Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.423
      1 /*	$NetBSD: tcp_input.c,v 1.423 2020/09/13 11:47:12 roy Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 /*
    141  *	TODO list for SYN cache stuff:
    142  *
    143  *	Find room for a "state" field, which is needed to keep a
    144  *	compressed state for TIME_WAIT TCBs.  It's been noted already
    145  *	that this is fairly important for very high-volume web and
    146  *	mail servers, which use a large number of short-lived
    147  *	connections.
    148  */
    149 
    150 #include <sys/cdefs.h>
    151 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.423 2020/09/13 11:47:12 roy Exp $");
    152 
    153 #ifdef _KERNEL_OPT
    154 #include "opt_inet.h"
    155 #include "opt_ipsec.h"
    156 #include "opt_inet_csum.h"
    157 #include "opt_tcp_debug.h"
    158 #endif
    159 
    160 #include <sys/param.h>
    161 #include <sys/systm.h>
    162 #include <sys/malloc.h>
    163 #include <sys/mbuf.h>
    164 #include <sys/protosw.h>
    165 #include <sys/socket.h>
    166 #include <sys/socketvar.h>
    167 #include <sys/errno.h>
    168 #include <sys/syslog.h>
    169 #include <sys/pool.h>
    170 #include <sys/domain.h>
    171 #include <sys/kernel.h>
    172 #ifdef TCP_SIGNATURE
    173 #include <sys/md5.h>
    174 #endif
    175 #include <sys/lwp.h> /* for lwp0 */
    176 #include <sys/cprng.h>
    177 
    178 #include <net/if.h>
    179 #include <net/if_types.h>
    180 
    181 #include <netinet/in.h>
    182 #include <netinet/in_systm.h>
    183 #include <netinet/ip.h>
    184 #include <netinet/in_pcb.h>
    185 #include <netinet/in_var.h>
    186 #include <netinet/ip_var.h>
    187 #include <netinet/in_offload.h>
    188 
    189 #if NARP > 0
    190 #include <netinet/if_inarp.h>
    191 #endif
    192 #ifdef INET6
    193 #include <netinet/ip6.h>
    194 #include <netinet6/ip6_var.h>
    195 #include <netinet6/in6_pcb.h>
    196 #include <netinet6/ip6_var.h>
    197 #include <netinet6/in6_var.h>
    198 #include <netinet/icmp6.h>
    199 #include <netinet6/nd6.h>
    200 #ifdef TCP_SIGNATURE
    201 #include <netinet6/scope6_var.h>
    202 #endif
    203 #endif
    204 
    205 #ifndef INET6
    206 #include <netinet/ip6.h>
    207 #endif
    208 
    209 #include <netinet/tcp.h>
    210 #include <netinet/tcp_fsm.h>
    211 #include <netinet/tcp_seq.h>
    212 #include <netinet/tcp_timer.h>
    213 #include <netinet/tcp_var.h>
    214 #include <netinet/tcp_private.h>
    215 #include <netinet/tcp_congctl.h>
    216 #include <netinet/tcp_debug.h>
    217 
    218 #ifdef INET6
    219 #include "faith.h"
    220 #if defined(NFAITH) && NFAITH > 0
    221 #include <net/if_faith.h>
    222 #endif
    223 #endif
    224 
    225 #ifdef IPSEC
    226 #include <netipsec/ipsec.h>
    227 #include <netipsec/key.h>
    228 #ifdef INET6
    229 #include <netipsec/ipsec6.h>
    230 #endif
    231 #endif	/* IPSEC*/
    232 
    233 #include <netinet/tcp_vtw.h>
    234 
    235 int	tcprexmtthresh = 3;
    236 int	tcp_log_refused;
    237 
    238 int	tcp_do_autorcvbuf = 1;
    239 int	tcp_autorcvbuf_inc = 16 * 1024;
    240 int	tcp_autorcvbuf_max = 256 * 1024;
    241 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    242 
    243 static int tcp_rst_ppslim_count = 0;
    244 static struct timeval tcp_rst_ppslim_last;
    245 static int tcp_ackdrop_ppslim_count = 0;
    246 static struct timeval tcp_ackdrop_ppslim_last;
    247 
    248 static void syn_cache_timer(void *);
    249 
    250 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    251 
    252 /* for modulo comparisons of timestamps */
    253 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    254 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    255 
    256 /*
    257  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    258  */
    259 static void
    260 nd_hint(struct tcpcb *tp)
    261 {
    262 	struct route *ro = NULL;
    263 	struct rtentry *rt;
    264 
    265 	if (tp == NULL)
    266 		return;
    267 
    268 	switch (tp->t_family) {
    269 #if NARP > 0
    270 	case AF_INET:
    271 		if (tp->t_inpcb != NULL)
    272 			ro = &tp->t_inpcb->inp_route;
    273 		break;
    274 #endif
    275 #ifdef INET6
    276 	case AF_INET6:
    277 		if (tp->t_in6pcb != NULL)
    278 			ro = &tp->t_in6pcb->in6p_route;
    279 		break;
    280 #endif
    281 	}
    282 
    283 	if (ro == NULL)
    284 		return;
    285 
    286 	rt = rtcache_validate(ro);
    287 	if (rt == NULL)
    288 		return;
    289 
    290 	switch (tp->t_family) {
    291 #if NARP > 0
    292 	case AF_INET:
    293 		arp_nud_hint(rt);
    294 		break;
    295 #endif
    296 #ifdef INET6
    297 	case AF_INET6:
    298 		nd6_nud_hint(rt);
    299 		break;
    300 #endif
    301 	}
    302 
    303 	rtcache_unref(rt, ro);
    304 }
    305 
    306 /*
    307  * Compute ACK transmission behavior.  Delay the ACK unless
    308  * we have already delayed an ACK (must send an ACK every two segments).
    309  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    310  * option is enabled.
    311  */
    312 static void
    313 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    314 {
    315 
    316 	if (tp->t_flags & TF_DELACK ||
    317 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    318 		tp->t_flags |= TF_ACKNOW;
    319 	else
    320 		TCP_SET_DELACK(tp);
    321 }
    322 
    323 static void
    324 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    325 {
    326 
    327 	/*
    328 	 * If we had a pending ICMP message that refers to data that have
    329 	 * just been acknowledged, disregard the recorded ICMP message.
    330 	 */
    331 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    332 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    333 		tp->t_flags &= ~TF_PMTUD_PEND;
    334 
    335 	/*
    336 	 * Keep track of the largest chunk of data
    337 	 * acknowledged since last PMTU update
    338 	 */
    339 	if (tp->t_pmtud_mss_acked < acked)
    340 		tp->t_pmtud_mss_acked = acked;
    341 }
    342 
    343 /*
    344  * Convert TCP protocol fields to host order for easier processing.
    345  */
    346 static void
    347 tcp_fields_to_host(struct tcphdr *th)
    348 {
    349 
    350 	NTOHL(th->th_seq);
    351 	NTOHL(th->th_ack);
    352 	NTOHS(th->th_win);
    353 	NTOHS(th->th_urp);
    354 }
    355 
    356 /*
    357  * ... and reverse the above.
    358  */
    359 static void
    360 tcp_fields_to_net(struct tcphdr *th)
    361 {
    362 
    363 	HTONL(th->th_seq);
    364 	HTONL(th->th_ack);
    365 	HTONS(th->th_win);
    366 	HTONS(th->th_urp);
    367 }
    368 
    369 static void
    370 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
    371 {
    372 	if (th->th_urp > todrop) {
    373 		th->th_urp -= todrop;
    374 	} else {
    375 		*tiflags &= ~TH_URG;
    376 		th->th_urp = 0;
    377 	}
    378 }
    379 
    380 #ifdef TCP_CSUM_COUNTERS
    381 #include <sys/device.h>
    382 
    383 extern struct evcnt tcp_hwcsum_ok;
    384 extern struct evcnt tcp_hwcsum_bad;
    385 extern struct evcnt tcp_hwcsum_data;
    386 extern struct evcnt tcp_swcsum;
    387 #if defined(INET6)
    388 extern struct evcnt tcp6_hwcsum_ok;
    389 extern struct evcnt tcp6_hwcsum_bad;
    390 extern struct evcnt tcp6_hwcsum_data;
    391 extern struct evcnt tcp6_swcsum;
    392 #endif /* defined(INET6) */
    393 
    394 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    395 
    396 #else
    397 
    398 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    399 
    400 #endif /* TCP_CSUM_COUNTERS */
    401 
    402 #ifdef TCP_REASS_COUNTERS
    403 #include <sys/device.h>
    404 
    405 extern struct evcnt tcp_reass_;
    406 extern struct evcnt tcp_reass_empty;
    407 extern struct evcnt tcp_reass_iteration[8];
    408 extern struct evcnt tcp_reass_prependfirst;
    409 extern struct evcnt tcp_reass_prepend;
    410 extern struct evcnt tcp_reass_insert;
    411 extern struct evcnt tcp_reass_inserttail;
    412 extern struct evcnt tcp_reass_append;
    413 extern struct evcnt tcp_reass_appendtail;
    414 extern struct evcnt tcp_reass_overlaptail;
    415 extern struct evcnt tcp_reass_overlapfront;
    416 extern struct evcnt tcp_reass_segdup;
    417 extern struct evcnt tcp_reass_fragdup;
    418 
    419 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    420 
    421 #else
    422 
    423 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    424 
    425 #endif /* TCP_REASS_COUNTERS */
    426 
    427 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    428     int);
    429 static int tcp_dooptions(struct tcpcb *, const u_char *, int,
    430     struct tcphdr *, struct mbuf *, int, struct tcp_opt_info *);
    431 
    432 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    433 #ifdef INET6
    434 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    435 #endif
    436 
    437 #if defined(MBUFTRACE)
    438 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    439 #endif /* defined(MBUFTRACE) */
    440 
    441 static struct pool tcpipqent_pool;
    442 
    443 void
    444 tcpipqent_init(void)
    445 {
    446 
    447 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    448 	    NULL, IPL_VM);
    449 }
    450 
    451 struct ipqent *
    452 tcpipqent_alloc(void)
    453 {
    454 	struct ipqent *ipqe;
    455 	int s;
    456 
    457 	s = splvm();
    458 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    459 	splx(s);
    460 
    461 	return ipqe;
    462 }
    463 
    464 void
    465 tcpipqent_free(struct ipqent *ipqe)
    466 {
    467 	int s;
    468 
    469 	s = splvm();
    470 	pool_put(&tcpipqent_pool, ipqe);
    471 	splx(s);
    472 }
    473 
    474 /*
    475  * Insert segment ti into reassembly queue of tcp with
    476  * control block tp.  Return TH_FIN if reassembly now includes
    477  * a segment with FIN.
    478  */
    479 static int
    480 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
    481 {
    482 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    483 	struct socket *so = NULL;
    484 	int pkt_flags;
    485 	tcp_seq pkt_seq;
    486 	unsigned pkt_len;
    487 	u_long rcvpartdupbyte = 0;
    488 	u_long rcvoobyte;
    489 #ifdef TCP_REASS_COUNTERS
    490 	u_int count = 0;
    491 #endif
    492 	uint64_t *tcps;
    493 
    494 	if (tp->t_inpcb)
    495 		so = tp->t_inpcb->inp_socket;
    496 #ifdef INET6
    497 	else if (tp->t_in6pcb)
    498 		so = tp->t_in6pcb->in6p_socket;
    499 #endif
    500 
    501 	TCP_REASS_LOCK_CHECK(tp);
    502 
    503 	/*
    504 	 * Call with th==NULL after become established to
    505 	 * force pre-ESTABLISHED data up to user socket.
    506 	 */
    507 	if (th == NULL)
    508 		goto present;
    509 
    510 	m_claimm(m, &tcp_reass_mowner);
    511 
    512 	rcvoobyte = tlen;
    513 	/*
    514 	 * Copy these to local variables because the TCP header gets munged
    515 	 * while we are collapsing mbufs.
    516 	 */
    517 	pkt_seq = th->th_seq;
    518 	pkt_len = tlen;
    519 	pkt_flags = th->th_flags;
    520 
    521 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    522 
    523 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    524 		/*
    525 		 * When we miss a packet, the vast majority of time we get
    526 		 * packets that follow it in order.  So optimize for that.
    527 		 */
    528 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    529 			p->ipqe_len += pkt_len;
    530 			p->ipqe_flags |= pkt_flags;
    531 			m_cat(p->ipqe_m, m);
    532 			m = NULL;
    533 			tiqe = p;
    534 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    535 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    536 			goto skip_replacement;
    537 		}
    538 		/*
    539 		 * While we're here, if the pkt is completely beyond
    540 		 * anything we have, just insert it at the tail.
    541 		 */
    542 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    543 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    544 			goto insert_it;
    545 		}
    546 	}
    547 
    548 	q = TAILQ_FIRST(&tp->segq);
    549 
    550 	if (q != NULL) {
    551 		/*
    552 		 * If this segment immediately precedes the first out-of-order
    553 		 * block, simply slap the segment in front of it and (mostly)
    554 		 * skip the complicated logic.
    555 		 */
    556 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    557 			q->ipqe_seq = pkt_seq;
    558 			q->ipqe_len += pkt_len;
    559 			q->ipqe_flags |= pkt_flags;
    560 			m_cat(m, q->ipqe_m);
    561 			q->ipqe_m = m;
    562 			tiqe = q;
    563 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    564 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    565 			goto skip_replacement;
    566 		}
    567 	} else {
    568 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    569 	}
    570 
    571 	/*
    572 	 * Find a segment which begins after this one does.
    573 	 */
    574 	for (p = NULL; q != NULL; q = nq) {
    575 		nq = TAILQ_NEXT(q, ipqe_q);
    576 #ifdef TCP_REASS_COUNTERS
    577 		count++;
    578 #endif
    579 
    580 		/*
    581 		 * If the received segment is just right after this
    582 		 * fragment, merge the two together and then check
    583 		 * for further overlaps.
    584 		 */
    585 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    586 			pkt_len += q->ipqe_len;
    587 			pkt_flags |= q->ipqe_flags;
    588 			pkt_seq = q->ipqe_seq;
    589 			m_cat(q->ipqe_m, m);
    590 			m = q->ipqe_m;
    591 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    592 			goto free_ipqe;
    593 		}
    594 
    595 		/*
    596 		 * If the received segment is completely past this
    597 		 * fragment, we need to go to the next fragment.
    598 		 */
    599 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    600 			p = q;
    601 			continue;
    602 		}
    603 
    604 		/*
    605 		 * If the fragment is past the received segment,
    606 		 * it (or any following) can't be concatenated.
    607 		 */
    608 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    609 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    610 			break;
    611 		}
    612 
    613 		/*
    614 		 * We've received all the data in this segment before.
    615 		 * Mark it as a duplicate and return.
    616 		 */
    617 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    618 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    619 			tcps = TCP_STAT_GETREF();
    620 			tcps[TCP_STAT_RCVDUPPACK]++;
    621 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    622 			TCP_STAT_PUTREF();
    623 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    624 			m_freem(m);
    625 			if (tiqe != NULL) {
    626 				tcpipqent_free(tiqe);
    627 			}
    628 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    629 			goto out;
    630 		}
    631 
    632 		/*
    633 		 * Received segment completely overlaps this fragment
    634 		 * so we drop the fragment (this keeps the temporal
    635 		 * ordering of segments correct).
    636 		 */
    637 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    638 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    639 			rcvpartdupbyte += q->ipqe_len;
    640 			m_freem(q->ipqe_m);
    641 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    642 			goto free_ipqe;
    643 		}
    644 
    645 		/*
    646 		 * Received segment extends past the end of the fragment.
    647 		 * Drop the overlapping bytes, merge the fragment and
    648 		 * segment, and treat as a longer received packet.
    649 		 */
    650 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    651 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    652 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    653 			m_adj(m, overlap);
    654 			rcvpartdupbyte += overlap;
    655 			m_cat(q->ipqe_m, m);
    656 			m = q->ipqe_m;
    657 			pkt_seq = q->ipqe_seq;
    658 			pkt_len += q->ipqe_len - overlap;
    659 			rcvoobyte -= overlap;
    660 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    661 			goto free_ipqe;
    662 		}
    663 
    664 		/*
    665 		 * Received segment extends past the front of the fragment.
    666 		 * Drop the overlapping bytes on the received packet. The
    667 		 * packet will then be concatenated with this fragment a
    668 		 * bit later.
    669 		 */
    670 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    671 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    672 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    673 			m_adj(m, -overlap);
    674 			pkt_len -= overlap;
    675 			rcvpartdupbyte += overlap;
    676 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    677 			rcvoobyte -= overlap;
    678 		}
    679 
    680 		/*
    681 		 * If the received segment immediately precedes this
    682 		 * fragment then tack the fragment onto this segment
    683 		 * and reinsert the data.
    684 		 */
    685 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    686 			pkt_len += q->ipqe_len;
    687 			pkt_flags |= q->ipqe_flags;
    688 			m_cat(m, q->ipqe_m);
    689 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    690 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    691 			tp->t_segqlen--;
    692 			KASSERT(tp->t_segqlen >= 0);
    693 			KASSERT(tp->t_segqlen != 0 ||
    694 			    (TAILQ_EMPTY(&tp->segq) &&
    695 			    TAILQ_EMPTY(&tp->timeq)));
    696 			if (tiqe == NULL) {
    697 				tiqe = q;
    698 			} else {
    699 				tcpipqent_free(q);
    700 			}
    701 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    702 			break;
    703 		}
    704 
    705 		/*
    706 		 * If the fragment is before the segment, remember it.
    707 		 * When this loop is terminated, p will contain the
    708 		 * pointer to the fragment that is right before the
    709 		 * received segment.
    710 		 */
    711 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    712 			p = q;
    713 
    714 		continue;
    715 
    716 		/*
    717 		 * This is a common operation.  It also will allow
    718 		 * to save doing a malloc/free in most instances.
    719 		 */
    720 	  free_ipqe:
    721 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    722 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    723 		tp->t_segqlen--;
    724 		KASSERT(tp->t_segqlen >= 0);
    725 		KASSERT(tp->t_segqlen != 0 ||
    726 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    727 		if (tiqe == NULL) {
    728 			tiqe = q;
    729 		} else {
    730 			tcpipqent_free(q);
    731 		}
    732 	}
    733 
    734 #ifdef TCP_REASS_COUNTERS
    735 	if (count > 7)
    736 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    737 	else if (count > 0)
    738 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    739 #endif
    740 
    741 insert_it:
    742 	/*
    743 	 * Allocate a new queue entry (block) since the received segment
    744 	 * did not collapse onto any other out-of-order block. If it had
    745 	 * collapsed, tiqe would not be NULL and we would be reusing it.
    746 	 *
    747 	 * If the allocation fails, drop the packet.
    748 	 */
    749 	if (tiqe == NULL) {
    750 		tiqe = tcpipqent_alloc();
    751 		if (tiqe == NULL) {
    752 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    753 			m_freem(m);
    754 			goto out;
    755 		}
    756 	}
    757 
    758 	/*
    759 	 * Update the counters.
    760 	 */
    761 	tp->t_rcvoopack++;
    762 	tcps = TCP_STAT_GETREF();
    763 	tcps[TCP_STAT_RCVOOPACK]++;
    764 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    765 	if (rcvpartdupbyte) {
    766 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    767 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    768 	}
    769 	TCP_STAT_PUTREF();
    770 
    771 	/*
    772 	 * Insert the new fragment queue entry into both queues.
    773 	 */
    774 	tiqe->ipqe_m = m;
    775 	tiqe->ipqe_seq = pkt_seq;
    776 	tiqe->ipqe_len = pkt_len;
    777 	tiqe->ipqe_flags = pkt_flags;
    778 	if (p == NULL) {
    779 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    780 	} else {
    781 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    782 	}
    783 	tp->t_segqlen++;
    784 
    785 skip_replacement:
    786 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    787 
    788 present:
    789 	/*
    790 	 * Present data to user, advancing rcv_nxt through
    791 	 * completed sequence space.
