tcp_input.c revision 1.434 1 /* $NetBSD: tcp_input.c,v 1.434 2022/09/20 07:19:14 ozaki-r Exp $ */
2
3 /*
4 * Copyright (C) 1995, 1996, 1997, and 1998 WIDE Project.
5 * All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
15 * 3. Neither the name of the project nor the names of its contributors
16 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE PROJECT AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE PROJECT OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
32 /*
33 * @(#)COPYRIGHT 1.1 (NRL) 17 January 1995
34 *
35 * NRL grants permission for redistribution and use in source and binary
36 * forms, with or without modification, of the software and documentation
37 * created at NRL provided that the following conditions are met:
38 *
39 * 1. Redistributions of source code must retain the above copyright
40 * notice, this list of conditions and the following disclaimer.
41 * 2. Redistributions in binary form must reproduce the above copyright
42 * notice, this list of conditions and the following disclaimer in the
43 * documentation and/or other materials provided with the distribution.
44 * 3. All advertising materials mentioning features or use of this software
45 * must display the following acknowledgements:
46 * This product includes software developed by the University of
47 * California, Berkeley and its contributors.
48 * This product includes software developed at the Information
49 * Technology Division, US Naval Research Laboratory.
50 * 4. Neither the name of the NRL nor the names of its contributors
51 * may be used to endorse or promote products derived from this software
52 * without specific prior written permission.
53 *
54 * THE SOFTWARE PROVIDED BY NRL IS PROVIDED BY NRL AND CONTRIBUTORS ``AS
55 * IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
56 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
57 * PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL NRL OR
58 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
59 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
60 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
61 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
62 * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
63 * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
64 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
65 *
66 * The views and conclusions contained in the software and documentation
67 * are those of the authors and should not be interpreted as representing
68 * official policies, either expressed or implied, of the US Naval
69 * Research Laboratory (NRL).
70 */
71
72 /*-
73 * Copyright (c) 1997, 1998, 1999, 2001, 2005, 2006,
74 * 2011 The NetBSD Foundation, Inc.
75 * All rights reserved.
76 *
77 * This code is derived from software contributed to The NetBSD Foundation
78 * by Coyote Point Systems, Inc.
79 * This code is derived from software contributed to The NetBSD Foundation
80 * by Jason R. Thorpe and Kevin M. Lahey of the Numerical Aerospace Simulation
81 * Facility, NASA Ames Research Center.
82 * This code is derived from software contributed to The NetBSD Foundation
83 * by Charles M. Hannum.
84 * This code is derived from software contributed to The NetBSD Foundation
85 * by Rui Paulo.
86 *
87 * Redistribution and use in source and binary forms, with or without
88 * modification, are permitted provided that the following conditions
89 * are met:
90 * 1. Redistributions of source code must retain the above copyright
91 * notice, this list of conditions and the following disclaimer.
92 * 2. Redistributions in binary form must reproduce the above copyright
93 * notice, this list of conditions and the following disclaimer in the
94 * documentation and/or other materials provided with the distribution.
95 *
96 * THIS SOFTWARE IS PROVIDED BY THE NETBSD FOUNDATION, INC. AND CONTRIBUTORS
97 * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
98 * TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
99 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR CONTRIBUTORS
100 * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
101 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
102 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
103 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
104 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
105 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
106 * POSSIBILITY OF SUCH DAMAGE.
107 */
108
109 /*
110 * Copyright (c) 1982, 1986, 1988, 1990, 1993, 1994, 1995
111 * The Regents of the University of California. All rights reserved.
112 *
113 * Redistribution and use in source and binary forms, with or without
114 * modification, are permitted provided that the following conditions
115 * are met:
116 * 1. Redistributions of source code must retain the above copyright
117 * notice, this list of conditions and the following disclaimer.
118 * 2. Redistributions in binary form must reproduce the above copyright
119 * notice, this list of conditions and the following disclaimer in the
120 * documentation and/or other materials provided with the distribution.
121 * 3. Neither the name of the University nor the names of its contributors
122 * may be used to endorse or promote products derived from this software
123 * without specific prior written permission.
124 *
125 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
126 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
127 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
128 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
129 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
130 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
131 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
132 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
133 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
134 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
135 * SUCH DAMAGE.
136 *
137 * @(#)tcp_input.c 8.12 (Berkeley) 5/24/95
138 */
139
140 #include <sys/cdefs.h>
141 __KERNEL_RCSID(0, "$NetBSD: tcp_input.c,v 1.434 2022/09/20 07:19:14 ozaki-r Exp $");
142
143 #ifdef _KERNEL_OPT
144 #include "opt_inet.h"
145 #include "opt_ipsec.h"
146 #include "opt_inet_csum.h"
147 #include "opt_tcp_debug.h"
148 #endif
149
150 #include <sys/param.h>
151 #include <sys/systm.h>
152 #include <sys/malloc.h>
153 #include <sys/mbuf.h>
154 #include <sys/protosw.h>
155 #include <sys/socket.h>
156 #include <sys/socketvar.h>
157 #include <sys/errno.h>
158 #include <sys/syslog.h>
159 #include <sys/pool.h>
160 #include <sys/domain.h>
161 #include <sys/kernel.h>
162 #ifdef TCP_SIGNATURE
163 #include <sys/md5.h>
164 #endif
165 #include <sys/lwp.h> /* for lwp0 */
166 #include <sys/cprng.h>
167
168 #include <net/if.h>
169 #include <net/if_types.h>
170
171 #include <netinet/in.h>
172 #include <netinet/in_systm.h>
173 #include <netinet/ip.h>
174 #include <netinet/in_pcb.h>
175 #include <netinet/in_var.h>
176 #include <netinet/ip_var.h>
177 #include <netinet/in_offload.h>
178
179 #if NARP > 0
180 #include <netinet/if_inarp.h>
181 #endif
182 #ifdef INET6
183 #include <netinet/ip6.h>
184 #include <netinet6/ip6_var.h>
185 #include <netinet6/in6_pcb.h>
186 #include <netinet6/ip6_var.h>
187 #include <netinet6/in6_var.h>
188 #include <netinet/icmp6.h>
189 #include <netinet6/nd6.h>
190 #ifdef TCP_SIGNATURE
191 #include <netinet6/scope6_var.h>
192 #endif
193 #endif
194
195 #ifndef INET6
196 #include <netinet/ip6.h>
197 #endif
198
199 #include <netinet/tcp.h>
200 #include <netinet/tcp_fsm.h>
201 #include <netinet/tcp_seq.h>
202 #include <netinet/tcp_timer.h>
203 #include <netinet/tcp_var.h>
204 #include <netinet/tcp_private.h>
205 #include <netinet/tcp_congctl.h>
206 #include <netinet/tcp_debug.h>
207 #include <netinet/tcp_syncache.h>
208
209 #ifdef INET6
210 #include "faith.h"
211 #if defined(NFAITH) && NFAITH > 0
212 #include <net/if_faith.h>
213 #endif
214 #endif
215
216 #ifdef IPSEC
217 #include <netipsec/ipsec.h>
218 #include <netipsec/key.h>
219 #ifdef INET6
220 #include <netipsec/ipsec6.h>
221 #endif
222 #endif /* IPSEC*/
223
224 #include <netinet/tcp_vtw.h>
225
226 int tcprexmtthresh = 3;
227 int tcp_log_refused;
228
229 int tcp_do_autorcvbuf = 1;
230 int tcp_autorcvbuf_inc = 16 * 1024;
231 int tcp_autorcvbuf_max = 256 * 1024;
232 int tcp_msl = (TCPTV_MSL / PR_SLOWHZ);
233
234 static int tcp_rst_ppslim_count = 0;
235 static struct timeval tcp_rst_ppslim_last;
236 static int tcp_ackdrop_ppslim_count = 0;
237 static struct timeval tcp_ackdrop_ppslim_last;
238
239 #define TCP_PAWS_IDLE (24U * 24 * 60 * 60 * PR_SLOWHZ)
240
241 /* for modulo comparisons of timestamps */
242 #define TSTMP_LT(a,b) ((int)((a)-(b)) < 0)
243 #define TSTMP_GEQ(a,b) ((int)((a)-(b)) >= 0)
244
245 /*
246 * Neighbor Discovery, Neighbor Unreachability Detection Upper layer hint.
247 */
248 static void
249 nd_hint(struct tcpcb *tp)
250 {
251 struct route *ro = NULL;
252 struct rtentry *rt;
253
254 if (tp == NULL)
255 return;
256
257 switch (tp->t_family) {
258 #if NARP > 0
259 case AF_INET:
260 if (tp->t_inpcb != NULL)
261 ro = &tp->t_inpcb->inp_route;
262 break;
263 #endif
264 #ifdef INET6
265 case AF_INET6:
266 if (tp->t_in6pcb != NULL)
267 ro = &tp->t_in6pcb->in6p_route;
268 break;
269 #endif
270 }
271
272 if (ro == NULL)
273 return;
274
275 rt = rtcache_validate(ro);
276 if (rt == NULL)
277 return;
278
279 switch (tp->t_family) {
280 #if NARP > 0
281 case AF_INET:
282 arp_nud_hint(rt);
283 break;
284 #endif
285 #ifdef INET6
286 case AF_INET6:
287 nd6_nud_hint(rt);
288 break;
289 #endif
290 }
291
292 rtcache_unref(rt, ro);
293 }
294
295 /*
296 * Compute ACK transmission behavior. Delay the ACK unless
297 * we have already delayed an ACK (must send an ACK every two segments).
298 * We also ACK immediately if we received a PUSH and the ACK-on-PUSH
299 * option is enabled.
300 */
301 static void
302 tcp_setup_ack(struct tcpcb *tp, const struct tcphdr *th)
303 {
304
305 if (tp->t_flags & TF_DELACK ||
306 (tcp_ack_on_push && th->th_flags & TH_PUSH))
307 tp->t_flags |= TF_ACKNOW;
308 else
309 TCP_SET_DELACK(tp);
310 }
311
312 static void
313 icmp_check(struct tcpcb *tp, const struct tcphdr *th, int acked)
314 {
315
316 /*
317 * If we had a pending ICMP message that refers to data that have
318 * just been acknowledged, disregard the recorded ICMP message.
319 */
320 if ((tp->t_flags & TF_PMTUD_PEND) &&
321 SEQ_GT(th->th_ack, tp->t_pmtud_th_seq))
322 tp->t_flags &= ~TF_PMTUD_PEND;
323
324 /*
325 * Keep track of the largest chunk of data
326 * acknowledged since last PMTU update
327 */
328 if (tp->t_pmtud_mss_acked < acked)
329 tp->t_pmtud_mss_acked = acked;
330 }
331
332 /*
333 * Convert TCP protocol fields to host order for easier processing.
334 */
335 static void
336 tcp_fields_to_host(struct tcphdr *th)
337 {
338
339 NTOHL(th->th_seq);
340 NTOHL(th->th_ack);
341 NTOHS(th->th_win);
342 NTOHS(th->th_urp);
343 }
344
345 /*
346 * ... and reverse the above.
347 */
348 static void
349 tcp_fields_to_net(struct tcphdr *th)
350 {
351
352 HTONL(th->th_seq);
353 HTONL(th->th_ack);
354 HTONS(th->th_win);
355 HTONS(th->th_urp);
356 }
357
358 static void
359 tcp_urp_drop(struct tcphdr *th, int todrop, int *tiflags)
360 {
361 if (th->th_urp > todrop) {
362 th->th_urp -= todrop;
363 } else {
364 *tiflags &= ~TH_URG;
365 th->th_urp = 0;
366 }
367 }
368
369 #ifdef TCP_CSUM_COUNTERS
370 #include <sys/device.h>
371
372 extern struct evcnt tcp_hwcsum_ok;
373 extern struct evcnt tcp_hwcsum_bad;
374 extern struct evcnt tcp_hwcsum_data;
375 extern struct evcnt tcp_swcsum;
376 #if defined(INET6)
377 extern struct evcnt tcp6_hwcsum_ok;
378 extern struct evcnt tcp6_hwcsum_bad;
379 extern struct evcnt tcp6_hwcsum_data;
380 extern struct evcnt tcp6_swcsum;
381 #endif /* defined(INET6) */
382
383 #define TCP_CSUM_COUNTER_INCR(ev) (ev)->ev_count++
384
385 #else
386
387 #define TCP_CSUM_COUNTER_INCR(ev) /* nothing */
388
389 #endif /* TCP_CSUM_COUNTERS */
390
391 #ifdef TCP_REASS_COUNTERS
392 #include <sys/device.h>
393
394 extern struct evcnt tcp_reass_;
395 extern struct evcnt tcp_reass_empty;
396 extern struct evcnt tcp_reass_iteration[8];
397 extern struct evcnt tcp_reass_prependfirst;
398 extern struct evcnt tcp_reass_prepend;
399 extern struct evcnt tcp_reass_insert;
400 extern struct evcnt tcp_reass_inserttail;
401 extern struct evcnt tcp_reass_append;
402 extern struct evcnt tcp_reass_appendtail;
403 extern struct evcnt tcp_reass_overlaptail;
404 extern struct evcnt tcp_reass_overlapfront;
405 extern struct evcnt tcp_reass_segdup;
406 extern struct evcnt tcp_reass_fragdup;
407
408 #define TCP_REASS_COUNTER_INCR(ev) (ev)->ev_count++
409
410 #else
411
412 #define TCP_REASS_COUNTER_INCR(ev) /* nothing */
413
414 #endif /* TCP_REASS_COUNTERS */
415
416 static int tcp_reass(struct tcpcb *, const struct tcphdr *, struct mbuf *,
417 int);
418
419 static void tcp4_log_refused(const struct ip *, const struct tcphdr *);
420 #ifdef INET6
421 static void tcp6_log_refused(const struct ip6_hdr *, const struct tcphdr *);
422 #endif
423
424 #if defined(MBUFTRACE)
425 struct mowner tcp_reass_mowner = MOWNER_INIT("tcp", "reass");
426 #endif /* defined(MBUFTRACE) */
427
428 static struct pool tcpipqent_pool;
429
430 void
431 tcpipqent_init(void)
432 {
433
434 pool_init(&tcpipqent_pool, sizeof(struct ipqent), 0, 0, 0, "tcpipqepl",
435 NULL, IPL_VM);
436 }
437
438 struct ipqent *
439 tcpipqent_alloc(void)
440 {
441 struct ipqent *ipqe;
442 int s;
443
444 s = splvm();
445 ipqe = pool_get(&tcpipqent_pool, PR_NOWAIT);
446 splx(s);
447
448 return ipqe;
449 }
450
451 void
452 tcpipqent_free(struct ipqent *ipqe)
453 {
454 int s;
455
456 s = splvm();
457 pool_put(&tcpipqent_pool, ipqe);
458 splx(s);
459 }
460
461 /*
462 * Insert segment ti into reassembly queue of tcp with
463 * control block tp. Return TH_FIN if reassembly now includes
464 * a segment with FIN.
465 */
466 static int
467 tcp_reass(struct tcpcb *tp, const struct tcphdr *th, struct mbuf *m, int tlen)
468 {
469 struct ipqent *p, *q, *nq, *tiqe = NULL;
470 struct socket *so = NULL;
471 int pkt_flags;
472 tcp_seq pkt_seq;
473 unsigned pkt_len;
474 u_long rcvpartdupbyte = 0;
475 u_long rcvoobyte;
476 #ifdef TCP_REASS_COUNTERS
477 u_int count = 0;
478 #endif
479 uint64_t *tcps;
480
481 if (tp->t_inpcb)
482 so = tp->t_inpcb->inp_socket;
483 #ifdef INET6
484 else if (tp->t_in6pcb)
485 so = tp->t_in6pcb->in6p_socket;
486 #endif
487
488 TCP_REASS_LOCK_CHECK(tp);
489
490 /*
491 * Call with th==NULL after become established to
492 * force pre-ESTABLISHED data up to user socket.
493 */
494 if (th == NULL)
495 goto present;
496
497 m_claimm(m, &tcp_reass_mowner);
498
499 rcvoobyte = tlen;
500 /*
501 * Copy these to local variables because the TCP header gets munged
502 * while we are collapsing mbufs.
