
673 m_adj(m, -overlap);
674 pkt_len -= overlap;
675 rcvpartdupbyte += overlap;
676 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
677 rcvoobyte -= overlap;
678 }
679
680 /*
681 * If the received segment immediately precedes this
682 * fragment then tack the fragment onto this segment
683 * and reinsert the data.
684 */
685 if (q->ipqe_seq == pkt_seq + pkt_len) {
686 pkt_len += q->ipqe_len;
687 pkt_flags |= q->ipqe_flags;
688 m_cat(m, q->ipqe_m);
689 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
690 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
691 tp->t_segqlen--;
692 KASSERT(tp->t_segqlen >= 0);
693 KASSERT(tp->t_segqlen != 0 ||
694 (TAILQ_EMPTY(&tp->segq) &&
695 TAILQ_EMPTY(&tp->timeq)));
696 if (tiqe == NULL) {
697 tiqe = q;
698 } else {
699 tcpipqent_free(q);
700 }
701 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
702 break;
703 }
704
705 /*
706 * If the fragment is before the segment, remember it.
707 * When this loop is terminated, p will contain the
708 * pointer to the fragment that is right before the
709 * received segment.
710 */
711 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
712 p = q;
713
714 continue;
715
716 /*
717 * This is a common operation. It also will allow
718 * to save doing a malloc/free in most instances.
719 */
720 free_ipqe:
721 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
722 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
723 tp->t_segqlen--;
724 KASSERT(tp->t_segqlen >= 0);
725 KASSERT(tp->t_segqlen != 0 ||
726 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
727 if (tiqe == NULL) {
728 tiqe = q;
729 } else {
730 tcpipqent_free(q);
731 }
732 }
733
734 #ifdef TCP_REASS_COUNTERS
735 if (count > 7)
736 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
737 else if (count > 0)
738 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
739 #endif
740
741 insert_it:
742 /*
743 * Allocate a new queue entry (block) since the received segment
744 * did not collapse onto any other out-of-order block. If it had
745 * collapsed, tiqe would not be NULL and we would be reusing it.
746 *
747 * If the allocation fails, drop the packet.
748 */
749 if (tiqe == NULL) {
750 tiqe = tcpipqent_alloc();
751 if (tiqe == NULL) {
752 TCP_STATINC(TCP_STAT_RCVMEMDROP);
753 m_freem(m);
754 goto out;
755 }
756 }
757
758 /*
759 * Update the counters.
760 */
761 tp->t_rcvoopack++;
762 tcps = TCP_STAT_GETREF();
763 tcps[TCP_STAT_RCVOOPACK]++;
764 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
765 if (rcvpartdupbyte) {
766 tcps[TCP_STAT_RCVPARTDUPPACK]++;
767 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
768 }
769 TCP_STAT_PUTREF();
770
771 /*
772 * Insert the new fragment queue entry into both queues.
773 */
774 tiqe->ipqe_m = m;
775 tiqe->ipqe_seq = pkt_seq;
776 tiqe->ipqe_len = pkt_len;
777 tiqe->ipqe_flags = pkt_flags;
778 if (p == NULL) {
779 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
780 } else {
781 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
782 }
783 tp->t_segqlen++;
784
785 skip_replacement:
786 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
787
788 present:
789 /*
790 * Present data to user, advancing rcv_nxt through
791 * completed sequence space.
792 */
793 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
794 goto out;
795 q = TAILQ_FIRST(&tp->segq);
796 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
797 goto out;
798 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
799 goto out;
800
801 tp->rcv_nxt += q->ipqe_len;
802 pkt_flags = q->ipqe_flags & TH_FIN;
803 nd_hint(tp);
804
805 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
806 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
807 tp->t_segqlen--;
808 KASSERT(tp->t_segqlen >= 0);
809 KASSERT(tp->t_segqlen != 0 ||
810 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
811 if (so->so_state & SS_CANTRCVMORE)
812 m_freem(q->ipqe_m);
813 else
814 sbappendstream(&so->so_rcv, q->ipqe_m);
815 tcpipqent_free(q);
816 TCP_REASS_UNLOCK(tp);
817 sorwakeup(so);
818 return pkt_flags;
819
820 out:
821 TCP_REASS_UNLOCK(tp);
822 return 0;
823 }
824
825 #ifdef INET6
826 int
827 tcp6_input(struct mbuf **mp, int *offp, int proto)
828 {
829 struct mbuf *m = *mp;
830
831 /*
832 * draft-itojun-ipv6-tcp-to-anycast
833 * better place to put this in?
834 */
835 if (m->m_flags & M_ANYCAST6) {
836 struct ip6_hdr *ip6;
837 if (m->m_len < sizeof(struct ip6_hdr)) {
838 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
839 TCP_STATINC(TCP_STAT_RCVSHORT);
840 return IPPROTO_DONE;
841 }
842 }
843 ip6 = mtod(m, struct ip6_hdr *);
844 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
845 (char *)&ip6->ip6_dst - (char *)ip6);
846 return IPPROTO_DONE;
847 }
848
849 tcp_input(m, *offp, proto);
850 return IPPROTO_DONE;
851 }
852 #endif
853
854 static void
855 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
856 {
857 char src[INET_ADDRSTRLEN];
858 char dst[INET_ADDRSTRLEN];
859
860 if (ip) {
861 in_print(src, sizeof(src), &ip->ip_src);
862 in_print(dst, sizeof(dst), &ip->ip_dst);
863 } else {
864 strlcpy(src, "(unknown)", sizeof(src));
865 strlcpy(dst, "(unknown)", sizeof(dst));
866 }
867 log(LOG_INFO,
868 "Connection attempt to TCP %s:%d from %s:%d\n",
869 dst, ntohs(th->th_dport),
870 src, ntohs(th->th_sport));
871 }
872
873 #ifdef INET6
874 static void
875 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
876 {
877 char src[INET6_ADDRSTRLEN];
878 char dst[INET6_ADDRSTRLEN];
879
880 if (ip6) {
881 in6_print(src, sizeof(src), &ip6->ip6_src);
882 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
883 } else {
884 strlcpy(src, "(unknown v6)", sizeof(src));
885 strlcpy(dst, "(unknown v6)", sizeof(dst));
886 }
887 log(LOG_INFO,
888 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
889 dst, ntohs(th->th_dport),
890 src, ntohs(th->th_sport));
891 }
892 #endif
893
894 /*
895 * Checksum extended TCP header and data.
896 */
897 int
898 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
899 int toff, int off, int tlen)
900 {
901 struct ifnet *rcvif;
902 int s;
903
904 /*
905 * XXX it's better to record and check if this mbuf is
906 * already checked.
907 */
908
909 rcvif = m_get_rcvif(m, &s);
910 if (__predict_false(rcvif == NULL))
911 goto badcsum; /* XXX */
912
913 switch (af) {
914 case AF_INET:
915 switch (m->m_pkthdr.csum_flags &
916 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
917 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
918 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
919 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
920 goto badcsum;
921
922 case M_CSUM_TCPv4|M_CSUM_DATA: {
923 u_int32_t hw_csum = m->m_pkthdr.csum_data;
924
925 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
926 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
927 const struct ip *ip =
928 mtod(m, const struct ip *);
929
930 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
931 ip->ip_dst.s_addr,
932 htons(hw_csum + tlen + off + IPPROTO_TCP));
933 }
934 if ((hw_csum ^ 0xffff) != 0)
935 goto badcsum;
936 break;
937 }
938
939 case M_CSUM_TCPv4:
940 /* Checksum was okay. */
941 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
942 break;
943
944 default:
945 /*
946 * Must compute it ourselves. Maybe skip checksum
947 * on loopback interfaces.
948 */
949 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
950 tcp_do_loopback_cksum)) {
951 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
952 if (in4_cksum(m, IPPROTO_TCP, toff,
953 tlen + off) != 0)
954 goto badcsum;
955 }
956 break;
957 }
958 break;
959
960 #ifdef INET6
961 case AF_INET6:
962 switch (m->m_pkthdr.csum_flags &
963 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
964 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
965 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
966 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
967 goto badcsum;
968
969 #if 0 /* notyet */
970 case M_CSUM_TCPv6|M_CSUM_DATA:
971 #endif
972
973 case M_CSUM_TCPv6:
974 /* Checksum was okay. */
975 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
976 break;
977
978 default:
979 /*
980 * Must compute it ourselves. Maybe skip checksum
981 * on loopback interfaces.
982 */
983 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
984 tcp_do_loopback_cksum)) {
985 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
986 if (in6_cksum(m, IPPROTO_TCP, toff,
987 tlen + off) != 0)
988 goto badcsum;
989 }
990 }
991 break;
992 #endif /* INET6 */
993 }
994 m_put_rcvif(rcvif, &s);
995
996 return 0;
997
998 badcsum:
999 m_put_rcvif(rcvif, &s);
1000 TCP_STATINC(TCP_STAT_RCVBADSUM);
1001 return -1;
1002 }
1003
1004 /*
1005 * When a packet arrives addressed to a vestigial tcpbp, we
1006 * nevertheless have to respond to it per the spec.
1007 *
1008 * This code is duplicated from the one in tcp_input().
1009 */
1010 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
1011 struct mbuf *m, int tlen)
1012 {
1013 int tiflags;
1014 int todrop;
1015 uint32_t t_flags = 0;
1016 uint64_t *tcps;
1017
1018 tiflags = th->th_flags;
1019 todrop = vp->rcv_nxt - th->th_seq;
1020
1021 if (todrop > 0) {
1022 if (tiflags & TH_SYN) {
1023 tiflags &= ~TH_SYN;
1024 th->th_seq++;
1025 tcp_urp_drop(th, 1, &tiflags);
1026 todrop--;
1027 }
1028 if (todrop > tlen ||
1029 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1030 /*
1031 * Any valid FIN or RST must be to the left of the
1032 * window. At this point the FIN or RST must be a
1033 * duplicate or out of sequence; drop it.
1034 */
1035 if (tiflags & TH_RST)
1036 goto drop;
1037 tiflags &= ~(TH_FIN|TH_RST);
1038
1039 /*
1040 * Send an ACK to resynchronize and drop any data.
1041 * But keep on processing for RST or ACK.
1042 */
1043 t_flags |= TF_ACKNOW;
1044 todrop = tlen;
1045 tcps = TCP_STAT_GETREF();
1046 tcps[TCP_STAT_RCVDUPPACK] += 1;
1047 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1048 TCP_STAT_PUTREF();
1049 } else if ((tiflags & TH_RST) &&
1050 th->th_seq != vp->rcv_nxt) {
1051 /*
1052 * Test for reset before adjusting the sequence
1053 * number for overlapping data.
1054 */
1055 goto dropafterack_ratelim;
1056 } else {
1057 tcps = TCP_STAT_GETREF();
1058 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1059 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1060 TCP_STAT_PUTREF();
1061 }
1062
1063 // tcp_new_dsack(tp, th->th_seq, todrop);
1064 // hdroptlen += todrop; /*drop from head afterwards*/
1065
1066 th->th_seq += todrop;
1067 tlen -= todrop;
1068 tcp_urp_drop(th, todrop, &tiflags);
1069 }
1070
1071 /*
1072 * If new data are received on a connection after the
1073 * user processes are gone, then RST the other end.
1074 */
1075 if (tlen) {
1076 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1077 goto dropwithreset;
1078 }
1079
1080 /*
1081 * If segment ends after window, drop trailing data
1082 * (and PUSH and FIN); if nothing left, just ACK.
1083 */
1084 todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1085
1086 if (todrop > 0) {
1087 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1088 if (todrop >= tlen) {
1089 /*
1090 * The segment actually starts after the window.
1091 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1092 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1093 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1094 */
1095 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1096
1097 /*
1098 * If a new connection request is received
1099 * while in TIME_WAIT, drop the old connection
1100 * and start over if the sequence numbers
1101 * are above the previous ones.
1102 */
1103 if ((tiflags & TH_SYN) &&
1104 SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1105 /*
1106 * We only support this in the !NOFDREF case, which
1107 * is to say: not here.
1108 */
1109 goto dropwithreset;
1110 }
1111
1112 /*
1113 * If window is closed can only take segments at
1114 * window edge, and have to drop data and PUSH from
1115 * incoming segments. Continue processing, but
1116 * remember to ack. Otherwise, drop segment
1117 * and (if not RST) ack.
1118 */
1119 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1120 t_flags |= TF_ACKNOW;
1121 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1122 } else {
1123 goto dropafterack;
1124 }
1125 } else {
1126 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1127 }
1128 m_adj(m, -todrop);
1129 tlen -= todrop;
1130 tiflags &= ~(TH_PUSH|TH_FIN);
1131 }
1132
1133 if (tiflags & TH_RST) {
1134 if (th->th_seq != vp->rcv_nxt)
1135 goto dropafterack_ratelim;
1136
1137 vtw_del(vp->ctl, vp->vtw);
1138 goto drop;
1139 }
1140
1141 /*
1142 * If the ACK bit is off we drop the segment and return.
1143 */
1144 if ((tiflags & TH_ACK) == 0) {
1145 if (t_flags & TF_ACKNOW)
1146 goto dropafterack;
1147 goto drop;
1148 }
1149
1150 /*
1151 * In TIME_WAIT state the only thing that should arrive
1152 * is a retransmission of the remote FIN. Acknowledge
1153 * it and restart the finack timer.
1154 */
1155 vtw_restart(vp);
1156 goto dropafterack;
1157
1158 dropafterack:
1159 /*
1160 * Generate an ACK dropping incoming segment if it occupies
1161 * sequence space, where the ACK reflects our state.
1162 */
1163 if (tiflags & TH_RST)
1164 goto drop;
1165 goto dropafterack2;
1166
1167 dropafterack_ratelim:
1168 /*
1169 * We may want to rate-limit ACKs against SYN/RST attack.
1170 */
1171 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1172 tcp_ackdrop_ppslim) == 0) {
1173 /* XXX stat */
1174 goto drop;
1175 }
1176 /* ...fall into dropafterack2... */
1177
1178 dropafterack2:
1179 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1180 return;
1181
1182 dropwithreset:
1183 /*
1184 * Generate a RST, dropping incoming segment.
1185 * Make ACK acceptable to originator of segment.
1186 */
1187 if (tiflags & TH_RST)
1188 goto drop;
1189
1190 if (tiflags & TH_ACK) {
1191 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1192 } else {
1193 if (tiflags & TH_SYN)
1194 ++tlen;
1195 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1196 TH_RST|TH_ACK);
1197 }
1198 return;
1199 drop:
1200 m_freem(m);
1201 }
1202
1203 /*
1204 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1205 */
1206 void
1207 tcp_input(struct mbuf *m, int off, int proto)
1208 {
1209 struct tcphdr *th;
1210 struct ip *ip;
1211 struct inpcb *inp;
1212 #ifdef INET6
1213 struct ip6_hdr *ip6;
1214 struct in6pcb *in6p;
1215 #endif
1216 u_int8_t *optp = NULL;
1217 int optlen = 0;
1218 int len, tlen, hdroptlen = 0;
1219 struct tcpcb *tp = NULL;
1220 int tiflags;
1221 struct socket *so = NULL;
1222 int todrop, acked, ourfinisacked, needoutput = 0;
1223 bool dupseg;
1224 #ifdef TCP_DEBUG
1225 short ostate = 0;
1226 #endif
1227 u_long tiwin;
1228 struct tcp_opt_info opti;
1229 int thlen, iphlen;
1230 int af; /* af on the wire */
1231 struct mbuf *tcp_saveti = NULL;
1232 uint32_t ts_rtt;
1233 uint8_t iptos;
1234 uint64_t *tcps;
1235 vestigial_inpcb_t vestige;
1236
1237 vestige.valid = 0;
1238
1239 MCLAIM(m, &tcp_rx_mowner);
1240
1241 TCP_STATINC(TCP_STAT_RCVTOTAL);
1242
1243 memset(&opti, 0, sizeof(opti));
1244 opti.ts_present = 0;
1245 opti.maxseg = 0;
1246
1247 /*
1248 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1249 *
1250 * TCP is, by definition, unicast, so we reject all
1251 * multicast outright.