    792 	 */
    793 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    794 		goto out;
    795 	q = TAILQ_FIRST(&tp->segq);
    796 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    797 		goto out;
    798 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    799 		goto out;
    800 
    801 	tp->rcv_nxt += q->ipqe_len;
    802 	pkt_flags = q->ipqe_flags & TH_FIN;
    803 	nd_hint(tp);
    804 
    805 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    806 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    807 	tp->t_segqlen--;
    808 	KASSERT(tp->t_segqlen >= 0);
    809 	KASSERT(tp->t_segqlen != 0 ||
    810 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    811 	if (so->so_state & SS_CANTRCVMORE)
    812 		m_freem(q->ipqe_m);
    813 	else
    814 		sbappendstream(&so->so_rcv, q->ipqe_m);
    815 	tcpipqent_free(q);
    816 	TCP_REASS_UNLOCK(tp);
    817 	sorwakeup(so);
    818 	return pkt_flags;
    819 
    820 out:
    821 	TCP_REASS_UNLOCK(tp);
    822 	return 0;
    823 }
    824 
    825 #ifdef INET6
    826 int
    827 tcp6_input(struct mbuf **mp, int *offp, int proto)
    828 {
    829 	struct mbuf *m = *mp;
    830 
    831 	/*
    832 	 * draft-itojun-ipv6-tcp-to-anycast
    833 	 * better place to put this in?
    834 	 */
    835 	if (m->m_flags & M_ANYCAST6) {
    836 		struct ip6_hdr *ip6;
    837 		if (m->m_len < sizeof(struct ip6_hdr)) {
    838 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    839 				TCP_STATINC(TCP_STAT_RCVSHORT);
    840 				return IPPROTO_DONE;
    841 			}
    842 		}
    843 		ip6 = mtod(m, struct ip6_hdr *);
    844 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    845 		    (char *)&ip6->ip6_dst - (char *)ip6);
    846 		return IPPROTO_DONE;
    847 	}
    848 
    849 	tcp_input(m, *offp, proto);
    850 	return IPPROTO_DONE;
    851 }
    852 #endif
    853 
    854 static void
    855 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    856 {
    857 	char src[INET_ADDRSTRLEN];
    858 	char dst[INET_ADDRSTRLEN];
    859 
    860 	if (ip) {
    861 		in_print(src, sizeof(src), &ip->ip_src);
    862 		in_print(dst, sizeof(dst), &ip->ip_dst);
    863 	} else {
    864 		strlcpy(src, "(unknown)", sizeof(src));
    865 		strlcpy(dst, "(unknown)", sizeof(dst));
    866 	}
    867 	log(LOG_INFO,
    868 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    869 	    dst, ntohs(th->th_dport),
    870 	    src, ntohs(th->th_sport));
    871 }
    872 
    873 #ifdef INET6
    874 static void
    875 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    876 {
    877 	char src[INET6_ADDRSTRLEN];
    878 	char dst[INET6_ADDRSTRLEN];
    879 
    880 	if (ip6) {
    881 		in6_print(src, sizeof(src), &ip6->ip6_src);
    882 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    883 	} else {
    884 		strlcpy(src, "(unknown v6)", sizeof(src));
    885 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    886 	}
    887 	log(LOG_INFO,
    888 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    889 	    dst, ntohs(th->th_dport),
    890 	    src, ntohs(th->th_sport));
    891 }
    892 #endif
    893 
    894 /*
    895  * Checksum extended TCP header and data.
    896  */
    897 int
    898 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    899     int toff, int off, int tlen)
    900 {
    901 	struct ifnet *rcvif;
    902 	int s;
    903 
    904 	/*
    905 	 * XXX it's better to record and check if this mbuf is
    906 	 * already checked.
    907 	 */
    908 
    909 	rcvif = m_get_rcvif(m, &s);
    910 	if (__predict_false(rcvif == NULL))
    911 		goto badcsum; /* XXX */
    912 
    913 	switch (af) {
    914 	case AF_INET:
    915 		switch (m->m_pkthdr.csum_flags &
    916 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    917 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    918 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    919 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    920 			goto badcsum;
    921 
    922 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    923 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    924 
    925 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    926 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    927 				const struct ip *ip =
    928 				    mtod(m, const struct ip *);
    929 
    930 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    931 				    ip->ip_dst.s_addr,
    932 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    933 			}
    934 			if ((hw_csum ^ 0xffff) != 0)
    935 				goto badcsum;
    936 			break;
    937 		}
    938 
    939 		case M_CSUM_TCPv4:
    940 			/* Checksum was okay. */
    941 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    942 			break;
    943 
    944 		default:
    945 			/*
    946 			 * Must compute it ourselves.  Maybe skip checksum
    947 			 * on loopback interfaces.
    948 			 */
    949 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    950 					   tcp_do_loopback_cksum)) {
    951 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    952 				if (in4_cksum(m, IPPROTO_TCP, toff,
    953 					      tlen + off) != 0)
    954 					goto badcsum;
    955 			}
    956 			break;
    957 		}
    958 		break;
    959 
    960 #ifdef INET6
    961 	case AF_INET6:
    962 		switch (m->m_pkthdr.csum_flags &
    963 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    964 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    965 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    966 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    967 			goto badcsum;
    968 
    969 #if 0 /* notyet */
    970 		case M_CSUM_TCPv6|M_CSUM_DATA:
    971 #endif
    972 
    973 		case M_CSUM_TCPv6:
    974 			/* Checksum was okay. */
    975 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    976 			break;
    977 
    978 		default:
    979 			/*
    980 			 * Must compute it ourselves.  Maybe skip checksum
    981 			 * on loopback interfaces.
    982 			 */
    983 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    984 			    tcp_do_loopback_cksum)) {
    985 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    986 				if (in6_cksum(m, IPPROTO_TCP, toff,
    987 				    tlen + off) != 0)
    988 					goto badcsum;
    989 			}
    990 		}
    991 		break;
    992 #endif /* INET6 */
    993 	}
    994 	m_put_rcvif(rcvif, &s);
    995 
    996 	return 0;
    997 
    998 badcsum:
    999 	m_put_rcvif(rcvif, &s);
   1000 	TCP_STATINC(TCP_STAT_RCVBADSUM);
   1001 	return -1;
   1002 }
   1003 
   1004 /*
   1005  * When a packet arrives addressed to a vestigial tcpbp, we
   1006  * nevertheless have to respond to it per the spec.
   1007  *
   1008  * This code is duplicated from the one in tcp_input().
   1009  */
   1010 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
   1011     struct mbuf *m, int tlen)
   1012 {
   1013 	int tiflags;
   1014 	int todrop;
   1015 	uint32_t t_flags = 0;
   1016 	uint64_t *tcps;
   1017 
   1018 	tiflags = th->th_flags;
   1019 	todrop  = vp->rcv_nxt - th->th_seq;
   1020 
   1021 	if (todrop > 0) {
   1022 		if (tiflags & TH_SYN) {
   1023 			tiflags &= ~TH_SYN;
   1024 			th->th_seq++;
   1025 			tcp_urp_drop(th, 1, &tiflags);
   1026 			todrop--;
   1027 		}
   1028 		if (todrop > tlen ||
   1029 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1030 			/*
   1031 			 * Any valid FIN or RST must be to the left of the
   1032 			 * window.  At this point the FIN or RST must be a
   1033 			 * duplicate or out of sequence; drop it.
   1034 			 */
   1035 			if (tiflags & TH_RST)
   1036 				goto drop;
   1037 			tiflags &= ~(TH_FIN|TH_RST);
   1038 
   1039 			/*
   1040 			 * Send an ACK to resynchronize and drop any data.
   1041 			 * But keep on processing for RST or ACK.
   1042 			 */
   1043 			t_flags |= TF_ACKNOW;
   1044 			todrop = tlen;
   1045 			tcps = TCP_STAT_GETREF();
   1046 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1047 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1048 			TCP_STAT_PUTREF();
   1049 		} else if ((tiflags & TH_RST) &&
   1050 		    th->th_seq != vp->rcv_nxt) {
   1051 			/*
   1052 			 * Test for reset before adjusting the sequence
   1053 			 * number for overlapping data.
   1054 			 */
   1055 			goto dropafterack_ratelim;
   1056 		} else {
   1057 			tcps = TCP_STAT_GETREF();
   1058 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1059 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1060 			TCP_STAT_PUTREF();
   1061 		}
   1062 
   1063 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1064 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1065 
   1066 		th->th_seq += todrop;
   1067 		tlen -= todrop;
   1068 		tcp_urp_drop(th, todrop, &tiflags);
   1069 	}
   1070 
   1071 	/*
   1072 	 * If new data are received on a connection after the
   1073 	 * user processes are gone, then RST the other end.
   1074 	 */
   1075 	if (tlen) {
   1076 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1077 		goto dropwithreset;
   1078 	}
   1079 
   1080 	/*
   1081 	 * If segment ends after window, drop trailing data
   1082 	 * (and PUSH and FIN); if nothing left, just ACK.
   1083 	 */
   1084 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
   1085 
   1086 	if (todrop > 0) {
   1087 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1088 		if (todrop >= tlen) {
   1089 			/*
   1090 			 * The segment actually starts after the window.
   1091 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1092 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1093 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1094 			 */
   1095 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1096 
   1097 			/*
   1098 			 * If a new connection request is received
   1099 			 * while in TIME_WAIT, drop the old connection
   1100 			 * and start over if the sequence numbers
   1101 			 * are above the previous ones.
   1102 			 */
   1103 			if ((tiflags & TH_SYN) &&
   1104 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1105 				/*
   1106 				 * We only support this in the !NOFDREF case, which
   1107 				 * is to say: not here.
   1108 				 */
   1109 				goto dropwithreset;
   1110 			}
   1111 
   1112 			/*
   1113 			 * If window is closed can only take segments at
   1114 			 * window edge, and have to drop data and PUSH from
   1115 			 * incoming segments.  Continue processing, but
   1116 			 * remember to ack.  Otherwise, drop segment
   1117 			 * and (if not RST) ack.
   1118 			 */
   1119 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1120 				t_flags |= TF_ACKNOW;
   1121 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1122 			} else {
   1123 				goto dropafterack;
   1124 			}
   1125 		} else {
   1126 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1127 		}
   1128 		m_adj(m, -todrop);
   1129 		tlen -= todrop;
   1130 		tiflags &= ~(TH_PUSH|TH_FIN);
   1131 	}
   1132 
   1133 	if (tiflags & TH_RST) {
   1134 		if (th->th_seq != vp->rcv_nxt)
   1135 			goto dropafterack_ratelim;
   1136 
   1137 		vtw_del(vp->ctl, vp->vtw);
   1138 		goto drop;
   1139 	}
   1140 
   1141 	/*
   1142 	 * If the ACK bit is off we drop the segment and return.
   1143 	 */
   1144 	if ((tiflags & TH_ACK) == 0) {
   1145 		if (t_flags & TF_ACKNOW)
   1146 			goto dropafterack;
   1147 		goto drop;
   1148 	}
   1149 
   1150 	/*
   1151 	 * In TIME_WAIT state the only thing that should arrive
   1152 	 * is a retransmission of the remote FIN.  Acknowledge
   1153 	 * it and restart the finack timer.
   1154 	 */
   1155 	vtw_restart(vp);
   1156 	goto dropafterack;
   1157 
   1158 dropafterack:
   1159 	/*
   1160 	 * Generate an ACK dropping incoming segment if it occupies
   1161 	 * sequence space, where the ACK reflects our state.
   1162 	 */
   1163 	if (tiflags & TH_RST)
   1164 		goto drop;
   1165 	goto dropafterack2;
   1166 
   1167 dropafterack_ratelim:
   1168 	/*
   1169 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1170 	 */
   1171 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1172 	    tcp_ackdrop_ppslim) == 0) {
   1173 		/* XXX stat */
   1174 		goto drop;
   1175 	}
   1176 	/* ...fall into dropafterack2... */
   1177 
   1178 dropafterack2:
   1179 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
   1180 	return;
   1181 
   1182 dropwithreset:
   1183 	/*
   1184 	 * Generate a RST, dropping incoming segment.
   1185 	 * Make ACK acceptable to originator of segment.
   1186 	 */
   1187 	if (tiflags & TH_RST)
   1188 		goto drop;
   1189 
   1190 	if (tiflags & TH_ACK) {
   1191 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1192 	} else {
   1193 		if (tiflags & TH_SYN)
   1194 			++tlen;
   1195 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1196 		    TH_RST|TH_ACK);
   1197 	}
   1198 	return;
   1199 drop:
   1200 	m_freem(m);
   1201 }
   1202 
   1203 /*
   1204  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1205  */
   1206 void
   1207 tcp_input(struct mbuf *m, int off, int proto)
   1208 {
   1209 	struct tcphdr *th;
   1210 	struct ip *ip;
   1211 	struct inpcb *inp;
   1212 #ifdef INET6
   1213 	struct ip6_hdr *ip6;
   1214 	struct in6pcb *in6p;
   1215 #endif
   1216 	u_int8_t *optp = NULL;
   1217 	int optlen = 0;
   1218 	int len, tlen, hdroptlen = 0;
   1219 	struct tcpcb *tp = NULL;
   1220 	int tiflags;
   1221 	struct socket *so = NULL;
   1222 	int todrop, acked, ourfinisacked, needoutput = 0;
   1223 	bool dupseg;
   1224 #ifdef TCP_DEBUG
   1225 	short ostate = 0;
   1226 #endif
   1227 	u_long tiwin;
   1228 	struct tcp_opt_info opti;
   1229 	int thlen, iphlen;
   1230 	int af;		/* af on the wire */
   1231 	struct mbuf *tcp_saveti = NULL;
   1232 	uint32_t ts_rtt;
   1233 	uint8_t iptos;
   1234 	uint64_t *tcps;
   1235 	vestigial_inpcb_t vestige;
   1236 
   1237 	vestige.valid = 0;
   1238 
   1239 	MCLAIM(m, &tcp_rx_mowner);
   1240 
   1241 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1242 
   1243 	memset(&opti, 0, sizeof(opti));
   1244 	opti.ts_present = 0;
   1245 	opti.maxseg = 0;
   1246 
   1247 	/*
   1248 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1249 	 *
   1250 	 * TCP is, by definition, unicast, so we reject all
   1251 	 * multicast outright.
   1252 	 *
   1253 	 * Note, there are additional src/dst address checks in
   1254 	 * the AF-specific code below.
   1255 	 */
   1256 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1257 		/* XXX stat */
   1258 		goto drop;
   1259 	}
   1260 #ifdef INET6
   1261 	if (m->m_flags & M_ANYCAST6) {
   1262 		/* XXX stat */
   1263 		goto drop;
   1264 	}
   1265 #endif
   1266 
   1267 	M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
   1268 	if (th == NULL) {
   1269 		TCP_STATINC(TCP_STAT_RCVSHORT);
   1270 		return;
   1271 	}
   1272 
   1273 	/*
   1274 	 * Enforce alignment requirements that are violated in
   1275 	 * some cases, see kern/50766 for details.
   1276 	 */
   1277 	if (TCP_HDR_ALIGNED_P(th) == 0) {
   1278 		m = m_copyup(m, off + sizeof(struct tcphdr), 0);
   1279 		if (m == NULL) {
   1280 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1281 			return;
   1282 		}
   1283 		th = (struct tcphdr *)(mtod(m, char *) + off);
   1284 	}
   1285 	KASSERT(TCP_HDR_ALIGNED_P(th));
   1286 
   1287 	/*
   1288 	 * Get IP and TCP header.
   1289 	 * Note: IP leaves IP header in first mbuf.
   1290 	 */
   1291 	ip = mtod(m, struct ip *);
   1292 #ifdef INET6
   1293 	ip6 = mtod(m, struct ip6_hdr *);
   1294 #endif
   1295 	switch (ip->ip_v) {
   1296 	case 4:
   1297 		af = AF_INET;
   1298 		iphlen = sizeof(struct ip);
   1299 
   1300 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1301 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   1302 			goto drop;
   1303 
   1304 		/* We do the checksum after PCB lookup... */
   1305 		len = ntohs(ip->ip_len);
   1306 		tlen = len - off;
   1307 		iptos = ip->ip_tos;
   1308 		break;
   1309 #ifdef INET6
   1310 	case 6:
   1311 		iphlen = sizeof(struct ip6_hdr);
   1312 		af = AF_INET6;
   1313 
   1314 		/*
   1315 		 * Be proactive about unspecified IPv6 address in source.
   1316 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1317 		 * unspecified IPv6 address can be used to confuse us.
   1318 		 *
   1319 		 * Note that packets with unspecified IPv6 destination is
   1320 		 * already dropped in ip6_input.
   1321 		 */
   1322 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1323 			/* XXX stat */
   1324 			goto drop;
   1325 		}
   1326 
   1327 		/*
   1328 		 * Make sure destination address is not multicast.
   1329 		 * Source address checked in ip6_input().
   1330 		 */
   1331 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1332 			/* XXX stat */
   1333 			goto drop;
   1334 		}
   1335 
   1336 		/* We do the checksum after PCB lookup... */
   1337 		len = m->m_pkthdr.len;
   1338 		tlen = len - off;
   1339 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1340 		break;
   1341 #endif
   1342 	default:
   1343 		m_freem(m);
   1344 		return;
   1345 	}
   1346 
   1347 
   1348 	/*
   1349 	 * Check that TCP offset makes sense, pull out TCP options and
   1350 	 * adjust length.
   1351 	 */
   1352 	thlen = th->th_off << 2;
   1353 	if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
   1354 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1355 		goto drop;
   1356 	}
   1357 	tlen -= thlen;
   1358 
   1359 	if (thlen > sizeof(struct tcphdr)) {
   1360 		M_REGION_GET(th, struct tcphdr *, m, off, thlen);
   1361 		if (th == NULL) {
   1362 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1363 			return;
   1364 		}
   1365 		KASSERT(TCP_HDR_ALIGNED_P(th));
   1366 		optlen = thlen - sizeof(struct tcphdr);
   1367 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1368 
   1369 		/*
   1370 		 * Do quick retrieval of timestamp options.
   1371 		 *
   1372 		 * If timestamp is the only option and it's formatted as
   1373 		 * recommended in RFC 1323 appendix A, we quickly get the
   1374 		 * values now and don't bother calling tcp_dooptions(),
   1375 		 * etc.
   1376 		 */
   1377 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1378 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1379 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1380 		    be32dec(optp) == TCPOPT_TSTAMP_HDR &&
   1381 		    (th->th_flags & TH_SYN) == 0) {
   1382 			opti.ts_present = 1;
   1383 			opti.ts_val = be32dec(optp + 4);
   1384 			opti.ts_ecr = be32dec(optp + 8);
   1385 			optp = NULL;	/* we've parsed the options */
   1386 		}
   1387 	}
   1388 	tiflags = th->th_flags;
   1389 
   1390 	/*
   1391 	 * Checksum extended TCP header and data
   1392 	 */
   1393 	if (tcp_input_checksum(af, m, th, off, thlen, tlen))
   1394 		goto badcsum;
   1395 
   1396 	/*
   1397 	 * Locate pcb for segment.
   1398 	 */
   1399 findpcb:
   1400 	inp = NULL;
   1401 #ifdef INET6
   1402 	in6p = NULL;
   1403 #endif
   1404 	switch (af) {
   1405 	case AF_INET:
   1406 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1407 		    ip->ip_dst, th->th_dport, &vestige);
   1408 		if (inp == NULL && !vestige.valid) {
   1409 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1410 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
   1411 			    th->th_dport);
   1412 		}
   1413 #ifdef INET6
   1414 		if (inp == NULL && !vestige.valid) {
   1415 			struct in6_addr s, d;
   1416 
   1417 			/* mapped addr case */
   1418 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1419 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1420 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1421 			    th->th_sport, &d, th->th_dport, 0, &vestige);
   1422 			if (in6p == 0 && !vestige.valid) {
   1423 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1424 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1425 				    th->th_dport, 0);
   1426 			}
   1427 		}
   1428 #endif
   1429 #ifndef INET6
   1430 		if (inp == NULL && !vestige.valid)
   1431 #else
   1432 		if (inp == NULL && in6p == NULL && !vestige.valid)
   1433 #endif
   1434 		{
   1435 			TCP_STATINC(TCP_STAT_NOPORT);
   1436 			if (tcp_log_refused &&
   1437 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1438 				tcp4_log_refused(ip, th);
   1439 			}
   1440 			tcp_fields_to_host(th);
   1441 			goto dropwithreset_ratelim;
   1442 		}
   1443 #if defined(IPSEC)
   1444 		if (ipsec_used) {
   1445 			if (inp && ipsec_in_reject(m, inp)) {
   1446 				goto drop;
   1447 			}
   1448 #ifdef INET6
   1449 			else if (in6p && ipsec_in_reject(m, in6p)) {
   1450 				goto drop;
   1451 			}
   1452 #endif
   1453 		}
   1454 #endif /*IPSEC*/
   1455 		break;
   1456 #ifdef INET6
   1457 	case AF_INET6:
   1458 	    {
   1459 		int faith;
   1460 
   1461 #if defined(NFAITH) && NFAITH > 0
   1462 		faith = faithprefix(&ip6->ip6_dst);
   1463 #else
   1464 		faith = 0;
   1465 #endif
   1466 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1467 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1468 		if (!in6p && !vestige.valid) {
   1469 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1470 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1471 			    th->th_dport, faith);
   1472 		}
   1473 		if (!in6p && !vestige.valid) {
   1474 			TCP_STATINC(TCP_STAT_NOPORT);
   1475 			if (tcp_log_refused &&
   1476 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1477 				tcp6_log_refused(ip6, th);
   1478 			}
   1479 			tcp_fields_to_host(th);
   1480 			goto dropwithreset_ratelim;
   1481 		}
   1482 #if defined(IPSEC)
   1483 		if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
   1484 			goto drop;
   1485 		}
   1486 #endif
   1487 		break;
   1488 	    }
   1489 #endif
   1490 	}
   1491 
   1492 	tcp_fields_to_host(th);
   1493 
   1494 	/*
   1495 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1496 	 * all data in the incoming segment is discarded.