503 */
504 pkt_seq = th->th_seq;
505 pkt_len = tlen;
506 pkt_flags = th->th_flags;
507
508 TCP_REASS_COUNTER_INCR(&tcp_reass_);
509
510 if ((p = TAILQ_LAST(&tp->segq, ipqehead)) != NULL) {
511 /*
512 * When we miss a packet, the vast majority of time we get
513 * packets that follow it in order. So optimize for that.
514 */
515 if (pkt_seq == p->ipqe_seq + p->ipqe_len) {
516 p->ipqe_len += pkt_len;
517 p->ipqe_flags |= pkt_flags;
518 m_cat(p->ipqe_m, m);
519 m = NULL;
520 tiqe = p;
521 TAILQ_REMOVE(&tp->timeq, p, ipqe_timeq);
522 TCP_REASS_COUNTER_INCR(&tcp_reass_appendtail);
523 goto skip_replacement;
524 }
525 /*
526 * While we're here, if the pkt is completely beyond
527 * anything we have, just insert it at the tail.
528 */
529 if (SEQ_GT(pkt_seq, p->ipqe_seq + p->ipqe_len)) {
530 TCP_REASS_COUNTER_INCR(&tcp_reass_inserttail);
531 goto insert_it;
532 }
533 }
534
535 q = TAILQ_FIRST(&tp->segq);
536
537 if (q != NULL) {
538 /*
539 * If this segment immediately precedes the first out-of-order
540 * block, simply slap the segment in front of it and (mostly)
541 * skip the complicated logic.
542 */
543 if (pkt_seq + pkt_len == q->ipqe_seq) {
544 q->ipqe_seq = pkt_seq;
545 q->ipqe_len += pkt_len;
546 q->ipqe_flags |= pkt_flags;
547 m_cat(m, q->ipqe_m);
548 q->ipqe_m = m;
549 tiqe = q;
550 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
551 TCP_REASS_COUNTER_INCR(&tcp_reass_prependfirst);
552 goto skip_replacement;
553 }
554 } else {
555 TCP_REASS_COUNTER_INCR(&tcp_reass_empty);
556 }
557
558 /*
559 * Find a segment which begins after this one does.
560 */
561 for (p = NULL; q != NULL; q = nq) {
562 nq = TAILQ_NEXT(q, ipqe_q);
563 #ifdef TCP_REASS_COUNTERS
564 count++;
565 #endif
566
567 /*
568 * If the received segment is just right after this
569 * fragment, merge the two together and then check
570 * for further overlaps.
571 */
572 if (q->ipqe_seq + q->ipqe_len == pkt_seq) {
573 pkt_len += q->ipqe_len;
574 pkt_flags |= q->ipqe_flags;
575 pkt_seq = q->ipqe_seq;
576 m_cat(q->ipqe_m, m);
577 m = q->ipqe_m;
578 TCP_REASS_COUNTER_INCR(&tcp_reass_append);
579 goto free_ipqe;
580 }
581
582 /*
583 * If the received segment is completely past this
584 * fragment, we need to go to the next fragment.
585 */
586 if (SEQ_LT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
587 p = q;
588 continue;
589 }
590
591 /*
592 * If the fragment is past the received segment,
593 * it (or any following) can't be concatenated.
594 */
595 if (SEQ_GT(q->ipqe_seq, pkt_seq + pkt_len)) {
596 TCP_REASS_COUNTER_INCR(&tcp_reass_insert);
597 break;
598 }
599
600 /*
601 * We've received all the data in this segment before.
602 * Mark it as a duplicate and return.
603 */
604 if (SEQ_LEQ(q->ipqe_seq, pkt_seq) &&
605 SEQ_GEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
606 tcps = TCP_STAT_GETREF();
607 tcps[TCP_STAT_RCVDUPPACK]++;
608 tcps[TCP_STAT_RCVDUPBYTE] += pkt_len;
609 TCP_STAT_PUTREF();
610 tcp_new_dsack(tp, pkt_seq, pkt_len);
611 m_freem(m);
612 if (tiqe != NULL) {
613 tcpipqent_free(tiqe);
614 }
615 TCP_REASS_COUNTER_INCR(&tcp_reass_segdup);
616 goto out;
617 }
618
619 /*
620 * Received segment completely overlaps this fragment
621 * so we drop the fragment (this keeps the temporal
622 * ordering of segments correct).
623 */
624 if (SEQ_GEQ(q->ipqe_seq, pkt_seq) &&
625 SEQ_LEQ(q->ipqe_seq + q->ipqe_len, pkt_seq + pkt_len)) {
626 rcvpartdupbyte += q->ipqe_len;
627 m_freem(q->ipqe_m);
628 TCP_REASS_COUNTER_INCR(&tcp_reass_fragdup);
629 goto free_ipqe;
630 }
631
632 /*
633 * Received segment extends past the end of the fragment.
634 * Drop the overlapping bytes, merge the fragment and
635 * segment, and treat as a longer received packet.
636 */
637 if (SEQ_LT(q->ipqe_seq, pkt_seq) &&
638 SEQ_GT(q->ipqe_seq + q->ipqe_len, pkt_seq)) {
639 int overlap = q->ipqe_seq + q->ipqe_len - pkt_seq;
640 m_adj(m, overlap);
641 rcvpartdupbyte += overlap;
642 m_cat(q->ipqe_m, m);
643 m = q->ipqe_m;
644 pkt_seq = q->ipqe_seq;
645 pkt_len += q->ipqe_len - overlap;
646 rcvoobyte -= overlap;
647 TCP_REASS_COUNTER_INCR(&tcp_reass_overlaptail);
648 goto free_ipqe;
649 }
650
651 /*
652 * Received segment extends past the front of the fragment.
653 * Drop the overlapping bytes on the received packet. The
654 * packet will then be concatenated with this fragment a
655 * bit later.
656 */
657 if (SEQ_GT(q->ipqe_seq, pkt_seq) &&
658 SEQ_LT(q->ipqe_seq, pkt_seq + pkt_len)) {
659 int overlap = pkt_seq + pkt_len - q->ipqe_seq;
660 m_adj(m, -overlap);
661 pkt_len -= overlap;
662 rcvpartdupbyte += overlap;
663 TCP_REASS_COUNTER_INCR(&tcp_reass_overlapfront);
664 rcvoobyte -= overlap;
665 }
666
667 /*
668 * If the received segment immediately precedes this
669 * fragment then tack the fragment onto this segment
670 * and reinsert the data.
671 */
672 if (q->ipqe_seq == pkt_seq + pkt_len) {
673 pkt_len += q->ipqe_len;
674 pkt_flags |= q->ipqe_flags;
675 m_cat(m, q->ipqe_m);
676 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
677 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
678 tp->t_segqlen--;
679 KASSERT(tp->t_segqlen >= 0);
680 KASSERT(tp->t_segqlen != 0 ||
681 (TAILQ_EMPTY(&tp->segq) &&
682 TAILQ_EMPTY(&tp->timeq)));
683 if (tiqe == NULL) {
684 tiqe = q;
685 } else {
686 tcpipqent_free(q);
687 }
688 TCP_REASS_COUNTER_INCR(&tcp_reass_prepend);
689 break;
690 }
691
692 /*
693 * If the fragment is before the segment, remember it.
694 * When this loop is terminated, p will contain the
695 * pointer to the fragment that is right before the
696 * received segment.
697 */
698 if (SEQ_LEQ(q->ipqe_seq, pkt_seq))
699 p = q;
700
701 continue;
702
703 /*
704 * This is a common operation. It also will allow
705 * to save doing a malloc/free in most instances.
706 */
707 free_ipqe:
708 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
709 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
710 tp->t_segqlen--;
711 KASSERT(tp->t_segqlen >= 0);
712 KASSERT(tp->t_segqlen != 0 ||
713 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
714 if (tiqe == NULL) {
715 tiqe = q;
716 } else {
717 tcpipqent_free(q);
718 }
719 }
720
721 #ifdef TCP_REASS_COUNTERS
722 if (count > 7)
723 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[0]);
724 else if (count > 0)
725 TCP_REASS_COUNTER_INCR(&tcp_reass_iteration[count]);
726 #endif
727
728 insert_it:
729 /*
730 * Allocate a new queue entry (block) since the received segment
731 * did not collapse onto any other out-of-order block. If it had
732 * collapsed, tiqe would not be NULL and we would be reusing it.
733 *
734 * If the allocation fails, drop the packet.
735 */
736 if (tiqe == NULL) {
737 tiqe = tcpipqent_alloc();
738 if (tiqe == NULL) {
739 TCP_STATINC(TCP_STAT_RCVMEMDROP);
740 m_freem(m);
741 goto out;
742 }
743 }
744
745 /*
746 * Update the counters.
747 */
748 tp->t_rcvoopack++;
749 tcps = TCP_STAT_GETREF();
750 tcps[TCP_STAT_RCVOOPACK]++;
751 tcps[TCP_STAT_RCVOOBYTE] += rcvoobyte;
752 if (rcvpartdupbyte) {
753 tcps[TCP_STAT_RCVPARTDUPPACK]++;
754 tcps[TCP_STAT_RCVPARTDUPBYTE] += rcvpartdupbyte;
755 }
756 TCP_STAT_PUTREF();
757
758 /*
759 * Insert the new fragment queue entry into both queues.
760 */
761 tiqe->ipqe_m = m;
762 tiqe->ipqe_seq = pkt_seq;
763 tiqe->ipqe_len = pkt_len;
764 tiqe->ipqe_flags = pkt_flags;
765 if (p == NULL) {
766 TAILQ_INSERT_HEAD(&tp->segq, tiqe, ipqe_q);
767 } else {
768 TAILQ_INSERT_AFTER(&tp->segq, p, tiqe, ipqe_q);
769 }
770 tp->t_segqlen++;
771
772 skip_replacement:
773 TAILQ_INSERT_HEAD(&tp->timeq, tiqe, ipqe_timeq);
774
775 present:
776 /*
777 * Present data to user, advancing rcv_nxt through
778 * completed sequence space.
779 */
780 if (TCPS_HAVEESTABLISHED(tp->t_state) == 0)
781 goto out;
782 q = TAILQ_FIRST(&tp->segq);
783 if (q == NULL || q->ipqe_seq != tp->rcv_nxt)
784 goto out;
785 if (tp->t_state == TCPS_SYN_RECEIVED && q->ipqe_len)
786 goto out;
787
788 tp->rcv_nxt += q->ipqe_len;
789 pkt_flags = q->ipqe_flags & TH_FIN;
790 nd_hint(tp);
791
792 TAILQ_REMOVE(&tp->segq, q, ipqe_q);
793 TAILQ_REMOVE(&tp->timeq, q, ipqe_timeq);
794 tp->t_segqlen--;
795 KASSERT(tp->t_segqlen >= 0);
796 KASSERT(tp->t_segqlen != 0 ||
797 (TAILQ_EMPTY(&tp->segq) && TAILQ_EMPTY(&tp->timeq)));
798 if (so->so_state & SS_CANTRCVMORE)
799 m_freem(q->ipqe_m);
800 else
801 sbappendstream(&so->so_rcv, q->ipqe_m);
802 tcpipqent_free(q);
803 TCP_REASS_UNLOCK(tp);
804 sorwakeup(so);
805 return pkt_flags;
806
807 out:
808 TCP_REASS_UNLOCK(tp);
809 return 0;
810 }
811
812 #ifdef INET6
813 int
814 tcp6_input(struct mbuf **mp, int *offp, int proto)
815 {
816 struct mbuf *m = *mp;
817
818 /*
819 * draft-itojun-ipv6-tcp-to-anycast
820 * better place to put this in?
821 */
822 if (m->m_flags & M_ANYCAST6) {
823 struct ip6_hdr *ip6;
824 if (m->m_len < sizeof(struct ip6_hdr)) {
825 if ((m = m_pullup(m, sizeof(struct ip6_hdr))) == NULL) {
826 TCP_STATINC(TCP_STAT_RCVSHORT);
827 return IPPROTO_DONE;
828 }
829 }
830 ip6 = mtod(m, struct ip6_hdr *);
831 icmp6_error(m, ICMP6_DST_UNREACH, ICMP6_DST_UNREACH_ADDR,
832 (char *)&ip6->ip6_dst - (char *)ip6);
833 return IPPROTO_DONE;
834 }
835
836 tcp_input(m, *offp, proto);
837 return IPPROTO_DONE;
838 }
839 #endif
840
841 static void
842 tcp4_log_refused(const struct ip *ip, const struct tcphdr *th)
843 {
844 char src[INET_ADDRSTRLEN];
845 char dst[INET_ADDRSTRLEN];
846
847 if (ip) {
848 in_print(src, sizeof(src), &ip->ip_src);
849 in_print(dst, sizeof(dst), &ip->ip_dst);
850 } else {
851 strlcpy(src, "(unknown)", sizeof(src));
852 strlcpy(dst, "(unknown)", sizeof(dst));
853 }
854 log(LOG_INFO,
855 "Connection attempt to TCP %s:%d from %s:%d\n",
856 dst, ntohs(th->th_dport),
857 src, ntohs(th->th_sport));
858 }
859
860 #ifdef INET6
861 static void
862 tcp6_log_refused(const struct ip6_hdr *ip6, const struct tcphdr *th)
863 {
864 char src[INET6_ADDRSTRLEN];
865 char dst[INET6_ADDRSTRLEN];
866
867 if (ip6) {
868 in6_print(src, sizeof(src), &ip6->ip6_src);
869 in6_print(dst, sizeof(dst), &ip6->ip6_dst);
870 } else {
871 strlcpy(src, "(unknown v6)", sizeof(src));
872 strlcpy(dst, "(unknown v6)", sizeof(dst));
873 }
874 log(LOG_INFO,
875 "Connection attempt to TCP [%s]:%d from [%s]:%d\n",
876 dst, ntohs(th->th_dport),
877 src, ntohs(th->th_sport));
878 }
879 #endif
880
881 /*
882 * Checksum extended TCP header and data.
883 */
884 int
885 tcp_input_checksum(int af, struct mbuf *m, const struct tcphdr *th,
886 int toff, int off, int tlen)
887 {
888 struct ifnet *rcvif;
889 int s;
890
891 /*
892 * XXX it's better to record and check if this mbuf is
893 * already checked.
894 */
895
896 rcvif = m_get_rcvif(m, &s);
897 if (__predict_false(rcvif == NULL))
898 goto badcsum; /* XXX */
899
900 switch (af) {
901 case AF_INET:
902 switch (m->m_pkthdr.csum_flags &
903 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv4) |
904 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
905 case M_CSUM_TCPv4|M_CSUM_TCP_UDP_BAD:
906 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_bad);
907 goto badcsum;
908
909 case M_CSUM_TCPv4|M_CSUM_DATA: {
910 u_int32_t hw_csum = m->m_pkthdr.csum_data;
911
912 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_data);
913 if (m->m_pkthdr.csum_flags & M_CSUM_NO_PSEUDOHDR) {
914 const struct ip *ip =
915 mtod(m, const struct ip *);
916
917 hw_csum = in_cksum_phdr(ip->ip_src.s_addr,
918 ip->ip_dst.s_addr,
919 htons(hw_csum + tlen + off + IPPROTO_TCP));
920 }
921 if ((hw_csum ^ 0xffff) != 0)
922 goto badcsum;
923 break;
924 }
925
926 case M_CSUM_TCPv4:
927 /* Checksum was okay. */
928 TCP_CSUM_COUNTER_INCR(&tcp_hwcsum_ok);
929 break;
930
931 default:
932 /*
933 * Must compute it ourselves. Maybe skip checksum
934 * on loopback interfaces.