1252 *
1253 * Note, there are additional src/dst address checks in
1254 * the AF-specific code below.
1255 */
1256 if (m->m_flags & (M_BCAST|M_MCAST)) {
1257 /* XXX stat */
1258 goto drop;
1259 }
1260 #ifdef INET6
1261 if (m->m_flags & M_ANYCAST6) {
1262 /* XXX stat */
1263 goto drop;
1264 }
1265 #endif
1266
1267 M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
1268 if (th == NULL) {
1269 TCP_STATINC(TCP_STAT_RCVSHORT);
1270 return;
1271 }
1272
1273 /*
1274 * Enforce alignment requirements that are violated in
1275 * some cases, see kern/50766 for details.
1276 */
1277 if (TCP_HDR_ALIGNED_P(th) == 0) {
1278 m = m_copyup(m, off + sizeof(struct tcphdr), 0);
1279 if (m == NULL) {
1280 TCP_STATINC(TCP_STAT_RCVSHORT);
1281 return;
1282 }
1283 th = (struct tcphdr *)(mtod(m, char *) + off);
1284 }
1285 KASSERT(TCP_HDR_ALIGNED_P(th));
1286
1287 /*
1288 * Get IP and TCP header.
1289 * Note: IP leaves IP header in first mbuf.
1290 */
1291 ip = mtod(m, struct ip *);
1292 #ifdef INET6
1293 ip6 = mtod(m, struct ip6_hdr *);
1294 #endif
1295 switch (ip->ip_v) {
1296 case 4:
1297 af = AF_INET;
1298 iphlen = sizeof(struct ip);
1299
1300 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1301 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1302 goto drop;
1303
1304 /* We do the checksum after PCB lookup... */
1305 len = ntohs(ip->ip_len);
1306 tlen = len - off;
1307 iptos = ip->ip_tos;
1308 break;
1309 #ifdef INET6
1310 case 6:
1311 iphlen = sizeof(struct ip6_hdr);
1312 af = AF_INET6;
1313
1314 /*
1315 * Be proactive about unspecified IPv6 address in source.
1316 * As we use all-zero to indicate unbounded/unconnected pcb,
1317 * unspecified IPv6 address can be used to confuse us.
1318 *
1319 * Note that packets with unspecified IPv6 destination is
1320 * already dropped in ip6_input.
1321 */
1322 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1323 /* XXX stat */
1324 goto drop;
1325 }
1326
1327 /*
1328 * Make sure destination address is not multicast.
1329 * Source address checked in ip6_input().
1330 */
1331 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1332 /* XXX stat */
1333 goto drop;
1334 }
1335
1336 /* We do the checksum after PCB lookup... */
1337 len = m->m_pkthdr.len;
1338 tlen = len - off;
1339 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1340 break;
1341 #endif
1342 default:
1343 m_freem(m);
1344 return;
1345 }
1346
1347
1348 /*
1349 * Check that TCP offset makes sense, pull out TCP options and
1350 * adjust length.
1351 */
1352 thlen = th->th_off << 2;
1353 if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
1354 TCP_STATINC(TCP_STAT_RCVBADOFF);
1355 goto drop;
1356 }
1357 tlen -= thlen;
1358
1359 if (thlen > sizeof(struct tcphdr)) {
1360 M_REGION_GET(th, struct tcphdr *, m, off, thlen);
1361 if (th == NULL) {
1362 TCP_STATINC(TCP_STAT_RCVSHORT);
1363 return;
1364 }
1365 KASSERT(TCP_HDR_ALIGNED_P(th));
1366 optlen = thlen - sizeof(struct tcphdr);
1367 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1368
1369 /*
1370 * Do quick retrieval of timestamp options.
1371 *
1372 * If timestamp is the only option and it's formatted as
1373 * recommended in RFC 1323 appendix A, we quickly get the
1374 * values now and don't bother calling tcp_dooptions(),
1375 * etc.
1376 */
1377 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1378 (optlen > TCPOLEN_TSTAMP_APPA &&
1379 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1380 be32dec(optp) == TCPOPT_TSTAMP_HDR &&
1381 (th->th_flags & TH_SYN) == 0) {
1382 opti.ts_present = 1;
1383 opti.ts_val = be32dec(optp + 4);
1384 opti.ts_ecr = be32dec(optp + 8);
1385 optp = NULL; /* we've parsed the options */
1386 }
1387 }
1388 tiflags = th->th_flags;
1389
1390 /*
1391 * Checksum extended TCP header and data
1392 */
1393 if (tcp_input_checksum(af, m, th, off, thlen, tlen))
1394 goto badcsum;
1395
1396 /*
1397 * Locate pcb for segment.
1398 */
1399 findpcb:
1400 inp = NULL;
1401 #ifdef INET6
1402 in6p = NULL;
1403 #endif
1404 switch (af) {
1405 case AF_INET:
1406 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1407 ip->ip_dst, th->th_dport, &vestige);
1408 if (inp == NULL && !vestige.valid) {
1409 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1410 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1411 th->th_dport);
1412 }
1413 #ifdef INET6
1414 if (inp == NULL && !vestige.valid) {
1415 struct in6_addr s, d;
1416
1417 /* mapped addr case */
1418 in6_in_2_v4mapin6(&ip->ip_src, &s);
1419 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1420 in6p = in6_pcblookup_connect(&tcbtable, &s,
1421 th->th_sport, &d, th->th_dport, 0, &vestige);
1422 if (in6p == 0 && !vestige.valid) {
1423 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1424 in6p = in6_pcblookup_bind(&tcbtable, &d,
1425 th->th_dport, 0);
1426 }
1427 }
1428 #endif
1429 #ifndef INET6
1430 if (inp == NULL && !vestige.valid)
1431 #else
1432 if (inp == NULL && in6p == NULL && !vestige.valid)
1433 #endif
1434 {
1435 TCP_STATINC(TCP_STAT_NOPORT);
1436 if (tcp_log_refused &&
1437 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1438 tcp4_log_refused(ip, th);
1439 }
1440 tcp_fields_to_host(th);
1441 goto dropwithreset_ratelim;
1442 }
1443 #if defined(IPSEC)
1444 if (ipsec_used) {
1445 if (inp && ipsec_in_reject(m, inp)) {
1446 goto drop;
1447 }
1448 #ifdef INET6
1449 else if (in6p && ipsec_in_reject(m, in6p)) {
1450 goto drop;
1451 }
1452 #endif
1453 }
1454 #endif /*IPSEC*/
1455 break;
1456 #ifdef INET6
1457 case AF_INET6:
1458 {
1459 int faith;
1460
1461 #if defined(NFAITH) && NFAITH > 0
1462 faith = faithprefix(&ip6->ip6_dst);
1463 #else
1464 faith = 0;
1465 #endif
1466 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1467 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1468 if (!in6p && !vestige.valid) {
1469 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1470 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1471 th->th_dport, faith);
1472 }
1473 if (!in6p && !vestige.valid) {
1474 TCP_STATINC(TCP_STAT_NOPORT);
1475 if (tcp_log_refused &&
1476 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1477 tcp6_log_refused(ip6, th);
1478 }
1479 tcp_fields_to_host(th);
1480 goto dropwithreset_ratelim;
1481 }
1482 #if defined(IPSEC)
1483 if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1484 goto drop;
1485 }
1486 #endif
1487 break;
1488 }
1489 #endif
1490 }
1491
1492 tcp_fields_to_host(th);
1493
1494 /*
1495 * If the state is CLOSED (i.e., TCB does not exist) then
1496 * all data in the incoming segment is discarded.
1497 * If the TCB exists but is in CLOSED state, it is embryonic,
1498 * but should either do a listen or a connect soon.
1499 */
1500 tp = NULL;
1501 so = NULL;
1502 if (inp) {
1503 /* Check the minimum TTL for socket. */
1504 if (ip->ip_ttl < inp->inp_ip_minttl)
1505 goto drop;
1506
1507 tp = intotcpcb(inp);
1508 so = inp->inp_socket;
1509 }
1510 #ifdef INET6
1511 else if (in6p) {
1512 tp = in6totcpcb(in6p);
1513 so = in6p->in6p_socket;
1514 }
1515 #endif
1516 else if (vestige.valid) {
1517 /* We do not support the resurrection of vtw tcpcps. */
1518 tcp_vtw_input(th, &vestige, m, tlen);
1519 m = NULL;
1520 goto drop;
1521 }
1522
1523 if (tp == NULL)
1524 goto dropwithreset_ratelim;
1525 if (tp->t_state == TCPS_CLOSED)
1526 goto drop;
1527
1528 KASSERT(so->so_lock == softnet_lock);
1529 KASSERT(solocked(so));
1530
1531 /* Unscale the window into a 32-bit value. */
1532 if ((tiflags & TH_SYN) == 0)
1533 tiwin = th->th_win << tp->snd_scale;
1534 else
1535 tiwin = th->th_win;
1536
1537 #ifdef INET6
1538 /* save packet options if user wanted */
1539 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1540 if (in6p->in6p_options) {
1541 m_freem(in6p->in6p_options);
1542 in6p->in6p_options = NULL;
1543 }
1544 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1545 }
1546 #endif
1547
1548 if (so->so_options & SO_DEBUG) {
1549 #ifdef TCP_DEBUG
1550 ostate = tp->t_state;
1551 #endif
1552
1553 tcp_saveti = NULL;
1554 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1555 goto nosave;
1556
1557 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1558 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1559 if (tcp_saveti == NULL)
1560 goto nosave;
1561 } else {
1562 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1563 if (tcp_saveti == NULL)
1564 goto nosave;
1565 MCLAIM(m, &tcp_mowner);
1566 tcp_saveti->m_len = iphlen;
1567 m_copydata(m, 0, iphlen,
1568 mtod(tcp_saveti, void *));
1569 }
1570
1571 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1572 m_freem(tcp_saveti);
1573 tcp_saveti = NULL;
1574 } else {
1575 tcp_saveti->m_len += sizeof(struct tcphdr);
1576 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1577 sizeof(struct tcphdr));
1578 }
1579 nosave:;
1580 }
1581
1582 if (so->so_options & SO_ACCEPTCONN) {
1583 union syn_cache_sa src;
1584 union syn_cache_sa dst;
1585
1586 KASSERT(tp->t_state == TCPS_LISTEN);
1587
1588 memset(&src, 0, sizeof(src));
1589 memset(&dst, 0, sizeof(dst));
1590 switch (af) {
1591 case AF_INET:
1592 src.sin.sin_len = sizeof(struct sockaddr_in);
1593 src.sin.sin_family = AF_INET;
1594 src.sin.sin_addr = ip->ip_src;
1595 src.sin.sin_port = th->th_sport;
1596
1597 dst.sin.sin_len = sizeof(struct sockaddr_in);
1598 dst.sin.sin_family = AF_INET;
1599 dst.sin.sin_addr = ip->ip_dst;
1600 dst.sin.sin_port = th->th_dport;
1601 break;
1602 #ifdef INET6
1603 case AF_INET6:
1604 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1605 src.sin6.sin6_family = AF_INET6;
1606 src.sin6.sin6_addr = ip6->ip6_src;
1607 src.sin6.sin6_port = th->th_sport;
1608
1609 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1610 dst.sin6.sin6_family = AF_INET6;
1611 dst.sin6.sin6_addr = ip6->ip6_dst;
1612 dst.sin6.sin6_port = th->th_dport;
1613 break;
1614 #endif
1615 }
1616
1617 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1618 if (tiflags & TH_RST) {
1619 syn_cache_reset(&src.sa, &dst.sa, th);
1620 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1621 (TH_ACK|TH_SYN)) {
1622 /*
1623 * Received a SYN,ACK. This should never
1624 * happen while we are in LISTEN. Send an RST.
1625 */
1626 goto badsyn;
1627 } else if (tiflags & TH_ACK) {
1628 so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1629 if (so == NULL) {
1630 /*
1631 * We don't have a SYN for this ACK;
1632 * send an RST.
1633 */
1634 goto badsyn;
1635 } else if (so == (struct socket *)(-1)) {
1636 /*
1637 * We were unable to create the
1638 * connection. If the 3-way handshake
1639 * was completed, and RST has been
1640 * sent to the peer. Since the mbuf
1641 * might be in use for the reply, do
1642 * not free it.
1643 */
1644 m = NULL;
1645 } else {
1646 /*
1647 * We have created a full-blown
1648 * connection.
1649 */
1650 tp = NULL;
1651 inp = NULL;
1652 #ifdef INET6
1653 in6p = NULL;
1654 #endif
1655 switch (so->so_proto->pr_domain->dom_family) {
1656 case AF_INET:
1657 inp = sotoinpcb(so);
1658 tp = intotcpcb(inp);
1659 break;
1660 #ifdef INET6
1661 case AF_INET6:
1662 in6p = sotoin6pcb(so);
1663 tp = in6totcpcb(in6p);
1664 break;
1665 #endif
1666 }
1667 if (tp == NULL)
1668 goto badsyn; /*XXX*/
1669 tiwin <<= tp->snd_scale;
1670 goto after_listen;
1671 }
1672 } else {
1673 /*
1674 * None of RST, SYN or ACK was set.
1675 * This is an invalid packet for a
1676 * TCB in LISTEN state. Send a RST.
1677 */
1678 goto badsyn;
1679 }
1680 } else {
1681 /*
1682 * Received a SYN.
1683 */
1684
1685 #ifdef INET6
1686 /*
1687 * If deprecated address is forbidden, we do
1688 * not accept SYN to deprecated interface
1689 * address to prevent any new inbound
1690 * connection from getting established.
1691 * When we do not accept SYN, we send a TCP
1692 * RST, with deprecated source address (instead
1693 * of dropping it). We compromise it as it is
1694 * much better for peer to send a RST, and
1695 * RST will be the final packet for the
1696 * exchange.
1697 *
1698 * If we do not forbid deprecated addresses, we
1699 * accept the SYN packet. RFC2462 does not
1700 * suggest dropping SYN in this case.
1701 * If we decipher RFC2462 5.5.4, it says like
1702 * this:
1703 * 1. use of deprecated addr with existing
1704 * communication is okay - "SHOULD continue
1705 * to be used"
1706 * 2. use of it with new communication:
1707 * (2a) "SHOULD NOT be used if alternate
1708 * address with sufficient scope is
1709 * available"
1710 * (2b) nothing mentioned otherwise.
1711 * Here we fall into (2b) case as we have no
1712 * choice in our source address selection - we
1713 * must obey the peer.
1714 *
1715 * The wording in RFC2462 is confusing, and
1716 * there are multiple description text for
1717 * deprecated address handling - worse, they
1718 * are not exactly the same. I believe 5.5.4
1719 * is the best one, so we follow 5.5.4.
1720 */
1721 if (af == AF_INET6 && !ip6_use_deprecated) {
1722 struct in6_ifaddr *ia6;
1723 int s;
1724 struct ifnet *rcvif = m_get_rcvif(m, &s);
1725 if (rcvif == NULL)
1726 goto dropwithreset; /* XXX */
1727 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1728 &ip6->ip6_dst)) &&
1729 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1730 tp = NULL;
1731 m_put_rcvif(rcvif, &s);
1732 goto dropwithreset;
1733 }
1734 m_put_rcvif(rcvif, &s);
1735 }
1736 #endif
1737
1738 /*
1739 * LISTEN socket received a SYN from itself? This
1740 * can't possibly be valid; drop the packet.
1741 */
1742 if (th->th_sport == th->th_dport) {
1743 int eq = 0;
1744
1745 switch (af) {
1746 case AF_INET:
1747 eq = in_hosteq(ip->ip_src, ip->ip_dst);
1748 break;
1749 #ifdef INET6
1750 case AF_INET6:
1751 eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1752 &ip6->ip6_dst);
1753 break;
1754 #endif
1755 }
1756 if (eq) {
1757 TCP_STATINC(TCP_STAT_BADSYN);
1758 goto drop;
1759 }
1760 }
1761
1762 /*
1763 * SYN looks ok; create compressed TCP
1764 * state for it.