   1497 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1498 	 * but should either do a listen or a connect soon.
   1499 	 */
   1500 	tp = NULL;
   1501 	so = NULL;
   1502 	if (inp) {
   1503 		/* Check the minimum TTL for socket. */
   1504 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1505 			goto drop;
   1506 
   1507 		tp = intotcpcb(inp);
   1508 		so = inp->inp_socket;
   1509 	}
   1510 #ifdef INET6
   1511 	else if (in6p) {
   1512 		tp = in6totcpcb(in6p);
   1513 		so = in6p->in6p_socket;
   1514 	}
   1515 #endif
   1516 	else if (vestige.valid) {
   1517 		/* We do not support the resurrection of vtw tcpcps. */
   1518 		tcp_vtw_input(th, &vestige, m, tlen);
   1519 		m = NULL;
   1520 		goto drop;
   1521 	}
   1522 
   1523 	if (tp == NULL)
   1524 		goto dropwithreset_ratelim;
   1525 	if (tp->t_state == TCPS_CLOSED)
   1526 		goto drop;
   1527 
   1528 	KASSERT(so->so_lock == softnet_lock);
   1529 	KASSERT(solocked(so));
   1530 
   1531 	/* Unscale the window into a 32-bit value. */
   1532 	if ((tiflags & TH_SYN) == 0)
   1533 		tiwin = th->th_win << tp->snd_scale;
   1534 	else
   1535 		tiwin = th->th_win;
   1536 
   1537 #ifdef INET6
   1538 	/* save packet options if user wanted */
   1539 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1540 		if (in6p->in6p_options) {
   1541 			m_freem(in6p->in6p_options);
   1542 			in6p->in6p_options = NULL;
   1543 		}
   1544 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1545 	}
   1546 #endif
   1547 
   1548 	if (so->so_options & SO_DEBUG) {
   1549 #ifdef TCP_DEBUG
   1550 		ostate = tp->t_state;
   1551 #endif
   1552 
   1553 		tcp_saveti = NULL;
   1554 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1555 			goto nosave;
   1556 
   1557 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1558 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1559 			if (tcp_saveti == NULL)
   1560 				goto nosave;
   1561 		} else {
   1562 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1563 			if (tcp_saveti == NULL)
   1564 				goto nosave;
   1565 			MCLAIM(m, &tcp_mowner);
   1566 			tcp_saveti->m_len = iphlen;
   1567 			m_copydata(m, 0, iphlen,
   1568 			    mtod(tcp_saveti, void *));
   1569 		}
   1570 
   1571 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1572 			m_freem(tcp_saveti);
   1573 			tcp_saveti = NULL;
   1574 		} else {
   1575 			tcp_saveti->m_len += sizeof(struct tcphdr);
   1576 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1577 			    sizeof(struct tcphdr));
   1578 		}
   1579 nosave:;
   1580 	}
   1581 
   1582 	if (so->so_options & SO_ACCEPTCONN) {
   1583 		union syn_cache_sa src;
   1584 		union syn_cache_sa dst;
   1585 
   1586 		KASSERT(tp->t_state == TCPS_LISTEN);
   1587 
   1588 		memset(&src, 0, sizeof(src));
   1589 		memset(&dst, 0, sizeof(dst));
   1590 		switch (af) {
   1591 		case AF_INET:
   1592 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1593 			src.sin.sin_family = AF_INET;
   1594 			src.sin.sin_addr = ip->ip_src;
   1595 			src.sin.sin_port = th->th_sport;
   1596 
   1597 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1598 			dst.sin.sin_family = AF_INET;
   1599 			dst.sin.sin_addr = ip->ip_dst;
   1600 			dst.sin.sin_port = th->th_dport;
   1601 			break;
   1602 #ifdef INET6
   1603 		case AF_INET6:
   1604 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1605 			src.sin6.sin6_family = AF_INET6;
   1606 			src.sin6.sin6_addr = ip6->ip6_src;
   1607 			src.sin6.sin6_port = th->th_sport;
   1608 
   1609 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1610 			dst.sin6.sin6_family = AF_INET6;
   1611 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1612 			dst.sin6.sin6_port = th->th_dport;
   1613 			break;
   1614 #endif
   1615 		}
   1616 
   1617 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1618 			if (tiflags & TH_RST) {
   1619 				syn_cache_reset(&src.sa, &dst.sa, th);
   1620 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1621 			    (TH_ACK|TH_SYN)) {
   1622 				/*
   1623 				 * Received a SYN,ACK. This should never
   1624 				 * happen while we are in LISTEN. Send an RST.
   1625 				 */
   1626 				goto badsyn;
   1627 			} else if (tiflags & TH_ACK) {
   1628 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
   1629 				if (so == NULL) {
   1630 					/*
   1631 					 * We don't have a SYN for this ACK;
   1632 					 * send an RST.
   1633 					 */
   1634 					goto badsyn;
   1635 				} else if (so == (struct socket *)(-1)) {
   1636 					/*
   1637 					 * We were unable to create the
   1638 					 * connection. If the 3-way handshake
   1639 					 * was completed, and RST has been
   1640 					 * sent to the peer. Since the mbuf
   1641 					 * might be in use for the reply, do
   1642 					 * not free it.
   1643 					 */
   1644 					m = NULL;
   1645 				} else {
   1646 					/*
   1647 					 * We have created a full-blown
   1648 					 * connection.
   1649 					 */
   1650 					tp = NULL;
   1651 					inp = NULL;
   1652 #ifdef INET6
   1653 					in6p = NULL;
   1654 #endif
   1655 					switch (so->so_proto->pr_domain->dom_family) {
   1656 					case AF_INET:
   1657 						inp = sotoinpcb(so);
   1658 						tp = intotcpcb(inp);
   1659 						break;
   1660 #ifdef INET6
   1661 					case AF_INET6:
   1662 						in6p = sotoin6pcb(so);
   1663 						tp = in6totcpcb(in6p);
   1664 						break;
   1665 #endif
   1666 					}
   1667 					if (tp == NULL)
   1668 						goto badsyn;	/*XXX*/
   1669 					tiwin <<= tp->snd_scale;
   1670 					goto after_listen;
   1671 				}
   1672 			} else {
   1673 				/*
   1674 				 * None of RST, SYN or ACK was set.
   1675 				 * This is an invalid packet for a
   1676 				 * TCB in LISTEN state.  Send a RST.
   1677 				 */
   1678 				goto badsyn;
   1679 			}
   1680 		} else {
   1681 			/*
   1682 			 * Received a SYN.
   1683 			 */
   1684 
   1685 #ifdef INET6
   1686 			/*
   1687 			 * If deprecated address is forbidden, we do
   1688 			 * not accept SYN to deprecated interface
   1689 			 * address to prevent any new inbound
   1690 			 * connection from getting established.
   1691 			 * When we do not accept SYN, we send a TCP
   1692 			 * RST, with deprecated source address (instead
   1693 			 * of dropping it).  We compromise it as it is
   1694 			 * much better for peer to send a RST, and
   1695 			 * RST will be the final packet for the
   1696 			 * exchange.
   1697 			 *
   1698 			 * If we do not forbid deprecated addresses, we
   1699 			 * accept the SYN packet.  RFC2462 does not
   1700 			 * suggest dropping SYN in this case.
   1701 			 * If we decipher RFC2462 5.5.4, it says like
   1702 			 * this:
   1703 			 * 1. use of deprecated addr with existing
   1704 			 *    communication is okay - "SHOULD continue
   1705 			 *    to be used"
   1706 			 * 2. use of it with new communication:
   1707 			 *   (2a) "SHOULD NOT be used if alternate
   1708 			 *        address with sufficient scope is
   1709 			 *        available"
   1710 			 *   (2b) nothing mentioned otherwise.
   1711 			 * Here we fall into (2b) case as we have no
   1712 			 * choice in our source address selection - we
   1713 			 * must obey the peer.
   1714 			 *
   1715 			 * The wording in RFC2462 is confusing, and
   1716 			 * there are multiple description text for
   1717 			 * deprecated address handling - worse, they
   1718 			 * are not exactly the same.  I believe 5.5.4
   1719 			 * is the best one, so we follow 5.5.4.
   1720 			 */
   1721 			if (af == AF_INET6 && !ip6_use_deprecated) {
   1722 				struct in6_ifaddr *ia6;
   1723 				int s;
   1724 				struct ifnet *rcvif = m_get_rcvif(m, &s);
   1725 				if (rcvif == NULL)
   1726 					goto dropwithreset; /* XXX */
   1727 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1728 				    &ip6->ip6_dst)) &&
   1729 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1730 					tp = NULL;
   1731 					m_put_rcvif(rcvif, &s);
   1732 					goto dropwithreset;
   1733 				}
   1734 				m_put_rcvif(rcvif, &s);
   1735 			}
   1736 #endif
   1737 
   1738 			/*
   1739 			 * LISTEN socket received a SYN from itself? This
   1740 			 * can't possibly be valid; drop the packet.
   1741 			 */
   1742 			if (th->th_sport == th->th_dport) {
   1743 				int eq = 0;
   1744 
   1745 				switch (af) {
   1746 				case AF_INET:
   1747 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
   1748 					break;
   1749 #ifdef INET6
   1750 				case AF_INET6:
   1751 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
   1752 					    &ip6->ip6_dst);
   1753 					break;
   1754 #endif
   1755 				}
   1756 				if (eq) {
   1757 					TCP_STATINC(TCP_STAT_BADSYN);
   1758 					goto drop;
   1759 				}
   1760 			}
   1761 
   1762 			/*
   1763 			 * SYN looks ok; create compressed TCP
   1764 			 * state for it.
   1765 			 */
   1766 			if (so->so_qlen <= so->so_qlimit &&
   1767 			    syn_cache_add(&src.sa, &dst.sa, th, off,
   1768 			    so, m, optp, optlen, &opti))
   1769 				m = NULL;
   1770 		}
   1771 
   1772 		goto drop;
   1773 	}
   1774 
   1775 after_listen:
   1776 	/*
   1777 	 * From here on, we're dealing with !LISTEN.
   1778 	 */
   1779 	KASSERT(tp->t_state != TCPS_LISTEN);
   1780 
   1781 	/*
   1782 	 * Segment received on connection.
   1783 	 * Reset idle time and keep-alive timer.
   1784 	 */
   1785 	tp->t_rcvtime = tcp_now;
   1786 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1787 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1788 
   1789 	/*
   1790 	 * Process options.
   1791 	 */
   1792 #ifdef TCP_SIGNATURE
   1793 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1794 #else
   1795 	if (optp)
   1796 #endif
   1797 		if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
   1798 			goto drop;
   1799 
   1800 	if (TCP_SACK_ENABLED(tp)) {
   1801 		tcp_del_sackholes(tp, th);
   1802 	}
   1803 
   1804 	if (TCP_ECN_ALLOWED(tp)) {
   1805 		if (tiflags & TH_CWR) {
   1806 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1807 		}
   1808 		switch (iptos & IPTOS_ECN_MASK) {
   1809 		case IPTOS_ECN_CE:
   1810 			tp->t_flags |= TF_ECN_SND_ECE;
   1811 			TCP_STATINC(TCP_STAT_ECN_CE);
   1812 			break;
   1813 		case IPTOS_ECN_ECT0:
   1814 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1815 			break;
   1816 		case IPTOS_ECN_ECT1:
   1817 			/* XXX: ignore for now -- rpaulo */
   1818 			break;
   1819 		}
   1820 		/*
   1821 		 * Congestion experienced.
   1822 		 * Ignore if we are already trying to recover.
   1823 		 */
   1824 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1825 			tp->t_congctl->cong_exp(tp);
   1826 	}
   1827 
   1828 	if (opti.ts_present && opti.ts_ecr) {
   1829 		/*
   1830 		 * Calculate the RTT from the returned time stamp and the
   1831 		 * connection's time base.  If the time stamp is later than
   1832 		 * the current time, or is extremely old, fall back to non-1323
   1833 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1834 		 * at the same time.
   1835 		 *
   1836 		 * Note that ts_rtt is in units of slow ticks (500
   1837 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1838 		 * observed values will have large quantization noise.
   1839 		 * Our smoothed RTT is then the fraction of observed
   1840 		 * samples that are 1 tick instead of 0 (times 500
   1841 		 * ms).
   1842 		 *
   1843 		 * ts_rtt is increased by 1 to denote a valid sample,
   1844 		 * with 0 indicating an invalid measurement.  This
   1845 		 * extra 1 must be removed when ts_rtt is used, or
   1846 		 * else an erroneous extra 500 ms will result.
   1847 		 */
   1848 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1849 		if (ts_rtt > TCP_PAWS_IDLE)
   1850 			ts_rtt = 0;
   1851 	} else {
   1852 		ts_rtt = 0;
   1853 	}
   1854 
   1855 	/*
   1856 	 * Fast path: check for the two common cases of a uni-directional
   1857 	 * data transfer. If:
   1858 	 *    o We are in the ESTABLISHED state, and
   1859 	 *    o The packet has no control flags, and
   1860 	 *    o The packet is in-sequence, and
   1861 	 *    o The window didn't change, and
   1862 	 *    o We are not retransmitting
   1863 	 * It's a candidate.
   1864 	 *
   1865 	 * If the length (tlen) is zero and the ack moved forward, we're
   1866 	 * the sender side of the transfer. Just free the data acked and
   1867 	 * wake any higher level process that was blocked waiting for
   1868 	 * space.
   1869 	 *
   1870 	 * If the length is non-zero and the ack didn't move, we're the
   1871 	 * receiver side. If we're getting packets in-order (the reassembly
   1872 	 * queue is empty), add the data to the socket buffer and note
   1873 	 * that we need a delayed ack.
   1874 	 */
   1875 	if (tp->t_state == TCPS_ESTABLISHED &&
   1876 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1877 	        == TH_ACK &&
   1878 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1879 	    th->th_seq == tp->rcv_nxt &&
   1880 	    tiwin && tiwin == tp->snd_wnd &&
   1881 	    tp->snd_nxt == tp->snd_max) {
   1882 
   1883 		/*
   1884 		 * If last ACK falls within this segment's sequence numbers,
   1885 		 * record the timestamp.
   1886 		 * NOTE that the test is modified according to the latest
   1887 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1888 		 *
   1889 		 * note that we already know
   1890 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1891 		 */
   1892 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1893 			tp->ts_recent_age = tcp_now;
   1894 			tp->ts_recent = opti.ts_val;
   1895 		}
   1896 
   1897 		if (tlen == 0) {
   1898 			/* Ack prediction. */
   1899 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1900 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1901 			    tp->snd_cwnd >= tp->snd_wnd &&
   1902 			    tp->t_partialacks < 0) {
   1903 				/*
   1904 				 * this is a pure ack for outstanding data.
   1905 				 */
   1906 				if (ts_rtt)
   1907 					tcp_xmit_timer(tp, ts_rtt - 1);
   1908 				else if (tp->t_rtttime &&
   1909 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1910 					tcp_xmit_timer(tp,
   1911 					  tcp_now - tp->t_rtttime);
   1912 				acked = th->th_ack - tp->snd_una;
   1913 				tcps = TCP_STAT_GETREF();
   1914 				tcps[TCP_STAT_PREDACK]++;
   1915 				tcps[TCP_STAT_RCVACKPACK]++;
   1916 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   1917 				TCP_STAT_PUTREF();
   1918 				nd_hint(tp);
   1919 
   1920 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1921 					tp->t_lastm = NULL;
   1922 				sbdrop(&so->so_snd, acked);
   1923 				tp->t_lastoff -= acked;
   1924 
   1925 				icmp_check(tp, th, acked);
   1926 
   1927 				tp->snd_una = th->th_ack;
   1928 				tp->snd_fack = tp->snd_una;
   1929 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1930 					tp->snd_high = tp->snd_una;
   1931 				/*
   1932 				 * drag snd_wl2 along so only newer
   1933 				 * ACKs can update the window size.
   1934 				 * also avoids the state where snd_wl2
   1935 				 * is eventually larger than th_ack and thus
   1936 				 * blocking the window update mechanism and
   1937 				 * the connection gets stuck for a loooong
   1938 				 * time in the zero sized send window state.
   1939 				 *
   1940 				 * see PR/kern 55567
   1941 				 */
   1942 				tp->snd_wl2 = tp->snd_una;
   1943 
   1944 				m_freem(m);
   1945 
   1946 				/*
   1947 				 * If all outstanding data are acked, stop
   1948 				 * retransmit timer, otherwise restart timer
   1949 				 * using current (possibly backed-off) value.
   1950 				 * If process is waiting for space,
   1951 				 * wakeup/selnotify/signal.  If data
   1952 				 * are ready to send, let tcp_output
   1953 				 * decide between more output or persist.
   1954 				 */
   1955 				if (tp->snd_una == tp->snd_max)
   1956 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1957 				else if (TCP_TIMER_ISARMED(tp,
   1958 				    TCPT_PERSIST) == 0)
   1959 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1960 					    tp->t_rxtcur);
   1961 
   1962 				sowwakeup(so);
   1963 				if (so->so_snd.sb_cc) {
   1964 					KERNEL_LOCK(1, NULL);
   1965 					(void)tcp_output(tp);
   1966 					KERNEL_UNLOCK_ONE(NULL);
   1967 				}
   1968 				if (tcp_saveti)
   1969 					m_freem(tcp_saveti);
   1970 				return;
   1971 			}
   1972 		} else if (th->th_ack == tp->snd_una &&
   1973 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1974 		    tlen <= sbspace(&so->so_rcv)) {
   1975 			int newsize = 0;
   1976 
   1977 			/*
   1978 			 * this is a pure, in-sequence data packet
   1979 			 * with nothing on the reassembly queue and
   1980 			 * we have enough buffer space to take it.
   1981 			 */
   1982 			tp->rcv_nxt += tlen;
   1983 
   1984 			/*
   1985 			 * Pull rcv_up up to prevent seq wrap relative to
   1986 			 * rcv_nxt.
   1987 			 */
   1988 			tp->rcv_up = tp->rcv_nxt;
   1989 
   1990 			/*
   1991 			 * Pull snd_wl1 up to prevent seq wrap relative to
   1992 			 * th_seq.
   1993 			 */
   1994 			tp->snd_wl1 = th->th_seq;
   1995 
   1996 			tcps = TCP_STAT_GETREF();
   1997 			tcps[TCP_STAT_PREDDAT]++;
   1998 			tcps[TCP_STAT_RCVPACK]++;
   1999 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2000 			TCP_STAT_PUTREF();
   2001 			nd_hint(tp);
   2002 		/*
   2003 		 * Automatic sizing enables the performance of large buffers
   2004 		 * and most of the efficiency of small ones by only allocating
   2005 		 * space when it is needed.
   2006 		 *
   2007 		 * On the receive side the socket buffer memory is only rarely
   2008 		 * used to any significant extent.  This allows us to be much
   2009 		 * more aggressive in scaling the receive socket buffer.  For
   2010 		 * the case that the buffer space is actually used to a large
   2011 		 * extent and we run out of kernel memory we can simply drop
   2012 		 * the new segments; TCP on the sender will just retransmit it
   2013 		 * later.  Setting the buffer size too big may only consume too
   2014 		 * much kernel memory if the application doesn't read() from
   2015 		 * the socket or packet loss or reordering makes use of the
   2016 		 * reassembly queue.
   2017 		 *
   2018 		 * The criteria to step up the receive buffer one notch are:
   2019 		 *  1. the number of bytes received during the time it takes
   2020 		 *     one timestamp to be reflected back to us (the RTT);
   2021 		 *  2. received bytes per RTT is within seven eighth of the
   2022 		 *     current socket buffer size;
   2023 		 *  3. receive buffer size has not hit maximal automatic size;
   2024 		 *
   2025 		 * This algorithm does one step per RTT at most and only if
   2026 		 * we receive a bulk stream w/o packet losses or reorderings.