935 */
936 if (__predict_true(!(rcvif->if_flags & IFF_LOOPBACK) ||
937 tcp_do_loopback_cksum)) {
938 TCP_CSUM_COUNTER_INCR(&tcp_swcsum);
939 if (in4_cksum(m, IPPROTO_TCP, toff,
940 tlen + off) != 0)
941 goto badcsum;
942 }
943 break;
944 }
945 break;
946
947 #ifdef INET6
948 case AF_INET6:
949 switch (m->m_pkthdr.csum_flags &
950 ((rcvif->if_csum_flags_rx & M_CSUM_TCPv6) |
951 M_CSUM_TCP_UDP_BAD | M_CSUM_DATA)) {
952 case M_CSUM_TCPv6|M_CSUM_TCP_UDP_BAD:
953 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_bad);
954 goto badcsum;
955
956 #if 0 /* notyet */
957 case M_CSUM_TCPv6|M_CSUM_DATA:
958 #endif
959
960 case M_CSUM_TCPv6:
961 /* Checksum was okay. */
962 TCP_CSUM_COUNTER_INCR(&tcp6_hwcsum_ok);
963 break;
964
965 default:
966 /*
967 * Must compute it ourselves. Maybe skip checksum
968 * on loopback interfaces.
969 */
970 if (__predict_true((m->m_flags & M_LOOP) == 0 ||
971 tcp_do_loopback_cksum)) {
972 TCP_CSUM_COUNTER_INCR(&tcp6_swcsum);
973 if (in6_cksum(m, IPPROTO_TCP, toff,
974 tlen + off) != 0)
975 goto badcsum;
976 }
977 }
978 break;
979 #endif /* INET6 */
980 }
981 m_put_rcvif(rcvif, &s);
982
983 return 0;
984
985 badcsum:
986 m_put_rcvif(rcvif, &s);
987 TCP_STATINC(TCP_STAT_RCVBADSUM);
988 return -1;
989 }
990
991 /*
992 * When a packet arrives addressed to a vestigial tcpbp, we
993 * nevertheless have to respond to it per the spec.
994 *
995 * This code is duplicated from the one in tcp_input().
996 */
997 static void tcp_vtw_input(struct tcphdr *th, vestigial_inpcb_t *vp,
998 struct mbuf *m, int tlen)
999 {
1000 int tiflags;
1001 int todrop;
1002 uint32_t t_flags = 0;
1003 uint64_t *tcps;
1004
1005 tiflags = th->th_flags;
1006 todrop = vp->rcv_nxt - th->th_seq;
1007
1008 if (todrop > 0) {
1009 if (tiflags & TH_SYN) {
1010 tiflags &= ~TH_SYN;
1011 th->th_seq++;
1012 tcp_urp_drop(th, 1, &tiflags);
1013 todrop--;
1014 }
1015 if (todrop > tlen ||
1016 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
1017 /*
1018 * Any valid FIN or RST must be to the left of the
1019 * window. At this point the FIN or RST must be a
1020 * duplicate or out of sequence; drop it.
1021 */
1022 if (tiflags & TH_RST)
1023 goto drop;
1024 tiflags &= ~(TH_FIN|TH_RST);
1025
1026 /*
1027 * Send an ACK to resynchronize and drop any data.
1028 * But keep on processing for RST or ACK.
1029 */
1030 t_flags |= TF_ACKNOW;
1031 todrop = tlen;
1032 tcps = TCP_STAT_GETREF();
1033 tcps[TCP_STAT_RCVDUPPACK] += 1;
1034 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
1035 TCP_STAT_PUTREF();
1036 } else if ((tiflags & TH_RST) &&
1037 th->th_seq != vp->rcv_nxt) {
1038 /*
1039 * Test for reset before adjusting the sequence
1040 * number for overlapping data.
1041 */
1042 goto dropafterack_ratelim;
1043 } else {
1044 tcps = TCP_STAT_GETREF();
1045 tcps[TCP_STAT_RCVPARTDUPPACK] += 1;
1046 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
1047 TCP_STAT_PUTREF();
1048 }
1049
1050 // tcp_new_dsack(tp, th->th_seq, todrop);
1051 // hdroptlen += todrop; /*drop from head afterwards*/
1052
1053 th->th_seq += todrop;
1054 tlen -= todrop;
1055 tcp_urp_drop(th, todrop, &tiflags);
1056 }
1057
1058 /*
1059 * If new data are received on a connection after the
1060 * user processes are gone, then RST the other end.
1061 */
1062 if (tlen) {
1063 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
1064 goto dropwithreset;
1065 }
1066
1067 /*
1068 * If segment ends after window, drop trailing data
1069 * (and PUSH and FIN); if nothing left, just ACK.
1070 */
1071 todrop = (th->th_seq + tlen) - (vp->rcv_nxt + vp->rcv_wnd);
1072
1073 if (todrop > 0) {
1074 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
1075 if (todrop >= tlen) {
1076 /*
1077 * The segment actually starts after the window.
1078 * th->th_seq + tlen - vp->rcv_nxt - vp->rcv_wnd >= tlen
1079 * th->th_seq - vp->rcv_nxt - vp->rcv_wnd >= 0
1080 * th->th_seq >= vp->rcv_nxt + vp->rcv_wnd
1081 */
1082 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
1083
1084 /*
1085 * If a new connection request is received
1086 * while in TIME_WAIT, drop the old connection
1087 * and start over if the sequence numbers
1088 * are above the previous ones.
1089 */
1090 if ((tiflags & TH_SYN) &&
1091 SEQ_GT(th->th_seq, vp->rcv_nxt)) {
1092 /*
1093 * We only support this in the !NOFDREF case, which
1094 * is to say: not here.
1095 */
1096 goto dropwithreset;
1097 }
1098
1099 /*
1100 * If window is closed can only take segments at
1101 * window edge, and have to drop data and PUSH from
1102 * incoming segments. Continue processing, but
1103 * remember to ack. Otherwise, drop segment
1104 * and (if not RST) ack.
1105 */
1106 if (vp->rcv_wnd == 0 && th->th_seq == vp->rcv_nxt) {
1107 t_flags |= TF_ACKNOW;
1108 TCP_STATINC(TCP_STAT_RCVWINPROBE);
1109 } else {
1110 goto dropafterack;
1111 }
1112 } else {
1113 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
1114 }
1115 m_adj(m, -todrop);
1116 tlen -= todrop;
1117 tiflags &= ~(TH_PUSH|TH_FIN);
1118 }
1119
1120 if (tiflags & TH_RST) {
1121 if (th->th_seq != vp->rcv_nxt)
1122 goto dropafterack_ratelim;
1123
1124 vtw_del(vp->ctl, vp->vtw);
1125 goto drop;
1126 }
1127
1128 /*
1129 * If the ACK bit is off we drop the segment and return.
1130 */
1131 if ((tiflags & TH_ACK) == 0) {
1132 if (t_flags & TF_ACKNOW)
1133 goto dropafterack;
1134 goto drop;
1135 }
1136
1137 /*
1138 * In TIME_WAIT state the only thing that should arrive
1139 * is a retransmission of the remote FIN. Acknowledge
1140 * it and restart the finack timer.
1141 */
1142 vtw_restart(vp);
1143 goto dropafterack;
1144
1145 dropafterack:
1146 /*
1147 * Generate an ACK dropping incoming segment if it occupies
1148 * sequence space, where the ACK reflects our state.
1149 */
1150 if (tiflags & TH_RST)
1151 goto drop;
1152 goto dropafterack2;
1153
1154 dropafterack_ratelim:
1155 /*
1156 * We may want to rate-limit ACKs against SYN/RST attack.
1157 */
1158 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
1159 tcp_ackdrop_ppslim) == 0) {
1160 /* XXX stat */
1161 goto drop;
1162 }
1163 /* ...fall into dropafterack2... */
1164
1165 dropafterack2:
1166 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, th->th_ack, TH_ACK);
1167 return;
1168
1169 dropwithreset:
1170 /*
1171 * Generate a RST, dropping incoming segment.
1172 * Make ACK acceptable to originator of segment.
1173 */
1174 if (tiflags & TH_RST)
1175 goto drop;
1176
1177 if (tiflags & TH_ACK) {
1178 tcp_respond(0, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
1179 } else {
1180 if (tiflags & TH_SYN)
1181 ++tlen;
1182 (void)tcp_respond(0, m, m, th, th->th_seq + tlen, (tcp_seq)0,
1183 TH_RST|TH_ACK);
1184 }
1185 return;
1186 drop:
1187 m_freem(m);
1188 }
1189
1190 /*
1191 * TCP input routine, follows pages 65-76 of RFC 793 very closely.
1192 */
1193 void
1194 tcp_input(struct mbuf *m, int off, int proto)
1195 {
1196 struct tcphdr *th;
1197 struct ip *ip;
1198 struct inpcb *inp;
1199 #ifdef INET6
1200 struct ip6_hdr *ip6;
1201 struct in6pcb *in6p;
1202 #endif
1203 u_int8_t *optp = NULL;
1204 int optlen = 0;
1205 int len, tlen, hdroptlen = 0;
1206 struct tcpcb *tp = NULL;
1207 int tiflags;
1208 struct socket *so = NULL;
1209 int todrop, acked, ourfinisacked, needoutput = 0;
1210 bool dupseg;
1211 #ifdef TCP_DEBUG
1212 short ostate = 0;
1213 #endif
1214 u_long tiwin;
1215 struct tcp_opt_info opti;
1216 int thlen, iphlen;
1217 int af; /* af on the wire */
1218 struct mbuf *tcp_saveti = NULL;
1219 uint32_t ts_rtt;
1220 uint8_t iptos;
1221 uint64_t *tcps;
1222 vestigial_inpcb_t vestige;
1223
1224 vestige.valid = 0;
1225
1226 MCLAIM(m, &tcp_rx_mowner);
1227
1228 TCP_STATINC(TCP_STAT_RCVTOTAL);
1229
1230 memset(&opti, 0, sizeof(opti));
1231 opti.ts_present = 0;
1232 opti.maxseg = 0;
1233
1234 /*
1235 * RFC1122 4.2.3.10, p. 104: discard bcast/mcast SYN.
1236 *
1237 * TCP is, by definition, unicast, so we reject all
1238 * multicast outright.
1239 *
1240 * Note, there are additional src/dst address checks in
1241 * the AF-specific code below.
1242 */
1243 if (m->m_flags & (M_BCAST|M_MCAST)) {
1244 /* XXX stat */
1245 goto drop;
1246 }
1247 #ifdef INET6
1248 if (m->m_flags & M_ANYCAST6) {
1249 /* XXX stat */
1250 goto drop;
1251 }
1252 #endif
1253
1254 M_REGION_GET(th, struct tcphdr *, m, off, sizeof(struct tcphdr));
1255 if (th == NULL) {
1256 TCP_STATINC(TCP_STAT_RCVSHORT);
1257 return;
1258 }
1259
1260 /*
1261 * Enforce alignment requirements that are violated in
1262 * some cases, see kern/50766 for details.
1263 */
1264 if (ACCESSIBLE_POINTER(th, struct tcphdr) == 0) {
1265 m = m_copyup(m, off + sizeof(struct tcphdr), 0);
1266 if (m == NULL) {
1267 TCP_STATINC(TCP_STAT_RCVSHORT);
1268 return;
1269 }
1270 th = (struct tcphdr *)(mtod(m, char *) + off);
1271 }
1272 KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
1273
1274 /*
1275 * Get IP and TCP header.
1276 * Note: IP leaves IP header in first mbuf.
1277 */
1278 ip = mtod(m, struct ip *);
1279 #ifdef INET6
1280 ip6 = mtod(m, struct ip6_hdr *);
1281 #endif
1282 switch (ip->ip_v) {
1283 case 4:
1284 af = AF_INET;
1285 iphlen = sizeof(struct ip);
1286
1287 if (IN_MULTICAST(ip->ip_dst.s_addr) ||
1288 in_broadcast(ip->ip_dst, m_get_rcvif_NOMPSAFE(m)))
1289 goto drop;
1290
1291 /* We do the checksum after PCB lookup... */
1292 len = ntohs(ip->ip_len);
1293 tlen = len - off;
1294 iptos = ip->ip_tos;
1295 break;
1296 #ifdef INET6
1297 case 6:
1298 iphlen = sizeof(struct ip6_hdr);
1299 af = AF_INET6;
1300
1301 /*
1302 * Be proactive about unspecified IPv6 address in source.
1303 * As we use all-zero to indicate unbounded/unconnected pcb,
1304 * unspecified IPv6 address can be used to confuse us.
1305 *
1306 * Note that packets with unspecified IPv6 destination is
1307 * already dropped in ip6_input.
1308 */
1309 if (IN6_IS_ADDR_UNSPECIFIED(&ip6->ip6_src)) {
1310 /* XXX stat */
1311 goto drop;
1312 }
1313
1314 /*
1315 * Make sure destination address is not multicast.
1316 * Source address checked in ip6_input().
1317 */
1318 if (IN6_IS_ADDR_MULTICAST(&ip6->ip6_dst)) {
1319 /* XXX stat */
1320 goto drop;
1321 }
1322
1323 /* We do the checksum after PCB lookup... */
1324 len = m->m_pkthdr.len;
1325 tlen = len - off;
1326 iptos = (ntohl(ip6->ip6_flow) >> 20) & 0xff;
1327 break;
1328 #endif
1329 default:
1330 m_freem(m);
1331 return;
1332 }
1333
1334
1335 /*
1336 * Check that TCP offset makes sense, pull out TCP options and
1337 * adjust length.
1338 */
1339 thlen = th->th_off << 2;
1340 if (thlen < sizeof(struct tcphdr) || thlen > tlen) {
1341 TCP_STATINC(TCP_STAT_RCVBADOFF);
1342 goto drop;
1343 }
1344 tlen -= thlen;
1345
1346 if (thlen > sizeof(struct tcphdr)) {
1347 M_REGION_GET(th, struct tcphdr *, m, off, thlen);
1348 if (th == NULL) {
1349 TCP_STATINC(TCP_STAT_RCVSHORT);
1350 return;
1351 }
1352 KASSERT(ACCESSIBLE_POINTER(th, struct tcphdr));
1353 optlen = thlen - sizeof(struct tcphdr);
1354 optp = ((u_int8_t *)th) + sizeof(struct tcphdr);
1355
1356 /*
1357 * Do quick retrieval of timestamp options.
1358 *
1359 * If timestamp is the only option and it's formatted as
1360 * recommended in RFC 1323 appendix A, we quickly get the
1361 * values now and don't bother calling tcp_dooptions(),
1362 * etc.
1363 */
1364 if ((optlen == TCPOLEN_TSTAMP_APPA ||
1365 (optlen > TCPOLEN_TSTAMP_APPA &&
1366 optp[TCPOLEN_TSTAMP_APPA] == TCPOPT_EOL)) &&
1367 be32dec(optp) == TCPOPT_TSTAMP_HDR &&
1368 (th->th_flags & TH_SYN) == 0) {
1369 opti.ts_present = 1;
1370 opti.ts_val = be32dec(optp + 4);
1371 opti.ts_ecr = be32dec(optp + 8);
1372 optp = NULL; /* we've parsed the options */
1373 }
1374 }
1375 tiflags = th->th_flags;
1376
1377 /*
1378 * Checksum extended TCP header and data
1379 */
1380 if (tcp_input_checksum(af, m, th, off, thlen, tlen))
1381 goto badcsum;
1382
1383 /*
1384 * Locate pcb for segment.
