Home | History | Annotate | Line # | Download | only in netinet
tcp_input.c revision 1.434
      1 /*	$NetBSD: tcp_input.c,v 1.434 2022/09/20 07:19:14 ozaki-r Exp $	*/
      2 
      3 /*
      4  * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
      5  * All rights reserved.
      6  *
      7  * Redistribution and use in source and binary forms, with or without
      8  * modification, are permitted provided that the following conditions
      9  * are met:
     10  * 1. Redistributions of source code must retain the above copyright
     11  *    notice, this list of conditions and the following disclaimer.
     12  * 2. Redistributions in binary form must reproduce the above copyright
     13  *    notice, this list of conditions and the following disclaimer in the
     14  *    documentation and/or other materials provided with the distribution.
     15  * 3. Neither the name of the project nor the names of its contributors
     16  *    may be used to endorse or promote products derived from this software
     17  *    without specific prior written permission.
     18  *
     19  * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
     20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
     21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
     22  * ARE DISCLAIMED.  IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
     23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
     24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
     25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
     26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
     27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
     28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
     29  * SUCH DAMAGE.
     30  */
     31 
     32 /*
     33  *      @(#)COPYRIGHT   1.1 (NRL) 17 January 1995
     34  *
     35  * NRL grants permission for redistribution and use in source and binary
     36  * forms, with or without modification, of the software and documentation
     37  * created at NRL provided that the following conditions are met:
     38  *
     39  * 1. Redistributions of source code must retain the above copyright
     40  *    notice, this list of conditions and the following disclaimer.
     41  * 2. Redistributions in binary form must reproduce the above copyright
     42  *    notice, this list of conditions and the following disclaimer in the
     43  *    documentation and/or other materials provided with the distribution.
     44  * 3. All advertising materials mentioning features or use of this software
     45  *    must display the following acknowledgements:
     46  *      This product includes software developed by the University of
     47  *      California, Berkeley and its contributors.
     48  *      This product includes software developed at the Information
     49  *      Technology Division, US Naval Research Laboratory.
     50  * 4. Neither the name of the NRL nor the names of its contributors
     51  *    may be used to endorse or promote products derived from this software
     52  *    without specific prior written permission.
     53  *
     54  * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
     55  * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     56  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
     57  * PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL NRL OR
     58  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     59  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     60  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     61  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     62  * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     63  * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     64  * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     65  *
     66  * The views and conclusions contained in the software and documentation
     67  * are those of the authors and should not be interpreted as representing
     68  * official policies, either expressed or implied, of the US Naval
     69  * Research Laboratory (NRL).
     70  */
     71 
     72 /*-
     73  * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
     74  * 2011 The NetBSD Foundation, Inc.
     75  * All rights reserved.
     76  *
     77  * This code is derived from software contributed to The NetBSD Foundation
     78  * by Coyote Point Systems, Inc.
     79  * This code is derived from software contributed to The NetBSD Foundation
     80  * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
     81  * Facility, NASA Ames Research Center.
     82  * This code is derived from software contributed to The NetBSD Foundation
     83  * by Charles M. Hannum.
     84  * This code is derived from software contributed to The NetBSD Foundation
     85  * by Rui Paulo.
     86  *
     87  * Redistribution and use in source and binary forms, with or without
     88  * modification, are permitted provided that the following conditions
     89  * are met:
     90  * 1. Redistributions of source code must retain the above copyright
     91  *    notice, this list of conditions and the following disclaimer.
     92  * 2. Redistributions in binary form must reproduce the above copyright
     93  *    notice, this list of conditions and the following disclaimer in the
     94  *    documentation and/or other materials provided with the distribution.
     95  *
     96  * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
     97  * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
     98  * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
     99  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
    100  * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
    101  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
    102  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
    103  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
    104  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
    105  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
    106  * POSSIBILITY OF SUCH DAMAGE.
    107  */
    108 
    109 /*
    110  * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
    111  *	The Regents of the University of California.  All rights reserved.
    112  *
    113  * Redistribution and use in source and binary forms, with or without
    114  * modification, are permitted provided that the following conditions
    115  * are met:
    116  * 1. Redistributions of source code must retain the above copyright
    117  *    notice, this list of conditions and the following disclaimer.
    118  * 2. Redistributions in binary form must reproduce the above copyright
    119  *    notice, this list of conditions and the following disclaimer in the
    120  *    documentation and/or other materials provided with the distribution.
    121  * 3. Neither the name of the University nor the names of its contributors
    122  *    may be used to endorse or promote products derived from this software
    123  *    without specific prior written permission.
    124  *
    125  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
    126  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
    127  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
    128  * ARE DISCLAIMED.  IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
    129  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
    130  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
    131  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
    132  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
    133  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
    134  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
    135  * SUCH DAMAGE.
    136  *
    137  *	@(#)tcp_input.c	8.12 (Berkeley) 5/24/95
    138  */
    139 
    140 #include <sys/cdefs.h>
    141 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.434 2022/09/20 07:19:14 ozaki-r Exp $");
    142 
    143 #ifdef _KERNEL_OPT
    144 #include "opt_inet.h"
    145 #include "opt_ipsec.h"
    146 #include "opt_inet_csum.h"
    147 #include "opt_tcp_debug.h"
    148 #endif
    149 
    150 #include <sys/param.h>
    151 #include <sys/systm.h>
    152 #include <sys/malloc.h>
    153 #include <sys/mbuf.h>
    154 #include <sys/protosw.h>
    155 #include <sys/socket.h>
    156 #include <sys/socketvar.h>
    157 #include <sys/errno.h>
    158 #include <sys/syslog.h>
    159 #include <sys/pool.h>
    160 #include <sys/domain.h>
    161 #include <sys/kernel.h>
    162 #ifdef TCP_SIGNATURE
    163 #include <sys/md5.h>
    164 #endif
    165 #include <sys/lwp.h> /* for lwp0 */
    166 #include <sys/cprng.h>
    167 
    168 #include <net/if.h>
    169 #include <net/if_types.h>
    170 
    171 #include <netinet/in.h>
    172 #include <netinet/in_systm.h>
    173 #include <netinet/ip.h>
    174 #include <netinet/in_pcb.h>
    175 #include <netinet/in_var.h>
    176 #include <netinet/ip_var.h>
    177 #include <netinet/in_offload.h>
    178 
    179 #if NARP > 0
    180 #include <netinet/if_inarp.h>
    181 #endif
    182 #ifdef INET6
    183 #include <netinet/ip6.h>
    184 #include <netinet6/ip6_var.h>
    185 #include <netinet6/in6_pcb.h>
    186 #include <netinet6/ip6_var.h>
    187 #include <netinet6/in6_var.h>
    188 #include <netinet/icmp6.h>
    189 #include <netinet6/nd6.h>
    190 #ifdef TCP_SIGNATURE
    191 #include <netinet6/scope6_var.h>
    192 #endif
    193 #endif
    194 
    195 #ifndef INET6
    196 #include <netinet/ip6.h>
    197 #endif
    198 
    199 #include <netinet/tcp.h>
    200 #include <netinet/tcp_fsm.h>
    201 #include <netinet/tcp_seq.h>
    202 #include <netinet/tcp_timer.h>
    203 #include <netinet/tcp_var.h>
    204 #include <netinet/tcp_private.h>
    205 #include <netinet/tcp_congctl.h>
    206 #include <netinet/tcp_debug.h>
    207 #include <netinet/tcp_syncache.h>
    208 
    209 #ifdef INET6
    210 #include "faith.h"
    211 #if defined(NFAITH) && NFAITH > 0
    212 #include <net/if_faith.h>
    213 #endif
    214 #endif
    215 
    216 #ifdef IPSEC
    217 #include <netipsec/ipsec.h>
    218 #include <netipsec/key.h>
    219 #ifdef INET6
    220 #include <netipsec/ipsec6.h>
    221 #endif
    222 #endif	/* IPSEC*/
    223 
    224 #include <netinet/tcp_vtw.h>
    225 
    226 int	tcprexmtthresh = 3;
    227 int	tcp_log_refused;
    228 
    229 int	tcp_do_autorcvbuf = 1;
    230 int	tcp_autorcvbuf_inc = 16 * 1024;
    231 int	tcp_autorcvbuf_max = 256 * 1024;
    232 int	tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
    233 
    234 static int tcp_rst_ppslim_count = 0;
    235 static struct timeval tcp_rst_ppslim_last;
    236 static int tcp_ackdrop_ppslim_count = 0;
    237 static struct timeval tcp_ackdrop_ppslim_last;
    238 
    239 #define TCP_PAWS_IDLE	(24U * 24 * 60 * 60 * PR_SLOWHZ)
    240 
    241 /* for modulo comparisons of timestamps */
    242 #define TSTMP_LT(a,b)	((int)((a)-(b)) < 0)
    243 #define TSTMP_GEQ(a,b)	((int)((a)-(b)) >= 0)
    244 
    245 /*
    246  * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
    247  */
    248 static void
    249 nd_hint(struct tcpcb *tp)
    250 {
    251 	struct route *ro = NULL;
    252 	struct rtentry *rt;
    253 
    254 	if (tp == NULL)
    255 		return;
    256 
    257 	switch (tp->t_family) {
    258 #if NARP > 0
    259 	case AF_INET:
    260 		if (tp->t_inpcb != NULL)
    261 			ro = &tp->t_inpcb->inp_route;
    262 		break;
    263 #endif
    264 #ifdef INET6
    265 	case AF_INET6:
    266 		if (tp->t_in6pcb != NULL)
    267 			ro = &tp->t_in6pcb->in6p_route;
    268 		break;
    269 #endif
    270 	}
    271 
    272 	if (ro == NULL)
    273 		return;
    274 
    275 	rt = rtcache_validate(ro);
    276 	if (rt == NULL)
    277 		return;
    278 
    279 	switch (tp->t_family) {
    280 #if NARP > 0
    281 	case AF_INET:
    282 		arp_nud_hint(rt);
    283 		break;
    284 #endif
    285 #ifdef INET6
    286 	case AF_INET6:
    287 		nd6_nud_hint(rt);
    288 		break;
    289 #endif
    290 	}
    291 
    292 	rtcache_unref(rt, ro);
    293 }
    294 
    295 /*
    296  * Compute ACK transmission behavior.  Delay the ACK unless
    297  * we have already delayed an ACK (must send an ACK every two segments).
    298  * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
    299  * option is enabled.
    300  */
    301 static void
    302 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
    303 {
    304 
    305 	if (tp->t_flags & TF_DELACK ||
    306 	    (tcp_ack_on_push && th->th_flags & TH_PUSH))
    307 		tp->t_flags |= TF_ACKNOW;
    308 	else
    309 		TCP_SET_DELACK(tp);
    310 }
    311 
    312 static void
    313 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
    314 {
    315 
    316 	/*
    317 	 * If we had a pending ICMP message that refers to data that have
    318 	 * just been acknowledged, disregard the recorded ICMP message.
    319 	 */
    320 	if ((tp->t_flags & TF_PMTUD_PEND) &&
    321 	    SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
    322 		tp->t_flags &= ~TF_PMTUD_PEND;
    323 
    324 	/*
    325 	 * Keep track of the largest chunk of data
    326 	 * acknowledged since last PMTU update
    327 	 */
    328 	if (tp->t_pmtud_mss_acked < acked)
    329 		tp->t_pmtud_mss_acked = acked;
    330 }
    331 
    332 /*
    333  * Convert TCP protocol fields to host order for easier processing.
    334  */
    335 static void
    336 tcp_fields_to_host(struct tcphdr *th)
    337 {
    338 
    339 	NTOHL(th->th_seq);
    340 	NTOHL(th->th_ack);
    341 	NTOHS(th->th_win);
    342 	NTOHS(th->th_urp);
    343 }
    344 
    345 /*
    346  * ... and reverse the above.
    347  */
    348 static void
    349 tcp_fields_to_net(struct tcphdr *th)
    350 {
    351 
    352 	HTONL(th->th_seq);
    353 	HTONL(th->th_ack);
    354 	HTONS(th->th_win);
    355 	HTONS(th->th_urp);
    356 }
    357 
    358 static void
    359 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
    360 {
    361 	if (th->th_urp > todrop) {
    362 		th->th_urp -= todrop;
    363 	} else {
    364 		*tiflags &= ~TH_URG;
    365 		th->th_urp = 0;
    366 	}
    367 }
    368 
    369 #ifdef TCP_CSUM_COUNTERS
    370 #include <sys/device.h>
    371 
    372 extern struct evcnt tcp_hwcsum_ok;
    373 extern struct evcnt tcp_hwcsum_bad;
    374 extern struct evcnt tcp_hwcsum_data;
    375 extern struct evcnt tcp_swcsum;
    376 #if defined(INET6)
    377 extern struct evcnt tcp6_hwcsum_ok;
    378 extern struct evcnt tcp6_hwcsum_bad;
    379 extern struct evcnt tcp6_hwcsum_data;
    380 extern struct evcnt tcp6_swcsum;
    381 #endif /* defined(INET6) */
    382 
    383 #define	TCP_CSUM_COUNTER_INCR(ev)	(ev)->ev_count++
    384 
    385 #else
    386 
    387 #define	TCP_CSUM_COUNTER_INCR(ev)	/* nothing */
    388 
    389 #endif /* TCP_CSUM_COUNTERS */
    390 
    391 #ifdef TCP_REASS_COUNTERS
    392 #include <sys/device.h>
    393 
    394 extern struct evcnt tcp_reass_;
    395 extern struct evcnt tcp_reass_empty;
    396 extern struct evcnt tcp_reass_iteration[8];
    397 extern struct evcnt tcp_reass_prependfirst;
    398 extern struct evcnt tcp_reass_prepend;
    399 extern struct evcnt tcp_reass_insert;
    400 extern struct evcnt tcp_reass_inserttail;
    401 extern struct evcnt tcp_reass_append;
    402 extern struct evcnt tcp_reass_appendtail;
    403 extern struct evcnt tcp_reass_overlaptail;
    404 extern struct evcnt tcp_reass_overlapfront;
    405 extern struct evcnt tcp_reass_segdup;
    406 extern struct evcnt tcp_reass_fragdup;
    407 
    408 #define	TCP_REASS_COUNTER_INCR(ev)	(ev)->ev_count++
    409 
    410 #else
    411 
    412 #define	TCP_REASS_COUNTER_INCR(ev)	/* nothing */
    413 
    414 #endif /* TCP_REASS_COUNTERS */
    415 
    416 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
    417     int);
    418 
    419 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
    420 #ifdef INET6
    421 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
    422 #endif
    423 
    424 #if defined(MBUFTRACE)
    425 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
    426 #endif /* defined(MBUFTRACE) */
    427 
    428 static struct pool tcpipqent_pool;
    429 
    430 void
    431 tcpipqent_init(void)
    432 {
    433 
    434 	pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
    435 	    NULL, IPL_VM);
    436 }
    437 
    438 struct ipqent *
    439 tcpipqent_alloc(void)
    440 {
    441 	struct ipqent *ipqe;
    442 	int s;
    443 
    444 	s = splvm();
    445 	ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
    446 	splx(s);
    447 
    448 	return ipqe;
    449 }
    450 
    451 void
    452 tcpipqent_free(struct ipqent *ipqe)
    453 {
    454 	int s;
    455 
    456 	s = splvm();
    457 	pool_put(&tcpipqent_pool, ipqe);
    458 	splx(s);
    459 }
    460 
    461 /*
    462  * Insert segment ti into reassembly queue of tcp with
    463  * control block tp.  Return TH_FIN if reassembly now includes
    464  * a segment with FIN.
    465  */
    466 static int
    467 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
    468 {
    469 	struct ipqent *p, *q, *nq, *tiqe = NULL;
    470 	struct socket *so = NULL;
    471 	int pkt_flags;
    472 	tcp_seq pkt_seq;
    473 	unsigned pkt_len;
    474 	u_long rcvpartdupbyte = 0;
    475 	u_long rcvoobyte;
    476 #ifdef TCP_REASS_COUNTERS
    477 	u_int count = 0;
    478 #endif
    479 	uint64_t *tcps;
    480 
    481 	if (tp->t_inpcb)
    482 		so = tp->t_inpcb->inp_socket;
    483 #ifdef INET6
    484 	else if (tp->t_in6pcb)
    485 		so = tp->t_in6pcb->in6p_socket;
    486 #endif
    487 
    488 	TCP_REASS_LOCK_CHECK(tp);
    489 
    490 	/*
    491 	 * Call with th==NULL after become established to
    492 	 * force pre-ESTABLISHED data up to user socket.