   2027 		 * Shrinking the buffer during idle times is not necessary as
   2028 		 * it doesn't consume any memory when idle.
   2029 		 *
   2030 		 * TODO: Only step up if the application is actually serving
   2031 		 * the buffer to better manage the socket buffer resources.
   2032 		 */
   2033 			if (tcp_do_autorcvbuf &&
   2034 			    opti.ts_ecr &&
   2035 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2036 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2037 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2038 					if (tp->rfbuf_cnt >
   2039 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2040 					    so->so_rcv.sb_hiwat <
   2041 					    tcp_autorcvbuf_max) {
   2042 						newsize =
   2043 						    uimin(so->so_rcv.sb_hiwat +
   2044 						    tcp_autorcvbuf_inc,
   2045 						    tcp_autorcvbuf_max);
   2046 					}
   2047 					/* Start over with next RTT. */
   2048 					tp->rfbuf_ts = 0;
   2049 					tp->rfbuf_cnt = 0;
   2050 				} else
   2051 					tp->rfbuf_cnt += tlen;	/* add up */
   2052 			}
   2053 
   2054 			/*
   2055 			 * Drop TCP, IP headers and TCP options then add data
   2056 			 * to socket buffer.
   2057 			 */
   2058 			if (so->so_state & SS_CANTRCVMORE) {
   2059 				m_freem(m);
   2060 			} else {
   2061 				/*
   2062 				 * Set new socket buffer size.
   2063 				 * Give up when limit is reached.
   2064 				 */
   2065 				if (newsize)
   2066 					if (!sbreserve(&so->so_rcv,
   2067 					    newsize, so))
   2068 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2069 				m_adj(m, off + thlen);
   2070 				sbappendstream(&so->so_rcv, m);
   2071 			}
   2072 			sorwakeup(so);
   2073 			tcp_setup_ack(tp, th);
   2074 			if (tp->t_flags & TF_ACKNOW) {
   2075 				KERNEL_LOCK(1, NULL);
   2076 				(void)tcp_output(tp);
   2077 				KERNEL_UNLOCK_ONE(NULL);
   2078 			}
   2079 			if (tcp_saveti)
   2080 				m_freem(tcp_saveti);
   2081 			return;
   2082 		}
   2083 	}
   2084 
   2085 	/*
   2086 	 * Compute mbuf offset to TCP data segment.
   2087 	 */
   2088 	hdroptlen = off + thlen;
   2089 
   2090 	/*
   2091 	 * Calculate amount of space in receive window. Receive window is
   2092 	 * amount of space in rcv queue, but not less than advertised
   2093 	 * window.
   2094 	 */
   2095 	{
   2096 		int win;
   2097 		win = sbspace(&so->so_rcv);
   2098 		if (win < 0)
   2099 			win = 0;
   2100 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2101 	}
   2102 
   2103 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2104 	tp->rfbuf_ts = 0;
   2105 	tp->rfbuf_cnt = 0;
   2106 
   2107 	switch (tp->t_state) {
   2108 	/*
   2109 	 * If the state is SYN_SENT:
   2110 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2111 	 *	if seg contains a RST, then drop the connection.
   2112 	 *	if seg does not contain SYN, then drop it.
   2113 	 * Otherwise this is an acceptable SYN segment
   2114 	 *	initialize tp->rcv_nxt and tp->irs
   2115 	 *	if seg contains ack then advance tp->snd_una
   2116 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2117 	 *	    is ECN capable.
   2118 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2119 	 *	arrange for segment to be acked (eventually)
   2120 	 *	continue processing rest of data/controls, beginning with URG
   2121 	 */
   2122 	case TCPS_SYN_SENT:
   2123 		if ((tiflags & TH_ACK) &&
   2124 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2125 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2126 			goto dropwithreset;
   2127 		if (tiflags & TH_RST) {
   2128 			if (tiflags & TH_ACK)
   2129 				tp = tcp_drop(tp, ECONNREFUSED);
   2130 			goto drop;
   2131 		}
   2132 		if ((tiflags & TH_SYN) == 0)
   2133 			goto drop;
   2134 		if (tiflags & TH_ACK) {
   2135 			tp->snd_una = th->th_ack;
   2136 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2137 				tp->snd_nxt = tp->snd_una;
   2138 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2139 				tp->snd_high = tp->snd_una;
   2140 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2141 
   2142 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2143 				tp->t_flags |= TF_ECN_PERMIT;
   2144 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2145 			}
   2146 		}
   2147 		tp->irs = th->th_seq;
   2148 		tcp_rcvseqinit(tp);
   2149 		tp->t_flags |= TF_ACKNOW;
   2150 		tcp_mss_from_peer(tp, opti.maxseg);
   2151 
   2152 		/*
   2153 		 * Initialize the initial congestion window.  If we
   2154 		 * had to retransmit the SYN, we must initialize cwnd
   2155 		 * to 1 segment (i.e. the Loss Window).
   2156 		 */
   2157 		if (tp->t_flags & TF_SYN_REXMT)
   2158 			tp->snd_cwnd = tp->t_peermss;
   2159 		else {
   2160 			int ss = tcp_init_win;
   2161 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2162 				ss = tcp_init_win_local;
   2163 #ifdef INET6
   2164 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2165 				ss = tcp_init_win_local;
   2166 #endif
   2167 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2168 		}
   2169 
   2170 		tcp_rmx_rtt(tp);
   2171 		if (tiflags & TH_ACK) {
   2172 			TCP_STATINC(TCP_STAT_CONNECTS);
   2173 			/*
   2174 			 * move tcp_established before soisconnected
   2175 			 * because upcall handler can drive tcp_output
   2176 			 * functionality.
   2177 			 * XXX we might call soisconnected at the end of
   2178 			 * all processing
   2179 			 */
   2180 			tcp_established(tp);
   2181 			soisconnected(so);
   2182 			/* Do window scaling on this connection? */
   2183 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2184 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2185 				tp->snd_scale = tp->requested_s_scale;
   2186 				tp->rcv_scale = tp->request_r_scale;
   2187 			}
   2188 			TCP_REASS_LOCK(tp);
   2189 			(void)tcp_reass(tp, NULL, NULL, tlen);
   2190 			/*
   2191 			 * if we didn't have to retransmit the SYN,
   2192 			 * use its rtt as our initial srtt & rtt var.
   2193 			 */
   2194 			if (tp->t_rtttime)
   2195 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2196 		} else {
   2197 			tp->t_state = TCPS_SYN_RECEIVED;
   2198 		}
   2199 
   2200 		/*
   2201 		 * Advance th->th_seq to correspond to first data byte.
   2202 		 * If data, trim to stay within window,
   2203 		 * dropping FIN if necessary.
   2204 		 */
   2205 		th->th_seq++;
   2206 		if (tlen > tp->rcv_wnd) {
   2207 			todrop = tlen - tp->rcv_wnd;
   2208 			m_adj(m, -todrop);
   2209 			tlen = tp->rcv_wnd;
   2210 			tiflags &= ~TH_FIN;
   2211 			tcps = TCP_STAT_GETREF();
   2212 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2213 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2214 			TCP_STAT_PUTREF();
   2215 		}
   2216 		tp->snd_wl1 = th->th_seq - 1;
   2217 		tp->rcv_up = th->th_seq;
   2218 		goto step6;
   2219 
   2220 	/*
   2221 	 * If the state is SYN_RECEIVED:
   2222 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2223 	 *	and generate an RST.  See page 36, rfc793
   2224 	 */
   2225 	case TCPS_SYN_RECEIVED:
   2226 		if ((tiflags & TH_ACK) &&
   2227 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2228 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2229 			goto dropwithreset;
   2230 		break;
   2231 	}
   2232 
   2233 	/*
   2234 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
   2235 	 */
   2236 	KASSERT(tp->t_state != TCPS_LISTEN &&
   2237 	    tp->t_state != TCPS_SYN_SENT);
   2238 
   2239 	/*
   2240 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
   2241 	 * it's less than ts_recent, drop it.
   2242 	 */
   2243 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2244 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2245 		/* Check to see if ts_recent is over 24 days old.  */
   2246 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2247 			/*
   2248 			 * Invalidate ts_recent.  If this segment updates
   2249 			 * ts_recent, the age will be reset later and ts_recent
   2250 			 * will get a valid value.  If it does not, setting
   2251 			 * ts_recent to zero will at least satisfy the
   2252 			 * requirement that zero be placed in the timestamp
   2253 			 * echo reply when ts_recent isn't valid.  The
   2254 			 * age isn't reset until we get a valid ts_recent
   2255 			 * because we don't want out-of-order segments to be
   2256 			 * dropped when ts_recent is old.
   2257 			 */
   2258 			tp->ts_recent = 0;
   2259 		} else {
   2260 			tcps = TCP_STAT_GETREF();
   2261 			tcps[TCP_STAT_RCVDUPPACK]++;
   2262 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2263 			tcps[TCP_STAT_PAWSDROP]++;
   2264 			TCP_STAT_PUTREF();
   2265 			tcp_new_dsack(tp, th->th_seq, tlen);
   2266 			goto dropafterack;
   2267 		}
   2268 	}
   2269 
   2270 	/*
   2271 	 * Check that at least some bytes of the segment are within the
   2272 	 * receive window. If segment begins before rcv_nxt, drop leading
   2273 	 * data (and SYN); if nothing left, just ack.
   2274 	 */
   2275 	todrop = tp->rcv_nxt - th->th_seq;
   2276 	dupseg = false;
   2277 	if (todrop > 0) {
   2278 		if (tiflags & TH_SYN) {
   2279 			tiflags &= ~TH_SYN;
   2280 			th->th_seq++;
   2281 			tcp_urp_drop(th, 1, &tiflags);
   2282 			todrop--;
   2283 		}
   2284 		if (todrop > tlen ||
   2285 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2286 			/*
   2287 			 * Any valid FIN or RST must be to the left of the
   2288 			 * window.  At this point the FIN or RST must be a
   2289 			 * duplicate or out of sequence; drop it.
   2290 			 */
   2291 			if (tiflags & TH_RST)
   2292 				goto drop;
   2293 			tiflags &= ~(TH_FIN|TH_RST);
   2294 
   2295 			/*
   2296 			 * Send an ACK to resynchronize and drop any data.
   2297 			 * But keep on processing for RST or ACK.
   2298 			 */
   2299 			tp->t_flags |= TF_ACKNOW;
   2300 			todrop = tlen;
   2301 			dupseg = true;
   2302 			tcps = TCP_STAT_GETREF();
   2303 			tcps[TCP_STAT_RCVDUPPACK]++;
   2304 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2305 			TCP_STAT_PUTREF();
   2306 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
   2307 			/*
   2308 			 * Test for reset before adjusting the sequence
   2309 			 * number for overlapping data.
   2310 			 */
   2311 			goto dropafterack_ratelim;
   2312 		} else {
   2313 			tcps = TCP_STAT_GETREF();
   2314 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2315 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2316 			TCP_STAT_PUTREF();
   2317 		}
   2318 		tcp_new_dsack(tp, th->th_seq, todrop);
   2319 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
   2320 		th->th_seq += todrop;
   2321 		tlen -= todrop;
   2322 		tcp_urp_drop(th, todrop, &tiflags);
   2323 	}
   2324 
   2325 	/*
   2326 	 * If new data is received on a connection after the user processes
   2327 	 * are gone, then RST the other end.
   2328 	 */
   2329 	if ((so->so_state & SS_NOFDREF) &&
   2330 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2331 		tp = tcp_close(tp);
   2332 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2333 		goto dropwithreset;
   2334 	}
   2335 
   2336 	/*
   2337 	 * If the segment ends after the window, drop trailing data (and
   2338 	 * PUSH and FIN); if nothing left, just ACK.
   2339 	 */
   2340 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
   2341 	if (todrop > 0) {
   2342 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2343 		if (todrop >= tlen) {
   2344 			/*
   2345 			 * The segment actually starts after the window.
   2346 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2347 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2348 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2349 			 */
   2350 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2351 
   2352 			/*
   2353 			 * If a new connection request is received while in
   2354 			 * TIME_WAIT, drop the old connection and start over
   2355 			 * if the sequence numbers are above the previous
   2356 			 * ones.
   2357 			 *
   2358 			 * NOTE: We need to put the header fields back into
   2359 			 * network order.
   2360 			 */
   2361 			if ((tiflags & TH_SYN) &&
   2362 			    tp->t_state == TCPS_TIME_WAIT &&
   2363 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2364 				tp = tcp_close(tp);
   2365 				tcp_fields_to_net(th);
   2366 				m_freem(tcp_saveti);
   2367 				tcp_saveti = NULL;
   2368 				goto findpcb;
   2369 			}
   2370 
   2371 			/*
   2372 			 * If window is closed can only take segments at
   2373 			 * window edge, and have to drop data and PUSH from
   2374 			 * incoming segments.  Continue processing, but
   2375 			 * remember to ack.  Otherwise, drop segment
   2376 			 * and (if not RST) ack.
   2377 			 */
   2378 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2379 				KASSERT(todrop == tlen);
   2380 				tp->t_flags |= TF_ACKNOW;
   2381 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2382 			} else {
   2383 				goto dropafterack;
   2384 			}
   2385 		} else {
   2386 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2387 		}
   2388 		m_adj(m, -todrop);
   2389 		tlen -= todrop;
   2390 		tiflags &= ~(TH_PUSH|TH_FIN);
   2391 	}
   2392 
   2393 	/*
   2394 	 * If last ACK falls within this segment's sequence numbers,
   2395 	 *  record the timestamp.
   2396 	 * NOTE:
   2397 	 * 1) That the test incorporates suggestions from the latest
   2398 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2399 	 * 2) That updating only on newer timestamps interferes with
   2400 	 *    our earlier PAWS tests, so this check should be solely
   2401 	 *    predicated on the sequence space of this segment.
   2402 	 * 3) That we modify the segment boundary check to be
   2403 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2404 	 *    instead of RFC1323's
   2405 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2406 	 *    This modified check allows us to overcome RFC1323's
   2407 	 *    limitations as described in Stevens TCP/IP Illustrated
   2408 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2409 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2410 	 */
   2411 	if (opti.ts_present &&
   2412 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2413 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2414 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2415 		tp->ts_recent_age = tcp_now;
   2416 		tp->ts_recent = opti.ts_val;
   2417 	}
   2418 
   2419 	/*
   2420 	 * If the RST bit is set examine the state:
   2421 	 *    RECEIVED state:
   2422 	 *        If passive open, return to LISTEN state.
   2423 	 *        If active open, inform user that connection was refused.
   2424 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
   2425 	 *        Inform user that connection was reset, and close tcb.
   2426 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
   2427 	 *        Close the tcb.
   2428 	 */
   2429 	if (tiflags & TH_RST) {
   2430 		if (th->th_seq != tp->rcv_nxt)
   2431 			goto dropafterack_ratelim;
   2432 
   2433 		switch (tp->t_state) {
   2434 		case TCPS_SYN_RECEIVED:
   2435 			so->so_error = ECONNREFUSED;
   2436 			goto close;
   2437 
   2438 		case TCPS_ESTABLISHED:
   2439 		case TCPS_FIN_WAIT_1:
   2440 		case TCPS_FIN_WAIT_2:
   2441 		case TCPS_CLOSE_WAIT:
   2442 			so->so_error = ECONNRESET;
   2443 		close:
   2444 			tp->t_state = TCPS_CLOSED;
   2445 			TCP_STATINC(TCP_STAT_DROPS);
   2446 			tp = tcp_close(tp);
   2447 			goto drop;
   2448 
   2449 		case TCPS_CLOSING:
   2450 		case TCPS_LAST_ACK:
   2451 		case TCPS_TIME_WAIT:
   2452 			tp = tcp_close(tp);
   2453 			goto drop;
   2454 		}
   2455 	}
   2456 
   2457 	/*
   2458 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2459 	 * we must be in a synchronized state.  RFC793 states (under Reset
   2460 	 * Generation) that any unacceptable segment (an out-of-order SYN
   2461 	 * qualifies) received in a synchronized state must elicit only an
   2462 	 * empty acknowledgment segment ... and the connection remains in
   2463 	 * the same state.
   2464 	 */
   2465 	if (tiflags & TH_SYN) {
   2466 		if (tp->rcv_nxt == th->th_seq) {
   2467 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2468 			    TH_ACK);
   2469 			if (tcp_saveti)
   2470 				m_freem(tcp_saveti);
   2471 			return;
   2472 		}
   2473 
   2474 		goto dropafterack_ratelim;
   2475 	}
   2476 
   2477 	/*
   2478 	 * If the ACK bit is off we drop the segment and return.
   2479 	 */
   2480 	if ((tiflags & TH_ACK) == 0) {
   2481 		if (tp->t_flags & TF_ACKNOW)
   2482 			goto dropafterack;
   2483 		goto drop;
   2484 	}
   2485 
   2486 	/*
   2487 	 * From here on, we're doing ACK processing.
   2488 	 */
   2489 
   2490 	switch (tp->t_state) {
   2491 	/*
   2492 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2493 	 * ESTABLISHED state and continue processing, otherwise
   2494 	 * send an RST.
   2495 	 */
   2496 	case TCPS_SYN_RECEIVED:
   2497 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2498 		    SEQ_GT(th->th_ack, tp->snd_max))
   2499 			goto dropwithreset;
   2500 		TCP_STATINC(TCP_STAT_CONNECTS);
   2501 		soisconnected(so);
   2502 		tcp_established(tp);
   2503 		/* Do window scaling? */
   2504 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2505 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2506 			tp->snd_scale = tp->requested_s_scale;
   2507 			tp->rcv_scale = tp->request_r_scale;
   2508 		}
   2509 		TCP_REASS_LOCK(tp);
   2510 		(void)tcp_reass(tp, NULL, NULL, tlen);
   2511 		tp->snd_wl1 = th->th_seq - 1;
   2512 		/* FALLTHROUGH */
   2513 
   2514 	/*
   2515 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2516 	 * ACKs.  If the ack is in the range
   2517 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2518 	 * then advance tp->snd_una to th->th_ack and drop
   2519 	 * data from the retransmission queue.  If this ACK reflects
   2520 	 * more up to date window information we update our window information.
   2521 	 */
   2522 	case TCPS_ESTABLISHED:
   2523 	case TCPS_FIN_WAIT_1:
   2524 	case TCPS_FIN_WAIT_2:
   2525 	case TCPS_CLOSE_WAIT:
   2526 	case TCPS_CLOSING:
   2527 	case TCPS_LAST_ACK:
   2528 	case TCPS_TIME_WAIT:
   2529 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2530 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2531 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2532 				/*
   2533 				 * If we have outstanding data (other than
   2534 				 * a window probe), this is a completely
   2535 				 * duplicate ack (ie, window info didn't
   2536 				 * change), the ack is the biggest we've
   2537 				 * seen and we've seen exactly our rexmt
   2538 				 * threshhold of them, assume a packet
   2539 				 * has been dropped and retransmit it.
   2540 				 * Kludge snd_nxt & the congestion
   2541 				 * window so we send only this one
   2542 				 * packet.
   2543 				 */
   2544 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2545 				    th->th_ack != tp->snd_una)
   2546 					tp->t_dupacks = 0;
   2547 				else if (tp->t_partialacks < 0 &&
   2548 				    (++tp->t_dupacks == tcprexmtthresh ||
   2549 				     TCP_FACK_FASTRECOV(tp))) {
   2550 					/*
   2551 					 * Do the fast retransmit, and adjust
   2552 					 * congestion control paramenters.
   2553 					 */
   2554 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2555 						/* False fast retransmit */
   2556 						break;
   2557 					}
   2558 					goto drop;
   2559 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2560 					tp->snd_cwnd += tp->t_segsz;
   2561 					KERNEL_LOCK(1, NULL);
   2562 					(void)tcp_output(tp);
   2563 					KERNEL_UNLOCK_ONE(NULL);
   2564 					goto drop;
   2565 				}
   2566 			} else {
   2567 				/*
   2568 				 * If the ack appears to be very old, only
   2569 				 * allow data that is in-sequence.  This
   2570 				 * makes it somewhat more difficult to insert
   2571 				 * forged data by guessing sequence numbers.
   2572 				 * Sent an ack to try to update the send
   2573 				 * sequence number on the other side.
   2574 				 */
   2575 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2576 				    SEQ_LT(th->th_ack,
   2577 				    tp->snd_una - tp->max_sndwnd))
   2578 					goto dropafterack;
   2579 			}
   2580 			break;
   2581 		}
   2582 		/*
   2583 		 * If the congestion window was inflated to account
   2584 		 * for the other side's cached packets, retract it.