1385 */
1386 findpcb:
1387 inp = NULL;
1388 #ifdef INET6
1389 in6p = NULL;
1390 #endif
1391 switch (af) {
1392 case AF_INET:
1393 inp = in_pcblookup_connect(&tcbtable, ip->ip_src, th->th_sport,
1394 ip->ip_dst, th->th_dport, &vestige);
1395 if (inp == NULL && !vestige.valid) {
1396 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1397 inp = in_pcblookup_bind(&tcbtable, ip->ip_dst,
1398 th->th_dport);
1399 }
1400 #ifdef INET6
1401 if (inp == NULL && !vestige.valid) {
1402 struct in6_addr s, d;
1403
1404 /* mapped addr case */
1405 in6_in_2_v4mapin6(&ip->ip_src, &s);
1406 in6_in_2_v4mapin6(&ip->ip_dst, &d);
1407 in6p = in6_pcblookup_connect(&tcbtable, &s,
1408 th->th_sport, &d, th->th_dport, 0, &vestige);
1409 if (in6p == 0 && !vestige.valid) {
1410 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1411 in6p = in6_pcblookup_bind(&tcbtable, &d,
1412 th->th_dport, 0);
1413 }
1414 }
1415 #endif
1416 #ifndef INET6
1417 if (inp == NULL && !vestige.valid)
1418 #else
1419 if (inp == NULL && in6p == NULL && !vestige.valid)
1420 #endif
1421 {
1422 TCP_STATINC(TCP_STAT_NOPORT);
1423 if (tcp_log_refused &&
1424 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1425 tcp4_log_refused(ip, th);
1426 }
1427 tcp_fields_to_host(th);
1428 goto dropwithreset_ratelim;
1429 }
1430 #if defined(IPSEC)
1431 if (ipsec_used) {
1432 if (inp && ipsec_in_reject(m, inp)) {
1433 goto drop;
1434 }
1435 #ifdef INET6
1436 else if (in6p && ipsec_in_reject(m, in6p)) {
1437 goto drop;
1438 }
1439 #endif
1440 }
1441 #endif /*IPSEC*/
1442 break;
1443 #ifdef INET6
1444 case AF_INET6:
1445 {
1446 int faith;
1447
1448 #if defined(NFAITH) && NFAITH > 0
1449 faith = faithprefix(&ip6->ip6_dst);
1450 #else
1451 faith = 0;
1452 #endif
1453 in6p = in6_pcblookup_connect(&tcbtable, &ip6->ip6_src,
1454 th->th_sport, &ip6->ip6_dst, th->th_dport, faith, &vestige);
1455 if (!in6p && !vestige.valid) {
1456 TCP_STATINC(TCP_STAT_PCBHASHMISS);
1457 in6p = in6_pcblookup_bind(&tcbtable, &ip6->ip6_dst,
1458 th->th_dport, faith);
1459 }
1460 if (!in6p && !vestige.valid) {
1461 TCP_STATINC(TCP_STAT_NOPORT);
1462 if (tcp_log_refused &&
1463 (tiflags & (TH_RST|TH_ACK|TH_SYN)) == TH_SYN) {
1464 tcp6_log_refused(ip6, th);
1465 }
1466 tcp_fields_to_host(th);
1467 goto dropwithreset_ratelim;
1468 }
1469 #if defined(IPSEC)
1470 if (ipsec_used && in6p && ipsec_in_reject(m, in6p)) {
1471 goto drop;
1472 }
1473 #endif
1474 break;
1475 }
1476 #endif
1477 }
1478
1479 tcp_fields_to_host(th);
1480
1481 /*
1482 * If the state is CLOSED (i.e., TCB does not exist) then
1483 * all data in the incoming segment is discarded.
1484 * If the TCB exists but is in CLOSED state, it is embryonic,
1485 * but should either do a listen or a connect soon.
1486 */
1487 tp = NULL;
1488 so = NULL;
1489 if (inp) {
1490 /* Check the minimum TTL for socket. */
1491 if (ip->ip_ttl < inp->inp_ip_minttl)
1492 goto drop;
1493
1494 tp = intotcpcb(inp);
1495 so = inp->inp_socket;
1496 }
1497 #ifdef INET6
1498 else if (in6p) {
1499 tp = in6totcpcb(in6p);
1500 so = in6p->in6p_socket;
1501 }
1502 #endif
1503 else if (vestige.valid) {
1504 /* We do not support the resurrection of vtw tcpcps. */
1505 tcp_vtw_input(th, &vestige, m, tlen);
1506 m = NULL;
1507 goto drop;
1508 }
1509
1510 if (tp == NULL)
1511 goto dropwithreset_ratelim;
1512 if (tp->t_state == TCPS_CLOSED)
1513 goto drop;
1514
1515 KASSERT(so->so_lock == softnet_lock);
1516 KASSERT(solocked(so));
1517
1518 /* Unscale the window into a 32-bit value. */
1519 if ((tiflags & TH_SYN) == 0)
1520 tiwin = th->th_win << tp->snd_scale;
1521 else
1522 tiwin = th->th_win;
1523
1524 #ifdef INET6
1525 /* save packet options if user wanted */
1526 if (in6p && (in6p->in6p_flags & IN6P_CONTROLOPTS)) {
1527 if (in6p->in6p_options) {
1528 m_freem(in6p->in6p_options);
1529 in6p->in6p_options = NULL;
1530 }
1531 ip6_savecontrol(in6p, &in6p->in6p_options, ip6, m);
1532 }
1533 #endif
1534
1535 if (so->so_options & SO_DEBUG) {
1536 #ifdef TCP_DEBUG
1537 ostate = tp->t_state;
1538 #endif
1539
1540 tcp_saveti = NULL;
1541 if (iphlen + sizeof(struct tcphdr) > MHLEN)
1542 goto nosave;
1543
1544 if (m->m_len > iphlen && (m->m_flags & M_EXT) == 0) {
1545 tcp_saveti = m_copym(m, 0, iphlen, M_DONTWAIT);
1546 if (tcp_saveti == NULL)
1547 goto nosave;
1548 } else {
1549 MGETHDR(tcp_saveti, M_DONTWAIT, MT_HEADER);
1550 if (tcp_saveti == NULL)
1551 goto nosave;
1552 MCLAIM(m, &tcp_mowner);
1553 tcp_saveti->m_len = iphlen;
1554 m_copydata(m, 0, iphlen,
1555 mtod(tcp_saveti, void *));
1556 }
1557
1558 if (M_TRAILINGSPACE(tcp_saveti) < sizeof(struct tcphdr)) {
1559 m_freem(tcp_saveti);
1560 tcp_saveti = NULL;
1561 } else {
1562 tcp_saveti->m_len += sizeof(struct tcphdr);
1563 memcpy(mtod(tcp_saveti, char *) + iphlen, th,
1564 sizeof(struct tcphdr));
1565 }
1566 nosave:;
1567 }
1568
1569 if (so->so_options & SO_ACCEPTCONN) {
1570 union syn_cache_sa src;
1571 union syn_cache_sa dst;
1572
1573 KASSERT(tp->t_state == TCPS_LISTEN);
1574
1575 memset(&src, 0, sizeof(src));
1576 memset(&dst, 0, sizeof(dst));
1577 switch (af) {
1578 case AF_INET:
1579 src.sin.sin_len = sizeof(struct sockaddr_in);
1580 src.sin.sin_family = AF_INET;
1581 src.sin.sin_addr = ip->ip_src;
1582 src.sin.sin_port = th->th_sport;
1583
1584 dst.sin.sin_len = sizeof(struct sockaddr_in);
1585 dst.sin.sin_family = AF_INET;
1586 dst.sin.sin_addr = ip->ip_dst;
1587 dst.sin.sin_port = th->th_dport;
1588 break;
1589 #ifdef INET6
1590 case AF_INET6:
1591 src.sin6.sin6_len = sizeof(struct sockaddr_in6);
1592 src.sin6.sin6_family = AF_INET6;
1593 src.sin6.sin6_addr = ip6->ip6_src;
1594 src.sin6.sin6_port = th->th_sport;
1595
1596 dst.sin6.sin6_len = sizeof(struct sockaddr_in6);
1597 dst.sin6.sin6_family = AF_INET6;
1598 dst.sin6.sin6_addr = ip6->ip6_dst;
1599 dst.sin6.sin6_port = th->th_dport;
1600 break;
1601 #endif
1602 }
1603
1604 if ((tiflags & (TH_RST|TH_ACK|TH_SYN)) != TH_SYN) {
1605 if (tiflags & TH_RST) {
1606 syn_cache_reset(&src.sa, &dst.sa, th);
1607 } else if ((tiflags & (TH_ACK|TH_SYN)) ==
1608 (TH_ACK|TH_SYN)) {
1609 /*
1610 * Received a SYN,ACK. This should never
1611 * happen while we are in LISTEN. Send an RST.
1612 */
1613 goto badsyn;
1614 } else if (tiflags & TH_ACK) {
1615 so = syn_cache_get(&src.sa, &dst.sa, th, so, m);
1616 if (so == NULL) {
1617 /*
1618 * We don't have a SYN for this ACK;
1619 * send an RST.
1620 */
1621 goto badsyn;
1622 } else if (so == (struct socket *)(-1)) {
1623 /*
1624 * We were unable to create the
1625 * connection. If the 3-way handshake
1626 * was completed, and RST has been
1627 * sent to the peer. Since the mbuf
1628 * might be in use for the reply, do
1629 * not free it.
1630 */
1631 m = NULL;
1632 } else {
1633 /*
1634 * We have created a full-blown
1635 * connection.
1636 */
1637 tp = NULL;
1638 inp = NULL;
1639 #ifdef INET6
1640 in6p = NULL;
1641 #endif
1642 switch (so->so_proto->pr_domain->dom_family) {
1643 case AF_INET:
1644 inp = sotoinpcb(so);
1645 tp = intotcpcb(inp);
1646 break;
1647 #ifdef INET6
1648 case AF_INET6:
1649 in6p = sotoin6pcb(so);
1650 tp = in6totcpcb(in6p);
1651 break;
1652 #endif
1653 }
1654 if (tp == NULL)
1655 goto badsyn; /*XXX*/
1656 tiwin <<= tp->snd_scale;
1657 goto after_listen;
1658 }
1659 } else {
1660 /*
1661 * None of RST, SYN or ACK was set.
1662 * This is an invalid packet for a
1663 * TCB in LISTEN state. Send a RST.
1664 */
1665 goto badsyn;
1666 }
1667 } else {
1668 /*
1669 * Received a SYN.
1670 */
1671
1672 #ifdef INET6
1673 /*
1674 * If deprecated address is forbidden, we do
1675 * not accept SYN to deprecated interface
1676 * address to prevent any new inbound
1677 * connection from getting established.
1678 * When we do not accept SYN, we send a TCP
1679 * RST, with deprecated source address (instead
1680 * of dropping it). We compromise it as it is
1681 * much better for peer to send a RST, and
1682 * RST will be the final packet for the
1683 * exchange.
1684 *
1685 * If we do not forbid deprecated addresses, we
1686 * accept the SYN packet. RFC2462 does not
1687 * suggest dropping SYN in this case.
1688 * If we decipher RFC2462 5.5.4, it says like
1689 * this:
1690 * 1. use of deprecated addr with existing
1691 * communication is okay - "SHOULD continue
1692 * to be used"
1693 * 2. use of it with new communication:
1694 * (2a) "SHOULD NOT be used if alternate
1695 * address with sufficient scope is
1696 * available"
1697 * (2b) nothing mentioned otherwise.
1698 * Here we fall into (2b) case as we have no
1699 * choice in our source address selection - we
1700 * must obey the peer.
1701 *
1702 * The wording in RFC2462 is confusing, and
1703 * there are multiple description text for
1704 * deprecated address handling - worse, they
1705 * are not exactly the same. I believe 5.5.4
1706 * is the best one, so we follow 5.5.4.
1707 */
1708 if (af == AF_INET6 && !ip6_use_deprecated) {
1709 struct in6_ifaddr *ia6;
1710 int s;
1711 struct ifnet *rcvif = m_get_rcvif(m, &s);
1712 if (rcvif == NULL)
1713 goto dropwithreset; /* XXX */
1714 if ((ia6 = in6ifa_ifpwithaddr(rcvif,
1715 &ip6->ip6_dst)) &&
1716 (ia6->ia6_flags & IN6_IFF_DEPRECATED)) {
1717 tp = NULL;
1718 m_put_rcvif(rcvif, &s);
1719 goto dropwithreset;
1720 }
1721 m_put_rcvif(rcvif, &s);
1722 }
1723 #endif
1724
1725 /*
1726 * LISTEN socket received a SYN from itself? This
1727 * can't possibly be valid; drop the packet.
1728 */
1729 if (th->th_sport == th->th_dport) {
1730 int eq = 0;
1731
1732 switch (af) {
1733 case AF_INET:
1734 eq = in_hosteq(ip->ip_src, ip->ip_dst);
1735 break;
1736 #ifdef INET6
1737 case AF_INET6:
1738 eq = IN6_ARE_ADDR_EQUAL(&ip6->ip6_src,
1739 &ip6->ip6_dst);
1740 break;
1741 #endif
1742 }
1743 if (eq) {
1744 TCP_STATINC(TCP_STAT_BADSYN);
1745 goto drop;
1746 }
1747 }
1748
1749 /*
1750 * SYN looks ok; create compressed TCP
1751 * state for it.
1752 */
1753 if (so->so_qlen <= so->so_qlimit &&
1754 syn_cache_add(&src.sa, &dst.sa, th, off,
1755 so, m, optp, optlen, &opti))
1756 m = NULL;
1757 }
1758
1759 goto drop;
1760 }
1761
1762 after_listen:
1763 /*
1764 * From here on, we're dealing with !LISTEN.
1765 */
1766 KASSERT(tp->t_state != TCPS_LISTEN);
1767
1768 /*
1769 * Segment received on connection.
1770 * Reset idle time and keep-alive timer.
1771 */
1772 tp->t_rcvtime = tcp_now;
1773 if (TCPS_HAVEESTABLISHED(tp->t_state))
1774 TCP_TIMER_ARM(tp, TCPT_KEEP, tp->t_keepidle);
1775
1776 /*
1777 * Process options.
1778 */
1779 #ifdef TCP_SIGNATURE
1780 if (optp || (tp->t_flags & TF_SIGNATURE))
1781 #else
1782 if (optp)
1783 #endif
1784 if (tcp_dooptions(tp, optp, optlen, th, m, off, &opti) < 0)
1785 goto drop;
1786
1787 if (TCP_SACK_ENABLED(tp)) {
1788 tcp_del_sackholes(tp, th);
1789 }
1790
1791 if (TCP_ECN_ALLOWED(tp)) {
1792 if (tiflags & TH_CWR) {
1793 tp->t_flags &= ~TF_ECN_SND_ECE;
1794 }
1795 switch (iptos & IPTOS_ECN_MASK) {
1796 case IPTOS_ECN_CE:
1797 tp->t_flags |= TF_ECN_SND_ECE;
1798 TCP_STATINC(TCP_STAT_ECN_CE);
1799 break;
1800 case IPTOS_ECN_ECT0:
1801 TCP_STATINC(TCP_STAT_ECN_ECT);
1802 break;
1803 case IPTOS_ECN_ECT1:
1804 /* XXX: ignore for now -- rpaulo */
1805 break;
1806 }
1807 /*
1808 * Congestion experienced.
1809 * Ignore if we are already trying to recover.
1810 */
1811 if ((tiflags & TH_ECE) && SEQ_GEQ(tp->snd_una, tp->snd_recover))
1812 tp->t_congctl->cong_exp(tp);
1813 }
1814
1815 if (opti.ts_present && opti.ts_ecr) {
1816 /*
1817 * Calculate the RTT from the returned time stamp and the
1818 * connection's time base. If the time stamp is later than
1819 * the current time, or is extremely old, fall back to non-1323
1820 * RTT calculation. Since ts_rtt is unsigned, we can test both
1821 * at the same time.
1822 *
1823 * Note that ts_rtt is in units of slow ticks (500
1824 * ms). Since most earthbound RTTs are < 500 ms,
1825 * observed values will have large quantization noise.
1826 * Our smoothed RTT is then the fraction of observed
1827 * samples that are 1 tick instead of 0 (times 500
1828 * ms).
1829 *
1830 * ts_rtt is increased by 1 to denote a valid sample,
1831 * with 0 indicating an invalid measurement. This
1832 * extra 1 must be removed when ts_rtt is used, or
1833 * else an erroneous extra 500 ms will result.
1834 */
1835 ts_rtt = TCP_TIMESTAMP(tp) - opti.ts_ecr + 1;
1836 if (ts_rtt > TCP_PAWS_IDLE)
1837 ts_rtt = 0;
1838 } else {
1839 ts_rtt = 0;
1840 }
1841
1842 /*
1843 * Fast path: check for the two common cases of a uni-directional
1844 * data transfer. If:
1845 * o We are in the ESTABLISHED state, and
1846 * o The packet has no control flags, and
1847 * o The packet is in-sequence, and
1848 * o The window didn't change, and
1849 * o We are not retransmitting
1850 * It's a candidate.