    493 	 */
    494 	if (th == NULL)
    495 		goto present;
    496 
    497 	m_claimm(m, &tcp_reass_mowner);
    498 
    499 	rcvoobyte = tlen;
    500 	/*
    501 	 * Copy these to local variables because the TCP header gets munged
    502 	 * while we are collapsing mbufs.
    503 	 */
    504 	pkt_seq = th->th_seq;
    505 	pkt_len = tlen;
    506 	pkt_flags = th->th_flags;
    507 
    508 	TCP_REASS_COUNTER_INCR(&tcp_reass_);
    509 
    510 	if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
    511 		/*
    512 		 * When we miss a packet, the vast majority of time we get
    513 		 * packets that follow it in order.  So optimize for that.
    514 		 */
    515 		if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
    516 			p->ipqe_len += pkt_len;
    517 			p->ipqe_flags |= pkt_flags;
    518 			m_cat(p->ipqe_m, m);
    519 			m = NULL;
    520 			tiqe = p;
    521 			TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
    522 			TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
    523 			goto skip_replacement;
    524 		}
    525 		/*
    526 		 * While we're here, if the pkt is completely beyond
    527 		 * anything we have, just insert it at the tail.
    528 		 */
    529 		if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
    530 			TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
    531 			goto insert_it;
    532 		}
    533 	}
    534 
    535 	q = TAILQ_FIRST(&tp->segq);
    536 
    537 	if (q != NULL) {
    538 		/*
    539 		 * If this segment immediately precedes the first out-of-order
    540 		 * block, simply slap the segment in front of it and (mostly)
    541 		 * skip the complicated logic.
    542 		 */
    543 		if (pkt_seq + pkt_len == q->ipqe_seq) {
    544 			q->ipqe_seq = pkt_seq;
    545 			q->ipqe_len += pkt_len;
    546 			q->ipqe_flags |= pkt_flags;
    547 			m_cat(m, q->ipqe_m);
    548 			q->ipqe_m = m;
    549 			tiqe = q;
    550 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    551 			TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
    552 			goto skip_replacement;
    553 		}
    554 	} else {
    555 		TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
    556 	}
    557 
    558 	/*
    559 	 * Find a segment which begins after this one does.
    560 	 */
    561 	for (p = NULL; q != NULL; q = nq) {
    562 		nq = TAILQ_NEXT(q, ipqe_q);
    563 #ifdef TCP_REASS_COUNTERS
    564 		count++;
    565 #endif
    566 
    567 		/*
    568 		 * If the received segment is just right after this
    569 		 * fragment, merge the two together and then check
    570 		 * for further overlaps.
    571 		 */
    572 		if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
    573 			pkt_len += q->ipqe_len;
    574 			pkt_flags |= q->ipqe_flags;
    575 			pkt_seq = q->ipqe_seq;
    576 			m_cat(q->ipqe_m, m);
    577 			m = q->ipqe_m;
    578 			TCP_REASS_COUNTER_INCR(&tcp_reass_append);
    579 			goto free_ipqe;
    580 		}
    581 
    582 		/*
    583 		 * If the received segment is completely past this
    584 		 * fragment, we need to go to the next fragment.
    585 		 */
    586 		if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
    587 			p = q;
    588 			continue;
    589 		}
    590 
    591 		/*
    592 		 * If the fragment is past the received segment,
    593 		 * it (or any following) can't be concatenated.
    594 		 */
    595 		if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
    596 			TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
    597 			break;
    598 		}
    599 
    600 		/*
    601 		 * We've received all the data in this segment before.
    602 		 * Mark it as a duplicate and return.
    603 		 */
    604 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
    605 		    SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    606 			tcps = TCP_STAT_GETREF();
    607 			tcps[TCP_STAT_RCVDUPPACK]++;
    608 			tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
    609 			TCP_STAT_PUTREF();
    610 			tcp_new_dsack(tp, pkt_seq, pkt_len);
    611 			m_freem(m);
    612 			if (tiqe != NULL) {
    613 				tcpipqent_free(tiqe);
    614 			}
    615 			TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
    616 			goto out;
    617 		}
    618 
    619 		/*
    620 		 * Received segment completely overlaps this fragment
    621 		 * so we drop the fragment (this keeps the temporal
    622 		 * ordering of segments correct).
    623 		 */
    624 		if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
    625 		    SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
    626 			rcvpartdupbyte += q->ipqe_len;
    627 			m_freem(q->ipqe_m);
    628 			TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
    629 			goto free_ipqe;
    630 		}
    631 
    632 		/*
    633 		 * Received segment extends past the end of the fragment.
    634 		 * Drop the overlapping bytes, merge the fragment and
    635 		 * segment, and treat as a longer received packet.
    636 		 */
    637 		if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
    638 		    SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq))  {
    639 			int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
    640 			m_adj(m, overlap);
    641 			rcvpartdupbyte += overlap;
    642 			m_cat(q->ipqe_m, m);
    643 			m = q->ipqe_m;
    644 			pkt_seq = q->ipqe_seq;
    645 			pkt_len += q->ipqe_len - overlap;
    646 			rcvoobyte -= overlap;
    647 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
    648 			goto free_ipqe;
    649 		}
    650 
    651 		/*
    652 		 * Received segment extends past the front of the fragment.
    653 		 * Drop the overlapping bytes on the received packet. The
    654 		 * packet will then be concatenated with this fragment a
    655 		 * bit later.
    656 		 */
    657 		if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
    658 		    SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len))  {
    659 			int overlap = pkt_seq + pkt_len - q->ipqe_seq;
    660 			m_adj(m, -overlap);
    661 			pkt_len -= overlap;
    662 			rcvpartdupbyte += overlap;
    663 			TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
    664 			rcvoobyte -= overlap;
    665 		}
    666 
    667 		/*
    668 		 * If the received segment immediately precedes this
    669 		 * fragment then tack the fragment onto this segment
    670 		 * and reinsert the data.
    671 		 */
    672 		if (q->ipqe_seq == pkt_seq + pkt_len) {
    673 			pkt_len += q->ipqe_len;
    674 			pkt_flags |= q->ipqe_flags;
    675 			m_cat(m, q->ipqe_m);
    676 			TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    677 			TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    678 			tp->t_segqlen--;
    679 			KASSERT(tp->t_segqlen >= 0);
    680 			KASSERT(tp->t_segqlen != 0 ||
    681 			    (TAILQ_EMPTY(&tp->segq) &&
    682 			    TAILQ_EMPTY(&tp->timeq)));
    683 			if (tiqe == NULL) {
    684 				tiqe = q;
    685 			} else {
    686 				tcpipqent_free(q);
    687 			}
    688 			TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
    689 			break;
    690 		}
    691 
    692 		/*
    693 		 * If the fragment is before the segment, remember it.
    694 		 * When this loop is terminated, p will contain the
    695 		 * pointer to the fragment that is right before the
    696 		 * received segment.
    697 		 */
    698 		if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
    699 			p = q;
    700 
    701 		continue;
    702 
    703 		/*
    704 		 * This is a common operation.  It also will allow
    705 		 * to save doing a malloc/free in most instances.
    706 		 */
    707 	  free_ipqe:
    708 		TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    709 		TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    710 		tp->t_segqlen--;
    711 		KASSERT(tp->t_segqlen >= 0);
    712 		KASSERT(tp->t_segqlen != 0 ||
    713 		    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    714 		if (tiqe == NULL) {
    715 			tiqe = q;
    716 		} else {
    717 			tcpipqent_free(q);
    718 		}
    719 	}
    720 
    721 #ifdef TCP_REASS_COUNTERS
    722 	if (count > 7)
    723 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
    724 	else if (count > 0)
    725 		TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
    726 #endif
    727 
    728 insert_it:
    729 	/*
    730 	 * Allocate a new queue entry (block) since the received segment
    731 	 * did not collapse onto any other out-of-order block. If it had
    732 	 * collapsed, tiqe would not be NULL and we would be reusing it.
    733 	 *
    734 	 * If the allocation fails, drop the packet.
    735 	 */
    736 	if (tiqe == NULL) {
    737 		tiqe = tcpipqent_alloc();
    738 		if (tiqe == NULL) {
    739 			TCP_STATINC(TCP_STAT_RCVMEMDROP);
    740 			m_freem(m);
    741 			goto out;
    742 		}
    743 	}
    744 
    745 	/*
    746 	 * Update the counters.
    747 	 */
    748 	tp->t_rcvoopack++;
    749 	tcps = TCP_STAT_GETREF();
    750 	tcps[TCP_STAT_RCVOOPACK]++;
    751 	tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
    752 	if (rcvpartdupbyte) {
    753 	    tcps[TCP_STAT_RCVPARTDUPPACK]++;
    754 	    tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
    755 	}
    756 	TCP_STAT_PUTREF();
    757 
    758 	/*
    759 	 * Insert the new fragment queue entry into both queues.
    760 	 */
    761 	tiqe->ipqe_m = m;
    762 	tiqe->ipqe_seq = pkt_seq;
    763 	tiqe->ipqe_len = pkt_len;
    764 	tiqe->ipqe_flags = pkt_flags;
    765 	if (p == NULL) {
    766 		TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
    767 	} else {
    768 		TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
    769 	}
    770 	tp->t_segqlen++;
    771 
    772 skip_replacement:
    773 	TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
    774 
    775 present:
    776 	/*
    777 	 * Present data to user, advancing rcv_nxt through
    778 	 * completed sequence space.
    779 	 */
    780 	if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
    781 		goto out;
    782 	q = TAILQ_FIRST(&tp->segq);
    783 	if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
    784 		goto out;
    785 	if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
    786 		goto out;
    787 
    788 	tp->rcv_nxt += q->ipqe_len;
    789 	pkt_flags = q->ipqe_flags & TH_FIN;
    790 	nd_hint(tp);
    791 
    792 	TAILQ_REMOVE(&tp->segq, q, ipqe_q);
    793 	TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
    794 	tp->t_segqlen--;
    795 	KASSERT(tp->t_segqlen >= 0);
    796 	KASSERT(tp->t_segqlen != 0 ||
    797 	    (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
    798 	if (so->so_state & SS_CANTRCVMORE)
    799 		m_freem(q->ipqe_m);
    800 	else
    801 		sbappendstream(&so->so_rcv, q->ipqe_m);
    802 	tcpipqent_free(q);
    803 	TCP_REASS_UNLOCK(tp);
    804 	sorwakeup(so);
    805 	return pkt_flags;
    806 
    807 out:
    808 	TCP_REASS_UNLOCK(tp);
    809 	return 0;
    810 }
    811 
    812 #ifdef INET6
    813 int
    814 tcp6_input(struct mbuf **mp, int *offp, int proto)
    815 {
    816 	struct mbuf *m = *mp;
    817 
    818 	/*
    819 	 * draft-itojun-ipv6-tcp-to-anycast
    820 	 * better place to put this in?
    821 	 */
    822 	if (m->m_flags & M_ANYCAST6) {
    823 		struct ip6_hdr *ip6;
    824 		if (m->m_len < sizeof(struct ip6_hdr)) {
    825 			if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
    826 				TCP_STATINC(TCP_STAT_RCVSHORT);
    827 				return IPPROTO_DONE;
    828 			}
    829 		}
    830 		ip6 = mtod(m, struct ip6_hdr *);
    831 		icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
    832 		    (char *)&ip6->ip6_dst - (char *)ip6);
    833 		return IPPROTO_DONE;
    834 	}
    835 
    836 	tcp_input(m, *offp, proto);
    837 	return IPPROTO_DONE;
    838 }
    839 #endif
    840 
    841 static void
    842 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
    843 {
    844 	char src[INET_ADDRSTRLEN];
    845 	char dst[INET_ADDRSTRLEN];
    846 
    847 	if (ip) {
    848 		in_print(src, sizeof(src), &ip->ip_src);
    849 		in_print(dst, sizeof(dst), &ip->ip_dst);
    850 	} else {
    851 		strlcpy(src, "(unknown)", sizeof(src));
    852 		strlcpy(dst, "(unknown)", sizeof(dst));
    853 	}
    854 	log(LOG_INFO,
    855 	    "Connection attempt to TCP %s:%d from %s:%d\n",
    856 	    dst, ntohs(th->th_dport),
    857 	    src, ntohs(th->th_sport));
    858 }
    859 
    860 #ifdef INET6
    861 static void
    862 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
    863 {
    864 	char src[INET6_ADDRSTRLEN];
    865 	char dst[INET6_ADDRSTRLEN];
    866 
    867 	if (ip6) {
    868 		in6_print(src, sizeof(src), &ip6->ip6_src);
    869 		in6_print(dst, sizeof(dst), &ip6->ip6_dst);
    870 	} else {
    871 		strlcpy(src, "(unknown v6)", sizeof(src));
    872 		strlcpy(dst, "(unknown v6)", sizeof(dst));
    873 	}
    874 	log(LOG_INFO,
    875 	    "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
    876 	    dst, ntohs(th->th_dport),
    877 	    src, ntohs(th->th_sport));
    878 }
    879 #endif
    880 
    881 /*
    882  * Checksum extended TCP header and data.
    883  */
    884 int
    885 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
    886     int toff, int off, int tlen)
    887 {
    888 	struct ifnet *rcvif;
    889 	int s;
    890 
    891 	/*
    892 	 * XXX it's better to record and check if this mbuf is
    893 	 * already checked.
    894 	 */
    895 
    896 	rcvif = m_get_rcvif(m, &s);
    897 	if (__predict_false(rcvif == NULL))
    898 		goto badcsum; /* XXX */
    899 
    900 	switch (af) {
    901 	case AF_INET:
    902 		switch (m->m_pkthdr.csum_flags &
    903 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
    904 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    905 		case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
    906 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
    907 			goto badcsum;
    908 
    909 		case M_CSUM_TCPv4|M_CSUM_DATA: {
    910 			u_int32_t hw_csum = m->m_pkthdr.csum_data;
    911 
    912 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
    913 			if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
    914 				const struct ip *ip =
    915 				    mtod(m, const struct ip *);
    916 
    917 				hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
    918 				    ip->ip_dst.s_addr,
    919 				    htons(hw_csum + tlen + off + IPPROTO_TCP));
    920 			}
    921 			if ((hw_csum ^ 0xffff) != 0)
    922 				goto badcsum;
    923 			break;
    924 		}
    925 
    926 		case M_CSUM_TCPv4:
    927 			/* Checksum was okay. */
    928 			TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
    929 			break;
    930 
    931 		default:
    932 			/*
    933 			 * Must compute it ourselves.  Maybe skip checksum
    934 			 * on loopback interfaces.
    935 			 */
    936 			if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
    937 					   tcp_do_loopback_cksum)) {
    938 				TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
    939 				if (in4_cksum(m, IPPROTO_TCP, toff,
    940 					      tlen + off) != 0)
    941 					goto badcsum;
    942 			}
    943 			break;
    944 		}
    945 		break;
    946 
    947 #ifdef INET6
    948 	case AF_INET6:
    949 		switch (m->m_pkthdr.csum_flags &
    950 			((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
    951 			 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
    952 		case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
    953 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
    954 			goto badcsum;
    955 
    956 #if 0 /* notyet */
    957 		case M_CSUM_TCPv6|M_CSUM_DATA:
    958 #endif
    959 
    960 		case M_CSUM_TCPv6:
    961 			/* Checksum was okay. */
    962 			TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
    963 			break;
    964 
    965 		default:
    966 			/*
    967 			 * Must compute it ourselves.  Maybe skip checksum
    968 			 * on loopback interfaces.
    969 			 */
    970 			if (__predict_true((m->m_flags & M_LOOP) == 0 ||
    971 			    tcp_do_loopback_cksum)) {
    972 				TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
    973 				if (in6_cksum(m, IPPROTO_TCP, toff,
    974 				    tlen + off) != 0)
    975 					goto badcsum;
    976 			}
    977 		}
    978 		break;
    979 #endif /* INET6 */
    980 	}
    981 	m_put_rcvif(rcvif, &s);
    982 
    983 	return 0;
    984 
    985 badcsum:
    986 	m_put_rcvif(rcvif, &s);
    987 	TCP_STATINC(TCP_STAT_RCVBADSUM);
    988 	return -1;
    989 }
    990 
    991 /*
    992  * When a packet arrives addressed to a vestigial tcpbp, we
    993  * nevertheless have to respond to it per the spec.