   2585 		 */
   2586 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2587 
   2588 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2589 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2590 			goto dropafterack;
   2591 		}
   2592 		acked = th->th_ack - tp->snd_una;
   2593 		tcps = TCP_STAT_GETREF();
   2594 		tcps[TCP_STAT_RCVACKPACK]++;
   2595 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2596 		TCP_STAT_PUTREF();
   2597 
   2598 		/*
   2599 		 * If we have a timestamp reply, update smoothed
   2600 		 * round trip time.  If no timestamp is present but
   2601 		 * transmit timer is running and timed sequence
   2602 		 * number was acked, update smoothed round trip time.
   2603 		 * Since we now have an rtt measurement, cancel the
   2604 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2605 		 * Recompute the initial retransmit timer.
   2606 		 */
   2607 		if (ts_rtt)
   2608 			tcp_xmit_timer(tp, ts_rtt - 1);
   2609 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2610 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2611 
   2612 		/*
   2613 		 * If all outstanding data is acked, stop retransmit
   2614 		 * timer and remember to restart (more output or persist).
   2615 		 * If there is more data to be acked, restart retransmit
   2616 		 * timer, using current (possibly backed-off) value.
   2617 		 */
   2618 		if (th->th_ack == tp->snd_max) {
   2619 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2620 			needoutput = 1;
   2621 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2622 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2623 
   2624 		/*
   2625 		 * New data has been acked, adjust the congestion window.
   2626 		 */
   2627 		tp->t_congctl->newack(tp, th);
   2628 
   2629 		nd_hint(tp);
   2630 		if (acked > so->so_snd.sb_cc) {
   2631 			tp->snd_wnd -= so->so_snd.sb_cc;
   2632 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2633 			ourfinisacked = 1;
   2634 		} else {
   2635 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2636 				tp->t_lastm = NULL;
   2637 			sbdrop(&so->so_snd, acked);
   2638 			tp->t_lastoff -= acked;
   2639 			if (tp->snd_wnd > acked)
   2640 				tp->snd_wnd -= acked;
   2641 			else
   2642 				tp->snd_wnd = 0;
   2643 			ourfinisacked = 0;
   2644 		}
   2645 		sowwakeup(so);
   2646 
   2647 		icmp_check(tp, th, acked);
   2648 
   2649 		tp->snd_una = th->th_ack;
   2650 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2651 			tp->snd_fack = tp->snd_una;
   2652 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2653 			tp->snd_nxt = tp->snd_una;
   2654 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2655 			tp->snd_high = tp->snd_una;
   2656 
   2657 		switch (tp->t_state) {
   2658 
   2659 		/*
   2660 		 * In FIN_WAIT_1 STATE in addition to the processing
   2661 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2662 		 * then enter FIN_WAIT_2.
   2663 		 */
   2664 		case TCPS_FIN_WAIT_1:
   2665 			if (ourfinisacked) {
   2666 				/*
   2667 				 * If we can't receive any more
   2668 				 * data, then closing user can proceed.
   2669 				 * Starting the timer is contrary to the
   2670 				 * specification, but if we don't get a FIN
   2671 				 * we'll hang forever.
   2672 				 */
   2673 				if (so->so_state & SS_CANTRCVMORE) {
   2674 					soisdisconnected(so);
   2675 					if (tp->t_maxidle > 0)
   2676 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2677 						    tp->t_maxidle);
   2678 				}
   2679 				tp->t_state = TCPS_FIN_WAIT_2;
   2680 			}
   2681 			break;
   2682 
   2683 	 	/*
   2684 		 * In CLOSING STATE in addition to the processing for
   2685 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2686 		 * then enter the TIME-WAIT state, otherwise ignore
   2687 		 * the segment.
   2688 		 */
   2689 		case TCPS_CLOSING:
   2690 			if (ourfinisacked) {
   2691 				tp->t_state = TCPS_TIME_WAIT;
   2692 				tcp_canceltimers(tp);
   2693 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2694 				soisdisconnected(so);
   2695 			}
   2696 			break;
   2697 
   2698 		/*
   2699 		 * In LAST_ACK, we may still be waiting for data to drain
   2700 		 * and/or to be acked, as well as for the ack of our FIN.
   2701 		 * If our FIN is now acknowledged, delete the TCB,
   2702 		 * enter the closed state and return.
   2703 		 */
   2704 		case TCPS_LAST_ACK:
   2705 			if (ourfinisacked) {
   2706 				tp = tcp_close(tp);
   2707 				goto drop;
   2708 			}
   2709 			break;
   2710 
   2711 		/*
   2712 		 * In TIME_WAIT state the only thing that should arrive
   2713 		 * is a retransmission of the remote FIN.  Acknowledge
   2714 		 * it and restart the finack timer.
   2715 		 */
   2716 		case TCPS_TIME_WAIT:
   2717 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2718 			goto dropafterack;
   2719 		}
   2720 	}
   2721 
   2722 step6:
   2723 	/*
   2724 	 * Update window information.
   2725 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2726 	 */
   2727 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2728 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2729 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2730 		/* keep track of pure window updates */
   2731 		if (tlen == 0 &&
   2732 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2733 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2734 		tp->snd_wnd = tiwin;
   2735 		tp->snd_wl1 = th->th_seq;
   2736 		tp->snd_wl2 = th->th_ack;
   2737 		if (tp->snd_wnd > tp->max_sndwnd)
   2738 			tp->max_sndwnd = tp->snd_wnd;
   2739 		needoutput = 1;
   2740 	}
   2741 
   2742 	/*
   2743 	 * Process segments with URG.
   2744 	 */
   2745 	if ((tiflags & TH_URG) && th->th_urp &&
   2746 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2747 		/*
   2748 		 * This is a kludge, but if we receive and accept
   2749 		 * random urgent pointers, we'll crash in
   2750 		 * soreceive.  It's hard to imagine someone
   2751 		 * actually wanting to send this much urgent data.
   2752 		 */
   2753 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2754 			th->th_urp = 0;			/* XXX */
   2755 			tiflags &= ~TH_URG;		/* XXX */
   2756 			goto dodata;			/* XXX */
   2757 		}
   2758 
   2759 		/*
   2760 		 * If this segment advances the known urgent pointer,
   2761 		 * then mark the data stream.  This should not happen
   2762 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2763 		 * a FIN has been received from the remote side.
   2764 		 * In these states we ignore the URG.
   2765 		 *
   2766 		 * According to RFC961 (Assigned Protocols),
   2767 		 * the urgent pointer points to the last octet
   2768 		 * of urgent data.  We continue, however,
   2769 		 * to consider it to indicate the first octet
   2770 		 * of data past the urgent section as the original
   2771 		 * spec states (in one of two places).
   2772 		 */
   2773 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2774 			tp->rcv_up = th->th_seq + th->th_urp;
   2775 			so->so_oobmark = so->so_rcv.sb_cc +
   2776 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2777 			if (so->so_oobmark == 0)
   2778 				so->so_state |= SS_RCVATMARK;
   2779 			sohasoutofband(so);
   2780 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2781 		}
   2782 
   2783 		/*
   2784 		 * Remove out of band data so doesn't get presented to user.
   2785 		 * This can happen independent of advancing the URG pointer,
   2786 		 * but if two URG's are pending at once, some out-of-band
   2787 		 * data may creep in... ick.
   2788 		 */
   2789 		if (th->th_urp <= (u_int16_t)tlen &&
   2790 		    (so->so_options & SO_OOBINLINE) == 0)
   2791 			tcp_pulloutofband(so, th, m, hdroptlen);
   2792 	} else {
   2793 		/*
   2794 		 * If no out of band data is expected,
   2795 		 * pull receive urgent pointer along
   2796 		 * with the receive window.
   2797 		 */
   2798 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2799 			tp->rcv_up = tp->rcv_nxt;
   2800 	}
   2801 dodata:
   2802 
   2803 	/*
   2804 	 * Process the segment text, merging it into the TCP sequencing queue,
   2805 	 * and arranging for acknowledgement of receipt if necessary.
   2806 	 * This process logically involves adjusting tp->rcv_wnd as data
   2807 	 * is presented to the user (this happens in tcp_usrreq.c,
   2808 	 * tcp_rcvd()).  If a FIN has already been received on this
   2809 	 * connection then we just ignore the text.
   2810 	 */
   2811 	if ((tlen || (tiflags & TH_FIN)) &&
   2812 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2813 		/*
   2814 		 * Handle the common case:
   2815 		 *  o Segment is the next to be received, and
   2816 		 *  o The queue is empty, and
   2817 		 *  o The connection is established
   2818 		 * In this case, we avoid calling tcp_reass.
   2819 		 *
   2820 		 * tcp_setup_ack: set DELACK for segments received in order,
   2821 		 * but ack immediately when segments are out of order (so that
   2822 		 * fast retransmit can work).
   2823 		 */
   2824 		TCP_REASS_LOCK(tp);
   2825 		if (th->th_seq == tp->rcv_nxt &&
   2826 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2827 		    tp->t_state == TCPS_ESTABLISHED) {
   2828 			tcp_setup_ack(tp, th);
   2829 			tp->rcv_nxt += tlen;
   2830 			tiflags = th->th_flags & TH_FIN;
   2831 			tcps = TCP_STAT_GETREF();
   2832 			tcps[TCP_STAT_RCVPACK]++;
   2833 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2834 			TCP_STAT_PUTREF();
   2835 			nd_hint(tp);
   2836 			if (so->so_state & SS_CANTRCVMORE) {
   2837 				m_freem(m);
   2838 			} else {
   2839 				m_adj(m, hdroptlen);
   2840 				sbappendstream(&(so)->so_rcv, m);
   2841 			}
   2842 			TCP_REASS_UNLOCK(tp);
   2843 			sorwakeup(so);
   2844 		} else {
   2845 			m_adj(m, hdroptlen);
   2846 			tiflags = tcp_reass(tp, th, m, tlen);
   2847 			tp->t_flags |= TF_ACKNOW;
   2848 		}
   2849 
   2850 		/*
   2851 		 * Note the amount of data that peer has sent into
   2852 		 * our window, in order to estimate the sender's
   2853 		 * buffer size.
   2854 		 */
   2855 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2856 	} else {
   2857 		m_freem(m);
   2858 		m = NULL;
   2859 		tiflags &= ~TH_FIN;
   2860 	}
   2861 
   2862 	/*
   2863 	 * If FIN is received ACK the FIN and let the user know
   2864 	 * that the connection is closing.  Ignore a FIN received before
   2865 	 * the connection is fully established.
   2866 	 */
   2867 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2868 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2869 			socantrcvmore(so);
   2870 			tp->t_flags |= TF_ACKNOW;
   2871 			tp->rcv_nxt++;
   2872 		}
   2873 		switch (tp->t_state) {
   2874 
   2875 	 	/*
   2876 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2877 		 */
   2878 		case TCPS_ESTABLISHED:
   2879 			tp->t_state = TCPS_CLOSE_WAIT;
   2880 			break;
   2881 
   2882 	 	/*
   2883 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2884 		 * enter the CLOSING state.
   2885 		 */
   2886 		case TCPS_FIN_WAIT_1:
   2887 			tp->t_state = TCPS_CLOSING;
   2888 			break;
   2889 
   2890 	 	/*
   2891 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2892 		 * starting the time-wait timer, turning off the other
   2893 		 * standard timers.
   2894 		 */
   2895 		case TCPS_FIN_WAIT_2:
   2896 			tp->t_state = TCPS_TIME_WAIT;
   2897 			tcp_canceltimers(tp);
   2898 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2899 			soisdisconnected(so);
   2900 			break;
   2901 
   2902 		/*
   2903 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2904 		 */
   2905 		case TCPS_TIME_WAIT:
   2906 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2907 			break;
   2908 		}
   2909 	}
   2910 #ifdef TCP_DEBUG
   2911 	if (so->so_options & SO_DEBUG)
   2912 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2913 #endif
   2914 
   2915 	/*
   2916 	 * Return any desired output.
   2917 	 */
   2918 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2919 		KERNEL_LOCK(1, NULL);
   2920 		(void)tcp_output(tp);
   2921 		KERNEL_UNLOCK_ONE(NULL);
   2922 	}
   2923 	if (tcp_saveti)
   2924 		m_freem(tcp_saveti);
   2925 
   2926 	if (tp->t_state == TCPS_TIME_WAIT
   2927 	    && (so->so_state & SS_NOFDREF)
   2928 	    && (tp->t_inpcb || af != AF_INET)
   2929 	    && (tp->t_in6pcb || af != AF_INET6)
   2930 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   2931 	    && TAILQ_EMPTY(&tp->segq)
   2932 	    && vtw_add(af, tp)) {
   2933 		;
   2934 	}
   2935 	return;
   2936 
   2937 badsyn:
   2938 	/*
   2939 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2940 	 */
   2941 	TCP_STATINC(TCP_STAT_BADSYN);
   2942 	tp = NULL;
   2943 	goto dropwithreset;
   2944 
   2945 dropafterack:
   2946 	/*
   2947 	 * Generate an ACK dropping incoming segment if it occupies
   2948 	 * sequence space, where the ACK reflects our state.
   2949 	 */
   2950 	if (tiflags & TH_RST)
   2951 		goto drop;
   2952 	goto dropafterack2;
   2953 
   2954 dropafterack_ratelim:
   2955 	/*
   2956 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2957 	 */
   2958 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2959 	    tcp_ackdrop_ppslim) == 0) {
   2960 		/* XXX stat */
   2961 		goto drop;
   2962 	}
   2963 
   2964 dropafterack2:
   2965 	m_freem(m);
   2966 	tp->t_flags |= TF_ACKNOW;
   2967 	KERNEL_LOCK(1, NULL);
   2968 	(void)tcp_output(tp);
   2969 	KERNEL_UNLOCK_ONE(NULL);
   2970 	if (tcp_saveti)
   2971 		m_freem(tcp_saveti);
   2972 	return;
   2973 
   2974 dropwithreset_ratelim:
   2975 	/*
   2976 	 * We may want to rate-limit RSTs in certain situations,
   2977 	 * particularly if we are sending an RST in response to
   2978 	 * an attempt to connect to or otherwise communicate with
   2979 	 * a port for which we have no socket.
   2980 	 */
   2981 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2982 	    tcp_rst_ppslim) == 0) {
   2983 		/* XXX stat */
   2984 		goto drop;
   2985 	}
   2986 
   2987 dropwithreset:
   2988 	/*
   2989 	 * Generate a RST, dropping incoming segment.
   2990 	 * Make ACK acceptable to originator of segment.
   2991 	 */
   2992 	if (tiflags & TH_RST)
   2993 		goto drop;
   2994 	if (tiflags & TH_ACK) {
   2995 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2996 	} else {
   2997 		if (tiflags & TH_SYN)
   2998 			tlen++;
   2999 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   3000 		    TH_RST|TH_ACK);
   3001 	}
   3002 	if (tcp_saveti)
   3003 		m_freem(tcp_saveti);
   3004 	return;
   3005 
   3006 badcsum:
   3007 drop:
   3008 	/*
   3009 	 * Drop space held by incoming segment and return.
   3010 	 */
   3011 	if (tp) {
   3012 		if (tp->t_inpcb)
   3013 			so = tp->t_inpcb->inp_socket;
   3014 #ifdef INET6
   3015 		else if (tp->t_in6pcb)
   3016 			so = tp->t_in6pcb->in6p_socket;
   3017 #endif
   3018 		else
   3019 			so = NULL;
   3020 #ifdef TCP_DEBUG
   3021 		if (so && (so->so_options & SO_DEBUG) != 0)
   3022 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3023 #endif
   3024 	}
   3025 	if (tcp_saveti)
   3026 		m_freem(tcp_saveti);
   3027 	m_freem(m);
   3028 	return;
   3029 }
   3030 
   3031 #ifdef TCP_SIGNATURE
   3032 int
   3033 tcp_signature_apply(void *fstate, void *data, u_int len)
   3034 {
   3035 
   3036 	MD5Update(fstate, (u_char *)data, len);
   3037 	return (0);
   3038 }
   3039 
   3040 struct secasvar *
   3041 tcp_signature_getsav(struct mbuf *m)
   3042 {
   3043 	struct ip *ip;
   3044 	struct ip6_hdr *ip6;
   3045 
   3046 	ip = mtod(m, struct ip *);
   3047 	switch (ip->ip_v) {
   3048 	case 4:
   3049 		ip = mtod(m, struct ip *);
   3050 		ip6 = NULL;
   3051 		break;
   3052 	case 6:
   3053 		ip = NULL;
   3054 		ip6 = mtod(m, struct ip6_hdr *);
   3055 		break;
   3056 	default:
   3057 		return (NULL);
   3058 	}
   3059 
   3060 #ifdef IPSEC
   3061 	union sockaddr_union dst;
   3062 
   3063 	/* Extract the destination from the IP header in the mbuf. */
   3064 	memset(&dst, 0, sizeof(union sockaddr_union));
   3065 	if (ip != NULL) {
   3066 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   3067 		dst.sa.sa_family = AF_INET;
   3068 		dst.sin.sin_addr = ip->ip_dst;
   3069 	} else {
   3070 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3071 		dst.sa.sa_family = AF_INET6;
   3072 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3073 	}
   3074 
   3075 	/*
   3076 	 * Look up an SADB entry which matches the address of the peer.
   3077 	 */
   3078 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3079 #else
   3080 	return NULL;
   3081 #endif
   3082 }
   3083 
   3084 int
   3085 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3086     struct secasvar *sav, char *sig)
   3087 {
   3088 	MD5_CTX ctx;
   3089 	struct ip *ip;
   3090 	struct ipovly *ipovly;
   3091 #ifdef INET6
   3092 	struct ip6_hdr *ip6;
   3093 	struct ip6_hdr_pseudo ip6pseudo;
   3094 #endif
   3095 	struct ippseudo ippseudo;
   3096 	struct tcphdr th0;
   3097 	int l, tcphdrlen;
   3098 
   3099 	if (sav == NULL)
   3100 		return (-1);
   3101 
   3102 	tcphdrlen = th->th_off * 4;
   3103 
   3104 	switch (mtod(m, struct ip *)->ip_v) {
   3105 	case 4:
   3106 		MD5Init(&ctx);
   3107 		ip = mtod(m, struct ip *);
   3108 		memset(&ippseudo, 0, sizeof(ippseudo));
   3109 		ipovly = (struct ipovly *)ip;
   3110 		ippseudo.ippseudo_src = ipovly->ih_src;
   3111 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3112 		ippseudo.ippseudo_pad = 0;
   3113 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3114 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3115 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3116 		break;
   3117 #if INET6
   3118 	case 6:
   3119 		MD5Init(&ctx);
   3120 		ip6 = mtod(m, struct ip6_hdr *);
   3121 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3122 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3123 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3124 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3125 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3126 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3127 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3128 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3129 		break;
   3130 #endif
   3131 	default:
   3132 		return (-1);
   3133 	}
   3134 
   3135 	th0 = *th;
   3136 	th0.th_sum = 0;
   3137 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3138 
   3139 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3140 	if (l > 0)
   3141 		m_apply(m, thoff + tcphdrlen,
   3142 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3143 		    tcp_signature_apply, &ctx);
   3144 
   3145 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3146 	MD5Final(sig, &ctx);
   3147 
   3148 	return (0);
   3149 }
   3150 #endif
   3151 
   3152 /*
   3153  * Parse and process tcp options.
   3154  *
   3155  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
   3156  * Otherwise returns 0.