1851 *
1852 * If the length (tlen) is zero and the ack moved forward, we're
1853 * the sender side of the transfer. Just free the data acked and
1854 * wake any higher level process that was blocked waiting for
1855 * space.
1856 *
1857 * If the length is non-zero and the ack didn't move, we're the
1858 * receiver side. If we're getting packets in-order (the reassembly
1859 * queue is empty), add the data to the socket buffer and note
1860 * that we need a delayed ack.
1861 */
1862 if (tp->t_state == TCPS_ESTABLISHED &&
1863 (tiflags & (TH_SYN|TH_FIN|TH_RST|TH_URG|TH_ECE|TH_CWR|TH_ACK))
1864 == TH_ACK &&
1865 (!opti.ts_present || TSTMP_GEQ(opti.ts_val, tp->ts_recent)) &&
1866 th->th_seq == tp->rcv_nxt &&
1867 tiwin && tiwin == tp->snd_wnd &&
1868 tp->snd_nxt == tp->snd_max) {
1869
1870 /*
1871 * If last ACK falls within this segment's sequence numbers,
1872 * record the timestamp.
1873 * NOTE that the test is modified according to the latest
1874 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
1875 *
1876 * note that we already know
1877 * TSTMP_GEQ(opti.ts_val, tp->ts_recent)
1878 */
1879 if (opti.ts_present && SEQ_LEQ(th->th_seq, tp->last_ack_sent)) {
1880 tp->ts_recent_age = tcp_now;
1881 tp->ts_recent = opti.ts_val;
1882 }
1883
1884 if (tlen == 0) {
1885 /* Ack prediction. */
1886 if (SEQ_GT(th->th_ack, tp->snd_una) &&
1887 SEQ_LEQ(th->th_ack, tp->snd_max) &&
1888 tp->snd_cwnd >= tp->snd_wnd &&
1889 tp->t_partialacks < 0) {
1890 /*
1891 * this is a pure ack for outstanding data.
1892 */
1893 if (ts_rtt)
1894 tcp_xmit_timer(tp, ts_rtt - 1);
1895 else if (tp->t_rtttime &&
1896 SEQ_GT(th->th_ack, tp->t_rtseq))
1897 tcp_xmit_timer(tp,
1898 tcp_now - tp->t_rtttime);
1899 acked = th->th_ack - tp->snd_una;
1900 tcps = TCP_STAT_GETREF();
1901 tcps[TCP_STAT_PREDACK]++;
1902 tcps[TCP_STAT_RCVACKPACK]++;
1903 tcps[TCP_STAT_RCVACKBYTE] += acked;
1904 TCP_STAT_PUTREF();
1905 nd_hint(tp);
1906
1907 if (acked > (tp->t_lastoff - tp->t_inoff))
1908 tp->t_lastm = NULL;
1909 sbdrop(&so->so_snd, acked);
1910 tp->t_lastoff -= acked;
1911
1912 icmp_check(tp, th, acked);
1913
1914 tp->snd_una = th->th_ack;
1915 tp->snd_fack = tp->snd_una;
1916 if (SEQ_LT(tp->snd_high, tp->snd_una))
1917 tp->snd_high = tp->snd_una;
1918 /*
1919 * drag snd_wl2 along so only newer
1920 * ACKs can update the window size.
1921 * also avoids the state where snd_wl2
1922 * is eventually larger than th_ack and thus
1923 * blocking the window update mechanism and
1924 * the connection gets stuck for a loooong
1925 * time in the zero sized send window state.
1926 *
1927 * see PR/kern 55567
1928 */
1929 tp->snd_wl2 = tp->snd_una;
1930
1931 m_freem(m);
1932
1933 /*
1934 * If all outstanding data are acked, stop
1935 * retransmit timer, otherwise restart timer
1936 * using current (possibly backed-off) value.
1937 * If process is waiting for space,
1938 * wakeup/selnotify/signal. If data
1939 * are ready to send, let tcp_output
1940 * decide between more output or persist.
1941 */
1942 if (tp->snd_una == tp->snd_max)
1943 TCP_TIMER_DISARM(tp, TCPT_REXMT);
1944 else if (TCP_TIMER_ISARMED(tp,
1945 TCPT_PERSIST) == 0)
1946 TCP_TIMER_ARM(tp, TCPT_REXMT,
1947 tp->t_rxtcur);
1948
1949 sowwakeup(so);
1950 if (so->so_snd.sb_cc) {
1951 KERNEL_LOCK(1, NULL);
1952 (void)tcp_output(tp);
1953 KERNEL_UNLOCK_ONE(NULL);
1954 }
1955 if (tcp_saveti)
1956 m_freem(tcp_saveti);
1957 return;
1958 }
1959 } else if (th->th_ack == tp->snd_una &&
1960 TAILQ_FIRST(&tp->segq) == NULL &&
1961 tlen <= sbspace(&so->so_rcv)) {
1962 int newsize = 0;
1963
1964 /*
1965 * this is a pure, in-sequence data packet
1966 * with nothing on the reassembly queue and
1967 * we have enough buffer space to take it.
1968 */
1969 tp->rcv_nxt += tlen;
1970
1971 /*
1972 * Pull rcv_up up to prevent seq wrap relative to
1973 * rcv_nxt.
1974 */
1975 tp->rcv_up = tp->rcv_nxt;
1976
1977 /*
1978 * Pull snd_wl1 up to prevent seq wrap relative to
1979 * th_seq.
1980 */
1981 tp->snd_wl1 = th->th_seq;
1982
1983 tcps = TCP_STAT_GETREF();
1984 tcps[TCP_STAT_PREDDAT]++;
1985 tcps[TCP_STAT_RCVPACK]++;
1986 tcps[TCP_STAT_RCVBYTE] += tlen;
1987 TCP_STAT_PUTREF();
1988 nd_hint(tp);
1989 /*
1990 * Automatic sizing enables the performance of large buffers
1991 * and most of the efficiency of small ones by only allocating
1992 * space when it is needed.
1993 *
1994 * On the receive side the socket buffer memory is only rarely
1995 * used to any significant extent. This allows us to be much
1996 * more aggressive in scaling the receive socket buffer. For
1997 * the case that the buffer space is actually used to a large
1998 * extent and we run out of kernel memory we can simply drop
1999 * the new segments; TCP on the sender will just retransmit it
2000 * later. Setting the buffer size too big may only consume too
2001 * much kernel memory if the application doesn't read() from
2002 * the socket or packet loss or reordering makes use of the
2003 * reassembly queue.
2004 *
2005 * The criteria to step up the receive buffer one notch are:
2006 * 1. the number of bytes received during the time it takes
2007 * one timestamp to be reflected back to us (the RTT);
2008 * 2. received bytes per RTT is within seven eighth of the
2009 * current socket buffer size;
2010 * 3. receive buffer size has not hit maximal automatic size;
2011 *
2012 * This algorithm does one step per RTT at most and only if
2013 * we receive a bulk stream w/o packet losses or reorderings.
2014 * Shrinking the buffer during idle times is not necessary as
2015 * it doesn't consume any memory when idle.
2016 *
2017 * TODO: Only step up if the application is actually serving
2018 * the buffer to better manage the socket buffer resources.
2019 */
2020 if (tcp_do_autorcvbuf &&
2021 opti.ts_ecr &&
2022 (so->so_rcv.sb_flags & SB_AUTOSIZE)) {
2023 if (opti.ts_ecr > tp->rfbuf_ts &&
2024 opti.ts_ecr - tp->rfbuf_ts < PR_SLOWHZ) {
2025 if (tp->rfbuf_cnt >
2026 (so->so_rcv.sb_hiwat / 8 * 7) &&
2027 so->so_rcv.sb_hiwat <
2028 tcp_autorcvbuf_max) {
2029 newsize =
2030 uimin(so->so_rcv.sb_hiwat +
2031 tcp_autorcvbuf_inc,
2032 tcp_autorcvbuf_max);
2033 }
2034 /* Start over with next RTT. */
2035 tp->rfbuf_ts = 0;
2036 tp->rfbuf_cnt = 0;
2037 } else
2038 tp->rfbuf_cnt += tlen; /* add up */
2039 }
2040
2041 /*
2042 * Drop TCP, IP headers and TCP options then add data
2043 * to socket buffer.
2044 */
2045 if (so->so_state & SS_CANTRCVMORE) {
2046 m_freem(m);
2047 } else {
2048 /*
2049 * Set new socket buffer size.
2050 * Give up when limit is reached.
2051 */
2052 if (newsize)
2053 if (!sbreserve(&so->so_rcv,
2054 newsize, so))
2055 so->so_rcv.sb_flags &= ~SB_AUTOSIZE;
2056 m_adj(m, off + thlen);
2057 sbappendstream(&so->so_rcv, m);
2058 }
2059 sorwakeup(so);
2060 tcp_setup_ack(tp, th);
2061 if (tp->t_flags & TF_ACKNOW) {
2062 KERNEL_LOCK(1, NULL);
2063 (void)tcp_output(tp);
2064 KERNEL_UNLOCK_ONE(NULL);
2065 }
2066 if (tcp_saveti)
2067 m_freem(tcp_saveti);
2068 return;
2069 }
2070 }
2071
2072 /*
2073 * Compute mbuf offset to TCP data segment.
2074 */
2075 hdroptlen = off + thlen;
2076
2077 /*
2078 * Calculate amount of space in receive window. Receive window is
2079 * amount of space in rcv queue, but not less than advertised
2080 * window.
2081 */
2082 {
2083 int win;
2084 win = sbspace(&so->so_rcv);
2085 if (win < 0)
2086 win = 0;
2087 tp->rcv_wnd = imax(win, (int)(tp->rcv_adv - tp->rcv_nxt));
2088 }
2089
2090 /* Reset receive buffer auto scaling when not in bulk receive mode. */
2091 tp->rfbuf_ts = 0;
2092 tp->rfbuf_cnt = 0;
2093
2094 switch (tp->t_state) {
2095 /*
2096 * If the state is SYN_SENT:
2097 * if seg contains an ACK, but not for our SYN, drop the input.
2098 * if seg contains a RST, then drop the connection.
2099 * if seg does not contain SYN, then drop it.
2100 * Otherwise this is an acceptable SYN segment
2101 * initialize tp->rcv_nxt and tp->irs
2102 * if seg contains ack then advance tp->snd_una
2103 * if seg contains a ECE and ECN support is enabled, the stream
2104 * is ECN capable.
2105 * if SYN has been acked change to ESTABLISHED else SYN_RCVD state
2106 * arrange for segment to be acked (eventually)
2107 * continue processing rest of data/controls, beginning with URG
2108 */
2109 case TCPS_SYN_SENT:
2110 if ((tiflags & TH_ACK) &&
2111 (SEQ_LEQ(th->th_ack, tp->iss) ||
2112 SEQ_GT(th->th_ack, tp->snd_max)))
2113 goto dropwithreset;
2114 if (tiflags & TH_RST) {
2115 if (tiflags & TH_ACK)
2116 tp = tcp_drop(tp, ECONNREFUSED);
2117 goto drop;
2118 }
2119 if ((tiflags & TH_SYN) == 0)
2120 goto drop;
2121 if (tiflags & TH_ACK) {
2122 tp->snd_una = th->th_ack;
2123 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2124 tp->snd_nxt = tp->snd_una;
2125 if (SEQ_LT(tp->snd_high, tp->snd_una))
2126 tp->snd_high = tp->snd_una;
2127 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2128
2129 if ((tiflags & TH_ECE) && tcp_do_ecn) {
2130 tp->t_flags |= TF_ECN_PERMIT;
2131 TCP_STATINC(TCP_STAT_ECN_SHS);
2132 }
2133 }
2134 tp->irs = th->th_seq;
2135 tcp_rcvseqinit(tp);
2136 tp->t_flags |= TF_ACKNOW;
2137 tcp_mss_from_peer(tp, opti.maxseg);
2138
2139 /*
2140 * Initialize the initial congestion window. If we
2141 * had to retransmit the SYN, we must initialize cwnd
2142 * to 1 segment (i.e. the Loss Window).
2143 */
2144 if (tp->t_flags & TF_SYN_REXMT)
2145 tp->snd_cwnd = tp->t_peermss;
2146 else {
2147 int ss = tcp_init_win;
2148 if (inp != NULL && in_localaddr(inp->inp_faddr))
2149 ss = tcp_init_win_local;
2150 #ifdef INET6
2151 if (in6p != NULL && in6_localaddr(&in6p->in6p_faddr))
2152 ss = tcp_init_win_local;
2153 #endif
2154 tp->snd_cwnd = TCP_INITIAL_WINDOW(ss, tp->t_peermss);
2155 }
2156
2157 tcp_rmx_rtt(tp);
2158 if (tiflags & TH_ACK) {
2159 TCP_STATINC(TCP_STAT_CONNECTS);
2160 /*
2161 * move tcp_established before soisconnected
2162 * because upcall handler can drive tcp_output
2163 * functionality.
2164 * XXX we might call soisconnected at the end of
2165 * all processing
2166 */
2167 tcp_established(tp);
2168 soisconnected(so);
2169 /* Do window scaling on this connection? */
2170 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2171 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2172 tp->snd_scale = tp->requested_s_scale;
2173 tp->rcv_scale = tp->request_r_scale;
2174 }
2175 TCP_REASS_LOCK(tp);
2176 (void)tcp_reass(tp, NULL, NULL, tlen);
2177 /*
2178 * if we didn't have to retransmit the SYN,
2179 * use its rtt as our initial srtt & rtt var.
2180 */
2181 if (tp->t_rtttime)
2182 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2183 } else {
2184 tp->t_state = TCPS_SYN_RECEIVED;
2185 }
2186
2187 /*
2188 * Advance th->th_seq to correspond to first data byte.
2189 * If data, trim to stay within window,
2190 * dropping FIN if necessary.
2191 */
2192 th->th_seq++;
2193 if (tlen > tp->rcv_wnd) {
2194 todrop = tlen - tp->rcv_wnd;
2195 m_adj(m, -todrop);
2196 tlen = tp->rcv_wnd;
2197 tiflags &= ~TH_FIN;
2198 tcps = TCP_STAT_GETREF();
2199 tcps[TCP_STAT_RCVPACKAFTERWIN]++;
2200 tcps[TCP_STAT_RCVBYTEAFTERWIN] += todrop;
2201 TCP_STAT_PUTREF();
2202 }
2203 tp->snd_wl1 = th->th_seq - 1;
2204 tp->rcv_up = th->th_seq;
2205 goto step6;
2206
2207 /*
2208 * If the state is SYN_RECEIVED:
2209 * If seg contains an ACK, but not for our SYN, drop the input
2210 * and generate an RST. See page 36, rfc793
2211 */
2212 case TCPS_SYN_RECEIVED:
2213 if ((tiflags & TH_ACK) &&
2214 (SEQ_LEQ(th->th_ack, tp->iss) ||
2215 SEQ_GT(th->th_ack, tp->snd_max)))
2216 goto dropwithreset;
2217 break;
2218 }
2219
2220 /*
2221 * From here on, we're dealing with !LISTEN and !SYN_SENT.
2222 */
2223 KASSERT(tp->t_state != TCPS_LISTEN &&
2224 tp->t_state != TCPS_SYN_SENT);
2225
2226 /*
2227 * RFC1323 PAWS: if we have a timestamp reply on this segment and
2228 * it's less than ts_recent, drop it.
2229 */
2230 if (opti.ts_present && (tiflags & TH_RST) == 0 && tp->ts_recent &&
2231 TSTMP_LT(opti.ts_val, tp->ts_recent)) {
2232 /* Check to see if ts_recent is over 24 days old. */
2233 if (tcp_now - tp->ts_recent_age > TCP_PAWS_IDLE) {
2234 /*
2235 * Invalidate ts_recent. If this segment updates
2236 * ts_recent, the age will be reset later and ts_recent
2237 * will get a valid value. If it does not, setting
2238 * ts_recent to zero will at least satisfy the
2239 * requirement that zero be placed in the timestamp
2240 * echo reply when ts_recent isn't valid. The
2241 * age isn't reset until we get a valid ts_recent
2242 * because we don't want out-of-order segments to be
2243 * dropped when ts_recent is old.