    994  *
    995  * This code is duplicated from the one in tcp_input().
    996  */
    997 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
    998     struct mbuf *m, int tlen)
    999 {
   1000 	int tiflags;
   1001 	int todrop;
   1002 	uint32_t t_flags = 0;
   1003 	uint64_t *tcps;
   1004 
   1005 	tiflags = th->th_flags;
   1006 	todrop  = vp->rcv_nxt - th->th_seq;
   1007 
   1008 	if (todrop > 0) {
   1009 		if (tiflags & TH_SYN) {
   1010 			tiflags &= ~TH_SYN;
   1011 			th->th_seq++;
   1012 			tcp_urp_drop(th, 1, &tiflags);
   1013 			todrop--;
   1014 		}
   1015 		if (todrop > tlen ||
   1016 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   1017 			/*
   1018 			 * Any valid FIN or RST must be to the left of the
   1019 			 * window.  At this point the FIN or RST must be a
   1020 			 * duplicate or out of sequence; drop it.
   1021 			 */
   1022 			if (tiflags & TH_RST)
   1023 				goto drop;
   1024 			tiflags &= ~(TH_FIN|TH_RST);
   1025 
   1026 			/*
   1027 			 * Send an ACK to resynchronize and drop any data.
   1028 			 * But keep on processing for RST or ACK.
   1029 			 */
   1030 			t_flags |= TF_ACKNOW;
   1031 			todrop = tlen;
   1032 			tcps = TCP_STAT_GETREF();
   1033 			tcps[TCP_STAT_RCVDUPPACK] += 1;
   1034 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   1035 			TCP_STAT_PUTREF();
   1036 		} else if ((tiflags & TH_RST) &&
   1037 		    th->th_seq != vp->rcv_nxt) {
   1038 			/*
   1039 			 * Test for reset before adjusting the sequence
   1040 			 * number for overlapping data.
   1041 			 */
   1042 			goto dropafterack_ratelim;
   1043 		} else {
   1044 			tcps = TCP_STAT_GETREF();
   1045 			tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
   1046 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   1047 			TCP_STAT_PUTREF();
   1048 		}
   1049 
   1050 //		tcp_new_dsack(tp, th->th_seq, todrop);
   1051 //		hdroptlen += todrop;	/*drop from head afterwards*/
   1052 
   1053 		th->th_seq += todrop;
   1054 		tlen -= todrop;
   1055 		tcp_urp_drop(th, todrop, &tiflags);
   1056 	}
   1057 
   1058 	/*
   1059 	 * If new data are received on a connection after the
   1060 	 * user processes are gone, then RST the other end.
   1061 	 */
   1062 	if (tlen) {
   1063 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   1064 		goto dropwithreset;
   1065 	}
   1066 
   1067 	/*
   1068 	 * If segment ends after window, drop trailing data
   1069 	 * (and PUSH and FIN); if nothing left, just ACK.
   1070 	 */
   1071 	todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
   1072 
   1073 	if (todrop > 0) {
   1074 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   1075 		if (todrop >= tlen) {
   1076 			/*
   1077 			 * The segment actually starts after the window.
   1078 			 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
   1079 			 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
   1080 			 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
   1081 			 */
   1082 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   1083 
   1084 			/*
   1085 			 * If a new connection request is received
   1086 			 * while in TIME_WAIT, drop the old connection
   1087 			 * and start over if the sequence numbers
   1088 			 * are above the previous ones.
   1089 			 */
   1090 			if ((tiflags & TH_SYN) &&
   1091 			    SEQ_GT(th->th_seq, vp->rcv_nxt)) {
   1092 				/*
   1093 				 * We only support this in the !NOFDREF case, which
   1094 				 * is to say: not here.
   1095 				 */
   1096 				goto dropwithreset;
   1097 			}
   1098 
   1099 			/*
   1100 			 * If window is closed can only take segments at
   1101 			 * window edge, and have to drop data and PUSH from
   1102 			 * incoming segments.  Continue processing, but
   1103 			 * remember to ack.  Otherwise, drop segment
   1104 			 * and (if not RST) ack.
   1105 			 */
   1106 			if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
   1107 				t_flags |= TF_ACKNOW;
   1108 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   1109 			} else {
   1110 				goto dropafterack;
   1111 			}
   1112 		} else {
   1113 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   1114 		}
   1115 		m_adj(m, -todrop);
   1116 		tlen -= todrop;
   1117 		tiflags &= ~(TH_PUSH|TH_FIN);
   1118 	}
   1119 
   1120 	if (tiflags & TH_RST) {
   1121 		if (th->th_seq != vp->rcv_nxt)
   1122 			goto dropafterack_ratelim;
   1123 
   1124 		vtw_del(vp->ctl, vp->vtw);
   1125 		goto drop;
   1126 	}
   1127 
   1128 	/*
   1129 	 * If the ACK bit is off we drop the segment and return.
   1130 	 */
   1131 	if ((tiflags & TH_ACK) == 0) {
   1132 		if (t_flags & TF_ACKNOW)
   1133 			goto dropafterack;
   1134 		goto drop;
   1135 	}
   1136 
   1137 	/*
   1138 	 * In TIME_WAIT state the only thing that should arrive
   1139 	 * is a retransmission of the remote FIN.  Acknowledge
   1140 	 * it and restart the finack timer.
   1141 	 */
   1142 	vtw_restart(vp);
   1143 	goto dropafterack;
   1144 
   1145 dropafterack:
   1146 	/*
   1147 	 * Generate an ACK dropping incoming segment if it occupies
   1148 	 * sequence space, where the ACK reflects our state.
   1149 	 */
   1150 	if (tiflags & TH_RST)
   1151 		goto drop;
   1152 	goto dropafterack2;
   1153 
   1154 dropafterack_ratelim:
   1155 	/*
   1156 	 * We may want to rate-limit ACKs against SYN/RST attack.
   1157 	 */
   1158 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   1159 	    tcp_ackdrop_ppslim) == 0) {
   1160 		/* XXX stat */
   1161 		goto drop;
   1162 	}
   1163 	/* ...fall into dropafterack2... */
   1164 
   1165 dropafterack2:
   1166 	(void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
   1167 	return;
   1168 
   1169 dropwithreset:
   1170 	/*
   1171 	 * Generate a RST, dropping incoming segment.
   1172 	 * Make ACK acceptable to originator of segment.
   1173 	 */
   1174 	if (tiflags & TH_RST)
   1175 		goto drop;
   1176 
   1177 	if (tiflags & TH_ACK) {
   1178 		tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   1179 	} else {
   1180 		if (tiflags & TH_SYN)
   1181 			++tlen;
   1182 		(void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   1183 		    TH_RST|TH_ACK);
   1184 	}
   1185 	return;
   1186 drop:
   1187 	m_freem(m);
   1188 }
   1189 
   1190 /*
   1191  * TCP input routine, follows pages 65-76 of RFC 793 very closely.
   1192  */
   1193 void
   1194 tcp_input(struct mbuf *m, int off, int proto)
   1195 {
   1196 	struct tcphdr *th;
   1197 	struct ip *ip;
   1198 	struct inpcb *inp;
   1199 #ifdef INET6
   1200 	struct ip6_hdr *ip6;
   1201 	struct in6pcb *in6p;
   1202 #endif
   1203 	u_int8_t *optp = NULL;
   1204 	int optlen = 0;
   1205 	int len, tlen, hdroptlen = 0;
   1206 	struct tcpcb *tp = NULL;
   1207 	int tiflags;
   1208 	struct socket *so = NULL;
   1209 	int todrop, acked, ourfinisacked, needoutput = 0;
   1210 	bool dupseg;
   1211 #ifdef TCP_DEBUG
   1212 	short ostate = 0;
   1213 #endif
   1214 	u_long tiwin;
   1215 	struct tcp_opt_info opti;
   1216 	int thlen, iphlen;
   1217 	int af;		/* af on the wire */
   1218 	struct mbuf *tcp_saveti = NULL;
   1219 	uint32_t ts_rtt;
   1220 	uint8_t iptos;
   1221 	uint64_t *tcps;
   1222 	vestigial_inpcb_t vestige;
   1223 
   1224 	vestige.valid = 0;
   1225 
   1226 	MCLAIM(m, &tcp_rx_mowner);
   1227 
   1228 	TCP_STATINC(TCP_STAT_RCVTOTAL);
   1229 
   1230 	memset(&opti, 0, sizeof(opti));
   1231 	opti.ts_present = 0;
   1232 	opti.maxseg = 0;
   1233 
   1234 	/*
   1235 	 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
   1236 	 *
   1237 	 * TCP is, by definition, unicast, so we reject all
   1238 	 * multicast outright.
   1239 	 *
   1240 	 * Note, there are additional src/dst address checks in
   1241 	 * the AF-specific code below.
   1242 	 */
   1243 	if (m->m_flags & (M_BCAST|M_MCAST)) {
   1244 		/* XXX stat */
   1245 		goto drop;
   1246 	}
   1247 #ifdef INET6
   1248 	if (m->m_flags & M_ANYCAST6) {
   1249 		/* XXX stat */
   1250 		goto drop;
   1251 	}
   1252 #endif
   1253 
   1254 	M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
   1255 	if (th == NULL) {
   1256 		TCP_STATINC(TCP_STAT_RCVSHORT);
   1257 		return;
   1258 	}
   1259 
   1260 	/*
   1261 	 * Enforce alignment requirements that are violated in
   1262 	 * some cases, see kern/50766 for details.
   1263 	 */
   1264 	if (ACCESSIBLE_POINTER(th, struct tcphdr) == 0) {
   1265 		m = m_copyup(m, off + sizeof(struct tcphdr), 0);
   1266 		if (m == NULL) {
   1267 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1268 			return;
   1269 		}
   1270 		th = (struct tcphdr *)(mtod(m, char *) + off);
   1271 	}
   1272 	KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
   1273 
   1274 	/*
   1275 	 * Get IP and TCP header.
   1276 	 * Note: IP leaves IP header in first mbuf.
   1277 	 */
   1278 	ip = mtod(m, struct ip *);
   1279 #ifdef INET6
   1280 	ip6 = mtod(m, struct ip6_hdr *);
   1281 #endif
   1282 	switch (ip->ip_v) {
   1283 	case 4:
   1284 		af = AF_INET;
   1285 		iphlen = sizeof(struct ip);
   1286 
   1287 		if (IN_MULTICAST(ip->ip_dst.s_addr) ||
   1288 		    in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
   1289 			goto drop;
   1290 
   1291 		/* We do the checksum after PCB lookup... */
   1292 		len = ntohs(ip->ip_len);
   1293 		tlen = len - off;
   1294 		iptos = ip->ip_tos;
   1295 		break;
   1296 #ifdef INET6
   1297 	case 6:
   1298 		iphlen = sizeof(struct ip6_hdr);
   1299 		af = AF_INET6;
   1300 
   1301 		/*
   1302 		 * Be proactive about unspecified IPv6 address in source.
   1303 		 * As we use all-zero to indicate unbounded/unconnected pcb,
   1304 		 * unspecified IPv6 address can be used to confuse us.
   1305 		 *
   1306 		 * Note that packets with unspecified IPv6 destination is
   1307 		 * already dropped in ip6_input.
   1308 		 */
   1309 		if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
   1310 			/* XXX stat */
   1311 			goto drop;
   1312 		}
   1313 
   1314 		/*
   1315 		 * Make sure destination address is not multicast.
   1316 		 * Source address checked in ip6_input().
   1317 		 */
   1318 		if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
   1319 			/* XXX stat */
   1320 			goto drop;
   1321 		}
   1322 
   1323 		/* We do the checksum after PCB lookup... */
   1324 		len = m->m_pkthdr.len;
   1325 		tlen = len - off;
   1326 		iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
   1327 		break;
   1328 #endif
   1329 	default:
   1330 		m_freem(m);
   1331 		return;
   1332 	}
   1333 
   1334 
   1335 	/*
   1336 	 * Check that TCP offset makes sense, pull out TCP options and
   1337 	 * adjust length.
   1338 	 */
   1339 	thlen = th->th_off << 2;
   1340 	if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
   1341 		TCP_STATINC(TCP_STAT_RCVBADOFF);
   1342 		goto drop;
   1343 	}
   1344 	tlen -= thlen;
   1345 
   1346 	if (thlen > sizeof(struct tcphdr)) {
   1347 		M_REGION_GET(th, struct tcphdr *, m, off, thlen);
   1348 		if (th == NULL) {
   1349 			TCP_STATINC(TCP_STAT_RCVSHORT);
   1350 			return;
   1351 		}
   1352 		KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
   1353 		optlen = thlen - sizeof(struct tcphdr);
   1354 		optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
   1355 
   1356 		/*
   1357 		 * Do quick retrieval of timestamp options.
   1358 		 *
   1359 		 * If timestamp is the only option and it's formatted as
   1360 		 * recommended in RFC 1323 appendix A, we quickly get the
   1361 		 * values now and don't bother calling tcp_dooptions(),
   1362 		 * etc.
   1363 		 */
   1364 		if ((optlen == TCPOLEN_TSTAMP_APPA ||
   1365 		     (optlen > TCPOLEN_TSTAMP_APPA &&
   1366 		      optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
   1367 		    be32dec(optp) == TCPOPT_TSTAMP_HDR &&
   1368 		    (th->th_flags & TH_SYN) == 0) {
   1369 			opti.ts_present = 1;
   1370 			opti.ts_val = be32dec(optp + 4);
   1371 			opti.ts_ecr = be32dec(optp + 8);
   1372 			optp = NULL;	/* we've parsed the options */
   1373 		}
   1374 	}
   1375 	tiflags = th->th_flags;
   1376 
   1377 	/*
   1378 	 * Checksum extended TCP header and data
   1379 	 */
   1380 	if (tcp_input_checksum(af, m, th, off, thlen, tlen))
   1381 		goto badcsum;
   1382 
   1383 	/*
   1384 	 * Locate pcb for segment.
   1385 	 */
   1386 findpcb:
   1387 	inp = NULL;
   1388 #ifdef INET6
   1389 	in6p = NULL;
   1390 #endif
   1391 	switch (af) {
   1392 	case AF_INET:
   1393 		inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
   1394 		    ip->ip_dst, th->th_dport, &vestige);
   1395 		if (inp == NULL && !vestige.valid) {
   1396 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1397 			inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
   1398 			    th->th_dport);
   1399 		}
   1400 #ifdef INET6
   1401 		if (inp == NULL && !vestige.valid) {
   1402 			struct in6_addr s, d;
   1403 
   1404 			/* mapped addr case */
   1405 			in6_in_2_v4mapin6(&ip->ip_src, &s);
   1406 			in6_in_2_v4mapin6(&ip->ip_dst, &d);
   1407 			in6p = in6_pcblookup_connect(&tcbtable, &s,
   1408 			    th->th_sport, &d, th->th_dport, 0, &vestige);
   1409 			if (in6p == 0 && !vestige.valid) {
   1410 				TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1411 				in6p = in6_pcblookup_bind(&tcbtable, &d,
   1412 				    th->th_dport, 0);
   1413 			}
   1414 		}
   1415 #endif
   1416 #ifndef INET6
   1417 		if (inp == NULL && !vestige.valid)
   1418 #else
   1419 		if (inp == NULL && in6p == NULL && !vestige.valid)
   1420 #endif
   1421 		{
   1422 			TCP_STATINC(TCP_STAT_NOPORT);
   1423 			if (tcp_log_refused &&
   1424 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1425 				tcp4_log_refused(ip, th);
   1426 			}
   1427 			tcp_fields_to_host(th);
   1428 			goto dropwithreset_ratelim;
   1429 		}
   1430 #if defined(IPSEC)
   1431 		if (ipsec_used) {
   1432 			if (inp && ipsec_in_reject(m, inp)) {
   1433 				goto drop;
   1434 			}
   1435 #ifdef INET6
   1436 			else if (in6p && ipsec_in_reject(m, in6p)) {
   1437 				goto drop;
   1438 			}
   1439 #endif
   1440 		}
   1441 #endif /*IPSEC*/
   1442 		break;
   1443 #ifdef INET6
   1444 	case AF_INET6:
   1445 	    {
   1446 		int faith;
   1447 
   1448 #if defined(NFAITH) && NFAITH > 0
   1449 		faith = faithprefix(&ip6->ip6_dst);
   1450 #else
   1451 		faith = 0;
   1452 #endif
   1453 		in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
   1454 		    th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
   1455 		if (!in6p && !vestige.valid) {
   1456 			TCP_STATINC(TCP_STAT_PCBHASHMISS);
   1457 			in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
   1458 			    th->th_dport, faith);
   1459 		}
   1460 		if (!in6p && !vestige.valid) {
   1461 			TCP_STATINC(TCP_STAT_NOPORT);
   1462 			if (tcp_log_refused &&
   1463 			    (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
   1464 				tcp6_log_refused(ip6, th);
   1465 			}
   1466 			tcp_fields_to_host(th);
   1467 			goto dropwithreset_ratelim;
   1468 		}
   1469 #if defined(IPSEC)
   1470 		if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
   1471 			goto drop;
   1472 		}
   1473 #endif
   1474 		break;
   1475 	    }
   1476 #endif
   1477 	}
   1478 
   1479 	tcp_fields_to_host(th);
   1480 
   1481 	/*
   1482 	 * If the state is CLOSED (i.e., TCB does not exist) then
   1483 	 * all data in the incoming segment is discarded.