   3157  */
   3158 static int
   3159 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
   3160     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3161 {
   3162 	u_int16_t mss;
   3163 	int opt, optlen = 0;
   3164 #ifdef TCP_SIGNATURE
   3165 	void *sigp = NULL;
   3166 	char sigbuf[TCP_SIGLEN];
   3167 	struct secasvar *sav = NULL;
   3168 #endif
   3169 
   3170 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3171 		opt = cp[0];
   3172 		if (opt == TCPOPT_EOL)
   3173 			break;
   3174 		if (opt == TCPOPT_NOP)
   3175 			optlen = 1;
   3176 		else {
   3177 			if (cnt < 2)
   3178 				break;
   3179 			optlen = cp[1];
   3180 			if (optlen < 2 || optlen > cnt)
   3181 				break;
   3182 		}
   3183 		switch (opt) {
   3184 
   3185 		default:
   3186 			continue;
   3187 
   3188 		case TCPOPT_MAXSEG:
   3189 			if (optlen != TCPOLEN_MAXSEG)
   3190 				continue;
   3191 			if (!(th->th_flags & TH_SYN))
   3192 				continue;
   3193 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3194 				continue;
   3195 			memcpy(&mss, cp + 2, sizeof(mss));
   3196 			oi->maxseg = ntohs(mss);
   3197 			break;
   3198 
   3199 		case TCPOPT_WINDOW:
   3200 			if (optlen != TCPOLEN_WINDOW)
   3201 				continue;
   3202 			if (!(th->th_flags & TH_SYN))
   3203 				continue;
   3204 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3205 				continue;
   3206 			tp->t_flags |= TF_RCVD_SCALE;
   3207 			tp->requested_s_scale = cp[2];
   3208 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3209 				char buf[INET6_ADDRSTRLEN];
   3210 				struct ip *ip = mtod(m, struct ip *);
   3211 #ifdef INET6
   3212 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3213 #endif
   3214 
   3215 				switch (ip->ip_v) {
   3216 				case 4:
   3217 					in_print(buf, sizeof(buf),
   3218 					    &ip->ip_src);
   3219 					break;
   3220 #ifdef INET6
   3221 				case 6:
   3222 					in6_print(buf, sizeof(buf),
   3223 					    &ip6->ip6_src);
   3224 					break;
   3225 #endif
   3226 				default:
   3227 					strlcpy(buf, "(unknown)", sizeof(buf));
   3228 					break;
   3229 				}
   3230 
   3231 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3232 				    "assuming %d\n",
   3233 				    tp->requested_s_scale, buf,
   3234 				    TCP_MAX_WINSHIFT);
   3235 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3236 			}
   3237 			break;
   3238 
   3239 		case TCPOPT_TIMESTAMP:
   3240 			if (optlen != TCPOLEN_TIMESTAMP)
   3241 				continue;
   3242 			oi->ts_present = 1;
   3243 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
   3244 			NTOHL(oi->ts_val);
   3245 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
   3246 			NTOHL(oi->ts_ecr);
   3247 
   3248 			if (!(th->th_flags & TH_SYN))
   3249 				continue;
   3250 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3251 				continue;
   3252 			/*
   3253 			 * A timestamp received in a SYN makes
   3254 			 * it ok to send timestamp requests and replies.
   3255 			 */
   3256 			tp->t_flags |= TF_RCVD_TSTMP;
   3257 			tp->ts_recent = oi->ts_val;
   3258 			tp->ts_recent_age = tcp_now;
   3259                         break;
   3260 
   3261 		case TCPOPT_SACK_PERMITTED:
   3262 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3263 				continue;
   3264 			if (!(th->th_flags & TH_SYN))
   3265 				continue;
   3266 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3267 				continue;
   3268 			if (tcp_do_sack) {
   3269 				tp->t_flags |= TF_SACK_PERMIT;
   3270 				tp->t_flags |= TF_WILL_SACK;
   3271 			}
   3272 			break;
   3273 
   3274 		case TCPOPT_SACK:
   3275 			tcp_sack_option(tp, th, cp, optlen);
   3276 			break;
   3277 #ifdef TCP_SIGNATURE
   3278 		case TCPOPT_SIGNATURE:
   3279 			if (optlen != TCPOLEN_SIGNATURE)
   3280 				continue;
   3281 			if (sigp &&
   3282 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
   3283 				return (-1);
   3284 
   3285 			sigp = sigbuf;
   3286 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3287 			tp->t_flags |= TF_SIGNATURE;
   3288 			break;
   3289 #endif
   3290 		}
   3291 	}
   3292 
   3293 #ifndef TCP_SIGNATURE
   3294 	return 0;
   3295 #else
   3296 	if (tp->t_flags & TF_SIGNATURE) {
   3297 		sav = tcp_signature_getsav(m);
   3298 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3299 			return (-1);
   3300 	}
   3301 
   3302 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3303 		goto out;
   3304 
   3305 	if (sigp) {
   3306 		char sig[TCP_SIGLEN];
   3307 
   3308 		tcp_fields_to_net(th);
   3309 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3310 			tcp_fields_to_host(th);
   3311 			goto out;
   3312 		}
   3313 		tcp_fields_to_host(th);
   3314 
   3315 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
   3316 			TCP_STATINC(TCP_STAT_BADSIG);
   3317 			goto out;
   3318 		} else
   3319 			TCP_STATINC(TCP_STAT_GOODSIG);
   3320 
   3321 		key_sa_recordxfer(sav, m);
   3322 		KEY_SA_UNREF(&sav);
   3323 	}
   3324 	return 0;
   3325 out:
   3326 	if (sav != NULL)
   3327 		KEY_SA_UNREF(&sav);
   3328 	return -1;
   3329 #endif
   3330 }
   3331 
   3332 /*
   3333  * Pull out of band byte out of a segment so
   3334  * it doesn't appear in the user's data queue.
   3335  * It is still reflected in the segment length for
   3336  * sequencing purposes.
   3337  */
   3338 void
   3339 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3340     struct mbuf *m, int off)
   3341 {
   3342 	int cnt = off + th->th_urp - 1;
   3343 
   3344 	while (cnt >= 0) {
   3345 		if (m->m_len > cnt) {
   3346 			char *cp = mtod(m, char *) + cnt;
   3347 			struct tcpcb *tp = sototcpcb(so);
   3348 
   3349 			tp->t_iobc = *cp;
   3350 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3351 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
   3352 			m->m_len--;
   3353 			return;
   3354 		}
   3355 		cnt -= m->m_len;
   3356 		m = m->m_next;
   3357 		if (m == NULL)
   3358 			break;
   3359 	}
   3360 	panic("tcp_pulloutofband");
   3361 }
   3362 
   3363 /*
   3364  * Collect new round-trip time estimate
   3365  * and update averages and current timeout.
   3366  *
   3367  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3368  * difference of two timestamps.
   3369  */
   3370 void
   3371 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3372 {
   3373 	int32_t delta;
   3374 
   3375 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3376 	if (tp->t_srtt != 0) {
   3377 		/*
   3378 		 * Compute the amount to add to srtt for smoothing,
   3379 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3380 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3381 		 * shift left 5 bits, subtract srtt to get the
   3382 		 * diference, and then shift right by TCP_RTT_SHIFT
   3383 		 * (3) to obtain 1/8 of the difference.
   3384 		 */
   3385 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3386 		/*
   3387 		 * This can never happen, because delta's lowest
   3388 		 * possible value is 1/8 of t_srtt.  But if it does,
   3389 		 * set srtt to some reasonable value, here chosen
   3390 		 * as 1/8 tick.
   3391 		 */
   3392 		if ((tp->t_srtt += delta) <= 0)
   3393 			tp->t_srtt = 1 << 2;
   3394 		/*
   3395 		 * RFC2988 requires that rttvar be updated first.
   3396 		 * This code is compliant because "delta" is the old
   3397 		 * srtt minus the new observation (scaled).
   3398 		 *
   3399 		 * RFC2988 says:
   3400 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3401 		 *
   3402 		 * delta is in units of 1/32 ticks, and has then been
   3403 		 * divided by 8.  This is equivalent to being in 1/16s
   3404 		 * units and divided by 4.  Subtract from it 1/4 of
   3405 		 * the existing rttvar to form the (signed) amount to
   3406 		 * adjust.
   3407 		 */
   3408 		if (delta < 0)
   3409 			delta = -delta;
   3410 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3411 		/*
   3412 		 * As with srtt, this should never happen.  There is
   3413 		 * no support in RFC2988 for this operation.  But 1/4s
   3414 		 * as rttvar when faced with something arguably wrong
   3415 		 * is ok.
   3416 		 */
   3417 		if ((tp->t_rttvar += delta) <= 0)
   3418 			tp->t_rttvar = 1 << 2;
   3419 
   3420 		/*
   3421 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3422 		 * Problem is: it doesn't work.  Disabled by defaulting
   3423 		 * tcp_rttlocal to 0; see corresponding code in
   3424 		 * tcp_subr that selects local vs remote in a different way.
   3425 		 *
   3426 		 * The static branch prediction hint here should be removed
   3427 		 * when the rtt estimator is fixed and the rtt_enable code
   3428 		 * is turned back on.
   3429 		 */
   3430 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3431 		    && tp->t_srtt > tcp_msl_remote_threshold
   3432 		    && tp->t_msl  < tcp_msl_remote) {
   3433 			tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
   3434 		}
   3435 	} else {
   3436 		/*
   3437 		 * This is the first measurement.  Per RFC2988, 2.2,
   3438 		 * set rtt=R and srtt=R/2.
   3439 		 * For srtt, storage representation is 1/32 ticks,
   3440 		 * so shift left by 5.
   3441 		 * For rttvar, storage representation is 1/16 ticks,
   3442 		 * So shift left by 4, but then right by 1 to halve.
   3443 		 */
   3444 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3445 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3446 	}
   3447 	tp->t_rtttime = 0;
   3448 	tp->t_rxtshift = 0;
   3449 
   3450 	/*
   3451 	 * the retransmit should happen at rtt + 4 * rttvar.
   3452 	 * Because of the way we do the smoothing, srtt and rttvar
   3453 	 * will each average +1/2 tick of bias.  When we compute
   3454 	 * the retransmit timer, we want 1/2 tick of rounding and
   3455 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3456 	 * firing of the timer.  The bias will give us exactly the
   3457 	 * 1.5 tick we need.  But, because the bias is
   3458 	 * statistical, we have to test that we don't drop below
   3459 	 * the minimum feasible timer (which is 2 ticks).
   3460 	 */
   3461 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3462 	    uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3463 
   3464 	/*
   3465 	 * We received an ack for a packet that wasn't retransmitted;
   3466 	 * it is probably safe to discard any error indications we've
   3467 	 * received recently.  This isn't quite right, but close enough
   3468 	 * for now (a route might have failed after we sent a segment,
   3469 	 * and the return path might not be symmetrical).
   3470 	 */
   3471 	tp->t_softerror = 0;
   3472 }
   3473 
   3474 
   3475 /*
   3476  * TCP compressed state engine.  Currently used to hold compressed
   3477  * state for SYN_RECEIVED.
   3478  */
   3479 
   3480 u_long	syn_cache_count;
   3481 u_int32_t syn_hash1, syn_hash2;
   3482 
   3483 #define SYN_HASH(sa, sp, dp) \
   3484 	((((sa)->s_addr^syn_hash1)*(((((u_int32_t)(dp))<<16) + \
   3485 				     ((u_int32_t)(sp)))^syn_hash2)))
   3486 #ifndef INET6
   3487 #define	SYN_HASHALL(hash, src, dst) \
   3488 do {									\
   3489 	hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr,	\
   3490 		((const struct sockaddr_in *)(src))->sin_port,		\
   3491 		((const struct sockaddr_in *)(dst))->sin_port);		\
   3492 } while (/*CONSTCOND*/ 0)
   3493 #else
   3494 #define SYN_HASH6(sa, sp, dp) \
   3495 	((((sa)->s6_addr32[0] ^ (sa)->s6_addr32[3] ^ syn_hash1) * \
   3496 	  (((((u_int32_t)(dp))<<16) + ((u_int32_t)(sp)))^syn_hash2)) \
   3497 	 & 0x7fffffff)
   3498 
   3499 #define SYN_HASHALL(hash, src, dst) \
   3500 do {									\
   3501 	switch ((src)->sa_family) {					\
   3502 	case AF_INET:							\
   3503 		hash = SYN_HASH(&((const struct sockaddr_in *)(src))->sin_addr, \
   3504 			((const struct sockaddr_in *)(src))->sin_port,	\
   3505 			((const struct sockaddr_in *)(dst))->sin_port);	\
   3506 		break;							\
   3507 	case AF_INET6:							\
   3508 		hash = SYN_HASH6(&((const struct sockaddr_in6 *)(src))->sin6_addr, \
   3509 			((const struct sockaddr_in6 *)(src))->sin6_port,	\
   3510 			((const struct sockaddr_in6 *)(dst))->sin6_port);	\
   3511 		break;							\
   3512 	default:							\
   3513 		hash = 0;						\
   3514 	}								\
   3515 } while (/*CONSTCOND*/0)
   3516 #endif /* INET6 */
   3517 
   3518 static struct pool syn_cache_pool;
   3519 
   3520 /*
   3521  * We don't estimate RTT with SYNs, so each packet starts with the default
   3522  * RTT and each timer step has a fixed timeout value.
   3523  */
   3524 static inline void
   3525 syn_cache_timer_arm(struct syn_cache *sc)
   3526 {
   3527 
   3528 	TCPT_RANGESET(sc->sc_rxtcur,
   3529 	    TCPTV_SRTTDFLT * tcp_backoff[sc->sc_rxtshift], TCPTV_MIN,
   3530 	    TCPTV_REXMTMAX);
   3531 	callout_reset(&sc->sc_timer,
   3532 	    sc->sc_rxtcur * (hz / PR_SLOWHZ), syn_cache_timer, sc);
   3533 }
   3534 
   3535 #define	SYN_CACHE_TIMESTAMP(sc)	(tcp_now - (sc)->sc_timebase)
   3536 
   3537 static inline void
   3538 syn_cache_rm(struct syn_cache *sc)
   3539 {
   3540 	TAILQ_REMOVE(&tcp_syn_cache[sc->sc_bucketidx].sch_bucket,
   3541 	    sc, sc_bucketq);
   3542 	sc->sc_tp = NULL;
   3543 	LIST_REMOVE(sc, sc_tpq);
   3544 	tcp_syn_cache[sc->sc_bucketidx].sch_length--;
   3545 	callout_stop(&sc->sc_timer);
   3546 	syn_cache_count--;
   3547 }
   3548 
   3549 static inline void
   3550 syn_cache_put(struct syn_cache *sc)
   3551 {
   3552 	if (sc->sc_ipopts)
   3553 		(void) m_free(sc->sc_ipopts);
   3554 	rtcache_free(&sc->sc_route);
   3555 	sc->sc_flags |= SCF_DEAD;
   3556 	if (!callout_invoking(&sc->sc_timer))
   3557 		callout_schedule(&(sc)->sc_timer, 1);
   3558 }
   3559 
   3560 void
   3561 syn_cache_init(void)
   3562 {
   3563 	int i;
   3564 
   3565 	pool_init(&syn_cache_pool, sizeof(struct syn_cache), 0, 0, 0,
   3566 	    "synpl", NULL, IPL_SOFTNET);
   3567 
   3568 	/* Initialize the hash buckets. */
   3569 	for (i = 0; i < tcp_syn_cache_size; i++)
   3570 		TAILQ_INIT(&tcp_syn_cache[i].sch_bucket);
   3571 }
   3572 
   3573 void
   3574 syn_cache_insert(struct syn_cache *sc, struct tcpcb *tp)
   3575 {
   3576 	struct syn_cache_head *scp;
   3577 	struct syn_cache *sc2;
   3578 	int s;
   3579 
   3580 	/*
   3581 	 * If there are no entries in the hash table, reinitialize
   3582 	 * the hash secrets.
   3583 	 */
   3584 	if (syn_cache_count == 0) {
   3585 		syn_hash1 = cprng_fast32();
   3586 		syn_hash2 = cprng_fast32();
   3587 	}
   3588 
   3589 	SYN_HASHALL(sc->sc_hash, &sc->sc_src.sa, &sc->sc_dst.sa);
   3590 	sc->sc_bucketidx = sc->sc_hash % tcp_syn_cache_size;
   3591 	scp = &tcp_syn_cache[sc->sc_bucketidx];
   3592 
   3593 	/*
   3594 	 * Make sure that we don't overflow the per-bucket
   3595 	 * limit or the total cache size limit.
   3596 	 */
   3597 	s = splsoftnet();
   3598 	if (scp->sch_length >= tcp_syn_bucket_limit) {
   3599 		TCP_STATINC(TCP_STAT_SC_BUCKETOVERFLOW);
   3600 		/*
   3601 		 * The bucket is full.  Toss the oldest element in the
   3602 		 * bucket.  This will be the first entry in the bucket.
   3603 		 */
   3604 		sc2 = TAILQ_FIRST(&scp->sch_bucket);
   3605 #ifdef DIAGNOSTIC
   3606 		/*
   3607 		 * This should never happen; we should always find an
   3608 		 * entry in our bucket.
   3609 		 */
   3610 		if (sc2 == NULL)
   3611 			panic("syn_cache_insert: bucketoverflow: impossible");
   3612 #endif
   3613 		syn_cache_rm(sc2);
   3614 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3615 	} else if (syn_cache_count >= tcp_syn_cache_limit) {
   3616 		struct syn_cache_head *scp2, *sce;
   3617 
   3618 		TCP_STATINC(TCP_STAT_SC_OVERFLOWED);
   3619 		/*
   3620 		 * The cache is full.  Toss the oldest entry in the
   3621 		 * first non-empty bucket we can find.
   3622 		 *
   3623 		 * XXX We would really like to toss the oldest
   3624 		 * entry in the cache, but we hope that this
   3625 		 * condition doesn't happen very often.
   3626 		 */
   3627 		scp2 = scp;
   3628 		if (TAILQ_EMPTY(&scp2->sch_bucket)) {
   3629 			sce = &tcp_syn_cache[tcp_syn_cache_size];
   3630 			for (++scp2; scp2 != scp; scp2++) {
   3631 				if (scp2 >= sce)
   3632 					scp2 = &tcp_syn_cache[0];
   3633 				if (! TAILQ_EMPTY(&scp2->sch_bucket))
   3634 					break;
   3635 			}
   3636 #ifdef DIAGNOSTIC
   3637 			/*
   3638 			 * This should never happen; we should always find a
   3639 			 * non-empty bucket.
   3640 			 */
   3641 			if (scp2 == scp)
   3642 				panic("syn_cache_insert: cacheoverflow: "
   3643 				    "impossible");
   3644 #endif
   3645 		}
   3646 		sc2 = TAILQ_FIRST(&scp2->sch_bucket);
   3647 		syn_cache_rm(sc2);
   3648 		syn_cache_put(sc2);	/* calls pool_put but see spl above */
   3649 	}
   3650 
   3651 	/*
   3652 	 * Initialize the entry's timer.
   3653 	 */
   3654 	sc->sc_rxttot = 0;
   3655 	sc->sc_rxtshift = 0;
   3656 	syn_cache_timer_arm(sc);
   3657 
   3658 	/* Link it from tcpcb entry */
   3659 	LIST_INSERT_HEAD(&tp->t_sc, sc, sc_tpq);
   3660 
   3661 	/* Put it into the bucket. */
   3662 	TAILQ_INSERT_TAIL(&scp->sch_bucket, sc, sc_bucketq);
   3663 	scp->sch_length++;
   3664 	syn_cache_count++;
   3665 
   3666 	TCP_STATINC(TCP_STAT_SC_ADDED);
   3667 	splx(s);
   3668 }
   3669 
   3670 /*
   3671  * Walk the timer queues, looking for SYN,ACKs that need to be retransmitted.
   3672  * If we have retransmitted an entry the maximum number of times, expire
   3673  * that entry.
   3674  */
   3675 static void
   3676 syn_cache_timer(void *arg)
   3677 {
   3678 	struct syn_cache *sc = arg;
   3679 
   3680 	mutex_enter(softnet_lock);
   3681 	KERNEL_LOCK(1, NULL);
   3682 
   3683 	callout_ack(&sc->sc_timer);
   3684 
   3685 	if (__predict_false(sc->sc_flags & SCF_DEAD)) {
   3686 		TCP_STATINC(TCP_STAT_SC_DELAYED_FREE);
   3687 		goto free;
   3688 	}
   3689 
   3690 	if (__predict_false(sc->sc_rxtshift == TCP_MAXRXTSHIFT)) {
   3691 		/* Drop it -- too many retransmissions. */
   3692 		goto dropit;
   3693 	}
   3694 
   3695 	/*
   3696 	 * Compute the total amount of time this entry has
   3697 	 * been on a queue.  If this entry has been on longer
   3698 	 * than the keep alive timer would allow, expire it.