2244 */
2245 tp->ts_recent = 0;
2246 } else {
2247 tcps = TCP_STAT_GETREF();
2248 tcps[TCP_STAT_RCVDUPPACK]++;
2249 tcps[TCP_STAT_RCVDUPBYTE] += tlen;
2250 tcps[TCP_STAT_PAWSDROP]++;
2251 TCP_STAT_PUTREF();
2252 tcp_new_dsack(tp, th->th_seq, tlen);
2253 goto dropafterack;
2254 }
2255 }
2256
2257 /*
2258 * Check that at least some bytes of the segment are within the
2259 * receive window. If segment begins before rcv_nxt, drop leading
2260 * data (and SYN); if nothing left, just ack.
2261 */
2262 todrop = tp->rcv_nxt - th->th_seq;
2263 dupseg = false;
2264 if (todrop > 0) {
2265 if (tiflags & TH_SYN) {
2266 tiflags &= ~TH_SYN;
2267 th->th_seq++;
2268 tcp_urp_drop(th, 1, &tiflags);
2269 todrop--;
2270 }
2271 if (todrop > tlen ||
2272 (todrop == tlen && (tiflags & TH_FIN) == 0)) {
2273 /*
2274 * Any valid FIN or RST must be to the left of the
2275 * window. At this point the FIN or RST must be a
2276 * duplicate or out of sequence; drop it.
2277 */
2278 if (tiflags & TH_RST)
2279 goto drop;
2280 tiflags &= ~(TH_FIN|TH_RST);
2281
2282 /*
2283 * Send an ACK to resynchronize and drop any data.
2284 * But keep on processing for RST or ACK.
2285 */
2286 tp->t_flags |= TF_ACKNOW;
2287 todrop = tlen;
2288 dupseg = true;
2289 tcps = TCP_STAT_GETREF();
2290 tcps[TCP_STAT_RCVDUPPACK]++;
2291 tcps[TCP_STAT_RCVDUPBYTE] += todrop;
2292 TCP_STAT_PUTREF();
2293 } else if ((tiflags & TH_RST) && th->th_seq != tp->rcv_nxt) {
2294 /*
2295 * Test for reset before adjusting the sequence
2296 * number for overlapping data.
2297 */
2298 goto dropafterack_ratelim;
2299 } else {
2300 tcps = TCP_STAT_GETREF();
2301 tcps[TCP_STAT_RCVPARTDUPPACK]++;
2302 tcps[TCP_STAT_RCVPARTDUPBYTE] += todrop;
2303 TCP_STAT_PUTREF();
2304 }
2305 tcp_new_dsack(tp, th->th_seq, todrop);
2306 hdroptlen += todrop; /* drop from head afterwards (m_adj) */
2307 th->th_seq += todrop;
2308 tlen -= todrop;
2309 tcp_urp_drop(th, todrop, &tiflags);
2310 }
2311
2312 /*
2313 * If new data is received on a connection after the user processes
2314 * are gone, then RST the other end.
2315 */
2316 if ((so->so_state & SS_NOFDREF) &&
2317 tp->t_state > TCPS_CLOSE_WAIT && tlen) {
2318 tp = tcp_close(tp);
2319 TCP_STATINC(TCP_STAT_RCVAFTERCLOSE);
2320 goto dropwithreset;
2321 }
2322
2323 /*
2324 * If the segment ends after the window, drop trailing data (and
2325 * PUSH and FIN); if nothing left, just ACK.
2326 */
2327 todrop = (th->th_seq + tlen) - (tp->rcv_nxt + tp->rcv_wnd);
2328 if (todrop > 0) {
2329 TCP_STATINC(TCP_STAT_RCVPACKAFTERWIN);
2330 if (todrop >= tlen) {
2331 /*
2332 * The segment actually starts after the window.
2333 * th->th_seq + tlen - tp->rcv_nxt - tp->rcv_wnd >= tlen
2334 * th->th_seq - tp->rcv_nxt - tp->rcv_wnd >= 0
2335 * th->th_seq >= tp->rcv_nxt + tp->rcv_wnd
2336 */
2337 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, tlen);
2338
2339 /*
2340 * If a new connection request is received while in
2341 * TIME_WAIT, drop the old connection and start over
2342 * if the sequence numbers are above the previous
2343 * ones.
2344 *
2345 * NOTE: We need to put the header fields back into
2346 * network order.
2347 */
2348 if ((tiflags & TH_SYN) &&
2349 tp->t_state == TCPS_TIME_WAIT &&
2350 SEQ_GT(th->th_seq, tp->rcv_nxt)) {
2351 tp = tcp_close(tp);
2352 tcp_fields_to_net(th);
2353 m_freem(tcp_saveti);
2354 tcp_saveti = NULL;
2355 goto findpcb;
2356 }
2357
2358 /*
2359 * If window is closed can only take segments at
2360 * window edge, and have to drop data and PUSH from
2361 * incoming segments. Continue processing, but
2362 * remember to ack. Otherwise, drop segment
2363 * and (if not RST) ack.
2364 */
2365 if (tp->rcv_wnd == 0 && th->th_seq == tp->rcv_nxt) {
2366 KASSERT(todrop == tlen);
2367 tp->t_flags |= TF_ACKNOW;
2368 TCP_STATINC(TCP_STAT_RCVWINPROBE);
2369 } else {
2370 goto dropafterack;
2371 }
2372 } else {
2373 TCP_STATADD(TCP_STAT_RCVBYTEAFTERWIN, todrop);
2374 }
2375 m_adj(m, -todrop);
2376 tlen -= todrop;
2377 tiflags &= ~(TH_PUSH|TH_FIN);
2378 }
2379
2380 /*
2381 * If last ACK falls within this segment's sequence numbers,
2382 * record the timestamp.
2383 * NOTE:
2384 * 1) That the test incorporates suggestions from the latest
2385 * proposal of the tcplw (at) cray.com list (Braden 1993/04/26).
2386 * 2) That updating only on newer timestamps interferes with
2387 * our earlier PAWS tests, so this check should be solely
2388 * predicated on the sequence space of this segment.
2389 * 3) That we modify the segment boundary check to be
2390 * Last.ACK.Sent <= SEG.SEQ + SEG.Len
2391 * instead of RFC1323's
2392 * Last.ACK.Sent < SEG.SEQ + SEG.Len,
2393 * This modified check allows us to overcome RFC1323's
2394 * limitations as described in Stevens TCP/IP Illustrated
2395 * Vol. 2 p.869. In such cases, we can still calculate the
2396 * RTT correctly when RCV.NXT == Last.ACK.Sent.
2397 */
2398 if (opti.ts_present &&
2399 SEQ_LEQ(th->th_seq, tp->last_ack_sent) &&
2400 SEQ_LEQ(tp->last_ack_sent, th->th_seq + tlen +
2401 ((tiflags & (TH_SYN|TH_FIN)) != 0))) {
2402 tp->ts_recent_age = tcp_now;
2403 tp->ts_recent = opti.ts_val;
2404 }
2405
2406 /*
2407 * If the RST bit is set examine the state:
2408 * RECEIVED state:
2409 * If passive open, return to LISTEN state.
2410 * If active open, inform user that connection was refused.
2411 * ESTABLISHED, FIN_WAIT_1, FIN_WAIT2, CLOSE_WAIT states:
2412 * Inform user that connection was reset, and close tcb.
2413 * CLOSING, LAST_ACK, TIME_WAIT states:
2414 * Close the tcb.
2415 */
2416 if (tiflags & TH_RST) {
2417 if (th->th_seq != tp->rcv_nxt)
2418 goto dropafterack_ratelim;
2419
2420 switch (tp->t_state) {
2421 case TCPS_SYN_RECEIVED:
2422 so->so_error = ECONNREFUSED;
2423 goto close;
2424
2425 case TCPS_ESTABLISHED:
2426 case TCPS_FIN_WAIT_1:
2427 case TCPS_FIN_WAIT_2:
2428 case TCPS_CLOSE_WAIT:
2429 so->so_error = ECONNRESET;
2430 close:
2431 tp->t_state = TCPS_CLOSED;
2432 TCP_STATINC(TCP_STAT_DROPS);
2433 tp = tcp_close(tp);
2434 goto drop;
2435
2436 case TCPS_CLOSING:
2437 case TCPS_LAST_ACK:
2438 case TCPS_TIME_WAIT:
2439 tp = tcp_close(tp);
2440 goto drop;
2441 }
2442 }
2443
2444 /*
2445 * Since we've covered the SYN-SENT and SYN-RECEIVED states above
2446 * we must be in a synchronized state. RFC793 states (under Reset
2447 * Generation) that any unacceptable segment (an out-of-order SYN
2448 * qualifies) received in a synchronized state must elicit only an
2449 * empty acknowledgment segment ... and the connection remains in
2450 * the same state.
2451 */
2452 if (tiflags & TH_SYN) {
2453 if (tp->rcv_nxt == th->th_seq) {
2454 tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack - 1,
2455 TH_ACK);
2456 if (tcp_saveti)
2457 m_freem(tcp_saveti);
2458 return;
2459 }
2460
2461 goto dropafterack_ratelim;
2462 }
2463
2464 /*
2465 * If the ACK bit is off we drop the segment and return.
2466 */
2467 if ((tiflags & TH_ACK) == 0) {
2468 if (tp->t_flags & TF_ACKNOW)
2469 goto dropafterack;
2470 goto drop;
2471 }
2472
2473 /*
2474 * From here on, we're doing ACK processing.
2475 */
2476
2477 switch (tp->t_state) {
2478 /*
2479 * In SYN_RECEIVED state if the ack ACKs our SYN then enter
2480 * ESTABLISHED state and continue processing, otherwise
2481 * send an RST.
2482 */
2483 case TCPS_SYN_RECEIVED:
2484 if (SEQ_GT(tp->snd_una, th->th_ack) ||
2485 SEQ_GT(th->th_ack, tp->snd_max))
2486 goto dropwithreset;
2487 TCP_STATINC(TCP_STAT_CONNECTS);
2488 soisconnected(so);
2489 tcp_established(tp);
2490 /* Do window scaling? */
2491 if ((tp->t_flags & (TF_RCVD_SCALE|TF_REQ_SCALE)) ==
2492 (TF_RCVD_SCALE|TF_REQ_SCALE)) {
2493 tp->snd_scale = tp->requested_s_scale;
2494 tp->rcv_scale = tp->request_r_scale;
2495 }
2496 TCP_REASS_LOCK(tp);
2497 (void)tcp_reass(tp, NULL, NULL, tlen);
2498 tp->snd_wl1 = th->th_seq - 1;
2499 /* FALLTHROUGH */
2500
2501 /*
2502 * In ESTABLISHED state: drop duplicate ACKs; ACK out of range
2503 * ACKs. If the ack is in the range
2504 * tp->snd_una < th->th_ack <= tp->snd_max
2505 * then advance tp->snd_una to th->th_ack and drop
2506 * data from the retransmission queue. If this ACK reflects
2507 * more up to date window information we update our window information.
2508 */
2509 case TCPS_ESTABLISHED:
2510 case TCPS_FIN_WAIT_1:
2511 case TCPS_FIN_WAIT_2:
2512 case TCPS_CLOSE_WAIT:
2513 case TCPS_CLOSING:
2514 case TCPS_LAST_ACK:
2515 case TCPS_TIME_WAIT:
2516 if (SEQ_LEQ(th->th_ack, tp->snd_una)) {
2517 if (tlen == 0 && !dupseg && tiwin == tp->snd_wnd) {
2518 TCP_STATINC(TCP_STAT_RCVDUPACK);
2519 /*
2520 * If we have outstanding data (other than
2521 * a window probe), this is a completely
2522 * duplicate ack (ie, window info didn't
2523 * change), the ack is the biggest we've
2524 * seen and we've seen exactly our rexmt
2525 * threshold of them, assume a packet
2526 * has been dropped and retransmit it.
2527 * Kludge snd_nxt & the congestion
2528 * window so we send only this one
2529 * packet.
2530 */
2531 if (TCP_TIMER_ISARMED(tp, TCPT_REXMT) == 0 ||
2532 th->th_ack != tp->snd_una)
2533 tp->t_dupacks = 0;
2534 else if (tp->t_partialacks < 0 &&
2535 (++tp->t_dupacks == tcprexmtthresh ||
2536 TCP_FACK_FASTRECOV(tp))) {
2537 /*
2538 * Do the fast retransmit, and adjust
2539 * congestion control parameters.
2540 */
2541 if (tp->t_congctl->fast_retransmit(tp, th)) {
2542 /* False fast retransmit */
2543 break;
2544 }
2545 goto drop;
2546 } else if (tp->t_dupacks > tcprexmtthresh) {
2547 tp->snd_cwnd += tp->t_segsz;
2548 KERNEL_LOCK(1, NULL);
2549 (void)tcp_output(tp);
2550 KERNEL_UNLOCK_ONE(NULL);
2551 goto drop;
2552 }
2553 } else {
2554 /*
2555 * If the ack appears to be very old, only
2556 * allow data that is in-sequence. This
2557 * makes it somewhat more difficult to insert
2558 * forged data by guessing sequence numbers.
2559 * Sent an ack to try to update the send
2560 * sequence number on the other side.
2561 */
2562 if (tlen && th->th_seq != tp->rcv_nxt &&
2563 SEQ_LT(th->th_ack,
2564 tp->snd_una - tp->max_sndwnd))
2565 goto dropafterack;
2566 }
2567 break;
2568 }
2569 /*
2570 * If the congestion window was inflated to account
2571 * for the other side's cached packets, retract it.
2572 */
2573 tp->t_congctl->fast_retransmit_newack(tp, th);
2574
2575 if (SEQ_GT(th->th_ack, tp->snd_max)) {
2576 TCP_STATINC(TCP_STAT_RCVACKTOOMUCH);
2577 goto dropafterack;
2578 }
2579 acked = th->th_ack - tp->snd_una;
2580 tcps = TCP_STAT_GETREF();
2581 tcps[TCP_STAT_RCVACKPACK]++;
2582 tcps[TCP_STAT_RCVACKBYTE] += acked;
2583 TCP_STAT_PUTREF();
2584
2585 /*
2586 * If we have a timestamp reply, update smoothed
2587 * round trip time. If no timestamp is present but
2588 * transmit timer is running and timed sequence
2589 * number was acked, update smoothed round trip time.
2590 * Since we now have an rtt measurement, cancel the
2591 * timer backoff (cf., Phil Karn's retransmit alg.).
2592 * Recompute the initial retransmit timer.
2593 */
2594 if (ts_rtt)
2595 tcp_xmit_timer(tp, ts_rtt - 1);
2596 else if (tp->t_rtttime && SEQ_GT(th->th_ack, tp->t_rtseq))
2597 tcp_xmit_timer(tp, tcp_now - tp->t_rtttime);
2598
2599 /*
2600 * If all outstanding data is acked, stop retransmit
2601 * timer and remember to restart (more output or persist).
2602 * If there is more data to be acked, restart retransmit
2603 * timer, using current (possibly backed-off) value.
2604 */
2605 if (th->th_ack == tp->snd_max) {
2606 TCP_TIMER_DISARM(tp, TCPT_REXMT);
2607 needoutput = 1;
2608 } else if (TCP_TIMER_ISARMED(tp, TCPT_PERSIST) == 0)
2609 TCP_TIMER_ARM(tp, TCPT_REXMT, tp->t_rxtcur);
2610
2611 /*
2612 * New data has been acked, adjust the congestion window.