1765 */
1766 if (so->so_qlen <= so->so_qlimit &&
1767 syn_cache_add(&src.sa, &dst.sa, th, off,
1768 so, m, optp, optlen, &opti))
1769 m = NULL;
1770 }
1771
1772 goto drop;
1773 }
1774
1775 after_listen:
1776 /*
1777 * From here on, we're dealing with !LISTEN.
1778 */
1779 KASSERT(tp->t_state != TCPS_LISTEN);
1780
1781 /*
1782 * Segment received on connection.
1783 * Reset idle time and keep-alive timer.
1784 */
1785 tp->t_rcvtime = tcp_now;
1786 if (TCPS_HAVEESTABLISHED(tp->t_state))
1787 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1788
1789 /*
1790 * Process options.
1791 */
1792 #ifdef TCP_SIGNATURE
1793 if (optp || (tp->t_flags & TF_SIGNATURE))
1794 #else
1795 if (optp)
1796 #endif
1797 if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
1798 goto drop;
1799
1800 if (TCP_SACK_ENABLED(tp)) {
1801 tcp_del_sackholes(tp, th);
1802 }
1803
1804 if (TCP_ECN_ALLOWED(tp)) {
1805 if (tiflags & TH_CWR) {
1806 tp->t_flags &= ~TF_ECN_SND_ECE;
1807 }
1808 switch (iptos & IPTOS_ECN_MASK) {
1809 case IPTOS_ECN_CE:
1810 tp->t_flags |= TF_ECN_SND_ECE;
1811 TCP_STATINC(TCP_STAT_ECN_CE);
1812 break;
1813 case IPTOS_ECN_ECT0:
1814 TCP_STATINC(TCP_STAT_ECN_ECT);
1815 break;
1816 case IPTOS_ECN_ECT1:
1817 /* XXX: ignore for now -- rpaulo */
1818 break;
1819 }
1820 /*
1821 * Congestion experienced.
1822 * Ignore if we are already trying to recover.
1823 */
1824 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1825 tp->t_congctl->cong_exp(tp);
1826 }
1827
1828 if (opti.ts_present && opti.ts_ecr) {
1829 /*
1830 * Calculate the RTT from the returned time stamp and the
1831 * connection's time base. If the time stamp is later than
1832 * the current time, or is extremely old, fall back to non-1323
1833 * RTT calculation. Since ts_rtt is unsigned, we can test both
1834 * at the same time.
1835 *
1836 * Note that ts_rtt is in units of slow ticks (500
1837 * ms). Since most earthbound RTTs are < 500 ms,
1838 * observed values will have large quantization noise.
1839 * Our smoothed RTT is then the fraction of observed
1840 * samples that are 1 tick instead of 0 (times 500
1841 * ms).
1842 *
1843 * ts_rtt is increased by 1 to denote a valid sample,
1844 * with 0 indicating an invalid measurement. This
1845 * extra 1 must be removed when ts_rtt is used, or
1846 * else an erroneous extra 500 ms will result.
1847 */
1848 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1849 if (ts_rtt > TCP_PAWS_IDLE)
1850 ts_rtt = 0;
1851 } else {
1852 ts_rtt = 0;
1853 }
1854
1855 /*
1856 * Fast path: check for the two common cases of a uni-directional
1857 * data transfer. If:
1858 * o We are in the ESTABLISHED state, and
1859 * o The packet has no control flags, and
1860 * o The packet is in-sequence, and
1861 * o The window didn't change, and
1862 * o We are not retransmitting
1863 * It's a candidate.
1864 *
1865 * If the length (tlen) is zero and the ack moved forward, we're
1866 * the sender side of the transfer. Just free the data acked and
1867 * wake any higher level process that was blocked waiting for
1868 * space.
1869 *
1870 * If the length is non-zero and the ack didn't move, we're the
1871 * receiver side. If we're getting packets in-order (the reassembly
1872 * queue is empty), add the data to the socket buffer and note
1873 * that we need a delayed ack.
1874 */
1875 if (tp->t_state == TCPS_ESTABLISHED &&
1876 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1877 == TH_ACK &&
1878 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1879 th->th_seq == tp->rcv_nxt &&
1880 tiwin && tiwin == tp->snd_wnd &&
1881 tp->snd_nxt == tp->snd_max) {
1882
1883 /*
1884 * If last ACK falls within this segment's sequence numbers,
1885 * record the timestamp.
1886 * NOTE that the test is modified according to the latest
1887 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1888 *
1889 * note that we already know
1890 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1891 */
1892 if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1893 tp->ts_recent_age = tcp_now;
1894 tp->ts_recent = opti.ts_val;
1895 }
1896
1897 if (tlen == 0) {
1898 /* Ack prediction. */
1899 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1900 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1901 tp->snd_cwnd >= tp->snd_wnd &&
1902 tp->t_partialacks < 0) {
1903 /*
1904 * this is a pure ack for outstanding data.
1905 */
1906 if (ts_rtt)
1907 tcp_xmit_timer(tp, ts_rtt - 1);
1908 else if (tp->t_rtttime &&
1909 SEQ_GT(th->th_ack, tp->t_rtseq))
1910 tcp_xmit_timer(tp,
1911 tcp_now - tp->t_rtttime);
1912 acked = th->th_ack - tp->snd_una;
1913 tcps = TCP_STAT_GETREF();
1914 tcps[TCP_STAT_PREDACK]++;
1915 tcps[TCP_STAT_RCVACKPACK]++;
1916 tcps[TCP_STAT_RCVACKBYTE] += acked;
1917 TCP_STAT_PUTREF();
1918 nd_hint(tp);
1919
1920 if (acked > (tp->t_lastoff - tp->t_inoff))
1921 tp->t_lastm = NULL;
1922 sbdrop(&so->so_snd, acked);
1923 tp->t_lastoff -= acked;
1924
1925 icmp_check(tp, th, acked);
1926
1927 tp->snd_una = th->th_ack;
1928 tp->snd_fack = tp->snd_una;
1929 if (SEQ_LT(tp->snd_high, tp->snd_una))
1930 tp->snd_high = tp->snd_una;
1931 /*
1932 * drag snd_wl2 along so only newer
1933 * ACKs can update the window size.
1934 * also avoids the state where snd_wl2
1935 * is eventually larger than th_ack and thus
1936 * blocking the window update mechanism and
1937 * the connection gets stuck for a loooong
1938 * time in the zero sized send window state.
1939 *
1940 * see PR/kern 55567
1941 */
1942 tp->snd_wl2 = tp->snd_una;
1943
1944 m_freem(m);
1945
1946 /*
1947 * If all outstanding data are acked, stop
1948 * retransmit timer, otherwise restart timer
1949 * using current (possibly backed-off) value.
1950 * If process is waiting for space,
1951 * wakeup/selnotify/signal. If data
1952 * are ready to send, let tcp_output
1953 * decide between more output or persist.
1954 */
1955 if (tp->snd_una == tp->snd_max)
1956 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1957 else if (TCP_TIMER_ISARMED(tp,
1958 TCPT_PERSIST) == 0)
1959 TCP_TIMER_ARM(tp, TCPT_REXMT,
1960 tp->t_rxtcur);
1961
1962 sowwakeup(so);
1963 if (so->so_snd.sb_cc) {
1964 KERNEL_LOCK(1, NULL);
1965 (void)tcp_output(tp);
1966 KERNEL_UNLOCK_ONE(NULL);
1967 }
1968 if (tcp_saveti)
1969 m_freem(tcp_saveti);
1970 return;
1971 }
1972 } else if (th->th_ack == tp->snd_una &&
1973 TAILQ_FIRST(&tp->segq) == NULL &&
1974 tlen <= sbspace(&so->so_rcv)) {
1975 int newsize = 0;
1976
1977 /*
1978 * this is a pure, in-sequence data packet
1979 * with nothing on the reassembly queue and
1980 * we have enough buffer space to take it.
1981 */
1982 tp->rcv_nxt += tlen;
1983
1984 /*
1985 * Pull rcv_up up to prevent seq wrap relative to
1986 * rcv_nxt.
1987 */
1988 tp->rcv_up = tp->rcv_nxt;
1989
1990 /*
1991 * Pull snd_wl1 up to prevent seq wrap relative to
1992 * th_seq.
1993 */
1994 tp->snd_wl1 = th->th_seq;
1995
1996 tcps = TCP_STAT_GETREF();
1997 tcps[TCP_STAT_PREDDAT]++;
1998 tcps[TCP_STAT_RCVPACK]++;
1999 tcps[TCP_STAT_RCVBYTE] += tlen;
2000 TCP_STAT_PUTREF();
2001 nd_hint(tp);
2002 /*
2003 * Automatic sizing enables the performance of large buffers
2004 * and most of the efficiency of small ones by only allocating
2005 * space when it is needed.
2006 *
2007 * On the receive side the socket buffer memory is only rarely
2008 * used to any significant extent. This allows us to be much
2009 * more aggressive in scaling the receive socket buffer. For
2010 * the case that the buffer space is actually used to a large
2011 * extent and we run out of kernel memory we can simply drop
2012 * the new segments; TCP on the sender will just retransmit it
2013 * later. Setting the buffer size too big may only consume too
2014 * much kernel memory if the application doesn't read() from
2015 * the socket or packet loss or reordering makes use of the
2016 * reassembly queue.
2017 *
2018 * The criteria to step up the receive buffer one notch are:
2019 * 1. the number of bytes received during the time it takes
2020 * one timestamp to be reflected back to us (the RTT);
2021 * 2. received bytes per RTT is within seven eighth of the
2022 * current socket buffer size;
2023 * 3. receive buffer size has not hit maximal automatic size;
2024 *
2025 * This algorithm does one step per RTT at most and only if
2026 * we receive a bulk stream w/o packet losses or reorderings.
2027 * Shrinking the buffer during idle times is not necessary as
2028 * it doesn't consume any memory when idle.
2029 *
2030 * TODO: Only step up if the application is actually serving
2031 * the buffer to better manage the socket buffer resources.
2032 */
2033 if (tcp_do_autorcvbuf &&
2034 opti.ts_ecr &&
2035 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2036 if (opti.ts_ecr > tp->rfbuf_ts &&
2037 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2038 if (tp->rfbuf_cnt >
2039 (so->so_rcv.sb_hiwat / 8 * 7) &&
2040 so->so_rcv.sb_hiwat <
2041 tcp_autorcvbuf_max) {
2042 newsize =
2043 uimin(so->so_rcv.sb_hiwat +
2044 tcp_autorcvbuf_inc,
2045 tcp_autorcvbuf_max);
2046 }
2047 /* Start over with next RTT. */
2048 tp->rfbuf_ts = 0;
2049 tp->rfbuf_cnt = 0;
2050 } else
2051 tp->rfbuf_cnt += tlen; /* add up */
2052 }
2053
2054 /*
2055 * Drop TCP, IP headers and TCP options then add data
2056 * to socket buffer.
2057 */
2058 if (so->so_state & SS_CANTRCVMORE) {
2059 m_freem(m);
2060 } else {
2061 /*
2062 * Set new socket buffer size.
2063 * Give up when limit is reached.
2064 */
2065 if (newsize)
2066 if (!sbreserve(&so->so_rcv,
2067 newsize, so))
2068 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2069 m_adj(m, off + thlen);
2070 sbappendstream(&so->so_rcv, m);
2071 }
2072 sorwakeup(so);
2073 tcp_setup_ack(tp, th);
2074 if (tp->t_flags & TF_ACKNOW) {
2075 KERNEL_LOCK(1, NULL);
2076 (void)tcp_output(tp);
2077 KERNEL_UNLOCK_ONE(NULL);
2078 }
2079 if (tcp_saveti)
2080 m_freem(tcp_saveti);
2081 return;
2082 }
2083 }
2084
2085 /*
2086 * Compute mbuf offset to TCP data segment.
2087 */
2088 hdroptlen = off + thlen;
2089
2090 /*
2091 * Calculate amount of space in receive window. Receive window is
2092 * amount of space in rcv queue, but not less than advertised
2093 * window.
2094 */
2095 {
2096 int win;
2097 win = sbspace(&so->so_rcv);
2098 if (win < 0)
2099 win = 0;
2100 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2101 }
2102
2103 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2104 tp->rfbuf_ts = 0;
2105 tp->rfbuf_cnt = 0;
2106
2107 switch (tp->t_state) {
2108 /*
2109 * If the state is SYN_SENT:
2110 * if seg contains an ACK, but not for our SYN, drop the input.
2111 * if seg contains a RST, then drop the connection.
2112 * if seg does not contain SYN, then drop it.
2113 * Otherwise this is an acceptable SYN segment
2114 * initialize tp->rcv_nxt and tp->irs
2115 * if seg contains ack then advance tp->snd_una
2116 * if seg contains a ECE and ECN support is enabled, the stream
2117 * is ECN capable.
2118 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2119 * arrange for segment to be acked (eventually)
2120 * continue processing rest of data/controls, beginning with URG
2121 */
2122 case TCPS_SYN_SENT:
2123 if ((tiflags & TH_ACK) &&
2124 (SEQ_LEQ(th->th_ack, tp->iss) ||
2125 SEQ_GT(th->th_ack, tp->snd_max)))
2126 goto dropwithreset;
2127 if (tiflags & TH_RST) {
2128 if (tiflags & TH_ACK)
2129 tp = tcp_drop(tp, ECONNREFUSED);
2130 goto drop;
2131 }
2132 if ((tiflags & TH_SYN) == 0)
2133 goto drop;
2134 if (tiflags & TH_ACK) {
2135 tp->snd_una = th->th_ack;
2136 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2137 tp->snd_nxt = tp->snd_una;
2138 if (SEQ_LT(tp->snd_high, tp->snd_una))
2139 tp->snd_high = tp->snd_una;
2140 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2141
2142 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2143 tp->t_flags |= TF_ECN_PERMIT;
2144 TCP_STATINC(TCP_STAT_ECN_SHS);
2145 }
2146 }
2147 tp->irs = th->th_seq;
2148 tcp_rcvseqinit(tp);
2149 tp->t_flags |= TF_ACKNOW;
2150 tcp_mss_from_peer(tp, opti.maxseg);
2151
2152 /*
2153 * Initialize the initial congestion window. If we
2154 * had to retransmit the SYN, we must initialize cwnd
2155 * to 1 segment (i.e. the Loss Window).
2156 */
2157 if (tp->t_flags & TF_SYN_REXMT)
2158 tp->snd_cwnd = tp->t_peermss;
2159 else {
2160 int ss = tcp_init_win;
2161 if (inp != NULL && in_localaddr(inp->inp_faddr))
2162 ss = tcp_init_win_local;
2163 #ifdef INET6
2164 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2165 ss = tcp_init_win_local;
2166 #endif
2167 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2168 }
2169
2170 tcp_rmx_rtt(tp);
2171 if (tiflags & TH_ACK) {
2172 TCP_STATINC(TCP_STAT_CONNECTS);
2173 /*
2174 * move tcp_established before soisconnected
2175 * because upcall handler can drive tcp_output
2176 * functionality.
2177 * XXX we might call soisconnected at the end of
2178 * all processing
2179 */
2180 tcp_established(tp);
2181 soisconnected(so);
2182 /* Do window scaling on this connection? */
2183 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2184 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2185 tp->snd_scale = tp->requested_s_scale;
2186 tp->rcv_scale = tp->request_r_scale;
2187 }
2188 TCP_REASS_LOCK(tp);
2189 (void)tcp_reass(tp, NULL, NULL, tlen);
2190 /*
2191 * if we didn't have to retransmit the SYN,
2192 * use its rtt as our initial srtt & rtt var.
2193 */
2194 if (tp->t_rtttime)
2195 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2196 } else {
2197 tp->t_state = TCPS_SYN_RECEIVED;
2198 }
2199
2200 /*
2201 * Advance th->th_seq to correspond to first data byte.
2202 * If data, trim to stay within window,
2203 * dropping FIN if necessary.