   1484 	 * If the TCB exists but is in CLOSED state, it is embryonic,
   1485 	 * but should either do a listen or a connect soon.
   1486 	 */
   1487 	tp = NULL;
   1488 	so = NULL;
   1489 	if (inp) {
   1490 		/* Check the minimum TTL for socket. */
   1491 		if (ip->ip_ttl < inp->inp_ip_minttl)
   1492 			goto drop;
   1493 
   1494 		tp = intotcpcb(inp);
   1495 		so = inp->inp_socket;
   1496 	}
   1497 #ifdef INET6
   1498 	else if (in6p) {
   1499 		tp = in6totcpcb(in6p);
   1500 		so = in6p->in6p_socket;
   1501 	}
   1502 #endif
   1503 	else if (vestige.valid) {
   1504 		/* We do not support the resurrection of vtw tcpcps. */
   1505 		tcp_vtw_input(th, &vestige, m, tlen);
   1506 		m = NULL;
   1507 		goto drop;
   1508 	}
   1509 
   1510 	if (tp == NULL)
   1511 		goto dropwithreset_ratelim;
   1512 	if (tp->t_state == TCPS_CLOSED)
   1513 		goto drop;
   1514 
   1515 	KASSERT(so->so_lock == softnet_lock);
   1516 	KASSERT(solocked(so));
   1517 
   1518 	/* Unscale the window into a 32-bit value. */
   1519 	if ((tiflags & TH_SYN) == 0)
   1520 		tiwin = th->th_win << tp->snd_scale;
   1521 	else
   1522 		tiwin = th->th_win;
   1523 
   1524 #ifdef INET6
   1525 	/* save packet options if user wanted */
   1526 	if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
   1527 		if (in6p->in6p_options) {
   1528 			m_freem(in6p->in6p_options);
   1529 			in6p->in6p_options = NULL;
   1530 		}
   1531 		ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
   1532 	}
   1533 #endif
   1534 
   1535 	if (so->so_options & SO_DEBUG) {
   1536 #ifdef TCP_DEBUG
   1537 		ostate = tp->t_state;
   1538 #endif
   1539 
   1540 		tcp_saveti = NULL;
   1541 		if (iphlen + sizeof(struct tcphdr) > MHLEN)
   1542 			goto nosave;
   1543 
   1544 		if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
   1545 			tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
   1546 			if (tcp_saveti == NULL)
   1547 				goto nosave;
   1548 		} else {
   1549 			MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
   1550 			if (tcp_saveti == NULL)
   1551 				goto nosave;
   1552 			MCLAIM(m, &tcp_mowner);
   1553 			tcp_saveti->m_len = iphlen;
   1554 			m_copydata(m, 0, iphlen,
   1555 			    mtod(tcp_saveti, void *));
   1556 		}
   1557 
   1558 		if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
   1559 			m_freem(tcp_saveti);
   1560 			tcp_saveti = NULL;
   1561 		} else {
   1562 			tcp_saveti->m_len += sizeof(struct tcphdr);
   1563 			memcpy(mtod(tcp_saveti, char *) + iphlen, th,
   1564 			    sizeof(struct tcphdr));
   1565 		}
   1566 nosave:;
   1567 	}
   1568 
   1569 	if (so->so_options & SO_ACCEPTCONN) {
   1570 		union syn_cache_sa src;
   1571 		union syn_cache_sa dst;
   1572 
   1573 		KASSERT(tp->t_state == TCPS_LISTEN);
   1574 
   1575 		memset(&src, 0, sizeof(src));
   1576 		memset(&dst, 0, sizeof(dst));
   1577 		switch (af) {
   1578 		case AF_INET:
   1579 			src.sin.sin_len = sizeof(struct sockaddr_in);
   1580 			src.sin.sin_family = AF_INET;
   1581 			src.sin.sin_addr = ip->ip_src;
   1582 			src.sin.sin_port = th->th_sport;
   1583 
   1584 			dst.sin.sin_len = sizeof(struct sockaddr_in);
   1585 			dst.sin.sin_family = AF_INET;
   1586 			dst.sin.sin_addr = ip->ip_dst;
   1587 			dst.sin.sin_port = th->th_dport;
   1588 			break;
   1589 #ifdef INET6
   1590 		case AF_INET6:
   1591 			src.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1592 			src.sin6.sin6_family = AF_INET6;
   1593 			src.sin6.sin6_addr = ip6->ip6_src;
   1594 			src.sin6.sin6_port = th->th_sport;
   1595 
   1596 			dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
   1597 			dst.sin6.sin6_family = AF_INET6;
   1598 			dst.sin6.sin6_addr = ip6->ip6_dst;
   1599 			dst.sin6.sin6_port = th->th_dport;
   1600 			break;
   1601 #endif
   1602 		}
   1603 
   1604 		if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
   1605 			if (tiflags & TH_RST) {
   1606 				syn_cache_reset(&src.sa, &dst.sa, th);
   1607 			} else if ((tiflags & (TH_ACK|TH_SYN)) ==
   1608 			    (TH_ACK|TH_SYN)) {
   1609 				/*
   1610 				 * Received a SYN,ACK. This should never
   1611 				 * happen while we are in LISTEN. Send an RST.
   1612 				 */
   1613 				goto badsyn;
   1614 			} else if (tiflags & TH_ACK) {
   1615 				so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
   1616 				if (so == NULL) {
   1617 					/*
   1618 					 * We don't have a SYN for this ACK;
   1619 					 * send an RST.
   1620 					 */
   1621 					goto badsyn;
   1622 				} else if (so == (struct socket *)(-1)) {
   1623 					/*
   1624 					 * We were unable to create the
   1625 					 * connection. If the 3-way handshake
   1626 					 * was completed, and RST has been
   1627 					 * sent to the peer. Since the mbuf
   1628 					 * might be in use for the reply, do
   1629 					 * not free it.
   1630 					 */
   1631 					m = NULL;
   1632 				} else {
   1633 					/*
   1634 					 * We have created a full-blown
   1635 					 * connection.
   1636 					 */
   1637 					tp = NULL;
   1638 					inp = NULL;
   1639 #ifdef INET6
   1640 					in6p = NULL;
   1641 #endif
   1642 					switch (so->so_proto->pr_domain->dom_family) {
   1643 					case AF_INET:
   1644 						inp = sotoinpcb(so);
   1645 						tp = intotcpcb(inp);
   1646 						break;
   1647 #ifdef INET6
   1648 					case AF_INET6:
   1649 						in6p = sotoin6pcb(so);
   1650 						tp = in6totcpcb(in6p);
   1651 						break;
   1652 #endif
   1653 					}
   1654 					if (tp == NULL)
   1655 						goto badsyn;	/*XXX*/
   1656 					tiwin <<= tp->snd_scale;
   1657 					goto after_listen;
   1658 				}
   1659 			} else {
   1660 				/*
   1661 				 * None of RST, SYN or ACK was set.
   1662 				 * This is an invalid packet for a
   1663 				 * TCB in LISTEN state.  Send a RST.
   1664 				 */
   1665 				goto badsyn;
   1666 			}
   1667 		} else {
   1668 			/*
   1669 			 * Received a SYN.
   1670 			 */
   1671 
   1672 #ifdef INET6
   1673 			/*
   1674 			 * If deprecated address is forbidden, we do
   1675 			 * not accept SYN to deprecated interface
   1676 			 * address to prevent any new inbound
   1677 			 * connection from getting established.
   1678 			 * When we do not accept SYN, we send a TCP
   1679 			 * RST, with deprecated source address (instead
   1680 			 * of dropping it).  We compromise it as it is
   1681 			 * much better for peer to send a RST, and
   1682 			 * RST will be the final packet for the
   1683 			 * exchange.
   1684 			 *
   1685 			 * If we do not forbid deprecated addresses, we
   1686 			 * accept the SYN packet.  RFC2462 does not
   1687 			 * suggest dropping SYN in this case.
   1688 			 * If we decipher RFC2462 5.5.4, it says like
   1689 			 * this:
   1690 			 * 1. use of deprecated addr with existing
   1691 			 *    communication is okay - "SHOULD continue
   1692 			 *    to be used"
   1693 			 * 2. use of it with new communication:
   1694 			 *   (2a) "SHOULD NOT be used if alternate
   1695 			 *        address with sufficient scope is
   1696 			 *        available"
   1697 			 *   (2b) nothing mentioned otherwise.
   1698 			 * Here we fall into (2b) case as we have no
   1699 			 * choice in our source address selection - we
   1700 			 * must obey the peer.
   1701 			 *
   1702 			 * The wording in RFC2462 is confusing, and
   1703 			 * there are multiple description text for
   1704 			 * deprecated address handling - worse, they
   1705 			 * are not exactly the same.  I believe 5.5.4
   1706 			 * is the best one, so we follow 5.5.4.
   1707 			 */
   1708 			if (af == AF_INET6 && !ip6_use_deprecated) {
   1709 				struct in6_ifaddr *ia6;
   1710 				int s;
   1711 				struct ifnet *rcvif = m_get_rcvif(m, &s);
   1712 				if (rcvif == NULL)
   1713 					goto dropwithreset; /* XXX */
   1714 				if ((ia6 = in6ifa_ifpwithaddr(rcvif,
   1715 				    &ip6->ip6_dst)) &&
   1716 				    (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
   1717 					tp = NULL;
   1718 					m_put_rcvif(rcvif, &s);
   1719 					goto dropwithreset;
   1720 				}
   1721 				m_put_rcvif(rcvif, &s);
   1722 			}
   1723 #endif
   1724 
   1725 			/*
   1726 			 * LISTEN socket received a SYN from itself? This
   1727 			 * can't possibly be valid; drop the packet.
   1728 			 */
   1729 			if (th->th_sport == th->th_dport) {
   1730 				int eq = 0;
   1731 
   1732 				switch (af) {
   1733 				case AF_INET:
   1734 					eq = in_hosteq(ip->ip_src, ip->ip_dst);
   1735 					break;
   1736 #ifdef INET6
   1737 				case AF_INET6:
   1738 					eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
   1739 					    &ip6->ip6_dst);
   1740 					break;
   1741 #endif
   1742 				}
   1743 				if (eq) {
   1744 					TCP_STATINC(TCP_STAT_BADSYN);
   1745 					goto drop;
   1746 				}
   1747 			}
   1748 
   1749 			/*
   1750 			 * SYN looks ok; create compressed TCP
   1751 			 * state for it.
   1752 			 */
   1753 			if (so->so_qlen <= so->so_qlimit &&
   1754 			    syn_cache_add(&src.sa, &dst.sa, th, off,
   1755 			    so, m, optp, optlen, &opti))
   1756 				m = NULL;
   1757 		}
   1758 
   1759 		goto drop;
   1760 	}
   1761 
   1762 after_listen:
   1763 	/*
   1764 	 * From here on, we're dealing with !LISTEN.
   1765 	 */
   1766 	KASSERT(tp->t_state != TCPS_LISTEN);
   1767 
   1768 	/*
   1769 	 * Segment received on connection.
   1770 	 * Reset idle time and keep-alive timer.
   1771 	 */
   1772 	tp->t_rcvtime = tcp_now;
   1773 	if (TCPS_HAVEESTABLISHED(tp->t_state))
   1774 		TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
   1775 
   1776 	/*
   1777 	 * Process options.
   1778 	 */
   1779 #ifdef TCP_SIGNATURE
   1780 	if (optp || (tp->t_flags & TF_SIGNATURE))
   1781 #else
   1782 	if (optp)
   1783 #endif
   1784 		if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
   1785 			goto drop;
   1786 
   1787 	if (TCP_SACK_ENABLED(tp)) {
   1788 		tcp_del_sackholes(tp, th);
   1789 	}
   1790 
   1791 	if (TCP_ECN_ALLOWED(tp)) {
   1792 		if (tiflags & TH_CWR) {
   1793 			tp->t_flags &= ~TF_ECN_SND_ECE;
   1794 		}
   1795 		switch (iptos & IPTOS_ECN_MASK) {
   1796 		case IPTOS_ECN_CE:
   1797 			tp->t_flags |= TF_ECN_SND_ECE;
   1798 			TCP_STATINC(TCP_STAT_ECN_CE);
   1799 			break;
   1800 		case IPTOS_ECN_ECT0:
   1801 			TCP_STATINC(TCP_STAT_ECN_ECT);
   1802 			break;
   1803 		case IPTOS_ECN_ECT1:
   1804 			/* XXX: ignore for now -- rpaulo */
   1805 			break;
   1806 		}
   1807 		/*
   1808 		 * Congestion experienced.
   1809 		 * Ignore if we are already trying to recover.
   1810 		 */
   1811 		if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
   1812 			tp->t_congctl->cong_exp(tp);
   1813 	}
   1814 
   1815 	if (opti.ts_present && opti.ts_ecr) {
   1816 		/*
   1817 		 * Calculate the RTT from the returned time stamp and the
   1818 		 * connection's time base.  If the time stamp is later than
   1819 		 * the current time, or is extremely old, fall back to non-1323
   1820 		 * RTT calculation.  Since ts_rtt is unsigned, we can test both
   1821 		 * at the same time.
   1822 		 *
   1823 		 * Note that ts_rtt is in units of slow ticks (500
   1824 		 * ms).  Since most earthbound RTTs are < 500 ms,
   1825 		 * observed values will have large quantization noise.
   1826 		 * Our smoothed RTT is then the fraction of observed
   1827 		 * samples that are 1 tick instead of 0 (times 500
   1828 		 * ms).
   1829 		 *
   1830 		 * ts_rtt is increased by 1 to denote a valid sample,
   1831 		 * with 0 indicating an invalid measurement.  This
   1832 		 * extra 1 must be removed when ts_rtt is used, or
   1833 		 * else an erroneous extra 500 ms will result.
   1834 		 */
   1835 		ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
   1836 		if (ts_rtt > TCP_PAWS_IDLE)
   1837 			ts_rtt = 0;
   1838 	} else {
   1839 		ts_rtt = 0;
   1840 	}
   1841 
   1842 	/*
   1843 	 * Fast path: check for the two common cases of a uni-directional
   1844 	 * data transfer. If:
   1845 	 *    o We are in the ESTABLISHED state, and
   1846 	 *    o The packet has no control flags, and
   1847 	 *    o The packet is in-sequence, and
   1848 	 *    o The window didn't change, and
   1849 	 *    o We are not retransmitting
   1850 	 * It's a candidate.
   1851 	 *
   1852 	 * If the length (tlen) is zero and the ack moved forward, we're
   1853 	 * the sender side of the transfer. Just free the data acked and
   1854 	 * wake any higher level process that was blocked waiting for
   1855 	 * space.
   1856 	 *
   1857 	 * If the length is non-zero and the ack didn't move, we're the
   1858 	 * receiver side. If we're getting packets in-order (the reassembly
   1859 	 * queue is empty), add the data to the socket buffer and note
   1860 	 * that we need a delayed ack.