2613 */
2614 tp->t_congctl->newack(tp, th);
2615
2616 nd_hint(tp);
2617 if (acked > so->so_snd.sb_cc) {
2618 tp->snd_wnd -= so->so_snd.sb_cc;
2619 sbdrop(&so->so_snd, (int)so->so_snd.sb_cc);
2620 ourfinisacked = 1;
2621 } else {
2622 if (acked > (tp->t_lastoff - tp->t_inoff))
2623 tp->t_lastm = NULL;
2624 sbdrop(&so->so_snd, acked);
2625 tp->t_lastoff -= acked;
2626 if (tp->snd_wnd > acked)
2627 tp->snd_wnd -= acked;
2628 else
2629 tp->snd_wnd = 0;
2630 ourfinisacked = 0;
2631 }
2632 sowwakeup(so);
2633
2634 icmp_check(tp, th, acked);
2635
2636 tp->snd_una = th->th_ack;
2637 if (SEQ_GT(tp->snd_una, tp->snd_fack))
2638 tp->snd_fack = tp->snd_una;
2639 if (SEQ_LT(tp->snd_nxt, tp->snd_una))
2640 tp->snd_nxt = tp->snd_una;
2641 if (SEQ_LT(tp->snd_high, tp->snd_una))
2642 tp->snd_high = tp->snd_una;
2643
2644 switch (tp->t_state) {
2645
2646 /*
2647 * In FIN_WAIT_1 STATE in addition to the processing
2648 * for the ESTABLISHED state if our FIN is now acknowledged
2649 * then enter FIN_WAIT_2.
2650 */
2651 case TCPS_FIN_WAIT_1:
2652 if (ourfinisacked) {
2653 /*
2654 * If we can't receive any more
2655 * data, then closing user can proceed.
2656 * Starting the timer is contrary to the
2657 * specification, but if we don't get a FIN
2658 * we'll hang forever.
2659 */
2660 if (so->so_state & SS_CANTRCVMORE) {
2661 soisdisconnected(so);
2662 if (tp->t_maxidle > 0)
2663 TCP_TIMER_ARM(tp, TCPT_2MSL,
2664 tp->t_maxidle);
2665 }
2666 tp->t_state = TCPS_FIN_WAIT_2;
2667 }
2668 break;
2669
2670 /*
2671 * In CLOSING STATE in addition to the processing for
2672 * the ESTABLISHED state if the ACK acknowledges our FIN
2673 * then enter the TIME-WAIT state, otherwise ignore
2674 * the segment.
2675 */
2676 case TCPS_CLOSING:
2677 if (ourfinisacked) {
2678 tp->t_state = TCPS_TIME_WAIT;
2679 tcp_canceltimers(tp);
2680 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2681 soisdisconnected(so);
2682 }
2683 break;
2684
2685 /*
2686 * In LAST_ACK, we may still be waiting for data to drain
2687 * and/or to be acked, as well as for the ack of our FIN.
2688 * If our FIN is now acknowledged, delete the TCB,
2689 * enter the closed state and return.
2690 */
2691 case TCPS_LAST_ACK:
2692 if (ourfinisacked) {
2693 tp = tcp_close(tp);
2694 goto drop;
2695 }
2696 break;
2697
2698 /*
2699 * In TIME_WAIT state the only thing that should arrive
2700 * is a retransmission of the remote FIN. Acknowledge
2701 * it and restart the finack timer.
2702 */
2703 case TCPS_TIME_WAIT:
2704 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2705 goto dropafterack;
2706 }
2707 }
2708
2709 step6:
2710 /*
2711 * Update window information.
2712 * Don't look at window if no ACK: TAC's send garbage on first SYN.
2713 */
2714 if ((tiflags & TH_ACK) && (SEQ_LT(tp->snd_wl1, th->th_seq) ||
2715 (tp->snd_wl1 == th->th_seq && (SEQ_LT(tp->snd_wl2, th->th_ack) ||
2716 (tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd))))) {
2717 /* keep track of pure window updates */
2718 if (tlen == 0 &&
2719 tp->snd_wl2 == th->th_ack && tiwin > tp->snd_wnd)
2720 TCP_STATINC(TCP_STAT_RCVWINUPD);
2721 tp->snd_wnd = tiwin;
2722 tp->snd_wl1 = th->th_seq;
2723 tp->snd_wl2 = th->th_ack;
2724 if (tp->snd_wnd > tp->max_sndwnd)
2725 tp->max_sndwnd = tp->snd_wnd;
2726 needoutput = 1;
2727 }
2728
2729 /*
2730 * Process segments with URG.
2731 */
2732 if ((tiflags & TH_URG) && th->th_urp &&
2733 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2734 /*
2735 * This is a kludge, but if we receive and accept
2736 * random urgent pointers, we'll crash in
2737 * soreceive. It's hard to imagine someone
2738 * actually wanting to send this much urgent data.
2739 */
2740 if (th->th_urp + so->so_rcv.sb_cc > sb_max) {
2741 th->th_urp = 0; /* XXX */
2742 tiflags &= ~TH_URG; /* XXX */
2743 goto dodata; /* XXX */
2744 }
2745
2746 /*
2747 * If this segment advances the known urgent pointer,
2748 * then mark the data stream. This should not happen
2749 * in CLOSE_WAIT, CLOSING, LAST_ACK or TIME_WAIT STATES since
2750 * a FIN has been received from the remote side.
2751 * In these states we ignore the URG.
2752 *
2753 * According to RFC961 (Assigned Protocols),
2754 * the urgent pointer points to the last octet
2755 * of urgent data. We continue, however,
2756 * to consider it to indicate the first octet
2757 * of data past the urgent section as the original
2758 * spec states (in one of two places).
2759 */
2760 if (SEQ_GT(th->th_seq+th->th_urp, tp->rcv_up)) {
2761 tp->rcv_up = th->th_seq + th->th_urp;
2762 so->so_oobmark = so->so_rcv.sb_cc +
2763 (tp->rcv_up - tp->rcv_nxt) - 1;
2764 if (so->so_oobmark == 0)
2765 so->so_state |= SS_RCVATMARK;
2766 sohasoutofband(so);
2767 tp->t_oobflags &= ~(TCPOOB_HAVEDATA | TCPOOB_HADDATA);
2768 }
2769
2770 /*
2771 * Remove out of band data so doesn't get presented to user.
2772 * This can happen independent of advancing the URG pointer,
2773 * but if two URG's are pending at once, some out-of-band
2774 * data may creep in... ick.
2775 */
2776 if (th->th_urp <= (u_int16_t)tlen &&
2777 (so->so_options & SO_OOBINLINE) == 0)
2778 tcp_pulloutofband(so, th, m, hdroptlen);
2779 } else {
2780 /*
2781 * If no out of band data is expected,
2782 * pull receive urgent pointer along
2783 * with the receive window.
2784 */
2785 if (SEQ_GT(tp->rcv_nxt, tp->rcv_up))
2786 tp->rcv_up = tp->rcv_nxt;
2787 }
2788 dodata:
2789
2790 /*
2791 * Process the segment text, merging it into the TCP sequencing queue,
2792 * and arranging for acknowledgement of receipt if necessary.
2793 * This process logically involves adjusting tp->rcv_wnd as data
2794 * is presented to the user (this happens in tcp_usrreq.c,
2795 * tcp_rcvd()). If a FIN has already been received on this
2796 * connection then we just ignore the text.
2797 */
2798 if ((tlen || (tiflags & TH_FIN)) &&
2799 TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2800 /*
2801 * Handle the common case:
2802 * o Segment is the next to be received, and
2803 * o The queue is empty, and
2804 * o The connection is established
2805 * In this case, we avoid calling tcp_reass.
2806 *
2807 * tcp_setup_ack: set DELACK for segments received in order,
2808 * but ack immediately when segments are out of order (so that
2809 * fast retransmit can work).
2810 */
2811 TCP_REASS_LOCK(tp);
2812 if (th->th_seq == tp->rcv_nxt &&
2813 TAILQ_FIRST(&tp->segq) == NULL &&
2814 tp->t_state == TCPS_ESTABLISHED) {
2815 tcp_setup_ack(tp, th);
2816 tp->rcv_nxt += tlen;
2817 tiflags = th->th_flags & TH_FIN;
2818 tcps = TCP_STAT_GETREF();
2819 tcps[TCP_STAT_RCVPACK]++;
2820 tcps[TCP_STAT_RCVBYTE] += tlen;
2821 TCP_STAT_PUTREF();
2822 nd_hint(tp);
2823 if (so->so_state & SS_CANTRCVMORE) {
2824 m_freem(m);
2825 } else {
2826 m_adj(m, hdroptlen);
2827 sbappendstream(&(so)->so_rcv, m);
2828 }
2829 TCP_REASS_UNLOCK(tp);
2830 sorwakeup(so);
2831 } else {
2832 m_adj(m, hdroptlen);
2833 tiflags = tcp_reass(tp, th, m, tlen);
2834 tp->t_flags |= TF_ACKNOW;
2835 }
2836
2837 /*
2838 * Note the amount of data that peer has sent into
2839 * our window, in order to estimate the sender's
2840 * buffer size.
2841 */
2842 len = so->so_rcv.sb_hiwat - (tp->rcv_adv - tp->rcv_nxt);
2843 } else {
2844 m_freem(m);
2845 m = NULL;
2846 tiflags &= ~TH_FIN;
2847 }
2848
2849 /*
2850 * If FIN is received ACK the FIN and let the user know
2851 * that the connection is closing. Ignore a FIN received before
2852 * the connection is fully established.
2853 */
2854 if ((tiflags & TH_FIN) && TCPS_HAVEESTABLISHED(tp->t_state)) {
2855 if (TCPS_HAVERCVDFIN(tp->t_state) == 0) {
2856 socantrcvmore(so);
2857 tp->t_flags |= TF_ACKNOW;
2858 tp->rcv_nxt++;
2859 }
2860 switch (tp->t_state) {
2861
2862 /*
2863 * In ESTABLISHED STATE enter the CLOSE_WAIT state.
2864 */
2865 case TCPS_ESTABLISHED:
2866 tp->t_state = TCPS_CLOSE_WAIT;
2867 break;
2868
2869 /*
2870 * If still in FIN_WAIT_1 STATE FIN has not been acked so
2871 * enter the CLOSING state.
2872 */
2873 case TCPS_FIN_WAIT_1:
2874 tp->t_state = TCPS_CLOSING;
2875 break;
2876
2877 /*
2878 * In FIN_WAIT_2 state enter the TIME_WAIT state,
2879 * starting the time-wait timer, turning off the other
2880 * standard timers.
2881 */
2882 case TCPS_FIN_WAIT_2:
2883 tp->t_state = TCPS_TIME_WAIT;
2884 tcp_canceltimers(tp);
2885 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2886 soisdisconnected(so);
2887 break;
2888
2889 /*
2890 * In TIME_WAIT state restart the 2 MSL time_wait timer.
2891 */
2892 case TCPS_TIME_WAIT:
2893 TCP_TIMER_ARM(tp, TCPT_2MSL, 2 * tp->t_msl);
2894 break;
2895 }
2896 }
2897 #ifdef TCP_DEBUG
2898 if (so->so_options & SO_DEBUG)
2899 tcp_trace(TA_INPUT, ostate, tp, tcp_saveti, 0);
2900 #endif
2901
2902 /*
2903 * Return any desired output.
2904 */
2905 if (needoutput || (tp->t_flags & TF_ACKNOW)) {
2906 KERNEL_LOCK(1, NULL);
2907 (void)tcp_output(tp);
2908 KERNEL_UNLOCK_ONE(NULL);
2909 }
2910 if (tcp_saveti)
2911 m_freem(tcp_saveti);
2912
2913 if (tp->t_state == TCPS_TIME_WAIT
2914 && (so->so_state & SS_NOFDREF)
2915 && (tp->t_inpcb || af != AF_INET)
2916 && (tp->t_in6pcb || af != AF_INET6)
2917 && ((af == AF_INET ? tcp4_vtw_enable : tcp6_vtw_enable) & 1) != 0
2918 && TAILQ_EMPTY(&tp->segq)
2919 && vtw_add(af, tp)) {
2920 ;
2921 }
2922 return;
2923
2924 badsyn:
2925 /*
2926 * Received a bad SYN. Increment counters and dropwithreset.
2927 */
2928 TCP_STATINC(TCP_STAT_BADSYN);
2929 tp = NULL;
2930 goto dropwithreset;
2931
2932 dropafterack:
2933 /*
2934 * Generate an ACK dropping incoming segment if it occupies
2935 * sequence space, where the ACK reflects our state.
2936 */
2937 if (tiflags & TH_RST)
2938 goto drop;
2939 goto dropafterack2;
2940
2941 dropafterack_ratelim:
2942 /*
2943 * We may want to rate-limit ACKs against SYN/RST attack.
2944 */
2945 if (ppsratecheck(&tcp_ackdrop_ppslim_last, &tcp_ackdrop_ppslim_count,
2946 tcp_ackdrop_ppslim) == 0) {
2947 /* XXX stat */
2948 goto drop;
2949 }
2950
2951 dropafterack2:
2952 m_freem(m);
2953 tp->t_flags |= TF_ACKNOW;
2954 KERNEL_LOCK(1, NULL);
2955 (void)tcp_output(tp);
2956 KERNEL_UNLOCK_ONE(NULL);
2957 if (tcp_saveti)
2958 m_freem(tcp_saveti);
2959 return;
2960
2961 dropwithreset_ratelim:
2962 /*
2963 * We may want to rate-limit RSTs in certain situations,
2964 * particularly if we are sending an RST in response to
2965 * an attempt to connect to or otherwise communicate with
2966 * a port for which we have no socket.
2967 */
2968 if (ppsratecheck(&tcp_rst_ppslim_last, &tcp_rst_ppslim_count,
2969 tcp_rst_ppslim) == 0) {
2970 /* XXX stat */
2971 goto drop;
2972 }
2973
2974 dropwithreset:
2975 /*
2976 * Generate a RST, dropping incoming segment.
2977 * Make ACK acceptable to originator of segment.
2978 */
2979 if (tiflags & TH_RST)
2980 goto drop;
2981 if (tiflags & TH_ACK) {
2982 (void)tcp_respond(tp, m, m, th, (tcp_seq)0, th->th_ack, TH_RST);
2983 } else {
2984 if (tiflags & TH_SYN)
2985 tlen++;
2986 (void)tcp_respond(tp, m, m, th, th->th_seq + tlen, (tcp_seq)0,
2987 TH_RST|TH_ACK);
2988 }
2989 if (tcp_saveti)
2990 m_freem(tcp_saveti);
2991 return;
2992
2993 badcsum:
2994 drop:
2995 /*
2996 * Drop space held by incoming segment and return.
2997 */
2998 if (tp) {
2999 if (tp->t_inpcb)
3000 so = tp->t_inpcb->inp_socket;
3001 #ifdef INET6
3002 else if (tp->t_in6pcb)
3003 so = tp->t_in6pcb->in6p_socket;
3004 #endif
3005 else
3006 so = NULL;
3007 #ifdef TCP_DEBUG
3008 if (so && (so->so_options & SO_DEBUG) != 0)
3009 tcp_trace(TA_DROP, ostate, tp, tcp_saveti, 0);
3010 #endif
3011 }
3012 if (tcp_saveti)
3013 m_freem(tcp_saveti);
3014 m_freem(m);
3015 return;
3016 }
3017
3018 #ifdef TCP_SIGNATURE
3019 int
3020 tcp_signature_apply(void *fstate, void *data, u_int len)
3021 {
3022
3023 MD5Update(fstate, (u_char *)data, len);
3024 return (0);
3025 }
3026
3027 struct secasvar *
3028 tcp_signature_getsav(struct mbuf *m)
3029 {
3030 struct ip *ip;
3031 struct ip6_hdr *ip6;
3032
3033 ip = mtod(m, struct ip *);
3034 switch (ip->ip_v) {
3035 case 4:
3036 ip = mtod(m, struct ip *);
3037 ip6 = NULL;
3038 break;
3039 case 6:
3040 ip = NULL;
3041 ip6 = mtod(m, struct ip6_hdr *);
3042 break;
3043 default:
3044 return (NULL);
3045 }
3046
3047 #ifdef IPSEC
3048 union sockaddr_union dst;
3049
3050 /* Extract the destination from the IP header in the mbuf. */
3051 memset(&dst, 0, sizeof(union sockaddr_union));
3052 if (ip != NULL) {
3053 dst.sa.sa_len = sizeof(struct sockaddr_in);
3054 dst.sa.sa_family = AF_INET;
3055 dst.sin.sin_addr = ip->ip_dst;
3056 } else {
3057 dst.sa.sa_len = sizeof(struct sockaddr_in6);
3058 dst.sa.sa_family = AF_INET6;
3059 dst.sin6.sin6_addr = ip6->ip6_dst;
3060 }
3061
3062 /*
3063 * Look up an SADB entry which matches the address of the peer.