2204 */
2205 th->th_seq++;
2206 if (tlen > tp->rcv_wnd) {
2207 todrop = tlen - tp->rcv_wnd;
2208 m_adj(m, -todrop);
2209 tlen = tp->rcv_wnd;
2210 tiflags &= ~TH_FIN;
2211 tcps = TCP_STAT_GETREF();
2212 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2213 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2214 TCP_STAT_PUTREF();
2215 }
2216 tp->snd_wl1 = th->th_seq - 1;
2217 tp->rcv_up = th->th_seq;
2218 goto step6;
2219
2220 /*
2221 * If the state is SYN_RECEIVED:
2222 * If seg contains an ACK, but not for our SYN, drop the input
2223 * and generate an RST. See page 36, rfc793
2224 */
2225 case TCPS_SYN_RECEIVED:
2226 if ((tiflags & TH_ACK) &&
2227 (SEQ_LEQ(th->th_ack, tp->iss) ||
2228 SEQ_GT(th->th_ack, tp->snd_max)))
2229 goto dropwithreset;
2230 break;
2231 }
2232
2233 /*
2234 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2235 */
2236 KASSERT(tp->t_state != TCPS_LISTEN &&
2237 tp->t_state != TCPS_SYN_SENT);
2238
2239 /*
2240 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2241 * it's less than ts_recent, drop it.
2242 */
2243 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2244 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2245 /* Check to see if ts_recent is over 24 days old. */
2246 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2247 /*
2248 * Invalidate ts_recent. If this segment updates
2249 * ts_recent, the age will be reset later and ts_recent
2250 * will get a valid value. If it does not, setting
2251 * ts_recent to zero will at least satisfy the
2252 * requirement that zero be placed in the timestamp
2253 * echo reply when ts_recent isn't valid. The
2254 * age isn't reset until we get a valid ts_recent
2255 * because we don't want out-of-order segments to be
2256 * dropped when ts_recent is old.
2257 */
2258 tp->ts_recent = 0;
2259 } else {
2260 tcps = TCP_STAT_GETREF();
2261 tcps[TCP_STAT_RCVDUPPACK]++;
2262 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2263 tcps[TCP_STAT_PAWSDROP]++;
2264 TCP_STAT_PUTREF();
2265 tcp_new_dsack(tp, th->th_seq, tlen);
2266 goto dropafterack;
2267 }
2268 }
2269
2270 /*
2271 * Check that at least some bytes of the segment are within the
2272 * receive window. If segment begins before rcv_nxt, drop leading
2273 * data (and SYN); if nothing left, just ack.
2274 */
2275 todrop = tp->rcv_nxt - th->th_seq;
2276 dupseg = false;
2277 if (todrop > 0) {
2278 if (tiflags & TH_SYN) {
2279 tiflags &= ~TH_SYN;
2280 th->th_seq++;
2281 tcp_urp_drop(th, 1, &tiflags);
2282 todrop--;
2283 }
2284 if (todrop > tlen ||
2285 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2286 /*
2287 * Any valid FIN or RST must be to the left of the
2288 * window. At this point the FIN or RST must be a
2289 * duplicate or out of sequence; drop it.
2290 */
2291 if (tiflags & TH_RST)
2292 goto drop;
2293 tiflags &= ~(TH_FIN|TH_RST);
2294
2295 /*
2296 * Send an ACK to resynchronize and drop any data.
2297 * But keep on processing for RST or ACK.
2298 */
2299 tp->t_flags |= TF_ACKNOW;
2300 todrop = tlen;
2301 dupseg = true;
2302 tcps = TCP_STAT_GETREF();
2303 tcps[TCP_STAT_RCVDUPPACK]++;
2304 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2305 TCP_STAT_PUTREF();
2306 } else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2307 /*
2308 * Test for reset before adjusting the sequence
2309 * number for overlapping data.
2310 */
2311 goto dropafterack_ratelim;
2312 } else {
2313 tcps = TCP_STAT_GETREF();
2314 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2315 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2316 TCP_STAT_PUTREF();
2317 }
2318 tcp_new_dsack(tp, th->th_seq, todrop);
2319 hdroptlen += todrop; /* drop from head afterwards (m_adj) */
2320 th->th_seq += todrop;
2321 tlen -= todrop;
2322 tcp_urp_drop(th, todrop, &tiflags);
2323 }
2324
2325 /*
2326 * If new data is received on a connection after the user processes
2327 * are gone, then RST the other end.
2328 */
2329 if ((so->so_state & SS_NOFDREF) &&
2330 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2331 tp = tcp_close(tp);
2332 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2333 goto dropwithreset;
2334 }
2335
2336 /*
2337 * If the segment ends after the window, drop trailing data (and
2338 * PUSH and FIN); if nothing left, just ACK.
2339 */
2340 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2341 if (todrop > 0) {
2342 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2343 if (todrop >= tlen) {
2344 /*
2345 * The segment actually starts after the window.
2346 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2347 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2348 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2349 */
2350 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2351
2352 /*
2353 * If a new connection request is received while in
2354 * TIME_WAIT, drop the old connection and start over
2355 * if the sequence numbers are above the previous
2356 * ones.
2357 *
2358 * NOTE: We need to put the header fields back into
2359 * network order.
2360 */
2361 if ((tiflags & TH_SYN) &&
2362 tp->t_state == TCPS_TIME_WAIT &&
2363 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2364 tp = tcp_close(tp);
2365 tcp_fields_to_net(th);
2366 m_freem(tcp_saveti);
2367 tcp_saveti = NULL;
2368 goto findpcb;
2369 }
2370
2371 /*
2372 * If window is closed can only take segments at
2373 * window edge, and have to drop data and PUSH from
2374 * incoming segments. Continue processing, but
2375 * remember to ack. Otherwise, drop segment
2376 * and (if not RST) ack.
2377 */
2378 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2379 KASSERT(todrop == tlen);
2380 tp->t_flags |= TF_ACKNOW;
2381 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2382 } else {
2383 goto dropafterack;
2384 }
2385 } else {
2386 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2387 }
2388 m_adj(m, -todrop);
2389 tlen -= todrop;
2390 tiflags &= ~(TH_PUSH|TH_FIN);
2391 }
2392
2393 /*
2394 * If last ACK falls within this segment's sequence numbers,
2395 * record the timestamp.
2396 * NOTE:
2397 * 1) That the test incorporates suggestions from the latest
2398 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2399 * 2) That updating only on newer timestamps interferes with
2400 * our earlier PAWS tests, so this check should be solely
2401 * predicated on the sequence space of this segment.
2402 * 3) That we modify the segment boundary check to be
2403 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2404 * instead of RFC1323's
2405 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2406 * This modified check allows us to overcome RFC1323's
2407 * limitations as described in Stevens TCP/IP Illustrated
2408 * Vol. 2 p.869. In such cases, we can still calculate the
2409 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2410 */
2411 if (opti.ts_present &&
2412 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2413 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2414 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2415 tp->ts_recent_age = tcp_now;
2416 tp->ts_recent = opti.ts_val;
2417 }
2418
2419 /*
2420 * If the RST bit is set examine the state:
2421 * RECEIVED state:
2422 * If passive open, return to LISTEN state.
2423 * If active open, inform user that connection was refused.
2424 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2425 * Inform user that connection was reset, and close tcb.
2426 * CLOSING, LAST_ACK, TIME_WAIT states:
2427 * Close the tcb.
2428 */
2429 if (tiflags & TH_RST) {
2430 if (th->th_seq != tp->rcv_nxt)
2431 goto dropafterack_ratelim;
2432
2433 switch (tp->t_state) {
2434 case TCPS_SYN_RECEIVED:
2435 so->so_error = ECONNREFUSED;
2436 goto close;
2437
2438 case TCPS_ESTABLISHED:
2439 case TCPS_FIN_WAIT_1:
2440 case TCPS_FIN_WAIT_2:
2441 case TCPS_CLOSE_WAIT:
2442 so->so_error = ECONNRESET;
2443 close:
2444 tp->t_state = TCPS_CLOSED;
2445 TCP_STATINC(TCP_STAT_DROPS);
2446 tp = tcp_close(tp);
2447 goto drop;
2448
2449 case TCPS_CLOSING:
2450 case TCPS_LAST_ACK:
2451 case TCPS_TIME_WAIT:
2452 tp = tcp_close(tp);
2453 goto drop;
2454 }
2455 }
2456
2457 /*
2458 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2459 * we must be in a synchronized state. RFC793 states (under Reset
2460 * Generation) that any unacceptable segment (an out-of-order SYN
2461 * qualifies) received in a synchronized state must elicit only an
2462 * empty acknowledgment segment ... and the connection remains in
2463 * the same state.
2464 */
2465 if (tiflags & TH_SYN) {
2466 if (tp->rcv_nxt == th->th_seq) {
2467 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2468 TH_ACK);
2469 if (tcp_saveti)
2470 m_freem(tcp_saveti);
2471 return;
2472 }
2473
2474 goto dropafterack_ratelim;
2475 }
2476
2477 /*
2478 * If the ACK bit is off we drop the segment and return.
2479 */
2480 if ((tiflags & TH_ACK) == 0) {
2481 if (tp->t_flags & TF_ACKNOW)
2482 goto dropafterack;
2483 goto drop;
2484 }
2485
2486 /*
2487 * From here on, we're doing ACK processing.
2488 */
2489
2490 switch (tp->t_state) {
2491 /*
2492 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2493 * ESTABLISHED state and continue processing, otherwise
2494 * send an RST.
2495 */
2496 case TCPS_SYN_RECEIVED:
2497 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2498 SEQ_GT(th->th_ack, tp->snd_max))
2499 goto dropwithreset;
2500 TCP_STATINC(TCP_STAT_CONNECTS);
2501 soisconnected(so);
2502 tcp_established(tp);
2503 /* Do window scaling? */
2504 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2505 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2506 tp->snd_scale = tp->requested_s_scale;
2507 tp->rcv_scale = tp->request_r_scale;
2508 }
2509 TCP_REASS_LOCK(tp);
2510 (void)tcp_reass(tp, NULL, NULL, tlen);
2511 tp->snd_wl1 = th->th_seq - 1;
2512 /* FALLTHROUGH */
2513
2514 /*
2515 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2516 * ACKs. If the ack is in the range
2517 * tp->snd_una < th->th_ack <= tp->snd_max
2518 * then advance tp->snd_una to th->th_ack and drop
2519 * data from the retransmission queue. If this ACK reflects
2520 * more up to date window information we update our window information.
2521 */
2522 case TCPS_ESTABLISHED:
2523 case TCPS_FIN_WAIT_1:
2524 case TCPS_FIN_WAIT_2:
2525 case TCPS_CLOSE_WAIT:
2526 case TCPS_CLOSING:
2527 case TCPS_LAST_ACK:
2528 case TCPS_TIME_WAIT:
2529 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2530 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2531 TCP_STATINC(TCP_STAT_RCVDUPACK);
2532 /*
2533 * If we have outstanding data (other than
2534 * a window probe), this is a completely
2535 * duplicate ack (ie, window info didn't
2536 * change), the ack is the biggest we've
2537 * seen and we've seen exactly our rexmt
2538 * threshhold of them, assume a packet
2539 * has been dropped and retransmit it.
2540 * Kludge snd_nxt & the congestion
2541 * window so we send only this one
2542 * packet.
2543 */
2544 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2545 th->th_ack != tp->snd_una)
2546 tp->t_dupacks = 0;
2547 else if (tp->t_partialacks < 0 &&
2548 (++tp->t_dupacks == tcprexmtthresh ||
2549 TCP_FACK_FASTRECOV(tp))) {
2550 /*
2551 * Do the fast retransmit, and adjust
2552 * congestion control paramenters.
2553 */
2554 if (tp->t_congctl->fast_retransmit(tp, th)) {
2555 /* False fast retransmit */
2556 break;
2557 }
2558 goto drop;
2559 } else if (tp->t_dupacks > tcprexmtthresh) {
2560 tp->snd_cwnd += tp->t_segsz;
2561 KERNEL_LOCK(1, NULL);
2562 (void)tcp_output(tp);
2563 KERNEL_UNLOCK_ONE(NULL);
2564 goto drop;
2565 }
2566 } else {
2567 /*
2568 * If the ack appears to be very old, only
2569 * allow data that is in-sequence. This
2570 * makes it somewhat more difficult to insert
2571 * forged data by guessing sequence numbers.
2572 * Sent an ack to try to update the send
2573 * sequence number on the other side.
2574 */
2575 if (tlen && th->th_seq != tp->rcv_nxt &&
2576 SEQ_LT(th->th_ack,
2577 tp->snd_una - tp->max_sndwnd))
2578 goto dropafterack;
2579 }
2580 break;
2581 }
2582 /*
2583 * If the congestion window was inflated to account
2584 * for the other side's cached packets, retract it.
2585 */
2586 tp->t_congctl->fast_retransmit_newack(tp, th);
2587
2588 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2589 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2590 goto dropafterack;
2591 }
2592 acked = th->th_ack - tp->snd_una;
2593 tcps = TCP_STAT_GETREF();
2594 tcps[TCP_STAT_RCVACKPACK]++;
2595 tcps[TCP_STAT_RCVACKBYTE] += acked;
2596 TCP_STAT_PUTREF();
2597
2598 /*
2599 * If we have a timestamp reply, update smoothed
2600 * round trip time. If no timestamp is present but
2601 * transmit timer is running and timed sequence
2602 * number was acked, update smoothed round trip time.
2603 * Since we now have an rtt measurement, cancel the
2604 * timer backoff (cf., Phil Karn's retransmit alg.).
2605 * Recompute the initial retransmit timer.
2606 */
2607 if (ts_rtt)
2608 tcp_xmit_timer(tp, ts_rtt - 1);
2609 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2610 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2611
2612 /*
2613 * If all outstanding data is acked, stop retransmit
2614 * timer and remember to restart (more output or persist).
2615 * If there is more data to be acked, restart retransmit
2616 * timer, using current (possibly backed-off) value.
2617 */
2618 if (th->th_ack == tp->snd_max) {
2619 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2620 needoutput = 1;
2621 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2622 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2623
2624 /*
2625 * New data has been acked, adjust the congestion window.
2626 */
2627 tp->t_congctl->newack(tp, th);
2628
2629 nd_hint(tp);
2630 if (acked > so->so_snd.sb_cc) {
2631 tp->snd_wnd -= so->so_snd.sb_cc;
2632 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2633 ourfinisacked = 1;
2634 } else {
2635 if (acked > (tp->t_lastoff - tp->t_inoff))
2636 tp->t_lastm = NULL;
2637 sbdrop(&so->so_snd, acked);
2638 tp->t_lastoff -= acked;
2639 if (tp->snd_wnd > acked)
2640 tp->snd_wnd -= acked;
2641 else
2642 tp->snd_wnd = 0;
2643 ourfinisacked = 0;
2644 }
2645 sowwakeup(so);
2646
2647 icmp_check(tp, th, acked);
2648
2649 tp->snd_una = th->th_ack;
2650 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2651 tp->snd_fack = tp->snd_una;
2652 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2653 tp->snd_nxt = tp->snd_una;
2654 if (SEQ_LT(tp->snd_high, tp->snd_una))
2655 tp->snd_high = tp->snd_una;
2656
2657 switch (tp->t_state) {
2658
2659 /*
2660 * In FIN_WAIT_1 STATE in addition to the processing
2661 * for the ESTABLISHED state if our FIN is now acknowledged
2662 * then enter FIN_WAIT_2.
2663 */
2664 case TCPS_FIN_WAIT_1:
2665 if (ourfinisacked) {
2666 /*
2667 * If we can't receive any more
2668 * data, then closing user can proceed.
2669 * Starting the timer is contrary to the
2670 * specification, but if we don't get a FIN
2671 * we'll hang forever.
2672 */
2673 if (so->so_state & SS_CANTRCVMORE) {
2674 soisdisconnected(so);
2675 if (tp->t_maxidle > 0)
2676 TCP_TIMER_ARM(tp, TCPT_2MSL,
2677 tp->t_maxidle);
2678 }
2679 tp->t_state = TCPS_FIN_WAIT_2;
2680 }
2681 break;
2682
2683 /*
2684 * In CLOSING STATE in addition to the processing for
2685 * the ESTABLISHED state if the ACK acknowledges our FIN
2686 * then enter the TIME-WAIT state, otherwise ignore
2687 * the segment.