   1861 	 */
   1862 	if (tp->t_state == TCPS_ESTABLISHED &&
   1863 	    (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
   1864 	        == TH_ACK &&
   1865 	    (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
   1866 	    th->th_seq == tp->rcv_nxt &&
   1867 	    tiwin && tiwin == tp->snd_wnd &&
   1868 	    tp->snd_nxt == tp->snd_max) {
   1869 
   1870 		/*
   1871 		 * If last ACK falls within this segment's sequence numbers,
   1872 		 * record the timestamp.
   1873 		 * NOTE that the test is modified according to the latest
   1874 		 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   1875 		 *
   1876 		 * note that we already know
   1877 		 *	TSTMP_GEQ(opti.ts_val, tp->ts_recent)
   1878 		 */
   1879 		if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
   1880 			tp->ts_recent_age = tcp_now;
   1881 			tp->ts_recent = opti.ts_val;
   1882 		}
   1883 
   1884 		if (tlen == 0) {
   1885 			/* Ack prediction. */
   1886 			if (SEQ_GT(th->th_ack, tp->snd_una) &&
   1887 			    SEQ_LEQ(th->th_ack, tp->snd_max) &&
   1888 			    tp->snd_cwnd >= tp->snd_wnd &&
   1889 			    tp->t_partialacks < 0) {
   1890 				/*
   1891 				 * this is a pure ack for outstanding data.
   1892 				 */
   1893 				if (ts_rtt)
   1894 					tcp_xmit_timer(tp, ts_rtt - 1);
   1895 				else if (tp->t_rtttime &&
   1896 				    SEQ_GT(th->th_ack, tp->t_rtseq))
   1897 					tcp_xmit_timer(tp,
   1898 					  tcp_now - tp->t_rtttime);
   1899 				acked = th->th_ack - tp->snd_una;
   1900 				tcps = TCP_STAT_GETREF();
   1901 				tcps[TCP_STAT_PREDACK]++;
   1902 				tcps[TCP_STAT_RCVACKPACK]++;
   1903 				tcps[TCP_STAT_RCVACKBYTE] += acked;
   1904 				TCP_STAT_PUTREF();
   1905 				nd_hint(tp);
   1906 
   1907 				if (acked > (tp->t_lastoff - tp->t_inoff))
   1908 					tp->t_lastm = NULL;
   1909 				sbdrop(&so->so_snd, acked);
   1910 				tp->t_lastoff -= acked;
   1911 
   1912 				icmp_check(tp, th, acked);
   1913 
   1914 				tp->snd_una = th->th_ack;
   1915 				tp->snd_fack = tp->snd_una;
   1916 				if (SEQ_LT(tp->snd_high, tp->snd_una))
   1917 					tp->snd_high = tp->snd_una;
   1918 				/*
   1919 				 * drag snd_wl2 along so only newer
   1920 				 * ACKs can update the window size.
   1921 				 * also avoids the state where snd_wl2
   1922 				 * is eventually larger than th_ack and thus
   1923 				 * blocking the window update mechanism and
   1924 				 * the connection gets stuck for a loooong
   1925 				 * time in the zero sized send window state.
   1926 				 *
   1927 				 * see PR/kern 55567
   1928 				 */
   1929 				tp->snd_wl2 = tp->snd_una;
   1930 
   1931 				m_freem(m);
   1932 
   1933 				/*
   1934 				 * If all outstanding data are acked, stop
   1935 				 * retransmit timer, otherwise restart timer
   1936 				 * using current (possibly backed-off) value.
   1937 				 * If process is waiting for space,
   1938 				 * wakeup/selnotify/signal.  If data
   1939 				 * are ready to send, let tcp_output
   1940 				 * decide between more output or persist.
   1941 				 */
   1942 				if (tp->snd_una == tp->snd_max)
   1943 					TCP_TIMER_DISARM(tp, TCPT_REXMT);
   1944 				else if (TCP_TIMER_ISARMED(tp,
   1945 				    TCPT_PERSIST) == 0)
   1946 					TCP_TIMER_ARM(tp, TCPT_REXMT,
   1947 					    tp->t_rxtcur);
   1948 
   1949 				sowwakeup(so);
   1950 				if (so->so_snd.sb_cc) {
   1951 					KERNEL_LOCK(1, NULL);
   1952 					(void)tcp_output(tp);
   1953 					KERNEL_UNLOCK_ONE(NULL);
   1954 				}
   1955 				if (tcp_saveti)
   1956 					m_freem(tcp_saveti);
   1957 				return;
   1958 			}
   1959 		} else if (th->th_ack == tp->snd_una &&
   1960 		    TAILQ_FIRST(&tp->segq) == NULL &&
   1961 		    tlen <= sbspace(&so->so_rcv)) {
   1962 			int newsize = 0;
   1963 
   1964 			/*
   1965 			 * this is a pure, in-sequence data packet
   1966 			 * with nothing on the reassembly queue and
   1967 			 * we have enough buffer space to take it.
   1968 			 */
   1969 			tp->rcv_nxt += tlen;
   1970 
   1971 			/*
   1972 			 * Pull rcv_up up to prevent seq wrap relative to
   1973 			 * rcv_nxt.
   1974 			 */
   1975 			tp->rcv_up = tp->rcv_nxt;
   1976 
   1977 			/*
   1978 			 * Pull snd_wl1 up to prevent seq wrap relative to
   1979 			 * th_seq.
   1980 			 */
   1981 			tp->snd_wl1 = th->th_seq;
   1982 
   1983 			tcps = TCP_STAT_GETREF();
   1984 			tcps[TCP_STAT_PREDDAT]++;
   1985 			tcps[TCP_STAT_RCVPACK]++;
   1986 			tcps[TCP_STAT_RCVBYTE] += tlen;
   1987 			TCP_STAT_PUTREF();
   1988 			nd_hint(tp);
   1989 		/*
   1990 		 * Automatic sizing enables the performance of large buffers
   1991 		 * and most of the efficiency of small ones by only allocating
   1992 		 * space when it is needed.
   1993 		 *
   1994 		 * On the receive side the socket buffer memory is only rarely
   1995 		 * used to any significant extent.  This allows us to be much
   1996 		 * more aggressive in scaling the receive socket buffer.  For
   1997 		 * the case that the buffer space is actually used to a large
   1998 		 * extent and we run out of kernel memory we can simply drop
   1999 		 * the new segments; TCP on the sender will just retransmit it
   2000 		 * later.  Setting the buffer size too big may only consume too
   2001 		 * much kernel memory if the application doesn't read() from
   2002 		 * the socket or packet loss or reordering makes use of the
   2003 		 * reassembly queue.
   2004 		 *
   2005 		 * The criteria to step up the receive buffer one notch are:
   2006 		 *  1. the number of bytes received during the time it takes
   2007 		 *     one timestamp to be reflected back to us (the RTT);
   2008 		 *  2. received bytes per RTT is within seven eighth of the
   2009 		 *     current socket buffer size;
   2010 		 *  3. receive buffer size has not hit maximal automatic size;
   2011 		 *
   2012 		 * This algorithm does one step per RTT at most and only if
   2013 		 * we receive a bulk stream w/o packet losses or reorderings.
   2014 		 * Shrinking the buffer during idle times is not necessary as
   2015 		 * it doesn't consume any memory when idle.
   2016 		 *
   2017 		 * TODO: Only step up if the application is actually serving
   2018 		 * the buffer to better manage the socket buffer resources.
   2019 		 */
   2020 			if (tcp_do_autorcvbuf &&
   2021 			    opti.ts_ecr &&
   2022 			    (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
   2023 				if (opti.ts_ecr > tp->rfbuf_ts &&
   2024 				    opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
   2025 					if (tp->rfbuf_cnt >
   2026 					    (so->so_rcv.sb_hiwat / 8 * 7) &&
   2027 					    so->so_rcv.sb_hiwat <
   2028 					    tcp_autorcvbuf_max) {
   2029 						newsize =
   2030 						    uimin(so->so_rcv.sb_hiwat +
   2031 						    tcp_autorcvbuf_inc,
   2032 						    tcp_autorcvbuf_max);
   2033 					}
   2034 					/* Start over with next RTT. */
   2035 					tp->rfbuf_ts = 0;
   2036 					tp->rfbuf_cnt = 0;
   2037 				} else
   2038 					tp->rfbuf_cnt += tlen;	/* add up */
   2039 			}
   2040 
   2041 			/*
   2042 			 * Drop TCP, IP headers and TCP options then add data
   2043 			 * to socket buffer.
   2044 			 */
   2045 			if (so->so_state & SS_CANTRCVMORE) {
   2046 				m_freem(m);
   2047 			} else {
   2048 				/*
   2049 				 * Set new socket buffer size.
   2050 				 * Give up when limit is reached.
   2051 				 */
   2052 				if (newsize)
   2053 					if (!sbreserve(&so->so_rcv,
   2054 					    newsize, so))
   2055 						so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
   2056 				m_adj(m, off + thlen);
   2057 				sbappendstream(&so->so_rcv, m);
   2058 			}
   2059 			sorwakeup(so);
   2060 			tcp_setup_ack(tp, th);
   2061 			if (tp->t_flags & TF_ACKNOW) {
   2062 				KERNEL_LOCK(1, NULL);
   2063 				(void)tcp_output(tp);
   2064 				KERNEL_UNLOCK_ONE(NULL);
   2065 			}
   2066 			if (tcp_saveti)
   2067 				m_freem(tcp_saveti);
   2068 			return;
   2069 		}
   2070 	}
   2071 
   2072 	/*
   2073 	 * Compute mbuf offset to TCP data segment.
   2074 	 */
   2075 	hdroptlen = off + thlen;
   2076 
   2077 	/*
   2078 	 * Calculate amount of space in receive window. Receive window is
   2079 	 * amount of space in rcv queue, but not less than advertised
   2080 	 * window.
   2081 	 */
   2082 	{
   2083 		int win;
   2084 		win = sbspace(&so->so_rcv);
   2085 		if (win < 0)
   2086 			win = 0;
   2087 		tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
   2088 	}
   2089 
   2090 	/* Reset receive buffer auto scaling when not in bulk receive mode. */
   2091 	tp->rfbuf_ts = 0;
   2092 	tp->rfbuf_cnt = 0;
   2093 
   2094 	switch (tp->t_state) {
   2095 	/*
   2096 	 * If the state is SYN_SENT:
   2097 	 *	if seg contains an ACK, but not for our SYN, drop the input.
   2098 	 *	if seg contains a RST, then drop the connection.
   2099 	 *	if seg does not contain SYN, then drop it.
   2100 	 * Otherwise this is an acceptable SYN segment
   2101 	 *	initialize tp->rcv_nxt and tp->irs
   2102 	 *	if seg contains ack then advance tp->snd_una
   2103 	 *	if seg contains a ECE and ECN support is enabled, the stream
   2104 	 *	    is ECN capable.
   2105 	 *	if SYN has been acked change to ESTABLISHED else SYN_RCVD state
   2106 	 *	arrange for segment to be acked (eventually)
   2107 	 *	continue processing rest of data/controls, beginning with URG
   2108 	 */
   2109 	case TCPS_SYN_SENT:
   2110 		if ((tiflags & TH_ACK) &&
   2111 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2112 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2113 			goto dropwithreset;
   2114 		if (tiflags & TH_RST) {
   2115 			if (tiflags & TH_ACK)
   2116 				tp = tcp_drop(tp, ECONNREFUSED);
   2117 			goto drop;
   2118 		}
   2119 		if ((tiflags & TH_SYN) == 0)
   2120 			goto drop;
   2121 		if (tiflags & TH_ACK) {
   2122 			tp->snd_una = th->th_ack;
   2123 			if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2124 				tp->snd_nxt = tp->snd_una;
   2125 			if (SEQ_LT(tp->snd_high, tp->snd_una))
   2126 				tp->snd_high = tp->snd_una;
   2127 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2128 
   2129 			if ((tiflags & TH_ECE) && tcp_do_ecn) {
   2130 				tp->t_flags |= TF_ECN_PERMIT;
   2131 				TCP_STATINC(TCP_STAT_ECN_SHS);
   2132 			}
   2133 		}
   2134 		tp->irs = th->th_seq;
   2135 		tcp_rcvseqinit(tp);
   2136 		tp->t_flags |= TF_ACKNOW;
   2137 		tcp_mss_from_peer(tp, opti.maxseg);
   2138 
   2139 		/*
   2140 		 * Initialize the initial congestion window.  If we
   2141 		 * had to retransmit the SYN, we must initialize cwnd
   2142 		 * to 1 segment (i.e. the Loss Window).
   2143 		 */
   2144 		if (tp->t_flags & TF_SYN_REXMT)
   2145 			tp->snd_cwnd = tp->t_peermss;
   2146 		else {
   2147 			int ss = tcp_init_win;
   2148 			if (inp != NULL && in_localaddr(inp->inp_faddr))
   2149 				ss = tcp_init_win_local;
   2150 #ifdef INET6
   2151 			if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
   2152 				ss = tcp_init_win_local;
   2153 #endif
   2154 			tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
   2155 		}
   2156 
   2157 		tcp_rmx_rtt(tp);
   2158 		if (tiflags & TH_ACK) {
   2159 			TCP_STATINC(TCP_STAT_CONNECTS);
   2160 			/*
   2161 			 * move tcp_established before soisconnected
   2162 			 * because upcall handler can drive tcp_output
   2163 			 * functionality.
   2164 			 * XXX we might call soisconnected at the end of
   2165 			 * all processing
   2166 			 */
   2167 			tcp_established(tp);
   2168 			soisconnected(so);
   2169 			/* Do window scaling on this connection? */
   2170 			if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2171 			    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2172 				tp->snd_scale = tp->requested_s_scale;
   2173 				tp->rcv_scale = tp->request_r_scale;
   2174 			}
   2175 			TCP_REASS_LOCK(tp);
   2176 			(void)tcp_reass(tp, NULL, NULL, tlen);
   2177 			/*
   2178 			 * if we didn't have to retransmit the SYN,
   2179 			 * use its rtt as our initial srtt & rtt var.
   2180 			 */
   2181 			if (tp->t_rtttime)
   2182 				tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2183 		} else {
   2184 			tp->t_state = TCPS_SYN_RECEIVED;
   2185 		}
   2186 
   2187 		/*
   2188 		 * Advance th->th_seq to correspond to first data byte.
   2189 		 * If data, trim to stay within window,
   2190 		 * dropping FIN if necessary.
   2191 		 */
   2192 		th->th_seq++;
   2193 		if (tlen > tp->rcv_wnd) {
   2194 			todrop = tlen - tp->rcv_wnd;
   2195 			m_adj(m, -todrop);
   2196 			tlen = tp->rcv_wnd;
   2197 			tiflags &= ~TH_FIN;
   2198 			tcps = TCP_STAT_GETREF();
   2199 			tcps[TCP_STAT_RCVPACKAFTERWIN]++;
   2200 			tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
   2201 			TCP_STAT_PUTREF();
   2202 		}
   2203 		tp->snd_wl1 = th->th_seq - 1;
   2204 		tp->rcv_up = th->th_seq;
   2205 		goto step6;
   2206 
   2207 	/*
   2208 	 * If the state is SYN_RECEIVED:
   2209 	 *	If seg contains an ACK, but not for our SYN, drop the input
   2210 	 *	and generate an RST.  See page 36, rfc793
   2211 	 */
   2212 	case TCPS_SYN_RECEIVED:
   2213 		if ((tiflags & TH_ACK) &&
   2214 		    (SEQ_LEQ(th->th_ack, tp->iss) ||
   2215 		     SEQ_GT(th->th_ack, tp->snd_max)))
   2216 			goto dropwithreset;
   2217 		break;
   2218 	}
   2219 
   2220 	/*
   2221 	 * From here on, we're dealing with !LISTEN and !SYN_SENT.
   2222 	 */
   2223 	KASSERT(tp->t_state != TCPS_LISTEN &&
   2224 	    tp->t_state != TCPS_SYN_SENT);
   2225 
   2226 	/*
   2227 	 * RFC1323 PAWS: if we have a timestamp reply on this segment and
   2228 	 * it's less than ts_recent, drop it.