   3699 	 */
   3700 	sc->sc_rxttot += sc->sc_rxtcur;
   3701 	if (sc->sc_rxttot >= MIN(tcp_keepinit, TCP_TIMER_MAXTICKS))
   3702 		goto dropit;
   3703 
   3704 	TCP_STATINC(TCP_STAT_SC_RETRANSMITTED);
   3705 	(void)syn_cache_respond(sc);
   3706 
   3707 	/* Advance the timer back-off. */
   3708 	sc->sc_rxtshift++;
   3709 	syn_cache_timer_arm(sc);
   3710 
   3711 	goto out;
   3712 
   3713  dropit:
   3714 	TCP_STATINC(TCP_STAT_SC_TIMED_OUT);
   3715 	syn_cache_rm(sc);
   3716 	if (sc->sc_ipopts)
   3717 		(void) m_free(sc->sc_ipopts);
   3718 	rtcache_free(&sc->sc_route);
   3719 
   3720  free:
   3721 	callout_destroy(&sc->sc_timer);
   3722 	pool_put(&syn_cache_pool, sc);
   3723 
   3724  out:
   3725 	KERNEL_UNLOCK_ONE(NULL);
   3726 	mutex_exit(softnet_lock);
   3727 }
   3728 
   3729 /*
   3730  * Remove syn cache created by the specified tcb entry,
   3731  * because this does not make sense to keep them
   3732  * (if there's no tcb entry, syn cache entry will never be used)
   3733  */
   3734 void
   3735 syn_cache_cleanup(struct tcpcb *tp)
   3736 {
   3737 	struct syn_cache *sc, *nsc;
   3738 	int s;
   3739 
   3740 	s = splsoftnet();
   3741 
   3742 	for (sc = LIST_FIRST(&tp->t_sc); sc != NULL; sc = nsc) {
   3743 		nsc = LIST_NEXT(sc, sc_tpq);
   3744 
   3745 #ifdef DIAGNOSTIC
   3746 		if (sc->sc_tp != tp)
   3747 			panic("invalid sc_tp in syn_cache_cleanup");
   3748 #endif
   3749 		syn_cache_rm(sc);
   3750 		syn_cache_put(sc);	/* calls pool_put but see spl above */
   3751 	}
   3752 	/* just for safety */
   3753 	LIST_INIT(&tp->t_sc);
   3754 
   3755 	splx(s);
   3756 }
   3757 
   3758 /*
   3759  * Find an entry in the syn cache.
   3760  */
   3761 struct syn_cache *
   3762 syn_cache_lookup(const struct sockaddr *src, const struct sockaddr *dst,
   3763     struct syn_cache_head **headp)
   3764 {
   3765 	struct syn_cache *sc;
   3766 	struct syn_cache_head *scp;
   3767 	u_int32_t hash;
   3768 	int s;
   3769 
   3770 	SYN_HASHALL(hash, src, dst);
   3771 
   3772 	scp = &tcp_syn_cache[hash % tcp_syn_cache_size];
   3773 	*headp = scp;
   3774 	s = splsoftnet();
   3775 	for (sc = TAILQ_FIRST(&scp->sch_bucket); sc != NULL;
   3776 	     sc = TAILQ_NEXT(sc, sc_bucketq)) {
   3777 		if (sc->sc_hash != hash)
   3778 			continue;
   3779 		if (!memcmp(&sc->sc_src, src, src->sa_len) &&
   3780 		    !memcmp(&sc->sc_dst, dst, dst->sa_len)) {
   3781 			splx(s);
   3782 			return (sc);
   3783 		}
   3784 	}
   3785 	splx(s);
   3786 	return (NULL);
   3787 }
   3788 
   3789 /*
   3790  * This function gets called when we receive an ACK for a socket in the
   3791  * LISTEN state. We look up the connection in the syn cache, and if it's
   3792  * there, we pull it out of the cache and turn it into a full-blown
   3793  * connection in the SYN-RECEIVED state.
   3794  *
   3795  * The return values may not be immediately obvious, and their effects
   3796  * can be subtle, so here they are:
   3797  *
   3798  *	NULL	SYN was not found in cache; caller should drop the
   3799  *		packet and send an RST.
   3800  *
   3801  *	-1	We were unable to create the new connection, and are
   3802  *		aborting it.  An ACK,RST is being sent to the peer
   3803  *		(unless we got screwey sequence numbers; see below),
   3804  *		because the 3-way handshake has been completed.  Caller
   3805  *		should not free the mbuf, since we may be using it.  If
   3806  *		we are not, we will free it.
   3807  *
   3808  *	Otherwise, the return value is a pointer to the new socket
   3809  *	associated with the connection.
   3810  */
   3811 struct socket *
   3812 syn_cache_get(struct sockaddr *src, struct sockaddr *dst,
   3813     struct tcphdr *th, struct socket *so, struct mbuf *m)
   3814 {
   3815 	struct syn_cache *sc;
   3816 	struct syn_cache_head *scp;
   3817 	struct inpcb *inp = NULL;
   3818 #ifdef INET6
   3819 	struct in6pcb *in6p = NULL;
   3820 #endif
   3821 	struct tcpcb *tp;
   3822 	int s;
   3823 	struct socket *oso;
   3824 
   3825 	s = splsoftnet();
   3826 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   3827 		splx(s);
   3828 		return NULL;
   3829 	}
   3830 
   3831 	/*
   3832 	 * Verify the sequence and ack numbers.  Try getting the correct
   3833 	 * response again.
   3834 	 */
   3835 	if ((th->th_ack != sc->sc_iss + 1) ||
   3836 	    SEQ_LEQ(th->th_seq, sc->sc_irs) ||
   3837 	    SEQ_GT(th->th_seq, sc->sc_irs + 1 + sc->sc_win)) {
   3838 		m_freem(m);
   3839 		(void)syn_cache_respond(sc);
   3840 		splx(s);
   3841 		return ((struct socket *)(-1));
   3842 	}
   3843 
   3844 	/* Remove this cache entry */
   3845 	syn_cache_rm(sc);
   3846 	splx(s);
   3847 
   3848 	/*
   3849 	 * Ok, create the full blown connection, and set things up
   3850 	 * as they would have been set up if we had created the
   3851 	 * connection when the SYN arrived.  If we can't create
   3852 	 * the connection, abort it.
   3853 	 */
   3854 	/*
   3855 	 * inp still has the OLD in_pcb stuff, set the
   3856 	 * v6-related flags on the new guy, too.   This is
   3857 	 * done particularly for the case where an AF_INET6
   3858 	 * socket is bound only to a port, and a v4 connection
   3859 	 * comes in on that port.
   3860 	 * we also copy the flowinfo from the original pcb
   3861 	 * to the new one.
   3862 	 */
   3863 	oso = so;
   3864 	so = sonewconn(so, true);
   3865 	if (so == NULL)
   3866 		goto resetandabort;
   3867 
   3868 	switch (so->so_proto->pr_domain->dom_family) {
   3869 	case AF_INET:
   3870 		inp = sotoinpcb(so);
   3871 		break;
   3872 #ifdef INET6
   3873 	case AF_INET6:
   3874 		in6p = sotoin6pcb(so);
   3875 		break;
   3876 #endif
   3877 	}
   3878 
   3879 	switch (src->sa_family) {
   3880 	case AF_INET:
   3881 		if (inp) {
   3882 			inp->inp_laddr = ((struct sockaddr_in *)dst)->sin_addr;
   3883 			inp->inp_lport = ((struct sockaddr_in *)dst)->sin_port;
   3884 			inp->inp_options = ip_srcroute(m);
   3885 			in_pcbstate(inp, INP_BOUND);
   3886 			if (inp->inp_options == NULL) {
   3887 				inp->inp_options = sc->sc_ipopts;
   3888 				sc->sc_ipopts = NULL;
   3889 			}
   3890 		}
   3891 #ifdef INET6
   3892 		else if (in6p) {
   3893 			/* IPv4 packet to AF_INET6 socket */
   3894 			memset(&in6p->in6p_laddr, 0, sizeof(in6p->in6p_laddr));
   3895 			in6p->in6p_laddr.s6_addr16[5] = htons(0xffff);
   3896 			bcopy(&((struct sockaddr_in *)dst)->sin_addr,
   3897 				&in6p->in6p_laddr.s6_addr32[3],
   3898 				sizeof(((struct sockaddr_in *)dst)->sin_addr));
   3899 			in6p->in6p_lport = ((struct sockaddr_in *)dst)->sin_port;
   3900 			in6totcpcb(in6p)->t_family = AF_INET;
   3901 			if (sotoin6pcb(oso)->in6p_flags & IN6P_IPV6_V6ONLY)
   3902 				in6p->in6p_flags |= IN6P_IPV6_V6ONLY;
   3903 			else
   3904 				in6p->in6p_flags &= ~IN6P_IPV6_V6ONLY;
   3905 			in6_pcbstate(in6p, IN6P_BOUND);
   3906 		}
   3907 #endif
   3908 		break;
   3909 #ifdef INET6
   3910 	case AF_INET6:
   3911 		if (in6p) {
   3912 			in6p->in6p_laddr = ((struct sockaddr_in6 *)dst)->sin6_addr;
   3913 			in6p->in6p_lport = ((struct sockaddr_in6 *)dst)->sin6_port;
   3914 			in6_pcbstate(in6p, IN6P_BOUND);
   3915 		}
   3916 		break;
   3917 #endif
   3918 	}
   3919 
   3920 #ifdef INET6
   3921 	if (in6p && in6totcpcb(in6p)->t_family == AF_INET6 && sotoinpcb(oso)) {
   3922 		struct in6pcb *oin6p = sotoin6pcb(oso);
   3923 		/* inherit socket options from the listening socket */
   3924 		in6p->in6p_flags |= (oin6p->in6p_flags & IN6P_CONTROLOPTS);
   3925 		if (in6p->in6p_flags & IN6P_CONTROLOPTS) {
   3926 			m_freem(in6p->in6p_options);
   3927 			in6p->in6p_options = NULL;
   3928 		}
   3929 		ip6_savecontrol(in6p, &in6p->in6p_options,
   3930 		    mtod(m, struct ip6_hdr *), m);
   3931 	}
   3932 #endif
   3933 
   3934 	/*
   3935 	 * Give the new socket our cached route reference.
   3936 	 */
   3937 	if (inp) {
   3938 		rtcache_copy(&inp->inp_route, &sc->sc_route);
   3939 		rtcache_free(&sc->sc_route);
   3940 	}
   3941 #ifdef INET6
   3942 	else {
   3943 		rtcache_copy(&in6p->in6p_route, &sc->sc_route);
   3944 		rtcache_free(&sc->sc_route);
   3945 	}
   3946 #endif
   3947 
   3948 	if (inp) {
   3949 		struct sockaddr_in sin;
   3950 		memcpy(&sin, src, src->sa_len);
   3951 		if (in_pcbconnect(inp, &sin, &lwp0)) {
   3952 			goto resetandabort;
   3953 		}
   3954 	}
   3955 #ifdef INET6
   3956 	else if (in6p) {
   3957 		struct sockaddr_in6 sin6;
   3958 		memcpy(&sin6, src, src->sa_len);
   3959 		if (src->sa_family == AF_INET) {
   3960 			/* IPv4 packet to AF_INET6 socket */
   3961 			in6_sin_2_v4mapsin6((struct sockaddr_in *)src, &sin6);
   3962 		}
   3963 		if (in6_pcbconnect(in6p, &sin6, NULL)) {
   3964 			goto resetandabort;
   3965 		}
   3966 	}
   3967 #endif
   3968 	else {
   3969 		goto resetandabort;
   3970 	}
   3971 
   3972 	if (inp)
   3973 		tp = intotcpcb(inp);
   3974 #ifdef INET6
   3975 	else if (in6p)
   3976 		tp = in6totcpcb(in6p);
   3977 #endif
   3978 	else
   3979 		tp = NULL;
   3980 
   3981 	tp->t_flags = sototcpcb(oso)->t_flags & TF_NODELAY;
   3982 	if (sc->sc_request_r_scale != 15) {
   3983 		tp->requested_s_scale = sc->sc_requested_s_scale;
   3984 		tp->request_r_scale = sc->sc_request_r_scale;
   3985 		tp->snd_scale = sc->sc_requested_s_scale;
   3986 		tp->rcv_scale = sc->sc_request_r_scale;
   3987 		tp->t_flags |= TF_REQ_SCALE|TF_RCVD_SCALE;
   3988 	}
   3989 	if (sc->sc_flags & SCF_TIMESTAMP)
   3990 		tp->t_flags |= TF_REQ_TSTMP|TF_RCVD_TSTMP;
   3991 	tp->ts_timebase = sc->sc_timebase;
   3992 
   3993 	tp->t_template = tcp_template(tp);
   3994 	if (tp->t_template == 0) {
   3995 		tp = tcp_drop(tp, ENOBUFS);	/* destroys socket */
   3996 		so = NULL;
   3997 		m_freem(m);
   3998 		goto abort;
   3999 	}
   4000 
   4001 	tp->iss = sc->sc_iss;
   4002 	tp->irs = sc->sc_irs;
   4003 	tcp_sendseqinit(tp);
   4004 	tcp_rcvseqinit(tp);
   4005 	tp->t_state = TCPS_SYN_RECEIVED;
   4006 	TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepinit);
   4007 	TCP_STATINC(TCP_STAT_ACCEPTS);
   4008 
   4009 	if ((sc->sc_flags & SCF_SACK_PERMIT) && tcp_do_sack)
   4010 		tp->t_flags |= TF_WILL_SACK;
   4011 
   4012 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tcp_do_ecn)
   4013 		tp->t_flags |= TF_ECN_PERMIT;
   4014 
   4015 #ifdef TCP_SIGNATURE
   4016 	if (sc->sc_flags & SCF_SIGNATURE)
   4017 		tp->t_flags |= TF_SIGNATURE;
   4018 #endif
   4019 
   4020 	/* Initialize tp->t_ourmss before we deal with the peer's! */
   4021 	tp->t_ourmss = sc->sc_ourmaxseg;
   4022 	tcp_mss_from_peer(tp, sc->sc_peermaxseg);
   4023 
   4024 	/*
   4025 	 * Initialize the initial congestion window.  If we
   4026 	 * had to retransmit the SYN,ACK, we must initialize cwnd
   4027 	 * to 1 segment (i.e. the Loss Window).
   4028 	 */
   4029 	if (sc->sc_rxtshift)
   4030 		tp->snd_cwnd = tp->t_peermss;
   4031 	else {
   4032 		int ss = tcp_init_win;
   4033 		if (inp != NULL && in_localaddr(inp->inp_faddr))
   4034 			ss = tcp_init_win_local;
   4035 #ifdef INET6
   4036 		if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   4037 			ss = tcp_init_win_local;
   4038 #endif
   4039 		tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   4040 	}
   4041 
   4042 	tcp_rmx_rtt(tp);
   4043 	tp->snd_wl1 = sc->sc_irs;
   4044 	tp->rcv_up = sc->sc_irs + 1;
   4045 
   4046 	/*
   4047 	 * This is what whould have happened in tcp_output() when
   4048 	 * the SYN,ACK was sent.
   4049 	 */
   4050 	tp->snd_up = tp->snd_una;
   4051 	tp->snd_max = tp->snd_nxt = tp->iss+1;
   4052 	TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   4053 	if (sc->sc_win > 0 && SEQ_GT(tp->rcv_nxt + sc->sc_win, tp->rcv_adv))
   4054 		tp->rcv_adv = tp->rcv_nxt + sc->sc_win;
   4055 	tp->last_ack_sent = tp->rcv_nxt;
   4056 	tp->t_partialacks = -1;
   4057 	tp->t_dupacks = 0;
   4058 
   4059 	TCP_STATINC(TCP_STAT_SC_COMPLETED);
   4060 	s = splsoftnet();
   4061 	syn_cache_put(sc);
   4062 	splx(s);
   4063 	return so;
   4064 
   4065 resetandabort:
   4066 	(void)tcp_respond(NULL, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   4067 abort:
   4068 	if (so != NULL) {
   4069 		(void) soqremque(so, 1);
   4070 		(void) soabort(so);
   4071 		mutex_enter(softnet_lock);
   4072 	}
   4073 	s = splsoftnet();
   4074 	syn_cache_put(sc);
   4075 	splx(s);
   4076 	TCP_STATINC(TCP_STAT_SC_ABORTED);
   4077 	return ((struct socket *)(-1));
   4078 }
   4079 
   4080 /*
   4081  * This function is called when we get a RST for a
   4082  * non-existent connection, so that we can see if the
   4083  * connection is in the syn cache.  If it is, zap it.
   4084  */
   4085 
   4086 void
   4087 syn_cache_reset(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th)
   4088 {
   4089 	struct syn_cache *sc;
   4090 	struct syn_cache_head *scp;
   4091 	int s = splsoftnet();
   4092 
   4093 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4094 		splx(s);
   4095 		return;
   4096 	}
   4097 	if (SEQ_LT(th->th_seq, sc->sc_irs) ||
   4098 	    SEQ_GT(th->th_seq, sc->sc_irs+1)) {
   4099 		splx(s);
   4100 		return;
   4101 	}
   4102 	syn_cache_rm(sc);
   4103 	TCP_STATINC(TCP_STAT_SC_RESET);
   4104 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4105 	splx(s);
   4106 }
   4107 
   4108 void
   4109 syn_cache_unreach(const struct sockaddr *src, const struct sockaddr *dst,
   4110     struct tcphdr *th)
   4111 {
   4112 	struct syn_cache *sc;
   4113 	struct syn_cache_head *scp;
   4114 	int s;
   4115 
   4116 	s = splsoftnet();
   4117 	if ((sc = syn_cache_lookup(src, dst, &scp)) == NULL) {
   4118 		splx(s);
   4119 		return;
   4120 	}
   4121 	/* If the sequence number != sc_iss, then it's a bogus ICMP msg */
   4122 	if (ntohl(th->th_seq) != sc->sc_iss) {
   4123 		splx(s);
   4124 		return;
   4125 	}
   4126 
   4127 	/*
   4128 	 * If we've retransmitted 3 times and this is our second error,
   4129 	 * we remove the entry.  Otherwise, we allow it to continue on.
   4130 	 * This prevents us from incorrectly nuking an entry during a
   4131 	 * spurious network outage.
   4132 	 *
   4133 	 * See tcp_notify().
   4134 	 */
   4135 	if ((sc->sc_flags & SCF_UNREACH) == 0 || sc->sc_rxtshift < 3) {
   4136 		sc->sc_flags |= SCF_UNREACH;
   4137 		splx(s);
   4138 		return;
   4139 	}
   4140 
   4141 	syn_cache_rm(sc);
   4142 	TCP_STATINC(TCP_STAT_SC_UNREACH);
   4143 	syn_cache_put(sc);	/* calls pool_put but see spl above */
   4144 	splx(s);
   4145 }
   4146 
   4147 /*
   4148  * Given a LISTEN socket and an inbound SYN request, add this to the syn
   4149  * cache, and send back a segment:
   4150  *	<SEQ=ISS><ACK=RCV_NXT><CTL=SYN,ACK>
   4151  * to the source.
   4152  *
   4153  * IMPORTANT NOTE: We do _NOT_ ACK data that might accompany the SYN.
   4154  * Doing so would require that we hold onto the data and deliver it
   4155  * to the application.  However, if we are the target of a SYN-flood
   4156  * DoS attack, an attacker could send data which would eventually
   4157  * consume all available buffer space if it were ACKed.  By not ACKing
   4158  * the data, we avoid this DoS scenario.
   4159  */
   4160 int
   4161 syn_cache_add(struct sockaddr *src, struct sockaddr *dst, struct tcphdr *th,
   4162     unsigned int toff, struct socket *so, struct mbuf *m, u_char *optp,
   4163     int optlen, struct tcp_opt_info *oi)
   4164 {
   4165 	struct tcpcb tb, *tp;
   4166 	long win;
   4167 	struct syn_cache *sc;
   4168 	struct syn_cache_head *scp;
   4169 	struct mbuf *ipopts;
   4170 	int s;
   4171 
   4172 	tp = sototcpcb(so);
   4173 
   4174 	/*
   4175 	 * Initialize some local state.
   4176 	 */
   4177 	win = sbspace(&so->so_rcv);
   4178 	if (win > TCP_MAXWIN)
   4179 		win = TCP_MAXWIN;
   4180 
   4181 #ifdef TCP_SIGNATURE
   4182 	if (optp || (tp->t_flags & TF_SIGNATURE))
   4183 #else
   4184 	if (optp)
   4185 #endif
   4186 	{
   4187 		tb.t_flags = tcp_do_rfc1323 ? (TF_REQ_SCALE|TF_REQ_TSTMP) : 0;
   4188 #ifdef TCP_SIGNATURE
   4189 		tb.t_flags |= (tp->t_flags & TF_SIGNATURE);
   4190 #endif
   4191 		tb.t_state = TCPS_LISTEN;
   4192 		if (tcp_dooptions(&tb, optp, optlen, th, m, toff, oi) < 0)
   4193 			return 0;
   4194 	} else
   4195 		tb.t_flags = 0;
   4196 
   4197 	switch (src->sa_family) {
   4198 	case AF_INET:
   4199 		/* Remember the IP options, if any. */
   4200 		ipopts = ip_srcroute(m);
   4201 		break;
   4202 	default:
   4203 		ipopts = NULL;
   4204 	}
   4205 
   4206 	/*
   4207 	 * See if we already have an entry for this connection.