2688 */
2689 case TCPS_CLOSING:
2690 if (ourfinisacked) {
2691 tp->t_state = TCPS_TIME_WAIT;
2692 tcp_canceltimers(tp);
2693 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2694 soisdisconnected(so);
2695 }
2696 break;
2697
2698 /*
2699 * In LAST_ACK, we may still be waiting for data to drain
2700 * and/or to be acked, as well as for the ack of our FIN.
2701 * If our FIN is now acknowledged, delete the TCB,
2702 * enter the closed state and return.
2703 */
2704 case TCPS_LAST_ACK:
2705 if (ourfinisacked) {
2706 tp = tcp_close(tp);
2707 goto drop;
2708 }
2709 break;
2710
2711 /*
2712 * In TIME_WAIT state the only thing that should arrive
2713 * is a retransmission of the remote FIN. Acknowledge
2714 * it and restart the finack timer.
2715 */
2716 case TCPS_TIME_WAIT:
2717 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2718 goto dropafterack;
2719 }
2720 }
2721
2722 step6:
2723 /*
2724 * Update window information.
2725 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2726 */
2727 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2728 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2729 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2730 /* keep track of pure window updates */
2731 if (tlen == 0 &&
2732 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2733 TCP_STATINC(TCP_STAT_RCVWINUPD);
2734 tp->snd_wnd = tiwin;
2735 tp->snd_wl1 = th->th_seq;
2736 tp->snd_wl2 = th->th_ack;
2737 if (tp->snd_wnd > tp->max_sndwnd)
2738 tp->max_sndwnd = tp->snd_wnd;
2739 needoutput = 1;
2740 }
2741
2742 /*
2743 * Process segments with URG.
2744 */
2745 if ((tiflags & TH_URG) && th->th_urp &&
2746 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2747 /*
2748 * This is a kludge, but if we receive and accept
2749 * random urgent pointers, we'll crash in
2750 * soreceive. It's hard to imagine someone
2751 * actually wanting to send this much urgent data.
2752 */
2753 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2754 th->th_urp = 0; /* XXX */
2755 tiflags &= ~TH_URG; /* XXX */
2756 goto dodata; /* XXX */
2757 }
2758
2759 /*
2760 * If this segment advances the known urgent pointer,
2761 * then mark the data stream. This should not happen
2762 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2763 * a FIN has been received from the remote side.
2764 * In these states we ignore the URG.
2765 *
2766 * According to RFC961 (Assigned Protocols),
2767 * the urgent pointer points to the last octet
2768 * of urgent data. We continue, however,
2769 * to consider it to indicate the first octet
2770 * of data past the urgent section as the original
2771 * spec states (in one of two places).
2772 */
2773 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2774 tp->rcv_up = th->th_seq + th->th_urp;
2775 so->so_oobmark = so->so_rcv.sb_cc +
2776 (tp->rcv_up - tp->rcv_nxt) - 1;
2777 if (so->so_oobmark == 0)
2778 so->so_state |= SS_RCVATMARK;
2779 sohasoutofband(so);
2780 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2781 }
2782
2783 /*
2784 * Remove out of band data so doesn't get presented to user.
2785 * This can happen independent of advancing the URG pointer,
2786 * but if two URG's are pending at once, some out-of-band
2787 * data may creep in... ick.
2788 */
2789 if (th->th_urp <= (u_int16_t)tlen &&
2790 (so->so_options & SO_OOBINLINE) == 0)
2791 tcp_pulloutofband(so, th, m, hdroptlen);
2792 } else {
2793 /*
2794 * If no out of band data is expected,
2795 * pull receive urgent pointer along
2796 * with the receive window.
2797 */
2798 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2799 tp->rcv_up = tp->rcv_nxt;
2800 }
2801 dodata:
2802
2803 /*
2804 * Process the segment text, merging it into the TCP sequencing queue,
2805 * and arranging for acknowledgement of receipt if necessary.
2806 * This process logically involves adjusting tp->rcv_wnd as data
2807 * is presented to the user (this happens in tcp_usrreq.c,
2808 * tcp_rcvd()). If a FIN has already been received on this
2809 * connection then we just ignore the text.
2810 */
2811 if ((tlen || (tiflags & TH_FIN)) &&
2812 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2813 /*
2814 * Handle the common case:
2815 * o Segment is the next to be received, and
2816 * o The queue is empty, and
2817 * o The connection is established
2818 * In this case, we avoid calling tcp_reass.
2819 *
2820 * tcp_setup_ack: set DELACK for segments received in order,
2821 * but ack immediately when segments are out of order (so that
2822 * fast retransmit can work).
2823 */
2824 TCP_REASS_LOCK(tp);
2825 if (th->th_seq == tp->rcv_nxt &&
2826 TAILQ_FIRST(&tp->segq) == NULL &&
2827 tp->t_state == TCPS_ESTABLISHED) {
2828 tcp_setup_ack(tp, th);
2829 tp->rcv_nxt += tlen;
2830 tiflags = th->th_flags & TH_FIN;
2831 tcps = TCP_STAT_GETREF();
2832 tcps[TCP_STAT_RCVPACK]++;
2833 tcps[TCP_STAT_RCVBYTE] += tlen;
2834 TCP_STAT_PUTREF();
2835 nd_hint(tp);
2836 if (so->so_state & SS_CANTRCVMORE) {
2837 m_freem(m);
2838 } else {
2839 m_adj(m, hdroptlen);
2840 sbappendstream(&(so)->so_rcv, m);
2841 }
2842 TCP_REASS_UNLOCK(tp);
2843 sorwakeup(so);
2844 } else {
2845 m_adj(m, hdroptlen);
2846 tiflags = tcp_reass(tp, th, m, tlen);
2847 tp->t_flags |= TF_ACKNOW;
2848 }
2849
2850 /*
2851 * Note the amount of data that peer has sent into
2852 * our window, in order to estimate the sender's
2853 * buffer size.
2854 */
2855 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2856 } else {
2857 m_freem(m);
2858 m = NULL;
2859 tiflags &= ~TH_FIN;
2860 }
2861
2862 /*
2863 * If FIN is received ACK the FIN and let the user know
2864 * that the connection is closing. Ignore a FIN received before
2865 * the connection is fully established.
2866 */
2867 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2868 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2869 socantrcvmore(so);
2870 tp->t_flags |= TF_ACKNOW;
2871 tp->rcv_nxt++;
2872 }
2873 switch (tp->t_state) {
2874
2875 /*
2876 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2877 */
2878 case TCPS_ESTABLISHED:
2879 tp->t_state = TCPS_CLOSE_WAIT;
2880 break;
2881
2882 /*
2883 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2884 * enter the CLOSING state.
2885 */
2886 case TCPS_FIN_WAIT_1:
2887 tp->t_state = TCPS_CLOSING;
2888 break;
2889
2890 /*
2891 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2892 * starting the time-wait timer, turning off the other
2893 * standard timers.
2894 */
2895 case TCPS_FIN_WAIT_2:
2896 tp->t_state = TCPS_TIME_WAIT;
2897 tcp_canceltimers(tp);
2898 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2899 soisdisconnected(so);
2900 break;
2901
2902 /*
2903 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2904 */
2905 case TCPS_TIME_WAIT:
2906 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2907 break;
2908 }
2909 }
2910 #ifdef TCP_DEBUG
2911 if (so->so_options & SO_DEBUG)
2912 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2913 #endif
2914
2915 /*
2916 * Return any desired output.
2917 */
2918 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2919 KERNEL_LOCK(1, NULL);
2920 (void)tcp_output(tp);
2921 KERNEL_UNLOCK_ONE(NULL);
2922 }
2923 if (tcp_saveti)
2924 m_freem(tcp_saveti);
2925
2926 if (tp->t_state == TCPS_TIME_WAIT
2927 && (so->so_state & SS_NOFDREF)
2928 && (tp->t_inpcb || af != AF_INET)
2929 && (tp->t_in6pcb || af != AF_INET6)
2930 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2931 && TAILQ_EMPTY(&tp->segq)
2932 && vtw_add(af, tp)) {
2933 ;
2934 }
2935 return;
2936
2937 badsyn:
2938 /*
2939 * Received a bad SYN. Increment counters and dropwithreset.
2940 */
2941 TCP_STATINC(TCP_STAT_BADSYN);
2942 tp = NULL;
2943 goto dropwithreset;
2944
2945 dropafterack:
2946 /*
2947 * Generate an ACK dropping incoming segment if it occupies
2948 * sequence space, where the ACK reflects our state.
2949 */
2950 if (tiflags & TH_RST)
2951 goto drop;
2952 goto dropafterack2;
2953
2954 dropafterack_ratelim:
2955 /*
2956 * We may want to rate-limit ACKs against SYN/RST attack.
2957 */
2958 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2959 tcp_ackdrop_ppslim) == 0) {
2960 /* XXX stat */
2961 goto drop;
2962 }
2963
2964 dropafterack2:
2965 m_freem(m);
2966 tp->t_flags |= TF_ACKNOW;
2967 KERNEL_LOCK(1, NULL);
2968 (void)tcp_output(tp);
2969 KERNEL_UNLOCK_ONE(NULL);
2970 if (tcp_saveti)
2971 m_freem(tcp_saveti);
2972 return;
2973
2974 dropwithreset_ratelim:
2975 /*
2976 * We may want to rate-limit RSTs in certain situations,
2977 * particularly if we are sending an RST in response to
2978 * an attempt to connect to or otherwise communicate with
2979 * a port for which we have no socket.
2980 */
2981 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2982 tcp_rst_ppslim) == 0) {
2983 /* XXX stat */
2984 goto drop;
2985 }
2986
2987 dropwithreset:
2988 /*
2989 * Generate a RST, dropping incoming segment.
2990 * Make ACK acceptable to originator of segment.
2991 */
2992 if (tiflags & TH_RST)
2993 goto drop;
2994 if (tiflags & TH_ACK) {
2995 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2996 } else {
2997 if (tiflags & TH_SYN)
2998 tlen++;
2999 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
3000 TH_RST|TH_ACK);
3001 }
3002 if (tcp_saveti)
3003 m_freem(tcp_saveti);
3004 return;
3005
3006 badcsum:
3007 drop:
3008 /*
3009 * Drop space held by incoming segment and return.
3010 */
3011 if (tp) {
3012 if (tp->t_inpcb)
3013 so = tp->t_inpcb->inp_socket;
3014 #ifdef INET6
3015 else if (tp->t_in6pcb)
3016 so = tp->t_in6pcb->in6p_socket;
3017 #endif
3018 else
3019 so = NULL;
3020 #ifdef TCP_DEBUG
3021 if (so && (so->so_options & SO_DEBUG) != 0)
3022 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3023 #endif
3024 }
3025 if (tcp_saveti)
3026 m_freem(tcp_saveti);
3027 m_freem(m);
3028 return;
3029 }
3030
3031 #ifdef TCP_SIGNATURE
3032 int
3033 tcp_signature_apply(void *fstate, void *data, u_int len)
3034 {
3035
3036 MD5Update(fstate, (u_char *)data, len);
3037 return (0);
3038 }
3039
3040 struct secasvar *
3041 tcp_signature_getsav(struct mbuf *m)
3042 {
3043 struct ip *ip;
3044 struct ip6_hdr *ip6;
3045
3046 ip = mtod(m, struct ip *);
3047 switch (ip->ip_v) {
3048 case 4:
3049 ip = mtod(m, struct ip *);
3050 ip6 = NULL;
3051 break;
3052 case 6:
3053 ip = NULL;
3054 ip6 = mtod(m, struct ip6_hdr *);
3055 break;
3056 default:
3057 return (NULL);
3058 }
3059
3060 #ifdef IPSEC
3061 union sockaddr_union dst;
3062
3063 /* Extract the destination from the IP header in the mbuf. */
3064 memset(&dst, 0, sizeof(union sockaddr_union));
3065 if (ip != NULL) {
3066 dst.sa.sa_len = sizeof(struct sockaddr_in);
3067 dst.sa.sa_family = AF_INET;
3068 dst.sin.sin_addr = ip->ip_dst;
3069 } else {
3070 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3071 dst.sa.sa_family = AF_INET6;
3072 dst.sin6.sin6_addr = ip6->ip6_dst;
3073 }
3074
3075 /*
3076 * Look up an SADB entry which matches the address of the peer.
3077 */
3078 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3079 #else
3080 return NULL;
3081 #endif
3082 }
3083
3084 int
3085 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3086 struct secasvar *sav, char *sig)
3087 {
3088 MD5_CTX ctx;
3089 struct ip *ip;
3090 struct ipovly *ipovly;
3091 #ifdef INET6
3092 struct ip6_hdr *ip6;
3093 struct ip6_hdr_pseudo ip6pseudo;
3094 #endif
3095 struct ippseudo ippseudo;
3096 struct tcphdr th0;
3097 int l, tcphdrlen;
3098
3099 if (sav == NULL)
3100 return (-1);
3101
3102 tcphdrlen = th->th_off * 4;
3103
3104 switch (mtod(m, struct ip *)->ip_v) {
3105 case 4:
3106 MD5Init(&ctx);
3107 ip = mtod(m, struct ip *);
3108 memset(&ippseudo, 0, sizeof(ippseudo));
3109 ipovly = (struct ipovly *)ip;
3110 ippseudo.ippseudo_src = ipovly->ih_src;
3111 ippseudo.ippseudo_dst = ipovly->ih_dst;
3112 ippseudo.ippseudo_pad = 0;
3113 ippseudo.ippseudo_p = IPPROTO_TCP;
3114 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3115 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3116 break;
3117 #if INET6
3118 case 6:
3119 MD5Init(&ctx);
3120 ip6 = mtod(m, struct ip6_hdr *);
3121 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3122 ip6pseudo.ip6ph_src = ip6->ip6_src;
3123 in6_clearscope(&ip6pseudo.ip6ph_src);
3124 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3125 in6_clearscope(&ip6pseudo.ip6ph_dst);
3126 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3127 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3128 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3129 break;
3130 #endif
3131 default:
3132 return (-1);
3133 }
3134
3135 th0 = *th;
3136 th0.th_sum = 0;
3137 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3138
3139 l = m->m_pkthdr.len - thoff - tcphdrlen;
3140 if (l > 0)
3141 m_apply(m, thoff + tcphdrlen,
3142 m->m_pkthdr.len - thoff - tcphdrlen,
3143 tcp_signature_apply, &ctx);
3144
3145 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3146 MD5Final(sig, &ctx);
3147
3148 return (0);
3149 }
3150 #endif
3151
3152 /*
3153 * Parse and process tcp options.
3154 *
3155 * Returns -1 if this segment should be dropped. (eg. wrong signature)
3156 * Otherwise returns 0.