   2229 	 */
   2230 	if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
   2231 	    TSTMP_LT(opti.ts_val, tp->ts_recent)) {
   2232 		/* Check to see if ts_recent is over 24 days old.  */
   2233 		if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
   2234 			/*
   2235 			 * Invalidate ts_recent.  If this segment updates
   2236 			 * ts_recent, the age will be reset later and ts_recent
   2237 			 * will get a valid value.  If it does not, setting
   2238 			 * ts_recent to zero will at least satisfy the
   2239 			 * requirement that zero be placed in the timestamp
   2240 			 * echo reply when ts_recent isn't valid.  The
   2241 			 * age isn't reset until we get a valid ts_recent
   2242 			 * because we don't want out-of-order segments to be
   2243 			 * dropped when ts_recent is old.
   2244 			 */
   2245 			tp->ts_recent = 0;
   2246 		} else {
   2247 			tcps = TCP_STAT_GETREF();
   2248 			tcps[TCP_STAT_RCVDUPPACK]++;
   2249 			tcps[TCP_STAT_RCVDUPBYTE] += tlen;
   2250 			tcps[TCP_STAT_PAWSDROP]++;
   2251 			TCP_STAT_PUTREF();
   2252 			tcp_new_dsack(tp, th->th_seq, tlen);
   2253 			goto dropafterack;
   2254 		}
   2255 	}
   2256 
   2257 	/*
   2258 	 * Check that at least some bytes of the segment are within the
   2259 	 * receive window. If segment begins before rcv_nxt, drop leading
   2260 	 * data (and SYN); if nothing left, just ack.
   2261 	 */
   2262 	todrop = tp->rcv_nxt - th->th_seq;
   2263 	dupseg = false;
   2264 	if (todrop > 0) {
   2265 		if (tiflags & TH_SYN) {
   2266 			tiflags &= ~TH_SYN;
   2267 			th->th_seq++;
   2268 			tcp_urp_drop(th, 1, &tiflags);
   2269 			todrop--;
   2270 		}
   2271 		if (todrop > tlen ||
   2272 		    (todrop == tlen && (tiflags & TH_FIN) == 0)) {
   2273 			/*
   2274 			 * Any valid FIN or RST must be to the left of the
   2275 			 * window.  At this point the FIN or RST must be a
   2276 			 * duplicate or out of sequence; drop it.
   2277 			 */
   2278 			if (tiflags & TH_RST)
   2279 				goto drop;
   2280 			tiflags &= ~(TH_FIN|TH_RST);
   2281 
   2282 			/*
   2283 			 * Send an ACK to resynchronize and drop any data.
   2284 			 * But keep on processing for RST or ACK.
   2285 			 */
   2286 			tp->t_flags |= TF_ACKNOW;
   2287 			todrop = tlen;
   2288 			dupseg = true;
   2289 			tcps = TCP_STAT_GETREF();
   2290 			tcps[TCP_STAT_RCVDUPPACK]++;
   2291 			tcps[TCP_STAT_RCVDUPBYTE] += todrop;
   2292 			TCP_STAT_PUTREF();
   2293 		} else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
   2294 			/*
   2295 			 * Test for reset before adjusting the sequence
   2296 			 * number for overlapping data.
   2297 			 */
   2298 			goto dropafterack_ratelim;
   2299 		} else {
   2300 			tcps = TCP_STAT_GETREF();
   2301 			tcps[TCP_STAT_RCVPARTDUPPACK]++;
   2302 			tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
   2303 			TCP_STAT_PUTREF();
   2304 		}
   2305 		tcp_new_dsack(tp, th->th_seq, todrop);
   2306 		hdroptlen += todrop;	/* drop from head afterwards (m_adj) */
   2307 		th->th_seq += todrop;
   2308 		tlen -= todrop;
   2309 		tcp_urp_drop(th, todrop, &tiflags);
   2310 	}
   2311 
   2312 	/*
   2313 	 * If new data is received on a connection after the user processes
   2314 	 * are gone, then RST the other end.
   2315 	 */
   2316 	if ((so->so_state & SS_NOFDREF) &&
   2317 	    tp->t_state > TCPS_CLOSE_WAIT && tlen) {
   2318 		tp = tcp_close(tp);
   2319 		TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
   2320 		goto dropwithreset;
   2321 	}
   2322 
   2323 	/*
   2324 	 * If the segment ends after the window, drop trailing data (and
   2325 	 * PUSH and FIN); if nothing left, just ACK.
   2326 	 */
   2327 	todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
   2328 	if (todrop > 0) {
   2329 		TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
   2330 		if (todrop >= tlen) {
   2331 			/*
   2332 			 * The segment actually starts after the window.
   2333 			 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
   2334 			 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
   2335 			 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
   2336 			 */
   2337 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
   2338 
   2339 			/*
   2340 			 * If a new connection request is received while in
   2341 			 * TIME_WAIT, drop the old connection and start over
   2342 			 * if the sequence numbers are above the previous
   2343 			 * ones.
   2344 			 *
   2345 			 * NOTE: We need to put the header fields back into
   2346 			 * network order.
   2347 			 */
   2348 			if ((tiflags & TH_SYN) &&
   2349 			    tp->t_state == TCPS_TIME_WAIT &&
   2350 			    SEQ_GT(th->th_seq, tp->rcv_nxt)) {
   2351 				tp = tcp_close(tp);
   2352 				tcp_fields_to_net(th);
   2353 				m_freem(tcp_saveti);
   2354 				tcp_saveti = NULL;
   2355 				goto findpcb;
   2356 			}
   2357 
   2358 			/*
   2359 			 * If window is closed can only take segments at
   2360 			 * window edge, and have to drop data and PUSH from
   2361 			 * incoming segments.  Continue processing, but
   2362 			 * remember to ack.  Otherwise, drop segment
   2363 			 * and (if not RST) ack.
   2364 			 */
   2365 			if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
   2366 				KASSERT(todrop == tlen);
   2367 				tp->t_flags |= TF_ACKNOW;
   2368 				TCP_STATINC(TCP_STAT_RCVWINPROBE);
   2369 			} else {
   2370 				goto dropafterack;
   2371 			}
   2372 		} else {
   2373 			TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
   2374 		}
   2375 		m_adj(m, -todrop);
   2376 		tlen -= todrop;
   2377 		tiflags &= ~(TH_PUSH|TH_FIN);
   2378 	}
   2379 
   2380 	/*
   2381 	 * If last ACK falls within this segment's sequence numbers,
   2382 	 *  record the timestamp.
   2383 	 * NOTE:
   2384 	 * 1) That the test incorporates suggestions from the latest
   2385 	 *    proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
   2386 	 * 2) That updating only on newer timestamps interferes with
   2387 	 *    our earlier PAWS tests, so this check should be solely
   2388 	 *    predicated on the sequence space of this segment.
   2389 	 * 3) That we modify the segment boundary check to be
   2390 	 *        Last.ACK.Sent <= SEG.SEQ + SEG.Len
   2391 	 *    instead of RFC1323's
   2392 	 *        Last.ACK.Sent < SEG.SEQ + SEG.Len,
   2393 	 *    This modified check allows us to overcome RFC1323's
   2394 	 *    limitations as described in Stevens TCP/IP Illustrated
   2395 	 *    Vol. 2 p.869. In such cases, we can still calculate the
   2396 	 *    RTT correctly when RCV.NXT == Last.ACK.Sent.
   2397 	 */
   2398 	if (opti.ts_present &&
   2399 	    SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
   2400 	    SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
   2401 	         ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
   2402 		tp->ts_recent_age = tcp_now;
   2403 		tp->ts_recent = opti.ts_val;
   2404 	}
   2405 
   2406 	/*
   2407 	 * If the RST bit is set examine the state:
   2408 	 *    RECEIVED state:
   2409 	 *        If passive open, return to LISTEN state.
   2410 	 *        If active open, inform user that connection was refused.
   2411 	 *    ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
   2412 	 *        Inform user that connection was reset, and close tcb.
   2413 	 *    CLOSING, LAST_ACK, TIME_WAIT states:
   2414 	 *        Close the tcb.
   2415 	 */
   2416 	if (tiflags & TH_RST) {
   2417 		if (th->th_seq != tp->rcv_nxt)
   2418 			goto dropafterack_ratelim;
   2419 
   2420 		switch (tp->t_state) {
   2421 		case TCPS_SYN_RECEIVED:
   2422 			so->so_error = ECONNREFUSED;
   2423 			goto close;
   2424 
   2425 		case TCPS_ESTABLISHED:
   2426 		case TCPS_FIN_WAIT_1:
   2427 		case TCPS_FIN_WAIT_2:
   2428 		case TCPS_CLOSE_WAIT:
   2429 			so->so_error = ECONNRESET;
   2430 		close:
   2431 			tp->t_state = TCPS_CLOSED;
   2432 			TCP_STATINC(TCP_STAT_DROPS);
   2433 			tp = tcp_close(tp);
   2434 			goto drop;
   2435 
   2436 		case TCPS_CLOSING:
   2437 		case TCPS_LAST_ACK:
   2438 		case TCPS_TIME_WAIT:
   2439 			tp = tcp_close(tp);
   2440 			goto drop;
   2441 		}
   2442 	}
   2443 
   2444 	/*
   2445 	 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
   2446 	 * we must be in a synchronized state.  RFC793 states (under Reset
   2447 	 * Generation) that any unacceptable segment (an out-of-order SYN
   2448 	 * qualifies) received in a synchronized state must elicit only an
   2449 	 * empty acknowledgment segment ... and the connection remains in
   2450 	 * the same state.
   2451 	 */
   2452 	if (tiflags & TH_SYN) {
   2453 		if (tp->rcv_nxt == th->th_seq) {
   2454 			tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
   2455 			    TH_ACK);
   2456 			if (tcp_saveti)
   2457 				m_freem(tcp_saveti);
   2458 			return;
   2459 		}
   2460 
   2461 		goto dropafterack_ratelim;
   2462 	}
   2463 
   2464 	/*
   2465 	 * If the ACK bit is off we drop the segment and return.
   2466 	 */
   2467 	if ((tiflags & TH_ACK) == 0) {
   2468 		if (tp->t_flags & TF_ACKNOW)
   2469 			goto dropafterack;
   2470 		goto drop;
   2471 	}
   2472 
   2473 	/*
   2474 	 * From here on, we're doing ACK processing.
   2475 	 */
   2476 
   2477 	switch (tp->t_state) {
   2478 	/*
   2479 	 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
   2480 	 * ESTABLISHED state and continue processing, otherwise
   2481 	 * send an RST.
   2482 	 */
   2483 	case TCPS_SYN_RECEIVED:
   2484 		if (SEQ_GT(tp->snd_una, th->th_ack) ||
   2485 		    SEQ_GT(th->th_ack, tp->snd_max))
   2486 			goto dropwithreset;
   2487 		TCP_STATINC(TCP_STAT_CONNECTS);
   2488 		soisconnected(so);
   2489 		tcp_established(tp);
   2490 		/* Do window scaling? */
   2491 		if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
   2492 		    (TF_RCVD_SCALE|TF_REQ_SCALE)) {
   2493 			tp->snd_scale = tp->requested_s_scale;
   2494 			tp->rcv_scale = tp->request_r_scale;
   2495 		}
   2496 		TCP_REASS_LOCK(tp);
   2497 		(void)tcp_reass(tp, NULL, NULL, tlen);
   2498 		tp->snd_wl1 = th->th_seq - 1;
   2499 		/* FALLTHROUGH */
   2500 
   2501 	/*
   2502 	 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
   2503 	 * ACKs.  If the ack is in the range
   2504 	 *	tp->snd_una < th->th_ack <= tp->snd_max
   2505 	 * then advance tp->snd_una to th->th_ack and drop
   2506 	 * data from the retransmission queue.  If this ACK reflects
   2507 	 * more up to date window information we update our window information.
   2508 	 */
   2509 	case TCPS_ESTABLISHED:
   2510 	case TCPS_FIN_WAIT_1:
   2511 	case TCPS_FIN_WAIT_2:
   2512 	case TCPS_CLOSE_WAIT:
   2513 	case TCPS_CLOSING:
   2514 	case TCPS_LAST_ACK:
   2515 	case TCPS_TIME_WAIT:
   2516 		if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
   2517 			if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
   2518 				TCP_STATINC(TCP_STAT_RCVDUPACK);
   2519 				/*
   2520 				 * If we have outstanding data (other than
   2521 				 * a window probe), this is a completely
   2522 				 * duplicate ack (ie, window info didn't
   2523 				 * change), the ack is the biggest we've
   2524 				 * seen and we've seen exactly our rexmt
   2525 				 * threshold of them, assume a packet
   2526 				 * has been dropped and retransmit it.
   2527 				 * Kludge snd_nxt & the congestion
   2528 				 * window so we send only this one
   2529 				 * packet.
   2530 				 */
   2531 				if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
   2532 				    th->th_ack != tp->snd_una)
   2533 					tp->t_dupacks = 0;
   2534 				else if (tp->t_partialacks < 0 &&
   2535 				    (++tp->t_dupacks == tcprexmtthresh ||
   2536 				     TCP_FACK_FASTRECOV(tp))) {
   2537 					/*
   2538 					 * Do the fast retransmit, and adjust
   2539 					 * congestion control parameters.
   2540 					 */
   2541 					if (tp->t_congctl->fast_retransmit(tp, th)) {
   2542 						/* False fast retransmit */
   2543 						break;
   2544 					}
   2545 					goto drop;
   2546 				} else if (tp->t_dupacks > tcprexmtthresh) {
   2547 					tp->snd_cwnd += tp->t_segsz;
   2548 					KERNEL_LOCK(1, NULL);
   2549 					(void)tcp_output(tp);
   2550 					KERNEL_UNLOCK_ONE(NULL);
   2551 					goto drop;
   2552 				}
   2553 			} else {
   2554 				/*
   2555 				 * If the ack appears to be very old, only
   2556 				 * allow data that is in-sequence.  This
   2557 				 * makes it somewhat more difficult to insert
   2558 				 * forged data by guessing sequence numbers.
   2559 				 * Sent an ack to try to update the send
   2560 				 * sequence number on the other side.
   2561 				 */
   2562 				if (tlen && th->th_seq != tp->rcv_nxt &&
   2563 				    SEQ_LT(th->th_ack,
   2564 				    tp->snd_una - tp->max_sndwnd))
   2565 					goto dropafterack;
   2566 			}
   2567 			break;
   2568 		}
   2569 		/*
   2570 		 * If the congestion window was inflated to account
   2571 		 * for the other side's cached packets, retract it.
   2572 		 */
   2573 		tp->t_congctl->fast_retransmit_newack(tp, th);
   2574 
   2575 		if (SEQ_GT(th->th_ack, tp->snd_max)) {
   2576 			TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
   2577 			goto dropafterack;
   2578 		}
   2579 		acked = th->th_ack - tp->snd_una;
   2580 		tcps = TCP_STAT_GETREF();
   2581 		tcps[TCP_STAT_RCVACKPACK]++;
   2582 		tcps[TCP_STAT_RCVACKBYTE] += acked;
   2583 		TCP_STAT_PUTREF();
   2584 
   2585 		/*
   2586 		 * If we have a timestamp reply, update smoothed
   2587 		 * round trip time.  If no timestamp is present but
   2588 		 * transmit timer is running and timed sequence
   2589 		 * number was acked, update smoothed round trip time.
   2590 		 * Since we now have an rtt measurement, cancel the
   2591 		 * timer backoff (cf., Phil Karn's retransmit alg.).
   2592 		 * Recompute the initial retransmit timer.
   2593 		 */
   2594 		if (ts_rtt)
   2595 			tcp_xmit_timer(tp, ts_rtt - 1);
   2596 		else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
   2597 			tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
   2598 
   2599 		/*
   2600 		 * If all outstanding data is acked, stop retransmit
   2601 		 * timer and remember to restart (more output or persist).
   2602 		 * If there is more data to be acked, restart retransmit
   2603 		 * timer, using current (possibly backed-off) value.
   2604 		 */
   2605 		if (th->th_ack == tp->snd_max) {
   2606 			TCP_TIMER_DISARM(tp, TCPT_REXMT);
   2607 			needoutput = 1;
   2608 		} else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
   2609 			TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
   2610 
   2611 		/*
   2612 		 * New data has been acked, adjust the congestion window.