   4208 	 * If we do, resend the SYN,ACK.  We do not count this
   4209 	 * as a retransmission (XXX though maybe we should).
   4210 	 */
   4211 	if ((sc = syn_cache_lookup(src, dst, &scp)) != NULL) {
   4212 		TCP_STATINC(TCP_STAT_SC_DUPESYN);
   4213 		if (ipopts) {
   4214 			/*
   4215 			 * If we were remembering a previous source route,
   4216 			 * forget it and use the new one we've been given.
   4217 			 */
   4218 			if (sc->sc_ipopts)
   4219 				(void)m_free(sc->sc_ipopts);
   4220 			sc->sc_ipopts = ipopts;
   4221 		}
   4222 		sc->sc_timestamp = tb.ts_recent;
   4223 		m_freem(m);
   4224 		if (syn_cache_respond(sc) == 0) {
   4225 			uint64_t *tcps = TCP_STAT_GETREF();
   4226 			tcps[TCP_STAT_SNDACKS]++;
   4227 			tcps[TCP_STAT_SNDTOTAL]++;
   4228 			TCP_STAT_PUTREF();
   4229 		}
   4230 		return 1;
   4231 	}
   4232 
   4233 	s = splsoftnet();
   4234 	sc = pool_get(&syn_cache_pool, PR_NOWAIT);
   4235 	splx(s);
   4236 	if (sc == NULL) {
   4237 		if (ipopts)
   4238 			(void)m_free(ipopts);
   4239 		return 0;
   4240 	}
   4241 
   4242 	/*
   4243 	 * Fill in the cache, and put the necessary IP and TCP
   4244 	 * options into the reply.
   4245 	 */
   4246 	memset(sc, 0, sizeof(struct syn_cache));
   4247 	callout_init(&sc->sc_timer, CALLOUT_MPSAFE);
   4248 	memcpy(&sc->sc_src, src, src->sa_len);
   4249 	memcpy(&sc->sc_dst, dst, dst->sa_len);
   4250 	sc->sc_flags = 0;
   4251 	sc->sc_ipopts = ipopts;
   4252 	sc->sc_irs = th->th_seq;
   4253 	switch (src->sa_family) {
   4254 	case AF_INET:
   4255 	    {
   4256 		struct sockaddr_in *srcin = (void *)src;
   4257 		struct sockaddr_in *dstin = (void *)dst;
   4258 
   4259 		sc->sc_iss = tcp_new_iss1(&dstin->sin_addr,
   4260 		    &srcin->sin_addr, dstin->sin_port,
   4261 		    srcin->sin_port, sizeof(dstin->sin_addr), 0);
   4262 		break;
   4263 	    }
   4264 #ifdef INET6
   4265 	case AF_INET6:
   4266 	    {
   4267 		struct sockaddr_in6 *srcin6 = (void *)src;
   4268 		struct sockaddr_in6 *dstin6 = (void *)dst;
   4269 
   4270 		sc->sc_iss = tcp_new_iss1(&dstin6->sin6_addr,
   4271 		    &srcin6->sin6_addr, dstin6->sin6_port,
   4272 		    srcin6->sin6_port, sizeof(dstin6->sin6_addr), 0);
   4273 		break;
   4274 	    }
   4275 #endif
   4276 	}
   4277 	sc->sc_peermaxseg = oi->maxseg;
   4278 	sc->sc_ourmaxseg = tcp_mss_to_advertise(m->m_flags & M_PKTHDR ?
   4279 	    m_get_rcvif_NOMPSAFE(m) : NULL, sc->sc_src.sa.sa_family);
   4280 	sc->sc_win = win;
   4281 	sc->sc_timebase = tcp_now - 1;	/* see tcp_newtcpcb() */
   4282 	sc->sc_timestamp = tb.ts_recent;
   4283 	if ((tb.t_flags & (TF_REQ_TSTMP|TF_RCVD_TSTMP)) ==
   4284 	    (TF_REQ_TSTMP|TF_RCVD_TSTMP))
   4285 		sc->sc_flags |= SCF_TIMESTAMP;
   4286 	if ((tb.t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   4287 	    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   4288 		sc->sc_requested_s_scale = tb.requested_s_scale;
   4289 		sc->sc_request_r_scale = 0;
   4290 		/*
   4291 		 * Pick the smallest possible scaling factor that
   4292 		 * will still allow us to scale up to sb_max.
   4293 		 *
   4294 		 * We do this because there are broken firewalls that
   4295 		 * will corrupt the window scale option, leading to
   4296 		 * the other endpoint believing that our advertised
   4297 		 * window is unscaled.  At scale factors larger than
   4298 		 * 5 the unscaled window will drop below 1500 bytes,
   4299 		 * leading to serious problems when traversing these
   4300 		 * broken firewalls.
   4301 		 *
   4302 		 * With the default sbmax of 256K, a scale factor
   4303 		 * of 3 will be chosen by this algorithm.  Those who
   4304 		 * choose a larger sbmax should watch out
   4305 		 * for the compatiblity problems mentioned above.
   4306 		 *
   4307 		 * RFC1323: The Window field in a SYN (i.e., a <SYN>
   4308 		 * or <SYN,ACK>) segment itself is never scaled.
   4309 		 */
   4310 		while (sc->sc_request_r_scale < TCP_MAX_WINSHIFT &&
   4311 		    (TCP_MAXWIN << sc->sc_request_r_scale) < sb_max)
   4312 			sc->sc_request_r_scale++;
   4313 	} else {
   4314 		sc->sc_requested_s_scale = 15;
   4315 		sc->sc_request_r_scale = 15;
   4316 	}
   4317 	if ((tb.t_flags & TF_SACK_PERMIT) && tcp_do_sack)
   4318 		sc->sc_flags |= SCF_SACK_PERMIT;
   4319 
   4320 	/*
   4321 	 * ECN setup packet received.
   4322 	 */
   4323 	if ((th->th_flags & (TH_ECE|TH_CWR)) && tcp_do_ecn)
   4324 		sc->sc_flags |= SCF_ECN_PERMIT;
   4325 
   4326 #ifdef TCP_SIGNATURE
   4327 	if (tb.t_flags & TF_SIGNATURE)
   4328 		sc->sc_flags |= SCF_SIGNATURE;
   4329 #endif
   4330 	sc->sc_tp = tp;
   4331 	m_freem(m);
   4332 	if (syn_cache_respond(sc) == 0) {
   4333 		uint64_t *tcps = TCP_STAT_GETREF();
   4334 		tcps[TCP_STAT_SNDACKS]++;
   4335 		tcps[TCP_STAT_SNDTOTAL]++;
   4336 		TCP_STAT_PUTREF();
   4337 		syn_cache_insert(sc, tp);
   4338 	} else {
   4339 		s = splsoftnet();
   4340 		/*
   4341 		 * syn_cache_put() will try to schedule the timer, so
   4342 		 * we need to initialize it
   4343 		 */
   4344 		syn_cache_timer_arm(sc);
   4345 		syn_cache_put(sc);
   4346 		splx(s);
   4347 		TCP_STATINC(TCP_STAT_SC_DROPPED);
   4348 	}
   4349 	return 1;
   4350 }
   4351 
   4352 /*
   4353  * syn_cache_respond: (re)send SYN+ACK.
   4354  *
   4355  * Returns 0 on success.
   4356  */
   4357 
   4358 int
   4359 syn_cache_respond(struct syn_cache *sc)
   4360 {
   4361 #ifdef INET6
   4362 	struct rtentry *rt = NULL;
   4363 #endif
   4364 	struct route *ro;
   4365 	u_int8_t *optp;
   4366 	int optlen, error;
   4367 	u_int16_t tlen;
   4368 	struct ip *ip = NULL;
   4369 #ifdef INET6
   4370 	struct ip6_hdr *ip6 = NULL;
   4371 #endif
   4372 	struct tcpcb *tp;
   4373 	struct tcphdr *th;
   4374 	struct mbuf *m;
   4375 	u_int hlen;
   4376 #ifdef TCP_SIGNATURE
   4377 	struct secasvar *sav = NULL;
   4378 	u_int8_t *sigp = NULL;
   4379 #endif
   4380 
   4381 	ro = &sc->sc_route;
   4382 	switch (sc->sc_src.sa.sa_family) {
   4383 	case AF_INET:
   4384 		hlen = sizeof(struct ip);
   4385 		break;
   4386 #ifdef INET6
   4387 	case AF_INET6:
   4388 		hlen = sizeof(struct ip6_hdr);
   4389 		break;
   4390 #endif
   4391 	default:
   4392 		return EAFNOSUPPORT;
   4393 	}
   4394 
   4395 	/* Worst case scanario, since we don't know the option size yet. */
   4396 	tlen = hlen + sizeof(struct tcphdr) + MAX_TCPOPTLEN;
   4397 	KASSERT(max_linkhdr + tlen <= MCLBYTES);
   4398 
   4399 	/*
   4400 	 * Create the IP+TCP header from scratch.
   4401 	 */
   4402 	MGETHDR(m, M_DONTWAIT, MT_DATA);
   4403 	if (m && (max_linkhdr + tlen) > MHLEN) {
   4404 		MCLGET(m, M_DONTWAIT);
   4405 		if ((m->m_flags & M_EXT) == 0) {
   4406 			m_freem(m);
   4407 			m = NULL;
   4408 		}
   4409 	}
   4410 	if (m == NULL)
   4411 		return ENOBUFS;
   4412 	MCLAIM(m, &tcp_tx_mowner);
   4413 
   4414 	tp = sc->sc_tp;
   4415 
   4416 	/* Fixup the mbuf. */
   4417 	m->m_data += max_linkhdr;
   4418 	m_reset_rcvif(m);
   4419 	memset(mtod(m, void *), 0, tlen);
   4420 
   4421 	switch (sc->sc_src.sa.sa_family) {
   4422 	case AF_INET:
   4423 		ip = mtod(m, struct ip *);
   4424 		ip->ip_v = 4;
   4425 		ip->ip_dst = sc->sc_src.sin.sin_addr;
   4426 		ip->ip_src = sc->sc_dst.sin.sin_addr;
   4427 		ip->ip_p = IPPROTO_TCP;
   4428 		th = (struct tcphdr *)(ip + 1);
   4429 		th->th_dport = sc->sc_src.sin.sin_port;
   4430 		th->th_sport = sc->sc_dst.sin.sin_port;
   4431 		break;
   4432 #ifdef INET6
   4433 	case AF_INET6:
   4434 		ip6 = mtod(m, struct ip6_hdr *);
   4435 		ip6->ip6_vfc = IPV6_VERSION;
   4436 		ip6->ip6_dst = sc->sc_src.sin6.sin6_addr;
   4437 		ip6->ip6_src = sc->sc_dst.sin6.sin6_addr;
   4438 		ip6->ip6_nxt = IPPROTO_TCP;
   4439 		/* ip6_plen will be updated in ip6_output() */
   4440 		th = (struct tcphdr *)(ip6 + 1);
   4441 		th->th_dport = sc->sc_src.sin6.sin6_port;
   4442 		th->th_sport = sc->sc_dst.sin6.sin6_port;
   4443 		break;
   4444 #endif
   4445 	default:
   4446 		panic("%s: impossible (1)", __func__);
   4447 	}
   4448 
   4449 	th->th_seq = htonl(sc->sc_iss);
   4450 	th->th_ack = htonl(sc->sc_irs + 1);
   4451 	th->th_flags = TH_SYN|TH_ACK;
   4452 	th->th_win = htons(sc->sc_win);
   4453 	/* th_x2, th_sum, th_urp already 0 from memset */
   4454 
   4455 	/* Tack on the TCP options. */
   4456 	optp = (u_int8_t *)(th + 1);
   4457 	optlen = 0;
   4458 	*optp++ = TCPOPT_MAXSEG;
   4459 	*optp++ = TCPOLEN_MAXSEG;
   4460 	*optp++ = (sc->sc_ourmaxseg >> 8) & 0xff;
   4461 	*optp++ = sc->sc_ourmaxseg & 0xff;
   4462 	optlen += TCPOLEN_MAXSEG;
   4463 
   4464 	if (sc->sc_request_r_scale != 15) {
   4465 		*((u_int32_t *)optp) = htonl(TCPOPT_NOP << 24 |
   4466 		    TCPOPT_WINDOW << 16 | TCPOLEN_WINDOW << 8 |
   4467 		    sc->sc_request_r_scale);
   4468 		optp += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4469 		optlen += TCPOLEN_WINDOW + TCPOLEN_NOP;
   4470 	}
   4471 
   4472 	if (sc->sc_flags & SCF_SACK_PERMIT) {
   4473 		/* Let the peer know that we will SACK. */
   4474 		*optp++ = TCPOPT_SACK_PERMITTED;
   4475 		*optp++ = TCPOLEN_SACK_PERMITTED;
   4476 		optlen += TCPOLEN_SACK_PERMITTED;
   4477 	}
   4478 
   4479 	if (sc->sc_flags & SCF_TIMESTAMP) {
   4480 		while (optlen % 4 != 2) {
   4481 			optlen += TCPOLEN_NOP;
   4482 			*optp++ = TCPOPT_NOP;
   4483 		}
   4484 		*optp++ = TCPOPT_TIMESTAMP;
   4485 		*optp++ = TCPOLEN_TIMESTAMP;
   4486 		u_int32_t *lp = (u_int32_t *)(optp);
   4487 		/* Form timestamp option as shown in appendix A of RFC 1323. */
   4488 		*lp++ = htonl(SYN_CACHE_TIMESTAMP(sc));
   4489 		*lp   = htonl(sc->sc_timestamp);
   4490 		optp += TCPOLEN_TIMESTAMP - 2;
   4491 		optlen += TCPOLEN_TIMESTAMP;
   4492 	}
   4493 
   4494 #ifdef TCP_SIGNATURE
   4495 	if (sc->sc_flags & SCF_SIGNATURE) {
   4496 		sav = tcp_signature_getsav(m);
   4497 		if (sav == NULL) {
   4498 			m_freem(m);
   4499 			return EPERM;
   4500 		}
   4501 
   4502 		*optp++ = TCPOPT_SIGNATURE;
   4503 		*optp++ = TCPOLEN_SIGNATURE;
   4504 		sigp = optp;
   4505 		memset(optp, 0, TCP_SIGLEN);
   4506 		optp += TCP_SIGLEN;
   4507 		optlen += TCPOLEN_SIGNATURE;
   4508 	}
   4509 #endif
   4510 
   4511 	/*
   4512 	 * Terminate and pad TCP options to a 4 byte boundary.
   4513 	 *
   4514 	 * According to RFC793: "The content of the header beyond the
   4515 	 * End-of-Option option must be header padding (i.e., zero)."
   4516 	 * And later: "The padding is composed of zeros."
   4517 	 */
   4518 	if (optlen % 4) {
   4519 		optlen += TCPOLEN_EOL;
   4520 		*optp++ = TCPOPT_EOL;
   4521 	}
   4522 	while (optlen % 4) {
   4523 		optlen += TCPOLEN_PAD;
   4524 		*optp++ = TCPOPT_PAD;
   4525 	}
   4526 
   4527 	/* Compute the actual values now that we've added the options. */
   4528 	tlen = hlen + sizeof(struct tcphdr) + optlen;
   4529 	m->m_len = m->m_pkthdr.len = tlen;
   4530 	th->th_off = (sizeof(struct tcphdr) + optlen) >> 2;
   4531 
   4532 #ifdef TCP_SIGNATURE
   4533 	if (sav) {
   4534 		(void)tcp_signature(m, th, hlen, sav, sigp);
   4535 		key_sa_recordxfer(sav, m);
   4536 		KEY_SA_UNREF(&sav);
   4537 	}
   4538 #endif
   4539 
   4540 	/*
   4541 	 * Send ECN SYN-ACK setup packet.
   4542 	 * Routes can be asymetric, so, even if we receive a packet
   4543 	 * with ECE and CWR set, we must not assume no one will block
   4544 	 * the ECE packet we are about to send.
   4545 	 */
   4546 	if ((sc->sc_flags & SCF_ECN_PERMIT) && tp &&
   4547 	    SEQ_GEQ(tp->snd_nxt, tp->snd_max)) {
   4548 		th->th_flags |= TH_ECE;
   4549 		TCP_STATINC(TCP_STAT_ECN_SHS);
   4550 
   4551 		/*
   4552 		 * draft-ietf-tcpm-ecnsyn-00.txt
   4553 		 *
   4554 		 * "[...] a TCP node MAY respond to an ECN-setup
   4555 		 * SYN packet by setting ECT in the responding
   4556 		 * ECN-setup SYN/ACK packet, indicating to routers
   4557 		 * that the SYN/ACK packet is ECN-Capable.
   4558 		 * This allows a congested router along the path
   4559 		 * to mark the packet instead of dropping the
   4560 		 * packet as an indication of congestion."
   4561 		 *
   4562 		 * "[...] There can be a great benefit in setting
   4563 		 * an ECN-capable codepoint in SYN/ACK packets [...]
   4564 		 * Congestion is  most likely to occur in
   4565 		 * the server-to-client direction.  As a result,
   4566 		 * setting an ECN-capable codepoint in SYN/ACK
   4567 		 * packets can reduce the occurence of three-second
   4568 		 * retransmit timeouts resulting from the drop
   4569 		 * of SYN/ACK packets."
   4570 		 *
   4571 		 * Page 4 and 6, January 2006.
   4572 		 */
   4573 
   4574 		switch (sc->sc_src.sa.sa_family) {
   4575 		case AF_INET:
   4576 			ip->ip_tos |= IPTOS_ECN_ECT0;
   4577 			break;
   4578 #ifdef INET6
   4579 		case AF_INET6:
   4580 			ip6->ip6_flow |= htonl(IPTOS_ECN_ECT0 << 20);
   4581 			break;
   4582 #endif
   4583 		}
   4584 		TCP_STATINC(TCP_STAT_ECN_ECT);
   4585 	}
   4586 
   4587 
   4588 	/*
   4589 	 * Compute the packet's checksum.
   4590 	 *
   4591 	 * Fill in some straggling IP bits.  Note the stack expects
   4592 	 * ip_len to be in host order, for convenience.
   4593 	 */
   4594 	switch (sc->sc_src.sa.sa_family) {
   4595 	case AF_INET:
   4596 		ip->ip_len = htons(tlen - hlen);
   4597 		th->th_sum = 0;
   4598 		th->th_sum = in4_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4599 		ip->ip_len = htons(tlen);
   4600 		ip->ip_ttl = ip_defttl;
   4601 		/* XXX tos? */
   4602 		break;
   4603 #ifdef INET6
   4604 	case AF_INET6:
   4605 		ip6->ip6_plen = htons(tlen - hlen);
   4606 		th->th_sum = 0;
   4607 		th->th_sum = in6_cksum(m, IPPROTO_TCP, hlen, tlen - hlen);
   4608 		ip6->ip6_vfc &= ~IPV6_VERSION_MASK;
   4609 		ip6->ip6_vfc |= IPV6_VERSION;
   4610 		ip6->ip6_plen = htons(tlen - hlen);
   4611 		/* ip6_hlim will be initialized afterwards */
   4612 		/* XXX flowlabel? */
   4613 		break;
   4614 #endif
   4615 	}
   4616 
   4617 	/* XXX use IPsec policy on listening socket, on SYN ACK */
   4618 	tp = sc->sc_tp;
   4619 
   4620 	switch (sc->sc_src.sa.sa_family) {
   4621 	case AF_INET:
   4622 		error = ip_output(m, sc->sc_ipopts, ro,
   4623 		    (ip_mtudisc ? IP_MTUDISC : 0),
   4624 		    NULL, tp ? tp->t_inpcb : NULL);
   4625 		break;
   4626 #ifdef INET6
   4627 	case AF_INET6:
   4628 		ip6->ip6_hlim = in6_selecthlim(NULL,
   4629 		    (rt = rtcache_validate(ro)) != NULL ? rt->rt_ifp : NULL);
   4630 		rtcache_unref(rt, ro);
   4631 
   4632 		error = ip6_output(m, NULL /*XXX*/, ro, 0, NULL,
   4633 		    tp ? tp->t_in6pcb : NULL, NULL);
   4634 		break;
   4635 #endif
   4636 	default:
   4637 		panic("%s: impossible (2)", __func__);
   4638 	}
   4639 
   4640 	return error;
   4641 }
   4642