3157 */
3158 static int
3159 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3160 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3161 {
3162 u_int16_t mss;
3163 int opt, optlen = 0;
3164 #ifdef TCP_SIGNATURE
3165 void *sigp = NULL;
3166 char sigbuf[TCP_SIGLEN];
3167 struct secasvar *sav = NULL;
3168 #endif
3169
3170 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3171 opt = cp[0];
3172 if (opt == TCPOPT_EOL)
3173 break;
3174 if (opt == TCPOPT_NOP)
3175 optlen = 1;
3176 else {
3177 if (cnt < 2)
3178 break;
3179 optlen = cp[1];
3180 if (optlen < 2 || optlen > cnt)
3181 break;
3182 }
3183 switch (opt) {
3184
3185 default:
3186 continue;
3187
3188 case TCPOPT_MAXSEG:
3189 if (optlen != TCPOLEN_MAXSEG)
3190 continue;
3191 if (!(th->th_flags & TH_SYN))
3192 continue;
3193 if (TCPS_HAVERCVDSYN(tp->t_state))
3194 continue;
3195 memcpy(&mss, cp + 2, sizeof(mss));
3196 oi->maxseg = ntohs(mss);
3197 break;
3198
3199 case TCPOPT_WINDOW:
3200 if (optlen != TCPOLEN_WINDOW)
3201 continue;
3202 if (!(th->th_flags & TH_SYN))
3203 continue;
3204 if (TCPS_HAVERCVDSYN(tp->t_state))
3205 continue;
3206 tp->t_flags |= TF_RCVD_SCALE;
3207 tp->requested_s_scale = cp[2];
3208 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3209 char buf[INET6_ADDRSTRLEN];
3210 struct ip *ip = mtod(m, struct ip *);
3211 #ifdef INET6
3212 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3213 #endif
3214
3215 switch (ip->ip_v) {
3216 case 4:
3217 in_print(buf, sizeof(buf),
3218 &ip->ip_src);
3219 break;
3220 #ifdef INET6
3221 case 6:
3222 in6_print(buf, sizeof(buf),
3223 &ip6->ip6_src);
3224 break;
3225 #endif
3226 default:
3227 strlcpy(buf, "(unknown)", sizeof(buf));
3228 break;
3229 }
3230
3231 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3232 "assuming %d\n",
3233 tp->requested_s_scale, buf,
3234 TCP_MAX_WINSHIFT);
3235 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3236 }
3237 break;
3238
3239 case TCPOPT_TIMESTAMP:
3240 if (optlen != TCPOLEN_TIMESTAMP)
3241 continue;
3242 oi->ts_present = 1;
3243 memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3244 NTOHL(oi->ts_val);
3245 memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3246 NTOHL(oi->ts_ecr);
3247
3248 if (!(th->th_flags & TH_SYN))
3249 continue;
3250 if (TCPS_HAVERCVDSYN(tp->t_state))
3251 continue;
3252 /*
3253 * A timestamp received in a SYN makes
3254 * it ok to send timestamp requests and replies.
3255 */
3256 tp->t_flags |= TF_RCVD_TSTMP;
3257 tp->ts_recent = oi->ts_val;
3258 tp->ts_recent_age = tcp_now;
3259 break;
3260
3261 case TCPOPT_SACK_PERMITTED:
3262 if (optlen != TCPOLEN_SACK_PERMITTED)
3263 continue;
3264 if (!(th->th_flags & TH_SYN))
3265 continue;
3266 if (TCPS_HAVERCVDSYN(tp->t_state))
3267 continue;
3268 if (tcp_do_sack) {
3269 tp->t_flags |= TF_SACK_PERMIT;
3270 tp->t_flags |= TF_WILL_SACK;
3271 }
3272 break;
3273
3274 case TCPOPT_SACK:
3275 tcp_sack_option(tp, th, cp, optlen);
3276 break;
3277 #ifdef TCP_SIGNATURE
3278 case TCPOPT_SIGNATURE:
3279 if (optlen != TCPOLEN_SIGNATURE)
3280 continue;
3281 if (sigp &&
3282 !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3283 return (-1);
3284
3285 sigp = sigbuf;
3286 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3287 tp->t_flags |= TF_SIGNATURE;
3288 break;
3289 #endif
3290 }
3291 }
3292
3293 #ifndef TCP_SIGNATURE
3294 return 0;
3295 #else
3296 if (tp->t_flags & TF_SIGNATURE) {
3297 sav = tcp_signature_getsav(m);
3298 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3299 return (-1);
3300 }
3301
3302 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3303 goto out;
3304
3305 if (sigp) {
3306 char sig[TCP_SIGLEN];
3307
3308 tcp_fields_to_net(th);
3309 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3310 tcp_fields_to_host(th);
3311 goto out;
3312 }
3313 tcp_fields_to_host(th);
3314
3315 if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3316 TCP_STATINC(TCP_STAT_BADSIG);
3317 goto out;
3318 } else
3319 TCP_STATINC(TCP_STAT_GOODSIG);
3320
3321 key_sa_recordxfer(sav, m);
3322 KEY_SA_UNREF(&sav);
3323 }
3324 return 0;
3325 out:
3326 if (sav != NULL)
3327 KEY_SA_UNREF(&sav);
3328 return -1;
3329 #endif
3330 }
3331
3332 /*
3333 * Pull out of band byte out of a segment so
3334 * it doesn't appear in the user's data queue.
3335 * It is still reflected in the segment length for
3336 * sequencing purposes.
3337 */
3338 void
3339 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3340 struct mbuf *m, int off)
3341 {
3342 int cnt = off + th->th_urp - 1;
3343
3344 while (cnt >= 0) {
3345 if (m->m_len > cnt) {
3346 char *cp = mtod(m, char *) + cnt;
3347 struct tcpcb *tp = sototcpcb(so);
3348
3349 tp->t_iobc = *cp;
3350 tp->t_oobflags |= TCPOOB_HAVEDATA;
3351 memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3352 m->m_len--;
3353 return;
3354 }
3355 cnt -= m->m_len;
3356 m = m->m_next;
3357 if (m == NULL)
3358 break;
3359 }
3360 panic("tcp_pulloutofband");
3361 }
3362
3363 /*
3364 * Collect new round-trip time estimate
3365 * and update averages and current timeout.
3366 *
3367 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3368 * difference of two timestamps.
3369 */
3370 void
3371 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3372 {
3373 int32_t delta;
3374
3375 TCP_STATINC(TCP_STAT_RTTUPDATED);
3376 if (tp->t_srtt != 0) {
3377 /*
3378 * Compute the amount to add to srtt for smoothing,
3379 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3380 * srtt is stored in 1/32 slow ticks, we conceptually
3381 * shift left 5 bits, subtract srtt to get the
3382 * diference, and then shift right by TCP_RTT_SHIFT
3383 * (3) to obtain 1/8 of the difference.
3384 */
3385 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3386 /*
3387 * This can never happen, because delta's lowest
3388 * possible value is 1/8 of t_srtt. But if it does,
3389 * set srtt to some reasonable value, here chosen
3390 * as 1/8 tick.
3391 */
3392 if ((tp->t_srtt += delta) <= 0)
3393 tp->t_srtt = 1 << 2;
3394 /*
3395 * RFC2988 requires that rttvar be updated first.
3396 * This code is compliant because "delta" is the old
3397 * srtt minus the new observation (scaled).
3398 *
3399 * RFC2988 says:
3400 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3401 *
3402 * delta is in units of 1/32 ticks, and has then been
3403 * divided by 8. This is equivalent to being in 1/16s
3404 * units and divided by 4. Subtract from it 1/4 of
3405 * the existing rttvar to form the (signed) amount to
3406 * adjust.
3407 */
3408 if (delta < 0)
3409 delta = -delta;
3410 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3411 /*
3412 * As with srtt, this should never happen. There is
3413 * no support in RFC2988 for this operation. But 1/4s
3414 * as rttvar when faced with something arguably wrong
3415 * is ok.
3416 */
3417 if ((tp->t_rttvar += delta) <= 0)
3418 tp->t_rttvar = 1 << 2;
3419
3420 /*
3421 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3422 * Problem is: it doesn't work. Disabled by defaulting
3423 * tcp_rttlocal to 0; see corresponding code in
3424 * tcp_subr that selects local vs remote in a different way.
3425 *
3426 * The static branch prediction hint here should be removed
3427 * when the rtt estimator is fixed and the rtt_enable code
3428 * is turned back on.
3429 */
3430 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3431 && tp->t_srtt > tcp_msl_remote_threshold
3432 && tp->t_msl < tcp_msl_remote) {
3433 tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
3434 }
3435 } else {
3436 /*
3437 * This is the first measurement. Per RFC2988, 2.2,
3438 * set rtt=R and srtt=R/2.
3439 * For srtt, storage representation is 1/32 ticks,
3440 * so shift left by 5.
3441 * For rttvar, storage representation is 1/16 ticks,
3442 * So shift left by 4, but then right by 1 to halve.
3443 */
3444 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3445 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3446 }
3447 tp->t_rtttime = 0;
3448 tp->t_rxtshift = 0;
3449
3450 /*
3451 * the retransmit should happen at rtt + 4 * rttvar.
3452 * Because of the way we do the smoothing, srtt and rttvar
3453 * will each average +1/2 tick of bias. When we compute
3454 * the retransmit timer, we want 1/2 tick of rounding and
3455 * 1 extra tick because of +-1/2 tick uncertainty in the
3456 * firing of the timer. The bias will give us exactly the
3457 * 1.5 tick we need. But, because the bias is
3458 * statistical, we have to test that we don't drop below
3459 * the minimum feasible timer (which is 2 ticks).
3460 */
3461 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3462 uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3463
3464 /*
3465 * We received an ack for a packet that wasn't retransmitted;
3466 * it is probably safe to discard any error indications we've
3467 * received recently. This isn't quite right, but close enough
3468 * for now (a route might have failed after we sent a segment,
3469 * and the return path might not be symmetrical).
3470 */
3471 tp->t_softerror = 0;
3472 }
3473
3474
3475 /*
3476 * TCP compressed state engine. Currently used to hold compressed
3477 * state for SYN_RECEIVED.
3478 */
3479
3480 u_long syn_cache_count;
3481 u_int32_t syn_hash1, syn_hash2;
3482
3483 #define SYN_HASH(sa, sp, dp) \
3484 ((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
3485 ((u_int32_t)(sp)))^syn_hash2)))
3486 #ifndef INET6
3487 #define SYN_HASHALL(hash, src, dst) \
3488 do { \
3489 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3490 ((const struct sockaddr_in *)(src))->sin_port, \
3491 ((const struct sockaddr_in *)(dst))->sin_port); \
3492 } while (/*CONSTCOND*/ 0)
3493 #else
3494 #define SYN_HASH6(sa, sp, dp) \
3495 ((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
3496 (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
3497 & 0x7fffffff)
3498
3499 #define SYN_HASHALL(hash, src, dst) \
3500 do { \
3501 switch ((src)->sa_family) { \
3502 case AF_INET: \
3503 hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
3504 ((const struct sockaddr_in *)(src))->sin_port, \
3505 ((const struct sockaddr_in *)(dst))->sin_port); \
3506 break; \
3507 case AF_INET6: \
3508 hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
3509 ((const struct sockaddr_in6 *)(src))->sin6_port, \
3510 ((const struct sockaddr_in6 *)(dst))->sin6_port); \
3511 break; \
3512 default: \
3513 hash = 0; \
3514 } \
3515 } while (/*CONSTCOND*/0)
3516 #endif /* INET6 */
3517
3518 static struct pool syn_cache_pool;
3519
3520 /*
3521 * We don't estimate RTT with SYNs, so each packet starts with the default
3522 * RTT and each timer step has a fixed timeout value.
3523 */
3524 static inline void
3525 syn_cache_timer_arm(struct syn_cache *sc)
3526 {
3527
3528 TCPT_RANGESET(sc->sc_rxtcur,
3529 TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
3530 TCPTV_REXMTMAX);
3531 callout_reset(&sc->sc_timer,
3532 sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
3533 }
3534
3535 #define SYN_CACHE_TIMESTAMP(sc) (tcp_now - (sc)->sc_timebase)
3536
3537 static inline void
3538 syn_cache_rm(struct syn_cache *sc)
3539 {
3540 TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
3541 sc, sc_bucketq);
3542 sc->sc_tp = NULL;
3543 LIST_REMOVE(sc, sc_tpq);
3544 tcp_syn_cache[sc->sc_bucketidx].sch_length--;
3545 callout_stop(&sc->sc_timer);
3546 syn_cache_count--;
3547 }
3548
3549 static inline void
3550 syn_cache_put(struct syn_cache *sc)
3551 {
3552 if (sc->sc_ipopts)
3553 (void) m_free(sc->sc_ipopts);
3554 rtcache_free(&sc->sc_route);
3555 sc->sc_flags |= SCF_DEAD;
3556 if (!callout_invoking(&sc->sc_timer))
3557 callout_schedule(&(sc)->sc_timer, 1);
3558 }
3559
3560 void
3561 syn_cache_init(void)
3562 {
3563 int i;
3564
3565 pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
3566 "synpl", NULL, IPL_SOFTNET);
3567
3568 /* Initialize the hash buckets. */
3569 for (i = 0; i < tcp_syn_cache_size; i++)
3570 TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
3571 }
3572
3573 void
3574 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
3575 {
3576 struct syn_cache_head *scp;
3577 struct syn_cache *sc2;
3578 int s;
3579
3580 /*
3581 * If there are no entries in the hash table, reinitialize
3582 * the hash secrets.
3583 */
3584 if (syn_cache_count == 0) {
3585 syn_hash1 = cprng_fast32();
3586 syn_hash2 = cprng_fast32();
3587 }
3588
3589 SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
3590 sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
3591 scp = &tcp_syn_cache[sc->sc_bucketidx];
3592
3593 /*
3594 * Make sure that we don't overflow the per-bucket
3595 * limit or the total cache size limit.
3596 */
3597 s = splsoftnet();
3598 if (scp->sch_length >= tcp_syn_bucket_limit) {
3599 TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
3600 /*
3601 * The bucket is full. Toss the oldest element in the
3602 * bucket. This will be the first entry in the bucket.
3603 */
3604 sc2 = TAILQ_FIRST(&scp->sch_bucket);
3605 #ifdef DIAGNOSTIC
3606 /*
3607 * This should never happen; we should always find an
3608 * entry in our bucket.
3609 */
3610 if (sc2 == NULL)
3611 panic("syn_cache_insert: bucketoverflow: impossible");
3612 #endif
3613 syn_cache_rm(sc2);
3614 syn_cache_put(sc2); /* calls pool_put but see spl above */
3615 } else if (syn_cache_count >= tcp_syn_cache_limit) {
3616 struct syn_cache_head *scp2, *sce;
3617
3618 TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
3619 /*
3620 * The cache is full. Toss the oldest entry in the
3621 * first non-empty bucket we can find.
3622 *
3623 * XXX We would really like to toss the oldest
3624 * entry in the cache, but we hope that this
3625 * condition doesn't happen very often.
3626 */
3627 scp2 = scp;
3628 if (TAILQ_EMPTY(&scp2->sch_bucket)) {
3629 sce = &tcp_syn_cache[tcp_syn_cache_size];
3630 for (++scp2; scp2 != scp; scp2++) {
3631 if (scp2 >= sce)
3632 scp2 = &tcp_syn_cache[0];
3633 if (! TAILQ_EMPTY(&scp2->sch_bucket))
3634 break;
3635 }
3636 #ifdef DIAGNOSTIC
3637 /*
3638 * This should never happen; we should always find a
3639 * non-empty bucket.
3640 */
3641 if (scp2 == scp)
3642 panic("syn_cache_insert: cacheoverflow: "
3643 "impossible");
3644 #endif
3645 }
3646 sc2 = TAILQ_FIRST(&scp2->sch_bucket);
3647 syn_cache_rm(sc2);
3648 syn_cache_put(sc2); /* calls pool_put but see spl above */
3649 }
3650
3651 /*
3652 * Initialize the entry's timer.
3653 */
3654 sc->sc_rxttot = 0;
3655 sc->sc_rxtshift = 0;
3656 syn_cache_timer_arm(sc);
3657
3658 /* Link it from tcpcb entry */
3659 LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
3660
3661 /* Put it into the bucket. */
3662 TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
3663 scp->sch_length++;
3664 syn_cache_count++;
3665
3666 TCP_STATINC(TCP_STAT_SC_ADDED);
3667 splx(s);
3668 }
3669
3670 /*
3671 * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
3672 * If we have retransmitted an entry the maximum number of times, expire
3673 * that entry.
3674 */
3675 static void
3676 syn_cache_timer(void *arg)
3677 {
3678 struct syn_cache *sc = arg;
3679
3680 mutex_enter(softnet_lock);
3681 KERNEL_LOCK(1, NULL);
3682
3683 callout_ack(&sc->sc_timer);
3684
3685 if (__predict_false(sc->sc_flags & SCF_DEAD)) {
3686 TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
3687 goto free;
3688 }
3689
3690 if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
3691 /* Drop it -- too many retransmissions. */
3692 goto dropit;
3693 }
3694
3695 /*
3696 * Compute the total amount of time this entry has
3697 * been on a queue. If this entry has been on longer
3698 * than the keep alive timer would allow, expire it.