   2613 		 */
   2614 		tp->t_congctl->newack(tp, th);
   2615 
   2616 		nd_hint(tp);
   2617 		if (acked > so->so_snd.sb_cc) {
   2618 			tp->snd_wnd -= so->so_snd.sb_cc;
   2619 			sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
   2620 			ourfinisacked = 1;
   2621 		} else {
   2622 			if (acked > (tp->t_lastoff - tp->t_inoff))
   2623 				tp->t_lastm = NULL;
   2624 			sbdrop(&so->so_snd, acked);
   2625 			tp->t_lastoff -= acked;
   2626 			if (tp->snd_wnd > acked)
   2627 				tp->snd_wnd -= acked;
   2628 			else
   2629 				tp->snd_wnd = 0;
   2630 			ourfinisacked = 0;
   2631 		}
   2632 		sowwakeup(so);
   2633 
   2634 		icmp_check(tp, th, acked);
   2635 
   2636 		tp->snd_una = th->th_ack;
   2637 		if (SEQ_GT(tp->snd_una, tp->snd_fack))
   2638 			tp->snd_fack = tp->snd_una;
   2639 		if (SEQ_LT(tp->snd_nxt, tp->snd_una))
   2640 			tp->snd_nxt = tp->snd_una;
   2641 		if (SEQ_LT(tp->snd_high, tp->snd_una))
   2642 			tp->snd_high = tp->snd_una;
   2643 
   2644 		switch (tp->t_state) {
   2645 
   2646 		/*
   2647 		 * In FIN_WAIT_1 STATE in addition to the processing
   2648 		 * for the ESTABLISHED state if our FIN is now acknowledged
   2649 		 * then enter FIN_WAIT_2.
   2650 		 */
   2651 		case TCPS_FIN_WAIT_1:
   2652 			if (ourfinisacked) {
   2653 				/*
   2654 				 * If we can't receive any more
   2655 				 * data, then closing user can proceed.
   2656 				 * Starting the timer is contrary to the
   2657 				 * specification, but if we don't get a FIN
   2658 				 * we'll hang forever.
   2659 				 */
   2660 				if (so->so_state & SS_CANTRCVMORE) {
   2661 					soisdisconnected(so);
   2662 					if (tp->t_maxidle > 0)
   2663 						TCP_TIMER_ARM(tp, TCPT_2MSL,
   2664 						    tp->t_maxidle);
   2665 				}
   2666 				tp->t_state = TCPS_FIN_WAIT_2;
   2667 			}
   2668 			break;
   2669 
   2670 	 	/*
   2671 		 * In CLOSING STATE in addition to the processing for
   2672 		 * the ESTABLISHED state if the ACK acknowledges our FIN
   2673 		 * then enter the TIME-WAIT state, otherwise ignore
   2674 		 * the segment.
   2675 		 */
   2676 		case TCPS_CLOSING:
   2677 			if (ourfinisacked) {
   2678 				tp->t_state = TCPS_TIME_WAIT;
   2679 				tcp_canceltimers(tp);
   2680 				TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2681 				soisdisconnected(so);
   2682 			}
   2683 			break;
   2684 
   2685 		/*
   2686 		 * In LAST_ACK, we may still be waiting for data to drain
   2687 		 * and/or to be acked, as well as for the ack of our FIN.
   2688 		 * If our FIN is now acknowledged, delete the TCB,
   2689 		 * enter the closed state and return.
   2690 		 */
   2691 		case TCPS_LAST_ACK:
   2692 			if (ourfinisacked) {
   2693 				tp = tcp_close(tp);
   2694 				goto drop;
   2695 			}
   2696 			break;
   2697 
   2698 		/*
   2699 		 * In TIME_WAIT state the only thing that should arrive
   2700 		 * is a retransmission of the remote FIN.  Acknowledge
   2701 		 * it and restart the finack timer.
   2702 		 */
   2703 		case TCPS_TIME_WAIT:
   2704 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2705 			goto dropafterack;
   2706 		}
   2707 	}
   2708 
   2709 step6:
   2710 	/*
   2711 	 * Update window information.
   2712 	 * Don't look at window if no ACK: TAC's send garbage on first SYN.
   2713 	 */
   2714 	if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
   2715 	    (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
   2716 	    (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
   2717 		/* keep track of pure window updates */
   2718 		if (tlen == 0 &&
   2719 		    tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
   2720 			TCP_STATINC(TCP_STAT_RCVWINUPD);
   2721 		tp->snd_wnd = tiwin;
   2722 		tp->snd_wl1 = th->th_seq;
   2723 		tp->snd_wl2 = th->th_ack;
   2724 		if (tp->snd_wnd > tp->max_sndwnd)
   2725 			tp->max_sndwnd = tp->snd_wnd;
   2726 		needoutput = 1;
   2727 	}
   2728 
   2729 	/*
   2730 	 * Process segments with URG.
   2731 	 */
   2732 	if ((tiflags & TH_URG) && th->th_urp &&
   2733 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2734 		/*
   2735 		 * This is a kludge, but if we receive and accept
   2736 		 * random urgent pointers, we'll crash in
   2737 		 * soreceive.  It's hard to imagine someone
   2738 		 * actually wanting to send this much urgent data.
   2739 		 */
   2740 		if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
   2741 			th->th_urp = 0;			/* XXX */
   2742 			tiflags &= ~TH_URG;		/* XXX */
   2743 			goto dodata;			/* XXX */
   2744 		}
   2745 
   2746 		/*
   2747 		 * If this segment advances the known urgent pointer,
   2748 		 * then mark the data stream.  This should not happen
   2749 		 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
   2750 		 * a FIN has been received from the remote side.
   2751 		 * In these states we ignore the URG.
   2752 		 *
   2753 		 * According to RFC961 (Assigned Protocols),
   2754 		 * the urgent pointer points to the last octet
   2755 		 * of urgent data.  We continue, however,
   2756 		 * to consider it to indicate the first octet
   2757 		 * of data past the urgent section as the original
   2758 		 * spec states (in one of two places).
   2759 		 */
   2760 		if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
   2761 			tp->rcv_up = th->th_seq + th->th_urp;
   2762 			so->so_oobmark = so->so_rcv.sb_cc +
   2763 			    (tp->rcv_up - tp->rcv_nxt) - 1;
   2764 			if (so->so_oobmark == 0)
   2765 				so->so_state |= SS_RCVATMARK;
   2766 			sohasoutofband(so);
   2767 			tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
   2768 		}
   2769 
   2770 		/*
   2771 		 * Remove out of band data so doesn't get presented to user.
   2772 		 * This can happen independent of advancing the URG pointer,
   2773 		 * but if two URG's are pending at once, some out-of-band
   2774 		 * data may creep in... ick.
   2775 		 */
   2776 		if (th->th_urp <= (u_int16_t)tlen &&
   2777 		    (so->so_options & SO_OOBINLINE) == 0)
   2778 			tcp_pulloutofband(so, th, m, hdroptlen);
   2779 	} else {
   2780 		/*
   2781 		 * If no out of band data is expected,
   2782 		 * pull receive urgent pointer along
   2783 		 * with the receive window.
   2784 		 */
   2785 		if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
   2786 			tp->rcv_up = tp->rcv_nxt;
   2787 	}
   2788 dodata:
   2789 
   2790 	/*
   2791 	 * Process the segment text, merging it into the TCP sequencing queue,
   2792 	 * and arranging for acknowledgement of receipt if necessary.
   2793 	 * This process logically involves adjusting tp->rcv_wnd as data
   2794 	 * is presented to the user (this happens in tcp_usrreq.c,
   2795 	 * tcp_rcvd()).  If a FIN has already been received on this
   2796 	 * connection then we just ignore the text.
   2797 	 */
   2798 	if ((tlen || (tiflags & TH_FIN)) &&
   2799 	    TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2800 		/*
   2801 		 * Handle the common case:
   2802 		 *  o Segment is the next to be received, and
   2803 		 *  o The queue is empty, and
   2804 		 *  o The connection is established
   2805 		 * In this case, we avoid calling tcp_reass.
   2806 		 *
   2807 		 * tcp_setup_ack: set DELACK for segments received in order,
   2808 		 * but ack immediately when segments are out of order (so that
   2809 		 * fast retransmit can work).
   2810 		 */
   2811 		TCP_REASS_LOCK(tp);
   2812 		if (th->th_seq == tp->rcv_nxt &&
   2813 		    TAILQ_FIRST(&tp->segq) == NULL &&
   2814 		    tp->t_state == TCPS_ESTABLISHED) {
   2815 			tcp_setup_ack(tp, th);
   2816 			tp->rcv_nxt += tlen;
   2817 			tiflags = th->th_flags & TH_FIN;
   2818 			tcps = TCP_STAT_GETREF();
   2819 			tcps[TCP_STAT_RCVPACK]++;
   2820 			tcps[TCP_STAT_RCVBYTE] += tlen;
   2821 			TCP_STAT_PUTREF();
   2822 			nd_hint(tp);
   2823 			if (so->so_state & SS_CANTRCVMORE) {
   2824 				m_freem(m);
   2825 			} else {
   2826 				m_adj(m, hdroptlen);
   2827 				sbappendstream(&(so)->so_rcv, m);
   2828 			}
   2829 			TCP_REASS_UNLOCK(tp);
   2830 			sorwakeup(so);
   2831 		} else {
   2832 			m_adj(m, hdroptlen);
   2833 			tiflags = tcp_reass(tp, th, m, tlen);
   2834 			tp->t_flags |= TF_ACKNOW;
   2835 		}
   2836 
   2837 		/*
   2838 		 * Note the amount of data that peer has sent into
   2839 		 * our window, in order to estimate the sender's
   2840 		 * buffer size.
   2841 		 */
   2842 		len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
   2843 	} else {
   2844 		m_freem(m);
   2845 		m = NULL;
   2846 		tiflags &= ~TH_FIN;
   2847 	}
   2848 
   2849 	/*
   2850 	 * If FIN is received ACK the FIN and let the user know
   2851 	 * that the connection is closing.  Ignore a FIN received before
   2852 	 * the connection is fully established.
   2853 	 */
   2854 	if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
   2855 		if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
   2856 			socantrcvmore(so);
   2857 			tp->t_flags |= TF_ACKNOW;
   2858 			tp->rcv_nxt++;
   2859 		}
   2860 		switch (tp->t_state) {
   2861 
   2862 	 	/*
   2863 		 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
   2864 		 */
   2865 		case TCPS_ESTABLISHED:
   2866 			tp->t_state = TCPS_CLOSE_WAIT;
   2867 			break;
   2868 
   2869 	 	/*
   2870 		 * If still in FIN_WAIT_1 STATE FIN has not been acked so
   2871 		 * enter the CLOSING state.
   2872 		 */
   2873 		case TCPS_FIN_WAIT_1:
   2874 			tp->t_state = TCPS_CLOSING;
   2875 			break;
   2876 
   2877 	 	/*
   2878 		 * In FIN_WAIT_2 state enter the TIME_WAIT state,
   2879 		 * starting the time-wait timer, turning off the other
   2880 		 * standard timers.
   2881 		 */
   2882 		case TCPS_FIN_WAIT_2:
   2883 			tp->t_state = TCPS_TIME_WAIT;
   2884 			tcp_canceltimers(tp);
   2885 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2886 			soisdisconnected(so);
   2887 			break;
   2888 
   2889 		/*
   2890 		 * In TIME_WAIT state restart the 2 MSL time_wait timer.
   2891 		 */
   2892 		case TCPS_TIME_WAIT:
   2893 			TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
   2894 			break;
   2895 		}
   2896 	}
   2897 #ifdef TCP_DEBUG
   2898 	if (so->so_options & SO_DEBUG)
   2899 		tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
   2900 #endif
   2901 
   2902 	/*
   2903 	 * Return any desired output.
   2904 	 */
   2905 	if (needoutput || (tp->t_flags & TF_ACKNOW)) {
   2906 		KERNEL_LOCK(1, NULL);
   2907 		(void)tcp_output(tp);
   2908 		KERNEL_UNLOCK_ONE(NULL);
   2909 	}
   2910 	if (tcp_saveti)
   2911 		m_freem(tcp_saveti);
   2912 
   2913 	if (tp->t_state == TCPS_TIME_WAIT
   2914 	    && (so->so_state & SS_NOFDREF)
   2915 	    && (tp->t_inpcb || af != AF_INET)
   2916 	    && (tp->t_in6pcb || af != AF_INET6)
   2917 	    && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
   2918 	    && TAILQ_EMPTY(&tp->segq)
   2919 	    && vtw_add(af, tp)) {
   2920 		;
   2921 	}
   2922 	return;
   2923 
   2924 badsyn:
   2925 	/*
   2926 	 * Received a bad SYN.  Increment counters and dropwithreset.
   2927 	 */
   2928 	TCP_STATINC(TCP_STAT_BADSYN);
   2929 	tp = NULL;
   2930 	goto dropwithreset;
   2931 
   2932 dropafterack:
   2933 	/*
   2934 	 * Generate an ACK dropping incoming segment if it occupies
   2935 	 * sequence space, where the ACK reflects our state.
   2936 	 */
   2937 	if (tiflags & TH_RST)
   2938 		goto drop;
   2939 	goto dropafterack2;
   2940 
   2941 dropafterack_ratelim:
   2942 	/*
   2943 	 * We may want to rate-limit ACKs against SYN/RST attack.
   2944 	 */
   2945 	if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
   2946 	    tcp_ackdrop_ppslim) == 0) {
   2947 		/* XXX stat */
   2948 		goto drop;
   2949 	}
   2950 
   2951 dropafterack2:
   2952 	m_freem(m);
   2953 	tp->t_flags |= TF_ACKNOW;
   2954 	KERNEL_LOCK(1, NULL);
   2955 	(void)tcp_output(tp);
   2956 	KERNEL_UNLOCK_ONE(NULL);
   2957 	if (tcp_saveti)
   2958 		m_freem(tcp_saveti);
   2959 	return;
   2960 
   2961 dropwithreset_ratelim:
   2962 	/*
   2963 	 * We may want to rate-limit RSTs in certain situations,
   2964 	 * particularly if we are sending an RST in response to
   2965 	 * an attempt to connect to or otherwise communicate with
   2966 	 * a port for which we have no socket.
   2967 	 */
   2968 	if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
   2969 	    tcp_rst_ppslim) == 0) {
   2970 		/* XXX stat */
   2971 		goto drop;
   2972 	}
   2973 
   2974 dropwithreset:
   2975 	/*
   2976 	 * Generate a RST, dropping incoming segment.
   2977 	 * Make ACK acceptable to originator of segment.
   2978 	 */
   2979 	if (tiflags & TH_RST)
   2980 		goto drop;
   2981 	if (tiflags & TH_ACK) {
   2982 		(void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
   2983 	} else {
   2984 		if (tiflags & TH_SYN)
   2985 			tlen++;
   2986 		(void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
   2987 		    TH_RST|TH_ACK);
   2988 	}
   2989 	if (tcp_saveti)
   2990 		m_freem(tcp_saveti);
   2991 	return;
   2992 
   2993 badcsum:
   2994 drop:
   2995 	/*
   2996 	 * Drop space held by incoming segment and return.
   2997 	 */
   2998 	if (tp) {
   2999 		if (tp->t_inpcb)
   3000 			so = tp->t_inpcb->inp_socket;
   3001 #ifdef INET6
   3002 		else if (tp->t_in6pcb)
   3003 			so = tp->t_in6pcb->in6p_socket;
   3004 #endif
   3005 		else
   3006 			so = NULL;
   3007 #ifdef TCP_DEBUG
   3008 		if (so && (so->so_options & SO_DEBUG) != 0)
   3009 			tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
   3010 #endif
   3011 	}
   3012 	if (tcp_saveti)
   3013 		m_freem(tcp_saveti);
   3014 	m_freem(m);
   3015 	return;
   3016 }
   3017 
   3018 #ifdef TCP_SIGNATURE
   3019 int
   3020 tcp_signature_apply(void *fstate, void *data, u_int len)
   3021 {
   3022 
   3023 	MD5Update(fstate, (u_char *)data, len);
   3024 	return (0);
   3025 }
   3026 
   3027 struct secasvar *
   3028 tcp_signature_getsav(struct mbuf *m)
   3029 {
   3030 	struct ip *ip;
   3031 	struct ip6_hdr *ip6;
   3032 
   3033 	ip = mtod(m, struct ip *);
   3034 	switch (ip->ip_v) {
   3035 	case 4:
   3036 		ip = mtod(m, struct ip *);
   3037 		ip6 = NULL;
   3038 		break;
   3039 	case 6:
   3040 		ip = NULL;
   3041 		ip6 = mtod(m, struct ip6_hdr *);
   3042 		break;
   3043 	default:
   3044 		return (NULL);
   3045 	}
   3046 
   3047 #ifdef IPSEC
   3048 	union sockaddr_union dst;
   3049 
   3050 	/* Extract the destination from the IP header in the mbuf. */
   3051 	memset(&dst, 0, sizeof(union sockaddr_union));
   3052 	if (ip != NULL) {
   3053 		dst.sa.sa_len = sizeof(struct sockaddr_in);
   3054 		dst.sa.sa_family = AF_INET;
   3055 		dst.sin.sin_addr = ip->ip_dst;
   3056 	} else {
   3057 		dst.sa.sa_len = sizeof(struct sockaddr_in6);
   3058 		dst.sa.sa_family = AF_INET6;
   3059 		dst.sin6.sin6_addr = ip6->ip6_dst;
   3060 	}
   3061 
   3062 	/*
   3063 	 * Look up an SADB entry which matches the address of the peer.