3064 */
3065 return KEY_LOOKUP_SA(&dst, IPPROTO_TCP, htonl(TCP_SIG_SPI), 0, 0);
3066 #else
3067 return NULL;
3068 #endif
3069 }
3070
3071 int
3072 tcp_signature(struct mbuf *m, struct tcphdr *th, int thoff,
3073 struct secasvar *sav, char *sig)
3074 {
3075 MD5_CTX ctx;
3076 struct ip *ip;
3077 struct ipovly *ipovly;
3078 #ifdef INET6
3079 struct ip6_hdr *ip6;
3080 struct ip6_hdr_pseudo ip6pseudo;
3081 #endif
3082 struct ippseudo ippseudo;
3083 struct tcphdr th0;
3084 int l, tcphdrlen;
3085
3086 if (sav == NULL)
3087 return (-1);
3088
3089 tcphdrlen = th->th_off * 4;
3090
3091 switch (mtod(m, struct ip *)->ip_v) {
3092 case 4:
3093 MD5Init(&ctx);
3094 ip = mtod(m, struct ip *);
3095 memset(&ippseudo, 0, sizeof(ippseudo));
3096 ipovly = (struct ipovly *)ip;
3097 ippseudo.ippseudo_src = ipovly->ih_src;
3098 ippseudo.ippseudo_dst = ipovly->ih_dst;
3099 ippseudo.ippseudo_pad = 0;
3100 ippseudo.ippseudo_p = IPPROTO_TCP;
3101 ippseudo.ippseudo_len = htons(m->m_pkthdr.len - thoff);
3102 MD5Update(&ctx, (char *)&ippseudo, sizeof(ippseudo));
3103 break;
3104 #if INET6
3105 case 6:
3106 MD5Init(&ctx);
3107 ip6 = mtod(m, struct ip6_hdr *);
3108 memset(&ip6pseudo, 0, sizeof(ip6pseudo));
3109 ip6pseudo.ip6ph_src = ip6->ip6_src;
3110 in6_clearscope(&ip6pseudo.ip6ph_src);
3111 ip6pseudo.ip6ph_dst = ip6->ip6_dst;
3112 in6_clearscope(&ip6pseudo.ip6ph_dst);
3113 ip6pseudo.ip6ph_len = htons(m->m_pkthdr.len - thoff);
3114 ip6pseudo.ip6ph_nxt = IPPROTO_TCP;
3115 MD5Update(&ctx, (char *)&ip6pseudo, sizeof(ip6pseudo));
3116 break;
3117 #endif
3118 default:
3119 return (-1);
3120 }
3121
3122 th0 = *th;
3123 th0.th_sum = 0;
3124 MD5Update(&ctx, (char *)&th0, sizeof(th0));
3125
3126 l = m->m_pkthdr.len - thoff - tcphdrlen;
3127 if (l > 0)
3128 m_apply(m, thoff + tcphdrlen,
3129 m->m_pkthdr.len - thoff - tcphdrlen,
3130 tcp_signature_apply, &ctx);
3131
3132 MD5Update(&ctx, _KEYBUF(sav->key_auth), _KEYLEN(sav->key_auth));
3133 MD5Final(sig, &ctx);
3134
3135 return (0);
3136 }
3137 #endif
3138
3139 /*
3140 * Parse and process tcp options.
3141 *
3142 * Returns -1 if this segment should be dropped. (eg. wrong signature)
3143 * Otherwise returns 0.
3144 */
3145 int
3146 tcp_dooptions(struct tcpcb *tp, const u_char *cp, int cnt, struct tcphdr *th,
3147 struct mbuf *m, int toff, struct tcp_opt_info *oi)
3148 {
3149 u_int16_t mss;
3150 int opt, optlen = 0;
3151 #ifdef TCP_SIGNATURE
3152 void *sigp = NULL;
3153 char sigbuf[TCP_SIGLEN];
3154 struct secasvar *sav = NULL;
3155 #endif
3156
3157 for (; cp && cnt > 0; cnt -= optlen, cp += optlen) {
3158 opt = cp[0];
3159 if (opt == TCPOPT_EOL)
3160 break;
3161 if (opt == TCPOPT_NOP)
3162 optlen = 1;
3163 else {
3164 if (cnt < 2)
3165 break;
3166 optlen = cp[1];
3167 if (optlen < 2 || optlen > cnt)
3168 break;
3169 }
3170 switch (opt) {
3171
3172 default:
3173 continue;
3174
3175 case TCPOPT_MAXSEG:
3176 if (optlen != TCPOLEN_MAXSEG)
3177 continue;
3178 if (!(th->th_flags & TH_SYN))
3179 continue;
3180 if (TCPS_HAVERCVDSYN(tp->t_state))
3181 continue;
3182 memcpy(&mss, cp + 2, sizeof(mss));
3183 oi->maxseg = ntohs(mss);
3184 break;
3185
3186 case TCPOPT_WINDOW:
3187 if (optlen != TCPOLEN_WINDOW)
3188 continue;
3189 if (!(th->th_flags & TH_SYN))
3190 continue;
3191 if (TCPS_HAVERCVDSYN(tp->t_state))
3192 continue;
3193 tp->t_flags |= TF_RCVD_SCALE;
3194 tp->requested_s_scale = cp[2];
3195 if (tp->requested_s_scale > TCP_MAX_WINSHIFT) {
3196 char buf[INET6_ADDRSTRLEN];
3197 struct ip *ip = mtod(m, struct ip *);
3198 #ifdef INET6
3199 struct ip6_hdr *ip6 = mtod(m, struct ip6_hdr *);
3200 #endif
3201
3202 switch (ip->ip_v) {
3203 case 4:
3204 in_print(buf, sizeof(buf),
3205 &ip->ip_src);
3206 break;
3207 #ifdef INET6
3208 case 6:
3209 in6_print(buf, sizeof(buf),
3210 &ip6->ip6_src);
3211 break;
3212 #endif
3213 default:
3214 strlcpy(buf, "(unknown)", sizeof(buf));
3215 break;
3216 }
3217
3218 log(LOG_ERR, "TCP: invalid wscale %d from %s, "
3219 "assuming %d\n",
3220 tp->requested_s_scale, buf,
3221 TCP_MAX_WINSHIFT);
3222 tp->requested_s_scale = TCP_MAX_WINSHIFT;
3223 }
3224 break;
3225
3226 case TCPOPT_TIMESTAMP:
3227 if (optlen != TCPOLEN_TIMESTAMP)
3228 continue;
3229 oi->ts_present = 1;
3230 memcpy(&oi->ts_val, cp + 2, sizeof(oi->ts_val));
3231 NTOHL(oi->ts_val);
3232 memcpy(&oi->ts_ecr, cp + 6, sizeof(oi->ts_ecr));
3233 NTOHL(oi->ts_ecr);
3234
3235 if (!(th->th_flags & TH_SYN))
3236 continue;
3237 if (TCPS_HAVERCVDSYN(tp->t_state))
3238 continue;
3239 /*
3240 * A timestamp received in a SYN makes
3241 * it ok to send timestamp requests and replies.
3242 */
3243 tp->t_flags |= TF_RCVD_TSTMP;
3244 tp->ts_recent = oi->ts_val;
3245 tp->ts_recent_age = tcp_now;
3246 break;
3247
3248 case TCPOPT_SACK_PERMITTED:
3249 if (optlen != TCPOLEN_SACK_PERMITTED)
3250 continue;
3251 if (!(th->th_flags & TH_SYN))
3252 continue;
3253 if (TCPS_HAVERCVDSYN(tp->t_state))
3254 continue;
3255 if (tcp_do_sack) {
3256 tp->t_flags |= TF_SACK_PERMIT;
3257 tp->t_flags |= TF_WILL_SACK;
3258 }
3259 break;
3260
3261 case TCPOPT_SACK:
3262 tcp_sack_option(tp, th, cp, optlen);
3263 break;
3264 #ifdef TCP_SIGNATURE
3265 case TCPOPT_SIGNATURE:
3266 if (optlen != TCPOLEN_SIGNATURE)
3267 continue;
3268 if (sigp &&
3269 !consttime_memequal(sigp, cp + 2, TCP_SIGLEN))
3270 return (-1);
3271
3272 sigp = sigbuf;
3273 memcpy(sigbuf, cp + 2, TCP_SIGLEN);
3274 tp->t_flags |= TF_SIGNATURE;
3275 break;
3276 #endif
3277 }
3278 }
3279
3280 #ifndef TCP_SIGNATURE
3281 return 0;
3282 #else
3283 if (tp->t_flags & TF_SIGNATURE) {
3284 sav = tcp_signature_getsav(m);
3285 if (sav == NULL && tp->t_state == TCPS_LISTEN)
3286 return (-1);
3287 }
3288
3289 if ((sigp ? TF_SIGNATURE : 0) ^ (tp->t_flags & TF_SIGNATURE))
3290 goto out;
3291
3292 if (sigp) {
3293 char sig[TCP_SIGLEN];
3294
3295 tcp_fields_to_net(th);
3296 if (tcp_signature(m, th, toff, sav, sig) < 0) {
3297 tcp_fields_to_host(th);
3298 goto out;
3299 }
3300 tcp_fields_to_host(th);
3301
3302 if (!consttime_memequal(sig, sigp, TCP_SIGLEN)) {
3303 TCP_STATINC(TCP_STAT_BADSIG);
3304 goto out;
3305 } else
3306 TCP_STATINC(TCP_STAT_GOODSIG);
3307
3308 key_sa_recordxfer(sav, m);
3309 KEY_SA_UNREF(&sav);
3310 }
3311 return 0;
3312 out:
3313 if (sav != NULL)
3314 KEY_SA_UNREF(&sav);
3315 return -1;
3316 #endif
3317 }
3318
3319 /*
3320 * Pull out of band byte out of a segment so
3321 * it doesn't appear in the user's data queue.
3322 * It is still reflected in the segment length for
3323 * sequencing purposes.
3324 */
3325 void
3326 tcp_pulloutofband(struct socket *so, struct tcphdr *th,
3327 struct mbuf *m, int off)
3328 {
3329 int cnt = off + th->th_urp - 1;
3330
3331 while (cnt >= 0) {
3332 if (m->m_len > cnt) {
3333 char *cp = mtod(m, char *) + cnt;
3334 struct tcpcb *tp = sototcpcb(so);
3335
3336 tp->t_iobc = *cp;
3337 tp->t_oobflags |= TCPOOB_HAVEDATA;
3338 memmove(cp, cp + 1, (unsigned)(m->m_len - cnt - 1));
3339 m->m_len--;
3340 return;
3341 }
3342 cnt -= m->m_len;
3343 m = m->m_next;
3344 if (m == NULL)
3345 break;
3346 }
3347 panic("tcp_pulloutofband");
3348 }
3349
3350 /*
3351 * Collect new round-trip time estimate
3352 * and update averages and current timeout.
3353 *
3354 * rtt is in units of slow ticks (typically 500 ms) -- essentially the
3355 * difference of two timestamps.
3356 */
3357 void
3358 tcp_xmit_timer(struct tcpcb *tp, uint32_t rtt)
3359 {
3360 int32_t delta;
3361
3362 TCP_STATINC(TCP_STAT_RTTUPDATED);
3363 if (tp->t_srtt != 0) {
3364 /*
3365 * Compute the amount to add to srtt for smoothing,
3366 * *alpha, or 2^(-TCP_RTT_SHIFT). Because
3367 * srtt is stored in 1/32 slow ticks, we conceptually
3368 * shift left 5 bits, subtract srtt to get the
3369 * difference, and then shift right by TCP_RTT_SHIFT
3370 * (3) to obtain 1/8 of the difference.
3371 */
3372 delta = (rtt << 2) - (tp->t_srtt >> TCP_RTT_SHIFT);
3373 /*
3374 * This can never happen, because delta's lowest
3375 * possible value is 1/8 of t_srtt. But if it does,
3376 * set srtt to some reasonable value, here chosen
3377 * as 1/8 tick.
3378 */
3379 if ((tp->t_srtt += delta) <= 0)
3380 tp->t_srtt = 1 << 2;
3381 /*
3382 * RFC2988 requires that rttvar be updated first.
3383 * This code is compliant because "delta" is the old
3384 * srtt minus the new observation (scaled).
3385 *
3386 * RFC2988 says:
3387 * rttvar = (1-beta) * rttvar + beta * |srtt-observed|
3388 *
3389 * delta is in units of 1/32 ticks, and has then been
3390 * divided by 8. This is equivalent to being in 1/16s
3391 * units and divided by 4. Subtract from it 1/4 of
3392 * the existing rttvar to form the (signed) amount to
3393 * adjust.
3394 */
3395 if (delta < 0)
3396 delta = -delta;
3397 delta -= (tp->t_rttvar >> TCP_RTTVAR_SHIFT);
3398 /*
3399 * As with srtt, this should never happen. There is
3400 * no support in RFC2988 for this operation. But 1/4s
3401 * as rttvar when faced with something arguably wrong
3402 * is ok.
3403 */
3404 if ((tp->t_rttvar += delta) <= 0)
3405 tp->t_rttvar = 1 << 2;
3406
3407 /*
3408 * If srtt exceeds .01 second, ensure we use the 'remote' MSL
3409 * Problem is: it doesn't work. Disabled by defaulting
3410 * tcp_rttlocal to 0; see corresponding code in
3411 * tcp_subr that selects local vs remote in a different way.
3412 *
3413 * The static branch prediction hint here should be removed
3414 * when the rtt estimator is fixed and the rtt_enable code
3415 * is turned back on.
3416 */
3417 if (__predict_false(tcp_rttlocal) && tcp_msl_enable
3418 && tp->t_srtt > tcp_msl_remote_threshold
3419 && tp->t_msl < tcp_msl_remote) {
3420 tp->t_msl = MIN(tcp_msl_remote, TCP_MAXMSL);
3421 }
3422 } else {
3423 /*
3424 * This is the first measurement. Per RFC2988, 2.2,
3425 * set rtt=R and srtt=R/2.
3426 * For srtt, storage representation is 1/32 ticks,
3427 * so shift left by 5.
3428 * For rttvar, storage representation is 1/16 ticks,
3429 * So shift left by 4, but then right by 1 to halve.
3430 */
3431 tp->t_srtt = rtt << (TCP_RTT_SHIFT + 2);
3432 tp->t_rttvar = rtt << (TCP_RTTVAR_SHIFT + 2 - 1);
3433 }
3434 tp->t_rtttime = 0;
3435 tp->t_rxtshift = 0;
3436
3437 /*
3438 * the retransmit should happen at rtt + 4 * rttvar.
3439 * Because of the way we do the smoothing, srtt and rttvar
3440 * will each average +1/2 tick of bias. When we compute
3441 * the retransmit timer, we want 1/2 tick of rounding and
3442 * 1 extra tick because of +-1/2 tick uncertainty in the
3443 * firing of the timer. The bias will give us exactly the
3444 * 1.5 tick we need. But, because the bias is
3445 * statistical, we have to test that we don't drop below
3446 * the minimum feasible timer (which is 2 ticks).
3447 */
3448 TCPT_RANGESET(tp->t_rxtcur, TCP_REXMTVAL(tp),
3449 uimax(tp->t_rttmin, rtt + 2), TCPTV_REXMTMAX);
3450
3451 /*
3452 * We received an ack for a packet that wasn't retransmitted;
3453 * it is probably safe to discard any error indications we've
3454 * received recently. This isn't quite right, but close enough
3455 * for now (a route might have failed after we sent a segment,
3456 * and the return path might not be symmetrical).
3457 */
3458 tp->t_softerror = 0;
3459 }
3460