3699 */
3700 sc->sc_rxttot += sc->sc_rxtcur;
3701 if (sc->sc_rxttot >= MIN(tcp_keepinit, TCP_TIMER_MAXTICKS))
3702 goto dropit;
3703
3704 TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
3705 (void)syn_cache_respond(sc);
3706
3707 /* Advance the timer back-off. */
3708 sc->sc_rxtshift++;
3709 syn_cache_timer_arm(sc);
3710
3711 goto out;
3712
3713 dropit:
3714 TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
3715 syn_cache_rm(sc);
3716 if (sc->sc_ipopts)
3717 (void) m_free(sc->sc_ipopts);
3718 rtcache_free(&sc->sc_route);
3719
3720 free:
3721 callout_destroy(&sc->sc_timer);
3722 pool_put(&syn_cache_pool, sc);
3723
3724 out:
3725 KERNEL_UNLOCK_ONE(NULL);
3726 mutex_exit(softnet_lock);
3727 }
3728
3729 /*
3730 * Remove syn cache created by the specified tcb entry,
3731 * because this does not make sense to keep them
3732 * (if there's no tcb entry, syn cache entry will never be used)
3733 */
3734 void
3735 syn_cache_cleanup(struct tcpcb *tp)
3736 {
3737 struct syn_cache *sc, *nsc;
3738 int s;
3739
3740 s = splsoftnet();
3741
3742 for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
3743 nsc = LIST_NEXT(sc, sc_tpq);
3744
3745 #ifdef DIAGNOSTIC
3746 if (sc->sc_tp != tp)
3747 panic("invalid sc_tp in syn_cache_cleanup");
3748 #endif
3749 syn_cache_rm(sc);
3750 syn_cache_put(sc); /* calls pool_put but see spl above */
3751 }
3752 /* just for safety */
3753 LIST_INIT(&tp->t_sc);
3754
3755 splx(s);
3756 }
3757
3758 /*
3759 * Find an entry in the syn cache.
3760 */
3761 struct syn_cache *
3762 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
3763 struct syn_cache_head **headp)
3764 {
3765 struct syn_cache *sc;
3766 struct syn_cache_head *scp;
3767 u_int32_t hash;
3768 int s;
3769
3770 SYN_HASHALL(hash, src, dst);
3771
3772 scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
3773 *headp = scp;
3774 s = splsoftnet();
3775 for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
3776 sc = TAILQ_NEXT(sc, sc_bucketq)) {
3777 if (sc->sc_hash != hash)
3778 continue;
3779 if (!memcmp(&sc->sc_src, src, src->sa_len) &&
3780 !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
3781 splx(s);
3782 return (sc);
3783 }
3784 }
3785 splx(s);
3786 return (NULL);
3787 }
3788
3789 /*
3790 * This function gets called when we receive an ACK for a socket in the
3791 * LISTEN state. We look up the connection in the syn cache, and if it's
3792 * there, we pull it out of the cache and turn it into a full-blown
3793 * connection in the SYN-RECEIVED state.
3794 *
3795 * The return values may not be immediately obvious, and their effects
3796 * can be subtle, so here they are:
3797 *
3798 * NULL SYN was not found in cache; caller should drop the
3799 * packet and send an RST.
3800 *
3801 * -1 We were unable to create the new connection, and are
3802 * aborting it. An ACK,RST is being sent to the peer
3803 * (unless we got screwey sequence numbers; see below),
3804 * because the 3-way handshake has been completed. Caller
3805 * should not free the mbuf, since we may be using it. If
3806 * we are not, we will free it.
3807 *
3808 * Otherwise, the return value is a pointer to the new socket
3809 * associated with the connection.
3810 */
3811 struct socket *
3812 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
3813 struct tcphdr *th, struct socket *so, struct mbuf *m)
3814 {
3815 struct syn_cache *sc;
3816 struct syn_cache_head *scp;
3817 struct inpcb *inp = NULL;
3818 #ifdef INET6
3819 struct in6pcb *in6p = NULL;
3820 #endif
3821 struct tcpcb *tp;
3822 int s;
3823 struct socket *oso;
3824
3825 s = splsoftnet();
3826 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
3827 splx(s);
3828 return NULL;
3829 }
3830
3831 /*
3832 * Verify the sequence and ack numbers. Try getting the correct
3833 * response again.
3834 */
3835 if ((th->th_ack != sc->sc_iss + 1) ||
3836 SEQ_LEQ(th->th_seq, sc->sc_irs) ||
3837 SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
3838 m_freem(m);
3839 (void)syn_cache_respond(sc);
3840 splx(s);
3841 return ((struct socket *)(-1));
3842 }
3843
3844 /* Remove this cache entry */
3845 syn_cache_rm(sc);
3846 splx(s);
3847
3848 /*
3849 * Ok, create the full blown connection, and set things up
3850 * as they would have been set up if we had created the
3851 * connection when the SYN arrived. If we can't create
3852 * the connection, abort it.
3853 */
3854 /*
3855 * inp still has the OLD in_pcb stuff, set the
3856 * v6-related flags on the new guy, too. This is
3857 * done particularly for the case where an AF_INET6
3858 * socket is bound only to a port, and a v4 connection
3859 * comes in on that port.
3860 * we also copy the flowinfo from the original pcb
3861 * to the new one.
3862 */
3863 oso = so;
3864 so = sonewconn(so, true);
3865 if (so == NULL)
3866 goto resetandabort;
3867
3868 switch (so->so_proto->pr_domain->dom_family) {
3869 case AF_INET:
3870 inp = sotoinpcb(so);
3871 break;
3872 #ifdef INET6
3873 case AF_INET6:
3874 in6p = sotoin6pcb(so);
3875 break;
3876 #endif
3877 }
3878
3879 switch (src->sa_family) {
3880 case AF_INET:
3881 if (inp) {
3882 inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
3883 inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
3884 inp->inp_options = ip_srcroute(m);
3885 in_pcbstate(inp, INP_BOUND);
3886 if (inp->inp_options == NULL) {
3887 inp->inp_options = sc->sc_ipopts;
3888 sc->sc_ipopts = NULL;
3889 }
3890 }
3891 #ifdef INET6
3892 else if (in6p) {
3893 /* IPv4 packet to AF_INET6 socket */
3894 memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
3895 in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
3896 bcopy(&((struct sockaddr_in *)dst)->sin_addr,
3897 &in6p->in6p_laddr.s6_addr32[3],
3898 sizeof(((struct sockaddr_in *)dst)->sin_addr));
3899 in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
3900 in6totcpcb(in6p)->t_family = AF_INET;
3901 if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
3902 in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
3903 else
3904 in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
3905 in6_pcbstate(in6p, IN6P_BOUND);
3906 }
3907 #endif
3908 break;
3909 #ifdef INET6
3910 case AF_INET6:
3911 if (in6p) {
3912 in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
3913 in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
3914 in6_pcbstate(in6p, IN6P_BOUND);
3915 }
3916 break;
3917 #endif
3918 }
3919
3920 #ifdef INET6
3921 if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
3922 struct in6pcb *oin6p = sotoin6pcb(oso);
3923 /* inherit socket options from the listening socket */
3924 in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
3925 if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
3926 m_freem(in6p->in6p_options);
3927 in6p->in6p_options = NULL;
3928 }
3929 ip6_savecontrol(in6p, &in6p->in6p_options,
3930 mtod(m, struct ip6_hdr *), m);
3931 }
3932 #endif
3933
3934 /*
3935 * Give the new socket our cached route reference.
3936 */
3937 if (inp) {
3938 rtcache_copy(&inp->inp_route, &sc->sc_route);
3939 rtcache_free(&sc->sc_route);
3940 }
3941 #ifdef INET6
3942 else {
3943 rtcache_copy(&in6p->in6p_route, &sc->sc_route);
3944 rtcache_free(&sc->sc_route);
3945 }
3946 #endif
3947
3948 if (inp) {
3949 struct sockaddr_in sin;
3950 memcpy(&sin, src, src->sa_len);
3951 if (in_pcbconnect(inp, &sin, &lwp0)) {
3952 goto resetandabort;
3953 }
3954 }
3955 #ifdef INET6
3956 else if (in6p) {
3957 struct sockaddr_in6 sin6;
3958 memcpy(&sin6, src, src->sa_len);
3959 if (src->sa_family == AF_INET) {
3960 /* IPv4 packet to AF_INET6 socket */
3961 in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
3962 }
3963 if (in6_pcbconnect(in6p, &sin6, NULL)) {
3964 goto resetandabort;
3965 }
3966 }
3967 #endif
3968 else {
3969 goto resetandabort;
3970 }
3971
3972 if (inp)
3973 tp = intotcpcb(inp);
3974 #ifdef INET6
3975 else if (in6p)
3976 tp = in6totcpcb(in6p);
3977 #endif
3978 else
3979 tp = NULL;
3980
3981 tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
3982 if (sc->sc_request_r_scale != 15) {
3983 tp->requested_s_scale = sc->sc_requested_s_scale;
3984 tp->request_r_scale = sc->sc_request_r_scale;
3985 tp->snd_scale = sc->sc_requested_s_scale;
3986 tp->rcv_scale = sc->sc_request_r_scale;
3987 tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
3988 }
3989 if (sc->sc_flags & SCF_TIMESTAMP)
3990 tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
3991 tp->ts_timebase = sc->sc_timebase;
3992
3993 tp->t_template = tcp_template(tp);
3994 if (tp->t_template == 0) {
3995 tp = tcp_drop(tp, ENOBUFS); /* destroys socket */
3996 so = NULL;
3997 m_freem(m);
3998 goto abort;
3999 }
4000
4001 tp->iss = sc->sc_iss;
4002 tp->irs = sc->sc_irs;
4003 tcp_sendseqinit(tp);
4004 tcp_rcvseqinit(tp);
4005 tp->t_state = TCPS_SYN_RECEIVED;
4006 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
4007 TCP_STATINC(TCP_STAT_ACCEPTS);
4008
4009 if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
4010 tp->t_flags |= TF_WILL_SACK;
4011
4012 if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
4013 tp->t_flags |= TF_ECN_PERMIT;
4014
4015 #ifdef TCP_SIGNATURE
4016 if (sc->sc_flags & SCF_SIGNATURE)
4017 tp->t_flags |= TF_SIGNATURE;
4018 #endif
4019
4020 /* Initialize tp->t_ourmss before we deal with the peer's! */
4021 tp->t_ourmss = sc->sc_ourmaxseg;
4022 tcp_mss_from_peer(tp, sc->sc_peermaxseg);
4023
4024 /*
4025 * Initialize the initial congestion window. If we
4026 * had to retransmit the SYN,ACK, we must initialize cwnd
4027 * to 1 segment (i.e. the Loss Window).
4028 */
4029 if (sc->sc_rxtshift)
4030 tp->snd_cwnd = tp->t_peermss;
4031 else {
4032 int ss = tcp_init_win;
4033 if (inp != NULL && in_localaddr(inp->inp_faddr))
4034 ss = tcp_init_win_local;
4035 #ifdef INET6
4036 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
4037 ss = tcp_init_win_local;
4038 #endif
4039 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
4040 }
4041
4042 tcp_rmx_rtt(tp);
4043 tp->snd_wl1 = sc->sc_irs;
4044 tp->rcv_up = sc->sc_irs + 1;
4045
4046 /*
4047 * This is what whould have happened in tcp_output() when
4048 * the SYN,ACK was sent.
4049 */
4050 tp->snd_up = tp->snd_una;
4051 tp->snd_max = tp->snd_nxt = tp->iss+1;
4052 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
4053 if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
4054 tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
4055 tp->last_ack_sent = tp->rcv_nxt;
4056 tp->t_partialacks = -1;
4057 tp->t_dupacks = 0;
4058
4059 TCP_STATINC(TCP_STAT_SC_COMPLETED);
4060 s = splsoftnet();
4061 syn_cache_put(sc);
4062 splx(s);
4063 return so;
4064
4065 resetandabort:
4066 (void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
4067 abort:
4068 if (so != NULL) {
4069 (void) soqremque(so, 1);
4070 (void) soabort(so);
4071 mutex_enter(softnet_lock);
4072 }
4073 s = splsoftnet();
4074 syn_cache_put(sc);
4075 splx(s);
4076 TCP_STATINC(TCP_STAT_SC_ABORTED);
4077 return ((struct socket *)(-1));
4078 }
4079
4080 /*
4081 * This function is called when we get a RST for a
4082 * non-existent connection, so that we can see if the
4083 * connection is in the syn cache. If it is, zap it.
4084 */
4085
4086 void
4087 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
4088 {
4089 struct syn_cache *sc;
4090 struct syn_cache_head *scp;
4091 int s = splsoftnet();
4092
4093 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4094 splx(s);
4095 return;
4096 }
4097 if (SEQ_LT(th->th_seq, sc->sc_irs) ||
4098 SEQ_GT(th->th_seq, sc->sc_irs+1)) {
4099 splx(s);
4100 return;
4101 }
4102 syn_cache_rm(sc);
4103 TCP_STATINC(TCP_STAT_SC_RESET);
4104 syn_cache_put(sc); /* calls pool_put but see spl above */
4105 splx(s);
4106 }
4107
4108 void
4109 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
4110 struct tcphdr *th)
4111 {
4112 struct syn_cache *sc;
4113 struct syn_cache_head *scp;
4114 int s;
4115
4116 s = splsoftnet();
4117 if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
4118 splx(s);
4119 return;
4120 }
4121 /* If the sequence number != sc_iss, then it's a bogus ICMP msg */
4122 if (ntohl(th->th_seq) != sc->sc_iss) {
4123 splx(s);
4124 return;
4125 }
4126
4127 /*
4128 * If we've retransmitted 3 times and this is our second error,
4129 * we remove the entry. Otherwise, we allow it to continue on.
4130 * This prevents us from incorrectly nuking an entry during a
4131 * spurious network outage.
4132 *
4133 * See tcp_notify().
4134 */
4135 if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
4136 sc->sc_flags |= SCF_UNREACH;
4137 splx(s);
4138 return;
4139 }
4140
4141 syn_cache_rm(sc);
4142 TCP_STATINC(TCP_STAT_SC_UNREACH);
4143 syn_cache_put(sc); /* calls pool_put but see spl above */
4144 splx(s);
4145 }
4146
4147 /*
4148 * Given a LISTEN socket and an inbound SYN request, add this to the syn
4149 * cache, and send back a segment:
4150 * <SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
4151 * to the source.
4152 *
4153 * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
4154 * Doing so would require that we hold onto the data and deliver it
4155 * to the application. However, if we are the target of a SYN-flood
4156 * DoS attack, an attacker could send data which would eventually
4157 * consume all available buffer space if it were ACKed. By not ACKing
4158 * the data, we avoid this DoS scenario.
4159 */
4160 int
4161 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
4162 unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
4163 int optlen, struct tcp_opt_info *oi)
4164 {
4165 struct tcpcb tb, *tp;
4166 long win;
4167 struct syn_cache *sc;
4168 struct syn_cache_head *scp;
4169 struct mbuf *ipopts;
4170 int s;
4171
4172 tp = sototcpcb(so);
4173
4174 /*
4175 * Initialize some local state.
4176 */
4177 win = sbspace(&so->so_rcv);
4178 if (win > TCP_MAXWIN)
4179 win = TCP_MAXWIN;
4180
4181 #ifdef TCP_SIGNATURE
4182 if (optp || (tp->t_flags & TF_SIGNATURE))
4183 #else
4184 if (optp)
4185 #endif
4186 {
4187 tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
4188 #ifdef TCP_SIGNATURE
4189 tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
4190 #endif
4191 tb.t_state = TCPS_LISTEN;
4192 if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
4193 return 0;
4194 } else
4195 tb.t_flags = 0;
4196
4197 switch (src->sa_family) {
4198 case AF_INET:
4199 /* Remember the IP options, if any. */
4200 ipopts = ip_srcroute(m);
4201 break;
4202 default:
4203 ipopts = NULL;
4204 }
4205
4206 /*
4207 * See if we already have an entry for this connection.