   3064 	 */
   3065 	return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
   3066 #else
   3067 	return NULL;
   3068 #endif
   3069 }
   3070 
   3071 int
   3072 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
   3073     struct secasvar *sav, char *sig)
   3074 {
   3075 	MD5_CTX ctx;
   3076 	struct ip *ip;
   3077 	struct ipovly *ipovly;
   3078 #ifdef INET6
   3079 	struct ip6_hdr *ip6;
   3080 	struct ip6_hdr_pseudo ip6pseudo;
   3081 #endif
   3082 	struct ippseudo ippseudo;
   3083 	struct tcphdr th0;
   3084 	int l, tcphdrlen;
   3085 
   3086 	if (sav == NULL)
   3087 		return (-1);
   3088 
   3089 	tcphdrlen = th->th_off * 4;
   3090 
   3091 	switch (mtod(m, struct ip *)->ip_v) {
   3092 	case 4:
   3093 		MD5Init(&ctx);
   3094 		ip = mtod(m, struct ip *);
   3095 		memset(&ippseudo, 0, sizeof(ippseudo));
   3096 		ipovly = (struct ipovly *)ip;
   3097 		ippseudo.ippseudo_src = ipovly->ih_src;
   3098 		ippseudo.ippseudo_dst = ipovly->ih_dst;
   3099 		ippseudo.ippseudo_pad = 0;
   3100 		ippseudo.ippseudo_p = IPPROTO_TCP;
   3101 		ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
   3102 		MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
   3103 		break;
   3104 #if INET6
   3105 	case 6:
   3106 		MD5Init(&ctx);
   3107 		ip6 = mtod(m, struct ip6_hdr *);
   3108 		memset(&ip6pseudo, 0, sizeof(ip6pseudo));
   3109 		ip6pseudo.ip6ph_src = ip6->ip6_src;
   3110 		in6_clearscope(&ip6pseudo.ip6ph_src);
   3111 		ip6pseudo.ip6ph_dst = ip6->ip6_dst;
   3112 		in6_clearscope(&ip6pseudo.ip6ph_dst);
   3113 		ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
   3114 		ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
   3115 		MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
   3116 		break;
   3117 #endif
   3118 	default:
   3119 		return (-1);
   3120 	}
   3121 
   3122 	th0 = *th;
   3123 	th0.th_sum = 0;
   3124 	MD5Update(&ctx, (char *)&th0, sizeof(th0));
   3125 
   3126 	l = m->m_pkthdr.len - thoff - tcphdrlen;
   3127 	if (l > 0)
   3128 		m_apply(m, thoff + tcphdrlen,
   3129 		    m->m_pkthdr.len - thoff - tcphdrlen,
   3130 		    tcp_signature_apply, &ctx);
   3131 
   3132 	MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
   3133 	MD5Final(sig, &ctx);
   3134 
   3135 	return (0);
   3136 }
   3137 #endif
   3138 
   3139 /*
   3140  * Parse and process tcp options.
   3141  *
   3142  * Returns -1 if this segment should be dropped.  (eg. wrong signature)
   3143  * Otherwise returns 0.
   3144  */
   3145 int
   3146 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
   3147     struct mbuf *m, int toff, struct tcp_opt_info *oi)
   3148 {
   3149 	u_int16_t mss;
   3150 	int opt, optlen = 0;
   3151 #ifdef TCP_SIGNATURE
   3152 	void *sigp = NULL;
   3153 	char sigbuf[TCP_SIGLEN];
   3154 	struct secasvar *sav = NULL;
   3155 #endif
   3156 
   3157 	for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
   3158 		opt = cp[0];
   3159 		if (opt == TCPOPT_EOL)
   3160 			break;
   3161 		if (opt == TCPOPT_NOP)
   3162 			optlen = 1;
   3163 		else {
   3164 			if (cnt < 2)
   3165 				break;
   3166 			optlen = cp[1];
   3167 			if (optlen < 2 || optlen > cnt)
   3168 				break;
   3169 		}
   3170 		switch (opt) {
   3171 
   3172 		default:
   3173 			continue;
   3174 
   3175 		case TCPOPT_MAXSEG:
   3176 			if (optlen != TCPOLEN_MAXSEG)
   3177 				continue;
   3178 			if (!(th->th_flags & TH_SYN))
   3179 				continue;
   3180 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3181 				continue;
   3182 			memcpy(&mss, cp + 2, sizeof(mss));
   3183 			oi->maxseg = ntohs(mss);
   3184 			break;
   3185 
   3186 		case TCPOPT_WINDOW:
   3187 			if (optlen != TCPOLEN_WINDOW)
   3188 				continue;
   3189 			if (!(th->th_flags & TH_SYN))
   3190 				continue;
   3191 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3192 				continue;
   3193 			tp->t_flags |= TF_RCVD_SCALE;
   3194 			tp->requested_s_scale = cp[2];
   3195 			if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
   3196 				char buf[INET6_ADDRSTRLEN];
   3197 				struct ip *ip = mtod(m, struct ip *);
   3198 #ifdef INET6
   3199 				struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
   3200 #endif
   3201 
   3202 				switch (ip->ip_v) {
   3203 				case 4:
   3204 					in_print(buf, sizeof(buf),
   3205 					    &ip->ip_src);
   3206 					break;
   3207 #ifdef INET6
   3208 				case 6:
   3209 					in6_print(buf, sizeof(buf),
   3210 					    &ip6->ip6_src);
   3211 					break;
   3212 #endif
   3213 				default:
   3214 					strlcpy(buf, "(unknown)", sizeof(buf));
   3215 					break;
   3216 				}
   3217 
   3218 				log(LOG_ERR, "TCP: invalid wscale %d from %s, "
   3219 				    "assuming %d\n",
   3220 				    tp->requested_s_scale, buf,
   3221 				    TCP_MAX_WINSHIFT);
   3222 				tp->requested_s_scale = TCP_MAX_WINSHIFT;
   3223 			}
   3224 			break;
   3225 
   3226 		case TCPOPT_TIMESTAMP:
   3227 			if (optlen != TCPOLEN_TIMESTAMP)
   3228 				continue;
   3229 			oi->ts_present = 1;
   3230 			memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
   3231 			NTOHL(oi->ts_val);
   3232 			memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
   3233 			NTOHL(oi->ts_ecr);
   3234 
   3235 			if (!(th->th_flags & TH_SYN))
   3236 				continue;
   3237 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3238 				continue;
   3239 			/*
   3240 			 * A timestamp received in a SYN makes
   3241 			 * it ok to send timestamp requests and replies.
   3242 			 */
   3243 			tp->t_flags |= TF_RCVD_TSTMP;
   3244 			tp->ts_recent = oi->ts_val;
   3245 			tp->ts_recent_age = tcp_now;
   3246                         break;
   3247 
   3248 		case TCPOPT_SACK_PERMITTED:
   3249 			if (optlen != TCPOLEN_SACK_PERMITTED)
   3250 				continue;
   3251 			if (!(th->th_flags & TH_SYN))
   3252 				continue;
   3253 			if (TCPS_HAVERCVDSYN(tp->t_state))
   3254 				continue;
   3255 			if (tcp_do_sack) {
   3256 				tp->t_flags |= TF_SACK_PERMIT;
   3257 				tp->t_flags |= TF_WILL_SACK;
   3258 			}
   3259 			break;
   3260 
   3261 		case TCPOPT_SACK:
   3262 			tcp_sack_option(tp, th, cp, optlen);
   3263 			break;
   3264 #ifdef TCP_SIGNATURE
   3265 		case TCPOPT_SIGNATURE:
   3266 			if (optlen != TCPOLEN_SIGNATURE)
   3267 				continue;
   3268 			if (sigp &&
   3269 			    !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
   3270 				return (-1);
   3271 
   3272 			sigp = sigbuf;
   3273 			memcpy(sigbuf, cp + 2, TCP_SIGLEN);
   3274 			tp->t_flags |= TF_SIGNATURE;
   3275 			break;
   3276 #endif
   3277 		}
   3278 	}
   3279 
   3280 #ifndef TCP_SIGNATURE
   3281 	return 0;
   3282 #else
   3283 	if (tp->t_flags & TF_SIGNATURE) {
   3284 		sav = tcp_signature_getsav(m);
   3285 		if (sav == NULL && tp->t_state == TCPS_LISTEN)
   3286 			return (-1);
   3287 	}
   3288 
   3289 	if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
   3290 		goto out;
   3291 
   3292 	if (sigp) {
   3293 		char sig[TCP_SIGLEN];
   3294 
   3295 		tcp_fields_to_net(th);
   3296 		if (tcp_signature(m, th, toff, sav, sig) < 0) {
   3297 			tcp_fields_to_host(th);
   3298 			goto out;
   3299 		}
   3300 		tcp_fields_to_host(th);
   3301 
   3302 		if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
   3303 			TCP_STATINC(TCP_STAT_BADSIG);
   3304 			goto out;
   3305 		} else
   3306 			TCP_STATINC(TCP_STAT_GOODSIG);
   3307 
   3308 		key_sa_recordxfer(sav, m);
   3309 		KEY_SA_UNREF(&sav);
   3310 	}
   3311 	return 0;
   3312 out:
   3313 	if (sav != NULL)
   3314 		KEY_SA_UNREF(&sav);
   3315 	return -1;
   3316 #endif
   3317 }
   3318 
   3319 /*
   3320  * Pull out of band byte out of a segment so
   3321  * it doesn't appear in the user's data queue.
   3322  * It is still reflected in the segment length for
   3323  * sequencing purposes.
   3324  */
   3325 void
   3326 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
   3327     struct mbuf *m, int off)
   3328 {
   3329 	int cnt = off + th->th_urp - 1;
   3330 
   3331 	while (cnt >= 0) {
   3332 		if (m->m_len > cnt) {
   3333 			char *cp = mtod(m, char *) + cnt;
   3334 			struct tcpcb *tp = sototcpcb(so);
   3335 
   3336 			tp->t_iobc = *cp;
   3337 			tp->t_oobflags |= TCPOOB_HAVEDATA;
   3338 			memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
   3339 			m->m_len--;
   3340 			return;
   3341 		}
   3342 		cnt -= m->m_len;
   3343 		m = m->m_next;
   3344 		if (m == NULL)
   3345 			break;
   3346 	}
   3347 	panic("tcp_pulloutofband");
   3348 }
   3349 
   3350 /*
   3351  * Collect new round-trip time estimate
   3352  * and update averages and current timeout.
   3353  *
   3354  * rtt is in units of slow ticks (typically 500 ms) -- essentially the
   3355  * difference of two timestamps.
   3356  */
   3357 void
   3358 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
   3359 {
   3360 	int32_t delta;
   3361 
   3362 	TCP_STATINC(TCP_STAT_RTTUPDATED);
   3363 	if (tp->t_srtt != 0) {
   3364 		/*
   3365 		 * Compute the amount to add to srtt for smoothing,
   3366 		 * *alpha, or 2^(-TCP_RTT_SHIFT).  Because
   3367 		 * srtt is stored in 1/32 slow ticks, we conceptually
   3368 		 * shift left 5 bits, subtract srtt to get the
   3369 		 * difference, and then shift right by TCP_RTT_SHIFT
   3370 		 * (3) to obtain 1/8 of the difference.
   3371 		 */
   3372 		delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
   3373 		/*
   3374 		 * This can never happen, because delta's lowest
   3375 		 * possible value is 1/8 of t_srtt.  But if it does,
   3376 		 * set srtt to some reasonable value, here chosen
   3377 		 * as 1/8 tick.
   3378 		 */
   3379 		if ((tp->t_srtt += delta) <= 0)
   3380 			tp->t_srtt = 1 << 2;
   3381 		/*
   3382 		 * RFC2988 requires that rttvar be updated first.
   3383 		 * This code is compliant because "delta" is the old
   3384 		 * srtt minus the new observation (scaled).
   3385 		 *
   3386 		 * RFC2988 says:
   3387 		 *   rttvar = (1-beta) * rttvar + beta * |srtt-observed|
   3388 		 *
   3389 		 * delta is in units of 1/32 ticks, and has then been
   3390 		 * divided by 8.  This is equivalent to being in 1/16s
   3391 		 * units and divided by 4.  Subtract from it 1/4 of
   3392 		 * the existing rttvar to form the (signed) amount to
   3393 		 * adjust.
   3394 		 */
   3395 		if (delta < 0)
   3396 			delta = -delta;
   3397 		delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
   3398 		/*
   3399 		 * As with srtt, this should never happen.  There is
   3400 		 * no support in RFC2988 for this operation.  But 1/4s
   3401 		 * as rttvar when faced with something arguably wrong
   3402 		 * is ok.
   3403 		 */
   3404 		if ((tp->t_rttvar += delta) <= 0)
   3405 			tp->t_rttvar = 1 << 2;
   3406 
   3407 		/*
   3408 		 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
   3409 		 * Problem is: it doesn't work.  Disabled by defaulting
   3410 		 * tcp_rttlocal to 0; see corresponding code in
   3411 		 * tcp_subr that selects local vs remote in a different way.
   3412 		 *
   3413 		 * The static branch prediction hint here should be removed
   3414 		 * when the rtt estimator is fixed and the rtt_enable code
   3415 		 * is turned back on.
   3416 		 */
   3417 		if (__predict_false(tcp_rttlocal) && tcp_msl_enable
   3418 		    && tp->t_srtt > tcp_msl_remote_threshold
   3419 		    && tp->t_msl  < tcp_msl_remote) {
   3420 			tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
   3421 		}
   3422 	} else {
   3423 		/*
   3424 		 * This is the first measurement.  Per RFC2988, 2.2,
   3425 		 * set rtt=R and srtt=R/2.
   3426 		 * For srtt, storage representation is 1/32 ticks,
   3427 		 * so shift left by 5.
   3428 		 * For rttvar, storage representation is 1/16 ticks,
   3429 		 * So shift left by 4, but then right by 1 to halve.
   3430 		 */
   3431 		tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
   3432 		tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
   3433 	}
   3434 	tp->t_rtttime = 0;
   3435 	tp->t_rxtshift = 0;
   3436 
   3437 	/*
   3438 	 * the retransmit should happen at rtt + 4 * rttvar.
   3439 	 * Because of the way we do the smoothing, srtt and rttvar
   3440 	 * will each average +1/2 tick of bias.  When we compute
   3441 	 * the retransmit timer, we want 1/2 tick of rounding and
   3442 	 * 1 extra tick because of +-1/2 tick uncertainty in the
   3443 	 * firing of the timer.  The bias will give us exactly the
   3444 	 * 1.5 tick we need.  But, because the bias is
   3445 	 * statistical, we have to test that we don't drop below
   3446 	 * the minimum feasible timer (which is 2 ticks).
   3447 	 */
   3448 	TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
   3449 	    uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
   3450 
   3451 	/*
   3452 	 * We received an ack for a packet that wasn't retransmitted;
   3453 	 * it is probably safe to discard any error indications we've
   3454 	 * received recently.  This isn't quite right, but close enough
   3455 	 * for now (a route might have failed after we sent a segment,
   3456 	 * and the return path might not be symmetrical).
   3457 	 */
   3458 	tp->t_softerror = 0;
   3459 }
   3460