4208 * If we do, resend the SYN,ACK. We do not count this
4209 * as a retransmission (XXX though maybe we should).
4210 */
4211 if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
4212 TCP_STATINC(TCP_STAT_SC_DUPESYN);
4213 if (ipopts) {
4214 /*
4215 * If we were remembering a previous source route,
4216 * forget it and use the new one we've been given.
4217 */
4218 if (sc->sc_ipopts)
4219 (void)m_free(sc->sc_ipopts);
4220 sc->sc_ipopts = ipopts;
4221 }
4222 sc->sc_timestamp = tb.ts_recent;
4223 m_freem(m);
4224 if (syn_cache_respond(sc) == 0) {
4225 uint64_t *tcps = TCP_STAT_GETREF();
4226 tcps[TCP_STAT_SNDACKS]++;
4227 tcps[TCP_STAT_SNDTOTAL]++;
4228 TCP_STAT_PUTREF();
4229 }
4230 return 1;
4231 }
4232
4233 s = splsoftnet();
4234 sc = pool_get(&syn_cache_pool, PR_NOWAIT);
4235 splx(s);
4236 if (sc == NULL) {
4237 if (ipopts)
4238 (void)m_free(ipopts);
4239 return 0;
4240 }
4241
4242 /*
4243 * Fill in the cache, and put the necessary IP and TCP
4244 * options into the reply.
4245 */
4246 memset(sc, 0, sizeof(struct syn_cache));
4247 callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
4248 memcpy(&sc->sc_src, src, src->sa_len);
4249 memcpy(&sc->sc_dst, dst, dst->sa_len);
4250 sc->sc_flags = 0;
4251 sc->sc_ipopts = ipopts;
4252 sc->sc_irs = th->th_seq;
4253 switch (src->sa_family) {
4254 case AF_INET:
4255 {
4256 struct sockaddr_in *srcin = (void *)src;
4257 struct sockaddr_in *dstin = (void *)dst;
4258
4259 sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
4260 &srcin->sin_addr, dstin->sin_port,
4261 srcin->sin_port, sizeof(dstin->sin_addr), 0);
4262 break;
4263 }
4264 #ifdef INET6
4265 case AF_INET6:
4266 {
4267 struct sockaddr_in6 *srcin6 = (void *)src;
4268 struct sockaddr_in6 *dstin6 = (void *)dst;
4269
4270 sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
4271 &srcin6->sin6_addr, dstin6->sin6_port,
4272 srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
4273 break;
4274 }
4275 #endif
4276 }
4277 sc->sc_peermaxseg = oi->maxseg;
4278 sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
4279 m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
4280 sc->sc_win = win;
4281 sc->sc_timebase = tcp_now - 1; /* see tcp_newtcpcb() */
4282 sc->sc_timestamp = tb.ts_recent;
4283 if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
4284 (TF_REQ_TSTMP|TF_RCVD_TSTMP))
4285 sc->sc_flags |= SCF_TIMESTAMP;
4286 if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
4287 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
4288 sc->sc_requested_s_scale = tb.requested_s_scale;
4289 sc->sc_request_r_scale = 0;
4290 /*
4291 * Pick the smallest possible scaling factor that
4292 * will still allow us to scale up to sb_max.
4293 *
4294 * We do this because there are broken firewalls that
4295 * will corrupt the window scale option, leading to
4296 * the other endpoint believing that our advertised
4297 * window is unscaled. At scale factors larger than
4298 * 5 the unscaled window will drop below 1500 bytes,
4299 * leading to serious problems when traversing these
4300 * broken firewalls.
4301 *
4302 * With the default sbmax of 256K, a scale factor
4303 * of 3 will be chosen by this algorithm. Those who
4304 * choose a larger sbmax should watch out
4305 * for the compatiblity problems mentioned above.
4306 *
4307 * RFC1323: The Window field in a SYN (i.e., a <SYN>
4308 * or <SYN,ACK>) segment itself is never scaled.
4309 */
4310 while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
4311 (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
4312 sc->sc_request_r_scale++;
4313 } else {
4314 sc->sc_requested_s_scale = 15;
4315 sc->sc_request_r_scale = 15;
4316 }
4317 if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
4318 sc->sc_flags |= SCF_SACK_PERMIT;
4319
4320 /*
4321 * ECN setup packet received.
4322 */
4323 if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
4324 sc->sc_flags |= SCF_ECN_PERMIT;
4325
4326 #ifdef TCP_SIGNATURE
4327 if (tb.t_flags & TF_SIGNATURE)
4328 sc->sc_flags |= SCF_SIGNATURE;
4329 #endif
4330 sc->sc_tp = tp;
4331 m_freem(m);
4332 if (syn_cache_respond(sc) == 0) {
4333 uint64_t *tcps = TCP_STAT_GETREF();
4334 tcps[TCP_STAT_SNDACKS]++;
4335 tcps[TCP_STAT_SNDTOTAL]++;
4336 TCP_STAT_PUTREF();
4337 syn_cache_insert(sc, tp);
4338 } else {
4339 s = splsoftnet();
4340 /*
4341 * syn_cache_put() will try to schedule the timer, so
4342 * we need to initialize it
4343 */
4344 syn_cache_timer_arm(sc);
4345 syn_cache_put(sc);
4346 splx(s);
4347 TCP_STATINC(TCP_STAT_SC_DROPPED);
4348 }
4349 return 1;
4350 }
4351
4352 /*
4353 * syn_cache_respond: (re)send SYN+ACK.
4354 *
4355 * Returns 0 on success.
4356 */
4357
4358 int
4359 syn_cache_respond(struct syn_cache *sc)
4360 {
4361 #ifdef INET6
4362 struct rtentry *rt = NULL;
4363 #endif
4364 struct route *ro;
4365 u_int8_t *optp;
4366 int optlen, error;
4367 u_int16_t tlen;
4368 struct ip *ip = NULL;
4369 #ifdef INET6
4370 struct ip6_hdr *ip6 = NULL;
4371 #endif
4372 struct tcpcb *tp;
4373 struct tcphdr *th;
4374 struct mbuf *m;
4375 u_int hlen;
4376 #ifdef TCP_SIGNATURE
4377 struct secasvar *sav = NULL;
4378 u_int8_t *sigp = NULL;
4379 #endif
4380
4381 ro = &sc->sc_route;
4382 switch (sc->sc_src.sa.sa_family) {
4383 case AF_INET:
4384 hlen = sizeof(struct ip);
4385 break;
4386 #ifdef INET6
4387 case AF_INET6:
4388 hlen = sizeof(struct ip6_hdr);
4389 break;
4390 #endif
4391 default:
4392 return EAFNOSUPPORT;
4393 }
4394
4395 /* Worst case scanario, since we don't know the option size yet. */
4396 tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
4397 KASSERT(max_linkhdr + tlen <= MCLBYTES);
4398
4399 /*
4400 * Create the IP+TCP header from scratch.
4401 */
4402 MGETHDR(m, M_DONTWAIT, MT_DATA);
4403 if (m && (max_linkhdr + tlen) > MHLEN) {
4404 MCLGET(m, M_DONTWAIT);
4405 if ((m->m_flags & M_EXT) == 0) {
4406 m_freem(m);
4407 m = NULL;
4408 }
4409 }
4410 if (m == NULL)
4411 return ENOBUFS;
4412 MCLAIM(m, &tcp_tx_mowner);
4413
4414 tp = sc->sc_tp;
4415
4416 /* Fixup the mbuf. */
4417 m->m_data += max_linkhdr;
4418 m_reset_rcvif(m);
4419 memset(mtod(m, void *), 0, tlen);
4420
4421 switch (sc->sc_src.sa.sa_family) {
4422 case AF_INET:
4423 ip = mtod(m, struct ip *);
4424 ip->ip_v = 4;
4425 ip->ip_dst = sc->sc_src.sin.sin_addr;
4426 ip->ip_src = sc->sc_dst.sin.sin_addr;
4427 ip->ip_p = IPPROTO_TCP;
4428 th = (struct tcphdr *)(ip + 1);
4429 th->th_dport = sc->sc_src.sin.sin_port;
4430 th->th_sport = sc->sc_dst.sin.sin_port;
4431 break;
4432 #ifdef INET6
4433 case AF_INET6:
4434 ip6 = mtod(m, struct ip6_hdr *);
4435 ip6->ip6_vfc = IPV6_VERSION;
4436 ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
4437 ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
4438 ip6->ip6_nxt = IPPROTO_TCP;
4439 /* ip6_plen will be updated in ip6_output() */
4440 th = (struct tcphdr *)(ip6 + 1);
4441 th->th_dport = sc->sc_src.sin6.sin6_port;
4442 th->th_sport = sc->sc_dst.sin6.sin6_port;
4443 break;
4444 #endif
4445 default:
4446 panic("%s: impossible (1)", __func__);
4447 }
4448
4449 th->th_seq = htonl(sc->sc_iss);
4450 th->th_ack = htonl(sc->sc_irs + 1);
4451 th->th_flags = TH_SYN|TH_ACK;
4452 th->th_win = htons(sc->sc_win);
4453 /* th_x2, th_sum, th_urp already 0 from memset */
4454
4455 /* Tack on the TCP options. */
4456 optp = (u_int8_t *)(th + 1);
4457 optlen = 0;
4458 *optp++ = TCPOPT_MAXSEG;
4459 *optp++ = TCPOLEN_MAXSEG;
4460 *optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
4461 *optp++ = sc->sc_ourmaxseg & 0xff;
4462 optlen += TCPOLEN_MAXSEG;
4463
4464 if (sc->sc_request_r_scale != 15) {
4465 *((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
4466 TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
4467 sc->sc_request_r_scale);
4468 optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
4469 optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
4470 }
4471
4472 if (sc->sc_flags & SCF_SACK_PERMIT) {
4473 /* Let the peer know that we will SACK. */
4474 *optp++ = TCPOPT_SACK_PERMITTED;
4475 *optp++ = TCPOLEN_SACK_PERMITTED;
4476 optlen += TCPOLEN_SACK_PERMITTED;
4477 }
4478
4479 if (sc->sc_flags & SCF_TIMESTAMP) {
4480 while (optlen % 4 != 2) {
4481 optlen += TCPOLEN_NOP;
4482 *optp++ = TCPOPT_NOP;
4483 }
4484 *optp++ = TCPOPT_TIMESTAMP;
4485 *optp++ = TCPOLEN_TIMESTAMP;
4486 u_int32_t *lp = (u_int32_t *)(optp);
4487 /* Form timestamp option as shown in appendix A of RFC 1323. */
4488 *lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
4489 *lp = htonl(sc->sc_timestamp);
4490 optp += TCPOLEN_TIMESTAMP - 2;
4491 optlen += TCPOLEN_TIMESTAMP;
4492 }
4493
4494 #ifdef TCP_SIGNATURE
4495 if (sc->sc_flags & SCF_SIGNATURE) {
4496 sav = tcp_signature_getsav(m);
4497 if (sav == NULL) {
4498 m_freem(m);
4499 return EPERM;
4500 }
4501
4502 *optp++ = TCPOPT_SIGNATURE;
4503 *optp++ = TCPOLEN_SIGNATURE;
4504 sigp = optp;
4505 memset(optp, 0, TCP_SIGLEN);
4506 optp += TCP_SIGLEN;
4507 optlen += TCPOLEN_SIGNATURE;
4508 }
4509 #endif
4510
4511 /*
4512 * Terminate and pad TCP options to a 4 byte boundary.
4513 *
4514 * According to RFC793: "The content of the header beyond the
4515 * End-of-Option option must be header padding (i.e., zero)."
4516 * And later: "The padding is composed of zeros."
4517 */
4518 if (optlen % 4) {
4519 optlen += TCPOLEN_EOL;
4520 *optp++ = TCPOPT_EOL;
4521 }
4522 while (optlen % 4) {
4523 optlen += TCPOLEN_PAD;
4524 *optp++ = TCPOPT_PAD;
4525 }
4526
4527 /* Compute the actual values now that we've added the options. */
4528 tlen = hlen + sizeof(struct tcphdr) + optlen;
4529 m->m_len = m->m_pkthdr.len = tlen;
4530 th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
4531
4532 #ifdef TCP_SIGNATURE
4533 if (sav) {
4534 (void)tcp_signature(m, th, hlen, sav, sigp);
4535 key_sa_recordxfer(sav, m);
4536 KEY_SA_UNREF(&sav);
4537 }
4538 #endif
4539
4540 /*
4541 * Send ECN SYN-ACK setup packet.
4542 * Routes can be asymetric, so, even if we receive a packet
4543 * with ECE and CWR set, we must not assume no one will block
4544 * the ECE packet we are about to send.
4545 */
4546 if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
4547 SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
4548 th->th_flags |= TH_ECE;
4549 TCP_STATINC(TCP_STAT_ECN_SHS);
4550
4551 /*
4552 * draft-ietf-tcpm-ecnsyn-00.txt
4553 *
4554 * "[...] a TCP node MAY respond to an ECN-setup
4555 * SYN packet by setting ECT in the responding
4556 * ECN-setup SYN/ACK packet, indicating to routers
4557 * that the SYN/ACK packet is ECN-Capable.
4558 * This allows a congested router along the path
4559 * to mark the packet instead of dropping the
4560 * packet as an indication of congestion."
4561 *
4562 * "[...] There can be a great benefit in setting
4563 * an ECN-capable codepoint in SYN/ACK packets [...]
4564 * Congestion is most likely to occur in
4565 * the server-to-client direction. As a result,
4566 * setting an ECN-capable codepoint in SYN/ACK
4567 * packets can reduce the occurence of three-second
4568 * retransmit timeouts resulting from the drop
4569 * of SYN/ACK packets."
4570 *
4571 * Page 4 and 6, January 2006.
4572 */
4573
4574 switch (sc->sc_src.sa.sa_family) {
4575 case AF_INET:
4576 ip->ip_tos |= IPTOS_ECN_ECT0;
4577 break;
4578 #ifdef INET6
4579 case AF_INET6:
4580 ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
4581 break;
4582 #endif
4583 }
4584 TCP_STATINC(TCP_STAT_ECN_ECT);
4585 }
4586
4587
4588 /*
4589 * Compute the packet's checksum.
4590 *
4591 * Fill in some straggling IP bits. Note the stack expects
4592 * ip_len to be in host order, for convenience.
4593 */
4594 switch (sc->sc_src.sa.sa_family) {
4595 case AF_INET:
4596 ip->ip_len = htons(tlen - hlen);
4597 th->th_sum = 0;
4598 th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4599 ip->ip_len = htons(tlen);
4600 ip->ip_ttl = ip_defttl;
4601 /* XXX tos? */
4602 break;
4603 #ifdef INET6
4604 case AF_INET6:
4605 ip6->ip6_plen = htons(tlen - hlen);
4606 th->th_sum = 0;
4607 th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
4608 ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
4609 ip6->ip6_vfc |= IPV6_VERSION;
4610 ip6->ip6_plen = htons(tlen - hlen);
4611 /* ip6_hlim will be initialized afterwards */
4612 /* XXX flowlabel? */
4613 break;
4614 #endif
4615 }
4616
4617 /* XXX use IPsec policy on listening socket, on SYN ACK */
4618 tp = sc->sc_tp;
4619
4620 switch (sc->sc_src.sa.sa_family) {
4621 case AF_INET:
4622 error = ip_output(m, sc->sc_ipopts, ro,
4623 (ip_mtudisc ? IP_MTUDISC : 0),
4624 NULL, tp ? tp->t_inpcb : NULL);
4625 break;
4626 #ifdef INET6
4627 case AF_INET6:
4628 ip6->ip6_hlim = in6_selecthlim(NULL,
4629 (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
4630 rtcache_unref(rt, ro);
4631
4632 error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
4633 tp ? tp->t_in6pcb : NULL, NULL);
4634 break;
4635 #endif
4636 default:
4637 panic("%s: impossible (2)", __func__);
4638 }
4639
4640 return error;
4641 }
4642